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We evaluate the configuration exponents of various ensembles of Hamil-
tonian paths drawn on random planar bicubic maps. These exponents are
estimated from the extrapolations of exact enumeration results for finite sizes
and compared with their theoretical predictions based on the KPZ relations,
as applied to their regular counterpart on the honeycomb lattice. We show
that a naive use of these relations does not reproduce the measured exponents
but that a simple modification in their application may possibly correct the
observed discrepancy. We show that a similar modification is required to re-
produce via the KPZ formulas some exactly known exponents for the problem
of unweighted fully packed loops on random planar bicubic maps.

1. Introduction

The aim of this paper is to evaluate a number of exponents characterizing the asymptotic
enumeration of various configurations of Hamiltonian paths on random planar bicubic
maps. Recall that a planar map is a connected graph drawn on the two-dimensional
(2D) sphere (or equivalently on the plane) without edge crossings, and considered up
to continuous deformations. A map is characterized by its vertices and edges, inherited
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Figure 1: Representation of a (rooted) Hamiltonian cycle on a planar bicubic map as a system
of non-crossing arches linking black and white vertices whose color alternate along a
straight line.

from the underlying graph structure, and by its faces which result from the embedding
and all have the topology of the disk. The map is called bicubic if (i) it is cubic, i.e.,
all its vertices have degree 3 (i.e., have 3 incident half-edges) and (ii) these vertices are
colored in black and white so that any two adjacent vertices have different colors. A
Hamiltonian path is a self-avoiding path along the edges of the map which visits all the
vertices of the map. If the path is closed, it is called a Hamiltonian cycle.

The problem of Hamiltonian cycles on random bicubic maps was first considered in
[1] where it was conjectured that its scaling limit corresponds to 2D quantum gravity
coupled to a conformal field theory (CFT) with central charge ¢ = —1. In particular,
the number zy of configurations of planar bicubic maps with 2N vertices endowed with
a Hamiltonian cycle and a marked visited edge, called the root edge, was predicted in [1]

to behave, at large N, as
2N

ZN ~ const. 152_W (1)

with an exponential growth rate estimated numerically as Log(u?) ~ 2.313 and with the
somewhat nontrivial exponent
1++v13

. )

By cutting the Hamiltonian cycle at the level of its root edge and stretching it into a
straight line, a configuration may be drawn in the plane as a simple infinite line with
2N alternating black and white vertices, completed by non-crossing arches linking each
black vertex to a white one, either above or below the infinite line, see Figure 1 for an
example. Despite this simple representation, no exact expression for zy or its asymptotic
equivalent is known so far and the results of [1| remain mathematically a conjecture.

In the present paper, we address the question of evaluating a number of other expo-
nents, similar to v and characterizing more involved Hamiltonian path configurations
with possible valency and/or occupation defects. In our study, we will be led to consider
a generalization of the Hamiltonian cycle problem to the so-called FPL(n) model on
bicubic maps, where FPL stands for Fully Packed Loops. Configurations of the FPL(n)
model now consist of an arbitrary number of loops which are closed paths drawn along
the edges of the underlying bicubic map, so that loops are both self- and mutually avoid-
ing and each vertex of the map is visited by a loop. Each loop receives the weight n,



with n a real number between 0 and 2. Three values of n are of particular interest: the
case n = 2 describes unweighted oriented loops, the case n = 1 that of unweighted loops,
while taking the limit n — 0 allows us to recover the original Hamiltonian cycle problem
with a single loop.

A strategy to explore the asymptotics of Hamiltonian cycles, or more generally that
of the FPL(n) model on random bicubic maps consists in using the general connection
which links 2D conformal field theories in random geometry to their classical (Euclidean)
counterpart via the so-called KPZ formulas [2]. These formulas act as a translation
tool giving global configuration exponents for the random map problem from the value
of the associated critical correlation exponents (also called classical dimensions) in the
corresponding regular lattice problem. Note that this “KPZ strategy” was carried out
successfully in [3] and [4] (see also [5]) to identify various configuration exponents for
meanders, a related combinatorial problem with now two intertwined fully packed loops
drawn on random tetravalent planar maps.

The regular infinite bicubic map is nothing but the honeycomb lattice. The FPL(n)
model on the honeycomb lattice was considered in [6] and many exact results were ob-
tained by various approaches such as Bethe Ansatz techniques [7] or more heuristic
Coulomb Gas (CG) methods [8], see also [9]. We can therefore deduce from these re-
sults a number of KPZ-induced configuration exponents for the random map problem.
In the case n = 0, we can then compare the predicted values for these exponents with
their numerical estimates obtained from the extrapolation of exact enumeration results
for finite N, as was done with success in [1] for the exponent v above. As it will appear,
the “naive” KPZ approach, based on a direct application of the KPZ formulas, does not
lead to satisfactory results for n = 0. Still it seams that the observed mismatch with
numerical estimates might be corrected if, before applying the KPZ formulas, we slightly
modify the expression of the critical correlation exponents by a simple extra ‘“normaliza-
tion” procedure involving a single parameter a. As we shall see, a similar a-corrected
KPZ procedure is required in the case n = 1 when comparing KPZ-induced configuration
exponents to exactly known results for specific observables.

The paper is organized as follows: Section 2 presents a number of known results for the
FPL(n) model on the honeycomb lattice: after recalling its Coulomb Gas description in
Section 2.1, we give the expression for various critical exponents corresponding to vortex-
antivortex correlations in Section 2.2. Specific examples of these correlations and their
meaning in terms of loops are discussed in Section 2.3. We then turn in Section 3 to the
coupling of the FPL(n) model to gravity. After discussing in Section 3.1 the specificity
of bicubic maps in connection with foldable triangulations, we recall in Section 3.2 the
general KPZ relations for the coupling to gravity of a 2D conformal theory. We also
discuss in Section 3.3 the expected limits of both the standard O(n) model and the
FPL(n) model in terms of Schramm-Loewner Evolution (SLE) and Liouville quantum
gravity (LQG). We then use in Section 4 an equivalence between the FPL(1) model on
bicubic maps and a particular instance of the 6-vertex model on tetravalent maps to
obtain, in the case n = 1, the configuration exponents for a family of vortex-antivortex
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Figure 2: Left: an edge 3-coloring configuration of a portion of honeycomb lattice with colors
A, B and C. Right: the associated configuration of fully packed oriented loops. The
B- and C-colored edges form the oriented loops, while the A-edges correspond to the
unvisited edges. For each representation, we indicated the variation of the 2D height
variable X when crossing an edge.

correlations. We note that, quite surprisingly, the direct application of the KPZ formulas
does not reproduce these results but that the observed discrepancy is easily cured in this
case if we allow for a slight modification of the classical dimensions before applying the
KPZ formulas. Our main results are presented in Sections 5 and 6: Section 5 deals with
the exact numerical enumeration of configurations of Hamiltonian paths on bicubic maps
with finite sizes and possible defects. After discussing in Section 5.1 our enumeration
methods, we present in Section 5.2 our enumeration results for various ensembles of
configurations with maximal sizes ranging from N = 16 up to N = 28. These results
are then used in Sections 5.3 and 5.4 respectively to estimate the asymptotic exponential
growth rate and the configuration exponent for each of the configuration ensembles at
hand. The comparison with the KPZ predictions is then discussed in Section 6. Again
we observe a mismatch with the numerical estimates and we present a tentative a-
corrected KPZ procedure which seems to resolve this discrepancy. We gather a few
remarks in Section 7. In particular, we explore the possible meaning of the parameter
a. Appendix A discusses configuration exponents for Hamiltonian paths drawn on (non-
necessarily bicolorable) planar cubic maps and shows the validity of the naive KPZ
approach in this case. Appendix B presents the complete list of our exact enumeration
results for the various Hamiltonian path configurations on bicubic maps that we have
studied.

2. Coulomb Gas description of the FPL(n) model on the
honeycomb lattice
2.1. General theory

Following [8], we start with the description of the FPL(2) model on the honeycomb lattice
which, as discussed above, corresponds to configurations of fully packed oriented loops.



Figure 3: The two-dimensional vectors A, B, C and by and a portion of the R lattice.

As displayed in Figure 2, a configuration can be alternatively described as a 3-coloring
of the edges of the lattice by colors A, B and C, so that the three edges incident to
any vertex be of different colors. It is indeed easily seen that, for such a 3-coloring, the
B- and C-colored edges form closed loops of alternating B- and C-edges visiting all the
vertices of the lattice, while the A-edges correspond to the unvisited edges. Orienting
the visited edges from their black to their white incident vertex for B-edges, and from
their white to their black incident vertex for C-edges induces a well-defined orientation
for each loop. Changing the orientation of a loop simply corresponds to interchanging
the B- and C-edges along it.

