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Abstract 
 
The innate immune system is critical for host survival of infection. Infection models in organisms 
like Drosophila melanogaster are key for understanding evolution and dynamics of innate 
immunity. However, current toolsets for fly infection studies are limited in their throughput and 
their ability to generate longitudinal measurements of infection progression in single animals. 
Here we report a novel bioluminescent imaging strategy enabling non-invasive characterization 
of pathogen load over time. We demonstrate that photon flux from autobioluminescent reporter 
bacteria can be used to monitor relative pathogen loads in individual animals. Escherichia coli 
expressing the ilux operon were imaged in whole, living flies at relevant concentrations for 
immune study. Because animal sacrifice was not necessary to estimate pathogen load, 
stochastic responses to infection were characterized in individuals over time for the first time. 
The high temporal resolution of bioluminescence imaging also enabled visualization of the fine 
dynamics of microbial clearance on the hours time-scale. Overall, this non-invasive imaging 
strategy provides a simple and scalable platform to observe changes in pathogen load in vivo 
over time.  
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Introduction 
 

Bacteria are widespread and can cause severe disease in animals, including humans 
(Hunter et al., 2010). Hosts fight infection using their immune system. Infection progression and 
outcome is ultimately determined by a combination of genetics, environment, and stochastic 
events (Carruthers et al., 2020; Duneau et al., 2017). Determining the relative contribution of 
each of these factors to individual prognosis will enable the identification of genetic markers and 
early predictors of infection outcome. Such discoveries will contribute to targeted treatment of 
bacterial infections.  

Determination of genetic and stochastic contributions to infection outcome requires a 
host organism amenable to genetic manipulation and high-throughput experimentation. 
Drosophila melanogaster fulfills both criteria. There are thousands of inbred and sequenced D. 
melanogaster lines, and flies are tractable for high-throughput experimentation in 96-well plates, 
unlike common mammalian model organisms (Lack et al., 2016). Additionally, Drosophila 
possess an innate immune system composed of signaling pathways that are highly conserved 
in mammals (Lemaitre & Hoffmann, 2007). Flies use both the Toll and Imd signaling pathways 
in their immune response. The Toll pathway was initially discovered in flies and is analogous to 
the Toll-like receptor signaling pathway found in mammals (Lemaitre & Hoffmann, 2007). In both 
flies and mammals, the pathway depends on molecular recognition through pattern recognition 
receptors (PRRs) to initiate downstream immune response (Moy & Cherry, 2013). The Imd 
pathway in flies is orthologous to the TNF receptor family signaling cascade in mammals 
(Buchon, Silverman, & Cherry, 2014; Lemaitre & Hoffmann, 2007). Beyond their use as a 
platform for discovering conserved immune genes, studying immunity in insects like Drosophila 
provides insight into how insect vectored diseases spread, and how they may be contained 
(Schneider, 2000). 

Variation in infection outcome between D. melanogaster lines is in part determined by 
the genetic backgrounds of the host (Duneau et al., 2017; Hotson and Schneider, 2015; Lazzaro 
et al., 2006; Sackton et al., 2010). Using genetically distinct D. melanogaster lines, previous 
work has identified how different loci affect either the ability of an animal to reduce bacterial load 
or to induce gene expression upon infection, for example (Frochaux et al., 2020; Lazzaro et al., 
2006). A fly’s ability to endure infection -- tolerance -- is less studied both in its mechanism of 
action and its variation between lines. Tolerance is difficult to measure in high throughput, as it 
requires measuring an animal's bacterial load shortly after death. Though studies have shown 
that the genes involved in infection tolerance somewhat overlap with those involved in 
resistance, this has yet to be comprehensively determined for different pathogens and across 
genetically diverse lines (Ayres et al., 2008; Ayres and Schneider, 2008; Schneider and Ayres, 
2008; Troha et al., 2018).  

D. melanogaster lines also display variability in infection response within genetically 
identical individuals. This variation has been indirectly linked to stochastic differences in 
bacterial growth within the colonized host and variation in the onset of the animal’s immune 
response (Duneau et al., 2017; Ellner et al., 2021). The exact source of stochasticity has yet to 
be directly observed, largely due to a lack of tools capable of providing information on bacterial 
load in individual animals over time. Characterization of infection progression in flies has 
typically relied on destructive methods to establish bacterial loads at static time points, e.g. 
dilution plating. Dilution plating involves sacrificing individuals and quantifying bacterial load 
using colony counts from serially diluted fly homogenates. While these “snapshot” analyses can 
provide biological insight into mechanisms of infection progression and clearance, they are 
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unable to generate longitudinal measurements of infections in individual animals (Chambers et 
al., 2019; Kutzer and Armitage, 2016). Dilution plating is also labor-intensive, as flies must be 
homogenized and plated one at a time. Due to the labor-intensive nature of the experiment, fine 
temporal measurement of immune dynamics over long time periods has historically been 
difficult. New strategies that enable high throughput, non-invasive measurements of pathogen 
load are needed to understand infection dynamics and outcomes of genetically similar and 
diverse populations.  

