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Abstract—Hybrid MPI+threads programming is gaining
prominence, but, in practice, applications perform slower with
it compared to the MPI everywhere model. The most critical
challenge to the parallel efficiency of MPI+threads applications is
slow MPI_THREAD MULTIPLE performance. MPI libraries have
recently made significant strides on this front, but to exploit their
capabilities, users must expose the communication parallelism in
their MPI+threads applications. Recent studies show that MPI
4.0 provides users with new performance-oriented options to do
so, but our evaluation of these new mechanisms shows that they
pose several challenges. An alternative design is MPI Endpoints.
In this paper, we present a comparison of the different designs
from the perspective of MPI’s end-users: domain scientists and
application developers. We evaluate the mechanisms on metrics
beyond performance such as usability, scope, and portability.
Based on the lessons learned, we make a case for a future
direction.

Index  Terms—Exascale  computing, = Message-oriented
middleware, MPI Endpoints, MPI+OpenMP, MPI+threads,
MPI_THREAD_MULTIPLE, Partitioned communication

I. INTRODUCTION

The hybrid MPI+threads model is gaining prominence over
the traditional MPI everywhere approach following the evolu-
tion of modern computing architectures. Over the last decade,
the number of cores on a processor has grown dispropor-
tionately to the growth in other on-node resources such as
memory, TLB space, and network resources (work queues and
doorbell registers) [2], [59]. Consequently, domain scientists
have witnessed their applications run out of memory with
the memory-hungry MPI everywhere model on large problem
sizes [21], [48], [51]. With MPI+threads (e.g., MPI+OpenMP),
on the other hand, applications are able to scale to much larger
problems since the model enables users to utilize the many
cores on a processor with threads and efficiently share the
limited on-node resources between cores with a single process
per node (or NUMA domain). For these reasons, modern
event-based frameworks (e.g., Legion [18] and YGM [50])
have not been developed with MPI everywhere from the start.

In terms of performance, however, MPI+threads applica-
tions tend to perform slower than their MPI everywhere
counterparts in practice [21], [38], [44], [48]. The reason is that
MPI+threads programming raises many new challenges, such
as mitigating thread-synchronization overheads [37], [43],
[53], and preventing performance-degrading memory accesses
(e.g., false sharing), that are not present in MPI everywhere.
The most critical challenge, however, is the dismal com-
munication performance of MPI+threads applications [13],
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[14], [16], [59], [68]. This challenge is a pressing bottleneck
because most scientific simulation campaigns run close to the
strong-scaling limit where communication has been demon-
strated to occupy a significant portion of an application’s
runtime [52], [54], [62], [63].

Furthermore, as an application approaches the strong-
scaling limit, the size of each individual message decreases,
and the communication performance is limited by the rate of
issuing messages rather than the network bandwidth. In this
paradigm, the interoperability of threads with MPI is critical
for the performance of an MPI+threads application.

MPI defines multiple levels of threading support going from
a highly restrictive level—only one thread will execute—
to a completely flexible level: multiple threads can execute
MPI operations in parallel (i.e., MPI_THREAD_MULTIPLE).
According to a 2017 survey of applications chosen as candi-
dates for the upcoming exascale systems and other application
development reports, domain scientists prefer using the flexible
MPI_THREAD_MULTIPLE level but do not do so currently
primarily because of poor performance [12], [19], [24].

Recently (starting in 2019), however, MPI libraries have
made significant strides in achieving scalable multithreaded
communication performance that matches that of MPI every-
where. Figure 1(a) shows MPICH’s support for high-speed
MPI_THREAD_MULTIPLE performance in its latest 4.0 re-
lease as an example. The primary factor for this improved per-
formance is the MPI library’s ability to map logically parallel
communication—operations that are not ordered according to
MPT’s semantics—to the underlying network parallelism [4],
[49], [66], [67]. With such new capabilities, applications
are able to achieve the best of both worlds—high scala-
bility and high performance—with MPI+threads compared
to MPI everywhere. Figures 1(b) and 1(c) demonstrate the
performance impact of using logically parallel communication
for traditional stencil-style workloads (Uintah computational
framework [54], [68]) and modern data-centric workloads
(Legion-based Circuit simulation [18], [68]).

In any application, the key to achieving fast MPI+threads
communication is logically parallel communication. Without
it, the new MPI libraries are ineffective. So, how can domain
scientists and application developers expose such communica-
tion parallelism?

In this regard, the MPI community first pursued user-visible
extensions to the standard in the form of MPI Endpoints [26],
[28], [31]. An endpoint represents a logically independent
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Fig. 1: MPI+threads achieves high scalability and high performance with logically parallel communication on new MPI libraries.
All MPI+threads versions use MPI_THREAD_MULTIPLE; (a) uses Intel Skylake nodes, (b) uses Intel KNL nodes, and (c)
uses Intel Broadwell nodes; the network in all experiments is Omni-Path.

stream of communication. Each endpoint is directly address-
able through an MPI rank, making user-visible endpoints a
flexible solution. The MPI Forum had deliberated the MPI
Endpoints proposal but ultimately suspended it on the prospect
that existing MPI objects such as communicators and win-
dows can expose the same level of logical communication
parallelism as user-visible endpoints. In cases where MPI’s
semantics prevent users from exposing communication inde-
pendence, this school of thought advocates the use of MPI Info
hints to relax the limiting MPI semantics which would allow
the application to expose logically parallel communication
through alternative MPI mechanisms like tags. To analyze
the performance differences between the two approaches,
recent studies map the capabilities of both to parallel network
resources and evaluate them on applications from different
domains: linear system solvers, graph analytics, astrophysics,
particle physics, and event-based runtimes. These studies
demonstrate that existing MPI mechanisms indeed perform
as well as user-visible endpoints [67], [68], and they are the
basis for the introduction of new hints for application-specific
relaxation of semantics in the latest MPI 4.0 standard.

In this paper, we show that exposing the communication
independence between threads with existing MPI objects
has various drawbacks even with the new Info hints. Using
communicators, the most explicit existing mechanism, to ex-
pose communication independence is quite complex even for
applications with well-structured and regular communication
patterns (e.g., stencil workloads). The complexity arises from
the fact that users need to ensure messages are matched
appropriately while expressing communication parallelism.
This complexity hurts not just the productivity of the domain
scientist but also the MPI library’s mapping to the underlying
network parallelism, thereby hurting performance. Relaxing
the unneeded MPI semantics through Info hints and expressing
communication parallelism through tags instead is one way to
combat this complexity, but such a solution is not portable
since the optimal mapping to the parallel network resources
is dependent on hints specific to an MPI library.

On the other hand, for the same applications, we find that
the user-visible endpoints solution is not only portable but

also straightforward because of the flexibility of its design:
each endpoint is directly addressable. Like the idea of “ports”
first described by Foster et al. [26], [31], endpoints do not
constrain communication parallelism information with existing
MPI semantics. The concern here, however, is the introduction
of a new concept to the user. Presumably, this concern does
not hold with existing MPI mechanisms since users are already
aware of communicators, windows, etc. However, we argue
that MPI users do not intuitively think of existing MPI objects
as means of expressing parallelism. For example, users have
historically viewed a communicator as a group of processes.
That it can double up as a means to express logically parallel
communication is a corollary of its definition. Hence, the
concern of enforcing new concepts (i.e., repurposing existing
MPI objects) on users also holds for existing MPI mechanisms.

Finally, the MPI 4.0 standard also introduced partitioned
operations as an alternative to MPI Endpoints to alleviate the
performance problem of MPI+threads communication. This
new interface allows users to define a persistent message with
multiple data partitions so that each thread can drive different
partitions of a single message. Ongoing research on this
new interface demonstrates that partitioned communication
does perform better than MPI+threads communication with no
logically parallel communication (“MPI+threads (Original)” in
Figure 1) [17], [30], [34], [65], but a performance analysis
against the other two mechanisms, especially in its capabil-
ities to utilize the underlying network parallelism, remains
to be seen. We note, however, that the partitioned interface
exhibits certain semantic limitations which could prevent it
from matching the performance of the other approaches. For
example, threads share the single MPI request of a partitioned
message (see Section II-C) which means that threads would
contend to access the shared request’s resources in the MPI
library, or that threads would need to synchronize to allow
only one thread to poll for completion. In either case, the
application is prone to incur overheads of contention or syn-
chronization compared to fully independent paths. Techniques
like double or triple buffering could partially mitigate the
slowdowns caused by this limitation, but they do not allow
threads to achieve complete independence in a manner that



the other mechanisms allow and promote.

