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Abstract— Accurately recognizing health-related conditions
from wearable data is crucial for improved healthcare out-
comes. To improve the recognition accuracy, various approaches
have focused on how to effectively fuse information from
multiple sensors. Fusing multiple sensors is a common choice
in many applications, but may not always be feasible in
real-world scenarios. For example, although combining bio-
signals from multiple sensors (i.e., a chest pad sensor and a
wrist wearable sensor) has been proved effective for improved
performance, wearing multiple devices might be impractical in
the free-living context. To solve the challenges, we propose an
effective more to less (M2L) learning framework to improve
testing performance with reduced sensors through leveraging
the complementary information of multiple modalities during
training. More specifically, different sensors may carry different
but complementary information, and our model is designed to
enforce collaborations among different modalities, where posi-
tive knowledge transfer is encouraged and negative knowledge
transfer is suppressed, so that better representation is learned
for individual modalities. Our experimental results show that
our framework achieves comparable performance when com-
pared with the full modalities. Our code and results will be
available at https://github.com/comp-well-org/More2Less.git.

I. INTRODUCTION

Wearable sensors are unobtrusive, affordable and user-
friendly, making them suitable for continuous and ubiquitous
monitoring of individual’s physiological and behavioral pro-
files in the free-living context and providing valuable insights
into individuals’ health and fitness status for health and
medical applications. These advantages have attracted more
and more researchers to adopt multimodal machine learning
to various wearable devices for better health monitoring and
interventions, as fusing data from different modalities can
aggregate more information, therefore outperforming their
unimodal counterparts. Huang et al. [4] provide appealing
formal guarantees about the performance advantages of mul-
timodal learning in comparison with unimodal learning using
theoretical proofs. Some examples of multimodal learning
frameworks proposed in the literature have fused audio and
visual information for speech recognition [13], improved
word embeddings with both text and visual information [8]
and learned joint representations from text, visual and audio
modality for sentiment analysis. Moving our attention to
the field of wearable sensors, researchers have attempted
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Fig. 1. Illustration of the targeted challenge. In the controlled setting, we
are usually able to collect various signals using multiple devices, such as
standalone sensors, phone and fitbit, but less number of sensors or devices
is more convenient for users in real-world settings. How can we design a
framework that can leverage the benefits of multimodal data during training
but maintain the robustness of model performance with reduced number of
modalities during testing?

to infer health related constructs or clinical events from
multimodal signals (i.e., fitness trackers, smartwatches and
smartphones), such as mental health and wellbeing monitor-
ing [18, 2, 5], seizure forecasting[10], COVID-19 detection
[11], etc. Other work like [15] exploits the relationship
among different modalities for better representation learning
from wearable data, [7] uses additional sensors to improve
single-sensor based complex activity recognition.

Although research using multimodal modeling and wear-
able sensor technologies has progressed with the advent of
deep learning, only a small number of these studies have been
successfully applied in our society. Some of the challenges
that hinder the widespread adoption of wearable devices
in healthcare applications include data acquisition and pre-
processing, feature extraction, and model selection. However,
one specific challenge that we face in many real-world
applications is the reduced availability of sensor modalities
or devices in deployment compared to model training, and
the challenge is understudied in the literature.

A common assumption for most works is that we have
access to an equal number of sensors in both training and
testing. However, such an assumption does not hold true in
many circumstances in real-world scenarios. For example,
as shown in Fig.1, it is usually feasible to collect multiple
modalities of data from study participants using different
sensors (i.e., standalone sensors, chest sensors, wearables) in
the controlled environment such as laboratory experiments.
Therefore, we may be able to develop a robust multimodal
model through effective fusion of complementary informa-
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tion from multiple modalities. However, in real deployment,
using less number of sensors or devices is preferred, as we
can therefore minimize user burden, energy consumption, or
device size/cost. (i.e., fitbit only).