Historically, a “go-to” method for non-invasive imaging in rodent models is 
bioluminescence (Love and Prescher, 2020; Zambito et al., 2021). Bioluminescence employs 
luciferase enzymes that oxidize luciferin substrates, producing photons of light (Kaskova et al., 
2016). These photons can be detected through tissues in whole organisms, enabling sensitive 
and non-invasive readouts (James & Gambhir, 2012). Because no external excitation source is 
necessary, background signals are very low compared to other optical (e.g., fluorescent) 
readouts (Contag and Bachmann, 2002). Despite these advantages, bioluminescence has only 
been sporadically used in D. melanogaster (Brandes et al., 1996; Stanewsky et al., 1997; 
Stempfl et al., 2002).  One potential reason for its limited use is that uniform delivery of the 
luciferin substrate by feeding is difficult, as feeding patterns can vary from fly to fly (Ja et al., 
2007). One solution is to use autobioluminescent systems, which produce light without the need 
for exogenous substrate delivery. There are operons that produce both the luciferase and 
luciferin, allowing transgenic organisms to continuously glow (Kaskova et al., 2016). One 
popular autobioluminescent system derived from bacteria is the ilux system (Gregor et al., 
2018). Engineered from the bacterial lux system, ilux emits blue light (490 nm) and exhibits 
enhanced brightness and thermal stability. While autobioluminescent systems have been used 
for decades to illuminate the spread of various pathogens in vivo (Cronin et al., 2012; Massey et 
al., 2011; Morrissey et al., 2013), they have yet to be applied for studying bacterial clearance in 
D. melanogaster.   

Here, we report a novel method employing the ilux system for longitudinally monitoring 
bacterial load in D. melanogaster. By expressing the ilux operon in E. coli and using photon 
count as a reporter for relative microbial load, we can non-invasively monitor infection 
progression and clearance over time in individual flies. Measurements can be performed in high 
throughput and with fine time resolution by housing the flies in 96-well plates and using 
automated image acquisition programs. With this method, we are able to observe distinct 
infection dynamics between lines of D. melanogaster as well as between genetically identical 
individuals. We anticipate this method will allow for more facile phenotyping of the immune 
resistance and tolerance in naturally varying lines and the observation of stochastic events, 
particularly late in infection, which are technically difficult to measure with current methods. 

Results 

Drosophila infection models have historically required animal sacrifice to determine 
pathogen load, which limits measurements of each fly to one time point (Figure 1A). While this 
method has provided key insights into fly innate immunity and disease progression (Chambers 
et al., 2019; Chambers et al., 2014; Duneau et al., 2017; Kutzer and Armitage, 2016; Lazzaro et 
al., 2006), the fine dynamics of infection progression and tolerance among individuals remains 
difficult to measure in high throughput. To address these limitations, we designed a non-
invasive imaging strategy to monitor pathogen load over time (Figure 1B). We employed 
bioluminescent E. coli that constitutively expressed the ilux reporter (ilux-Ecoli) as a proof-of-
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concept platform (Gregor et al., 2018). The load of these autoluminescent bacteria could then 
be tracked post-injection, with photon flux reporting on relative pathogen count. Thus, we 
hypothesized that this method could be used to track differences in immune response between 
genetically distinct individuals and identify stochastic differences in infection progression within 
groups of genetically identical individuals. 

 

 

Figure 1. A novel method for non-invasive tracking of pathogen load over time. A) 
Previous methods for determining pathogen load require animal sacrifice. Larger cohorts are 
required for experiments as several flies must be sacrificed at the desired time points to check 
infection progression and clearance. B) This work presents a novel, non-invasive method to 
track pathogen load over time using bioluminescence. Thus, all flies can be individually 
monitored over time, allowing for a more comprehensive view of immune response. 

 

To employ bioluminescence as a reporter for pathogen count, we first measured how 
photon flux correlated with bacterial optical density (OD) in liquid culture (Figure 2A). To do so, 
we serially diluted ilux-Ecoli in liquid culture and measured bioluminescent output. Photon 
counts correlated exponentially with bacterial OD. Since OD corresponds to E. coli colony 
forming units (CFUs), relative pathogen abundances can be estimated from these photon 
measurements at this time point (Figure S1) (Khalil et al 2015, Chambers et al. 2019, Alst et al 
2022). 
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We then sought to determine how flux correlates with bacterial count when injected into 
living flies by comparing the flux measurements of infected flies to CFU measurements 
generated by the current gold standard method, dilution plating. The ilux system emits blue light, 
with an emission maximum of 490 nm (Figure S2). While blue light is difficult to detect in the 
thicker tissues of mammalian model organisms, the fly cuticle is thin, and thus we hypothesized 
that the blue emission would be readily detectable in infected flies. Indeed, upon injection and 
imaging ilux-Ecoli in wild-type, male Oregon-R flies, we were able to reliably detect as few as 
1000 CFUs. Given our injection volume of 34 nL, we estimated (Figure S1) and confirmed via 
dilution plating, that the flies injected with a solution of OD = 6 received approximately 100,000 
CFUs. The thermal noise on the imaging instrument used (IVIS Lumina II) is between 102 and 
103 photons/sec. Thus, we could not reliably image <200 CFU. A monotonic relationship was 
observed between CFU and photon flux indicating that flux can report on relative microbial 
count in vivo (Figure 2B). Notably, at the highest concentration of bacteria injected, there was a 
considerable amount of variation in initial dose, likely due to the injection needle clogging 
(Figure 2B). The photon flux measurements for these animals showed a concordance with the 
CFU measurements, suggesting that this method can be used to filter out animals that received 
inconsistent doses. 