Out of the three approaches, two have been introduced in
MPI 4.0 and at least one of them allows users to expose
complete independence between threads. So, does this mean
MPI’s end users are satisfied? As is the case with the success
of any technology, the answer lies with the end users, the
domain scientists. We show that MPI 4.0 does not meet the
needs of MPI+threads applications, and that it introduces
new problems. The current solutions in MPI 4.0 may be
stepping stones to alleviating the performance of MPI+threads
communication, but they are not sufficient by themselves.

In this paper, we compare the strengths and limitations of
the designs (described in Section II) with respect to their
applicability to MPI’s point-to-point, RMA, and collective
communication. Our comparison (see Section III) is cen-
tered around the lessons learned from evaluating a variety
of different types of MPI+threads applications. Guided by
both quantitative (in [67], [68]) and qualitative (this paper)
comparisons of the different interfaces, in Section IV, we
discuss a future direction that would enable applications to
achieve not just high scalability and performance, but also
high productivity with the MPI+threads programming model.

II. THE THREE DESIGNS FOR MPI+THREADS
COMMUNICATION

In this section, we describe how the three designs can
expose communication independence between threads, and
discuss their motivations and their implementation evaluations.

A. Existing MPI mechanisms

With existing MPI objects, such as communicators, tags, and
windows, users can expose relatively unordered operations for
all types: point-to-point, RMA, and collectives.

Communicators apply to collective and point-to-point com-
munication. For the former, MPI requires collectives to be
issued serially on a communicator. Hence, users can issue col-
lectives in parallel on a process only on distinct communica-
tors. For two-sided operations, MPI specifies a nonovertaking
order and uses the {(communicator, rank, tag) triplet to match
operations. Two or more operations issued using different com-
municators cannot match the same target operation and hence
imply no relative ordering; such operations are logically par-
allel. Operations that share a communicator but use different
ranks or tags, however, are not logically parallel because of the
possibility of wildcards (e.g., MPI_ANY_TAG) on the receive
side. Hence, the only way to expose logical communication
independence for point-to-point operations with MPI's default
semantics is through the use of multiple communicators.

Tags with hints. MPI 4.0 features new Info
hints that allow an application to relax semantics
it does not need. Info hints relevant to this paper
include mpi_assert_allow_overtaking,
mpi_assert_no_any_tag, and
mpi_assert_no_any_source. The first, when set,

informs the MPI library that the operations do not need to
be matched in the order that they were posted. This Info

hint is beneficial when the application requires wildcards but
does not require the MPI library to maintain the order of
matching. With the nonovertaking order relaxed, two or more
send operations using different tags are logically parallel even
if they use the same communicator and address the same
target process. Because of wildcards, however, similar receive
operations are not logically parallel. If the application does
not require wildcards, the domain scientist can set the other
two hints to relax the wildcard’s constraints. Without any
wildcards, two or more operations (both send and receive)
that use the same communicator, address the same process,
but use different tags can never match with the same target
operation. Hence, such operations are logically parallel.

Windows apply to MPI’s RMA operations. By default, MPI
maintains program order only for its atomic operations (e.g.,
MPI_Accumulate) originating from the same source and
targeting the same memory location on the same window.
Otherwise, both atomic and nonatomic RMA operations (e.g.,
MPI_Put) on different windows are unordered. Although
nonatomic operations are logically parallel in any case, users
need to be wary of mixing synchronization and initiation
operations in parallel on the same window. For example, if one
thread is waiting inside MPI_Win_flush and another con-
tinuously issues MPI_Get operations, the first thread might
block indefinitely. To overcome such cases and explicitly
expose parallelism for any type of RMA operation, users have
the option of using distinct windows for different threads.

By mapping the communication independence exposed by
the above mechanisms to the underlying network parallelism,
recent research demonstrates that MPI+threads applications
can indeed achieve scaling communication throughput that
matches that of MPI everywhere [49], [67], [68]

B. User-visible Endpoints

Researchers had initially proposed to extend the MPI stan-
dard to introduce user-visible MPI endpoints [28]. With a new
API, users can create communicators with multiple endpoints
(see Figure 2). This API creates a new communicator (context
ID) from an existing one, parent_comm, and provides
my_num_ep number of handles to the new communicator.
Each handle is addressable with a distinct rank. For all opera-
tions, users would specify the local endpoint to use using one
of the returned handles (new_comm_handles) and address
a target endpoint using the endpoint’s rank, a global index of
the endpoint, making endpoints a flexible interface. One could
then use an endpoints communicator to create endpoints for
other MPI objects such as windows and files [5].

Each endpoint takes on the semantics of an MPI rank. Like
messages originating from different processes, messages from
different endpoints are unordered and hence logically parallel.
If the user maps each thread to a distinct endpoint, then all

| MPI_Comm_create_endpoints (parent_comm, my_num_ep, info,
new_comm_handles)

Fig. 2: API to create a communicator with multiple endpoints.



threads are directly addressable. Given their flexible interface,
user-visible endpoints represent the upper bound in expressing
the communication parallelism available in an application.
Several efforts show scaling multithreaded communication
throughput with user-visible endpoints [29], [40], [58].

One of the notions on which the endpoints proposal was
suspended was that some networking hardware may not be
able to optimize the creation of new network addresses (for
new endpoints) after initializing the MPI library [29]. We
note, however, that the new MPI libraries have addressed this
problem by creating a pool of network resources during the
initialization phase [49], [67]. Such implementations then map
logical entities like endpoints to physical network resources.

C. Partitioned Communication

MPI 4.0’s partitioned communication interface allows users
to specify a persistent message with multiple partitions. Each
partition contributes to a single message, and the contributions
could occur in parallel from multiple threads. Users define the
operation’s characteristics (e.g., number of partitions, tag, etc.)
outside the critical path, and then contribute the individual
partitions of the message whenever a thread is ready to com-
municate (see Figure 3). MPI 4.0 contains APIs to describe
standard-mode send and receive operations only, but the idea
can extend to other modes of point-to-point operations and
even RMA and collective operations [41]. These extensions
will require their own set of APIs to define the partitioned
communication equivalent for each operation.

| MPI_Psend_init (buf, num_partitions, count, datatype,
2 dest, tag, comm, info, request)
3MPI_Precv_init (buf, num_partitions, count, datatype,
4 source, tag, comm, info, request)
5MPI_Pready (partition, request)

6 MPI_Parrived (partition, request, flag)

Fig. 3: New APIs to create and use standard mode send and
receive partitioned communication operations.

Partitioned communication was introduced to combat the
message-matching overheads in multithreaded communication.
Message matching is a costly serial operation [56]. If n
threads use the same communicator (‘“MPI+threads (Original)”
in Figure 1), the overhead of message matching grows by
O(n). Since partitioned operations share a persistent message,
they incur a message matching overhead of only O(1) for
n threads driving the multiple partitions of the message.
Research implementations have demonstrated performance
benefits of partitioned operations especially for large partitions
even with older MPI libraries that do not capitalize on parallel
network resources [30], [34]. Partitioned operations are suited
to benefit from the capabilities of the new MPI libraries
(multiple partitions could map to distinct network resources),
but such a study has not been conducted yet. More important,
how partitioned operations compare to the other mechanisms
of exposing logically parallel communication where message
matching is not a concern (due to a distinct matching engine
per communication channel [49], [67]) remains to be seen.

