Longitudinal monitoring of individual infection progression in Drosophila melanogaster
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Abstract

The innate immune system is critical for host survival of infection. Infection models in organisms
like Drosophila melanogaster are key for understanding evolution and dynamics of innate
immunity. However, current toolsets for fly infection studies are limited in their throughput and
their ability to generate longitudinal measurements of infection progression in single animals.
Here we report a novel bioluminescent imaging strategy enabling non-invasive characterization
of pathogen load over time. We demonstrate that photon flux from autobioluminescent reporter
bacteria can be used to monitor relative pathogen loads in individual animals. Escherichia coli
expressing the ilux operon were imaged in whole, living flies at relevant concentrations for
immune study. Because animal sacrifice was not necessary to estimate pathogen load,
stochastic responses to infection were characterized in individuals over time for the first time.
The high temporal resolution of bioluminescence imaging also enabled visualization of the fine
dynamics of microbial clearance on the hours time-scale. Overall, this non-invasive imaging
strategy provides a simple and scalable platform to observe changes in pathogen load in vivo
over time.



Introduction

Bacteria are widespread and can cause severe disease in animals, including humans
(Hunter et al., 2010). Hosts fight infection using their immune system. Infection progression and
outcome is ultimately determined by a combination of genetics, environment, and stochastic
events (Carruthers et al., 2020; Duneau et al., 2017). Determining the relative contribution of
each of these factors to individual prognosis will enable the identification of genetic markers and
early predictors of infection outcome. Such discoveries will contribute to targeted treatment of
bacterial infections.

Determination of genetic and stochastic contributions to infection outcome requires a
host organism amenable to genetic manipulation and high-throughput experimentation.
Drosophila melanogaster fulfills both criteria. There are thousands of inbred and sequenced D.
melanogaster lines, and flies are tractable for high-throughput experimentation in 96-well plates,
unlike common mammalian model organisms (Lack et al., 2016). Additionally, Drosophila
possess an innate immune system composed of signaling pathways that are highly conserved
in mammals (Lemaitre & Hoffmann, 2007). Flies use both the Toll and Imd signaling pathways
in their immune response. The Toll pathway was initially discovered in flies and is analogous to
the Toll-like receptor signaling pathway found in mammals (Lemaitre & Hoffmann, 2007). In both
flies and mammals, the pathway depends on molecular recognition through pattern recognition
receptors (PRRs) to initiate downstream immune response (Moy & Cherry, 2013). The Imd
pathway in flies is orthologous to the TNF receptor family signaling cascade in mammals
(Buchon, Silverman, & Cherry, 2014; Lemaitre & Hoffmann, 2007). Beyond their use as a
platform for discovering conserved immune genes, studying immunity in insects like Drosophila
provides insight into how insect vectored diseases spread, and how they may be contained
(Schneider, 2000).

Variation in infection outcome between D. melanogaster lines is in part determined by
the genetic backgrounds of the host (Duneau et al., 2017; Hotson and Schneider, 2015; Lazzaro
et al., 2006; Sackton et al., 2010). Using genetically distinct D. melanogaster lines, previous
work has identified how different loci affect either the ability of an animal to reduce bacterial load
or to induce gene expression upon infection, for example (Frochaux et al., 2020; Lazzaro et al.,
2006). A fly’s ability to endure infection -- tolerance -- is less studied both in its mechanism of
action and its variation between lines. Tolerance is difficult to measure in high throughput, as it
requires measuring an animal's bacterial load shortly after death. Though studies have shown
that the genes involved in infection tolerance somewhat overlap with those involved in
resistance, this has yet to be comprehensively determined for different pathogens and across
genetically diverse lines (Ayres et al., 2008; Ayres and Schneider, 2008; Schneider and Ayres,
2008; Troha et al., 2018).

D. melanogaster lines also display variability in infection response within genetically
identical individuals. This variation has been indirectly linked to stochastic differences in
bacterial growth within the colonized host and variation in the onset of the animal’s immune
response (Duneau et al., 2017; Ellner et al., 2021). The exact source of stochasticity has yet to
be directly observed, largely due to a lack of tools capable of providing information on bacterial
load in individual animals over time. Characterization of infection progression in flies has
typically relied on destructive methods to establish bacterial loads at static time points, e.g.
dilution plating. Dilution plating involves sacrificing individuals and quantifying bacterial load
using colony counts from serially diluted fly homogenates. While these “snapshot” analyses can
provide biological insight into mechanisms of infection progression and clearance, they are



unable to generate longitudinal measurements of infections in individual animals (Chambers et
al., 2019; Kutzer and Armitage, 2016). Dilution plating is also labor-intensive, as flies must be
homogenized and plated one at a time. Due to the labor-intensive nature of the experiment, fine
temporal measurement of immune dynamics over long time periods has historically been
difficult. New strategies that enable high throughput, non-invasive measurements of pathogen
load are needed to understand infection dynamics and outcomes of genetically similar and
diverse populations.

