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ABSTRACT: A comprehensive analysis of the phosphoproteome is essential for understanding molecular mechanisms of human
diseases. However, current tools used to enrich phosphotyrosine (pTyr) are limited in their applicability and scope. Here, we
engineered new superbinder Src-Homology 2 (SH2) domains that enrich diverse sets of pTyr-peptides. We used phage display to
select a Fes-SH2 domain variant (superFes; sFes') with high affinity for pTyr and solved its structure bound to a pTyr-peptide. We
performed systematic structure—function analyses of the superbinding mechanisms of sFes' and superSrc-SH2 (sSrc'), another SH2
superbinder. We grafted the superbinder motifs from sFes' and sSrc' into 17 additional SH2 domains and confirmed increased
binding affinity for specific pTyr-peptides. Using mass spectrometry (MS), we demonstrated that SH2 superbinders have distinct
specificity profiles and superior capabilities to enrich pTyr-peptides. Finally, using combinations of SH2 superbinders as affinity
purification (AP) tools we showed that unique subsets of pTyr-peptides can be enriched with unparalleled depth and coverage.

Bl INTRODUCTION

The detection of phosphorylated peptides and their inferred
proteins using MS remains challenging due to the low
stoichiometry of phosphorylation events. This is particularly
true for the analysis of pTyr as its rapid turnover and low
cellular abundance relative to phosphorylated serine/threonine
residues (pSer/pThr) often result in under-representation of
pTyr-sites in proteomes.’ Typically, pTyr-containing proteins
(pTyr-proteins) and pTyr-peptides are enriched from tissues
and cells after protein digestion, frequently utilizing immobi-
lized metal-affinity chromatography (IMAC) binding pSer/
pThr/pTyr-peptides.2 Alternatively, pTyr-specific antibodies
can be used, albeit they are expensive, nonspecific, and of low
binding efﬁciency.3 Therefore, efficient analysis of phospho-
proteomes necessitates pTyr enrichment tools that are easy to
produce and can recover a high percentage of the pTyr-
proteome in a cost-effective manner.

SH2 domains naturally bind pTyr-proteins in cells to
mediate pTyr-dependent signal transduction networks." SH2
domains are comprised of a three-strand antiparallel S-sheet
flanked by a pair of a-helices.” The pTyr-binding pocket is
characterized by a highly conserved Arg residue in the SB6
position that co-ordinates the phosphoryl moiety of the pTyr-
residue.’ Adjacent to the pTyr-binding pocket are a series of
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hydrophobic pockets that interact with side chains of amino
acids C-terminal to the pTyr-residue. These hydrophobic
pockets dictate SH2 ligand specificity and are rendered either
accessible, or occluded, by the co-operative action of the EF-
and BG-loops.” Thus, the SH2 domain employs a two-pronged
binding mode that depends first on pTyr-binding and second
on interactions of the residues flanking pTyr in the
polypeptide.*™"*

Using phage display, we previously engineered sSrc' and
superFyn-SH2, high-affinity variants of the SH2 domains (SH2
superbinders) of the Src and Fyn tyrosine kinases.” sSrc! was
used as an affinity purification tool in mass spectrometry (AP-
MS) experiments to enrich pTyr-peptides with unprecedented
coverage,‘?”15 whereas superFyn-SH2 variants with altered
specificity profiles enabled enrichment of different pTyr-
peptides.'® Therefore, SH2 superbinders with complementary
specificity profiles could be used to probe the pTyr-proteome
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Figure 1. Fes-SH2 library design and selection results. (a) Superposition of the structure of Fes-SH2 (yellow, PDB ID: 1WQU) and Src-SH2
(gray) in complex with a pTyr-peptide (sequence: pTyrEEIE, red, PDB ID: 1HCT). Positions that were diversified in the Fes-SH2 library are
shown as spheres colored magenta, orange, or cyan for residues that reside in the aA-helix, the $-sheet, or the BC-loop, respectively. The pTyr side
chain of the peptide ligand is shown as sticks. (b) Details of the pTyr-binding pocket. The ligand pTyr side chain and Fes-SH2 side chains at
positions that were diversified in the library are shown and colored as in (a). (c) Sequence alignment of Fes-SH2 and variants selected for binding
to pTyr-peptide pEZ (PPPVpTyrEPVSYH). The alignment shows only those residues that were diversified in the library and positions that were
conserved as the wt sequence are shown as dashes. The ICs, values were determined by fluorescence polarization assays with pTyr-peptide pEZ,
and the fold change relative to the Fes"* ICs, is also shown for each variant.

with greater depth and coverage than conventional IMAC,
anti-pTyr antibodies, or natural SH2 domains that bind pTyr-
peptides with modest affinity.'”"*

The human genome encodes 122 SH2 domains,'”*° offering
a potentially vast palette for engineering superbinders with
diverse specificities. Here, we report a general strategy to
engineer high-affinity variants of human SH2 domains as
superior tools for AP-MS-based pTyr-phosphoproteomics. We
used phage display to engineer superbinder variants of the Fes-
SH2 domain and subsequently developed a modular method
to increase the affinity of SH2 domains by several orders of
magnitude. We characterized the structure and function of
several different SH2 superbinders using X-ray crystallography
and MS. Finally, we demonstrate unprecedented depth and
coverage of the pTyr-proteome using combinations of SH2
superbinders as AP-MS tools.

B RESULTS AND DISCUSSION

Development of High-Affinity Variants of the Fes-
SH2 Domain. We previously used phage display to develop
high-affinity variants of Src-SH2, which belongs to class XII
and exhibits specificity for ligands of the type pTyr-X-X-®@ (@
denotes hydrophobic residues).”’ To further expand the range
of ligand specificities that could be targeted with SH2
superbinders, we chose to engineer Fes-SH2 that shares only
35% amino acid sequence identity with Src-SH2 and exhibits a
different specificity profile (class XVI) that recognizes ligands
of the type pTyr-E-X-[V/I].*!