ITII. APPLICATION-CENTRIC COMPARISONS OF
THE THREE DESIGNS

In this section, we discuss how the different designs (see
Section II) compare against each other with respect to two
key metrics: ease of use (which reflects the productivity of
domain scientists), and applicability to different MPI opera-
tions (which measures the scope of the designs). We map the
communication patterns of key applications to the different
design choices to make such a comparison. In the pro-
cess of doing so, we collaborate with application developers
from a variety of institutions including University of Utah
(stencil communication in the hypre linear solver used by
Uintah [54]), Maison de la Simulation (stencil communication
in Smilei [27]), Pacific Northwest National Laboratory (graph
communication in Vite [33]), University of California, Irvine
(stencil communication in Pencil [63]), HPE (RMA communi-
cation in WOMBAT [47]), and Argonne National Laboratory
(Legion’s MPI backend [6]). We organize our discussion below
by the lessons learned from comparing the different designs.

A. Point-to-point communication

Mechanism 1: Communicators. Using distinct communi-
cators is the most explicit way to express logically parallel
communication for point-to-point operations with MPI’s de-
fault semantics (see Section II-A). We discover, however, that
communicators pose several challenges: complexity, high re-
source usage, and lack for flexibility for irregular and dynamic
communication patterns. We detail our lessons learned below.

Lesson 1: Exposing logically parallel communication
with communicators is a complex task due to its matching
requirements.

To understand the first lesson, let us consider a relatively
simple example of a static (communication pattern of each
thread is fixed) 2D 9-point stencil. Figure 4 shows the ideal
communicator usage—minimum number of communicators
with all of the available parallelism exposed—for such a com-
munication pattern. For a given direction of communication,
we have as many communicators as there are communicating
threads on the edge (a plane in 3D) since the operations of the
threads are independent. The threads on a corner, however, use
a single communicator for all directions since their operations
for the different directions occur serially. The mapping of
communicators to threads is not the same on each process. For
example, thread 7 of the bottom-left process in Figure 4 must
use a communicator for its north-south communication that is
different from the communicator that thread 7 on the top-left
rank uses for the same north-south direction. This difference
in communicators prevent threads 1 and 7 on a process from
using the same communicator and serializing their commu-
nication. In other words, given a map of communicators for
the threads of a given process, the map for other processes
can be derived by mirroring the map along the change in
cartesian coordinates of the process. Listing 1 shows a 2D



Fig. 4: Ideal communicator usage for a 2D 9-point stencil
(stencils are the core kernels in hypre [54], Smilei [27], and
Pencil [63]). Each box represents a process with 9 threads.
Each thread has 1 patch. Each color-shape combination rep-
resents a communicator. Numbers represent thread IDs.

MPI+OpenMP 5-point stencil that exposes communication
parallelism using communicators. For simplicity, it does not
optimize communicator usage for corner threads. Lines 23—
26 demonstrate the mirroring of communicator assignment to
threads. This mirroring idea extends to the diagonal exchange
in 9-point stencil as well: the user would need to extend
lines 12-17 to create 4 additional sets of communicators—
2 diagonals along the NS boundaries and 2 along the EW
boundaries—each containing as many threads as there on the
edge. Combining the mirroring strategy with the optimization
to use a single communicator for corner threads will achieve
the map illustrated in Figure 4 but at the cost of further
complexity. The user would need to extend lines 23-24 to
mirror the assignment of communicators to threads along both
axes for all directions of exchange. Diagonal communicator
sets require another dimension of mirroring that is exemplified
by thread 1 on the bottom left process (see Figure 4) using
the same communicator for its NE exchange as does thread 1
on the bottom right process for its NW exchange. Optimizing
for reduced communicator usage is important for efficient use
of network resources (see Lesson 3 below).

Lesson 2: Using communicators to expose communica-
tion parallelism is not intuitive.

Continuing on the 2D 9-point stencil example, the intuitive
approach to expose communication parallelism is to create as
many communicators as there are threads and then use com-
municator ¢ for thread i’s send operations and communicator
7 for thread ¢’s receive operations where j is the thread id of
the remote thread that thread ¢ is receiving from. This usage
of communicators is correct, but it exposes only half of the
available parallelism. The communication of adjacent threads
on an edge occur in parallel but the operations of threads
on opposite edges use the same communicator. For example,
in Figure 4, thread 1’s send operation uses communicator 1,

recv_from(proc_rank, tag, comm, xreq, tid)

|

2 if (need _mpi_op(tid))

3 MPI_Irecv(proc_rank, tag, comm, req)
4 else : /x use shared memory x*/

5 send_to (proc_rank, tag, comm, xreq, tid)
6 if (need mpi_op(tid))

7 MPI_Isend(proc_rank, tag, comm, req)
8 else : /* use shared memory =/

9 void main ()

10 /* px*py process grid with txsty local thread grid =/
11 // Create communicators to expose parallelism

12 for (i = 0; i < tx; 1i++)

13 MPI_Comm_dup (COMM_WORLD, &ns_comm_al[i])

14 MPI_Comm_dup (COMM_WORLD, &ns_comm_b[i])
15 for (i = 0; 1 < ty; 1i++)

16 MPI_Comm_dup (COMM_WORLD, &ew_comm_al[i])
17 MPI_Comm_dup (COMM_WORLD, &ew_comm_b[i])

18 /*Neighbor process ranks: n_rank,s_rank,e_rank,w_rankx/
19 #pragma omp parallel num_threads (N_THREADS)
20 |

21 /* Coords in local tx*ty thread grid: tid_x, tid_y =*/
22 // Choose the right communicator to use

23 n_comm = (ry%2) ? ns_comm_b[tid _x] : ns_comm_a[tid_x]
24 s_comm = (ry%2) ? ns_comm_al[tid_x] : ns_comm_b[tid_x]
25 e_comm = (rx%2) ? ew_comm_b[tid_y] : ew_comm_altid_y]
26 w_comm = (rx%2) ? ew_comm_al[tid_y] : ew_comm b[tid_y]
27 for (iter = 0; iter < niters; iter++)

28 recv_from(n_rank, tag_ns, n_comm, &regs[0], tid)

29 /+ recv_from [s_|e_|w_]rank with [s_|e_|w_]comm =/

&reqgs[4], tid)
[s_le_|w_]comm =/

30 send_to (n_rank, tag_ns, n_comm,
31 /* send_to [s_le_|w_]rank with
32 MPI_Waitall (8, regs)

/* Compute after halo exchange x/

Q@ °

(SN
g

Listing 1: 2D 5-point stencil using MPI communicators.

which thread 7 also uses for its receive operations.

Lesson 3: Communicators have high network resource
requirements to expose communication parallelism.

Even if the domain scientist achieves the ideal commu-
nicator usage, the number of communicators required to
express communication parallelism is much higher than the
minimum number of parallel channels required by the com-
munication pattern itself. Such high resource requirements
are concerning on today’s many-core architectures. Consider
the communication pattern of real-world stencil applications
which is typically a 3D 27-point stencil (e.g., hypre). Such
applications decompose their domain into cubical patches. If
[x,y, 2] represents the cubic arrangement of threads in an
MPI process, the least number of communicators needed to
express all of the available logical communication parallelism
is 2zy + 2yz + 2z2 + 8(xy + yz + vz — 1) + 4(zz + yz —
z) + 4(zy + yz — y) + 4(zy + zz — z). The first three
terms represent the directions perpendicular to the 6 faces,
the fourth term represents the 8 corner diagonals, and the
last three terms represent the edge diagonals. In terms of
parallelism alone, however, the minimum number of parallel
communication channels required is zyz—(x—2)(y—2)(z—2)
which is the number of threads communicating inter-node. If
we consider a 64-core processor (e.g., AMD EPYC Rome),
the minimum number of communicators required to express
communication parallelism is 808 (1 process per node with



[4,4, 4] threads per process) which is over 14X higher than
the minimum number of communication channels required by
the 3D 27-pt stencil communication pattern. For this same
pattern, other mechanisms use only as many resources as the
communication pattern requires (see ‘“Mechanism 3 below).
The resource inefficiency of communicators can even hurt
performance on some networks where the number of network
hardware resources is limited (e.g., 160 hardware contexts on
Omni-Path [3]). Prior studies show hypre’s communication
time is over 2x higher with communicators than with other
mechanisms on Omni-Path [68]. In such a scenario, the do-
main scientist is expressing all of the available communication
parallelism and the application is using all of the network
resources, but the observed performance benefit may not be
as expected because of contention on the limited number of
network resources which includes the software overheads of
thread synchronization to access shared network queues [66].

