

the other mechanisms allow and promote.

Out of the three approaches, two have been introduced in

MPI 4.0 and at least one of them allows users to expose

complete independence between threads. So, does this mean

MPI’s end users are satisfied? As is the case with the success

of any technology, the answer lies with the end users, the

domain scientists. We show that MPI 4.0 does not meet the

needs of MPI+threads applications, and that it introduces

new problems. The current solutions in MPI 4.0 may be

stepping stones to alleviating the performance of MPI+threads

communication, but they are not sufficient by themselves.

In this paper, we compare the strengths and limitations of

the designs (described in Section II) with respect to their

applicability to MPI’s point-to-point, RMA, and collective

communication. Our comparison (see Section III) is cen-

tered around the lessons learned from evaluating a variety

of different types of MPI+threads applications. Guided by

both quantitative (in [67], [68]) and qualitative (this paper)

comparisons of the different interfaces, in Section IV, we

discuss a future direction that would enable applications to

achieve not just high scalability and performance, but also

high productivity with the MPI+threads programming model.

II. THE THREE DESIGNS FOR MPI+THREADS

COMMUNICATION

In this section, we describe how the three designs can

expose communication independence between threads, and

discuss their motivations and their implementation evaluations.

A. Existing MPI mechanisms

With existing MPI objects, such as communicators, tags, and

windows, users can expose relatively unordered operations for

all types: point-to-point, RMA, and collectives.

Communicators apply to collective and point-to-point com-

munication. For the former, MPI requires collectives to be

issued serially on a communicator. Hence, users can issue col-

lectives in parallel on a process only on distinct communica-

tors. For two-sided operations, MPI specifies a nonovertaking

order and uses the hcommunicator, rank, tagi triplet to match

operations. Two or more operations issued using different com-

municators cannot match the same target operation and hence

imply no relative ordering; such operations are logically par-

allel. Operations that share a communicator but use different

ranks or tags, however, are not logically parallel because of the

possibility of wildcards (e.g., MPI_ANY_TAG) on the receive

side. Hence, the only way to expose logical communication

independence for point-to-point operations with MPI’s default

semantics is through the use of multiple communicators.

Tags with hints. MPI 4.0 features new Info

hints that allow an application to relax semantics

it does not need. Info hints relevant to this paper

include mpi_assert_allow_overtaking,

mpi_assert_no_any_tag, and

mpi_assert_no_any_source. The first, when set,

informs the MPI library that the operations do not need to

be matched in the order that they were posted. This Info

hint is beneficial when the application requires wildcards but

does not require the MPI library to maintain the order of

matching. With the nonovertaking order relaxed, two or more

send operations using different tags are logically parallel even

if they use the same communicator and address the same

target process. Because of wildcards, however, similar receive

operations are not logically parallel. If the application does

not require wildcards, the domain scientist can set the other

two hints to relax the wildcard’s constraints. Without any

wildcards, two or more operations (both send and receive)

that use the same communicator, address the same process,

but use different tags can never match with the same target

operation. Hence, such operations are logically parallel.

Windows apply to MPI’s RMA operations. By default, MPI

maintains program order only for its atomic operations (e.g.,

MPI_Accumulate) originating from the same source and

targeting the same memory location on the same window.

Otherwise, both atomic and nonatomic RMA operations (e.g.,

MPI_Put) on different windows are unordered. Although

nonatomic operations are logically parallel in any case, users

need to be wary of mixing synchronization and initiation

operations in parallel on the same window. For example, if one

thread is waiting inside MPI_Win_flush and another con-

tinuously issues MPI_Get operations, the first thread might

block indefinitely. To overcome such cases and explicitly

expose parallelism for any type of RMA operation, users have

the option of using distinct windows for different threads.

By mapping the communication independence exposed by

the above mechanisms to the underlying network parallelism,

recent research demonstrates that MPI+threads applications

can indeed achieve scaling communication throughput that

matches that of MPI everywhere [49], [67], [68]

B. User-visible Endpoints

Researchers had initially proposed to extend the MPI stan-

dard to introduce user-visible MPI endpoints [28]. With a new

API, users can create communicators with multiple endpoints

(see Figure 2). This API creates a new communicator (context

ID) from an existing one, parent_comm, and provides

my_num_ep number of handles to the new communicator.