To determine whether sexually dimorphic pigmentation of the cuticle affected this 
relationship, we also compared the best fit line of radiance/CFU of male and female flies. We 
found no differences between sexes (Figure S3). Thus, we were confident bioluminescence 
could be employed to determine pathogen count in both male and female flies. These results 
suggest that the ilux-Ecoli are sufficiently bright to be imaged through the cuticle, and that we 
can use standard curves of flies injected with known amounts of bacteria to calculate relative 
load at a given point in time. While flies bearing more pigmented cuticles (e.g., ebony flies) may 
attenuate signal more substantially, comparisons between individuals of the same cuticle hue 
would normalize such effects.   
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Figure 2. Photon flux is monotonically related to bacterial concentration. A) ilux-Ecoli were 
serially diluted in liquid cultures and assayed for photon output. Higher concentrations of 
bacteria yield higher photon fluxes. Plot shows eight measurements per OD (four biological 
replicates across two experiments). Well images are representative of the biological replicates. 
B) Wild-type flies were injected with different concentrations of ilux-Ecoli and assayed for light 
emission immediately after. CFUs per fly were measured by homogenization of injected flies. A 
monotonic relationship was observed between radiance and CFUs injected. Graph shows data 
of 36 biological replicates per infection concentration, across two experiments. Well images 
above each graph are representative of images of the injected flies. The color scale is in units of 
photons/second/cm2/steradian. In both experiments, radiance was summed over the entire well 
to yield flux (photons/second) using the Living Image software. 

To determine whether bioluminescence could be employed for longitudinal tracking of 
pathogen load over time, we monitored flies for infection progression over several days. Given 
the duration of the experiment, the flies required housing both compatible with imaging and 
including food to prevent starvation. To this end, flies were housed in black 96-well plates by 
preparing small aliquots of food for each well and placing a glass sheet overtop of the plate 
(Figure S4). The glass sheet was secured with black electrical tape to mitigate aberrant photon 
scattering. With the housing in hand, we infected 48 wild-type flies with increasing 
concentrations of ilux-Ecoli and transferred them to individual wells in the prepared housing. 
The flies were then imaged for four days, and photon fluxes recorded (Figure 3A-B). Since the 
flies were freely moving during the 3–5-minute image acquisition, they created a donut-shaped 
signal by traveling around the sides of the well (Figure 3A). We can account for fly activity in 
quantification by summing the photon count of the entire well. While the relative orientation of 
each fly in their respective wells could affect photon output, we anticipate these differences are 
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averaged out by the length of the integration time and the similarity in movement observed for 
awake, freely moving animals. 

Since wild-type flies mount a robust immune response against E. coli infection, none of 
the flies died during the course of the experiment. For the lowest doses of bacteria 
administered, photon flux values indicated that the infection had been cleared to levels below 
the detection limit. At higher doses, detectable amounts of bacteria remained on day 4, and the 
level of bacteria at day 4 is positively correlated with the initial load, consistent with previous 
reports (Chambers et al., 2019; Duneau et al., 2017) (Figure 3A-C). Further monitoring would 
reveal how long it takes for each fly to reach a steady state “set point” of bacterial load 
associated with a chronic infection state, whether there are fluctuations in this set point as a 
function of time, and the proportion of flies that may completely eliminate the infection.  

Clearance patterns varied among flies receiving the same dose of pathogen (Figure 3C). 
For example, when looking at the trajectories from the two lowest doses, there are individual 
flies that experience resurgent infections. With dilution plating assays, it is impossible to verify 
whether a fly with a higher-than-average bacterial load at a later time point experienced a 
resurgent infection or failed to control the infection initially. Longitudinal measurements can 
distinguish between these scenarios. Some flies receiving the highest dose show markedly 
faster clearance dynamics than others. 

To ensure the decreasing photon counts over time in wild-type flies were due to infection 
clearance rather than loss of the ilux plasmid, we repeated the same time course and imaged 
colonies from plated fly homogenates (Figure S5, S6). We observed minimal plasmid loss. We 
also found that feeding the flies ampicillin (the selection marker present on the ilux plasmid) had 
no effect on the proportion of luminescent vs non-luminescent colonies. Given the ability of wild-
type flies to effectively resist the E. coli infection, we also investigated whether loss of the ilux 
plasmid was more pronounced in an actively proliferating infection. To this end, we infected 
immunodeficient imd10191 flies with ilux-Ecoli and provided them with either normal fly food or 
food supplemented with ampicillin. The imd10191 flies bear a frameshift mutation in the Imd 
protein, effectively eliminating the immune response to Gram-negative bacteria and rendering 
them susceptible to E. coli infection (Pham et al., 2007). When we compared the flux output, we 
found no differences between flies supplied with or without a selective compound (Figure S7). 
Thus, variations in flux observed in Figure 3 are reporting on true variation in bacterial load 
rather than variation due to loss of plasmid. Collectively, these results highlight how bacterial 
bioluminescence can be used to interrogate stochastic responses to infection in individual flies.  
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Figure 3. Bioluminescence can be used to track changes in pathogen load over time. A) 
Representative well images for different concentrations of bacteria injected in wild-type flies 
over four days. Higher initial concentrations were cleared to low, but detectable concentrations. 
Low initial concentrations were cleared below the limit of detection for the imaging instrument. 
Well images are representative of 48 injected individuals, 12 biological replicates per infection 
concentration. B) Average clearance patterns for different concentrations of ilux-Ecoli injected in 
individual flies over time. Photon counts were summed over the entire well where flies resided. 
The gray box shows the limit of detection of the imaging instrument. Solid colored line 
represents the average of the cohort. The gray band represents the standard deviation over 
replicates, dots represent one individual. C) Individuals display varied routes toward infection 
clearance, suggesting stochasticity plays a role in infection dynamics. Black dotted line 
represents the average, and the gray band represents the standard deviation. Gray box shows 
the limit of detection of the imaging instrument. Solid lines represent routes individuals took 
toward infection clearance.    
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Historically, stochasticity of immune response in the first 12 hours of infection has been 
laborious to measure due to the need for fly sacrifice to obtain pathogen load information. We 
hypothesized our bioluminescent imaging strategy would be useful for studying differences in 
pathogen clearance during these critical first hours of infection. To test this capability, we used 
two fly lines, Oregon-R wild-type flies and immunodeficient imd10191 flies. Wild-type flies are 
resilient to E. coli infection and clear this Gram-negative microbe easily (Figure 3), while imd10191 
flies succumb to E. coli infection. Therefore, we anticipated imd10191 flies would have different 
pathogen loads compared to wild-type files. Indeed, upon injection of a large quantity 
(approximately 100,000 CFUs) of ilux-Ecoli, imd10191 flies sustained high pathogen levels over 
time, while Oregon-R flies steadily cleared the infection as evidenced by reduced emission 
levels (Figure 4B). When handling highly concentrated pathogens for injection, variance in the 
delivered dose can occur. In this experiment, the imd10191 flies received a slightly lower initial 
dose of bacteria than the wild-type flies. However, by the two-hour time point, the imd10191 flies 
carried a higher load than the wild-type flies. Although we aim to deliver consistent initial doses, 
this result highlights a feature of this method: we can censor individual animals that receive 
aberrant initial doses. This quality control step is not possible with dilution plating-based 
methods. 

