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Abstract

High-dimensional categorical data are routinely collected in biomedical and social sciences. It is of great
importance to build interpretable parsimonious models that perform dimension reduction and uncover
meaningful latent structures from such discrete data. |dentifiability is a fundamental requirement for valid
modeling and inference in such scenarios, yet is challenging to address when there are complex latent
structures. In this article, we propose a class of identifiable multilayer (potentially deep) discrete latent
structure models for discrete data, termed Bayesian Pyramids. \We establish the identifiability of Bayesian
Pyramids by developing novel transparent conditions on the pyramid-shaped deep latent directed graph.
The proposed identifiability conditions can ensure Bayesian posterior consistency under suitable priors. As
an illustration, we consider the two-latent-layer model and propose a Bayesian shrinkage estimation
approach. Simulation results for this model corroborate the identifiability and estimatability of model
parameters. Applications of the methodology to DNA nucleotide sequence data uncover useful discrete
latent features that are highly predictive of sequence types. The proposed framework provides a recipe for
interpretable unsupervised learning of discrete data and can be a useful alternative to popular machine
learning methods.

Keywords: Bayesian inference, deep generative models, identifiability, interpretable machine learning, latent class,
multivariate categorical data

1 Introduction

High-dimensional unordered categorical data are ubiquitous in many scientific disciplines, includ-
ing the DNA nucleotides of A, G, C, T in genetics (Nguyen et al., 2016; Pokholok et al., 2005),
occurrences of various species in ecological studies of biodiversity (Ovaskainen & Abrego,
2020; Ovaskainen et al., 2016), responses from psychological and educational assessments or so-
cial science surveys (Eysenck et al., 2020; Skinner, 2019), and document data gathered from huge
text corpora or publications (Blei et al., 2003; Erosheva et al., 2004). Modeling and extracting in-
formation from multivariate discrete data require different statistical methods and theoretical
understanding from those for continuous data. In an unsupervised setting, it is an important
task to uncover reliable and meaningful latent patterns from the potentially high-dimensional
and heterogeneous discrete observations. Ideally, the inferred lower-dimensional latent represen-
tations should not only provide scientific insights on their own, but also aid downstream statistical
analyses through effective dimension reduction.

Recently, there has been a surge of interest in interpretable machine learning, see Doshi-Velez
and Kim (2017), Rudin (2019), and Murdoch et al. (2019), among others. Latent variable ap-
proaches, however, have received limited attention in this emerging literature, likely due to the as-
sociated complexities. Indeed, deep learning models with many layers of latent variables are
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usually considered as uninterpretable black boxes. For example, the deep belief network (Hinton
et al., 2006; Lee et al., 2009) is a very popular deep learning architecture, but it is generally not
reliable to interpret the inferred latent structure. However, for high-dimensional data, it is highly
desirable to perform dimension reduction to extract the key signals in the form of lower-
dimensional latent representations. If the latent representations are themselves reliable, then
they can be viewed as surrogate features of the data and then passed along to existing interpretable
machine learning methods for downstream tasks. A key to success in such modeling and analysis
processes is the interpretability of the latent structure. This in turn relies crucially on the identifi-
ability of the statistical latent variable model being used.

In statistical terms, a set of parameters for a family of statistical models are said to be identifiable
if distinct values of the parameters correspond to distinct distributions of the observed data.
Studies under such an identifiability notion date back to Koopmans and Reiersol (1950),
Teicher (1961), and Goodman (1974). Model identifiability is a fundamental prerequisite for valid
statistical estimation and inference. In the latent variable context, if one wishes to interpret the pa-
rameters and latent representations learned using a latent variable model, then identifiability is ne-
cessary for making such interpretation meaningful and reproducible. Early considerations of
identifiability in the latent variable context can be traced to the seminal work of Anderson and
Rubin (1956) for traditional factor analysis. For modern latent variable models potentially con-
taining nonlinear, non-continuous, and even deep layers of latent variables, identifiability issues
can be challenging to address.

Recent developments on the identifiability of continuous latent variable models include Drton
et al. (2011), Anandkumar et al. (2013), and Chen, Li, et al. (2020). Discrete latent variable
models are an appealing alternative to their continuous counterparts in terms of the combination
of interpretability and flexibility. Finite mixture models (McLachlan & Basford, 1988) routinely
used for model-based clustering are a canonical example involving a single discrete latent vari-
able. Such relatively simple approaches are insufficiently flexible for complex data sets.
Extensions with multiple latent variables and/or multilayer structure have distinct advantages
in such settings but come with increasingly complex identifiability issues. In this work, we are
motivated to build identifiable deep latent variable models, which are flexible enough to capture
the complex dependencies in real-world data, yet also with appropriate restrictions and parsi-
mony to yield identifiability.

We propose a family of multilayer, potentially deep, discrete latent variable models and propose
novel identifiability conditions for them. We establish identifiability for hierarchical latent struc-
tures organized in a ‘pyramid’—shaped Bayesian network. In such a Bayesian Pyramid, observed
variables are at the bottom and multilayer latent variables above them describe the data generating
process. Sparse graphical connections occur between layers, and our identifiability conditions im-
pose structural and size constraints on these between-layer graphs. Technically, we tackle identi-
fiability by first reformulating the Bayesian Pyramid as a constrained latent class model (LCM;
Goodman, 1974) in a layerwise manner. Then, we derive a nontrivial algebraic property of
LCMs under such parameter constraints (Proposition 2) and combine it with Kruskal’s theorem
(Allman et al., 2009; Kruskal, 1977) on tensor decompositions to establish identifiability. Our
identifiability results are not only technically novel, but also provide insights into methodology de-
velopment. Indeed, the identifiability theory directly inspires the specification of deep latent archi-
tecture in Bayesian Pyramids, which features fewer latent variables deeper up the hierarchy. The
identifiability results offer a theoretical basis for learning potentially deep and interpretable latent
structures from high-dimensional discrete data.

A nice consequence of the identifiability results is the posterior consistency of Bayesian proce-
dures under suitable priors. As an illustration, we consider the two-latent-layer model and propose
a Bayesian shrinkage estimation approach. We develop a Gibbs sampler with data augmentation
for computation. Simulation studies corroborate identifiability and show good performance of
Bayes estimators. We apply the proposed approach to two DNA nucleotide sequence datasets
(Dua & Graff, 2017). For the splice junction data, when using latent representations learned
from our two-latent-layer model in downstream classification of nucleotide sequence types, we
achieve a remarkable accuracy comparable to fine-tuned convolutional neural networks (i.e., in
Nguyen et al., 2016). This suggests that the developed recipe of unsupervised learning of discrete
data may serve as a useful alternative to popular machine learning methods.
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The rest of this paper is organized as follows. Section 2 proposes Bayesian Pyramids, a new fam-
ily of pyramid-shaped deep latent variable models for discrete data and reformulates a Bayesian
Pyramid into constrained latent class models (CLCMs) in a layerwise manner. Section 3 first con-
siders the identifiability of the general CLCMs and then proposes identifiability conditions for the
multilayer deep Bayesian Pyramids. To illustrate the proposed framework, Section 4 focuses on a
two-latent-layer Bayesian Pyramid and proposes a Bayesian estimation approach. Section 5 pro-
vides simulation studies that examine the performance of the proposed methodology and corrob-
orate the identifiability theory. Section 6 applies the method to real data on nucleotide sequences.
Finally, Section 7 discusses implications and future directions. Technical proofs, posterior compu-
tation details, and additional data analyses are included in the Online Supplementary Material.
Matlab code implementing the proposed method is available at https:/github.com/yuqigu/
BayesianPyramids.

2 Bayesian Pyramids: multilayer latent structure models

This section proposes Bayesian Pyramids to model the joint distribution of multivariate unordered
categorical data. For an integer m, denote [m] = {1, 2, ..., m}. Suppose for each subject, there are
p observed variablesy = (yy, ..., yp)T, where y; € [d;] for each variable j € [p]. d; is the number of
categories that the jth observed variable can potentially take. We mainly consider multiple (poten-
tially deep) layers of binary latent variables, motivated by better computational tractability and
also the simpler interpretability, with each variable encoding presence or absence of a certain la-
tent construct. The stack of multiple layers of binary latent variables induces a model resembling
deep belief networks (Hinton et al., 2006). However, our proposed class of models is more general
in terms of distributional assumptions. In the following, we first describe in detail our proposed
Bayesian Pyramids in Section 2.1 and then connect them to a latent class model (Goodman,
1974) subject to certain constraints.

2.1 Multilayer Bayesian Pyramids

The proposed models belong to the broader family of Bayesian networks (Pearl, 2014), which are
directed acyclic graphical models that can encode rich conditional independence information. We
propose a ‘pyramid’-like Bayesian network with one latent variable at the root and more and more
latent variables in downward layers, where the bottom layer consists of the p observed variables
Y1, ..., Yp. Denote the number of latent layers in this Bayesian network by D, which can be viewed
as the depth. Specifically, let the layer of latent variables consecutive to the observed y be a'!) =
(al, .oy 0K,) € {0, 1% with K; variables, and let a deeper layer of latent variables consecutive
to a € {0, 1} be a*V) € {0, 1}X+ form =1, 2, ..., D — 1. Finally, at the top and the deepest
layer of the pyramid, we specify a single discrete latent variable z, or equivalently
2PV e (1, ..., B}. In this Bayesian network, all the directed edges are pointing in the top-down dir-
ection only between two consecutive layers, and there are no edges between variables within a
layer. This gives the following factorization of the joint distribution of y and latent variables,
where the subscript i denotes an index of a random subject,

D-2
Py, (™), 2”) = Py, | ") TT P@™ | & )P (P | 2P P(P), (1)
m=1
(1) L 1 1) Ko 1
Po;la) = [POi 1 apag)  Pla™ 1) =] [Pla | o pam)- (2)

i=1 k=1

In the above display, for each j € [p], pa(j) C [K1] is a collection of first-latent-layer variables,
which are parents of y;. Similarly, for each k € [K,,], pa(k™)C [K,4+1] is a collection of
(m + 1)-latent-layer variables, which are parents of the m-latent-layer variable a,.