Historically, a “go-to” method for non-invasive imaging in rodent models is
bioluminescence (Love and Prescher, 2020; Zambito et al., 2021). Bioluminescence employs
luciferase enzymes that oxidize luciferin substrates, producing photons of light (Kaskova et al.,
2016). These photons can be detected through tissues in whole organisms, enabling sensitive
and non-invasive readouts (James & Gambhir, 2012). Because no external excitation source is
necessary, background signals are very low compared to other optical (e.g., fluorescent)
readouts (Contag and Bachmann, 2002). Despite these advantages, bioluminescence has only
been sporadically used in D. melanogaster (Brandes et al., 1996; Stanewsky et al., 1997;
Stempfl et al., 2002). One potential reason for its limited use is that uniform delivery of the
luciferin substrate by feeding is difficult, as feeding patterns can vary from fly to fly (Ja et al.,
2007). One solution is to use autobioluminescent systems, which produce light without the need
for exogenous substrate delivery. There are operons that produce both the luciferase and
luciferin, allowing transgenic organisms to continuously glow (Kaskova et al., 2016). One
popular autobioluminescent system derived from bacteria is the ilux system (Gregor et al.,
2018). Engineered from the bacterial lux system, ilux emits blue light (490 nm) and exhibits
enhanced brightness and thermal stability. While autobioluminescent systems have been used
for decades to illuminate the spread of various pathogens in vivo (Cronin et al., 2012; Massey et
al., 2011; Morrissey et al., 2013), they have yet to be applied for studying bacterial clearance in
D. melanogaster.

Here, we report a novel method employing the ilux system for longitudinally monitoring
bacterial load in D. melanogaster. By expressing the ilux operon in E. coli and using photon
count as a reporter for relative microbial load, we can non-invasively monitor infection
progression and clearance over time in individual flies. Measurements can be performed in high
throughput and with fine time resolution by housing the flies in 96-well plates and using
automated image acquisition programs. With this method, we are able to observe distinct
infection dynamics between lines of D. melanogaster as well as between genetically identical
individuals. We anticipate this method will allow for more facile phenotyping of the immune
resistance and tolerance in naturally varying lines and the observation of stochastic events,
particularly late in infection, which are technically difficult to measure with current methods.

Results

Drosophila infection models have historically required animal sacrifice to determine
pathogen load, which limits measurements of each fly to one time point (Figure 1A). While this
method has provided key insights into fly innate immunity and disease progression (Chambers
et al., 2019; Chambers et al., 2014; Duneau et al., 2017; Kutzer and Armitage, 2016; Lazzaro et
al., 2006), the fine dynamics of infection progression and tolerance among individuals remains
difficult to measure in high throughput. To address these limitations, we designed a non-
invasive imaging strategy to monitor pathogen load over time (Figure 1B). We employed
bioluminescent E. coli that constitutively expressed the ilux reporter (ilux-Ecoli) as a proof-of-



concept platform (Gregor et al., 2018). The load of these autoluminescent bacteria could then
be tracked post-injection, with photon flux reporting on relative pathogen count. Thus, we
hypothesized that this method could be used to track differences in immune response between
genetically distinct individuals and identify stochastic differences in infection progression within
groups of genetically identical individuals.
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Figure 1. A novel method for non-invasive tracking of pathogen load over time. A)
Previous methods for determining pathogen load require animal sacrifice. Larger cohorts are
required for experiments as several flies must be sacrificed at the desired time points to check
infection progression and clearance. B) This work presents a novel, non-invasive method to
track pathogen load over time using bioluminescence. Thus, all flies can be individually
monitored over time, allowing for a more comprehensive view of immune response.

To employ bioluminescence as a reporter for pathogen count, we first measured how
photon flux correlated with bacterial optical density (OD) in liquid culture (Figure 2A). To do so,
we serially diluted ilux-Ecoli in liquid culture and measured bioluminescent output. Photon
counts correlated exponentially with bacterial OD. Since OD corresponds to E. coli colony
forming units (CFUSs), relative pathogen abundances can be estimated from these photon
measurements at this time point (Figure S1) (Khalil et al 2015, Chambers et al. 2019, Alst et al
2022).



We then sought to determine how flux correlates with bacterial count when injected into
living flies by comparing the flux measurements of infected flies to CFU measurements
generated by the current gold standard method, dilution plating. The ilux system emits blue light,
with an emission maximum of 490 nm (Figure S2). While blue light is difficult to detect in the
thicker tissues of mammalian model organisms, the fly cuticle is thin, and thus we hypothesized
that the blue emission would be readily detectable in infected flies. Indeed, upon injection and
imaging ilux-Ecoli in wild-type, male Oregon-R flies, we were able to reliably detect as few as
1000 CFUs. Given our injection volume of 34 nL, we estimated (Figure S1) and confirmed via
dilution plating, that the flies injected with a solution of OD = 6 received approximately 100,000
CFUs. The thermal noise on the imaging instrument used (IVIS Lumina Il) is between 10? and
10° photons/sec. Thus, we could not reliably image <200 CFU. A monotonic relationship was
observed between CFU and photon flux indicating that flux can report on relative microbial
count in vivo (Figure 2B). Notably, at the highest concentration of bacteria injected, there was a
considerable amount of variation in initial dose, likely due to the injection needle clogging
(Figure 2B). The photon flux measurements for these animals showed a concordance with the
CFU measurements, suggesting that this method can be used to filter out animals that received
inconsistent doses.