Beyond quality control, we can use variation in initial dose to answer biological 
questions. For example, it has been shown that, within a genotype, varying initial dose by orders 
of magnitude yields differences in bacterial load of chronic infections. However, previous work 
relies on group averages and is unable to assess the impact of more subtle variations in initial 
infection load (Chambers et al., 2019). To address this question, we plotted the infection 
dynamics of individual flies (Figure 4C). To determine if the initial load of infection contributed to 
the differences in bacterial load at the end of the time course, we tested for correlation between 
flux at the time of injection and flux at the end of the time course for wild-type flies.  We found 
the initial dose of pathogen does not significantly correlate with differences in the final load 
(Oregon-R R = 0.19, Pearson's product-moment correlation, Figure S8A), suggesting that 
smaller variations in initial infection dose do not determine the final load at this timescale.   

Previous work also suggests that bacterial load upon death is independent of initial load 
(Duneau, et. al 2017). In line with this work, we found the initial dose of pathogen did not 
significantly correlate with differences in the final load upon death in the imd10191 flies (R = 0.24, 
Pearson's product-moment correlation, Figure S8B). In the imd10191 line, we also looked to see if 
any correlation existed between the initial load of injection and the time it takes a fly to die after 
crossing the mean bacterial load upon death. In this experiment, we did not find a significant 
correlation between these two variables (imd10191 R = 0.56, Pearson's product-moment 
correlation, Figure S8C). The bioluminescent method thus reports on initial inoculation 
differences and can provide insight into alternative hypotheses for variance in infection 
dynamics among genetically identical populations. 
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Figure 4: Longitudinal tracking of individual flies is possible in wild type and immune 
deficient genotypes. A) Representative images of radiance measurements for wild-type (wt) 
and imd10191 injected with 34 nl of OD = 6 ilux-Ecoli. Images show the first 8 hours, after which 
most imd10191 flies perished. Images are representative of 24 injected individuals, 12 biological 
replicates per genotype. B) Comparison of population level integrated total flux. Time points 
showing difference in mean between the two lines are demarked with an asterisk. 
Immunodeficient lines received a 37% lower dose of infection than wt flies due to experimental 
variation. This significance was lost by hour 1, with imd10191 bacterial load surpassing that of 
wild-type by hour 2. Data comprise 12 injected individuals. C) Comparison of wt and imd10191 

individual tracks. Individual variation of immune response and pathogen clearance was 
observed in living flies (solid lines). Deaths are marked by red triangles, and the lines end. The 
blue dotted line shows the average of the cohort, while dark gray lines show the individual paths 
toward clearance or death. Death histogram shows the pathogen load upon death as estimated 
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by total integrated flux. The red line on the imd10191 graph also demarcates the average of these 
values. The light gray line indicates a fly that received a lower-than-average initial dose and that 
was filtered out in the subsequent analysis. Data shown comprise 12 injected individuals. 

In the experiment above, the high initial dose of bacteria killed the immune-deficient flies 
in less than 9 hours, which made it difficult to assess potential drivers of death (Figure 4).  We 
posited that a lower dose of bacteria would kill immunodeficient flies more slowly and with 
greater variation in the time to death. To test this hypothesis, we injected wild-type and imd10191 
flies with OD = 0.06 ilux-Ecoli. We then imaged flies every hour for 2 days post-infection. While 
both strains of flies were injected with the same concentration of bacteria, within the first three 
hours, pathogen load differed between the two populations (Figure 5A-B). Over time, the wild-
type flies cleared the infection to low pathogen load and survived to the end of the experiment. 
Conversely, the imd10191 flies showed a gradual increase in pathogen load over time, with all 
flies succumbing to the infection by the end of the experiment. While initial loads varied between 
individuals, inoculation load again did not correlate with final bacterial load upon death for 
imd10191 individuals, or upon end of experiment for wild type individuals (Figure S9). This 
suggests that variance in initial load does not fully explain variation in bacterial load over time. In 
line with our hypotheses, we did observe substantial variance in time to death among the 
imd10191 individuals (Figure 5C). 
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Figure 5: Lower initial infection dose yields more variation in time of death of immune-
deficient flies. Both wild-type (wt) and imd10191 flies were injected with 34 nL of OD = 0.06 ilux-
Ecoli (n = 48 for each genotype) A) Representative images of radiance measurements for wt 
and imd10191 flies injected with ilux-Ecoli. Images are representative for 96 individuals (48 
biological replicates per genotype) and are shown in 5-hour intervals for the first 45 hours of 
infection. B) Summary of integrated total flux values for the living wt and imd10191 in 5-hour 
intervals for the first 45 hours. Timepoints showing difference in mean between the two lines are 
demarked with an asterisk. By hour 5, both lines show differences in the ability to fight off 
infection with wild-type flies observed clearing the infection and imd10191 flies much higher 
bacterial loads. C) Histogram displaying time of death statistics for imd10191 flies. The majority of 
imd10191 flies died at hour 32, when integrated total flux reached its highest peak. Death data 
were compiled from 48 imd10191 individuals. 