Figure 1 gives a graphical visualization of the proposed model. To make clear the sparsity struc-
ture of this graph, we introduce binary matrices G, G, ..., G*=Y termed as graphical matri-
ces, to encode the connecting patterns between consecutive layers. That is, G summarizes the
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Flgure 1. Multiple layers of binary latent traits a 9s model the distribution of observed y;. Binary matrices
G", G?, ... encode the sparse connection patterns between consecutive layers. Dotted arrows emanating from
the root varlable z; summarize omitted layers {a, .

parent—child graphical patterns between the two consecutive layers d and d + 1. Specifically, ma-
trix G = (g(llll) has size p x K; and matrix G (gk k,) hassize K,,_1 X K,,, form=2, ...,D -1,
with entries

lk =1, if ag) is a parent of yj,

gk”;z,zl, 1fon1Q 1saparentofoz(m1 2<m<D-1.

Each variable in the graph is subject-specific, implying that all the circles in Figure 1 represent
subject-specific quantities. Namely, if there are # subjects in the sample, each of them would
have its own realizations of y and a/®s. The proposed directed acyclic graph is not necessarily a
tree, as shown in Figure 1. That is, each variable can have multiple parent variables in the layer
above it, while in a directed tree, each variable can only have one parent. As a simpler illustration,
we also provide a two-latent-layer Bayesian Pyramid in Figure 2, which features a simpler yet still
quite expressive architecture. For example, we can specify the conditional distribution of each ob-
served y; using a multinomial or binomial logistic model with its parent variables as linear predic-
tors and specify the distribution of a given z using a latent class model. Namely, for a random
subject 7,

K (1)
exp (B .0+ 2 pi1 Bick8: 10k) _
Plyy=cla’ =a)=— 1ed T k=1 D jckS ik jelpl, celd], ae0, 1)<

m=1CXP ﬁ],mO Zk ]ﬁ/mkg]’kak)

Ky
[P’(ai.l) =a)= Z P(z; = b)ﬂj’(ail) =al|z= [9) = Z T 1_[ ”Zfb(l _ nk,b)l—ak.
b=1 b=1 k=1

3)

Later in Section 4, we will focus on the two-latent-layer model when describing the estimation
methodology; please refer to that part for further details.

We provide some discussions on the conceptual motivation for the proposed multilayer model.
Intuitively, for each subject i, z; € [B] in the deepest layer of the pyramid can encode some coarse-
grained latent categories of subjects, while the vector aﬁl) € {0, 1} encodes more fine-grained la-
tent features of subjects. The hierarchical multilayer structure is conceptually appealing as it can
provide latent representations of data in multiple resolutions, where there are nonlinear compo-
sitions between different latent resolutions that boost model flexibility. Model (3) for generating
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z;i € [B]

n = (1p)

agl) € {0, 1}

GW = (g})), B ={Ber}

Y; € [di] x [d2] x - x [d})]

Figure 2. Two-latent-layer model. Latent variables z;, a;1, ..., a;k, and observed variables y;1, ..., yip are
subject-specific, and model parameters G, B, T, y are population quantities.

a'V given z is a nonlinear latent class model (LCM). Hence, z cannot be viewed as a linear projec-
tion of the a!"-layer; rather, the nonlinear LCM (with a deeper variable z and conditional inde-
pendence of a;’s given z) can encode and explain rich and complex dependencies between the
variables alV, ..., a(K_l using parsimonious parametrizations.

2.2 Reformulating the Bayesian Pyramid as a constrained latent class model

In this subsection, we reveal an interesting equivalence relationship between our Bayesian Pyramid
models and latent class models (LCMs, Goodman, 1974) with certain equality constraints. Such
equivalence will pave the way for investigating the identifiability of Bayesian Pyramids. The trad-
itional latent class model (LCM) (Goodman, 1974; Lazarsfeld, 1950) posits the following joint
distribution of v, for a random subject i:

20

¢ h?

Pyt =ty - Yip = o) = Y _ v | Ve €1djl, j € [pl. (4)

4

h=1 j=1
The above equation specifies a finite mixture model with one discrete latent variable having H cat-
egories (i.e., H latent classes). In particular, given a latent variable z € [H], v, = P(z = b) denotes

the probability of z belonging to the hth latent class, and Ag)h = P(y; =¢; | zj = b) denotes the con-

ditional probability of response ¢; for variable y; given the latent class membership /. Expression
(4) implies that p observed variables y1, ..., y, are conditionally independent given the latent z. In
the Bayesian literature, the model in Dunson and Xing (2009) is a nonparametric generalization of
(4), which allows an infinite number of latent classes.

Latent class modeling under (4) is widely used in social and biomedical sciences, where research-
ers often hope to infer subpopulations of individuals having different profiles (Collins & Lanza,
2009). However, the overly-simplistic form of (4) can lead to poor performance in inferring dis-
tinct and interpretable subpopulations. In particular, the model assumes that individuals in differ-
ent subpopulations have completely different probabilities /I(C’)h for all ¢; € [d;] and j € [p], and
conditionally on subpopulation membership all the variables are independent. These restrictions
can force the number of classes to increase in order to provide an adequate fit to the data, which
can degrade interpretability of a plain latent class model.

We introduce some notation before proceeding. Denote a p x H all-one matrix by 1,xy. For a
matrix S with p rows and a set A C [p], denote by S 4, the submatrix of S consisting of rows in-
dexed in A. Consider a family of constrained latent class models, which enable learning of a po-
tentially large number of interpretable, identifiable, and diverse latent classes. A key idea is sharing
of parameters within certain latent classes for each observed variable. We introduce a binary con-
straint matrix S = (S;,) of size p x H, which has rows indexed by the p observed variables and col-
umns indexed by the H latent classes. The binary entry S, indicates whether the conditional
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probability table i(li_)d b= (1(1}),?, ...,ig’h) is free or instead equal to some unknown baseline.
e bl o ]9

Specifically, if §;, =1 then /1(1’) b is free; while for those latent classes b € [H] such that S;, =0,

their conditional probability tables /1(1’) 4.5, s are constrained to be equal. Hence, S puts the following
d;,

equality constraints on the parameters of (4):

; — — () _ 40

if Siahl - Si,hz - O’ then il:d,,h] - j'1:d/,hz' (5)
We also enforce a natural inequality constraint for identifiability,

if S #8Sjp,, then /Ig)’hl 2 20 “

¢jsha

If S =1 ,4p, then there are no active constraints and the original latent class model (4) is recov-
ered. We generally denote the conditional probability parameters by A = {l(c’/)h; jelpl,cie

[d;], b € [H]} where ey 1= A0 if §;, = 0. As will be revealed soon, such constrained latent class
models are related to our proposed Bayesian Pyramids via a neat mathematical transformation.

Viewed from a different perspective, a latent class model (4) specifies a decomposition of the
p-way probability tensor Il = (z, .., ), where 7., .., = P(y1 = ¢1, ..., ¥p = ¢, | A, S, v). This corre-
sponds to the PARAFAC/CANDECOMP (CP) decomposition in the tensor literature (Kolda &
Bader, 2009), which can be used to factorize general real-valued tensors, while our focus is on
probability tensors. The proposed equality constraint (5) induces a family of constrained CP
decompositions.

This family is connected with the sparse CP decomposition of Zhou et al. (2015), with both hav-
ing equality constraints summarized by a p x H binary matrix. However, Zhou et al. (2015) en-
courage different observed variables to share parameters, while our proposed model encourages
different latent classes to share parameters through (5).

We have the following proposition linking the proposed multilayer Bayesian Pyramid to the
constrained latent class model under equality constraint (5). For two vectors a, b of the same
length M, denote a = bifa; > b; for alli € [M]. Denote by 1(-) the binary indicator function, which
equals one if the statement inside is true and zero otherwise.

Proposition 1 Consider the multilayer Bayesian Pyramid with binary graphical matrices
GY G, . . GIP-,

(a) In marginalizing out all the latent variables except '), the distribu-
tion of y is a constrained latent class model with 2Kt latent
classes, where each latent class can be characterized as one configur-
ation of the K;-dimensional binary vector a'’) € {0, 1}*!. The corre-
sponding p x 2K constraint matrix $' is determined by the bipartite
graph structure between the a'"-layer and the y-layer, with entries
being

St =1-1a > G\ forallk=1, ..., Ki)

(7)

=1-1(a" = G}), jelpl, a0, 1}.

(b) Further, in considering the distribution of ™ € {0, 1}* and margin-
alizing out all the latent variables deeper than a™ except a”*1), the
distribution of a is also a constrained latent class model with
2Kn+1 Jatent classes, where each latent class is characterized as one con-
figuration of the K,,41-dimensional binary vector a”*!) e {0, 1)K,
Its corresponding constraint matrix $” is determined by the bipartite
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graph structure between the mth and the (12 + 1)th latent layers, with
entries being

Sty =1 =@ = G"*Y), k€ [Kyl, ™ e {0, 1)1 (8)

We present a toy example to illustrate Proposition 1 and discuss its implications.

Example1 Consider a multilayer Bayesian Pyramid with p = 6 and K; = 3, with the graph
between a'!) and y displayed in Figure 2. The 6 x 3 graphical matrix G is pre-
sented below. Proposition 1(a) states that there is a p x 2K constraint matrix

() taking the form

O == O O =
_ = Ok OoO o

=)
R R R m,m, O PO R O RO
(=]
-
L

_
SO OO OO
—_

Entries of S are determined according to (7), for example,
St ooy =1 = 1((000) = G{')) =1 - 1((000) = (100))=1; and S, =1-
1((111) = Gy))=1-1((111) = (011)) = 0. Each column of the constraint

matrix $' is indexed by a latent class characterized by a configuration of a
K;-dimensional binary vector. This implies that if only considering the first la-
tent layer of variables (!, all the subjects are naturally divided into 2K latent
classes, each endowed with a binary pattern.

Proposition 1 gives a nice structural characterization of multilayer Bayesian Pyramids. This
characterization is achieved by relating the multilayer sparse graph to the constrained latent class
model in a layer-wise manner. This proposition provides a basis for investigating he identifiability
of multilayer Bayesian Pyramids; see details in Section 3.