Each handle is addressable with a distinct rank. For all opera-

tions, users would specify the local endpoint to use using one

of the returned handles (new_comm_handles) and address

a target endpoint using the endpoint’s rank, a global index of

the endpoint, making endpoints a flexible interface. One could

then use an endpoints communicator to create endpoints for

other MPI objects such as windows and files [5].

Each endpoint takes on the semantics of an MPI rank. Like

messages originating from different processes, messages from

different endpoints are unordered and hence logically parallel.

If the user maps each thread to a distinct endpoint, then all

1 MPI_Comm_create_endpoints(parent_comm, my_num_ep, info,

new_comm_handles)

Fig. 2: API to create a communicator with multiple endpoints.

threads are directly addressable. Given their flexible interface,

user-visible endpoints represent the upper bound in expressing

the communication parallelism available in an application.

Several efforts show scaling multithreaded communication

throughput with user-visible endpoints [29], [40], [58].

One of the notions on which the endpoints proposal was

suspended was that some networking hardware may not be

able to optimize the creation of new network addresses (for

new endpoints) after initializing the MPI library [29]. We

note, however, that the new MPI libraries have addressed this

problem by creating a pool of network resources during the

initialization phase [49], [67]. Such implementations then map

logical entities like endpoints to physical network resources.

C. Partitioned Communication

MPI 4.0’s partitioned communication interface allows users

to specify a persistent message with multiple partitions. Each

partition contributes to a single message, and the contributions

could occur in parallel from multiple threads. Users define the

operation’s characteristics (e.g., number of partitions, tag, etc.)

outside the critical path, and then contribute the individual

partitions of the message whenever a thread is ready to com-

municate (see Figure 3). MPI 4.0 contains APIs to describe

standard-mode send and receive operations only, but the idea

can extend to other modes of point-to-point operations and

even RMA and collective operations [41]. These extensions

will require their own set of APIs to define the partitioned

communication equivalent for each operation.

1 MPI_Psend_init(buf, num_partitions, count, datatype,

2 dest, tag, comm, info, request)

3 MPI_Precv_init(buf, num_partitions, count, datatype,

4 source, tag, comm, info, request)

5 MPI_Pready(partition, request)

6 MPI_Parrived(partition, request, flag)

Fig. 3: New APIs to create and use standard mode send and

receive partitioned communication operations.

Partitioned communication was introduced to combat the

message-matching overheads in multithreaded communication.

Message matching is a costly serial operation [56]. If n

threads use the same communicator (“MPI+threads (Original)”

in Figure 1), the overhead of message matching grows by

O(n). Since partitioned operations share a persistent message,

they incur a message matching overhead of only O(1) for

n threads driving the multiple partitions of the message.

Research implementations have demonstrated performance

benefits of partitioned operations especially for large partitions

even with older MPI libraries that do not capitalize on parallel

network resources [30], [34]. Partitioned operations are suited

to benefit from the capabilities of the new MPI libraries

(multiple partitions could map to distinct network resources),

but such a study has not been conducted yet. More important,

how partitioned operations compare to the other mechanisms

of exposing logically parallel communication where message

matching is not a concern (due to a distinct matching engine

per communication channel [49], [67]) remains to be seen.

III. APPLICATION-CENTRIC COMPARISONS OF

THE THREE DESIGNS

In this section, we discuss how the different designs (see

Section II) compare against each other with respect to two

key metrics: ease of use (which reflects the productivity of

domain scientists), and applicability to different MPI opera-

tions (which measures the scope of the designs). We map the

communication patterns of key applications to the different

design choices to make such a comparison. In the pro-

cess of doing so, we collaborate with application developers

from a variety of institutions including University of Utah

(stencil communication in the hypre linear solver used by

Uintah [54]), Maison de la Simulation (stencil communication

in Smilei [27]), Pacific Northwest National Laboratory (graph

communication in Vite [33]), University of California, Irvine

(stencil communication in Pencil [63]), HPE (RMA communi-

cation in WOMBAT [47]), and Argonne National Laboratory

(Legion’s MPI backend [6]). We organize our discussion below

by the lessons learned from comparing the different designs.

A. Point-to-point communication

Mechanism 1: Communicators. Using distinct communi-

cators is the most explicit way to express logically parallel

communication for point-to-point operations with MPI’s de-

fault semantics (see Section II-A). We discover, however, that

communicators pose several challenges: complexity, high re-

source usage, and lack for flexibility for irregular and dynamic

communication patterns. We detail our lessons learned below.