To determine whether sexually dimorphic pigmentation of the cuticle affected this
relationship, we also compared the best fit line of radiance/CFU of male and female flies. We
found no differences between sexes (Figure S3). Thus, we were confident bioluminescence
could be employed to determine pathogen count in both male and female flies. These results
suggest that the ilux-Ecoli are sufficiently bright to be imaged through the cuticle, and that we
can use standard curves of flies injected with known amounts of bacteria to calculate relative
load at a given point in time. While flies bearing more pigmented cuticles (e.g., ebony flies) may
attenuate signal more substantially, comparisons between individuals of the same cuticle hue
would normalize such effects.
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Figure 2. Photon flux is monotonically related to bacterial concentration. A) ilux-Ecoli were
serially diluted in liquid cultures and assayed for photon output. Higher concentrations of
bacteria yield higher photon fluxes. Plot shows eight measurements per OD (four biological
replicates across two experiments). Well images are representative of the biological replicates.
B) Wild-type flies were injected with different concentrations of ilux-Ecoli and assayed for light
emission immediately after. CFUs per fly were measured by homogenization of injected flies. A
monotonic relationship was observed between radiance and CFUs injected. Graph shows data
of 36 biological replicates per infection concentration, across two experiments. Well images
above each graph are representative of images of the injected flies. The color scale is in units of
photons/second/cm?/steradian. In both experiments, radiance was summed over the entire well
to yield flux (photons/second) using the Living Image software.

To determine whether bioluminescence could be employed for longitudinal tracking of
pathogen load over time, we monitored flies for infection progression over several days. Given
the duration of the experiment, the flies required housing both compatible with imaging and
including food to prevent starvation. To this end, flies were housed in black 96-well plates by
preparing small aliquots of food for each well and placing a glass sheet overtop of the plate
(Figure S4). The glass sheet was secured with black electrical tape to mitigate aberrant photon
scattering. With the housing in hand, we infected 48 wild-type flies with increasing
concentrations of ilux-Ecoli and transferred them to individual wells in the prepared housing.
The flies were then imaged for four days, and photon fluxes recorded (Figure 3A-B). Since the
flies were freely moving during the 3—-5-minute image acquisition, they created a donut-shaped
signal by traveling around the sides of the well (Figure 3A). We can account for fly activity in
quantification by summing the photon count of the entire well. While the relative orientation of
each fly in their respective wells could affect photon output, we anticipate these differences are
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averaged out by the length of the integration time and the similarity in movement observed for
awake, freely moving animals.

Since wild-type flies mount a robust immune response against E. coli infection, none of
the flies died during the course of the experiment. For the lowest doses of bacteria
administered, photon flux values indicated that the infection had been cleared to levels below
the detection limit. At higher doses, detectable amounts of bacteria remained on day 4, and the
level of bacteria at day 4 is positively correlated with the initial load, consistent with previous
reports (Chambers et al., 2019; Duneau et al., 2017) (Figure 3A-C). Further monitoring would
reveal how long it takes for each fly to reach a steady state “set point” of bacterial load
associated with a chronic infection state, whether there are fluctuations in this set point as a
function of time, and the proportion of flies that may completely eliminate the infection.

Clearance patterns varied among flies receiving the same dose of pathogen (Figure 3C).
For example, when looking at the trajectories from the two lowest doses, there are individual
flies that experience resurgent infections. With dilution plating assays, it is impossible to verify
whether a fly with a higher-than-average bacterial load at a later time point experienced a
resurgent infection or failed to control the infection initially. Longitudinal measurements can
distinguish between these scenarios. Some flies receiving the highest dose show markedly
faster clearance dynamics than others.

To ensure the decreasing photon counts over time in wild-type flies were due to infection
clearance rather than loss of the ilux plasmid, we repeated the same time course and imaged
colonies from plated fly homogenates (Figure S5, S6). We observed minimal plasmid loss. We
also found that feeding the flies ampicillin (the selection marker present on the ilux plasmid) had
no effect on the proportion of luminescent vs non-luminescent colonies. Given the ability of wild-
type flies to effectively resist the E. coli infection, we also investigated whether loss of the ilux
plasmid was more pronounced in an actively proliferating infection. To this end, we infected
immunodeficient imd'®"®" flies with ilux-Ecoli and provided them with either normal fly food or
food supplemented with ampicillin. The imd'®"®' flies bear a frameshift mutation in the Imd
protein, effectively eliminating the immune response to Gram-negative bacteria and rendering
them susceptible to E. coli infection (Pham et al., 2007). When we compared the flux output, we
found no differences between flies supplied with or without a selective compound (Figure S7).
Thus, variations in flux observed in Figure 3 are reporting on true variation in bacterial load
rather than variation due to loss of plasmid. Collectively, these results highlight how bacterial
bioluminescence can be used to interrogate stochastic responses to infection in individual flies.
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Figure 3. Bioluminescence can be used to track changes in pathogen load over time. A)
Representative well images for different concentrations of bacteria injected in wild-type flies
over four days. Higher initial concentrations were cleared to low, but detectable concentrations.
Low initial concentrations were cleared below the limit of detection for the imaging instrument.
Well images are representative of 48 injected individuals, 12 biological replicates per infection
concentration. B) Average clearance patterns for different concentrations of ilux-Ecoli injected in
individual flies over time. Photon counts were summed over the entire well where flies resided.
The gray box shows the limit of detection of the imaging instrument. Solid colored line
represents the average of the cohort. The gray band represents the standard deviation over
replicates, dots represent one individual. C) Individuals display varied routes toward infection
clearance, suggesting stochasticity plays a role in infection dynamics. Black dotted line
represents the average, and the gray band represents the standard deviation. Gray box shows
the limit of detection of the imaging instrument. Solid lines represent routes individuals took
toward infection clearance.