Lesson 4: Overloaded definitions of communicators can
lead to mismatch in expected mapping to the underlying
network parallelism.

A communicator has historically been viewed as a group of
processes or as a means to isolate matching of messages. That
it can double up as a means to express parallelism is a corollary
of its definition. The multiple functions of a communicator can
lead to a mismatch in expected mapping to the underlying
network parallelism. For example, an application can initially
create a set of communicators for grouping different processes
and later use communicators to express parallelism. The MPI
library underneath cannot differentiate between the two and
could end up allocating a significant portion of the underlying
network resources to the communicators used for grouping
different sets of processes, leaving fewer network resources to
map to for logical-parallelism-oriented communicators. MPI
libraries can prevent this type of mismatch in expected map-
ping by introducing hints that allow an application to inform
the library when it is creating communicators for the purposes
of expressing logically parallel communication. But such hints
would be implementation-specific.

Lesson 5: The matching semantics of communicators
limit communication parallelism for irregular and dy-
namic communication patterns.

As shown in Figure 4 and lines 23-26 in Listing 1, appli-
cations must ensure that the sending and receiving threads use
the same communicator. This matching constraint is limiting
for applications where the communication neighborhood of a
thread changes over time, as it does in graph (e.g., Vite [32])
and adaptive mesh refinement applications. This constraint
also holds for applications running on modern task-based
frameworks that exhibit irregular communication patterns.
Figure 5 portrays this limitation for Legion [18] applications.
Legion’s event-based runtime maintains a receiving polling

Node j
n:@w\m\n
B )

s 1 Task

. * ithreads
n:@wvw
H \ Polling
: n thread
NN N+ N+1 [HEERV,V VA V)

D Communicator . Endpoint

Fig. 5: Communicator vs. endpoints for Legion’s runtime that
implements an event-based system using multithreaded point-
to-point communication.

Polling | H
thread : !

thread per node to process incoming requests from the task
threads on other nodes. The multiple task threads on a node
can issue operations using distinct communicators, but the
polling thread is forced to iterate over the communicators to
process all incoming messages. Thus, on a single node, the
polling thread conflicts with the communicators of the task
threads. The polling thread relies on wildcards, and hence
using partitioned operations for this communication pattern
is not straightforward. With endpoints, on the other hand,
the polling thread can use a distinct endpoint, use wildcards,
and satisfy matching requirements. Prior evaluations show that
Legion’s polling thread processes events 1.63x slower with
communicators than with endpoints [68].

Mechanism 2: Tags with hints. The new Info hints in MPI
4.0 allow domain scientists to use tags instead of communi-
cators to express logical parallelism in applications that do
not use certain MPI semantics (see Section II-A). Tags bypass
some of the challenges with communicators, but introduce new
ones. We describe the lessons learned from using tags below.

Lesson 6: Using tags for communication parallelism is
intuitive.

Most MPI+threads applications that use
MPI_THREAD_MULTIPLE already encode thread IDs into
the tags of their communication to differentiate operations
that target different threads on the same target process (e.g.,
hypre and Smilei), indicating that domain scientists intuitively
think of tags as a means of expressing logical parallelism.
Hence, the approach of using tags requires the least amount
of changes to existing applications. These changes would
only be in the form of creating a new communicator with
Info hints that relax unneeded MPI semantics (see Listing 2).

Lesson 7: Achieving optimal multithreaded communica-
tion performance with tags is tedious.

Even though tags and communicators have the same match-
ing constraints, tags can provide more information. Consider
the MPICH library that features multiple virtual commu-



| /» Existing THREAD_MULTIPLE stencil apps =/
2 $§pragma omp parallel num_threads (N_THREADS)
39

4  app_tag = src_tid <<
5 | dst_tid <<
6 app_tag;

7 MPI_Send(dest_proc, tag,
81}

(NUM_TID_BITS + NUM_APP_BITS)
NUM_APP_BITS

app_comm) ;

| /* Leveraging parallelism info in tags of existing apps */
2 //(l) Relax unneeded MPI semantics with MPI 4.0 hints
3MPI_Info_set (info, "mpi_assert_no_any_tag", "true");
4MPI_Info_set (info, "mpi_assert_no_any_source", "true");
5//(2) Achieve optimal mapping with MPI library hints
6MPI_Info_set (info, "mpich_num_vcis", N_THREADS) ;
7MPI_Info_set (info, "mpich_num_tag_bits_vci", NUM_TID_BITS);
8§MPI_Info_set (info, "mpich_place_tag_bits_local_wvci", "MSB");
9MPI_Info_set (info, "mpich_tag_vci_hash_type", "one-to-one");
|0 MPI_Comm_dup_with_info (app_comm, info, &tag par_app_comm);
Il #pragma omp parallel num_threads (N_THREADS)

12 {

13 ... // (Tag encoding same as above)

14 MPI_Send(dest_proc, app_tag, tag_par_app_comm) ;

15}

Listing 2: Exposing logically parallel communication through
existing MPI tags in applications like Smilei and hypre.

nication interfaces (VCIs: network communication channels
mapping to distinct network hardware contexts) [67], and the
hypre library that encodes the IDs of the sending and receiving
threads into the tag along with other application-related infor-
mation. The thread IDs in the tag provide information about
which local and remote VCI to use. But if MPICH does not
know which bits of the tag encode communication parallelism
information, then hypre is at the mercy of how MPICH hashes
the tags into the multiple VCIs allocated to the communicator.
Achieving the optimal mapping to VCIs requires hypre to
inform MPICH which bits encode the sender’s thread ID,
which bits encode the receiver’s thread ID, and how to map the
bits to the underlying VCIs. For example, with a one-to-one
mapping, MPICH can use the sender-thread-bits to map to a
VCI on the host process and the receiver-thread-bits to decide
which VCI to target on the remote process. Such intricate use
of tags requires domain scientists to learn about the Info hints
that are specific to an MPI library (see lines 6-9 in Listing 2).

Lesson 8: Programs that use tags for communication
parallelism may not be portable across MPI libraries.

As discussed above, achieving a high level of control and
flexibility with tags requires a careful use of implementation-
specific Info hints. It is likely that different MPI implemen-
tations will support tag-based and communicator-based mech-
anisms of exposing parallelism in different ways (VCls are
specific to MPICH; CRIs are specific to Open MPI [49]). Since
HPC application developers are geared towards performance-
oriented codes, they are compelled to adopt Info hints to
optimally expose logically parallel communication to an MPI
implementation. Hence, existing MPI mechanisms can result
in reduced portability of codes which is highly undesirable.

Lesson 9: Encoding communication parallelism in tags is
limited by their existing use cases.

End users already use MPI tags for application-related
information. Since the number of bits in a tag is limited,
an application may not be able to encode further parallelism
information into the tag. Encoding parallelism information
with lesser-than-ideal number of bits is bound to hurt per-
formance. Although we have not encountered first-hand an
application that faces such a problem, others have reported
running into tag-overflow issues on prominent applications
(e.g., SNAP [11], Smilei [10], and MITgcm [9]). Such reports
indicate that applications already use a large portion of the tag
space; encoding parallelism information into tags exacerbates
the tag-overflow problem.

Mechanism 3: User-Visible Endpoints. Given their flexi-
ble interface (see Section II-B), endpoints combat the various
concerns associated with communicators and tags to expose
logically parallel point-to-point operations. Below, we delin-
eate the lessons learned from mapping endpoints to different
communication patterns.

Lesson 10: Endpoints are intuitive to use.