To aid library design, we examined the structure of Fes-SH2.
However, as there is no structure of ligand-bound Fes-SH2

currently available, we superposed the structure of Fes-SH2
with Src-SH2 in complex with a pTyr-peptide ligand. We then
identified Fes-SH2 residues that were in analogous positions
with those selected for randomization in the Src-SH2 phage-
display library.® We selected residues that were oriented
toward the ligand pTyr-residue and had at least one atom
within 10 A of the pTyr-residue. We excluded the highly
conserved Arg residue in the #B6 position, as it was invariant
in previous selections for Src-SH2 variants.” Applying these
criteria, we chose a set of 13 residues for diversification,
including 2 residues in the atA-helix, S residues in the f-sheet,
and all 6 residues comprising the BC-loop. (Figure 1a,b). We
constructed a phage-display library containing 1.6 X 10"
unique variants, using a soft randomization strategy that
favored the wild-type (wt) sequence but allowed for diversity
across all 13 positions.”” Phage pools representing the library
were cycled through S rounds of selections for binding to an
immobilized pTyr-peptide (pEZ) derived from the natural Fes-
SH2 ligand Ezrin.®> Phage ELISAs were used to identify
individual clones that exhibited binding signals for the peptide
pEZ that were at least 10-fold higher than those for an
unphosphorylated peptide (EZ) with the same primary
sequence, and DNA sequencing revealed six unique Fes-SH2
variants, named superFes-SH2-1-6 (sFes,' ° Figure 1c). The
variants exhibited conservation of the wt sequence across all
positions in the aA-helix and the f-sheet, except for variants 5
and 6, which contained a single conservative substitution in
position B3 or D6, respectively. In contrast, all six variants
exhibited highly diverse sequences in the BC-loop, which
differed greatly from the wt and among each other.
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Each variant was recombinantly expressed, purified, and
fluorescence polarization binding assays revealed that,
compared to the wt protein (Fes", ICs, = 1.3 uM), the
variants exhibited 28—490-fold enhancements in apparent
affinities (IC5, = 2.7—48 nM). None of the SH2 domains
exhibited any detectable binding to unphosphorylated peptide
EZ, even at peptide concentrations of 10 uM (Figure S1). For
further studies, we focused on sFes!, the variant that exhibited
the highest apparent affinity for peptide pEZ.

Site-Directed Mutagenesis Analysis of Determinants
of Superbinder Activity. The Src-SH2 domain was
converted into sSrc' by making only one substitution in the
BC-loop, together with two hydrophilic-to-hydrophobic
substitutions at positions SC2 and SD6. Notably, the two
additional positions cluster together in the three-dimensional
structure and form what we refer to as the “backside” of the
pTyr-binding pocket. Fes™ already contains hydrophobic
residues at these two positions. Thus, we hypothesized that
enhanced affinity for pTyr is achieved by establishing
hydrophobic interactions between the SH2 backside residues
and the aromatic ring of the pTyr moiety, together with a
particular BC-loop conformation that promotes additional
interactions with the pTyr-residue. To test this hypothesis, we
designed site-directed mutagenesis studies in sSrc' and sFes' to
explore whether grafting of substitutions could endow
enhanced affinity in the opposing domain.

We assembled a panel of Src-SH2 domain variants and
assessed their affinity for a pTyr-peptide derived from the
pTyr*** site of the hamster polyomavirus middle T antigen™*
(peptide pMT). Compared to Src™, we confirmed that sSrc'
exhibited 690-fold enhanced binding (Figures 2a and S2a).
Moreover, conversion of the BC-loop or backside sequence of
sSrc! to the wt sequence produced variants (sSrc'® and sSrc'®,
respectively) with only 25- or 2.2-fold enhanced affinity,
relative to wt. These results showed that the BC-loop and the
backside substitutions work co-operatively to enhance the
affinity of sSrc! relative to Src™. Next, we grafted the entire
sFes' BC-loop into either Src™ or sSrc' (Src*' and Src™,
respectively), and in both cases, ligand binding was almost
undetectable (ICg, > SOuM). In sharp contrast, grafting of the
BC-loop together with the two backside residues of sFes' into
Src-SH2 resulted in a superbinder (sSrc") with 510-fold
enhanced affinity relative to Src™, which was almost as great as
that of sSrc'. Taken together, these results showed that the BC-
loop and backside residues work co-operatively to greatly
enhance the affinity of Src-SH2, but either set of substitutions
alone creates a nonfunctional Src-SH2 variant.

Analogous to the study with Src-SH2, we also assembled a
panel of Fes-SH2 variants and assessed affinities. Compared to
Fes"", sFes' exhibited 2900-fold enhanced affinity (Figured 2b
and S2b). Grafting of the Src** backside sequence into Fes™ or
sFes' produced nonfunctional domains (Fesla and Fes'™,
respectively) with little to no detectable affinity for the ligand.
Conversely, transfer of the sSrc! backside sequence into Fes™
or sFes! created variants (Feslc and sFesld) with two-fold
decreased or 150-fold increased affinity, respectively. More-
over, the transfer of the sSrc' BC-loop into Fes-SH2 in the
context of Fes"™ or sSrc' backside sequences created variants
(sFes® and sFes®) with 26- or 110-fold affinity enhancements,
respectively, relative to Fes", whereas binding was barely
detectable in the context of the Src"* backside sequence
(sFes*?). These results show that the BC-loop of sFes' works
co-operatively with the hydrophobic Fes"* backside to enhance
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Figure 2. IC, values for Src and Fes-SH2 variants binding to
phosphopeptides. Schema depicting the different Src-derived and Fes-
derived sequences grafted into the (a) Src-SH2 domain or (b) Fes-
SH2 domain. Binding to pTyr-peptide pMT (sequence: EEPQpTyr-
EEIPIY) or pTyr-peptide pEZ (sequence: PPPVpTyrEPVSYH) for
Src or Fes variants, respectively, was assayed by competitive SH2
phage ELISAs. The ICs, value was derived from the binding curves,
and the fold change relative to the ICy, for the wt domain was
calculated. Data are an average of 3 to 4 experimental replicates +
SEM. Sequences derived from Src or Fes are colored pink or blue,
respectively, and light or dark colors indicate wt or superbinder
sequences, respectively. “NDI” indicates “no detectable inhibition”.

affinity and it can also work well with the hydrophobic
backside of sSrc' but cannot function with the hydrophilic
backside of Src™. Similarly, the BC-loop of sSrc' can enhance
the affinity of Fes-SH2 in the context of either the Fes" or
sSrc! backsides but cannot function in the context of the
hydrophilic Src™* backside residues.