2.3 Connections to existing models and studies

We next briefly review connections between Bayesian Pyramids and existing models. In education-
al measurement research, Haertel (1989) first used the term restricted latent class models. Further
developments along this line in the psychometrics literature led to a popular family of cognitive
diagnosis models (de la Torre, 2011; Rupp & Templin, 2008; von Davier & Lee, 2019). These
models are essentially binary latent skill models where each subject is endowed with a
K-dimensional latent skill vector & € {0, 1}¥ indicating the mastery/deficiency statuses of K skills,
and each test item ; is designed to measure a certain configuration of skills, summarized by a load-
ing vector g; € {0, 1}X. The matrix Q € {0, 1)K collecting all of the J skill loading vectors
qi> --->q; as row vectors is often pre-specified by educational experts. The observed data for
each sub]ect are a J-dimensional binary vector r € {0, 1}, indicating the correct/wrong answers
to ] test questions in the assessment. Recently, there have been emerging studies on the identifiabil-
ity and estimation of such cognitive diagnosis models (e.g., Chen, Culpepper, et al., 2020; Chen
et al., 2015; Fang et al., 2019; Gu & Xu, 2019, 2020; Xu, 2017). However, to our knowledge,
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there have not been works that model multilayer (i.e., deep) latent structure behind the data and
investigate identifiability in such scenarios.

Bayesian Pyramids are also related to deep belief networks (DBNs, Hinton et al., 2006), sum-
product networks (SPNs, Poon & Domingos, 2011), and latent tree graphical models (LTMs,
Mourad et al., 2013) in the machine learning literature. DBNs have undirected edges between
the deepest two layers designed based on computational considerations (Hinton, 2009), while a
Bayesian Pyramid is a fully generative directed graphical model (Bayesian network) with all the
edges pointing top down. Such generative modeling is naturally motivated by the identifiability
considerations and also provides a full description of the data generating process. Also, DBNs
in their popular form are models for multivariate binary data, feature a fully connected graph
structure, and use logistic link functions between layers. In contrast, Bayesian Pyramids accommo-
date general multivariate categorical data and allow flexible forms of layerwise conditional distri-
butions and sparse connections between consecutive layers. An SPN is a rooted directed acyclic
graph consisting of sum nodes and product nodes. Zhao et al. (2015) show that an SPN can be
converted to a bipartite Bayesian network, where the number of discrete latent variables equals
the number of sum nodes in the SPN. Our model is more general in that in addition to modeling
a bipartite network between the latent layer and the observed layer, we further model the depend-
ence of the latent variables instead of assuming them independent. LTMs are a special case of our
model (3) because, while all the variables in an LTM form a tree, we allow for more general DAGs
beyond trees. Although the above models are extremely popular, identifiability has received essen-
tially no attention; an exception is Zwiernik (2018), which discussed identifiability for relatively
simple LTMs.

Our two-latent-layer Bayesian Pyramid shares a similar structure with the nonparametric latent
feature models in Doshi-Velez and Ghahramani (2009). Both works consider a mixture of binary
latent feature models, with each data point associated with both a deep latent cluster (z in our no-
tation) and a binary vector of latent features [a'!) in our notation]. One distinction is that we adopt
very flexible probabilistic distributions (see Examples 2 and 3) as conditional distributions in the
DAG, while Doshi-Velez and Ghahramani (2009) posits that the latent features are a deterministic
function of the products of z and &), In addition, Bayesian Pyramids are directly inspired by iden-
tifiability considerations, and in the next section, we provide explicit conditions that guarantee the
model is identifiable—not only in the two-latent-layer architecture similar to Doshi-Velez and
Ghahramani (2009) but also in general deep latent hierarchies with a?, ..., a®-V, 2.
Interestingly, Doshi-Velez and Ghahramani (2009) conjecture heuristically that their specification
‘likely resolves the identifiability issues’.

3 Identifiability and constrained latent class structure behind Bayesian
Pyramids

3.1 Identifiability of the constrained latent class model and posterior consistency

In Section 2, we proposed a new class of multilayer latent variable models deemed Bayesian
Pyramids and showed that these models can be formulated as a type of constrained latent class
model (CLCM) defined in (4)—(5). In this section, we study theoretical properties of model (4)—(5).

The classic latent class model in (4) was shown by Gyllenberg et al. (1994) to be not strictly iden-
tifiable. Strict identifiability generally requires one to establish a parameterization in which the pa-
rameters can be expressed as one-to-one functions of observables. As a weaker notion, generic
identifiability requires that the map is one-to-one except on a Lesbesgue measure zero subset of
the parameter space. In a seminal paper, Allman et al. (2009) leveraged Kruskal’s theorem
(Kruskal, 1977) to show generic identifiability for an unconstrained latent class model.
However, Allman et al. (2009)’s approach is not sufficient for establishing identifiability in con-
strained LCMs or Bayesian Pyramids, due to the complex parameter constraints in these models.
Indeed, Allman et al. (2009)’s generic identifiability results imply that in the latent class model with
an unconstrained parameter space, there exists a measure-zero subset of parameters where iden-
tifiability breaks down. In constrained LCMs, the equality constraints (5) exactly enforce param-
eters to fall into a measure-zero subset. In Bayesian Pyramids, these equality constraints arise from
between-layer potentially sparse graphs. So without a careful and thorough investigation into the
relationship between the parameter constraints and the graphical structure, Kruskal’s theorem is
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not directly applicable to investigating the identifiability of constrained LCMs or Bayesian
Pyramids.

Below, we establish strict identifiability of model (4)—(5), by carefully examining the algebraic
structure imposed by the constraint matrix S. We first introduce some notation. Denote by ® the
Kronecker product of matrices and by ® the Khatri—-Rao product of matrices. In particular, consider

matrices A = (a;;) € R, B=(b;;) € R™; and matrices C=(c;j)=(c,1| - |cp) € Rk
D=(dj)=(dil|---1d.,) e R™* then there are A ® B € R”* and C © D € R"** with
611’1B cee al,,B
A®B=| : : 1 |, CoD=(ci®dl|-lci®dy)
am,lB cee am,,B

The above definitions show the Khatri—-Rao product is a column-wise Kronecker product; see more
in Kolda and Bader (2009). We first establish the following technical proposition, which is useful for
the later theorem on identifiability.

Proposition 2 For the constrained latent class model, define the following p parameter
matrices subject to constraints (5) and (6) with some constraint matrix S,

(7) (7) (7)
Ma Ao AMon
Al = , j=1,...,p.
(7) (7) (7)
'{d,J ’ld,,z Ad,,H

Denote the Khatri-Rao product of the above p matrices by K = G)[;:lAm ,
which has size ]_[1;=1 d; x H. The following two conclusions hold.

(a) If the H column vectors of the constraint matrix S are distinct, then K
must have full column rank H.
(b) If S contains identical column vectors, then K can be rank-deficient.

Remark 1  Proposition 2 implies that S having distinct columns is sufficient [in part (a)]

and almost necessary [in part (b)] for the Khatri-Rao product K = oz;:lA(”
to be full rank. To see the ‘almost necessary’ part, consider a special case where
besides constraint (5) that ’1<1f:)d,-,h1 =/1(1i:)df’ b if S;, =8;;, =0, the parameters
also satisfy }“({:)d/,bl =i(1j:)d]’h2 if S;5, =S;5, =1. In this case, our proof shows
that whenever the binary matrix S contains identical column vectors in col-

umns b1 and b;, the matrix K also contains identical column vectors in col-
umns #1 and b, and hence is surely rank-deficient.

In the Khatri-Rao product matrix K defined in Proposition 2, each column characterizes the
conditional distribution of vector y given a particular latent class. Therefore, Proposition 2 reveals
an nontrivial algebraic property: whether § € {0, 1}"*! has distinct column vectors is linked to
whether the H conditional distributions of y given each latent class are linearly independent.
The matrix S does not need to have full column rank in order to have distinct column vectors.
For example, a 3 x 3 matrix S with three columns being (1, 0, 0), (0, 1, 1)", and (1, 1, 1) is rank-
deficient but has distinct column vectors. Indeed, it is not hard to see that a binary matrix S with m
rows can have as many as 2™ distinct column vectors.

Proposition 1 reformulates a Bayesian Pyramid into a constrained LCM with a constraint ma-
trix S, and then Proposition 2 establishes a nontrivial algebraic property of such constrained
LCM:s. Propositions 1 and 2 together pave the way for the development of the identifiability theory
of Bayesian Pyramids. In particular, the sufficiency part of Proposition 2 uncovers a nontrivial in-
herent algebraic structure of the considered models. To prove Proposition 2, we leveraged a novel
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proof technique, the marginal probability matrix, in order to find a sufficient and almost necessary
condition for the Khatri-Rao product of conditional probability matrices to have full rank. We
anticipate that the conclusion in Proposition 2 can be useful in other graphical models with dis-
crete latent variables, even beyond the Bayesian Pyramids considered in this paper. This is because
graphical models involving discrete latent structure can often be formulated as a latent class model
with equality constraints determined by the graph. Therefore, the conclusion of Proposition 2
might be of independent interest.

Although the linear independence of K’s columns itself does not lead to identifiability, it pro-
vides a basis for investigating strict identifiability of our model. We introduce the definition of
strict identifiability under the current setup and then give the strict identifiability result.

Definition 1  (Strict Identifiability). The constrained latent class model with (5) and (6) is
said to be strictly identifiable if for any valid parameters (A, S, v), the follow-
ing equality holds if and only if (A, S, %) and (A, S, v) are identical up to a la-
tent class permutation:

cIA,S,¥), Yeex[d]. (9)

Ply=c|A,S,v)=P(y

Remark 2 When the constraint matrix S is unknown and needs to be identified together
with unknown continuous parameters A, there is a trivial nonidentifiability is-
sue that needs to be resolved. To see this, continue to consider the special case

mentioned in Remark 1 where }‘(17';)(1,,;;1 = ’1(1i;)d,,h2 whenever S, =S;,,, then given

a matrix S we can generally denote }“(1]:)d,,h =: /lglz)d/,Jr ifS;, =1and ’1(17;){1,,;; =, }“(1]:)11,,— if

S;» = 0. Then without further restrictions, the following alternative (S, A) will be

indistinguishable from the true (S, A), where S=1 pxH — S, il:d],_,_ = /1(1’) iy and

;1]:,1/,_ = /1(1’) 44~ One straightforward way to resolve such trivial nonidentifiability
Rtk

of § is to simply enforce that whenever s;j, > s, the order of ; ), and 2, .,

is fixed for every possible category ¢ € [d]. In the following studies of identifiabil-
ity, we always assume such orderings of A with respect to S has been fixed.