We may finally transform the FPL(2) configurations into a “height-model” by assigning
to each hexagonal face a two-dimensional height X € R? whose variation AX between
neighboring faces depends on the nature of their separating edge, with the dictionary
of Figure 2. In the 3-coloring language, we have AX = A (resp. B, C) if the crossed
edge is of color A (resp. B, C) and traversed with the incident black vertex on the
left. Making a complete turn around any vertex of the honeycomb lattice implies the
constraint A + B + C = 0 so that X is indeed two-dimensional.

Following [8], we make the following symmetric choice of vectors, see Figure 3:

() () o). o

so that |[A| = |[B| = |C| =1/V3and A-B = B-C = C-A = —1/6. The height
variable X takes its values within the triangular lattice T := ZB 4 ZC, with mesh size
1/4/3. We also define the “repeat lattice” as the sub-lattice of 7 given by

R:=Z(A—B)+Z(A-C) (4)

which is a triangular lattice of mesh size 1 (see Figure 3). It is such that two pieces of
lattice whose values of the 2D height differ globally by an element of R describe the same
coloring arrangement, hence the same loop configuration environment.

In [8], it is claimed that the model may then be described at large scale by a coarse-
grained variable W(x) = (X)) suitably averaged in the vicinity of the point z of the
underlying lattice, where W is governed by the free field action

Acg=mg /d2x (V\Il)2 (5)



with ¢ = 1 (with our choice of normalization for A, B, C). The variable ¥ is defined
modulo R, i.e., is an element of R?/R via the equivalence relation in R?:

=0 — -V cR. (6)

Since the loops follow the B- and C-colored edges, the color A on the one hand and the
colors B and C' on the other hand play very different roles in the description of loop
observables. It is then convenient to introduce the vector

by:=B-C=(0,1) , (7)

so that |bz| = 1 and by - A = 0, and to work in the orthogonal basis (A, bz), see Figure 3.
We thus write

W = 1 A+ 1P2bs . (8)
For a fixed n (0 < n < 2), the wanted weight n per loop in the FPL(n) model is obtained
by introducing local weights accounting for the left or right nature of the turns of the
(oriented) loops at each vertex. At large scales, this new weight results into a modified
Coulomb Gas action (see [8, 9] for details)

1 1 .
Aca = / d’x {wg (3 (Vepr)? + (%)2) + Sieoty Rt T2 } (9)
where R is the (local) scalar curvature of the underlying lattice!, and with now
1 n
gzl—eozl—;arccos<§> . (10)

The last term in the action is the most relevant perturbation which allows one to fix g by
demanding that it be marginal [9]. At this stage, it is important to note that the action
is such that the two components 11 and 1o of the field ¥ are decoupled. The component
11 along A is governed by a simple free field action, while the component 5 along bo
is governed by a usual one-dimensional CG action, similar to that obtained from the
SOS reformulation of a dense O(n) model (i.e., without the constraint that each vertex is
visited by a loop). Still, a coupling between the two directions A and by arises when we
deal with the operator spectrum of the FPL(n) model, as the defect configurations must
be consistent with the condition (6). Finally, the central charge of the FPL(n) model on
the honeycomb lattice is given by

N2
(1 gg) (11)

where, in the middle expression, the first term 1 is the central charge for the free scalar
field /7 and the second term is the usual central charge

(1-g)*
g

of a dense O(n) model (as obtained for instance from its one-dimensional CG description
[10]). For n =0 (g = 1), this yields a total central charge cg(0) =1 —2 = —1.

cipl(n) = 14 Cdense(n) =2 —6

(12)

Cdense(n) =1-6

!For instance, if the model is defined on a cylinder by taking periodic conditions in one direction, the
scalar curvature is concentrated at both ends of the cylinder.



2.2. Exponents for vortex-antivortex correlations

The operator spectrum of the FPL(n) model on the honeycomb lattice is discussed in
details in [8]. Of particular interest are the so-called vortex operators characterized, in
the CG language, by their 2D magnetic charge M € R. An operator with magnetic
charge M corresponds to the insertion of a dislocation at a given lattice vertex, i.e., a
topological defect 6 X = M in the 2D height when going counterclockwise around that
vertex. Several defects must be introduced simultaneously so that the total magnetic
charge is zero (this guarantees that the 2D height remains well defined at infinity) to
keep a finite free energy cost. For instance, the vortex-antivortex correlation corresponds
to inserting a vortex of charge M and one of charge —M at two fixed vertices distant
by r in the honeycomb lattice. For

M=j(A-B)+k(A—C)eR, j ke, (13)

the change AF of free energy induced by the introduction of the M/ — M defect is

expected to behave at large  as e ™2 ~ r74M with exponent [§]
. . 1—g)?

Using instead coordinates in the orthogonal basis (A, bg), i.e., writing M = %(] +k)A+

%(k — j)bz2, we may recast the above result into

= B0+ 20 b (- (-07))  r M b 19

where the coordinates ¢; and ¢o are now integers or half-integers satisfying ¢; € %Z,
@2 € %Z and ¢1 + ¢2 € Z. Note that, as a consequence of the decoupled form (9) of the
action, the expression above for hps is naturally split into two terms: a first contribution
depending on the coordinate ¢, along A only and a second contribution involving the
coordinate ¢ along ba only.

2.3. Examples

Let us illustrate the result (15) in the case n = 0 and for a few values of the magnetic
charge M. For n =0 (g = 3), Equation (15) reduces to

hveln = 0) = 563 4+ ¢ (1= 85,0) (3 1) (16)

The case M = B +2A = %A + %bz. A vortex with magnetic charge B + 2A corre-
sponds to a black vertex surrounded by two A’s and one B which, in the loop language,
corresponds to a black vertex from which a path originates (see Figure 4). The corre-
sponding antivortex, of charge —B — 2 A corresponds to the end of this path at a further



Figure 4: Schematic representation of a pair of defects with magnetic charges +M for M =
2A+ B in the case of arbitrary n. This corresponds to fully packed loop configurations
containing an open oriented path starting at a black vertex and ending at a white one.
If these vertices are at distance r apart from each other on the honeycomb lattice, the
change AF of free energy due to the defects is expected to behave as e~ 2F ~ p=4hn

Figure 5: Schematic representation of a pair of defects with magnetic charges +M for M =
A+2B in the case of arbitrary n. This corresponds to fully packed loop configurations
with two open oriented paths starting at a black vertex and meeting again at a (black
or white) vertex at distance r apart.

apart white vertex. For n — 0, this vortex-antivortex correlation therefore enumerates
configurations with a single open path which is fully packed, i.e., visits all the vertices of
the lattice, and with prescribed (black) starting and (white) ending points at distance r
from each other. From (16), we have

hB+2A(n:0):214<2)2+;((;)2_1> =0, (17)

meaning that the free energy cost induced by having remote endpoints for the path tends
to a constant for large r. A possible explanation for this result is that, for n — 0, the
length of the Hamiltonian path joining the defects is independent of r and depends only
on the size of the underlying lattice.



Figure 6: Schematic representation of a pair of defects with magnetic charges +M for M = 3A.
This corresponds to fully packed loop configurations with two unvisited vertices, one
of each color, at given distant r from each other.

The case M = A+ 2B = by. A vortex with magnetic charge A + 2B corresponds
to two paths originating from the same black vertex (see Figure 5), and ending at the
white vertex? where we put the antivortex —A — 2B. By changing the orientation of
one of the paths, the concatenation of the two paths forms a well-oriented loop: the
vortex-antivortex correlation therefore enumerates fully packed loop configurations for
which two prescribed vertices on the honeycomb lattice at distance r from each other
belong to the same loop. For n — 0, this is always the case since the configuration is
made of a single cycle. This is consistent with the value

(1)*-1)=0. (18)

hA+QB(n = O) =

The case M = 3A. This corresponds to having a black and a white vertex at distance
r apart which are not visited by a loop. For n — 0, we then have a unique fully packed
loop visiting all vertices but two (see Figure 6). We find

1

(3)° =3 (19)
meaning that the number of configurations decays as r—3/2 at large r. Since hga < 1,
such a defect corresponds to a relevant perturbation. This agrees with the fact that the
fully packed loop fixed point (here for n = 0) is unstable with respect to the creation of
“empty” vertices: giving these vertices a finite chemical potential drifts the model toward
a new fixed point, that of the dense O(n) model, with central charge cgense(n) as in (12)
[10].

?We may also put the antivortex at a black vertex, now with magnetic charge A +2C so that the total
chargeis A+2B + A+ 2C = 0.



3. Coupling to gravity

3.1. A word on bicubic maps

The vertices of the honeycomb lattice all have degree 3. As such, the honeycomb lattice
may be viewed as the regular lattice associated with random cubic maps. However, as
opposed to the honeycomb lattice, an arbitrary cubic map is not vertex bicolorable in
general. The existence of a bicoloring of the vertices in black and white was crucial when
defining the 2D height X coding for a fully packed (oriented) loop configuration. Without
this coloring, it is not possible to distinguish between the two sides of an unvisited edge:
this forces us to set A = 0 and B = —C' accordingly, leading to a height X which is
one-dimensional only. A similar reduction of the dimension from 2 to 1 occurs on the
honeycomb lattice itself if we allow for the presence of unvisited vertices with a finite
chemical potential, as it imposes 3A = 0. The corresponding “densely packed” O(n)
model is much simpler than the FPL(n) model and corresponds to a conformal theory of
central charge cgense(n) as in (12), with g asin (10), which can be described at large scales
by standard one-dimensional CG techniques [10]. The FPL(n) model, when defined on
arbitrary random cubic maps, is therefore expected to be described by a conformal theory
of reduced central charge ¢ = cgense(n) coupled to gravity. For n = 0, this yields ¢ = —2,
a result which can directly be verified by an exact enumeration of the configurations (see
Appendix A).