Historically, stochasticity of immune response in the first 12 hours of infection has been
laborious to measure due to the need for fly sacrifice to obtain pathogen load information. We
hypothesized our bioluminescent imaging strategy would be useful for studying differences in
pathogen clearance during these critical first hours of infection. To test this capability, we used
two fly lines, Oregon-R wild-type flies and immunodeficient imd'*'®" flies. Wild-type flies are
resilient to E. coli infection and clear this Gram-negative microbe easily (Figure 3), while im
flies succumb to E. coli infection. Therefore, we anticipated imd'*'®" flies would have different
pathogen loads compared to wild-type files. Indeed, upon injection of a large quantity
(approximately 100,000 CFUSs) of ilux-Ecoli, imd'°"®" flies sustained high pathogen levels over
time, while Oregon-R flies steadily cleared the infection as evidenced by reduced emission
levels (Figure 4B). When handling highly concentrated pathogens for injection, variance in the
delivered dose can occur. In this experiment, the imd''®" flies received a slightly lower initial
dose of bacteria than the wild-type flies. However, by the two-hour time point, the imd"'®"®" flies
carried a higher load than the wild-type flies. Although we aim to deliver consistent initial doses,
this result highlights a feature of this method: we can censor individual animals that receive
aberrant initial doses. This quality control step is not possible with dilution plating-based
methods.

d10191

Beyond quality control, we can use variation in initial dose to answer biological
questions. For example, it has been shown that, within a genotype, varying initial dose by orders
of magnitude yields differences in bacterial load of chronic infections. However, previous work
relies on group averages and is unable to assess the impact of more subtle variations in initial
infection load (Chambers et al., 2019). To address this question, we plotted the infection
dynamics of individual flies (Figure 4C). To determine if the initial load of infection contributed to
the differences in bacterial load at the end of the time course, we tested for correlation between
flux at the time of injection and flux at the end of the time course for wild-type flies. We found
the initial dose of pathogen does not significantly correlate with differences in the final load
(Oregon-R R = 0.19, Pearson's product-moment correlation, Figure S8A), suggesting that
smaller variations in initial infection dose do not determine the final load at this timescale.

Previous work also suggests that bacterial load upon death is independent of initial load
(Duneau, et. al 2017). In line with this work, we found the initial dose of pathogen did not
significantly correlate with differences in the final load upon death in the imd''*" flies (R = 0.24,
Pearson's product-moment correlation, Figure S8B). In the imd'*'®" line, we also looked to see if
any correlation existed between the initial load of injection and the time it takes a fly to die after
crossing the mean bacterial load upon death. In this experiment, we did not find a significant
correlation between these two variables (imd'®'*' R = 0.56, Pearson's product-moment
correlation, Figure S8C). The bioluminescent method thus reports on initial inoculation
differences and can provide insight into alternative hypotheses for variance in infection
dynamics among genetically identical populations.
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Figure 4: Longitudinal tracking of individual flies is possible in wild type and immune
deficient genotypes. A) Representative images of radiance measurements for wild-type (wt)
and imd'*"®" injected with 34 nl of OD = 6 ilux-Ecoli. Images show the first 8 hours, after which
most imd'®'®" flies perished. Images are representative of 24 injected individuals, 12 biological
replicates per genotype. B) Comparison of population level integrated total flux. Time points
showing difference in mean between the two lines are demarked with an asterisk.
Immunodeficient lines received a 37% lower dose of infection than wt flies due to experimental
variation. This significance was lost by hour 1, with imd'®'®" bacterial load surpassing that of
wild-type by hour 2. Data comprise 12 injected individuals. C) Comparison of wt and imd'%"®’
individual tracks. Individual variation of immune response and pathogen clearance was
observed in living flies (solid lines). Deaths are marked by red triangles, and the lines end. The
blue dotted line shows the average of the cohort, while dark gray lines show the individual paths
toward clearance or death. Death histogram shows the pathogen load upon death as estimated
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by total integrated flux. The red line on the imd'*'®' graph also demarcates the average of these
values. The light gray line indicates a fly that received a lower-than-average initial dose and that
was filtered out in the subsequent analysis. Data shown comprise 12 injected individuals.

In the experiment above, the high initial dose of bacteria killed the immune-deficient flies
in less than 9 hours, which made it difficult to assess potential drivers of death (Figure 4). We
posited that a lower dose of bacteria would kill immunodeficient flies more slowly and with
greater variation in the time to death. To test this hypothesis, we injected wild-type and imd'°"®"
flies with OD = 0.06 ilux-Ecoli. We then imaged flies every hour for 2 days post-infection. While
both strains of flies were injected with the same concentration of bacteria, within the first three
hours, pathogen load differed between the two populations (Figure 5A-B). Over time, the wild-
type flies cleared the infection to low pathogen load and survived to the end of the experiment.
Conversely, the imd'*"®" flies showed a gradual increase in pathogen load over time, with all
flies succumbing to the infection by the end of the experiment. While initial loads varied between
individuals, inoculation load again did not correlate with final bacterial load upon death for
imd'®"®" individuals, or upon end of experiment for wild type individuals (Figure S9). This
suggests that variance in initial load does not fully explain variation in bacterial load over time. In
line with our hypotheses, we did observe substantial variance in time to death among the
imd'®"®" individuals (Figure 5C).
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Figure 5: Lower initial infection dose yields more variation in time of death of immune-
deficient flies. Both wild-type (wt) and imd'*"®" flies were injected with 34 nL of OD = 0.06 ilux-
Ecoli (n = 48 for each genotype) A) Representative images of radiance measurements for wt
and imd'*"®" flies injected with ilux-Ecoli. Images are representative for 96 individuals (48
biological replicates per genotype) and are shown in 5-hour intervals for the first 45 hours of
infection. B) Summary of integrated total flux values for the living wt and imd'*"®"in 5-hour
intervals for the first 45 hours. Timepoints showing difference in mean between the two lines are
demarked with an asterisk. By hour 5, both lines show differences in the ability to fight off
infection with wild-type flies observed clearing the infection and imd'®'®' flies much higher
bacterial loads. C) Histogram displaying time of death statistics for imd''®* flies. The majority of
imd'°"®" flies died at hour 32, when integrated total flux reached its highest peak. Death data
were compiled from 48 imd'*"®" individuals.