For an arbitrary subset A C [p], denote by S 4. the submatrix of S that consists of those rows
indexed by variables belonging to A. S 4 has size | A| x H.

Theorem 1 (Strict Identifiability). Consider the proposed constrained latent class model
under (5) and (6) with true parameters v = {vy},epy), A= {A”)},-E[p], and S.
Suppose there exists a partition of the p variables [p] = Ay U A; U A3 such that

(a) the submatrix S 4, has distinct column vectors for i =1 and 2; and
(b) for any hy # b, € [H], there is i%l # /I(C/)hz for some j € A3 and some
ce [d/]

Also suppose vy, > 0 for each b € [H]. Then, (A, S, v) are strictly identifiable
up to a latent class permutation.

In the above theorem, the constraint matrix S is not assumed to be fixed and known. This implies
that both the matrix S and the parameters can be uniquely identified from data. We next give a
corollary of Theorem 1, which replaces the condition on parameters A in part (b) with a slightly
more stringent but also more transparent condition on the binary matrix S.

Corollary 1  Consider the proposed constrained latent class model under (5) and (6).
Suppose v, > 0 for each b € [H]. If there is a partition of the p variables
[p] = A1 U Ay U Aj; such that each submatrix S 4,, has distinct column vec-
tors for i =1, 2, 3, then parameters (v, A, S) are strictly identifiable up to a
latent class permutation.
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The conditions of Corollary 1 are more easily checkable than those in Theorem 1 because they
only depend on the structure of the constraint matrix S. It requires that after some column re-
arrangement, matrix S should vertically stack three submatrices, each of which has distinct column
vectors.

The conclusions of Theorem 1 and Corollary 1 both regard strict identifiability, which is the
strongest possible conclusion on parameter identifiability up to label permutation. If we consider
the slightly weaker notion of generic identifiability as proposed in Allman et al. (2009), the con-
ditions in Theorem 1 and Corollary 1 can be relaxed. Given a constraint matrix S, denote the con-
strained parameter space for (v, A) by

TS ={(v, A) : A satisfies the constraints specified by S}; (10)

and define the following subset of T as

NS ={(v,A) € TS:3w, A) satisfying the constraints specified by some S

_ (11)
such that P(y | v, A)=P(y | v, A)}.
With the above notation, the generic identifiability of the proposed constrained latent class model
is defined as follows.

Definition 2 (Generic Identifiability). Parameters (A, S, v) are said to be generically iden-
tifiable if N's defined in (11) has measure zero with respect to the Lebesgue
measure on 7 s defined in (10).

Theorem 2 (Generic Identifiability). Consider the constrained latent class model under
(5) and (6). Suppose for i =1, 2, changing some entries of S4,. from ‘1’ to

‘0> vyields an gA,,: having distinct columns. Also suppose for any
b1 # by € [H], there is /I(h’l) L F /122) . for some j € A3 and some ¢ € [d;]. Then
(A, S, v) are generically identifiable.

Remark 3 Note that altering some S;, from one to zero corresponds to adding one more
equality constraint that the distribution of the jth variable given the hth latent
class is set to the baseline through (5). Therefore, Theorem 2 intuitively implies
that if enforcing more parameters in 7 to be equal can give rise to a strictly
identifiable model, then the parameters that make the original model uniden-
tifiable only occupy a negligible set in 7.

Theorem 2 relaxes the conditions on S for strict identifiability presented earlier. In particular,
here the submatrices S 4. need not have distinct column vectors; rather, it would suffice if altering
some entries of S 4, from one to zero yield distinct column vectors. As pointed out by Allman et al.
(2009), generic identifiability is often sufficient for real data analyses.

So far, we have focused on discussing model identifiability. Next, we show that our identifiabil-
ity results guarantee Bayesian posterior consistency under suitable priors. Given a sample of size 7,
denote the observations by y,, ..., y,, which are # vectors each of dimension p. Recall that under
(4), the distribution of the vector y under the considered model can be denoted by a p-way prob-
ability tensor I = (z,...,). When adopting a Bayesian approach, one can specify prior distribu-
tions for the parameters A, S, and v, which induce a prior distribution for the probability tensor
. Within this context, we are now ready to state the following theorem.

Theorem 3  (Posterior Consistency). Denote the collection of model parameters by
® = (A, S, v). Suppose the prior distributions for the parameters A, S, and v
all have full support around the true values. If the true latent structure S°
and model parameters A° satisfy the proposed strict identifiability conditions
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12 Gu and Dunson

in Theorem 1 or Corollary 1, we have
PO eN(®% |y, ..., y,) — 0 almost surely,

where N(®°) is the complement of an e-neighborhood of the true parame-
ters ®° in the parameter space.

Theorem 3 implies that under an identifiable model and with appropriately specified priors, the
posterior distribution places increasing probability in arbitrarily small neighborhoods of the true
parameters of the constrained latent class model as sample size increases. These parameters in-
clude the mixture proportions and the class specific conditional probabilities.

3.2 ldentifiability of multilayer Bayesian Pyramids

According to Proposition 1, for a multilayer Bayesian Pyramid with a p x K; binary graphical ma-
trix G between the two bottom layers, one can follow (7) to construct a p x 2K1 constraint ma-
trix SV as illustrated in Example 1. We next provide transparent identifiability conditions that
directly depend on the binary graphical matrices G™s. With the next theorem, one only needs
to examine the structure of the between layer connecting graphs to establish identifiability.

Theorem4  Consider the multilayer latent variable model specified in (1)—(2). Suppose the
numbers Ky, ..., Kp_; are known. Suppose each binary graphical matrix
G of size K1 X K, (size p x Ky if m = 1) takes the following form after
some row permutation:

Ggm=| Ik , m=1,...,D-1, (12)

where G”* generally denotes a submatrix of G™ that can take an arbitrary
form. Further suppose that the conditional distributions of variables satisfy
the inequality constraint in (6). Then, the following parameters are identifi-
able up to a latent variable permutation within each layer: the probability dis-
tribution tensor 7 for the deepest latent variable z!P), the conditional
probability table of each variable (including observed and latent) given its pa-

rents, and also the binary graphical matrices {G"™; m=1, ..., D —1}.

Remark 4  The proof of Theorem 4 provides a nice layer-wise argument on identifiability,
that is, one can examine the structure of the Bayesian Pyramid in the bottom-up
direction. As long as for some € there are G', ..., G taking the form of (12),
then the parameters associated with the conditional distribution of y and
aV, ..., a1 are identifiable and the marginal distributions of a'*’ are also
identifiable.

Theorem 4 implies a requirement that p > 3K; and that K,_; > 3K,, for every
m=2, ..., D —1, through the form of G" in (12). That is, the number of latent variables per
layer decreases as the layer goes deeper up the pyramid. Condition (12) in Theorem 4 requires
that each latent variable a;:") in the mth latent layer has at least three children in the (2 + 1)th layer
that do not have any other parents. Our identiﬁabilit?f conditions hold regardless of the specific
models chosen for the conditional distributions, y; | (x(kl and each (x;:") | (xz,”J' ) aslong as the graph-
ical structure is enforced and these component models are not over-parameterized in a naive man-
ner. We next give two concrete examples l\;vhich differently model the distribution of a™ | a"+1)

m+

but both respect the graph given by G"*1,
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Example 2 We first consider modeling the effects of the parent variables of each ag") as

Ip(a;m =1] a(m+1)’ﬂ(m+1), G(m+1))

1) 1) 1
=+ >0 A et |, (13)
g =1

where f: R — (0, 1) is a link function. The number of g-parameters in (13)

equals k,’”*ll gk";:l, which is the number of edges pointing to a(k’").

Choosing f(x) = 1/(1 + exp (—x)) leads to a model similar to sparse deep be-
lief networks (Hlnton et al., 2006; Lee et al., 2007).

Example 3 To obtain a more parsimonious alternative to (13), let

P(a(km) =1 | a(m+1), 0(m+1)’ G(m+1))

9}:’1“), if ﬂ(a}:,”“ g(k”gl) =1 for at least one k' € [K,,,11]);

9}:6“), otherwise.
(14)
Model (14) satisfies the conditional independence encoded by (m+1), since
I(a(k’,””) gﬁ“ =1 for at least one k' € [K,11] ]_[k, _ oc;:,”“)),

implying that the distribution of aim) only depends on its parents in the
(m+1)th latent layer. This model provides a probabilistic version of
Boolean matrix factorization (Miettinen & Vreeken, 2014). The binary indi-

cator equals the Boolean product of two binary vectors Gy"*" and a"+!). The

1- 9;:"1“ and 9 m+1 ! quantify the two probabilities that the entry a(km) does not
equal the Boolean product.

Since Examples 2 and 3 satisfy the conditional independence constraints encoded by graphical
matrices G”*Vs, they satisfy the equality constraint in (5) with the constraint matrix S+,
Therefore, our identifiability conclusion in Theorem 4 applies to both examples with appropriate
inequality constraints on the f—parameters or the f—parameters; for example, see Proposition 3
in Section 4.