To get a non-trivial FPL(n) model with the augmented central charge cgpi(n) of (11),
we therefore need to impose that the vertices of the random cubic map be bicolored,
namely that the random map be bicubic. Planar bicubic maps are dual to planar Fulerian
triangulations, i.e., maps whose all faces are triangles, colored in black and white so that
no two adjacent faces have the same color. A necessary and sufficient condition for
such a coloring to exist is that each vertex of the triangulation has even degree, which
is also the condition for the map to be drawable without lifting the pen, starting and
ending at the same vertex. This explains the denomination Eulerian. More interestingly,
Eulerian triangulations are exactly those triangulations which, when made of equilateral
triangles of fixed size (say, with all edge lengths equal to 1/v/3) can be embedded into
the plane, keeping each triangle equilateral [5]. Any such embedding corresponds to
what can be called a two-dimensional folded state of the triangulation and, in this sense,
planar Eulerian triangulations are exactly those planar triangulations which are foldable
in the plane (see Figure 7).

Consider now the FPL(2) model on random planar bicubic maps: as before, it is
equivalent to a 3-coloring of the edges of the map in colors A, B and C so that each
(trivalent) vertex is incident to edges of different colors. We can again define up to global
translation a 2D height variable X on each face of the map, according to the rules of
Figure 2, and with A, B and C as in Figure 3. Moreover, each 3-coloring corresponds
to a specific folded state of the dual Eulerian triangulation and the 2D variable X,
attached to the faces of the bicubic map, hence to the vertices of the triangulation, can
be interpreted as the (two-dimensional) position of the associated triangulation vertex
in the folded state [5], see Figure 7.

10



Figure 7: An example of bicubic map (black thick lines) with 3-colored edges and the dual
Eulerian triangulation (blue thin lines), with the topology of an octahedron (upper
right). The 3-coloring encodes a folded state of this octahedron in the plane as shown
(lower right): the 2D height X associated with the 3-coloring is nothing but the
position in the plane of the vertices of the octahedron after folding.

As in Section 2.2, we will consider configurations with magnetic defects M correspond-
ing to unvisited vertices (e.g., for M = 3A), or vertices from which several lines emerge
(e.g., for M =2A+ B or M = A+ 2B). An important difference between the random
and regular cases is that we will not impose that the vertices carrying a defect be triva-
lent. We will for instance consider univalent unvisited vertices (defect M = +A) or open
paths with univalent endpoints (defect M = £B or +C'), and more generally m-valent
defects with arbitrary positive integers m . As a consequence, the set of magnetic charges
M is no longer restricted to the lattice R but is extended to the larger set T = ZB+ZC.
Writing as before M = ¢1 A + ¢2ba, i.e. working in the (A, ba) basis, we may now take
o1 € %Z (instead of %Z), @2 € %Z with still the constraint that ¢1 + ¢9 € Z.

3.2. The KPZ relations

The continuum description of the coupling of 2D quantum gravity to critical matter
theories involves incorporating fluctuations of the underlying metric ¢, which is deformed
by a multiplicative local conformal factor %L in terms of a scalar field ¢, governed by
the Liouville action [11, 12]. For the coupling to gravity of a conformal field theory with
central charge c, the parameter 7, is fixed to the value

1
T =(c) = % (\/25 —c—+V1- C) €(0,2] for ce(—o0,1], (20)

by requiring that the (regularized) Liouville random measure d?z : emeL(@) + is confor-
mally invariant. The matter is now subject to the fluctuations of the metric, and in

11



particular matter fields acquire a multiplicative gravitational dressing of the form e®M¥L
for a suitable value of the “charge” ay;.

Correlation functions of dressed matter fields are also summed over fluctuations of
the metric, hence positions of the fields are also integrated over in the process. However,
correlators still depend on invariants of the random surfaces generated by the fluctuations
of the metric, such as the area, given by A = [ d?z\/|g| : en?L(®) : and the Einstein
action, reduced to the Euler characteristic x = ﬁ / d%m/@ R =2 — 2G by the Gauss-
Bonnet formula, where R is the scalar curvature and G is the genus of the fluctuating
surface.

In particular, the coupling of a CFT with central charge ¢ to 2D quantum gravity on
surfaces of fixed genus G and area A results in a new micro-canonical partition func-
tion behaving for large A as Zs g ~ const. pA A©=2Dx/2-1 ip terms of the “string
susceptibility exponent” v = 1 —4/~2 [2, 11, 12|, namely

1= = 55 (e~ 1- VT -~ 0)) . (21)

The parameter u = e® is related to the critical cosmological constant A, the chemical

potential for the area term in the action. Note that for planar (genus zero) surfaces, this
gives
Zag ~ const. pt AVO3 (22)

Likewise, dressed matter conformal primary fields ®, . with classical dimension (or
conformal weight) h acquire a gravitational anomalous dimension [2]

Vit dh—Ji—c
V25 —c—+1—c

such that non-trivial gravitational p-point correlators on random surfaces (of fixed genus)
obey the KPZ scaling:

A(h,c) = , (23)

<H Dy, o) a ~ const. Axil{l=Aia)} (24)

7

To make contact with our combinatorial problem, we wish to evaluate the large N
scaling behavior of various loop models on random planar (bi)cubic maps with 2NV ver-
tices. We therefore set G = 0. We interpret 2N = A as a measure of the area (i.e., total
number of triangles) of the corresponding discretized dual (triangulated) random surface.
In the case of Hamiltonian cycles (see Figure 1), our object of interest has a marked root
edge (or vertex) where we open the loop. The choices of this marking correspond to an
overall factor of 2N = A and we expect therefore a scaling behavior for the partition
function of rooted Hamiltonian cycles of the form zy = A Z4 ~ const. w A)=2 Ag
indicated above, the bicubic nature of the graph ensures that the flat space matter de-
grees of freedom (the colors A, B, C) still describe the gravitational version of the model,
which keeps the same central charge c in (21), with ¢ = ¢gi(n) as in (11). For n = 0,
we have seen that cg(0) = —1 and we recover the asymptotics (1) with the exponent

7 =7(-1) given by (2).

12



In the following we will compute a number of 2 or 3-point correlators in the discrete
model and estimate numerically the corresponding scaling behavior (i.e., both the val-
ues of p and of the configuration exponents), which we will compare to the theoretical
prediction (24), easily rewritten in the present case as

Zao ([ ®nicha ~ const. pt AZill=aeir(e)=3 (25)

1

As an illustration of the method, we describe in detail in Appendix A the exact compu-
tation of the scaling behavior of Hamiltonian cycles on cubic (not necessarily bicolorable)
maps, and check the agreement with KPZ scaling at ¢ = ¢gense(0) = —2.

3.3. Scaling limits

It is widely believed that the scaling limit of the critical O(n) model in two dimensions is
described by the celebrated Schramm-Loewner evolution SLE,; [13]|, and, more precisely,
its collection of critical loops by the so-called conformal loop ensemble CLE, [14]. This
conformally invariant random process depends on a single parameter £ > 0, which in
the O(n) model case is Kk = 4/g, with n = —2cos(7g), and g € [1/2,1), kK € (4,8]
for the dense critical phase, and g € [1,3/2], k € [8/3,4] for the dilute critical phase
[14, 15, 16, 17]. (We restrict ourselves here to n > 0, thus x € [8/3,8], the range for
which CLE,, is defined.) SLE, paths, which are always non self-crossing, are simple, i.e.,
non-intersecting when s € [8/3,4], and non-simple when x € (4, 8] [18]. The associated
SLE, central charge is then

¢ = culk) = (6~ 1) (6 - f) e[-2,1] for ke 3/3,8 . (26)
This scaling limit has been rigorously established in several cases: the contour lines of
the discrete Gaussian free field, for which n = 2, g = 1, k = 4 [19]; critical site percolation
on the honeycomb lattice [20], for which n = 1,9 = 2/3, k = 6; the critical Ising model
and its associated Fortuin-Kasteleyn random cluster model on the square lattice [21, 22]
for which, respectively, n = 1,9 = 4/3,x = 3 and n = /2,9 = 3/4,x = 16/3.