To further explore the variation in the infection progression in immunodeficient flies, we
plotted their individual dynamics (Figure 6A). To identify groups of individuals showing distinct
infection profiles, samples were hierarchically clustered using Euclidean dissimilarity (Figure 6B,
Figure S10) (Montero & Vilar, 2014). This clustering requires that each individual have a
measurement from all time points; therefore, we included bacterial load data post-mortem for
flies that died prior to the end of the experiment. We separated the trajectories into four clusters,
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with the majority of flies falling into cluster 2 (blue, n = 29) or cluster 3 (yellow, n = 13), and
clusters 1 and 4 having three flies each (magenta and green, respectively). Clusters 2 and 3
appear to separate based on the lag time to unchecked bacterial growth, with cluster 2 having a
lag time of 5-10 hours and cluster 3 having a lag time of 10-15 hours after infection. Clusters 1
and 4 appear to cluster primarily based on receiving a below-average initial dose (cluster 4) or
on bacterial dynamics post-mortem (cluster 1). No cluster appeared to correlate with time of
death (Welch two sample t-test on every cluster combination, Figure S11). While all samples
ultimately succumbed to the infection, these distinct dynamics -- particularly the difference
between bacterial lag time and growth rate variation -- would have been missed using
previously established methods.
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Figure 6: Individual infection tracking of immune deficient flies shows variation in time to
death. A) Individual tracks of infection in live imd'®'®" flies (black lines, n = 48); deaths are
marked as a red triangle and the end of the line. All flies died by hour 48 and the mean radiance
upon death was 18.6x10° (solid red line). Threshold of accurate detection is demarcated with a
gray box. Histogram shows the distribution of integrated photon flux (serving as a proxy for
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pathogen count) of imd'*"®" flies upon death. B) Individual tracks of infection separated by
clusters. Clusters were assigned via hierarchical clustering using Euclidean dissimilarity. Four
distinct groups were assigned with cluster 2 and 3 containing the majority of samples (cluster 2
= 29, cluster 3 = 13) and clusters 1 and 4 containing 3 samples each. Data are for 48 imd'?"®"
individuals. C) Spearman rank correlation (p) and the 95% bootstrapped confidence interval (Cl)
between initial flux and time of death for imd'*'®" flies. D) Spearman rank correlation and ClI
between total flux at hour 20 and time of death. E) Spearman rank correlation and Cl between
the log transformed area under the curve (AUC) up until hour 20 and the time of death. The
curve here refers to the flux (p/s) vs time curve. In all cases Cl of Spearman correlation
coefficients were computed by bootstrapping 10,000 synthetic datasets and computing the
correlations on these datasets. 2.5 and 97.5 percentile values of the sampled correlations are
reported.

We further investigated potential sources of the variability observed in time to death of
the imd'®'*" flies. Several possibilities exist to explain these differences in dynamics, including
variation in the injury upon infection, variation in the initial pathogen load, or differences in the
physiological state of the fly. To examine if this variance in time to death can be explained by
differences in the initial load of infection, we performed Spearman rank correlations between
time of death and the initial load. We also measured the correlations between time of death and
load at 20 h post injection and the area under curve (AUC) of pathogen load at 20 h, as this is
prior to any of the animals dying. The AUC at 20h captures information about the trajectory of
the pathogen load, which may vary even among flies with similar loads at 20 h. In a model, the
AUC can represent a possible mechanism of pathogenesis, e.g., the buildup of a toxin secreted
by the bacteria over time. In contrast to experiments carried out with a higher initial dose, here
we found the initial load was negatively correlated with time of death (p = -0.29, 95%
bootstrapped confidence interval = (-0.56, 0.00)) (Figure 6C). Intuitively, this aligns with
expectations: flies receiving higher inoculations will die more quickly. We may have been unable
to detect this relationship using a higher initial dose either because there is less variation in
bacterial growth and host response at higher doses or because we did not record time of death
with sufficient resolution to uncover this relationship The strongest correlation was found
between time to death and observed load at 20 h post injection (p = -0.61, 95% bootstrapped
confidence interval = (-0.78, -0.39)) (Figure 6D). A similarly strong correlation was observed
between time to death and area under the flux curve at 20 h post injection (p =-0.59, 95%
bootstrapped credible interval = (-0.75, -0.36)) (Figure 6E). These correlations highlight how
factors beyond initial load contribute to the time of death observed in individual flies.