Besides Examples 2 and 3, there are many other models that respect the graph1cal structure. For
example, (13) can be extended to include interaction effects of the parents of a ) as follows:

P((l(km) =1 | a(m+1)’ 0(m+1)’ G(m+1))

_}( ,Bm+1 Z ﬁm+1 7[n+1

kigml=1
k,k’ (15)
(m+1) m+1 (m+1) (m+1) (m+1)
+ Z T (R Rt I B
#k Lolm+1)
(m+11 (1%1+1) Z'gk,f =1
Shky Skky

n (15) if ak ) has M:= Zk,’"ql gk k/ ) parents, then the number of f-parameters equals 2.
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Anandkumar et al. (2013) considered the identifiability of linear Bayesian networks. Although
both Anandkumar et al. (2013) and this work address identifiability issues of Bayesian networks,
their results are not applicable to our highly nonlinear models. The nonlinearity requires techni-
ques that look into the inherent tensor decomposition structures (in particular, a constrained
CP decomposition) caused by the discrete latent variables and graphical constraints imposed on
the discrete latent distribution. Such inherent constrained tensor structures are specific to discrete
and graphical latent structures and are not present in the settings considered in Anandkumar et al.
(2013).

4 Bayesian inference for two-layer Bayesian Pyramids

As discussed earlier, the proposed multilayer Bayesian Pyramid in Section 2 has universal identifi-
ability arguments for many different model structures. In this section, as an important special case,
we focus on a two-latent-layer model with depth D =2 and use a Bayesian approach to infer the
latent structure and model parameters. Recall our two-latent-layer Bayesian Pyramid specified
earlier in (3) takes the form

K (1)
(1) exp(ﬁi,C,O + Zkil 'Bi,C,kg/,kak)

I]D(yl-’/- =c | a; :a) =— K It 5 je [p], ce [d/]’
D =1 €XP (,5’ im0+ 2ok l1 Bimk& /,kak)
: B K
Pla) =a Zfbl_[’?fbl—ﬂkblab» a € (0, 1)
b=l k=

Here, we assume 8 ; o =, 4 x = 0 for all k € [K1], as conventionally done in logistic models.
The parameter f8; .|, can be viewed as the weight associated with the potential directed edge
from latent variable a;e” to observed variable yj, for response category c. The f; , only im-
pacts the likelihood if there is an edge from (xf) to y; with g(/.?,l =1. Denote the collection of
parameters as . (3) specifies a usual latent class model in the second latent layer with B la-
tent classes for the K;-dimensional latent vector a'!. This layer of the model has latent class
proportion parameters = (zq, ..., z3)" and conditional probability parameters 5 = (Mpp) K, xB-
The full set of model parameters across layers is (G, g, 7, #), and the model structure is
shown in Figure 2. We can denote the conditional probability P(y;=c | a" =a) in (3) by
j'/‘,C,ll‘

4.1 ldentifiability theory adapted to two-layer Bayesian Pyramids defined in (3)

For the two-latent-layer model in (3), the following proposition presents strict identifiability con-
ditions in terms of explicit inequality constraints for the # parameters.

Proposition 3  Consider model (3) with true parameters (G'Y, g, z, n).

(a) Suppose G = (Ix;5 I3 Iy (GM))'s e # 05 Bk, # 0, and
B sk, # 0 for j € [Ki], ¢ € [dj — 1]. Then G, B, and probability
tensor v!!) of & € {0, 1}¥ are strictly identifiable.

(b) Under the conditions of part (a), if further there is K; > 2log, B+ 1,
then the parameters  and # are generically identifiable from v{!),

As mentioned in the last paragraph of Section 2, the identifiability results in that section apply to
general distributional assumptions for variables organized in a sparse multilayer Bayesian
Pyramid. When considering specific models, properties of the model can be leveraged to weaken
the identifiability conditions. The next proposition illustrates this, establishing generic identifiabil-
ity for the model in (3). Before stating the identifiability result, we formally define the allowable
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constrained parameter space for # under a graphical matrix G') as

Q@ GY) = Brp1ki1:d-1)3 Bk # 0 if g(,];l =1; and g, =0 if g(/T/Z =0}. (16)

Proposition 4  Consider model (3) with g belonging to Q(8; G") in (16). Suppose the
graphical matrix G'!) can be rewritten as G'" = (Gy, G,, G, (G*)")T,
where each G,,, has size Ky x K; and

1 * *
* 1 - %

G,=|. . . o, m=1,2,3;
* ok 1

that is, each of Gy, G;, G3 has all the diagonal entries equal to one while
any off-diagonal entry is free to be either one or zero. Also suppose

Ky > 2log, B+ 1. Then (G'Y, g, 7, ) are generically identifiable.

The two different identifiability conditions on the binary graphical matrix G stated in
Propositions 3 and 4 correspond to different identifiability notions—strict and generic identifiabil-
ity, respectively. The generic identifiability notion is slightly less stringent than strict identifiability,
by allowing a Lebesgue-measure-zero subset N of the parameter space 7 where identifiability does
not hold. Our sufficient generic identifiability conditions in Proposition 4 are much less stringent
than conditions in Proposition 3.

4.2 Bayesian inference for the latent sparse graph and number of binary
latent traits

We propose a Bayesian inference procedure for two-latent-layer Bayesian Pyramids. We apply a
Gibbs sampler by employing the Polya-Gamma data augmentation in Polson et al. (2013) together
with the auxiliary variable method for multinomial logit models in Holmes and Held (2006). Such
Gibbs sampling steps can handle general multivariate categorical data.

4.2.1 Inference with a Fixed K,

First consider the case where the true number of binary latent variables K in the middle layer is
fixed. Inferring the latent sparse graph G is equivalent to inferring the sparsity structure of the
continuous parameters 2, ’s. Let the prior for £, o be N(uy, o3), where hyperparameters 1, o5
can be set to give weakly informative priors for the logistic regression coefficients (Gelman
et al., 2008). Specify priors for other parameters as

(i) forfixed Ky, k=1, ...,Ki: By | (04, gix =1) ~ N(0, 0%);
Bk | (0%, gj = 0) ~ N(0, 53);
O'Zk ~ Il’lVGa(blg, bza);

C

Plgix=1)=1-P(gjpe=0)=1y;

Here o is a small positive number specifying the ‘pseudo’-variance, and we take o9 = 0.1 in the
numerical studies. Our adoption of a prior variance for £ ., when g;, = 0 follows a similar spirit
as the ‘pseudo-prior’ approach in the Bayesian variable selection literature. In Bayesian variable
selection for regression analysis, Dellaportas et al. (2002) first proposed using a pseudo-prior
for the variance when one variable is not included in the model to facilitate convenient Gibbs sam-
pling steps. Specifically, a binary variable p; encodes whether or not the jth predictor is included in

the regression, and the regression coefficient is fp;, with f; ~ 7;N(0, o) + (1 — z;)N(0, 63) and
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P(p; = 1) = z;. The pseudo-prior variance 3 does not affect the posterior but may influence mixing
of the MCMC algorithm.

The yin (17) is further given a noninformative prior y ~ Beta(1, 1). The hyperparameters for the
Inverse-Gamma distribution can be set to b1, = b, = 2. In the data augmentation part, for each
subject i € [#], each observed variable j € [p], and each non-baseline category c=1, ..., d; -1,
we introduce Polya-Gamma random variable w;. ~ PG(1, 0). We use the auxiliary variable ap-
proach in Holmes and Held (2006) for multinomial regression to derive the conditional distribu-
tion of each ;. Given data y; € [d;], introduce binary indicators y;;. = 1(y;; = ¢). The posteriors
of B satisfy that

n 41 [exp(ﬂ 0+ Xk Bkt /,kai,k)]ym
pB.. | V1) x DB )
7 ' I 1:][ g Z?:] eXp(ﬁde + le:;] ﬂjc/kg/,kai,k>

and we introduce notation
Ky
bije =PBjco + Zﬁ ick&ik %k = Cije)s
k=1

Ky
Ciji) = log Z exp (/3 jeo + Zﬁ jek8 f,k(li,k)

1<e<d, b4 k=1
Next by the property of the Polya-Gamma random variables (Polson et al., 2013), we have

M—Zex {(yie = 1/2)¢ }I°° (- ..¢2 21p P (wiie | 1, 0) dw;

1+exp (¢i/c) = P Wije /2)95c} o exp{— wijedy; /210 (wije | 1, Wijcs

where p*S(w;i | 1, 0) denotes the density function of PG(1, 0). Based on the above identity, the
conditional posterior of the §;,’s and f3;,;’s are still Gaussian, and the conditional posterior of
each wj is still Polya-Gamma with (wj;. | =) ~ PG(1, S, + Zf;l Bicegjrir — Ciji); these full
conditional distributions are easy to sample from. As for the binary entries g;,’s indicating the
presence or absence of edges in the Bayesian Pyramid, we sample each g;, individually from its

posterior Bernoulli distribution. The detailed steps of such a Gibbs sampler with known K; are
presented in the Online Supplementary Material.

4.2.2 Inferring an Unknown K,

On top of the sampling algorithm described above for fixed K1, we propose a method for simul-
taneously inferring K; and other parameters. In the context of mixture models, Rousseau and
Mengersen (2011) defined over-fitted mixtures with more than enough latent components and
used shrinkage priors to effectively delete the unnecessary ones. In a similar spirit but motivated
by Gaussian linear factor models, Legramanti et al. (2020) proposed the cumulative shrinkage
process (CSP) prior, which has a spike and slab structure. We use a CSP prior on the variances
{02,) of {B i} to infer the number of latent binary variables K; in a two-layer Bayesian Pyramid.
The rationale for using such an increasing shrinkage prior for latent dimension selection is that,
it is natural to expect additional latent dimensions to play a progressively less important role in
characterizing the data, so the associated parameters should have a stochastically decreasing ef-
fect. Specifically, under the CSP prior, the kth latent dimension is controlled by a scalar ), that
follows a spike-and-slab distribution. Redundant dimensions will be essentially deleted by pro-
gressively shrinking the sequence {61, 03, ...} towards an appropriate value 0, (the spike). In par-
ticular, Legramanti et al. (2020) considered the continuous factor model where ), > 0 denotes the
variance of the factor loadings for the kth factor and 6, is a small positive number indicating the
variance of redundant latent factors.
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We next describe in detail the prior specifications with an unknown number of binary latent var-
iables K;. Consider an upper bound Kypper for Ky, with Ky < Kypper- Based on the identifiability
conditions in Theorem 4 about the shape of G(;iKl, K is naturally constrained to be at most
p/3, therefore Kypper can be set to p/3 or smaller in practice. We adopt a prior that detects redun-
dant binary latent variables by increasingly shrinking the variance of §,’s as k grows from 1 to
Kupper- Specifically, letting £, ~ N(O0, afk), we put a CSP prior on variances {0?, 02, ..., afKu )
for each category ¢ € [d — 1], where o2 is a prespecified small positive number indicating the sppfke
variance for redundant binary latent variables:

(ii) for unknown Ky < Kypper, k=1, ..., Kypper:

(19)
oo | e ~ (1= m)InvGa(bi,, bag) + medye 5
-1
me=Y v [[(1=vm) (20)
=1 m=1

where InvGa(b1,, by,) refers to the inverse gamma distribution with shape b1, and scale by, and 7,
has a stick-breaking representation as in (20) with vy, v2, ..., vk,,.—1 independently following the
Beta distribution Beta(1, ag). We set vk, =1 to truncate the stick-breaking representation at
Kypper, similarly to Legramanti et al. (2020). The d,. represents the Dirac spike distribution
with 6% serving as the variance of redundant latent variables, while InvGa(a,, b,) represents the
more diffuse slab distribution for the variances corresponding to active latent variables. The ‘in-
creasing shrinkage’ comes from the fact that as the latent variable index k increases, the probability
of a; belonging to the spike, 7y, stochastically increases, because

k -1 1
= 1-vp]l=1-———"—
El7e] ;E[MEH U] Lo v 1F

increases as the index k increases. Therefore, the CSP prior features an increasing amount of
shrinkage for larger k. We introduce auxiliary variables {h,; k=1, ..., Kypper} with by €
[Kypper] to help with understanding and facilitate posterior computation. Specifically, the prior
in (19) can be obtained by marginalizing out a discrete auxiliary variable b, with
P(hy=1L) =1, ]_[fn_:ll (1 =v,), so (19)—(20) can be reformulated in terms of b, as

(07 | i) ~ Vb > k) - InvGa(big, byo) + by S k) - 6,25

k -1
Plhe <k) =Y v [[(1=vw)=m, k=1, .., Kupper.
=1 m=1

Therefore, the auxiliary variables », determine whether the kth latent dimension is in the spike and hence
corresponds to a redundant latent variable ay; specifically, if b, > k then %, follows the slab distribution
InvGa(b1,, by,) and a;, is active, otherwise Jgk =02, is in the spike and @, is redundant. Given (19), the
largest possible number of active latent variables is Kypper — 1, because 7x,,. = 1= P(bhk,,. < Kupper)
and the last latent variable is always redundant. Since the event 1(b), > k) indicates that the kth compo-
nent is in the slab and hence active, we can write the total number of active latent dimensions K* as

Kupper

K* = " 1(be> k). (21)
k=1

Tracking the posterior samples of all the b, can give a posterior estimate of K*. The above data augmen-
tation leads to Gibbs updating steps. We present the details of our Gibbs sampler in the Online
Supplementary Material.
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Figure 3. Posterior means of the main-effect parameters {4 ;,} for response category ¢ = 1 averaged across 50
independent replications, for n=500 or 2,000. Kypper = 7 is taken in the CSP prior for posterior inference, while the
true Kj is 4 as shown in the rightmost plot.

Remark 5

Remark 6

It is methodologically straightforward to extend our Gibbs sampler to deep
Bayesian Pyramids with more than two latent layers. To see this, note that
in deep Bayesian Pyramids with m > 2, for each m1, the conditional distribution
of ™ given a"*1) in Example 2 is a special case of the conditional distribution
of y given a'V. Indeed, both of these conditionals follow generalized linear
models with the (multinomial) logit link, with the parent variables serving as
predictors for the child. Under such a formulation, introducing additional
Polya-Gamma auxiliary variables for the a!'-layer similar to those for the
y-layer would allow Gibbs updates in a three-latent-layer Bayesian Pyramid.
In this work, we focus on two-latent-layer models for computational
efficiency.

We also remark that it is not hard to derive and implement a Gibbs sampler for
constrained latent class models (CLCMs) mentioned in Section 3.1. Performing
Gibbs sampling for CLCMs is a relatively straightforward extension to the cur-
rent Gibbs sampler for Bayesian Pyramids. The reason is that one can similarly
use the data augmentation strategies in Holmes and Held (2006) and Polson
et al. (2013) to deal with y; € [d;]; and one can also adopt similar priors for
the binary constraint matrix S € {0, 1}” as those adopted for the graphical
matrix G € {0, 1}”X1 in a Bayesian Pyramid. Our preliminary simulations
for such a Gibbs sampler under CLCMs showed that the recovery of parame-
ters and the constraint matrix are not as stable and accurate as that for
Bayesian Pyramids (shown in the later Figures 3-5). One explanation is that
compared to multilayer Bayesian Pyramids, the parametrization of a CLCM
is less parsimonious and requires many more mixture proportion parameters
in order to describe the same joint distribution of the observed variables.
Therefore, we have chosen to focus on the method for Bayesian Pyramids in
this work, and treat CLCMs mainly as intermediate tools to help establish
identifiability of Bayesian Pyramids.

5 Simulation studies

We conducted replicated simulation studies to assess the Bayesian procedure proposed in Section 4
and examine whether the model parameters are indeed estimable as implied by Theorem 3.
Consider a two-latent-layer Bayesian Pyramid with p = 20 observed variables, d = 4 response cat-
egories for each observed variable, and Ky = 4 binary latent variables in the middle layer and one
binary latent variable in the deep layer. Let the true p x K; binary graphical matrix be
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Figure 4. Mean estimation errors of the binary graphical matrix G"" at the matrix level (in (a), row level (in (b)), and
entry level (in (c)). The median, 25% quantile, and 75% quantile based on the 50 independent simulation replications
are shown by the circle, lower bar, and upper bar, respectively.

RMSE for main-effects (3, 2 RMSE for intercepts (3j0..) e RMSE for deeper tensor arms (1)
0.5
mr w15 W
[ u 004
= = =
T c [
o 1 @ 1 © 0.3
g g g
2 2 Q0.2
®05 o5 "
s g 0.1
Tt —e— o o » —d 5
0 0 r 0 - —=
500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
sample size sample size sample size

Figure 5. Average root-mean-square errors (RMSE) of the posterior means of the main-effects g, intercepts g,, and
deeper tensor arms 5 versus sample size n=250 -/ for i € {1, 2, ..., 8}. The median, 25% quantile, and 75%
quantile based on the 50 independent simulation replications are shown by the circle, lower bar, and upper bar,
respectively.

G = (I4; 143 Is3 11005 0110; 00115 10015 1010; 1001; 01015 1110; 0111). Such a G satisfies
the conditions for strict identifiability in Theorem 4, since it contains three copies of the identity
matrix I4 as submatrices. Let the true intercept parameters for categories ¢=1,2,3 be
(Bin.0s 820 Bjz0) =(=3, =2, —1) for each j; and for any g(/f,i =1, let the corresponding true
main-effect parameters of the binary latent variables be f8; ., = 3 if variable y; has a single parent
and f8; ., =2 if y; has multiple parents. See Figure 3c for a heatmap of the sparse matrix of the
main-effect parameters (5,1,; j € [p], k € [K1]) for category ¢ = 1.

We use the method developed in Section 4 with the CSP prior for posterior inference under an
unknown K;. We specify an upper bound for K; as Kypper = 7, because [p/2071 =7 is a natural
upper bound here based on the identifiability considerations mentioned before. As for the hyper-
parameters in the CSP prior, we mainly follow the default setting and suggestion in Legramanti
et al. (2020). Specifically, we set ag to the same value in Legramanti et al. (2020), ag = 5; we
also follow the suggestion in Legramanti et al. (2020) that the spike variance o2, should be a small
positive number but should avoid to take excessively low values by setting o = 0.07. Our simu-
lations adopting these choices turn out to produce accurate estimation results under different set-
tings (see the later Figures 3-5). In our preliminary simulations, we also varied these
hyperparameters around the above values, and did not observe the algorithmic performance to
be sensitive to them. Throughout the Gibbs sampling iterations, we enforce an identifiability con-
straint on g that f8,, > 0 as long as g, = 1. For each sample size #» we conduct 50 independent
simulation replications. Since the model is identifiable up to a permutation of the latent variables
in each layer, we post-process the posterior samples to find a column permutation of G to best
match the simulation truth; then the columns of other parameter matrices are permuted
accordingly.

We have used the Gelman-Rubin convergence diagnostic (Gelman et al., 2013; Gelman &
Rubin, 1992) to assess the convergence of the MCMC output from multiple random
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initializations. In particular, for the simulation setting corresponding to # = 1,000, we randomly
initialize the parameters from their prior distributions | = 5 times and then run five MCMC chains
for each simulated dataset. For each MCMC chain, we ran the chain for 15,000 iterations, dis-
carding the first 10,000 iterations as burn-in, and retaining every fifth sample post burn-in to
thin the chain. After collecting the posterior samples, we calculate the potential scale reduction fac-
tor R? (i.e., the Gelman-Rubin statistic) of the model parameters. The median Gelman-Rubin sta-
tistics for the deep conditional probabilities n = (17,,)kxp and that for the deep latent class
proportions T = (7;,)px; across the five chains are as follows:

1.0009 1.0013
1.0016 1.0020
1.0018 1.0015
1.0016 1.0014

median GR(yg,p) =

‘ 1.0021
»  median GR(zpx) = (1.0021 )

The Gelman—Rubin statistics for other parameters are similarly well controlled and are omitted.
We also inspected the traceplots of the MCMC outputs and observed fast mixing of the
MCMC chain after convergence. These observations justify running MCMC for 15,000 iterations
and discarding the first 10,000 as burn-in, therefore we adopt these settings in all the numerical
experiments. When applying the proposed method to other datasets, we also recommend calculat-
ing the Gelman—Rubin statistics and inspecting the traceplots to determine the appropriate num-
ber of overall MCMC iterations and burn-in iterations.