Elucidation of Structures for Src and Fes Super-
binders. To gain mechanistic insights into the enhanced
affinities of SH2 superbinders, we solved three new crystal
structures to enable detailed comparisons between wt and
superbinder SH2 domains in both the ligand-bound and
unbound states (Figure 3 and Table S1). In each structure, the
protein adapted the typical SH2 domain fold, with the pTyr-
residue bound by the canonical pTyr-binding pocket.

Structural Comparison of Src-SH2 and Its Super-
binders. We compared the unbound and bound structures of
Src™ and sSrc' to see whether changes induced upon ligand
binding may contribute to affinity differences. Thus, we
compared structures for (1) unbound v-Src, (2) Src* bound to
pTyr-peptide pTyrEEIE, (3) unbound sSrc', and (4) sSrc!
bound to pTyr. Although the v-Src sequence differs at three
positions compared to Src™, these differences are all far from
the pTyr-binding pocket, and v-Src is the closest Src™
homologue with a solved structure that does not contain any
co-ordinating solvent molecules in the pTyr-binding pocket.

To compare main chain conformations, we superposed the
four structures using Ca co-ordinates (Figure 4a; left). For
unbound and bound sSrc! structures, the main chains of
residues around the pTyr-residue were nearly identical. In
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Figure 3. Structures of sSrc¥, sFes’, and sFes® in complex with pTyr-peptides. (a) Structure of sSrc™ (cyan) in complex with the pTyr-peptide pMT
(sequence: EPQpTyrEEI). (b) Structure of sFes' (pink) and (c) structure of sFes® (light blue) both in complex with the pTyr-peptide pEZ
(sequence: PPVpTyrEPV). SH2 domains are shown as ribbons and pTyr-peptides are shown in red with the pTyr side chain shown as sticks.
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Figure 4. Structural comparison of Src-SH2 and its superbinders. (a) Superposition of Src-SH2 and its variants. The left panel depicts the following
structures: unbound v-Src (purple, PDB ID: 1BKL), unbound sSrc' (green, PDB ID: 4F59), bound Src™ (orange, PDB ID: 1HCT), and bound
sSrc! (red, PDB ID: 4FSB). The right panel depicts the following structures: bound Src** (orange), bound sSrc! (red), and bound sSrc™ (cyan).
Structures were aligned based on Car co-ordinates using the ALIGN function in PyMol. (b) Superposition of the pTyr-binding pockets of unbound
v-Src (purple) and unbound sSrc' (green). (c) Superposition of the pTyr-binding pockets of bound Src™ (orange) and bound sSrc' (red).
Hydrogen bonds are shown as dashed lines and numbers refer to interactions described in the main text. (d) Superposition of the pTyr-binding
pockets of bound sSrc' (red) and bound sSrc® (cyan).

contrast, structures of unbound v-Src and bound Src"* showed the pTyr-residue, respectively. Consequently, a comparison of

significant differences, with the main chains of the BC-loop and

aA-helix of unbound v-Src positioned further away or closer to the main chains of the bound Src™ and sSrc’ structures shows
D https://doi.org/10.1021/acschembio.2c00051
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Figure S. Structural comparison of Fes-SH2 and its variants. (a) Superposition of Fes-SH2 and its variants. The following bound structures are
depicted: Fes™ (green, PDB ID: 3BKB), sFes' (magenta), and sFes® (blue). Structures were aligned based on Ca co-ordinates using the ALIGN
function in PyMol. (b) pTyr-binding pocket of Fes"* (bound). Hydrogen bonds are shown as dashed lines and numbers refer to interactions
described in the main text. (c) pTyr-binding pocket of sFes' (bound). Hydrogen bonds are shown as dashed lines and numbers refer to interactions
described in the main text. (d) pTyr-binding pocket of sFes® (bound). Hydrogen bonds are shown as dashed lines and numbers refer to

interactions described in the main text.

that the BC-loops are nearly identical, but that the aA-helix of
Src™ is farther from the pTyr-residue.

Inspection of intramolecular side-chain interactions in the
unbound structures revealed several differences that may
contribute to the different conformations of the sSrc' BC-loop
compared to that of the wt loop of v-Src (Figure 4b). In
particular, the sSrc' loop contained a hydrogen bond between
the Glu-BC2 side chain and the Arg-fiB6 side chain, whereas in
the wt loop, these side chains point away from each other and
do not interact. Moreover, two hydrophobic substitutions in
sSrc’ compared to Src™ (Thr-BC4-Val and Lys-fD6-Leu)
make hydrophobic interactions in sSrc' but not in Src™.
Consequently, the BC-loop of unbound sSrc' is more compact
and more closely resembles the loop in the bound state than
does the unbound wt loop.

Furthermore, we analyzed intermolecular side-chain inter-
actions between the SH2 domains and the pTyr ligand residues
(Figure 4c). Notably, the two hydrophobic substitutions in the
backside of the pTyr-binding pocket (Ser-fC2-Ala and Lys-
fD6-Leu) result in hydrophobic packing interactions with the
aromatic ring of the pTyr side chain in the case of sSrc'
compared to Src™. Additionally, sSrc' makes a series of
hydrogen bonds involving (1) the Arg-aA2 side chain and the
pTyr phosphoryl group, (2) the main chain amide of BC2 and
the pTyr phosphoryl group, and (3) the Glu-BC2 side chain

and the main chain amide of aA2. This hydrogen-bond
network is not formed in Src"™. Thus, it appears that the
enhanced affinity of sSrc' for pTyr arises from (1) a BC-loop
that is pre-organized in the unbound state to resemble the
bound conformation, (2) a hydrophobic backside that interacts
with the pTyr aromatic ring, and (3) closer proximity of the
aA-helix that facilitates hydrogen-bond formation between
Arg-aA2 and the pTyr phosphoryl group.