Therefore, it is critical to bridge the gap between the
models developed using multiple sensors during develop-
ment and the models using less number of sensors during
deployment in the wild. In this work, we present an effective
framework, which not only leverages the complementary
information of multiple modalities during training, but has
the ability to provide inference with fewer modalities during
testing (simulation of the model real-world deployment).
More specifically, an adaptive gate is designed for the multi-
modalities, which will control the direction and intensity
of knowledge transfer among modalities. Therefore, positive
knowledge transfer is encouraged, while negative knowledge
transfer is suppressed. After training, we can thus expect
improved performance for individual modality. Our main
contributions are:

• We propose an effective M2L framework that not only
can leverage the complementary information of multiple
modalities during training but also provide inference
with fewer modalities during testing.

• We conduct extensive experiments using two wearable
datasets, and demonstrate that our framework can bene-
fit from the multimodal training, achieving comparable
performance in testing with reduced modalities.

II. PROPOSE METHOD

We propose an effective More to Less (M2L) framework,
which is designed to learn robust representations for each
modality through leveraging the specific strengths existed
in different modalities. This is accomplished by utilizing a
cooperative learning strategy, where a weak network learns
representations from a stronger network through knowledge
distillation. More specifically, assuming M modalities and
M classifier networks with similar architectures are available
during training, with each classifier trained with its own data,
it will also try to learn representations from other classifiers
that show better performance than itself. The knowledge
sharing is applied to the representations through minimizing
the distance between the two features in the embedding
space. In order to guarantee positive knowledge transferring,
an adaptive regularizer is applied to ensure that knowledge
only transfers from more accurate modality networks to those
with less accuracy, and not the other way.

A. Classification Loss and Feature Distance

Let D = {(xi, yi)}N be a multimodal dataset having
N training samples. Each sample xi represents the data
of M available modalities, xi = {x1

i , x
2
i , . . . x

M
i }, and yi

represents its label. For each modality of xm
i , a backbone

network fm(·) is used to map the input into feature space:
fm : xm

i → Fm
i , and Fm

i ∈ Rd. The supervised classifi-
cation loss with respect to a specific modality and network

Fig. 2. Framework of the proposed M2L method. Assuming we want
to train backbone m for the mth modality with the information shared
in nth modality. First, the cross-entropy classification loss, Lm

ce and Ln
ce

are calculated for each modality. Next, ρn→m and ρm→n, determining
the direction and intensity for distillation-based regularization, is calculated
through comparing the two loss functions Lm

ce and Ln
ce. The full objective

function for training backbone m for the mth modality is the weighted
combination of Lm

ce and Lm,n
sim . After training, the proposed framework can

be run with reduced modalities, while leveraging the benefits of multimodal
training.

(i.e. mth modality) is defined as:

Lm
ce = − 1

N

N∑
i=1

{
yi× log(ŷi)+(1−yi)× log(1− ŷi)

}
(1)

To benefit from the complementary information in the
multiple modalities, we encourage the networks of the mth
and the nth to share their own advantages with each other.
This can be done through minimizing their distance in the
feature space, but experiments suggest that directly minimiz-
ing the L2 distance in the feature space will lead to unstable
training. As a result, we choose the cosine similarity as the
metric:

Lm,n
sim =

1

N

N∑
i=1

Fm
i · (Fn

i )
T

||Fm
i || · ||Fn

i ||
m,n ∈ {1, 2, . . .M} (2)

B. Transferring Positive Knowledge

As mentioned before, different modalities may convey
varied information, and some modalities may provide weak
features as compared to the others and vice versa. In addition,
even the strong modalities may sometimes have corrupted
samples such as noise in the training dataset. With these cases
in mind, it is desirable to develop a method that encourages
positive knowledge transfer between the networks while
avoiding negative transfer. Such a mechanism is implemented
as ρ(·) in our framework. For example, as shown in Fig.2,
ρn→m regulates the direction and intensity of transferring
knowledge from modality n to modality m.