The fully-packed FPL(n) model stays in the same universality class as the correspond-
ing dense O(n) model, even though its central charge is shifted by one unit as in (11)
(12). One reason is that the so-called watermelon exponents for an even number of paths
are the same in FPL(n) and O(n) models [6, 7, 8|, and in particular the 2-leg exponent
which gives the Hausdorff dimension of the paths. One is thus led to conjecture that the
scaling limit of the fully-packed FPL(n) model on the honeycomb lattice is described by
space-filling SLE,, 23], with x corresponding to the dense O(n) model phase,

4

= wrecos(=n73) € (4,8] for nel0,2). (27)

In the FPL(n = 0) case, one has g = 1/2,k = 8, so its scaling limit should be given by
SLEg (or CLEg), which is a Peano curve, that is space-filling.

13



Random planar maps, as weighted by the partition functions of critical statistical
models, are widely believed to have for scaling limits Liouville quantum gravity (LQG)
coupled to the CF'T describing these models, or, equivalently, to the corresponding SLE
processes. Let us now recall two distinct results associated with the KPZ perspective [2].

The first KPZ relation (23) can be rewritten with the help of the Liouville parameter
(20) as the simple quadratic formula,

h(A) = VEA? + (1 - Zf) A (28)

Its rigorous proof [24, 25, 26, 27| rests on the sole assumption that the Liouville field
¢r and (any) random fractal curve (possibly described by a CFT) are independently
sampled.

The second KPZ result (21) for y(c) 2], or equivalently (20) for v, (c), gives the precise
coupling between the LQG and CFT or SLE parameters. By substituting the SLE central
charge ¢ = cqe(k) of (26), one indeed obtains the simple expressions

v=1—sup{d/k,r/4}, = inf{\/k,/16/K} . (29)

This has been rigorously established in the probabilistic approach by coupling the Gaus-
sian free field in Liouville quantum gravity with SLE martingales |28, 29]|. In the scaling
limit, random cluster models on random planar maps can then be shown to converge (in
the so-called peanosphere topology of the mating of trees perspective) to LQG-SLE [30].

This matching property (29) of ~, v, and x applies to the scaling limit of the critical,
dense or dilute, O(n) model on a random planar map, as well as to the fully-packed
FPL(n) model on random cubic maps. However, on bicubic maps, the correspondence
(29) no longer holds, and one then has a mismatch [31], with ¢ = ¢ge(k) of (26) replaced
in (20), (21) and (23) by ¢ = cg1(n) = 1 + cse(k), with s still given by (27). Note that
the constraint ¢ < 1 in the KPZ relations restricts the loop fugacity of the FPL(n) model
on a bicubic map to the range n € [0,1] with x € [6, 8], while the complementary range
n € (1,2) with k € (4,6) is likely to correspond to random tree statistics.

A coupling between LQG and space-filling SLE with such mismatched parameters has
yet to be described rigorously. We can simply predict here that for n € [0, 1] the scaling
limit of the FPL(n) model on a bicubic planar map will be given by space-filling SLE,,,
with k € [6,8] as in (27), on a 4.-LQG sphere with Liouville parameter

vL=¢11»2<\/3<m+f>+22—\/3<n+15)—26> , (30)

in agreement with conjectures proposed in [31].
For the FPL(n = 0) model in the bicubic case, we have ~;, = % (\/ 13 — 1), as opposed

to v, = v/2 in the cubic case, whereas for the bicubic FPL(n = 1) model, to which the
next section is devoted, we have 7, = 2, instead of v, = 1/8/3 in the cubic case.
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type (i type (ii)

S

2 cos(mA)

Figure 8: The two types of vertex environments for the 6V model on a tetravalent map and the
corresponding weights.

Figure 9: In a bicubic map endowed with an unoriented fully packed loop configuration, we
consider the pairs of black and white vertices linked by an unvisited edge (a). After
orienting all incident edges away from the white vertex and towards the black one
(b), we squeeze the unvisited edge so as to produce a tetravalent vertex of type (i)
as shown in (c¢). Doing that for all pairs leads to a 6V configuration on a tetravalent
map, where all the vertices are of type (i). The construction is clearly reversible. The
6V configuration may itself be transformed into a particular oriented fully packed loop
configuration on the tetravalent map by untying the type (i) vertices as shown in (d).

4. Exponents for the FPL(1) model on bicubic maps

As we shall now see, a direct test of the KPZ formulas for the FPL(n) model on bicubic
maps can be performed in the case n = 1, whose central charge, given by (11) with
g =2/3, is equal to ¢ = ¢g1(1) = 1. Indeed, as shown in [32], the FPL(1) model defined
on planar bicubic maps is equivalent to a particular instance of the 6-vertex (6V) model
on tetravalent planar maps.

We recall that the 6V model on tetravalent planar maps consists in orienting each edge
of the map by an arrow, with the so-called ice rule that each vertex of the map is incident
to exactly two (half-) edges carrying an incoming arrow and two (half-) edges carrying an
outgoing arrow, see Figure 8. On a random tetravalent lattice, we may then distinguish
between two vertex environments: for type (i) vertices, the two incoming arrows follow
each other when turning around the vertex while for type (ii) vertices, they are separated
by one outgoing arrow (see Figure 8). Given some fixed A € [0,1] we attach a weight
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Figure 10: Schematic picture of the topology of oriented 6V loops in a watermelon configuration.
We have here ¢ = 4 paths, one of which is distinguished (white arrow).

2 cos(mA) to type (ii) vertices and 1 to type (i). In particular, for A = , the configurations
of arrows with a non-zero weight are those where all the vertices are of type (i). These
latter configurations are in bijection with those of the FPL(1) model on bicubic maps
through the following correspondence: recall that n = 1 corresponds to the case of fully
packed unoriented loops without any attached weight. For any such configuration, let us
orient each edge of the underlying bicubic map from its white extremity to its black one.
Note that this orientation is a property of the bicubic map only and is independent of its
loop content. Now we may squeeze each unvisited edge by collapsing its two (black and
white) extremities into a single, uncolored vertex of degree 4 (see Figure 9). By doing so,
we build a tetravalent map with oriented edges (corresponding to all the edges originally
visited by the loops) and such that each vertex is of type (i). The correspondence is
one-to-one since we can put back the unvisited edge by splitting each type (i) vertex into
a black and a white connected vertex by pulling the two incident incoming edges on one
side (defining the black vertex) and the two incident outgoing edges on the other side
(defining the white vertex), and finally remove all the arrows.

The 6V model on tetravalent planar maps with an arbitrary A € [0, 1] was studied
in detail by random matrix techniques [33, 34| where, as expected, it was shown to
correspond to a ¢ = 1 CFT coupled to gravity. The arrow configurations of the 6V
model may themselves be transformed into fully packed oriented loop configurations on
the underlying tetravalent maps by “untying” the vertices (see Figure 9-(d) in the case
of a type (i) vertex). Note that these oriented loops are different from the (unoriented)
loops of the associated FPL(1) model (these latter loops would correspond instead to
paths along which 6V arrow orientations alternate). In the 6V loop language, one may
then consider the watermelon configurations, with two defects: a source from which £
oriented lines emerge and a sink at which they all end, see Figure 10. The corresponding
configuration exponent A, was computed exactly with the result |34, Eq. (4.26) with
A=1/2|

l

A=z (31)

Let us now try to recover this result from the general KPZ formulas (21) and (25)
in the original FPL(1) language. In this language, the source (respectively sink) defects
corresponds to an unvisited black (respectively white) vertex as shown in Figure 11. More
precisely, for even ¢, the unvisited black vertex has degree £/2 and thus corresponds to a
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¢ even ¢ odd

Figure 11: Correspondence between a source of ¢ lines in the 6V model and an unvisited black
vertex of degree [£] in the FPL(1) model. The associated magnetic charge M

accounting for the 2D height defect is equal to %A for even ¢ and to %A — B for
odd ¢.

defect with magnetic charge M = %A. For odd ¢, the unvisited black vertex is connected
to (¢ — 1)/2 regular white trivalent vertices and to a final white bivalent vertex so that
the total magnetic charge of the defect is now M = Z_TlA - B= gA — %bz. Forn =1
(9 = %), Equation (15) becomes

arln = 1) = 16+ £ 1= G00) (B 1) (32)

In particular, we get

AN
th(nzl):<2> = for ¢ even ,

10\ 1 1\ 1 2

hence a result hy = %, independently of the parity of /.

For ¢ = 1, the KPZ relation (23) simplifies into A(h,1) = v/h. Applying this relation
leads us to predict a configuration exponent for the watermelon configuration equal to:

(33)

.
6v2

This value disagrees with the exact value (31), meaning that the direct application of
the KPZ formula does not yield the correct result.