We next superposed the structure of the superbinder sSrc*
bound to the pTyr-peptide EPQpTyrEEI with the pTyr-bound
structures of sSrc' and Src™ (Figure 4a; right). The primary
sequence of the sSrc" BC-loop is very different from those of
sSrc' and Src™, and unsurprisingly, it superposed poorly with
them. Nonetheless, the position of the aA-helix of sSrcf
resembled that of sSrc' and was closer to the pTyr-residue
than was that of Src*'. Moreover, both domains form similar
hydrogen-bond networks with the pTyr phosphoryl group,
despite the different rotamer conformations of the Arg-aA2
side chains (Figure 4d). Finally, the wt backside of sSrc™ (Val-
BC2 and Ile-fD6) resembles that of sSrc' in that both contain
hydrophobic side chains that pack with the pTyr aromatic ring.
Thus, despite having very different BC-loops, sSrc' and sSrc*
use similar mechanisms to enhance the affinity for pTyr side
chains, and these include hydrophobic interactions with the
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1C50 Values (nM, + SEM) for SH2 Variants
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Figure 6. Grafting of sSrc' and sFes' superbinder motifs into diverse SH2 domains. A panel of 17 different SH2 domains was selected to receive the
sSrc' or sFes' superbinder graft. The amino acid sequences of these domains, in addition to Src and Fes-SH2 domains, were aligned using
COBALT and assembled into an unrooted phylogenetic tree, using fast minimum evolution with a maximum sequence dissimilarity cutoff of 0.9.
We performed competitive ELISA to determine IC, values for each trio of domains with a unique pTyr-peptide that the domain was reported to
bind in the literature (Figure S8). Data are an average of 3—4 experiments = SEM. ICq, values for which curve fitting could not be performed are
listed as >20,000 nM. SH2 variants with >10-fold or >50-fold reduction in ICs, compared to wt are highlighted in blue or red, respectively. NDI

indicates no detectable inhibition.

pTyr aromatic ring and hydrogen bonds with the phosphoryl
moiety.

Structural Comparison of Fes-SH2 and Its Super-
binders. We also examined the structures of sFes' and sFes®
bound to pTyr-peptides and compared these to a previous
structure of Fes™ bound to a sulfate ion (no structures of Fes™
bound to pTyr are available but we reasoned that the sulfate
ion is a good mimic).

Superposition of the main chains of the three structures
showed significant differences in the BC-loops, and small
differences in the N-terminal end of the aA-helix, which was
positioned closer to the pTyr in the two superbinder structures
(Figure Sa). Analysis of intermolecular side-chain interactions
of Fes"" and the sulfate ion showed that there are four residues
whose side chains establish hydrogen bonds with the sulfate
ion: (1) Arg-aA2, (2) Arg-ffB6, (3) Ser-BC1, and (4) Lys-BC4
(Figure Sb). In the sFes' structure, there are also four residues
whose side chains form hydrogen bonds with the pTyr
phosphoryl moiety: (1) Arg-aA2, (2) Arg-fB6, (3) Ser-BC3,
and (4) Gln-BC4 (Figure Sc). However, a crucial difference
compared to Fes™ is that, instead of Ser-BC1, sFes' has (5)
Ser-BC3 forming a hydrogen bond with pTyr with additional
contacts being made with the main chain amides of GIn-BC2
and Ser-BC3. These additional interactions between the pTyr
moiety and the BC-loop appear to be supported by the
formation of (6) an intramolecular hydrogen bond between
the side chain of GIn-BC2 and the main chain amide of Arg-
aA2, which is also present in the Src superbinder motifs.

Finally, the two pTyr-binding pocket backside residues, Val-
PC2 and Ile-fD6, pack against the phenyl ring of pTyr and are
in a similar position to the same residues in Fes"".

We also analyzed the pTyr-binding pocket of sFes®. Like
sFes', there are four side chains that form hydrogen bonds with
pTyr (Figure 5d): (1) Arg-aA2, (2) Arg-fB6, (3) Ser-BCl,
and (4) Thr-BC3. There are also (5) hydrogen bonds between
pTyr and the main chain amides of Glu-BC2 and Thr-BC3. As
for sFes', the BC-loop contains (6) an intramolecular
hydrogen bond between the side chain of Glu-BC2 and the
main chain amide of Arg-#A2. The two residues comprising
the backside of the pTyr-binding pocket, Ala-fC2 and Leu-
PD6, also pack against the phenyl ring of pTyr with additional
hydrophobic interactions between Val-BC4 and Leu-pD6
contributing to this interaction.

Therefore, the Fes superbinders maintain an extensive
hydrogen-bond network, crucially, with a residue in the BC3
position that also allows additional hydrogen bonds with the
main chain amides of other residues in the BC-loop. One
notable consequence is the formation of hydrogen bonds
between the BC-loop and the aA-helix, which likely act to
further stabilize contacts between Arg-aA2 and pTyr. These
contacts are not made in Fes™.

Structural Comparison of Src and Fes Superbinders.
To complete our structural analysis, we compared the pTyr-
binding pockets of pairs of Src and Fes superbinders with
matching substitutions and performed alanine scanning of
essential hydrogen-bond-forming residues (Figure S3). These
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Figure 7. SH2 variant specificity profiling using AP-MS. (a) Number of unique pTyr-peptides enriched by SH2 variants in AP-MS experiments.
SH2 domains are rank-ordered from most unique pTyr-peptides enriched (top) to least (bottom). (b—e) Venn diagrams depicting the number of
unique pTyr-peptides and sequence motifs depicting profiles of pTyr-peptides enriched from unstimulated and stimulated K562 cell lysates by (b)
Src, (c) Fes, (d) Grb2, or (e) Crkl-SH2 domain variants. (f) Sequence motifs of Ti/Zr-IMAC pTyr-peptide enrichments. (g) t-distributed
stochastic neighbor embedding (tSNE) analysis of pTyr-peptide enrichment profiles for superbinders from unstimulated (left) or stimulated (right)
K562 cell lysates. Relationships in the plot are qualitative with respect to pTyr-peptide enrichment similarities. The marker size is indicative of the
number of unique pTyr-peptides enriched.

analyses demonstrate that the sSrc' and sFes' superbinder
motifs can reconstitute the pTyr-binding pocket in different

SH2 domains.