To further explore the variation in the infection progression in immunodeficient flies, we 
plotted their individual dynamics (Figure 6A). To identify groups of individuals showing distinct 
infection profiles, samples were hierarchically clustered using Euclidean dissimilarity (Figure 6B, 
Figure S10) (Montero & Vilar, 2014). This clustering requires that each individual have a 
measurement from all time points; therefore, we included bacterial load data post-mortem for 
flies that died prior to the end of the experiment. We separated the trajectories into four clusters, 
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with the majority of flies falling into cluster 2 (blue, n = 29) or cluster 3 (yellow, n = 13), and 
clusters 1 and 4 having three flies each (magenta and green, respectively). Clusters 2 and 3 
appear to separate based on the lag time to unchecked bacterial growth, with cluster 2 having a 
lag time of 5-10 hours and cluster 3 having a lag time of 10-15 hours after infection. Clusters 1 
and 4 appear to cluster primarily based on receiving a below-average initial dose (cluster 4) or 
on bacterial dynamics post-mortem (cluster 1). No cluster appeared to correlate with time of 
death (Welch two sample t-test on every cluster combination, Figure S11). While all samples 
ultimately succumbed to the infection, these distinct dynamics -- particularly the difference 
between bacterial lag time and growth rate variation -- would have been missed using 
previously established methods.  

 

 

Figure 6: Individual infection tracking of immune deficient flies shows variation in time to 
death. A) Individual tracks of infection in live imd10191 flies (black lines, n = 48); deaths are 
marked as a red triangle and the end of the line. All flies died by hour 48 and the mean radiance 
upon death was 18.6x106 (solid red line). Threshold of accurate detection is demarcated with a 
gray box. Histogram shows the distribution of integrated photon flux (serving as a proxy for 
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pathogen count) of imd10191 flies upon death. B) Individual tracks of infection separated by 
clusters. Clusters were assigned via hierarchical clustering using Euclidean dissimilarity. Four 
distinct groups were assigned with cluster 2 and 3 containing the majority of samples (cluster 2 
= 29, cluster 3 = 13) and clusters 1 and 4 containing 3 samples each. Data are for 48 imd10191 
individuals. C) Spearman rank correlation (ρ) and the 95% bootstrapped confidence interval (CI) 
between initial flux and time of death for imd10191 flies. D) Spearman rank correlation and CI 
between total flux at hour 20 and time of death. E) Spearman rank correlation and CI between 
the log transformed area under the curve (AUC) up until hour 20 and the time of death. The 
curve here refers to the flux (p/s) vs time curve. In all cases CI of Spearman correlation 
coefficients were computed by bootstrapping 10,000 synthetic datasets and computing the 
correlations on these datasets. 2.5 and 97.5 percentile values of the sampled correlations are 
reported. 

 We further investigated potential sources of the variability observed in time to death of 
the imd10191 flies. Several possibilities exist to explain these differences in dynamics, including 
variation in the injury upon infection, variation in the initial pathogen load, or differences in the 
physiological state of the fly. To examine if this variance in time to death can be explained by 
differences in the initial load of infection, we performed Spearman rank correlations between 
time of death and the initial load. We also measured the correlations between time of death and 
load at 20 h post injection and the area under curve (AUC) of pathogen load at 20 h, as this is 
prior to any of the animals dying. The AUC at 20h captures information about the trajectory of 
the pathogen load, which may vary even among flies with similar loads at 20 h.  In a model, the 
AUC can represent a possible mechanism of pathogenesis, e.g., the buildup of a toxin secreted 
by the bacteria over time. In contrast to experiments carried out with a higher initial dose, here 
we found the initial load was negatively correlated with time of death (ρ = -0.29, 95% 
bootstrapped confidence interval = (-0.56, 0.00)) (Figure 6C). Intuitively, this aligns with 
expectations: flies receiving higher inoculations will die more quickly. We may have been unable 
to detect this relationship using a higher initial dose either because there is less variation in 
bacterial growth and host response at higher doses or because we did not record time of death 
with sufficient resolution to uncover this relationship  The strongest correlation was found 
between time to death and observed load at 20 h post injection (ρ = -0.61, 95% bootstrapped 
confidence interval = (-0.78, -0.39)) (Figure 6D). A similarly strong correlation was observed 
between time to death and area under the flux curve at 20 h post injection (ρ = -0.59, 95% 
bootstrapped credible interval = (-0.75, -0.36)) (Figure 6E). These correlations highlight how 
factors beyond initial load contribute to the time of death observed in individual flies. 