Assume Lm
ce is the classification losses of the networks

m. Next, let ∆Li→m = Lm
ce−Li

ce, i ∈ {1, 2, . . .M} be their
difference. A positive ∆Li→m indicates that network i works
better than network m. Hence, in the training of network m,
we want ρi→m to open the gate and transfer knowledge from



network i to network m, where the strength is conditioned on
the value of ∆Li→m. On the other hand, a negative ∆Li→m

indicates that network i is weaker than network m, so we
want to avoid the knowledge transfer by setting ρi→m as 0.
The regularizer for training modality m with the assistance
of other modalities is defined as below:

ρi→m =

{
eβ∆Li→m − 1 ∆Li→m > 0

0 ∆Li→m ≤ 0 i ∈ {1, 2, . . .M}
(3)

where β is a positive hyper-parameter, which is used to
control the strength of knowledge transferring.

C. Full Objective Function

Combining all the loss functions together, our full objec-
tive function for the training of network m corresponding to
the mth modality in a dataset containing M modalities is
defined as follows:

Lm
all = Lm

ce + λ ·
M∑

n=1,n̸=m

ρn→m ·
(
1− Lm,n

sim

)
(4)

where λ is a positive regularization parameter. Fig.2 shows
an overview of how the features of nth modality assist the
learning procedure of the mth modality. After training, the
cross-modality knowledge transferring module is not needed
any more, therefore the individual modality can be run
independently.

III. EXPERIMENTS

We use two wearable multimodal datasets to evaluate our
proposed framework.

A. Data

SMILE[14]: wearable sensor and self-report data col-
lected from 41 healthy participants (36 females and 5 males)
in a 10-day study. Two types of wearable sensors were used
to collect galvanic skin response (GSR) (a wrist-worn device,
Chillband, IMEC, Belgium, sampling rate: 256 Hz) and
electrocardiogram (ECG) (chest patch sensor, Health Patch,
IMEC, Belgium, 256 Hz). Both time and frequency domain
statistical features related to human stress status[6, 12] were
extracted every minute from GSR (12 features) and ECG
data (8 features) (see more about features in [14, 18]). Self-
reported stress levels (0 (”not at all”) to 6 (”very”)) were also
collected 10 times daily as ecological momentary assessment
that were spaced out roughly 90 minutes apart. We set stress
levels greater than 1 as positive examples (55%) and others
as negative examples (45%) in our experiments. We used 1
hour of GSR and ECG data (1 minute × 60 steps) to infer
upcoming stress labels.

TILES[9]: wearable, smartphone, and survey data col-
lected from over 200 hospital workers (31.1% of the par-
ticipants were male and 68.9% were female, and age: 21 -
65 years old). We use heart rate and step count data collected
with the Fitbit Charge 2 (sampled every 1 minute) and ECG
data collected with the OMSignal smart garment (15-second
long ECG signal in 250 Hz every 5 minutes). We extracted
25 time and frequency-domain ECG features (see more in

[1]) and resampled Fitbit data every 5 minutes to align with
the ECG features. Self-reported stress levels were annotated
by participants in a 5-point scale, which is further binarized
via a similar procedure as used in [3] using the average z-
score of individual’s stress levels. We used 2 hours of the
data (5 minute × 24 steps) to infer upcoming stress labels.

For both datasets, we randomly split 70% of the partic-
ipants of the data as a training set, and the rest as a test
set to conduct subject-independent experiments, where data
collected from individual subjects can only appear in either
training or testing, but not both.

B. Implementation Details

To model the long sequential data, we use long short-term
memory (LSTM) as backbone. Each of the LSTM models is
a two layers of LSTM with 64 as the number of features in
the hidden state. Dropout rate is set as 0.5 during training,
and 0 during testing. For the hypterparameters, λ is set to
0.05, and β = 2.

The networks are trained from scratch for all the experi-
ments, using Adam optimizer with an initial learning rate of
0.001. The learning rate is decayed after every 10 epochs by
0.1. Batch size is set 100, and the model is trained for 50
epochs with early stopping. We start with pretraining indi-
vidual modalities for 20 epochs, and then continue training
with the knowledge transfer loss. We implement the model
with the Pytorch framework and perform training and testing
on the NVIDIA GeForce 3090 GPU.