Grafting of sSrc' and sFes' Superbinder Motifs into
Diverse SH2 Domains. Having established the structural
basis for the enhanced affinities of sSrc' and sFes', we explored

whether the superbinder sequence motifs of these domains
could be transferred into a diverse set of SH2 domains. We
performed a sequence alignment of all 122 human SH2
domains and assembled the alignment into an unrooted
phylogenetic tree (Figure S4). To identify suitable, diverse
domains for engineering, we focused on domains that (1)
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could be recombinantly expressed in bacteria,” (2) had a
reported structure, and (3) had a defined specificity
profile.”>°~** This process yielded a panel of 17 new SH2
domains that were spread out across the phylogenetic tree,
indicating high diversity among the sequences.

For each of the 17 new domains, we engineered variants
containing the BC-loop and the pTyr-binding pocket backside
sequences from either sSrc' or sFes', thus obtaining a panel of
51 SH2 domains consisting of the 17 wt domains and two
potential superbinders for each SH2. We purified each domain,
and for each related trio, we estimated affinities by competitive
ELISAs (Figures 6 and S5—6). For 13 or 8 of the 17 domains,
grafting of either the sSrc' or sFes' superbinder sequence
motif, or sometimes both, increased affinity for the
phosphopeptide by >10-fold or >50-fold, respectively, relative
to the wt.

Among the four domains for which neither superbinder
motif improved affinity substantially, Shc1-SH2 clustered close
to Fes-SH2, indicating high sequence homology, and it is not
clear why the grafting failed to produce a high-affinity variant.
Notably, the other failed domains (Ptn11_N—SH2, Ptn11_C-
SH2, Ptn6_C-SH2) clustered together and away from both
Src-SH2 and Fes-SH2. Notably, these three domains all
contained a glycine at position @A2, whereas the other
domains in the panel contained an arginine at this position
(Figure S7). In the sSrc' and sFes' structures, Arg-aA2 forms a
hydrogen bond with the pTyr phosphoryl group, and we
hypothesized that the absence of this side chain may explain
the failure of the grafting strategy. To test this hypothesis, we
substituted Gly for Arg at position @A2 and for Ptnll_N-—
SH2, this single substitution was sufficient to improve the
affinity ~60-fold. For Ptn11_C-SH2 and Ptn6_ C-SH2, affinity
was not improved by the single substitution, but in both cases,
affinity was substantially improved by the grafting of the
superbinder motifs in this context.

Our results showed that, in most cases (15 of 19, including
Src-SH2 and Fes-SH2), the SH2 domain affinity for pTyr-
peptides was substantially improved by grafting of superbinder
motifs from sSrc' or sFes'. In three of the four cases where this
approached failed, an additional change from Gly to Arg at
position @A2 resulted in success, presumably by enabling the
favorable interactions observed in the structures of sSrc' and
sFes'. Thus, despite significant sequence diversity at the global
level, it appears that the pTyr-binding pockets of most SH2
domains are structurally and functionally conserved such that
similar mechanisms can be used to optimize affinity across the
SH2 family.

Specificity Profiling of SH2 Superbinders by Mass
Spectrometry. Having developed a panel of SH2 domain
variants with an increased affinity for pTyr-peptides, we
assessed their utility as AP-MS tools to enrich pTyr-peptides
from cell lysates. Thirty SH2 variants (superbinder and wt
versions) from 12 different SH2 domains were selected, if the
family contained a superbinder variant with a reasonably high
affinity for a pTyr-peptide (IC5, < 200 nM, Figure 7). We
fused each SH2 domain to a N-terminal AviTag for site-
specific biotinylation and determined the biotinylation extent
via the band-shift assay”’ (Figure S8). All domains were well
expressed, soluble, and stable with an average biotinylation of
>90%. To diversify the type and number of available pTyr-
peptides, we prepared cell lysates from unstimulated and
stimulated K562 cells. To enable sample characterization and
increased throughput utilizing SH2 superbinders in phospho-

proteomic studies, we established an automated enrichment
process that included the binding of biotinylated SH2 domains
to streptavidin-coated magnetic beads and incubation of
immobilized SH2 domains with the cell digest. While
phosphoproteomic studies often rely on large amounts of the
starting material (mg range), we demonstrated here the
successful affinity isolation of pTyr-peptides from 200 ug of the
unfractionated K562 protein digest. We compared the high-
affinity SH2 domains to their wt counterparts and the Ti/Zr-
IMAC microparticle beads. Biotinylated-GST served as the
negative control.