There is however a simple procedure allowing us to cure the observed discrepancy: let
us define

A(hg,1) = (34)

Bt = a0l + (1= 050) (8- (1-97")")  for M=¢1A+¢sby, (35)

which mimics the expression (15) for hps by introducing an extra normalization factor
a in front of the first term (i.e., that depending on the component ¢; in the direction
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A) with no modification of the second term (i.e., that depending on the component ¢
in the direction bz). We observe immediately that

N / 2 62
h(gf)‘(n =1)= % <2> = 0;72 for ¢ even ,
2

h(a) =1) = o[t — —— - — = — for ¢ odd
gA—%bz(” ) 18 <2> 5 (( 2> 4> 72 orr et

leading again to the same value héa) = ‘é—l; for both parities. In particular, choosing

a = 9/8 leads to

(36)

ABSS 1y =/l = g =A,. (37)

Otherwise stated, the KPZ relation leads to the correct result provided that we change
the exponent hps into the modified exponent hg\o/}) with a = 9/8, where the modification
hae — hg\a/‘[) affects only the part of hps depending on the component of M along A in
the (A, bz) basis, with no modification of the part of hps depending on the component
of M along bs. In other words, the compactification radius of the ¢; component must
be renormalized multiplicatively.

This new recipe might seem ad hoc but let us make a few comments about it. In the
action (9), we decided to attach the same “stiffness” g to both directions 11 and 19 of
the field ¥ (the 1/3 factor is only there to correct the fact that A and b have different
norms). This isotropic choice is natural for n = 2, which describes the pure 3-coloring
problem where all colors play the same role but one might question its validity for n < 2.
A crucial step which led to the expression (14), or equivalently (15) for the dimension
hnr was then the ability to determine the value (10) for this isotropic stiffness g. As
discussed in [8], one way to fix this value is to demand that the “electric” operator with
smallest charge in the action (9) (the : ™2 : term) be marginal. Strictly speaking
however, since this criterion involves only the second coordinate s, it only fixes the
stiffness in the 1o direction, leaving that in the ¢ direction to some undetermined value
¢ since, as already mentioned, the two directions 11 and 15 are totally independent. On
the honeycomb lattice, it seems that ¢’ = g is the correct choice since the values hy; (15)
obtained by [8] match with those obtained by Bethe Ansatz methods [7]. It may however
occur that, when coupled to gravity, the effective stiffness ¢’ takes a different value with
a ratio @ := ¢'/g # 1 due to metric fluctuations. If so, this would precisely modify hps
into hg\c/y[) within the KPZ formula. Verifying this hypothesis would require to be able to
couple the CG formalism to the fluctuating Liouville field ¢, within a unified quantum
field theory for the three fields 11, ¥9 and ¢, and to repeat the KPZ arguments in this
formalism. Still, we present in Section 7 a tentative interpretation of the selected value
a=9/8 forn=1.
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5. Numerics for n =0

5.1. Enumeration methods

We wish to perform the exact enumeration of Hamiltonian path configurations on planar
bicubic maps with a finite number 2V of vertices and with possible magnetic defects. To
this end, we use the arch representation displayed in Figure 1 or suitable modifications
thereof to account for the desired defects. In all cases, the Hamiltonian path is deformed
into a straight line with alternating black and white vertices and we must complete it
with non-crossing arches above or below the line connecting vertices of distinct colors.
We used two different “orthogonal” enumeration approaches which we describe now.

The transfer matrix method The first approach is a transfer matrix method where we
build the arch configurations from left to right along the straight line of alternating black
and white vertices. A configuration is described by the sequence of colors of those arches
which have been open but not yet closed: each arch inherits the color of the vertex it
originates from, see Figure 12. We read the upper arch sequence from bottom to top and,
if it is made of p arches with colors ai,...,ap, (with a; = 1 for black and 0 for white),
we code it via the integer n, = 2P + Y 7, a;20~1  Similarly, the lower arch sequence
read from top to bottom gives a positive integer ng, so that the intermediate state may
be written as |n,,ng). In this setting, the empty configuration corresponds to the state
|1,1) and the number of configuration zy may be written as

2y = (1, 1|(T5T)N|1,1) (38)
with the two elementary transfer matrices Ty and T, defined via

ro
(nuv nd|T0|nw nd) = 5RL12nu+15n;l,nd + 5n§“nu5n£l,2nd+1 + 571;,"7“571&,71(1 + 6n;,nu5

nq
g2

/7
d’

o _
(nu, nd|To|nm nd) = 5ng,2nu5n:j,nd + 5n&,nu 5nfi,2nd + 5”{“"“7715":1’”‘1 + 5n§l,nu 571:17”42*1 .

(39)

This expression allows us to enumerate zy up to N = 28 (see Table 2) and this approach
can be adapted to situations with (magnetic) defects.

The up-down factorization method This second approach is closer in spirit to that of
[1] and is based on a two-step construction process of Hamiltonian cycles, see Figure 13.
The first step consists in assigning an up or down orientation to each of the 2N vertices
drawn along the straight line. The second step consists in connecting all the up (resp.
down) vertices by bicolored (i.e., with endpoints of different colors) arches drawn above
(resp. below) the infinite line. The interest of the method is the following: once the
vertex orientations have been fixed, the system of “up” arches and that of “down” arches
are totally independent and the counting of Hamiltonian cycles is therefore entirely fac-
torized. Moreover, the method is very flexible and it is more easily adaptable to the case
with defects than its transfer matrix counterpart.
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Figure 12: Tllustration of the transfer matrix method. The arch configuration is built from left
to right: each intermediate state (here along a blue dashed line) is coded by two
positive integers n, and ng. The passage from one intermediate state to the next
corresponds to the action of Ty, (as shown here) or T, alternatively along the line.

More precisely, the 2N vertices are numbered by integers v from 1 to 2N according
to their position along the straight line, say from left to right. The color col(v) of the
vertex v is nothing but its parity col(v) = v mod 2 (with the convention that col = 0 for
white and col = 1 for black), see Figure 13.

In order to fix the up or down orientations of the 2N vertices, we split the sequence
(1,2,...,2N) into two increasing subsequences V,,;, and Vjoyn. We then read along the
line the colors of the up vertices Cy), = Col(V,,;,) (with, formally, Col the operator acting
on a sequence V = (v;); and returning the sequence C' = Col(V') := (col(v;));) and do
the same for Cyppn = Col(Viown). The number of bicolored arch systems compatible
with the choice of orientation (Vip, Viown) is factorized into a(Cyp)a(Caown) where a(C')
is defined as the number of bicolored arch systems on one side of the line (up and down
are clearly equivalent) compatible with the color sequence C' (see Figure 13).

To get the total number of Hamiltonian cycles zp, we have to sum over all possible
partitions (Vip, Vaown ), hence:

an = a(Col(Vip))a(Col(Vioun)) - (40)

Vap
Non-zero contributions to this sum correspond to admissible sequences V,,, with equal
numbers of black and white vertices, which automatically implies the same property for

Vdoum'
Denote by k the number of (white/black) vertex pairs in V,,,. As we have to choose

k black vertices among N and k white vertices among N, the number of admissible

partitions to deal with is
EN: < )2 (2 > & (41)
— k N VTN

The computer time therefore increases exponentially with N, which in practice rapidly
limits the accessible values of V. One may try to accelerate the program, for instance by
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Figure 13: Ilustration of the up-down factorization method, here for 2N = 10 vertices. We
first split the vertex sequence into complementary sequences V,,, = (2,3,5,6,8,9)
of up-oriented vertices and Vyoun = (1,4,7,10), with associated color sequences
Cup = (0,1,1,0,0,1) and Cgouwn = (1,0,1,0). There are a(C,p) = 2 configurations
of unisided bicolored arches as shown. We also have a(Cyown) = 2 so that there are
2 x 2 = 4 arch systems compatible with this choice of vertex orientations.

using a “memoization technique” which consists in storing the values of a(C') whenever
we encounter the sequence C' for the first time so that we do not have to compute it again
at a later occurrence of C. But we are then limited by memory size, since the method
requires the storage of O(4") correspondences (C, a(C)).

5.2. Enumeration results

Let us describe the various configuration ensembles that we have enumerated. In all
the definitions below, it is understood that an arch always connects a black and a white
vertex and that the straight line is implicitly oriented from left to right.

Hamiltonian cycles Our first combinatorial quantity is the number zy of Hamiltonian
cycles on planar bicubic maps, as defined earlier, with 2N vertices and with an extra
marked visited (root) edge. In the arch language, we may write pictorially

oy = (42)

with an infinite line carrying 2N alternating black and white vertices, and with a total
of N non-crossing arches. We have obtained the first values of z independently by the
transfer matrix and by the up-down factorization methods, allowing for a cross-check of
the results. We find:

(2n)N>1 = (2,8,40,228,1424, .. ) . (43)
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The complete list up to NV = 28 is given in Table 2 of Appendix B. It confirms and extends
the results of [1] (limited to N < 20), see also the sequence A116456 in OEIS [35].