Endpoints are an easier alternative to express communi-
cation parallelism even for patterns such as a 3D 27-point
stencil since each local endpoint can flexibly address any
other endpoint through a global endpoint rank. They are
more intuitive to use than communicators because applica-
tion developers are innately familiar with the semantics of
traditional MPI ranks. Users express communication paral-
lelism by communicating between endpoints as they do for
MPI ranks in MPI everywhere programming. Lines 17-20
in Listing 3 shows this MPI-everywhere like addressing in
a 2D MPI+OpenMP 5-pt stencil that exposes communication
parallelism with endpoints. In fact, endpoints provide a level
of flexibility beyond MPI everywhere: threads are not bound
to an endpoint. In other words, endpoints do not enforce an
association between threads and the data they work on; a
thread is free to use any endpoint at any time. Thus, endpoints
map well to tasking frameworks like OpenMP Tasks [25].

Lesson 11: Endpoints distinguish between matching and
parallelism information and thus apply seamlessly to all
types of communication patterns.

Unlike existing MPI mechanisms, user-visible endpoints
separate the task of expressing communication parallelism
from the task of matching operations. Thus, using endpoints
is straightforward even for irregular communication patterns,
such as those of Legion applications (see Figure 5). Endpoints
can flexibly adapt to dynamically changing communication
neighborhoods because threads can address new remote end-
points while using the same local endpoint (lines 22-25



| recv_from(ep_rank, tag, comm, xreq, tid)
2 if (need _mpi_op(tid))

3 MPI_Irecv(ep_rank, tag, comm, req)
4 else /* use shared memory =/

5 send_to (ep_rank, tag, comm, *req, tid)
6 if (need mpi_op(tid))

7 MPI_Isend(ep_rank, tag, comm, req)

8§ else /* use shared memory =/

9 void main ()

10 /x px*py process grid with tx*ty local thread grid =*/
11 // Create as many endpoints as there are threads

12 MPI_Comm_create_endpoints (COMM_WORLD, N_THREADS, info,
13 &comm_ep)

14 #pragma omp parallel num_threads (N_THREADS)

15 {

16 /* Coords in local txxty thread grid: tid_x, tid_y =/
17 n_ep = n_rankxN_THREADS + txx(ty-1) + tid_x;

18 s_ep = s_rank*N_THREADS + tid_x;

19 e_ep = e_rankxN_THREADS + tid_y*tx + tx-1;

20 w_ep = w_ranksN_THREADS + tid_yxtx;

21 for (iter = 0; iter < niters; iter++)

22 recv_from(n_ep, tag_ns, comm_ep[tid], &regs([0], tid)
23 /* recv_from [s_|le_|w_]ep with comm_ep[tid] =/

24 send_to (n_ep, tag_ns, comm_ep[tid], &regs([4], tid)
25 /* send_to [s_le_|w_lep with comm_ep[tid] =/

26 MPI_Waitall(8, reqgs);

27 /+ Compute after halo exchange x/

28}

Listing 3: 2D 5-point stencil using MPI endpoints.

in Listing 3). Additionally, endpoints do not suffer from
overloaded definitions of existing MPI objects. Users do not
need to compromise on the application’s existing use of
communicators or tags.

Lesson 12: Endpoints lead to efficient resource usage and
provide optimal mapping information without sacrificing
portability.

By creating an endpoints communicator, users explicitly
inform the MPI library that the new communicator is for
the purposes of exposing communication parallelism. This
information is baked into the API unlike the implementation-
specific solution of using hints with communicators or tags.
This is why endpoints do not suffer from high resource
requirements either. In the prior example of executing hypre’s
3D 27-point stencil on a 64-core processor, users need to create
only as many endpoints as there are communicating threads,
which is 56, 14.4 x fewer than that required by communicators.
Furthermore, the endpoints mechanism directly provides the
MPI library with all the information needed to optimally
map to the underlying network resources unlike the tag-based
mechanism which requires the application to inform the MPI
library about the specific tag bits that encode logical paral-
lelism information. Since the optimal mapping information can
be derived from a standardized interface, applications would
be portable across MPI implementations.

Mechanism 4: Partitioned Communication. MPI 4.0 in-
troduced the new semantics of partitioned operations for mul-
tithreaded point-to-point communication (see Section II-C).
Like endpoints, partitioned operations promote portability, but
their semantics can limit exposure of parallelism in irregular
and dynamic communication patterns. We expand on our

| test_recv_from(part_id, ~rx_flag, tid)

if (need_mpi_op(tid))
MPI_Parrived (part_id, req,

else /* use shared memory =/
»rx_flag =1

6 send_to (part_id, req, tid)

7 if (need_mpi_op(tid))

8 MPI_Pready (part_id, req)

9 else /+ use shared memory =*/

10 void main ()

req,

rx_flag)

[N NS S)

11 /* px*py process grid with txsty local thread grid

12 Each thread assigned to a tile_xxtile_y tile

13 Neighbor process ranks: n_rank,s_rank,e_rank,w_rankx*/
14 // Create partitioned operations for parallel exchanges
15 MPI_Precv_init (n_rx_buf, tx, tile_x, MPI_DOUBLE, n_rank,
16 tag_ns, COMM_WORLD, info, &reqgs[0])

17 /* MPI_Precv_init for s_rank with tx partitions
18 MPI_Precv_init for [e_|w_]rank with ty partitions =/

19 MPI_Psend_init (n_tx_buf, tx, tile_x, MPI_DOUBLE, n_rank,
20 tag_ns, COMM_WORLD, info, &reqgs[4])
21 /+ MPI_Psend_init for s_rank with tx partitions

22 MPI_Psend_init for [e_|w_]rank with ty partitions =/
23 MPI_Startall(8, reqgs) // Activate all operations
24 $pragma omp parallel num_threads (N_THREADS)

25 {

26 /* Coords in local tx*ty thread grid: tid_x, tid_y =*/
27 for (iter = 0; iter < niters; iter++)

2¢ send_to(tid_x, regs[4], tid)

29 /* send_to s_rank with partition tid_x

30 send_to [e_|w_]rank with partition tid_y =*/

31 while (!n_rx_flag ||!s_rx_flag || 'e_rx_flag

32 |l 'w_rx_flag)

33 test_recv_from(tid_x, regs[0], &n_rx_flag, tid)
34 /* test_recv_from s_rank with part tid_x

35 test_recv_from [e_|w_]rank with part tid_y =/
36 /+ Compute after halo exchange x/

37 #pragma omp single

38 { // Complete the requests before issuing next parts
39 MPI_Waitall (8, regs)

40 } // required implicit thread barrier

41 }

Listing 4: 2D 5-point stencil using MPI partitioned operations.

lessons learned with partitioned operations below.

Lesson 13: Partitioned operations do not overload existing
definitions, and they promote portability of codes.

Partitioned operations provide the same benefits as user-
visible endpoints on two fronts: (a) they do not overload the
definitions of existing MPI objects and hence minimize the
mismatch in expected mapping to network parallelism; (b) they
promote portability of applications across MPI implementa-
tions by their standardization. Unlike endpoints that build on
top of existing MPI semantics, partitioned operations introduce
new semantics. Given that research on partitioned operations
is ongoing, the usability of partitions remains to be seen.

Lesson 14: Partitioned semantics prevent threads from
being completely independent.

The fundamental limitation of partitioned communication
is that all threads (driving the multiple partitions in parallel)
share the same MPI request. So, all threads would either
contend on the MPI library’s resources of the shared request or
coordinate with each other to allow only a single thread to poll



for the completion of a partitioned operation. In either case,
threads will incur contention or synchronization overheads
before issuing their partition of the next message. Lines 37—
40 in Listing 4 shows this synchronization requirement for a
2D MPI+OpenMP 5-pt stencil that exposes communication
parallelism using partitioned operations. Application devel-
opers could use multiple partitioned operations (e.g., double
buffering) to dampen the overhead resulting from the semantic
limitation, but they cannot eliminate them in a manner like the
other two designs can. The implicit point of contention in the
partitioned interface makes an application prone to the known
high overheads of thread synchronization [15], [37], [43],
[53]. It is not yet clear how the synchronization limitations of
partitioned operations can be mitigated in modern applications
where threads operate independently of each other [55], [60].