Our Bayesian modeling of G adopts rather uninformative priors with each entry g;; ~
Bernoulli(y) and we do not force G to take a specific form (such as to include any identity subma-
trix as described in Proposition 3 for strict identifiability) but rather let the sampler freely explore
the space of all binary matrices to estimate G. Our theory on identifiability and posterior consist-
ency implies that the posteriors of both G and other parameters concentrate around their true val-
ues as sample size grows. This is empirically verified in our simulation studies; Figures 3—-5 show
that as sample size 7 grows, both the discrete G and the continuous parameters are estimated con-
sistently. We next elaborate on these findings from simulations.

Figure 3 presents posterior means of the main-effect parameters (51,5 7 € [p], k € [K1]) for cat-
egory ¢ = 1, averaged across the 50 independent replications. The leftmost plot of Figure 3 shows
that for a relatively small sample size 7 = 500, the posterior means of () already exhibit similar
structure as the ground truth in the rightmost plot. Also, the true number of K; = 4 binary latent var-
iables in the middle latent layer are revealed in Figures 3a and b. For the sample size # = 2,000,
Figure 3b shows that the posterior means of (§;;;,) are very close to the ground truth. The posterior
means for other categories ¢ = 2, 3, 4 show similar patterns to those for ¢ = 1. The estimated ()
are slightly biased toward zero for the smaller sample size (7 = 500) with bias less for the larger sam-
plessize (7 =2, 000). Our results suggest that the binary graphical matrix that underlies {8, } (that is,
the sparsity structure of the continuous parameters) is easier to estimate than the nonzero {£} them-
selves. That is, with finite samples, the existence of a link between each observed variable y; and each
binary latent variable ay, is easier to estimate than the strength of such a link (if it exists).

To assess how the approach performs with an increasing sample size, we consider eight sample
sizes n=250-ifor i=1,2, ..., 8 under the same settings as above. To compare the estimated
structures to the simulation truth with K; =4, we retain exactly four binary latent variables
k € [Kypper]; choosing those having the largest average posterior variance 1/d Z‘;l %,. For the
discrete structure of the binary graphical matrix G", we present mean estimation errors in
Figure 4. Specifically, Figure 4a plots the errors of recovering the entire matrix G, Figure 4b plots
the errors of recovering the row vectors of G", and Figure 4b plots the errors of recovering the
individual entries of G, For sample size as small as 7 = 750, estimation of G'!) is very accurate
across the simulation replications. Notably, # = 750 is much smaller than the total number of cells
d? =420 ~ 1.1 x 10"2 in the contingency table for the observed variables y. For continuous param-
eters fy={f;.0ls B=1{B;a)» and m={n}, respectively, in Figure S we plot average
root-mean-square errors (RMSE) of the posterior means versus sample size n. For each
Bo=1Bjc0)s B=1B e}, and 5 = {ny,}, Figure 5 shows RMSE decreases with sample size, which is
as expected given our posterior consistency result in Theorem 3.
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In simulations (and also the later real data analysis), we have checked the posterior samples col-
lected from the MCMC algorithm and obtained the traceplots of various parameters in the model.
By examining these, we have not observed label-switching issues in our numerical studies. In gen-
eral, we would suggest one uses the traceplots of those mixture-component-specific parameters to
examine whether there is a label switching issue. If there exists such issues, we recommend using
the R package 1abel . switching (Papastamoulis, 2016) for MCMC outputs to address the issue.

6 Application to DNA nucleotide sequence data

We apply our proposed two-latent-layer Bayesian Pyramid with the CSP prior to the Splice
Junction dataset of DNA nucleotide sequences; the data are available from the UCI machine
learning repository. We also analyze another dataset of nucleotide sequences, the Promoter
data, and present the results in the Online Supplementary Material. The Splice Junction data
consist of A, C, G, T nucleotides (d =4) at p =60 positions for »= 3,175 DNA sequences.
There are two types of genomic regions called introns and exons; junctions between these two
are called splice junctions (Nguyen et al., 2016). Splice junctions can be further categorized as
(a) exon-intron junction; and (b) intron-exon junction. The # = 3,175 samples in the Splice data-
set each belong to one of three types: Exon-Intron junction (‘EI’; 762 samples); Intron-Exon
junction (‘IE’, 765 samples); and Neither EI or IE (‘N’, 1648 samples). Previous studies have
used supervised learning methods for predicting sequence type (e.g., Li & Wong, 2003;
Nguyen et al., 2016). Here we fit the proposed two-latent-layer Bayesian Pyramid to the data
in a completely unsupervised manner, with the sequence type information held out. We use
the nucleotide sequences to learn discrete latent representations of each sequence, and then in-
vestigate whether the learned lower dimensional discrete latent features are interpretable and
predictive of the sequence type.

We let the variable z in the deepest latent layer have B = 3 categories, inspired by the fact that
there are three types of sequences: EI, IE, and N; but we do not use any information of which se-
quence belongs to which type when fitting the model to data. As mentioned earlier, the upper
bound for the binary latent variables Kypper can be set to [ p/37 or smaller in order to yield an iden-
tifiable Bayesian Pyramid model. In practice, when p is large, we recommend starting with a rela-
tively small Kypper, inspecting the estimated active/redundant latent dimensions, and only
increasing Kypper if all the latent dimensions are estimated to be active a posteriori (that is, if the
posterior model of K* defined in (21) equals Kypper — 1). For this splice junction dataset with
p =60, we start with Kypper =7 for better computational efficiency; this Kypper is the same as
that used in the simulations and already allows for 2Kwe=1 = 64 distinct latent binary proﬁles
We find that the posteriors select only K* =5 active latent dimensions; this suggests that it is
not necessary to increase Kypper to a larger number for this dataset.

We still run the Gibbs sampler for 15,000 iterations, discarding the first 10,000 as burn-in,
and retaining every fifth sample post burn-in to thin the chain. Based on examining traceplots,
the sampler has good mixing behavior. As mentioned in the last paragraph, our method
selects K* =35 binary latent variables. We index the saved posterior samples by

ref{l, ...,R=2,000}, for each r denote the samples of G by (g(fr,)z; j € [60], k € [5]).
Similarly for each 7, denote the posterior samples of the nucleotides sequences’ latent binary
traits by (a", k, i€ [3 175], k € [5]), and denote those of the nucleotide sequences’ deep latent

category by ( ;1€ [3,175]) where z € {1, 2, 3}. Define our final estimators a:@,)k),
A= (@ir), andZ (zip) to be

> 1y IS~ oo
gi-kzﬂ §2=1: lk>_ "k: ﬁz t/e

=R 1, if b=arg max— Zﬂ(zm )

Rib = beB —1
0, otherwise
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Figure 6. Splice junction data analysis under the CSP prior with Kjpper = 7. Plots are presented with the K* =5
binary latent traits selected by our proposed method a posteriori. After applying the rule-lists approach to
deterministically match the latent features to the gene types as in (22), the accuracies for predicting the gene types
El, IE, N are all above 95%.

Zik> i, and Z;, summarize information of the element-wise posterior modes of the discrete
latent structures in our model. The 60 x 5 matrix G depicts how the loci load on the binary la-
tent traits, the 3,175 x S matrix A depicts the presence or absence of each binary latent trait in
each nucleotide sequence, and the 3,175 x 3 matrix z depicts which deep latent group each nu-
cleotide sequence belongs to. é, K, and Z are all binary matrices, but the first two are binary

feature matrices while the last one Z has each row having exactly one entry of ‘1’ indicating

-~

group membership. In Figure 6, the first three plots display the three estimated matrices G,
A, and Z, respectively; and the last plot shows the held-out gene type information for reference.

As for the estimated loci loading matrix G, Figure 6a provides information on how the p = 60
loci depend on the five binary latent traits. Specifically, we found that the first 27 loci show
somewhat similar loading patterns and mainly load on the first four binary traits. Also, the
middle 10 loci (from locus 28 to locus 37) are similar in loading on all five traits, and the
last 23 loci (from locus 38 to locus 60) are similar in exhibiting sparser loading structures.

Figure 6b—d shows that the two matrices Aand Z corresponding to the n = 3,175 nucleotide
sequences exhibit a clear pattern of clustering, which aligns well with the known but held-out
junction types EI, IE, and N.

To formally assess how the latent discrete features learned by the proposed method perform in
downstream prediction, we apply the ‘rule lists’ classification approach in Angelino et al. (2017) to
the estimated latent features in A and Z for # = 3,175 nucleotide sequences. The rule-lists ap-
proach is an interpretable classification method based on a categorical feature space, and it finds
simple and deterministic rules of the categorical features in predicting a (binary) class label. For
eachinstancei € {1, ..., n= 3,175}, we define the categorical features to be the eight-dimensional
vector X; = (Z;.1, 225 i35 Ails - - di5)- i is concatenated fromZ; and @; and is a feature vector of
binary entries. Denote the ground-truth nucleotide sequence types by ¢t = (¢;; 1 <i < 3,175), then
ti=FEI for i=1,...,762, t;=1IE for i=763, ...,1527, and t;,=N for i=1,528, ..., 3,175.
Recall that the information of ¢;’s are not used in fitting our Bayesian Pyramid to obtain the latent
features x;’s. We use the Python package CORELS for the rule-lists method with x;’s and #,’s as in-
put, and find rules that match %;’s to #’s. Specifically, these deterministic rules given by CORELS
are:

7 = 1@ =1 and G5 = 1),
=@ =1), (22)

TN =122 =0 and G5 = 0).
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Figure 7. Downstream interpretable classification results for splice junction data following fitting the
two-latent-layer Bayesian Pyramid. Prediction performance of the learned lower-dimensional discrete latent
features are summarized in two confusion matrices, corresponding to t* and t" defined in (23).