Hamiltonian open paths with trivalent endpoints The second quantity that we con-
sidered is the number yy of Hamiltonian open paths on planar bicubic maps with 2/N +2
vertices (in particular, the endpoints of the path are trivalent). As already seen in the
regular lattice case, the endpoints of the path correspond to defects with opposite mag-
netic charges =M, with M =2A+ B = %A + %bz. In the arch language, we may write
pictorially

(44)

with a now a line segment of 2N + 2 alternating black and white vertices and a total
of N + 2 non-crossing arches. In the planar representation of the map, we fixed as
external face that containing the corner between the two unvisited edges at the black
endpoint (marked here by a dashed segment — this de facto allows us to extend the line
segment into an infinite half-line). The arches are now allowed to wind around the line
segment by passing to the right of the white endpoint. We obtained the first values of
yn independently by the transfer matrix and by the up-down factorization methods:

(yn)ns0 = (1,6,40,286,2152, ...) . (45)

The complete list up to NV = 16 is given in Table 3 of Appendix B.

Hamiltonian open paths with univalent endpoints The third quantity of interest is
the number xzn of Hamiltonian open paths on planar bicolored maps with 2N trivalent
vertices and 2 univalent ones. There the path necessarily starts and ends at the two
univalent vertices which moreover correspond to defects with opposite magnetic charges
+M with now M = B = —%A + %bz. In the arch language, we have pictorially

with a line segment of 2N 4 2 alternating black and white vertices and a total of N
non-crossing arches connecting all vertices except the two extremal ones. In the planar
representation of the map, we took as external face that containing the corner at the
univalent black vertex so that the arches are allowed to wind around the line segment
by passing to the right of the white univalent vertex. We obtained the first values of x
independently by the transfer matrix and by the up-down factorization methods:

(zn)ns0 = (1,4,24,168,1280, ...) . (47)

The complete list up to NV = 17 is given in Table 4 of Appendix B.
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The following ensembles correspond to “vacancy defects”, i.e. configurations having
two or three unvisited vertices.

Hamiltonian cycles with two unvisited univalent vertices The fourth quantity which
we studied is the number 2wy of cycles on planar bicolored maps with 2N trivalent
vertices and 2 univalent ones, such that the cycle visits all the trivalent vertices but,
since it is a cycle, cannot visit the univalent ones (which are then necessarily of different
colors). This situation corresponds to having two defects with opposite magnetic charges
+M with M = A. In the arch language, we have pictorially

(48)

with an infinite line carrying 2N alternating white and black vertices, a black univalent
vertex grafted above the first (white) vertex of the line and a white univalent vertex
grafted above or below one of the black vertices of the line. The configuration now has
a total of NV — 1 non-crossing arches. In the planar representation of the map, we took
as external face that containing the corner at the univalent black vertex. The factor
% is because we factored out the trivial symmetry consisting in flipping up or down
the univalent white vertex. The first values of wy were obtained independently by the

transfer matrix method and by the up-down factorization method, with result:
(wn)n>1 = (1,4,22,140,972,...) . (49)

The complete list up to IV = 18 is given in Table 5 of Appendix B.

Hamiltonian cycles with two unvisited bivalent vertices Our fifth quantity is the
number vy of cycles on planar bicolored maps with 2N trivalent vertices and 2 bivalent
ones (which are then necessarily of different colors), where we require that the cycle visits
all the trivalent vertices but not the bivalent ones. This situation corresponds to having
two defects with opposite magnetic charges +M with M = 2A. In the arch language,
we have pictorially

with an infinite line carrying 2N alternating white and black vertices, a black bivalent
vertex linked (from above) to two (white) vertices of the line among which we choose
the first white vertex along the line, and a white bivalent vertex linked to two black
vertices of the line. The configuration has N — 2 additional non-crossing arches. The
two edges incident to the bivalent black vertex are distinguished as e; and ey and, in
the planar representation of the map, we take as external face that containing the corner
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between edges e; and es clockwise. The first values of vy were obtained by the up-down
factorization method, with result:

(vn)n=2 = (1,10,84,682,5534, . ..) . (51)

The complete list up to IV = 21 is given in Table 6 of Appendix B.

Hamiltonian cycles with two univalent one bivalent unvisited vertices The last quan-
tity which we considered is the number 4uy of cycles on planar bicolored maps with 2V
trivalent vertices, 1 bivalent black one and 2 univalent white ones, such that the cycle
visits all the trivalent vertices but not the bivalent or univalent ones. This situation
corresponds to having three defects with respective magnetic charges 24, —A and —A.
In the arch language, we have pictorially

(52)

with an infinite line carrying 2N alternating white and black vertices, a black bivalent
vertex linked (from above) to two (white) vertices of the line among which we choose the
first white vertex along the line, and two white univalent vertices grafted to black vertices
along the line. The configuration has N — 2 additional non-crossing arches. Again, the
two edges incident to the bivalent black vertex are distinguished as e; and e and, in
the planar representation of the map, we take as external face that containing the corner
between edges e; and es clockwise. The factor i is because we factored out the trivial
symmetry consisting in flipping up or down the univalent white vertices. The first values
of uy were obtained by the up-down factorization method, with result:

(un)ns2 = (1,10,90,798,7094, . ..) . (53)

The complete list up to NV = 17 is given in Table 7 of Appendix B.

5.3. Exponential growth rate

All the quantities ty = zn, YN, TN, WN, VN, uy Which we introduced so far are expected
to have the asymptotic behavior

2N

tn ~ const.
with the same exponential growth rate p and sub-leading corrections characterized by
an exponent B specific to each quantity and whose value should be predicted from the
KPZ formulas. In order to evaluate p and (;, we construct from the sequence ty the
following two sequences

t tNat
ay = -1 by = N?Log f 2 (55)
tn (tn41)
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which are such that

2
b .
an Njoo ue, N Njoo Bt (56)

To improve our estimates, we have recourse to two series acceleration methods, used for
accelerating the rate of convergence of our sequences above. Both are expressed via the
iterated finite difference operators A*, k € N*, defined by

(Af)N = fny1— fn s

(57)
(A*f)n == (AAf))N = fns2 = 2fNp + /v s -
The first method considers the sequences
%) = % (aka®)  with 6 = Nray (58)

and similarly defined sequences b*). The convergence of these sequences to u? and f3; is
faster for increasing k even though, in practice, since we know ty for the first values of
N only, we cannot go to k larger that 7 or so.

The second method is the so-called Aitken-A? method which considers sequences de-
fined recursively via

gl .— gk=1 _ k+1 (Aa(kil))N (Aa(kil))N—l
N N k (A%(k*l))N 1

with @'y = ay (59)

and similarly defined sequences b*). Again, the convergence of these sequences is faster
for increasing k (in practice we use k = 1,2 and 3).

Estimate of p from the sequence zpx. Figure 14 shows our estimates for u? obtained
from our data zy for the numbers of Hamiltonian cycles. More precisely, it displays the
sequences a®) for k = 3,5,7 and a® for k = 1,2,3 using the sequence ay = zy41/2N
as original input. We estimate from these data

p? =10.113 4+ 0.001 , (60)

so that Log(u?) = 2.3138 £ 0.0001, in agreement with [1].

Estimate of p from other observables. We then compared this value of p with that
obtained from the other sequences yy,xn,...,uy corresponding to the enumerations
of the various Hamiltonian path configurations with defects introduced in the previous
section. Figure 15 shows the values of ;1% obtained from the sequences @) (t) obtained via
(58) for ay = tyy1/ty with ty = yn, TN, ..., uny and compare them with that obtained
previously for txy = zn. As expected, all estimates converge to the same value of p,
which is a non-trivial test of the consistency of our data for the various sequences.
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Figure 14: Estimate of p? from the sequences a®) for k = 3,5,7 and the sequences a'®) for
k =1,2,3 as defined via (58) and (59) with ay = zn+1/2N-
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Figure 15: Estimate of z? from the sequences @ () as defined via (58) for ay = tx1/tx and

tN = ZN, YN, -+, UN-

5.4. Exponents

Let us now present our numerical estimates for the various exponents 3., 8y, Bz, Buw, Bv
and (3, as defined by (54) with tx = zn, yn, TN, wn, vy and uy respectively. Figure 16
shows for instance the estimate 8, = 1.90 & 0.01 deduced from the sequences b®) for
k=4,5,6 and b%) for k = 2,3 with by = N? Log(yntoyn/(yn+1)?) as input. Repeating
this analysis with our numerical data for the various sequences leads to

B, =277+001, B,=190+£001, B,=119+0.01,

61
Bw =1.99+£0.01 , By =2.38£0.03 , By =1.321+0.02 . (61)
Here the announced values correspond to the stable digits in (l;(k)) N for the largest
accessible value of N,ngx at a given k, i.e., those digits which do not vary when going
from N,%x —1to Nr(fgx nor by increasing k by 1. This implicitly assumes that we have
already reached the asymptotic regime for N ~ Nr(rﬁ;x From our data, this condition is

not satisfied for [, and its value announced above is probably slightly underestimated.
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Figure 16: Estimate of 3, from the sequences b*) for k = 4,5,6 and the sequences b*) for
k= 2, 3 with bN = N2 Log(yN+2yN/(yN+1)2).

We will come back to this point in the next section. As for the indicated error ranges,
they are estimated from the observed amplitude for the variation of the first digit which
is not yet stabilized.