Figure 7a depicts the number of unique pTyr-peptides
enriched from SH2 variants (see Tables S2 and S3 for mass
spectrometry results in greater detail including the number of
pTyr-sites). For each SH2 variant tested, the sSrc' or sFes'
superbinder grafts increased the number of identified unique
pTyr-peptides from both unstimulated and stimulated cell
lysates. Each tested SH2 domain family had at least one
superbinder variant that enriched >10-fold the number of
unique pTyr-peptides compared to its wt counterpart. The
most dramatic of these were sSrcf, sAbl1F, sFes!, sPSSA_NF,
sNck1®, sCrklS, and sVav3®, each of which enriched >1000
unique pTyr-peptides from stimulated cells. Unsurprisingly,
stimulated K562 cells correlated with greater pTyr-peptide
enrichment, as previously reported,”® but we observed a very
similar trend for unstimulated cells, highlighting the direct
correlation between the SH2 domain binding affinity and the
pTyr-peptide isolation performance. Remarkably, sSrcf, sSrc,
and sAbI1F outperformed Ti/Zr-IMAC by isolating more
unique pTyr-peptides in both unstimulated and stimulated
cells. Previous studies have used the Src-SH2 superbinder to
enrich pTyr-peptides from nine different cell lines,” and
crucially, the Src superbinder significantly outperformed anti-
pTyr antibodies for phosphoproteome analysis. Also, we
previously showed that SH2 domains with diverse binding
specificities and enhanced affinities enable efficient and
differential coverage of the human phosphoproteome.'®

Next, we assessed the binding specificity of SH2 variants by
analyzing how similar the enriched pTyr-peptide profiles were
for superbinders compared to their wt counterpart. We
computed the Pearson correlation coefficient of pTyr-peptides
enriched by each SH2 variant relative to one another and
plotted the data as a heatmap for both the unstimulated and
stimulated conditions (Figure S9). Overall, grafting super-
binder motifs into SH2 domains did not significantly affect the
binding specificity, as SH2 superbinders recognized similar
peptides to their wt counterparts. However, the overall degree
of relatedness both within a type of the SH2 domain and
between different SH2 domains decreased in the stimulated
condition, in agreement with the biological effect of different
phosphatase inhibitor treatments on phospho-signaling.® To
investigate these relationships further, we generated sequence
motifs and Venn diagrams depicting peptide enrichment
similarities for each type of the SH2 domain. We highlight
our results for the Src (class XII), Fes (class XVI), Grb2 (class
XIII), and Crkl (class VI) SH2 domains that have well-defined
specificity profiles”' (Figure 7b—e). Despite the superbinders
of these domains enriching many more unique pTyr-peptides
than their wt counterparts, in both the unstimulated and
stimulated conditions, the obtained sequence motifs of
peptides enriched were similar to one another within a
condition. This was particularly evident in the +1 to +3
positions for Src (E-X-[V/I]), Fes (E-X-®, @ denotes

https://doi.org/10.1021/acschembio.2c00051
ACS Chem. Biol. XXXX, XXX, XXX-XXX


https://pubs.acs.org/doi/suppl/10.1021/acschembio.2c00051/suppl_file/cb2c00051_si_004.pdf
https://pubs.acs.org/doi/suppl/10.1021/acschembio.2c00051/suppl_file/cb2c00051_si_004.pdf
https://pubs.acs.org/doi/suppl/10.1021/acschembio.2c00051/suppl_file/cb2c00051_si_004.pdf
https://pubs.acs.org/doi/suppl/10.1021/acschembio.2c00051/suppl_file/cb2c00051_si_004.pdf
https://pubs.acs.org/doi/suppl/10.1021/acschembio.2c00051/suppl_file/cb2c00051_si_004.pdf
pubs.acs.org/acschemicalbiology?ref=pdf
https://doi.org/10.1021/acschembio.2c00051?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Chemical Biology

pubs.acs.org/acschemicalbiology

s

a Unique pTyr Peptides SH2 Domains Used in Combinations
Name Unstimulated Stimulated Domain 1 Domain 2 Domain 3 Domain 4 Domain 5
c1 305 5201 ssre” ssrc' sAbl1"
c2 273 6268 sSrc” ssrc' sAbl1" sP85A N sFes'
C3 293 4758 sAbI1" sP85A N sFes' sNek1® sCrki®
C4 369 5033 sAbl1" sP85A N sNck1® sVav3®
C5 301 4735 sSrc’ sAbl1” sCrki® sP85B_N  sPtne_c¥C“*R
sSrc” 416 6660
Ti/Zr-IMAC 86 2486
sSrcf sSrcf sSrcf sSrcf
Ti/Zr- IMAC Ti/Zr- IMAC T|/Zr-IMAC Ti/Zr- IMAC Ti/Zr- IMAC
sSrcf sSrcf sSrcf sSrcf sSrcf
2098
Tl/Zr IMAC TI/Zr—IMAC Tl/Zr—IMAC Tl/Zr-IMAC T|/Zr IMAC
c Bcer Protein Abl Protein
[ DH H{PHHC2] —(SH3 J(SH2 }{ YKinase }—{_ DBD }{_ FaBD }
. NS 2883 @ v X @ w
ResudueNo.tnacemgaﬁ et 88 z
fi > > i > > > > i \ > > > > =N
c1 KN | 24
s ol (M O = =] 15
E c3y B [1]2] o] 16
e c| E [[E (8] 23
2 o B [ [12] 15
> o B B 2 [ 21
Tler-IMACK [3] |/ 4
o/l ZEEz [ 27
s 2 B S [4] 30
E oM LB B L2 21
S ol W [ [2] 2
RSN JEl  EIENENER 2
| [l [ EE EE 22
Tuzeamac\ [1] Bl = e 9]

Figure 8. Phosphoproteome profiling using combinations of SH2 superbinders. (a) Number of pTyr-peptides enriched from combinations of SH2
superbinders used in AP-MS experiments. (b) Venn diagrams of pTyr-peptide enrichment profiles for each superbinder combination, sSrc* and Ti/
Zr-IMAC from unstimulated (top) and stimulated (bottom) K562 cell lysates. (c) pTyr-site mapping for Ber (P11274) and Abl1 (P00519) human
proteins. Columns represent reported pTyr-sites of Ber and Abl proteins in public resources including Uniprot, NextProt, and PeptideAtlas
(Human phosphoproteome build 2017). Rows represent observed spectra for the pTyr-site using superbinder combinations (C1—CS), sSrc¥, or
Ti/Zr-IMAC from unstimulated (top) or stimulated (bottom) K562 cell lysates. “Total” represents the sum of observed spectra for pTyr-sites
detected for Ber and Abl proteins. Cartoon representations of secondary structures of Bcr and Abl proteins are shown above the plot.
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Figure 8. continued