Unlike the immunodeficient line, all of the wild-type flies survived well past two days, with
the overall trend of clearing the infection (Figure 7A). Despite the average drop in pathogen
load, we did observe large amounts of variance, particularly between hours 10 and 20 of
infection. Hierarchical clustering sorted the individual traces into groups that corresponded to
low, intermediate or high pathogen load in the first 25 hours of infection (Figure S12). In
studying this data, we noticed that some individuals experienced a resurgence in infection, and
these individuals fell into more than one cluster. Therefore, we highlighted profiles based on the
presence of a secondary distinct increase of pathogen load after the initial infection (group 1:
magenta, n = 10) rather than a sustained gradual decrease (group 2: blue, n = 38, Figure 7B).
We found the initial dose of infection did not significantly correlate with the final flux between
both groups (group 1 R =-0.41, group 2 R =-0.15, Pearson's product-moment correlation,
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Figure S13A) and that neither the initial nor the final flux measurements were significantly
different between these groups (group 1 vs. group 2 initial p = 0.2, group 1 vs. group 2 final p =
0.45, Welch two sample t-test, Figure S13B and C). Despite the presence of an increase in
pathogen load in some flies, the population ultimately converges towards controlling the
infection. We expect that this method’s ability to report fine differences in pathogen load over
time will enable future research to uncover the origins of such stochasticity and better
characterize the paths hosts may take to clear an infection.

A B
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10°1 10°1
5 _. 5_
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10*1 10*1
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Figure 7: Individual infection tracking of wild-type (wt) flies shows two distinct pathways
towards bacterial clearance. A) Individual tracks of infection in live flies (black lines). No flies
died during this time course. Threshold of accurate detection demarcated with gray box. B)
Individual tracks of infection are grouped by the presence of a secondary peak during the
infection process. While all flies showed a decrease in bacterial load by the 48-hour mark, a
subset of flies (n = 10) showed an increase in bacterial load between 10 - 25 hours (magenta
lines). Dashed lines represent the mean trajectory for the genotype. The noise in some of the
later time points is due to a shortening of the acquisition time for these animals, which were
housed in the same plate as the highly luminescent immunodeficient animals shown in Figure 6.

Discussion

Here we show that employing an autobioluminescent bacterial reporter enables simple, non-
invasive pathogen load determination in Drosophila melanogaster. We show that total flux can
report on relative changes in bacterial load over time. The non-invasive feature of this method
fundamentally changes our view into infection dynamics by enabling longitudinal tracking of
infections in individual animals. Traditional dilution plating approaches only allow for the
measurement of an average infection trajectory in a population of genetically identical
individuals, while longitudinal measurements allow us to reveal individual variation in dynamics
and features such as resurgent infections. Further, these traces can be used to test hypotheses
about what features (e.g. initial dose, time to immune system engagement, or colonization
progress) drive the ultimate outcome of infection. The simple housing requirements and rapid
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acquisition times allow for the efficient measurement of large numbers of animals or genotypes
at fine time resolution. Because each animal is repeatedly sampled throughout the experiment,
the longitudinal measurements effectively reduce the sample size needed to identify differences
in distinct genotypes of flies. The decrease in sample size, coupled with the increase in
throughput, will make previously laborious genetic screens to identify new components of the
immune response more accessible.

This approach may serve a complementary role to approaches integrating fluorescently
labeled bacteria, which have been used to track the localization of some microbes during
infection, particularly in larvae (Mansfield et al., 2003; Muniz et al., 2007; Rutschmann et al.,
2002). However, fluorescent microbes have been difficult to use as a quantitative readout of
bacterial load due to Drosophila autofluorescence and generally lower signal to noise.
Furthermore, illumination with high powered light sources (i.e., UV lamps) can damage tissue
and affect animal behavior (Du et al., 2016; Kim and Johnson, 2014; Milinkeviciute et al., 2012).
Bioluminescence can thus offer a less perturbing alternative to fluorescent methods.

The flexibility and simplicity of this method should enable its use in a wide range of
settings. For example, the ilux cassette can be manipulated via molecular cloning, allowing
expression in a wide variety of pathogens. To establish the system in a new organism, a vector
that contains a species-appropriate promoter, origin of replication, and resistance marker should
be identified, and controls should be done as in Figures 2, S6, and S7 to ensure the relationship
between light output and bacterial load can be used to measure relative changes in bacterial
load over time. Depending on the microbe, features like toxin-antitoxin cassettes or
chromosomal integrations can be used to improve the quantitative performance of the system
(Hayes, 2003; Yamaguchi et al., 2011). The system may also be deployed to investigate
pathogens that have different localizations within the animal, e.g., commensal gut microbiota or
pathogens introduced to the animal via feeding. We have also demonstrated that this system
works well in multiple fly genotypes. Though the Oregon-R and imd mutant flies have
indistinguishable pigmentation patterns, other fly genotypes may have an impact on light
emission, e.g., the dark cuticle of ebony flies. In these cases, this approach can still be used to
compare relative bacterial loads within an individual over time or between individuals of the
same genotype. The fly housing requires only simple components found in most laboratories.
We also examined the feasibility of using a plate reader instead of an IVIS imager for
luminescence measurements (Figure S14). Using flies injected with bacterial doses spanning 6
orders of magnitude, we found that while the IVIS has better sensitivity in detecting low
pathogen loads, the plate reader performed comparably to the VIS at higher doses. This
indicates that the plate reader may be useful for experiments in which the bacterial loads are
likely to be above the threshold of detection.