6. Comparison with KPZ predictions

We now wish to compare the numerical exponents above to their values predicted by the
KPZ equivalence. Since we expect that ¢ = cg(0) = —1 for n = 0 (g = 3), we have,

from (21), the exponent

1+V13
6

vi=7(-1) = = —0.76759. .. (62)

and, from (23), the gravitational anomalous dimensions

VvV14+12hpr — 1

Aa = Bl =TT (63)
with, from (15) at n =0 (g = %)’
1 1
hat = 5107+ g (1= 06,0) (¢5—1)  for M =¢1A+ ¢obs . (64)

From the general formulas (22) and (25) and the identity h_ps = hpg, hence A_pp =
Apg, we may write

B.=2-7, By=1+208sp014, =75  Ba=1428 14,15, =7,

65
Pw=14+20a—7, Bo=1+2004—7, Bu=2024+204 —7. (%)

As in [1], our estimated value 8, = 2.77 £ 0.01 above is in perfect agreement with the
announced value 2 — vy = 2.76759 ... and we thus confirm the prediction (2) of [1].
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Before going to the precise values of the other exponents, we note that we have from
(65) the consistency relation

2/3u_5v:2/8w+7_3' (66)

Assuming now that 7 is indeed determined by (62), this relation provides a cross check
between, on the one hand, our numerical estimates for 8, and 3, and, on the other
hand, the estimate for 23, — 3, inherited from the estimate (61) for 3,. As displayed
in Figure 17, these three estimates are indeed consistent with each other. As mentioned
above, we are however not fully confident with our estimated range of 3,. The relation
(66) may then be used to determine the value of 3, from those of 3, and (. If we do
S0, this leads us to reevaluate the estimate for 8, as 8, = 2.42 £ 0.06, see Figure 17.

2.42 +0.06
——
/7’“ 3 N ﬁu
1
151 \ 1
1 1
1 1
14+ | !
1 1
1.34
s : () _ 39
o
12}
. . . L .
2.2 2. 26 2.8 3.0 51r
(i)
1.0F
i) —
™
I

Figure 17: Consistency between the estimated value of 3, (domain (i) between the two vertical
blue lines), that of 5, (domain (ii) between the two horizontal red lines) and that of
the combination 28, — 8, (domain (iii) between the two diagonal lines) as obtained
from the relation (66) and the estimated range (61) for 8,. The three domains
do indeed share a common sector in the (f,,3,) plane. In the absence of a direct
estimate (i) for 8,, we would predict from the intersection of domains (ii) and (iii)
only a somewhat larger domain 3, = 2.42+0.06 (dashed brown lines). The o symbol
indicates the prediction of the naive KPZ formulas while the x symbol indicates that
of the (4/3)-corrected KPZ formulas, see text.

Let us now come to the prediction for the exponents 3, [3;,... 5, themselves. As
displayed in Table 1, we find without any doubt that the “naive” prediction (63)-(65)
above does not match with our numerical results. However, a reasonable agreement may
again be recovered if, as done in Section 4 for n = 1, we perform a modification of Aps
into

" 141208 —1

with hg\c/f,) defined as in (35), now for n = 0, that is

o 1
hgw) _ %(ﬁ + 3 (1= py0) (¢35 — 1) for M = ¢1 A+ ¢2b2 (68)
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numerics naive KPZ (o =1) (4/3)-corrected KPZ
B | 2774001 | ¢ (134+13) =2.76759... | § (13 + V13) =2.76759. ..
By | 1.90+£0.01 | (74 V13) = 1.76759. .. 1+% — 1.90008. ..
B, | 1.19+0.01 1 1+ﬁ = 1.15668. . .
Bw | 1994001 | 1+ \/%6_1 —1.94010... | 1+ 3(%@1) — 1.99096.. ..
By | 2.3840.03% | 1+ f%i —2.32051... | 1+ ?)(QT\/?EU = 2.46983. ..
By | 1.324£0.02 % = 1.22106. .. % = 1.34207. ..

Table 1: Comparison of the numerical estimates for the various configuration exponents and

their values predicted by the naive and by the (4/3)-corrected KPZ formulas.
*) As explained in the text and in Figure 17, a more reliable estimate is 3, = 2.42+0.06.

and for a suitable choice of a. Figure 18 displays the value of the “a-corrected” KPZ
prediction for the various exponents for a varying value of « between 1 and 2. We see
that, while the value & = 1 (naive KPZ prediction) is clearly ruled out, a reasonable
agreement may be obtained if we take o ~ 4/3. The “(4/3)-corrected” KPZ predictions
are listed in Table 1 for a direct comparison with numerics.

B

30

revised
range

Figure 18: Comparison between the numerical estimates (dashed horizontal lines) of the various

exponents and their “a-corrected” KPZ prediction (continuous lines) for « between 1
and 2. For 3,, we indicated in brown the revised extended range found in Figure 17.
A reasonable matching is obtained for o ~ 4/3.
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7. Discussion

We have seen at the end of Section 4 that for the FPL(1) model, the presence of a

normalization factor a = 9/8 proved necessary in the Coulomb gas formula (35) for hg\o/}),
in order to recover from the (inverse) KPZ formula the quantum gravity exponents Ay of
[34] given by (37). Similarly, the numerical study of Sections 5 and 6 showed that various
numerical critical exponents associated with FPL(0) on random bicubic maps could be
consistently obtained by KPZ via the introduction of a similar factor o ~ 4/3 in (35).
We shall here try to give a possible meaning to these observed values.

We may rewrite (35) as

/
h{) = %qﬁ + % (1= 3py0) <¢§ —(1- 971)2> for M =¢1A+¢aba, (69)

by distinguishing two coupling constants,

1 n
' C—ep =~ (-2) . 70
g ag, g e = —arccos (—5 (70)
This corresponds to decoupling the scales of the two fields ¢ and 12 in the Coulomb
gas action (9), and replacing there the Gaussian term by %g’ (V1)? + g(Vipe)2. Tt is

noteworthy that the Ansatz,
1

o= ——-F
5
1 —ej

(71)
reproduces o = 9/8 for n = 1 and o = 4/3 for n = 0. In turn, it yields the coupling
constant of the ¥ Gaussian free field,

, 1

g ::l—i-e() '

(72)

To the constrained FPL(n) model on the honeycomb lattice corresponds an unconstrained
O(n) model [6, 7, 8], whose (stable) dense critical phase has the same CG coupling
constant g = 1 — eg, with 1/2 < g <1 for n = —2cos(ng) € [0,2], and a central charge

c(g):=1-— GM , (73)

g
such that —2 < ¢(g) < 1, see Figure 19. The associated (unstable) dilute critical phase
of the same O(n) model has coupling constant § := 14+¢eyp =2—g, with 1 < g < 3/2 [10],
such that n = —2cos(7g), but with a different central charge, ¢(§) = 1 — 6(1 — §)?/3,
such that 0 < ¢(g) < 1.
The coupling contant ¢’ of Equation (72) then appears to be the dual value of g,

1
=54

!/

g = (74)

Qi =

Because of its range, 2/3 < ¢’ < 1, this CG coupling constant ¢’ corresponds to the
dense phase of another O(n') model, such that n’ = —2cos(7g’), but with the same
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central charge as that of the dilute critical O(n) model since, as easily checked, we have
c(g') = ¢(g). The geometrical interpretation of this duality is as follows [36, 15, 16]. In
the scaling limit, the loops of the dense O(n’) model are non-simple random paths of
Hausdorff dimension D’ = 1 + (2¢')~! [10]; their external perimeters are simple critical
lines of the dilute critical O(n) model, of Hausdorff dimension D = 1+ (2§)~!. These
Hausdorff dimensions thus satisfy the (super-)universal duality relation (D’ —1)(D—1) =
1/4 136], which can be directly obtained in the case of critical percolation [37].

n=—2cos(mg)=—2cos(mg n'=—2cos(ng’)

1+c(g) c(g) c(g) = c(g')

fully packed dense dilute ‘\mliml—/' dense

Figure 19: Tlustration of the different loop models on the honeycomb lattice and their connec-

tions. Wehavelgggl,lggggandggg’gl. FornzO,wehavegzé

3 2 8 2

(k=8),9=35 (kF=73)), 9 =3 (v =6), hence n’ = 1. For n = 1, we have g = %
(k=6),=135(k=23) g =3 (v =16/3), hence n/ = V2. Top line from left
to right, (n = 0,n’ = 1) case: Hamiltonian walk, dense walk, SAW, SAW as the
external perimeter of a percolation cluster.

This Coulomb gas g <> 1/g “electro-magnetic” duality directly leads to the xk <> 16/k
duality of Schramm-Loewner evolution SLE, [36, 15, 16]. The CG coupling constant
spans the range g € [1/2,3/2] for the (dense and dilute) critical O(n) model (for n > 0),
and the SLE parameter the range k = 4/g € [8/3, 8] for its scaling limit, the conformal
loop ensemble CLE,. When k € (4, 8], SLE,; paths are non-simple [18], and their outer
boundaries have been proven to be dual simple SLE;¢/,, paths, with 16/x € [2,4) [38, 39].