Abbreviations: Kinase; Serine/Threonine Kinase, DH; Dbl Homology, PH; Pleckstrin Homology, R-GAP; Rho-GTPase Activating Protein, SH3;
Src-Homology 3, SH2; Src-Homology 2, Y Kinase; Tyrosine Kinase, DBD; DNA Binding Domain, and FaBD; F-actin Binding Domain.

hydrophobic residues), Grb2 (X-N-X), and Crkl (X-X-P) in
the stimulated condition. These binding preferences were
maintained for Grb2 and Crkl but slightly changed for Src and
Fes in the unstimulated condition. The binding specificity of
wt domains was maintained in all SH2 superbinders (Figure
S$10), except for sVav3’, for which the binding preference was
noticeably different from that of the wt domain (Figure S10h).
The sequence motif of Ti/Zr-IMAC (Figure 7f) shows a
nonsequence specific enrichment pattern that also changes
between unstimulated and stimulated conditions.

We next assessed how superbinder enrichment profiles
compared to one another. We focused on the best 15
superbinders that enriched >25 or >450 unique pTyr-peptides
in the unstimulated or stimulated conditions, respectively, and
represent unique specificity classes. To assess the similarity of
pTyr-peptides enriched by different high-affinity superbinders,
we used t-distributed stochastic neighbor embedding (tSNE)**
to display the unique pTyr-peptide enrichment relationships
between the superbinders in either the unstimulated (left) or
stimulated (right) conditions (Figure 7g). Two superbinder
versions of a given SH2 domain (if both were used) were
found closer together compared to superbinders derived from
other SH2 domains. Overall, different superbinders recognized
diverse pTyr-peptides in both stimulated and untreated K562
cells, and such preferences were independent of the number of
pTyr-peptides enriched but reflected the intrinsic binding
specificity of each parental SH2 domain.

Phosphoproteome Profiling Using Combinations of
SH2 Superbinders. We reasoned that combinations of SH2
superbinders with different binding specificities could be used
to isolate unique subsets of pTyr-peptides from cell lysates. We
selected five combinations of SH2 superbinders (C1—-CS)
based on the total number of unique pTyr-peptides isolated
and the degree of relatedness to one another in terms of the
types of unique pTyr-peptides enriched. For example, C1 was a
combination of sSrcf, sSrc', and sAbl1¥, the top three
superbinders that bound the greatest numbers of unique
pTyr-peptides from KS62 cell lysates, whereas C3 was a
combination of sAbl1F, sP85A_NF, sFes!, sNck1®, and sCrklS,
five superbinders that bound different subsets of pTyr-
peptides. We used the five combinations to enrich pTyr-
peptides from unstimulated and stimulated K562 cell lysates
and demonstrated that different combinations of superbinders
were able to isolate more unique pTyr-peptides compared to
Ti/Zr-IMAC (Figure 8a). Although the combinations were not
able to enrich more unique pTyr-peptides than sSrc® alone, in
both the unstimulated and stimulated conditions, they were all
able to isolate distinct subsets of pTyr-peptides. Like individual
superbinders, the sequence motifs of the combinations were
different when enriching pTyr-peptides from unstimulated
(Figure Slla) or stimulated samples (Figure S11b). The
sequence motifs between enrichment tools were consistent
with one another. However, when compared to sSrc" and Ti/
Zr-IMAC in terms of unique pTyr-peptides enriched, each
combination enriched a substantial number of unique pTyr-
peptides from both unstimulated (top) and stimulated
(bottom) cell lysates (Figure 8b).

KS62 cells express Ber (P11274) and Abll (P00519) or the
Bcr—Abl fusion protein, which drives oncogenesis. We assessed
the ability of superbinder combinations to detect pTyr-sites of
Ber and Abll phoszphopeptides previously reported in
UniProt,”” NeXtProt,”* and PeptideAtlas.”>*® We mapped
pTyr-sites of the MS-detected pTyr-peptides from the
superbinder combinations, sSrcf and Ti/Zr-IMAC in both
unstimulated and stimulated cell lysates to known pTyr-sites
on Ber and Abll (Figure 8c). These resources report up to 9
and 13 pTyr-sites for Ber and Abll, respectively. We detected
most of these pTyr-sites with the superbinder combinations
and sSrc%, specifically 8 of 9 pTyr-sites in Ber and 12 of 13
pTyr-sites in Abll in addition to other pTyr-sites in these two
proteins. Overall, we observed that a larger number of unique
pTyr-peptides and pTyr-sites were detected with superbinder
combinations and sSrc* in comparison to Ti/Zr-IMAC.
Superbinder combinations outperformed Ti/Zr-IMAC, espe-
cially in unstimulated cells, and all pTyr-sites enriched with Ti/
Zr-IMAC were also detected with one of our superbinder
combination or sSrc". These results demonstrate that super-
binder combinations are superior enrichment tools that have
the capability to bind a broad range of pTyr-peptides.

Summary. We established a general strategy to enhance the
affinities of a diverse set of SH2 domains. Furthermore, we
demonstrated that our new panel of superbinders offers a
novel, scalable, and superior set of tools to enrich pTyr-
peptides. SH2 superbinders can be used alone or in
combinations to access distinct subsets of pTyr-peptides
from various, complex biological samples.

We benchmarked our SH2 superbinder AP-MS workflow
against a sequential Ti-IMAC and Zr-IMAC enrichment.
Three of our SH2 superbinders and the five tested
combinations of SH2 superbinders enriched substantially
more unique pTyr-peptides from 200 ug of unstimulated or
stimulated K562 cell lysates than currently used IMAC
methods. As demonstrated, IMAC enrichment provides little
unique pTyr-peptides (less than 5% for stimulated and 10% for
unstimulated cell lysates) in comparison to the enhanced SH2
domains. Moreover, our newly engineered sSrc” significantly
outperformed sSrc'.

These results highlight that much of the pTyr-proteome is
inaccessible by conventional pTyr enrichment technologies.
Our newly engineered set of superbinders is an important
addition to the suite of tools available for pTyr-proteome
analysis that can be used in basic research, diagnostic, or drug
discovery workflows.