Equation (22) gives a very simple and explicit rule depending onZ; 2, g1, and @; 5 for each nucleo-
tide sequence i. This simple rule can be empirically verified by comparing the middle two plots to
the rightmost plot in Figure 6. In (22), the rules for EI and IE are not mutually exclusive, but those
for Eland N are mutually exclusive and the same holds for IE and N. Therefore, to obtain mutually
exclusive rules for the three class labels EI, IE, and N based on (22), we can simply define the fol-

lowing two types of labels 7* = @*; ie€[n])and? = (ﬁ; i€ [n]):

EL leEI =1 and ’t\iIE = O, EI, lf };EI = 1,
7={EL 7" =1, or 7 =1El if7 =1and7 =0; (23)
N, if7 =1 N, 7 =1,

For the two types of labels # * and # T in (23), we provide their corresponding normalized confusion
matrices in Figure 7 along with their heatmaps. Figure 7 shows that both #* and 7 have very high
prediction accuracies for the sequence types ¢, with all the diagonal entries above 95%. The superb
prediction performance as shown in Figure 7 implies that the learned discrete latent features of
nucleotide sequences are interpretable and very useful in the downstream task of classification.
For the Splice Juntion dataset, such accuracies are even comparable to the state-of-the-art predic-
tion performance given by fine-tuned convolutional neural networks given in Nguyen et al. (2016),
which are also between 95% and 97%.

In the above data analysis, we have fixed B = 3 inspired by the fact that there are three types of
splice junctions. Alternatively, we can use the overfitted mixture framework of Rousseau and
Mengersen (2011) to accommodate an unknown B. Overfitted mixtures are finite mixture models
with an unknown number of mixture components B, where only an upper bound Bpper of B is
known. In such scenarios, Rousseau and Mengersen (2011) proposed to use shrinkage priors
for the mixture proportion parameters, such as Dirichlet priors with small Dirichlet hyperpara-
meters. More specifically, denote the mixture proportion parameters corresponding to the
Bupper  ‘overfitted” mixture components by #:=(w, ..., 7, ), then z lives on the
(Bupper — 1)-dimensional probability simplex. The overfitted mixture framework in Rousseau
and Mengersen (2011) guarantees that with the prior z ~ Dirichlet(ay, ..., ap,,.) where the
Dirichlet parameters are small enough with respect to the dimension of the observations, the re-
dundant mixture components will be ‘emptied out’ in the posterior asymptotically. Hence, the
B true mixture components underlying the data will be identified from the posterior distribution.
In the Online Supplementary Material, we reanalyze the real data specifying B = 5 and simulation
studies with an overfitted B, and achieve favorable results.

€202 YoJe|\ Z| UOo Jesn solwouoog pue ssauisng Jo Aleiqi uosiep Aq zost20.2/010pexb/asssil/c60 1 01 /10p/aoie-aoueApe/gsss.l/wod dno-olwapese)/:sdny woJj papeojumoq



24 Gu and Dunson

Table 1. Downstream classification accuracy for splice data

EI (train) IE (train) N (train) EI (test) IE (test) N (test)
Raw nucleotide nucleotides 0.909 0.854 0.840 0.916 0.866 0.839
DX2009 0.946 0.955 0.918 0.950 0.965 0.929
IndepBinary 0.964 0.955 0.956 0.965 0.957 0.965
BayesPyramid 0.971 0.975 0.970 0.984 0.983 0.976

For comparison, we also applied/implemented two alternative discrete latent structure models,
including: (a) the latent class model, with a single univariate discrete latent variable behind the ob-
served data layer; and (b) a single-latent-layer model, with one layer of independent binary latent
variables behind the data layer. For model (a), we applied the nonparametric Bayesian method in
Dunson and Xing (2009) to the splice junction dataset and extracted kpx = 10 latent classes (de-
fault in Dunson & Xing, 2009; increasing kpx beyond 10 is not considered because in the current
10 latent classes there are already empty classes not occupied by any nucleotide sequence). For
model (b), we implemented a new Gibbs sampler (see description in Section 9.3 in the Online
Supplementary Material), still employing the cumulative shrinkage process prior as used for
Bayesian Pyramids. Then based on the learned lower-dimensional latent representations, we still
apply the ‘rule-lists’ classification approach in Angelino et al. (2017) (via the Python package
CORELS) for each of the three labels EI, IE, and N via binary classification. In addition to the above
two competitors (abbreviated as ‘DX2009’ and ‘IndepBinary’, respectively), we also consider a
benchmark approach of directly applying the rule-lists classifier to raw DNA nucleotide sequen-
ces. Since the rule-lists classifier in the CORELS package only applies to binary predictors, we first
convert the DNA nucleotide sequences of A, G, C, T into longer sequences containing binary in-
dicators of whether each loci is ‘A’, or ‘G, or ‘C’; after this, each original 60-dimensional nucleo-
tide sequence is converted to a binary vector of length 180. We then apply the rule-lists classifier
using the same setting of learning at most three ‘rules’ (i.e., max_card = 3 in the CORELS package)
as all the other three latent variable methods: DX2009, IndepBinary, and BayesPyramid. We ob-
tain the classification accuracy in Table 1.

The left three columns in Table 1 list accuracies on the training set containing 80% of the sam-
ples, and the right three columns on the test set containing the remaining 20% of the samples. The
test accuracies are very close to the training ones, indicating satisfactory generalizability. The rea-
son is that the maximum number of rules learned for each model is limited to be at most three, i.e.,
max_card = 3 in the CORELS package. Such a small number of rules in a classifier do not overfit the
training data and hence generalize well to the test data. We remark that when increasing
max_card beyond three, the downstream classification accuracy of BayesPyramid remains the
same as those in Table 1; however, for the raw nucleotide sequences, the CORELS package cannot
complete the execution of the classifier with max_card = 4, likely due to the high-dimensionality of
the search space of rules. Therefore, we present the results of CORELS classification with
max_card = 3 in Table 1.

Remarkably, Table 1 shows that all the three unsupervised learning methods learn latent fea-
tures that are more predictive of the sequence type than the raw sequences themselves, among
which the Bayesian Pyramid is the apparent top performer. This observation indicates that the la-
tent variable approaches, especially our multilayer Bayesian Pyramids, can ‘denoise’ the raw se-
quence data and return more useful features for downstream tasks. The model in Dunson and
Xing (2009) (‘DX2009’) and the single-layer-independent-latent model (‘IndepBinary’) are special
cases of Bayesian Pyramids, and both have excellent performance on the splice data. However,
Bayesian Pyramids significantly decreased the test set misclassification rate of IndepBinary by
31%-60%, of DX2009 by 51%-68%, and of raw nucleotide sequences by 81%-87%.

7 Discussion

In this article, we have proposed Bayesian Pyramids, a general family of discrete multilayer latent
variable models for multivariate categorical data. Bayesian Pyramids cover multiple existing
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statistical and machine learning models as special cases, while allowing for various different as-
sumptions on the conditional distributions. Our identifiability theory is key in providing reassur-
ance that one can reliably and reproducibly learn the latent structure, guarantees that are lacking
from almost all of the related literature. The proposed Bayesian approach has excellent perform-
ance in the simulations and data analyses, and shows good computational performance and a sur-
prising ability to accurately infer meaningful and useful latent structure. There are immediate
applications of the proposed Bayesian Pyramid approach in many other disciplines. For example,
in ecology and biodiversity research, joint species distribution modeling is a very active area (see a
recent book of Ovaskainen & Abrego, 2020). The data consist of high-dimensional binary indi-
cators of presence or absence of different species at each sampling location. In this contest,
Bayesian Pyramids provide a useful approach for inferring latent community structure of biologic
and ecological interest.

This work focuses on the unsupervised setting and uses latent variable approaches. In unsuper-
vised cases, there is not a specific outcome/response associated with each data point, and the gen-
eral goal is to discover ‘interesting’ patterns in data (Murphy, 2012). Such unsupervised learning
problems are generally considered more challenging and less well studied than supervised ones.
Latent variables can capture semantically interpretable constructs, and marginalizing out latents
induces great flexibility in the resulting marginal distribution of observables. Bayesian Pyramids
provide unsupervised feature discovery tools for learning latent architectures underlying multi-
variate data, yielding insight into data generating processes, performing nonlinear dimension re-
duction, and extracting useful latent representations.

In order to realize the great potential of latent variable approaches to unsupervised learning,
identifiability issues must be addressed so that reliable latent constructs can be reproducibly ex-
tracted from data. Especially, if one wishes to interpret the latent representations and parameters
estimated from a latent variable model and use them in downstream analyses, then identifiability is
a prerequisite for making such interpretation meaningful and reproducible. In this sense, identifi-
ability is necessary for interpretability of the latent structures. We remark that such interpretability
considerations differ from the goals of learning interpretable treatment rules for some outcome in
complex supervised learning settings (see, e.g., Kitagawa & Tetenov, 2018; Semenova &
Chernozhukov, 2021). In modern machine learning, although powerful deep latent variable mod-
els have been proposed, identifiability issues have rarely been considered and the design of the la-
tent architecture is often guided by heuristics. In this work, our identifiability theory directly
inspires how to specify the deep latent architecture in a Bayesian Pyramid: the identifiability con-
ditions on matrices G™ (in Theorem 4) inspire us to specify a ‘pyramid’ structure featuring fewer
and fewer latent variables deeper up the hierarchy (J > 3K;; K; > 3K, ...) and sparse graphical
connections between layers.

In the future, it is worth further advancing and refining scalable algorithms for Bayesian
Pyramids beyond the two-latent-layer case. Methodologically, our current Gibbs sampling pro-
cedure can be readily extended to multiple latent layers, because non-adjacent layers in a
Bayesian Pyramid are conditionally independent and the current Gibbs updates for shallower
layers can be similarly applied to deeper ones. In terms of the computational performance, how-
ever, efficiently sampling discrete latent variables via MCMC is generally more challenging than
sampling continuous ones. In a Bayesian Pyramid, binary entries of the graphical matrices
G, G, ... act similarly as covariate selection indicators in (logistic) regression problems, yet
are more difficult to estimate because the ‘covariates’ a!), @), ... themselves are latent and dis-
crete. This fact can cause unsatisfactory mixing behavior of naive extensions of the Gibbs sampler
to deeper models. For example, sampling to update an entry in a deeper graphical matrix G
where d > 2 can cause a substantial shift of the posterior space for the associated continuous pa-
rameters in downward layers. Future research is warranted to advance the MCMC methodology
or explore complementary methods for estimating the discrete latent structures in deeper models.
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