To the fully-packed FPL(n = 1) model considered in Section 4 above corresponds an
unconstrained dense O(n = 1) model with CG coupling constant g = 2/3 and central
charge cgense(n = 1) = 0, describing in particular critical percolation. The associated
dilute phase has § = 4/3, which is associated with the critical Ising model of central
charge ¢ = 1/2. By duality, we find a second dense O(n’ = v/2) model with coupling
constant ¢’ = 3/4, which also describes the Fortuin-Kasteleyn (FK) clusters of the critical
@ = 2 Potts model. In terms of SLE,, critical percolation corresponds to x = 4/g = 6
[20], the critical Ising model to % := 4/g = 3 [21], while @ = 2 FK clusters generate dual
SLE1s/3 random paths.

For the FPL(n = 0) model describing Hamiltonian cycles and paths as studied in
Sections 5 and 6, the corresponding unconstrained dense O(n=0) model is that of dense
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polymers with g = 1/2, cgense(n =0) = —2; the dilute phase is then naturally that of
critical self-avoiding walks (SAW), i.e., dilute polymers with § = 3/2 and ¢ = 0. By
duality, the associated final dense O(n’ =1) model is that of percolation with ¢’ = 2/3
and ¢ = 0. In terms of SLE,, one here goes from k = 8 to & = 8/3 to k' = 6, and it may
be worth noting that in addition to critical percolation clusters [37, 40, planar Brownian
loops also have the scaling limit of self-avoiding loops as external frontiers [41, 42, 43].

To conclude this discussion, while formulas (69) (70) and the Ansatz (71) (72) (74)
seem appealing, and lead to connections between various critical statistical models that
show up when using KPZ relations between fully-packed models on the honeycomb lattice
and on random bicubic maps, it remains difficult at this stage to theoretically explain
such apparent “transmutations” between models. Finally, let us remark that the obser-
vation that the usual KPZ relation (23) or (28) fails for a family of exponents of the
fully-packed models may be linked to a lack of independence between some (constrained)
configurations of the space-filling random paths and the random Liouville measure. Sta-
tistical independence is indeed crucial to the proof of that relation |24, 25|. The apparent
enhancement of the effective coupling constant from g to ¢’ = 1/(2—g) > g, for the extra
Gaussian free field brought in by the full-packing condition, may reflect such a lack of
independence.
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A. Hamiltonian paths on random cubic maps

We discuss here briefly the problem of Hamiltonian path configurations defined on cubic
planar maps. In practice, all the definitions given in Section 5.2 remain unchanged ezcept
that we suppress the black/white colors of the vertices and consequently forget about any
bicoloration constraint whatsoever. In this way, we define new numbers 23, y3, ..., u}y
which are the analogs for cubic maps of the numbers zy,yn, ..., uy. Note that all the
maps which we consider have by construction an even number of trivalent vertices® so
that the meaning of N is unchanged (e.g., there are 2/NV trivalent vertices in configurations
enumerated by z3,). We again define the exponential growth rate ° and the configuration

exponents 37 via the large N behaviors
0)2]\7

NB? (75)

ty ~ const.

3The number Vs of trivalent vertices is even for all cubic maps with, possibly, an arbitrary number V5
of bivalent defects and an even number Vi of univalent ones since 3V3 = 2FE — 2V, — Vi where F is
the number of edges.
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for the various quantities at hand. It is a simple exercise to obtain the exact expression

N

. 2N

2N = E <2k)CatkCatN_k = CatyCaty1 , (76)
k=0

where Caty = (%{IV)/(N + 1) is the NI Catalan number. We similarly get

YN = 22NCatN+2 , ry = 22N Caty | wy = (2N — 1)Caty_;Caty ,
1 1 (77)
vy = 5(]\7 — 1)CatyCatpyyq , uy = Z(2N —1)(2N — 2)Caty_1Caty .

From these exact expressions, we immediately obtain that all these sequences have the
same exponential growth rate (u°)? = 16, while the configuration exponents read:

[¢] [e] [} 3 [¢] o (o]
These values match with the predictions
=21, By = 14283, 0, —9°,  B=L1H28%,, 0 =90,
Bo=1+2A% —7°,  Br=1+2A5, -7, Ba=A54 +285% =77,
(79)
upon taking AO%AJr%bz = Ai%AJr%bz = —1/4, A4 = Aj, = 0 and v°* = —1. The

latter value is that predicted by the KPZ formula (21) since, as discussed in Section 3.1
¢ = —2 is the expected central charge when the FPL(0) model is defined on cubic planar
maps, and y(—2) = —1. As for the dressed dimensions A°, their values do not depend
on the component along the A direction, which is compatible with the fact that we
must set A = 0: we are therefore left in practice with the two independent exponents
Ai[m = —1/4 and Ag = 0, corresponding respectively to the 1- and 2-leg watermelon

2
exponents [44]. From the KPZ formula (23) which, at ¢ = —2, reduces to

VvV14+8h -1

A(h,—2) = 5 (80)
we identify
A%bz = A( %bz, —2) and  Ag = A(hg, —2) (81)
with the classical dimensions A%, ~—~ = —3/32 and hy = 0 [44]. These values are two
2

instances with ¢2 = 1/2 and 0 respectively of the general formula (64), which when
A = 0, translates into
o 1

h¢2b2 = 3 (1- 5¢2,0) (¢% -1). (82)
To conclude, the obtained configuration exponents for the FPL(0) model defined on cubic
planar maps are exactly those predicted by the KPZ formulas. This confirms that the
discrepancies with KPZ found in this paper for bicubic maps are due to the existence of
the extra dimension (along A) in the problem.
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B. Enumeration results

N zNy | N ZN
1 2115 1103650297320
2 8116 9450760284100
3 40 | 17 81696139565864
4 228 | 18 712188311673280
5 1424 | 19 6255662512111248
6 9520 | 20 55324571848957688
7 67064 | 21 492328039660580784
8 492292 | 22 4406003100524940624
9 3735112 | 23 39635193868649858744

10 29114128 | 24 358245485706959890508

11 232077344 | 25 3252243000921333423544

12 1885195276 | 26 29644552626822516031040

13 15562235264 | 27  271230872346635464906816

14 130263211680 | 28 2490299924154166673782584

Table 2: The number zy of Hamiltonian cycles on planar bicubic maps with 2N vertices, and a
marked visited edge.

N yn | N YN
0 1 9 80576316
1 10 698497236
2 40 | 11 6125241762
3 286 | 12 54248935624
4 2152 | 13 484629868212
5 16830 | 14 4362375489180
6 135632 | 15 39532218657398
7 1119494 | 16 360393965832256
8 9421536

Table 3: The number yy of open Hamiltonian paths on planar bicubic with 2N + 2 vertices.

N TN N TN
0 119 56959872
1 10 512093760
2 24 |11 4652471904
3 168 | 12 42641120752
4 1280 | 13 393739429376
5 10288 | 14 3659068137088
6 85776 | 15 34193890019424
7 734448 | 16 321103772899152
8 6416912 | 17 3028414925849920

Table 4: The number = of open Hamiltonian paths on planar bicolored maps with 2 univalent
vertices and 2N trivalent ones.
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N wN N WN
1 1110 29734848
2 4|11 251955792
3 22 | 12 2165922244
4 140 | 13 18848640980
) 972 | 14 165764482320
6 7160 | 15 1471222986648
7 55068 | 16 13162929589308
8 437692 | 17 118606870664836
9 3570100 | 18 1075505940036672

Table 5: Table of wy where 2wy is the number of cycles visiting all the trivalent vertices on
planar bicolored maps with 2 (unvisited) univalent vertices and 2N trivalent ones.

N UN N UN
2 1112 1996703248
3 10 | 13 17470889224
4 84 | 14 154096032108
) 682 | 15 1369014000682
6 5534 | 16 12242457072892
7 45330 | 17 110131946780584
8 375868 | 18 996123282195032
9 3155704 | 19 9054534704495656

10 26808852 | 20  82678808925578480

11 230230658 | 21  758122496862199740

Table 6: The number vy of cycles visiting all the trivalent vertices on planar bicolored maps
with 2 (unvisited) bivalent vertices and 2NNV trivalent ones. The bivalent vertices have
necessarily different colors and the edges incident to the black one are distinguished.

N uUn N UunN
2 1110 47714564
3 10 | 11 439727448
4 90 | 12 4075738256
5 798 | 13 37971881232
6 7094 | 14 355404743524
7 63508 | 15 3340333168292
8 573056 | 16  31512818722844
9 5210640 | 17 298306803039300

Table 7: Table of ux where 4uy is the number of cycles visiting all the trivalent vertices on pla-
nar bicolored maps with 1 (unvisited) bivalent black vertex with distinguished incident

edges, 2 (unvisited) univalent vertices and 2N trivalent ones.
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