B METHODS

pTyr-Peptide Enrichment with SH2 Domain Superbinders.
Phosphopeptide enrichment with superbinders was performed on a
KingFisher robot. Streptavidin MagBeads (GenScript) were tested for
binding capacity using the AVIDITY method.”” One hundred
microliters of streptavidin MagBeads (45 nmol mL™" capacity) was
added to 400 yL of Buffer 1 (10 mM sodium phosphate, 150 mM
NaCl, pH 7.5), mixed for 10 s, collected, and washed three times in
500 uL of Buffer 1 (3 min, slow speed, beads collected at each step).
Next, streptavidin beads and 100 ug of superbinder in 600 uL of
Buffer 1 were mixed for 1 h at a slow speed. Beads were collected and
washed in 600 uL of Buffer 1 (3 min, slow speed). The digest was
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resuspended in 200 uL of 0.1 M Tris 8.5, 150 mM NaCl and mixed
with collected superbinder beads for 1 h at a slow speed. Streptavidin
MagBeads with bound superbinder were collected and washed three
times in 600 L of Buffer 1 (3 min, slow speed) and once in 600 L of
H,O (3 min, slow speed), with beads collected at each step. Peptides
were eluted in 0.15% trifluoracetic acid (TFA) (1S min, medium
speed). The eluate was immediately applied to a 10 mg Atlas Cerex
column, which had been washed in 100% ACN and then pre-
equilibrated with 0.1% TFA/H,0. The bound peptides were washed
with 1.5 mL of 0.1% TFA and eluted in three steps with 250 uL of
15% ACN/0.1% TFA, 30% ACN/0.1% TFA, and 70% ACN/0.1%
TFA. Samples were dried by SpeedVac, resuspended in 20 uL of
H,0/0.1% FA, loaded on Evotips (Evosep) following the vendor’s
protocol, and subjected to LC-MS analysis. To test combinations of
superbinders, different engineered SH2 domains were mixed in equal
amounts for a total of 100 yg and the mixture was processed as
described above for individual superbinders.

LC-MS Analysis. Samples were analyzed with an Orbitrap Fusion
Lumos mass spectrometer (Thermo Fisher Scientific) equipped with
an EvoSep One LC system and an Evo Easy-Spray adapter (Evosep).
Peptides were eluted at low pressure from Evotips and separated on
an analytical column (25 X 0.15 mm ID, 1,9 ym dp, C18 (PepSep))
connected to a stainless-steel emitter (Evosep) using a pre-
programmed 88 min gradient (extended method 15 SPD) with
0.1% FA in Milli-Q water (mobile phase A) and 0.1% FA in ACN
(mobile phase B). Survey full-scan MS spectra were acquired in the
mass range 375—1550 m/z at 120,000 resolution, the automatic gain
control (AGC) target set to 3e°, and maximum ion injection time
(IT) at 20 ms. Peptides were fragmented above a threshold of 2.5e*
by higher energy collisional dissociation (HCD) at a resolution of
30,000, AGC target 1e®, maximum IT 60 ms, TopN of 15, an isolation
width of 1.6 m/z, and a normalized collision energy of 28%. Charge
state z = 1, unassigned charges and z > 6 were rejected; dynamic
exclusion was set to 30 s. A spray voltage of 1900 V in positive mode
and an RF lens at 30% were used.

Data Analysis. Thermo RAW files were converted to mzML>®
using msconvert (ProteoWizard, version 3.0.21068)* with “peakPick-
ing true 1-” and “zeroSamplesremoveExtra” filters. mzML files were
searched with Comet*” (version 2021.01 rev. 0) against the reviewed
UniProt/SwissProt Homo sapiens proteome containing 20,386
proteins (downloaded October 12, 2021), appended with the
common Repository of Adventitious Proteins (cRAP),*' and
randomized decoys. The search was performed with a precursor
mass tolerance of 20 ppm, a fragment bin tolerance of 0.02 m/z, and
up to two missed cleavages allowed. Carbamidomethyl (+57.021464
Da) on cysteine was used as fixed modification, oxidation (+15.9949
Da) on methionine and tryptophan, and phosphorylation
(+79.966331 Da) on serine, threonine, and tyrosine were set as
variable modification. The search results were processed and
statistically validated with the Trans-Proteomic-Pipeline (v6.0.0
OmegaBlock)[f2 including PeptideProphet,*’ iProphet,** and
PTMProphet.” PeptideProphet was run with accurate mass binning,
Expect Score as discriminant, and one f-value distribution for all
charge states. Decoy hits were used to pin down the negative
distribution and the nonparametric model was enabled. PeptidePro-
phet results were further processed with iProphet to refine peptide-
spectrum match (PSM) probabilities. Correct localization of modified
residues was determined with PTMProphet™ considering phosphor-
ylation on serine, threonine, and tyrosine as well as oxidation on
methionine and tryptophan, a minimum PSM probability for
computation of 0.9 and 20 ppm MS2 peak tolerance. A minimum
iProphet probability of 0.9 was applied in each experiment
corresponding to an error rate of <0.01, and only peptides with a
minimum PTMProphet mean best probability of 0.75 were
considered for further analysis. pTyr-sites were determined using
the reference proteome and an in-house Perl script.

Data Availability. The data and results supporting this study are
available within this manuscript and supplementary data files. The X-
ray crystallographic data for newly solved structures have been
deposited to the Protein Data Bank and can be accessed using the

following IDs: sSrc’; 7T1U, sFes'; 7T1K, sFes%; and 7T1L. The MS
phosphoproteomics data have been deposited to the ProteomeX-
change Consortium (http://proteomecentral.proteomexchange.org)
via the PRIDE' partner repository with the dataset identifier
PXDO030038. Additional data or materials used in this study, such
as plasmids, for protein expression are available upon reasonable
request.

Extended Methods. A detailed description of the methods used
in the study is available in the “Extended Methods” section of the
Supporting Information.
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