Lesson 15: Persistence of partitioned operations prevent
them from being used in dynamic and irregular commu-
nication patterns.

In dynamic communication where the destination of a
message is not known apriori, using partitioned operations is
a challenge since they are persistent by definition (lines 15-23
in Listing 4). Also, partitioned receive operations cannot use
wildcards. Modern task-based runtimes (e.g., Legion [60] and
YGM [50]), however, have irregular communication patterns
and rely on wildcards in their polling threads. Mapping parti-
tions to the communication pattern in Figure 5 is challenging.

B. RMA communication

One-sided RMA have no matching semantics. Here, exist-
ing MPI mechanisms and user-visible endpoints are equally
straightforward to use, but they each have unique concerns.
The efficacy of partitioned operations for one-sided commu-
nication is yet to be studied.

Lesson 16: Where the semantics of existing MPI mech-
anisms limit the exposure of logically parallel atomic
operations, those of endpoints achieve optimal mapping
of operations to the underlying network parallelism.

Using windows to expose communication parallelism con-
strains the parallelism information with MPI’s atomicity se-
mantics. This constraint limits the user from explicitly ex-
posing logically parallel atomic operations within a sin-
gle window even when the application does not need
them to be ordered. Consider NWChem’s get-compute-
update pattern for its block-sparse matrix multiplication [57],
[67] where a thread uses MPI_Get operations to retrieve
the tiles it needs and, after the multiplication, uses an
MPI_Accumulate operation to update the destination tile
(see Figure 6). The MPI_Accumulate operations in a
multithreaded process must use a single window for correct
atomicity. Even though these parallel operations are indepen-
dent, users have no way to explicitly expose this parallelism.

Parallel Gets Parallel Accumulates

Process i

Process i

DWindow
Endpoint [t i
N o

Fig. 6: MPI+threads communication parallelism in NWChem’s
block-sparse matrix multiplication.

The best they can do is relax MPI’s ordering constraint
(accumulate_ordering=none) and rely on the MPI
library’s hashing policies to map operations to parallel network
channels. Any hashing policy, however, is prone to collisions
and will prevent some operations from mapping to distinct
network channels. With user-visible endpoints, on the other
hand, users can use multiple endpoints within a single window
to expose communication parallelism and maintain atomicity.

Lesson 17: There exists preconceived notions in the
MPI community about endpoints being direct handles to
network resources.

A common misconception in the MPI community is to
view endpoints as direct handles to network resources. This
concern holds not just for RMA operations but also for
point-to-point operations. As a result, the endpoints design
is sometimes incorrectly regarded as a way for MPI libraries
to dump the responsibility of managing network resources on
the domain scientist which would in turn reduce the portability
of applications. One explanation for this concern is the usage
of the term “endpoints,” which is typically associated with
“network endpoints.” The fact that user-visible endpoints were
introduced for the purposes of utilizing network parallelism
is likely to have exacerbated the misconception. User-visible
endpoints are not handles to network resources, rather they
are a means to flexibly express communication parallelism.
Their usage is separate from the MPI library’s task to map
the exposed parallelism to the underlying parallel network
resources. With the endpoints solutions, applications would
create as many endpoints as there are streams of logically
parallel communication. The MPI library would then funnel
the streams of logically parallel communication on distinct
network hardware contexts depending on their availability.

C. Collective communication

Research towards implementing collectives in a hybrid
MPI+threads environment has primarily revolved around hier-
archical algorithms where threads first implement the collec-
tive (e.g., allreduce) amongst themselves and then one thread
on each node participates in the internode collective [46],
[69]. Recent studies using a fast MPI+threads library (Intel
MPI 2019 [4]), however, demonstrate performance benefits
when multiple threads drive a collective in parallel [20],
[64]. Although existing MPI semantics require collectives
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Fig. 7: Existing mechanisms vs. user-visible endpoints for collectives (e.g., multithreaded Allreduce in VASP [64]).

on a communicator to be issued serially, applications may
partition the collective-data of a process across threads and
issue parallel collectives on the different data segments using
a distinct communicator for each thread (e.g., VASP collectives
observe a speedup of over 2x with such an approach [64]).

Lesson 18: Users need to perform the intranode portion
of a collective with existing MPI mechanisms, but not
with endpoints or partitioned operations.

With existing MPI mechanisms, users need to perform
the intranode portion of the collective (see Figure 7). For
example, in an allreduce collective, the user needs to perform
a reduction step after all threads have completed the internode
part of the allreduce. With user-visible endpoints or partitioned
operations, on the other hand, the collective is only one step—
all threads participate in a collective of the same communicator
through different endpoints or partitions. The MPI library
then conducts both the internode and intranode parts of the
collective before returning from the operation. Although the
performances of the two approaches are yet to be compared,
we note that, from a design perspective, the endpoints and
partitioned approaches are better because they do not force the
user to manually handle the intranode portion of a collective.
Arguably, shared-memory programming models feature direct
support for collectives between threads; for example, OpenMP
supports a reduction operation through compiler directives.
But such support does not apply to all types of collective
communication that MPI features (e.g., MPI_Alltoall).
A naive implementation for such cases is likely to hurt
performance for high thread counts (relevant on existing and
upcoming many-core processors). Efficiently implementing a
collective is not a trivial task; researchers have spent numerous
efforts into optimizing collectives [22], [39]. Manually imple-
menting tree-style and bucket algorithms is a tedious task that
could instead be handled by the MPI library as is the case in
the user-visible endpoints and partitioned operations designs.

Lesson 19: Unlike existing MPI mechanisms and parti-
tioned operations, user-visible endpoints lead to dupli-
cated buffers on a node for some collectives.

The interface of user-visible endpoints results in duplication
of data per node in cases where the result of the collective
is the same across all ranks participating in the operation

(e.g., allreduce, broadcast, etc.). The destination buffers of the
endpoints on a single process contain the same values (like
MPI everywhere where each process features a copy of the
resulting buffer) when only one such buffer is needed since
all threads can directly read from the single buffer. With com-
municators, on the other hand, such duplication does not exist.
For example, the user can perform an intra-node reduction into
a single buffer that all threads can read from. The partitioned
communication interface overcomes the duplication issue with
endpoints. Each partition of a partitioned collective would be
different sections of the input buffer. With threads driving
distinct partitions, the MPI library would implement both
the intranode and internode portion of a collective, and each
process would host only one buffer that contains the result of
the collective. We note, however, that we have yet to identify
a case where an MPI everywhere application has run out of
memory solely because of duplication of a collective’s result-
ing data. Hence, the duplication of data in collectives with
user-visible endpoints is not as concerning as the duplication
of domain-level data that has caused applications to run out of
memory with MPI everywhere. Furthermore, the duplication
does not hold for collectives where the result of the collective
is different for different ranks (e.g., alltoall).

D. Heterogenous computing environments

The discussion in this paper so far has largely been in
the context of (CPU-initiated) MPI+threads communication
because the performance-oriented studies of the designs in the
context of accelerators are yet to be conducted. Nevertheless,
we briefly discuss how the different designs compare and apply
to heterogeneous computing environments. Today’s distributed
applications that use accelerated computing have to largely
rely on the control transferring back to the CPU from the accel-
erator (e.g., GPU) before exchanging data with remote nodes.
The system and runtime overheads (e.g., GPU kernel launch
latencies), however, limit the parallel efficiency of an accel-
erated application. One way to combat the scalability issue is
to initiate communication from the accelerator. Technologies
like NVSHMEM [42] and ROC_SHMEM [36] support GPU-
initiated communication for the OpenSHMEM [23] program-
ming model. GPU-initiated (point-to-point) MPI communica-
tion, however, remains an open problem. Executing MPI’s
matching engine on the GPU is known to be expensive [45].



Lesson 20: Partitioned operations provide lightweight
interfaces for device-initiated communication; the other
two designs do not.