C. Results

Various experiments are conducted to evaluate the perfor-
mance of the proposed method. Both accuracy and F1-score
are reported in our experiments for performance evaluation.
First, we verify our claim that different modalities convey
varied information. As shown in Table I, the accuracy
changes over different modalities i.e., GSR, ECG and fitbit.
We also calculate the consistency ratio of individual modality
based prediction, which is calculated by dividing the total
number of testing examples by consistent prediction of two
individual modality. The consistency ratio is only around
60% in both datasets, indicating varied information among
different modalities.

TABLE I
ACCURACY AND CONSISTENCY RATIO IN TWO DATASETS.

Dataset Modality Acc Ratio

SMILE GSR 53.9 59.0ECG 50.8

TILES ECG 55.2 59.2fitbit 57.5

The performance evaluation on the SMILE dataset is
reported in Table II. GSR-based model achieves 3% higher
accuracy than ECG-based model, while the early fusion
of GSR+ECG does not always perform better than the
individual modality, indicating that even though the multiple
modalities contain rich and complementary information, the
benefits will not be achieved without a carefully designed
fusion mechanism. Compared to the models trained and



TABLE II
F1 SCORES AND ACCURACY OF THE PROPOSED METHOD ARE REPORTED

ON THE SMILE DATASET FOR STRESS DETECTION IN THE WILD.

Method Training
modality

Testing
modality

Reduced
modality Acc F1

LSTM GSR same ✗ 53.9 64.1
ECG same ✗ 50.8 61.5

LSTM (fusion) GSR+ECG same ✗ 52.6 58.8

M2L GSR + ECG GSR ✓ 56.1 66.8
GSR + ECG ECG ✓ 53.1 64.5

TABLE III
F1 SCORES AND ACCURACY OF THE PROPOSED METHOD WITH THE

TILES DATASET FOR STRESS DETECTION IN THE WILD.

Method Training
modality

Testing
modality

Reduced
modality Acc F1

LSTM ECG same ✗ 55.7 65.8
fitbit same ✗ 57.4 66.7

LSTM (fusion) ECG+fitbit same ✗ 54.6 61.5
Paper [16] BR same ✗ 59.5 56.9
Paper [17] HRV same ✗ 60.6 58.2

M2L ECG+fitbit ECG ✓ 57.5 72.2
ECG+fitbit fitbit ✓ 58.6 70.3

tested with a single modality (GSR or ECG), our model
can be trained with multiple modalities (GSR and ECG)
and tested with reduced modality (GSR only or ECG only),
showing significant improvement (2.2% and 2.3% higher
in accuracy respectively). The improved performance for
reduced modality testing demonstrates the effectiveness of
our proposed method.

Experiment results using the TILES dataset are shown in
Table III, and we observe 1.8% and 1.2% improvement in
accuracy when compare our model with LSTM on the ECG
and fitbit modality respectively. Comparing with recent stress
detection works [16, 17], which were trained and tested in
TILES datasets using breathing rate (BR) and heart rate vari-
ability (HRV) respectively collected with OMSignal Garment
(details about training and testing and label settings are not
described so we are not able to reproduce their experiments),
our model not only achieves comparable performance, but
also is able to run with reduced modality (an inexpensive
solution, i.e., fitbit), while all other methods need exactly
the same modalities between training and testing.

IV. CONCLUSION

The reduced number of wearable sensors/devices during
deployment/testing in the wild environment compared to
model training is a challenge that hinders the adoption of
wearable devices for healthcare. To solve this problem, we
present an effective M2L framework that can not only lever-
age the complementary information of multiple modalities
during training, but also provide inference with reduced
modalities during testing, while achieving comparable per-
formance when compared with full modalities, therefore,
bridging the gap between model development and model
deployment in the wild. It is worth noting that the proposed
framework works for three or more modalities as well.