Unlike the immunodeficient line, all of the wild-type flies survived well past two days, with 
the overall trend of clearing the infection (Figure 7A). Despite the average drop in pathogen 
load, we did observe large amounts of variance, particularly between hours 10 and 20 of 
infection. Hierarchical clustering sorted the individual traces into groups that corresponded to 
low, intermediate or high pathogen load in the first 25 hours of infection (Figure S12). In 
studying this data, we noticed that some individuals experienced a resurgence in infection, and 
these individuals fell into more than one cluster. Therefore, we highlighted profiles based on the 
presence of a secondary distinct increase of pathogen load after the initial infection (group 1: 
magenta, n = 10) rather than a sustained gradual decrease (group 2: blue, n = 38, Figure 7B). 
We found the initial dose of infection did not significantly correlate with the final flux between 
both groups (group 1 R = -0.41, group 2 R = -0.15, Pearson's product-moment correlation, 
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Figure S13A) and that neither the initial nor the final flux measurements were significantly 
different between these groups (group 1 vs. group 2 initial p = 0.2, group 1 vs. group 2 final p = 
0.45, Welch two sample t-test, Figure S13B and C). Despite the presence of an increase in 
pathogen load in some flies, the population ultimately converges towards controlling the 
infection. We expect that this method’s ability to report fine differences in pathogen load over 
time will enable future research to uncover the origins of such stochasticity and better 
characterize the paths hosts may take to clear an infection.  

 

Figure 7: Individual infection tracking of wild-type (wt) flies shows two distinct pathways 
towards bacterial clearance.  A) Individual tracks of infection in live flies (black lines). No flies 
died during this time course. Threshold of accurate detection demarcated with gray box. B) 
Individual tracks of infection are grouped by the presence of a secondary peak during the 
infection process. While all flies showed a decrease in bacterial load by the 48-hour mark, a 
subset of flies (n = 10) showed an increase in bacterial load between 10 - 25 hours (magenta 
lines). Dashed lines represent the mean trajectory for the genotype. The noise in some of the 
later time points is due to a shortening of the acquisition time for these animals, which were 
housed in the same plate as the highly luminescent immunodeficient animals shown in Figure 6.  

 

Discussion 

Here we show that employing an autobioluminescent bacterial reporter enables simple, non-
invasive pathogen load determination in Drosophila melanogaster. We show that total flux can 
report on relative changes in bacterial load over time. The non-invasive feature of this method 
fundamentally changes our view into infection dynamics by enabling longitudinal tracking of 
infections in individual animals. Traditional dilution plating approaches only allow for the 
measurement of an average infection trajectory in a population of genetically identical 
individuals, while longitudinal measurements allow us to reveal individual variation in dynamics 
and features such as resurgent infections. Further, these traces can be used to test hypotheses 
about what features (e.g.  initial dose, time to immune system engagement, or colonization 
progress) drive the ultimate outcome of infection. The simple housing requirements and rapid 
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acquisition times allow for the efficient measurement of large numbers of animals or genotypes 
at fine time resolution. Because each animal is repeatedly sampled throughout the experiment, 
the longitudinal measurements effectively reduce the sample size needed to identify differences 
in distinct genotypes of flies. The decrease in sample size, coupled with the increase in 
throughput, will make previously laborious genetic screens to identify new components of the 
immune response more accessible. 

This approach may serve a complementary role to approaches integrating fluorescently 
labeled bacteria, which have been used to track the localization of some microbes during 
infection, particularly in larvae (Mansfield et al., 2003; Muniz et al., 2007; Rutschmann et al., 
2002).  However, fluorescent microbes have been difficult to use as a quantitative readout of 
bacterial load due to Drosophila autofluorescence and generally lower signal to noise. 
Furthermore, illumination with high powered light sources (i.e., UV lamps) can damage tissue 
and affect animal behavior (Du et al., 2016; Kim and Johnson, 2014; Milinkeviciute et al., 2012).  
Bioluminescence can thus offer a less perturbing alternative to fluorescent methods.   

The flexibility and simplicity of this method should enable its use in a wide range of 
settings. For example, the ilux cassette can be manipulated via molecular cloning, allowing 
expression in a wide variety of pathogens. To establish the system in a new organism, a vector 
that contains a species-appropriate promoter, origin of replication, and resistance marker should 
be identified, and controls should be done as in Figures 2, S6, and S7 to ensure the relationship 
between light output and bacterial load can be used to measure relative changes in bacterial 
load over time. Depending on the microbe, features like toxin-antitoxin cassettes or 
chromosomal integrations can be used to improve the quantitative performance of the system 
(Hayes, 2003; Yamaguchi et al., 2011). The system may also be deployed to investigate 
pathogens that have different localizations within the animal, e.g., commensal gut microbiota or 
pathogens introduced to the animal via feeding. We have also demonstrated that this system 
works well in multiple fly genotypes. Though the Oregon-R and imd mutant flies have 
indistinguishable pigmentation patterns, other fly genotypes may have an impact on light 
emission, e.g., the dark cuticle of ebony flies. In these cases, this approach can still be used to 
compare relative bacterial loads within an individual over time or between individuals of the 
same genotype. The fly housing requires only simple components found in most laboratories. 
We also examined the feasibility of using a plate reader instead of an IVIS imager for 
luminescence measurements (Figure S14). Using flies injected with bacterial doses spanning 6 
orders of magnitude, we found that while the IVIS has better sensitivity in detecting low 
pathogen loads, the plate reader performed comparably to the IVIS at higher doses. This 
indicates that the plate reader may be useful for experiments in which the bacterial loads are 
likely to be above the threshold of detection. 

The longitudinal measurements and temporal resolution achieved using 
bioluminescence enables novel observations of infection dynamics. For example, although we 
found wild type flies cleared ilux-Ecoli in all experiments, some individuals experienced a 
resurgence in infection upon inoculation with moderate doses of bacteria (Figure 7). Using 
previous dilution plating methods, resurgence cannot be definitely identified. It would appear to 
be variation between sacrificed individuals at discrete time points. Using our bioluminescent 
method, resurgence can be easily visualized as an increase in total flux observed in certain 
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individuals of a population and future studies may investigate the causes and predictors of a 
resurgent infection.  