Out of the three designs, partitioned operations are best
suited for high-speed device-initiated point-to-point opera-
tions. Through its non-critical-path P [send|recv]_init
APIs, partitioned communication enables most of the serial
overhead of setting up a low-level network message to be
executed on a low-latency CPU core (before kernel launch)
rather than a high-latency GPU compute unit. GPU thread
blocks would then trigger or check for arrival of partitions
with the lightweight Pready and Parrived operations [1].
Nonetheless, the limitations of partitioned operations described
in Lessons 14 and 15 apply to heterogeneous computing
scenarios as well—program control would need to return
back to the CPU (e.g., to execute an MPI_Wait) before
the GPU can issue the next partitions of a message. Such
repeated transfers of control will re-introduce device runtime
overheads that device-initiated communication aims to address
in the first place. Extensions that enable MPI operations to be
enqueued into accelerator’s work queues (similar to Nvidia’s
NCCL runtime [7]) may reduce such runtime synchronization
overheads. These extensions, however, could apply to existing
MPI objects and user-visible endpoints too.

Another way for applications to combat the device runtime
overheads that hurt scalability is to use persistent GPU kernels
that offload communication operations to the faster CPU cores
through lightweight atomics or flags. How such an approach
compares to device-initiated communication remains to be
seen. Such application-level techniques are promising given
the move towards system architectures with tightly integrated
CPUs and GPUs where the latency to communicate between
the two types of PUs will diminish [8], [61].

Furthermore, the benefits of device-initiated communication
either compared to or in conjuction with techniques that lever-
age smart NICs or network hardware tag matching remains to
be seen. All in all, the lessons from this paper remain relevant
for heterogeneous computing environments moving forward.

IV. MEETING THE NEEDS OF DOMAIN SCIENTISTS

“Rule of thumb for UX: More options, more problems.”
— Scott Belsky
Table I shows a summary of the design choices to expose
logically parallel communication for different types of MPI
operations. With existing MPI mechanisms, users have to be
aware of a multitude of options since each mechanism does
not uniformly apply to all communication types and patterns.

Domain scientists need to be aware about the mechanisms
that become available when hints relax different semantics.
Furthermore, each mechanism poses unique challenges: using
communicators is hard because of MPI’s matching seman-
tics; the optimal use of tags is highly dependent on MPI
implementation-specific hints; windows may not allow users to
optimally expose the available communication independence.

The new partitioned communication interface also poses
challenges to the user. The new semantics of partitions and
the large expansion in MPI’s API space indicate a multitude
of options for the user to learn about and choose from. The
interface is challenging to use for dynamic and irregular com-
munication patterns especially those that use wildcards. More
important, the semantic limitations of the interface prevent the
user from achieving complete independence between threads.

One way to combat the limitations of the interfaces in MPI
4.0 is to design an abstraction on top of MPI that allows
users to seamlessly expose communication independence in a
user-friendly manner. The abstract layer would then use MPI
4.0 mechanisms underneath with MPI-implementation specific
hints where needed (analogous to how different interconnects
support the Open Fabrics Interfaces (OFI) [35] API through
their own OFI providers). The challenge of such an abstraction
is the design of an interface that applies to all communication
patterns. The interface of user-visible endpoints is in fact an
example of such a general abstraction; other forms remain to
be investigated. But, more important, the implementation of
any abstraction faces the semantic constraints of both existing
MPI mechanisms (e.g., matching semantics of communicators)
and partitioned operations (e.g., no wildcards).

In contrast, with user-visible endpoints, the interface that has
not been standardized yet, users need to be aware of only one
mechanism: endpoints, which applies uniformly to all types of
MPI operations. Endpoints provide a flexible, straightforward
interface for users to express logically parallel communication
in a way that they are already familiar with (i.e., using ranks).
The concern with user-visible endpoints is a misimpression
among domain experts about what endpoints represent. A
reason for this is that the terminology in the MPI Endpoints
proposal is oriented towards the community of MPI library
developers. Since the ultimate goal of the proposal is to aid the
domain scientist to express logically parallel communication,
it is imperative that the proposal be user-facing.

To resonate with domain experts, we suggest rebranding’
the proposal to MPI Rankpoints since it emphasizes that users
can create multiple MPI ranks within a process. The goal is

IRebranding techniques have proven to be successful with many technolo-
gies (e.g., Android, Airbnb, etc.).

TABLE I: Summary of design choices to expose logically parallel communication (TBD: to be defined).

Operation Existing MPI mechanisms User-Visible Endpoints Partitioned Communication
Point-to-point Communicators or tags Endpoints Partitioned point-to-point APIs
RMA Window(s) Endpoints Partitioned RMA APIs (TBD)
Collective Communicators + Endpoints Partitioned collective APIs (TBD)
user-driven intra-node collective




to educate and reinforce the understanding that rankpoints are
not handles to network resources, rather they are a flexible,
straightforward means of expressing parallelism that promotes
portability of applications. While it requires one new API—
MPI_Comm_create_rankpoints—it prevents the limita-
tions of existing MPI mechanisms and partitioned operations.
Rebranding is more than just a change in the name of the
proposal. It requires a concerted effort by the MPI community
in re-education through venues such as presentations and
tutorials at flagship conferences and workshops.

V. CONCLUDING REMARKS

”People ignore design that ignores people.”
— Frank Chimero

MPI+threads is a critical model to program the many-core
processors of the current HPC clusters and the upcoming ex-
ascale systems. It is imperative that applications perform pro-
ductively with it. The key to achieving high performance with
MPI+threads requires effort from both MPI library developers
and application developers. Recently, MPI libraries have made
significant strides in this regard, and now the ball is in the court
of domain scientists to expose communication parallelism to
utilize the new fast MPI+threads libraries. Domain scientists,
however, face many programming challenges (Lessons 1-5, 7—
9, 14-16, 18) with the designs present in MPI 4.0 with respect
to exposing the communication independence between threads.
These solutions have their own merits (Lessons 6, 13, 20), but
we show that they do not meet the needs of key communication
patterns sufficiently. The MPI Rankpoints alternative, on the
other hand, elegantly addresses the various limitations of the
designs in MPI 4.0. MPI Rankpoints has its own challenges
(Lessons 17 and 19), but its benefits (Lessons 10-12, 16, 18)
prove to be a seamless option for domain scientists given that
the design applies generally to all communication patterns. The
lessons in this paper show that MPI Rankpoints, or a solution
that is as flexible, warrants continued consideration as a viable
solution for the MPI+threads programming model.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

Although this paper is not a performance-oriented study, it is mo-
tivated by performance studies that we had previously conducted
(references 65, and 66 in the paper submission). We included results
from our prior performance studies in a format relevant for this
paper (for completeness) in Figure 1. These experiments in Figure
1 were all conducted on the Bebop cluster at Argonne National
Laboratory on both of its bdw (Intel Broadwell processors) and knl
(Intel Knights Landing processors) partitions. The servers in both
partitions are connected with the Intel Omni-Path interconnect.
Figures 1(a) (Artifact 1) and 1(c) (Artifacts 3 and 4) were run on Be-
bop’s bdw partition, and Figure 1(b) (Artifact 6) was run on Bebop’s
knl partition.

The primary purpose of the attached artifacts is not the repro-
ducibility of the performance studies published in our prior studies,
but to back our claims of implementing the different mechanisms
of exposing logically parallel communication in the various appli-
cations which is the main focus of our paper.

Our prior performance experiments were conducted during our
design and development of a new MPI library (Artifacts 1 and 2)
for MPI+threads, and during our performance evaluation of appli-
cations (Artifacts 3-8) using the new MPI library. The experiments
related to MPI library designs were primarily conducted on the
Skylake (Intel Skylake processors) and Gomez (Intel Haswell pro-
cessors) clusters at the Joint Laboratory for System Evaluation
(JLSE) at Argonne National Laboratory. At the time of the perfor-
mance experiments, the clusters featured different interconnects:
Skylake servers were interconnected with Intel Omni-Path, and
Gomez servers were interconnected with Mellanox InfiniBand (IB)
EDR. NWChem’s BSPMM (discussed in Figure 7 and Section III-B)
was evaluated on JLSE’s Gomez cluster. The hypre and Uintah appli-
cations (discussed in Section III-A) were evaluated on Bebop’s knl
partition (described above). The Legion-based Circuit application
(discussed in Figure 5) was evaluated on Bebop’s bdw partition
(described above). The WOMBAT application was evaluated on
the HPC3 cluster at the University of California, Irvine. The HPC3
cluster features Intel Skylake nodes that are interconnected using
Mellanox IB EDR.