The longitudinal measurements and temporal resolution achieved using
bioluminescence enables novel observations of infection dynamics. For example, although we
found wild type flies cleared ilux-Ecoli in all experiments, some individuals experienced a
resurgence in infection upon inoculation with moderate doses of bacteria (Figure 7). Using
previous dilution plating methods, resurgence cannot be definitely identified. It would appear to
be variation between sacrificed individuals at discrete time points. Using our bioluminescent
method, resurgence can be easily visualized as an increase in total flux observed in certain
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individuals of a population and future studies may investigate the causes and predictors of a
resurgent infection.

New insights were also gleaned from experiments with immunodeficient flies. Using a
low initial infection dose, we found a moderate correlation between the initial load and time to
death for immunodeficient flies, and a stronger correlation between time to death and bacterial
load at 20 h post injection for individuals receiving a low initial dose of ilux-Ecoli (Figure 6D).
Therefore, it seems both variation in initial load and infection progression combine to determine
the ultimate time of death. The variable paths flies take toward a fatal infection can now be
investigated in fine detail using the temporal resolution afforded by our bioluminescent method.
Ongoing work involving integration of additional luminescent reporters to label immune system
components would enable even more thorough investigation into how different variables can
contribute to infection outcome. For example, readouts on the strength and persistence of the
host immune response may help us identify the causative factors of a resurgent infection or the
drivers of bacterial load at 20 h post injection.

In summary, non-invasive tracking of pathogen load in Drosophila melanogaster over time offers
many advantages when compared to traditional methods. Dilution plating requires animal
sacrifice to determine average pathogen load at static time points, limiting the ability to
investigate individual infection dynamics, particularly over long time scales. The bioluminescent
method presented herein offers a facile approach to non-invasively monitor pathogen load on
the individual level. Because images may be automatically acquired on the minute-time scale
simultaneously in many flies, bioluminescence enables infection progression to be monitored
with exceptional resolution across long time periods and in high throughput. This may enable
previously difficult genetic screens, for example, to examine variation in infection tolerance
between naturally varying fly lines or dynamic-dependent phenotypes, like propensity to endure
a resurgent infection. Integrating this method with other visual reporters of host state, e.g., the
activation of immune signaling pathways, may further illuminate the sources of variation in
pathogen host-dynamics (Duneau et al., 2017; Ellner et al., 2021; Troha and Buchon, 2019).
Using this method, we can begin to quantify the contributing factors that result in stochasticity,
resurgence, and ultimate infection outcome.
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github and are publicly available as of the date of publication. DOlIs are listed in the
key resources table. All original code is available in this paper’s supplemental
information.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila lines and rearing

The Oregon-R and imd''®" fly lines were used for this study (Pham et al., 2007). Both lines
were reared in Drosophila vials with standard cornmeal media at 20°C (Brent and Oster 1974).
Four-day old male and female flies were collected for injections to ensure full replacement of the
larval fat body by the adult fat body (Johnson & Butterworth, 1985).

METHOD DETAILS

Preparing ilux E. coli

An E. coli strain harboring a plasmid with the ilux operon (ilux pGEX(-)) was obtained from
Addgene (plasmid # 107897, deposited by Stefan Hell) and streaked on an LB agar plate with
ampicillin (100 ug/mL) to afford single colonies. A single colony was picked and grown in 5 mL
LB broth containing ampicillin (100 pg/mL, LB-AMP). The culture was miniprepped according to
the manufacturer’s instructions (kit purchased from Zymo Research). Plasmid (10 ng) was
transformed into chemically competent TOP10 E. coli (20 uL). The transformant was recovered
with SOC (50 uL) for 30 mins at 37 °C and 25 pL plated on an agar plate containing ampicillin. A
single colony was picked and expanded in LB-AMP, and a glycerol stock was made for long
term storage at -80 °C (500 pL culture with 500 pL 50% v/v glycerol). This glycerol stock is
referred to as ilux-Ecoli.

Drosophila infection induction
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Prior to infection, ilux-Ecoli was cultured in liquid LB-AMP on a shaker at 37°C for 8 hours.
Bacteria were then pelleted using a table-top micro-centrifuge at 5000 rpm/g and resuspended
in 200ul of 1X phosphate buffered saline. Optical density at 600 nm was then measured using a
NanoDrop 2000 (Thermo Fisher). Injection solutions were prepared at the appropriate OD by
dilution in additional PBS. Flies were injected with 34 nL of bacterial solution using Narishige IM
300 Microinjector along the scutoscutellar suture and immediately placed into black 96-well
plates (Grenier Bio One). When multiple fly lines were being injected at the same time, flies
were injected in batches of 12, alternating between lines, to avoid time-dependent injection
effects. For time course experiments, 96-well plates for imaging were prepared by punching out
circles of standard cornmeal media and placing these at the bottom of wells before placing flies
into the plate. A 4-inch by 6-inch glass cover was placed on the plate during the duration of the
time course to prevent individual escape. For single time point measurements, flies were placed
in 96-well plates lacking food.