Although the improved performance is shown, our pro-
posed method is still limited by the use of hand-crafted

features and the ability to generalize to new subjects. In
the future, we plan to investigate both deep learning based
feature learning and unsupervised personalization, where a
general model can be automatically adapted to individual
through utilizing a small amount of unlabeled data.

REFERENCES

[1] Robin Champseix. Heart Rate Variability Analysis. https:
/ / github . com / Aura - healthcare / hrv -
analysis. 2018.

[2] Mohamed Elgendi and Carlo Menon. “Assessing anxiety
disorders using wearable devices: Challenges and future
directions”. In: Brain sciences 9.3 (2019), p. 50.

[3] Amr Gaballah et al. “Context-Aware Speech Stress Detec-
tion in Hospital Workers Using Bi-LSTM Classifiers”. In:
IEEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2021, pp. 8348–8352.

[4] Yu Huang et al. “What Makes Multimodal Learning Better
than Single (Provably)”. In: arXiv preprint arXiv:2106.04538
(2021).

[5] Natasha Jaques et al. “Multi-task, multi-kernel learning
for estimating individual wellbeing”. In: Proc. NIPS Work-
shop on Multimodal Machine Learning, Montreal, Quebec.
Vol. 898. 2015, p. 3.

[6] Hye-Geum Kim et al. “Stress and heart rate variability: a
meta-analysis and review of the literature”. In: Psychiatry
investigation 15.3 (2018), p. 235.

[7] Paula Lago et al. “Using additional training sensors to
improve single-sensor complex activity recognition”. In: Int.
Symposium on Wearable Computers. 2021, pp. 18–22.

[8] Junhua Mao et al. “Training and evaluating multimodal word
embeddings with large-scale web annotated images”. In:
arXiv preprint arXiv:1611.08321 (2016).

[9] Karel Mundnich et al. “TILES-2018, a longitudinal phys-
iologic and behavioral data set of hospital workers”. In:
Scientific Data 7.1 (2020), pp. 1–26.

[10] Mona Nasseri et al. “Ambulatory seizure forecasting with
a wrist-worn device using long-short term memory deep
learning”. In: Scientific reports 11.1 (2021), pp. 1–9.

[11] Giorgio Quer et al. “Wearable sensor data and self-reported
symptoms for COVID-19 detection”. In: Nature Medicine
27.1 (2021), pp. 73–77.

[12] Nandita Sharma and Tom Gedeon. “Objective measures,
sensors and computational techniques for stress recognition
and classification: A survey”. In: Computer methods and
programs in biomedicine 108.3 (2012), pp. 1287–1301.

[13] Bowen Shi et al. “Learning Audio-Visual Speech Represen-
tation by Masked Multimodal Cluster Prediction”. In: arXiv
preprint arXiv:2201.02184 (2022).

[14] Elena Smets. “Towards large-scale physiological stress de-
tection in an ambulant environment”. In: (2018).

[15] Dimitris Spathis et al. “Self-supervised transfer learning
of physiological representations from free-living wearable
data”. In: Proceedings of the Conference on Health, Infer-
ence, and Learning. 2021, pp. 69–78.

[16] Abhishek Tiwari et al. “Breathing rate complexity features
for “in-the-wild” stress and anxiety measurement”. In: 2019
27th European Signal Processing Conference (EUSIPCO).
IEEE. 2019, pp. 1–5.

[17] Abhishek Tiwari et al. “Stress and anxiety measurement” in-
the-wild” using quality-aware multi-scale hrv features”. In:
IEEE Engineering in Medicine and Biology Society (EMBC).
IEEE. 2019, pp. 7056–7059.

[18] Han Yu et al. “Modality Fusion Network and Personalized
Attention in Momentary Stress Detection in the Wild”.
In: 9th Int. Conf. on Affective Computing and Intelligent
Interaction (ACII). IEEE. 2021, pp. 1–8.

https://github.com/Aura-healthcare/hrv-analysis
https://github.com/Aura-healthcare/hrv-analysis
https://github.com/Aura-healthcare/hrv-analysis