New insights were also gleaned from experiments with immunodeficient flies. Using a 
low initial infection dose, we found a moderate correlation between the initial load and time to 
death for immunodeficient flies, and a stronger correlation between time to death and bacterial 
load at 20 h post injection for individuals receiving a low initial dose of ilux-Ecoli (Figure 6D).  
Therefore, it seems both variation in initial load and infection progression combine to determine 
the ultimate time of death. The variable paths flies take toward a fatal infection can now be 
investigated in fine detail using the temporal resolution afforded by our bioluminescent method. 
Ongoing work involving integration of additional luminescent reporters to label immune system 
components would enable even more thorough investigation into how different variables can 
contribute to infection outcome. For example, readouts on the strength and persistence of the 
host immune response may help us identify the causative factors of a resurgent infection or the 
drivers of bacterial load at 20 h post injection. 

In summary, non-invasive tracking of pathogen load in Drosophila melanogaster over time offers 
many advantages when compared to traditional methods. Dilution plating requires animal 
sacrifice to determine average pathogen load at static time points, limiting the ability to 
investigate individual infection dynamics, particularly over long time scales. The bioluminescent 
method presented herein offers a facile approach to non-invasively monitor pathogen load on 
the individual level. Because images may be automatically acquired on the minute-time scale 
simultaneously in many flies, bioluminescence enables infection progression to be monitored 
with exceptional resolution across long time periods and in high throughput. This may enable 
previously difficult genetic screens, for example, to examine variation in infection tolerance 
between naturally varying fly lines or dynamic-dependent phenotypes, like propensity to endure 
a resurgent infection. Integrating this method with other visual reporters of host state, e.g., the 
activation of immune signaling pathways, may further illuminate the sources of variation in 
pathogen host-dynamics (Duneau et al., 2017; Ellner et al., 2021; Troha and Buchon, 2019). 
Using this method, we can begin to quantify the contributing factors that result in stochasticity, 
resurgence, and ultimate infection outcome.  
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STAR Methods 
 
RESOURCE AVAILABILITY 
 
Lead contact  
Inquiries and requests for resources should be directed to and will be fulfilled by the 
lead contact, Dr. Zeba Wunderlich (zeba@bu.edu) 
 
Materials availability 
 
Data and code availability 
CFU and luminescence data have been deposited in the supplement as well as 
github and are publicly available as of the date of publication. DOIs are listed in the 
key resources table. All original code is available in this paper’s supplemental 
information. 
 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 
 
Drosophila lines and rearing 
The Oregon-R and imd10191 fly lines were used for this study (Pham et al., 2007). Both lines 
were reared in Drosophila vials with standard cornmeal media at 20˚C (Brent and Oster 1974). 
Four-day old male and female flies were collected for injections to ensure full replacement of the 
larval fat body by the adult fat body (Johnson & Butterworth, 1985). 
 
METHOD DETAILS 
 
Preparing ilux E. coli 
An E. coli strain harboring a plasmid with the ilux operon (ilux pGEX(-)) was obtained from 
Addgene (plasmid # 107897, deposited by Stefan Hell) and streaked on an LB agar plate with 
ampicillin (100 µg/mL) to afford single colonies. A single colony was picked and grown in 5 mL 
LB broth containing ampicillin (100 µg/mL, LB-AMP). The culture was miniprepped according to 
the manufacturer’s instructions (kit purchased from Zymo Research). Plasmid (10 ng) was 
transformed into chemically competent TOP10 E. coli (20 µL). The transformant was recovered 
with SOC (50 µL) for 30 mins at 37 °C and 25 µL plated on an agar plate containing ampicillin. A 
single colony was picked and expanded in LB-AMP, and a glycerol stock was made for long 
term storage at -80 °C (500 µL culture with 500 µL 50% v/v glycerol). This glycerol stock is 
referred to as ilux-Ecoli.  
 
Drosophila infection induction 
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Prior to infection, ilux-Ecoli was cultured in liquid LB-AMP on a shaker at 37˚C for 8 hours. 
Bacteria were then pelleted using a table-top micro-centrifuge at 5000 rpm/g and resuspended 
in 200µl of 1X phosphate buffered saline. Optical density at 600 nm was then measured using a 
NanoDrop 2000 (Thermo Fisher). Injection solutions were prepared at the appropriate OD by 
dilution in additional PBS. Flies were injected with 34 nL of bacterial solution using Narishige IM 
300 Microinjector along the scutoscutellar suture and immediately placed into black 96-well 
plates (Grenier Bio One). When multiple fly lines were being injected at the same time, flies 
were injected in batches of 12, alternating between lines, to avoid time-dependent injection 
effects. For time course experiments, 96-well plates for imaging were prepared by punching out 
circles of standard cornmeal media and placing these at the bottom of wells before placing flies 
into the plate. A 4-inch by 6-inch glass cover was placed on the plate during the duration of the 
time course to prevent individual escape. For single time point measurements, flies were placed 
in 96-well plates lacking food.  
 
Dilution plating: ilux-Ecoli 
To determine the concentration of ilux-Ecoli at per OD measurement, ilux-Ecoli was grown in 10 
mL LB-AMP on a shaker at 37˚C for 6-7 hours while the bacteria was still in exponential growth 
phase. Bacteria was then pelleted and resuspended in 200 uL 1X phosphate buffered saline 
and OD at 600 nm of the solution was determined using a NanoDrop 2000 (Thermo Fisher). A 
stock solution of OD 1 was prepared and serially diluted using 1x PBS by 6million fold. CFUs 
were then quantified in two ways. The first manner was using 5µl of solution for each dilution 
which was spot plated in triplicate on LB plates supplemented with 100µg/ml ampicillin. The 
second manner was using 90 µl of solution which was plated on LB plates supplemented with 
100 µg/ml ampicillin. Colonies were then counted for each dilution step to determine the 
concentration of CFUs at OD1 for both methods (Supplementary Figure 1).  To determine the 
relationship between ilux-Ecoli concentration and total flux, a solution of bacteria was prepared 
as described above, 90µl of each dilution was then placed into black 96 well plates for imaging 
(see “imaging parameters” section below). 
 