Dilution plating: ilux-Ecoli

To determine the concentration of ilux-Ecoli at per OD measurement, ilux-Ecoli was grown in 10
mL LB-AMP on a shaker at 37°C for 6-7 hours while the bacteria was still in exponential growth
phase. Bacteria was then pelleted and resuspended in 200 uL 1X phosphate buffered saline
and OD at 600 nm of the solution was determined using a NanoDrop 2000 (Thermo Fisher). A
stock solution of OD 1 was prepared and serially diluted using 1x PBS by 6million fold. CFUs
were then quantified in two ways. The first manner was using 5pl of solution for each dilution
which was spot plated in triplicate on LB plates supplemented with 100ug/ml ampicillin. The
second manner was using 90 ul of solution which was plated on LB plates supplemented with
100 pg/ml ampicillin. Colonies were then counted for each dilution step to determine the
concentration of CFUs at OD1 for both methods (Supplementary Figure 1). To determine the
relationship between ilux-Ecoli concentration and total flux, a solution of bacteria was prepared
as described above, 90ul of each dilution was then placed into black 96 well plates for imaging
(see “imaging parameters” section below).

Dilution plating: infected Drosophila

To determine the concentration of bacteria injected into individual flies, flies were suspended in
250 ul of 1X phosphate buffered saline and homogenized (Krupp & Levine, 2010). Homogenate
was then used for stepwise 5-fold serial dilutions. 5 pL of each dilution in the series was then
spot plated in triplicate (3 technical replicates per biological replicate) on LB plates with 100
Mg/ml ampicillin. Colonies were then counted for each dilution step and the mean of the
technical replicates was used to determine the concentration of CFUs per fly. For plasmid loss
determinations, homogenate and serial dilution was prepared in the manner described above.
Next 90 pl of solution from each dilution in the series was plated on individual LB plates not
supplemented with ampicillin. Plates containing colonies were then counted for each dilution
step to determine the concentration of CFUs per fly and imaged for luminescence output as
described in the “imaging parameters" section. Thus, emissive and non-emissive colonies could
be distinguished to determine the proportion of colonies that had lost the ilux plasmid.

Imaging parameters

All imaging analyses were performed in black 96-well plates (Grenier Bio One) prepared as
described above, or on agar plates for plasmid loss studies. Individual experiments took place
on separate days, whereas individual infected flies were considered biological replicates. Plates
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containing flies were imaged immediately post-injection unless otherwise stated. Injected flies
and agar plates containing ilux-Ecoli were imaged using an IVIS Lumina Il (Xenogen) CCD
camera chilled to -90 °C. The stage was kept at room temperature (25 °C) during the imaging
session, and the camera was controlled using Living Image Software. The exposure time
ranged from 1 s - 10 min depending on the brightness of the sample, and the data binning levels
were set to medium. Dim samples required a longer acquisition time to ensure accurate
measurement while brighter samples required shorter acquisition time to prevent detector
saturation. Background thermal noise levels of the instrument were determined via acquisition of
images containing no bioluminescent materials for all integration times used in this study.
Maximum photon values observed in these “dark charge” images were used as the absolute
background levels of the instrument. Because the dynamic range of the instrument is three
orders of magnitude, relative background levels can change depending on the radiance
observed from the brightest sample present. In these cases, relative background levels would
be three orders of magnitude lower than the highest pixel radiance observed. Radiance was
integrated over regions of interest and quantified to total flux values using the Living Image
software. Raw luminescent images were analyzed using FIJI (Schindelin 2012). For plasmid
loss studies, CFUs on plates were quantified by hand, luminescent colonies were quantified by
importing for analysis and counting in FIJI.

Estimate of detection limit.

To estimate the threshold of detection of our assay we first measured the total flux from wells
containing only fly media which was found to range between 10? and 10° photons/sec. To be
conservative in our estimates we selected 10° photons/sec as our threshold. We then took the
model2 linear regression of total flux measured by the IVIS versus the CFUs/fly calculated via
dilution plating. Finally, we calculated our CFU/fly detection limit by inputting our flux detection
limit and solving for CFUs.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis

"n" is defined in the relevant figure legends. Statistical tests for all figures were performed in R
3.6.0 except Figure 6 C-E which was performed in Python (3.7). P-values in Figures 4B and 5B
were calculated via two sample t-test. Figure 6 C-E, p values and credible intervals were
calculated by bootstrapping 10000 synthetic datasets and calculating the Spearman rank
correlation for each dataset. Results were then imported into R for visualization. All data was
imported for analysis and visualization (R Core Team. 2019, Wickham H. 2016, Dowle M(2019),
Wickham H. 2021, Wickham et al., 2019). Model2 regressions were performed using the
package Imodel2 1.7-3 (Legendre 2018). Euclidean dissimilarity and hierarchical clustering were
performed using package TSclust 1.3.1 (Montero & Vilar, 2014).

KEY RESOURCES TABLE
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REAGENT or RESOURCE SOURCE IDENTIFIER
Bacterial and virus strains
E. coli ThermoFisher TOP10 E. coli

Catalog #: C404003

Chemicals, peptides, and recombinant proteins

LB Agar (Miller) Genesee Scientific 11-122
Ampicillin Genesee Scientific 25-530
Phosphate buffered saline (PBS), 10x Genesee Scientific 18-244
LB Broth Miller VWR 97064-110

Experimental models: Organisms/strains

Oregon-R Dr. Larry Marsh
imd101e1 Dr. Neal Silverman
Recombinant DNA

(ilux pGEX(-))

Addgene

plasmid # 107879

Software and algorithms

R

(R Development Core
Team, 2017)

https://lwww.r-
project.org/

IVIS-software

Living Image software

PerkinElmer

Data availability
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All flux and CFU data generated during this study as well as the code used to analyze the data
and generate figures are available for download in the supplement and at
github.com/WunderlichLab/ilux_infection_tracking.
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