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1

Persistent ID: https://doi.org/10.5281/zenodo.6941794
Artifact name: Multi-VCI MPICH for fast MPI+threads (OFI netmod)

Artifact 2

Persistent ID: https://doi.org/10.5281/zenodo.6941795

Artifact name: Multi-VCI MPICH for fast MPI+threads (UCX net-
mod)

Artifact 3
Persistent ID: https://doi.org/10.5281/zenodo. 6941805

Artifact name: Hypre linear solver with logically parallel communi-
cation

Artifact 4

Persistent ID: https://doi.org/10.5281/zenodo. 6941807

Artifact name: Uintah using hypre with logically parallel communi-
cation.

Artifact 5

Persistent ID:  https://archive.softwareheritage.org/
swh:1:dir:1303d1809238257a980ba5067a4f3e8f2cf40eb9

Artifact name: WOMBAT with logically parallel communication

Artifact 6

Persistent ID: https://doi.org/10.5281/zenodo.6941812

Artifact name: Legion’s MPI backend with logically parallel com-
munication

Artifact 7

Persistent ID: https://doi.org/10.5281/zenodo. 6941820

Artifact name: NWChem’s BSPMM with logically parallel commu-
nication

Artifact 8

Persistent ID: https://doi.org/10.5281/zenodo.6941816

Artifact name: MPI+threads microbenchmarks with logically paral-
le] communication

Reproduction of the artifact without container: The provided arti-
facts are MPI applications that use a modified MPI library. Hence,
the primary requirements for building the artifacts are OFED li-
braries which involve kernel modules. Additionally, we no longer
have access to the machines (Bebop and JLSE) on which the perfor-
mance numbers for Figure 1 were collected.

More importantly, the primary contributions of our paper are not
performance evaluations of applications, rather they are qualitative
comparisons of the different mechanisms of exposing logically par-
allel communication in MPI+threads applications. The quantitative
performance-oriented comparisons of the different mechanisms
were published in our prior publications (references 65 and 66).

Regardless, here are the steps to reproduce the results in Figure
1(a).

1) Build Artifact 1 using ‘../configure —with-device=ch4:ofi:psm2
—with-libfabric=/path/to/your/libfabric/psm2-install -
prefix=/path/to/your/install/ —enable-thread-cs=per-vci —enable-
ch4-direct=netmod —with-ch4-max-vcis=X —enable-fast=03 &&
make -j install’

2)  Build  pt2pt/multiple_isir_waitall mbw_mr.c  and
pt2pt/single_isir_waitall mbw_mr.c in Artifact 8 using ‘make multi-
ple_isir_waitall_mbw_mr‘ and ‘make single_isir_waitall mbw_mr"
respectively.

3) To run the microbenchmark with 16 threads and logically
parallel communication, use ‘mpiexec -n 2 -ppn 1 -f ${HOSTFILE}
-env MPIR_CVAR_CH4 OFI_ MAX_VNIS 16 -env OMP_PLACES



cores -env OMP_PROC_BIND close -env HFI_NO_CPUAFFINITY
1 ./multiple_isir_waitall_mbw_mr -S 8 -T 16°

4) To run the microbenchmark with 16 threads but with-
out logically parallel communication, use ‘mpiexec -n 2 -ppn
1 -f ${HOSTFILE} -env MPIR_CVAR_CH4_OFL MAX_ VNIS 1 -
env OMP_PLACES cores -env OMP_PROC_BIND close -env
HFI_NO_CPUAFFINITY 1 ./multiple_isir_waitall_mbw_mr -S 8
-T 16°

5) To run the microbenchmark with equivalent (16 cores) MPI
everywhere parallelism, use ‘mpiexec -n 32 -ppn 16 -f ${HOST-
FILE} -env MPIR_CVAR_CH4_OFI_MAX_VNIS 1 -bind-to core -env
HFI_NO_CPUAFFINITY 1 ./single_isir_waitall mbw_mr -S 8°

The apps in both Figures 1(b) and 1(c) use the MPI library in
Artifact 1 (see build instructions for it above). The build instructions
for Uintah+hypre (Figure 1(b)) and Circuit Legion (Figure 1(c)) are
in the READMEs of Artifacts 3, 4, and 6.

To run Uintah+hypre with the multi-VCI MPICH on 8
nodes with 1 process per node and 64 threads per pro-
cess with logically parallel communication: ‘mpiexec -n 8 -
ppn 1 -f ${HOSTFILE} -env HFI NO_CPUAFFINITY 1 -env
MPIR_CVAR_CH4_OFI_MAX_VNIS 64 -env OMP_NESTED true
-env. OMP_PROC_BIND “spread,spread” -env  OMP_PLACES
threads -env OMP_NUM_THREADS 64 -env HYPRE_TAG "6,12"
/${BINARY} -xthreads 4 -ythreads 4 -zthreads 4 -teamsize 1
8nodes_ RMCRT_bm1_DO_solvertest.ups’

To run Uintah+hypre with the multi-VCI MPICH on 8
nodes with 1 process per node and 64 threads per pro-
cess without logically parallel communication: ‘mpiexec -n
8 -ppn 1 -f ${HOSTFILE} -env HFI_NO_CPUAFFINITY 1 -
env MPIR_CVAR_CH4_OFI_MAX_VNIS 1 -env OMP_NESTED
true -env OMP_PROC_BIND "spread,spread" -env OMP_PLACES
threads -env OMP_NUM_THREADS 64 -env HYPRE_TAG "6,12"
/${BINARY} -xthreads 4 -ythreads 4 -zthreads 4 -teamsize 1
8nodes_ RMCRT_bm1_DO_solvertest.ups’

To run Uintah+hypre with MPI everywhere parallelism
on 8 nodes with 64 processes per node: mpiexec -n 512 -
ppn 64 -f ${HOSTFILE} -env HFI_NO_CPUAFFINITY 1 -env
MPIR_CVAR_CH4_OFI_MAX_VNIS 1 -env OMP_NESTED true -
env OMP_PROC_BIND "spread,spread" -env OMP_PLACES threads
-env OMP_NUM_THREADS 1 -bind-to core ./1_mpi -npartitions 1
-nthreadsperpartition 1 8nodes_ RMCRT_bm1_DO_solvertest.ups

To run Uintah+hypre with the multi-VCI MPICH on 8 nodes
with 1 process per node and 64 threads per process: ‘mpiexec
-n 8 -ppn 1 -f ${HOSTFILE} -env HFI_NO_CPUAFFINITY 1 -
env MPIR_CVAR_CH4_OFI_MAX_VNIS 64 -env OMP_NESTED
true -env OMP_PROC_BIND "spread,spread” -env OMP_PLACES
threads -env. OMP_NUM_THREADS 64 -env HYPRE_TAG
"6,12" ./2_ep -xthreads 4 -ythreads 4 -zthreads 4 -teamsize 1
8nodes_ RMCRT_bm1_DO_solvertest.ups’

To run Circuit Legion on N nodes with logically paral-
lel communication: mpiexec -n ${N} -ppn 1 -f ${HOSTFILE} -
env MPIR_CVAR_CH4_OFI_MAX_VNIS 10 ./circuit -p ${N} To
run Circuit Legion on 128 nodes without logically parallel
communication: mpiexec -n ${N} -ppn 1 -f ${HOSTFILE} -env
MPIR_CVAR_CH4_OFI_MAX_VNIS 1 ./circuit -p ${N}

Artifacts 3-7 contain READMEs that provide instructions on
building the applications.
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