Dilution plating: infected Drosophila 
To determine the concentration of bacteria injected into individual flies, flies were suspended in 
250 µl of 1X phosphate buffered saline and homogenized (Krupp & Levine, 2010). Homogenate 
was then used for stepwise 5-fold serial dilutions. 5 µL of each dilution in the series was then 
spot plated in triplicate (3 technical replicates per biological replicate) on LB plates with 100 
µg/ml ampicillin. Colonies were then counted for each dilution step and the mean of the 
technical replicates was used to determine the concentration of CFUs per fly. For plasmid loss 
determinations, homogenate and serial dilution was prepared in the manner described above. 
Next 90 µl of solution from each dilution in the series was plated on individual LB plates not 
supplemented with ampicillin. Plates containing colonies were then counted for each dilution 
step to determine the concentration of CFUs per fly and imaged for luminescence output as 
described in the “imaging parameters'' section. Thus, emissive and non-emissive colonies could 
be distinguished to determine the proportion of colonies that had lost the ilux plasmid.  

  
Imaging parameters 
All imaging analyses were performed in black 96-well plates (Grenier Bio One) prepared as 
described above, or on agar plates for plasmid loss studies. Individual experiments took place 
on separate days, whereas individual infected flies were considered biological replicates. Plates 
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containing flies were imaged immediately post-injection unless otherwise stated. Injected flies 
and agar plates containing ilux-Ecoli were imaged using an IVIS Lumina II (Xenogen) CCD 
camera chilled to -90 °C. The stage was kept at room temperature (25 °C) during the imaging 
session, and the camera was controlled using Living Image Software. The exposure time 
ranged from 1 s - 10 min depending on the brightness of the sample, and the data binning levels 
were set to medium. Dim samples required a longer acquisition time to ensure accurate 
measurement while brighter samples required shorter acquisition time to prevent detector 
saturation. Background thermal noise levels of the instrument were determined via acquisition of 
images containing no bioluminescent materials for all integration times used in this study. 
Maximum photon values observed in these “dark charge” images were used as the absolute 
background levels of the instrument. Because the dynamic range of the instrument is three 
orders of magnitude, relative background levels can change depending on the radiance 
observed from the brightest sample present. In these cases, relative background levels would 
be three orders of magnitude lower than the highest pixel radiance observed. Radiance was 
integrated over regions of interest and quantified to total flux values using the Living Image 
software. Raw luminescent images were analyzed using FIJI (Schindelin 2012). For plasmid 
loss studies, CFUs on plates were quantified by hand, luminescent colonies were quantified by 
importing for analysis and counting in FIJI. 
 
Estimate of detection limit.  
To estimate the threshold of detection of our assay we first measured the total flux from wells 
containing only fly media which was found to range between 102 and 103 photons/sec. To be 
conservative in our estimates we selected 103 photons/sec as our threshold. We then took the 
model2 linear regression of total flux measured by the IVIS versus the CFUs/fly calculated via 
dilution plating. Finally, we calculated our CFU/fly detection limit by inputting our flux detection 
limit and solving for CFUs. 
 
QUANTIFICATION AND STATISTICAL ANALYSIS 
 
Data analysis 
"n" is defined in the relevant figure legends. Statistical tests for all figures were performed in R 
3.6.0 except Figure 6 C-E which was performed in Python (3.7). P-values in Figures 4B and 5B 
were calculated via two sample t-test. Figure 6 C-E, p values and credible intervals were 
calculated by bootstrapping 10000 synthetic datasets and calculating the Spearman rank 
correlation for each dataset. Results were then imported into R for visualization.  All data was 
imported for analysis and visualization (R Core Team. 2019, Wickham H. 2016, Dowle M(2019), 
Wickham H. 2021, Wickham et al., 2019). Model2 regressions were performed using the 
package lmodel2 1.7-3 (Legendre 2018). Euclidean dissimilarity and hierarchical clustering were 
performed using package TSclust 1.3.1 (Montero & Vilar, 2014).  
 
 
KEY RESOURCES TABLE 
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REAGENT or RESOURCE SOURCE IDENTIFIER 

Bacterial and virus strains 

E. coli   ThermoFisher TOP10 E. coli 
Catalog #: C404003 

Chemicals, peptides, and recombinant proteins 

 LB Agar (Miller)  Genesee Scientific 11-122 

Ampicillin  Genesee Scientific 25-530 

Phosphate buffered saline (PBS), 10x Genesee Scientific 18-244 

LB Broth Miller VWR 97064-110 

Experimental models: Organisms/strains 

Oregon-R Dr. Larry Marsh  

imd10191 Dr. Neal Silverman   

Recombinant DNA 

(ilux pGEX(-))  Addgene  plasmid # 107879 

Software and algorithms 

 R (R Development Core 
Team, 2017)  

https://www.r-
project.org/  

 IVIS-software  Living Image software PerkinElmer 

 
Data availability  
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All flux and CFU data generated during this study as well as the code used to analyze the data 
and generate figures are available for download in the supplement and at 
github.com/WunderlichLab/ilux_infection_tracking.  
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