Lesson 1: Exposing logically parallel communication

with communicators is a complex task due to its matching

requirements.

To understand the first lesson, let us consider a relatively

simple example of a static (communication pattern of each

thread is fixed) 2D 9-point stencil. Figure 4 shows the ideal

communicator usage—minimum number of communicators

with all of the available parallelism exposed—for such a com-

munication pattern. For a given direction of communication,

we have as many communicators as there are communicating

threads on the edge (a plane in 3D) since the operations of the

threads are independent. The threads on a corner, however, use

a single communicator for all directions since their operations

for the different directions occur serially. The mapping of

communicators to threads is not the same on each process. For

example, thread 7 of the bottom-left process in Figure 4 must

use a communicator for its north-south communication that is

different from the communicator that thread 7 on the top-left

rank uses for the same north-south direction. This difference

in communicators prevent threads 1 and 7 on a process from

using the same communicator and serializing their commu-

nication. In other words, given a map of communicators for

the threads of a given process, the map for other processes

can be derived by mirroring the map along the change in

cartesian coordinates of the process. Listing 1 shows a 2D

Fig. 4: Ideal communicator usage for a 2D 9-point stencil

(stencils are the core kernels in hypre [54], Smilei [27], and

Pencil [63]). Each box represents a process with 9 threads.

Each thread has 1 patch. Each color-shape combination rep-

resents a communicator. Numbers represent thread IDs.

MPI+OpenMP 5-point stencil that exposes communication

parallelism using communicators. For simplicity, it does not

optimize communicator usage for corner threads. Lines 23–

26 demonstrate the mirroring of communicator assignment to

threads. This mirroring idea extends to the diagonal exchange

in 9-point stencil as well: the user would need to extend

lines 12–17 to create 4 additional sets of communicators—

2 diagonals along the NS boundaries and 2 along the EW

boundaries—each containing as many threads as there on the

edge. Combining the mirroring strategy with the optimization

to use a single communicator for corner threads will achieve

the map illustrated in Figure 4 but at the cost of further

complexity. The user would need to extend lines 23–24 to

mirror the assignment of communicators to threads along both

axes for all directions of exchange. Diagonal communicator

sets require another dimension of mirroring that is exemplified

by thread 1 on the bottom left process (see Figure 4) using

the same communicator for its NE exchange as does thread 1

on the bottom right process for its NW exchange. Optimizing

for reduced communicator usage is important for efficient use

of network resources (see Lesson 3 below).

Lesson 2: Using communicators to expose communica-

tion parallelism is not intuitive.

Continuing on the 2D 9-point stencil example, the intuitive

approach to expose communication parallelism is to create as

many communicators as there are threads and then use com-

municator i for thread i’s send operations and communicator

j for thread i’s receive operations where j is the thread id of

the remote thread that thread i is receiving from. This usage

of communicators is correct, but it exposes only half of the

available parallelism. The communication of adjacent threads

on an edge occur in parallel but the operations of threads

on opposite edges use the same communicator. For example,

in Figure 4, thread 1’s send operation uses communicator 1,

1 recv_from(proc_rank, tag, comm, *req, tid) :

2 if (need_mpi_op(tid)) :

3 MPI_Irecv(proc_rank, tag, comm, req)

4 else : /* use shared memory */

5 send_to(proc_rank, tag, comm, *req, tid) :

6 if (need_mpi_op(tid)) :

7 MPI_Isend(proc_rank, tag, comm, req)

8 else : /* use shared memory */

9 void main() :

10 /* px*py process grid with tx*ty local thread grid */

11 // Create communicators to expose parallelism

12 for (i = 0; i < tx; i++) :

13 MPI_Comm_dup(COMM_WORLD, &ns_comm_a[i])

14 MPI_Comm_dup(COMM_WORLD, &ns_comm_b[i])

15 for (i = 0; i < ty; i++) :

16 MPI_Comm_dup(COMM_WORLD, &ew_comm_a[i])

17 MPI_Comm_dup(COMM_WORLD, &ew_comm_b[i])

18 /*Neighbor process ranks: n_rank,s_rank,e_rank,w_rank*/

19 #pragma omp parallel num_threads(N_THREADS)

20 {

21 /* Coords in local tx*ty thread grid: tid_x, tid_y */

22 // Choose the right communicator to use

23 n_comm = (ry%2) ? ns_comm_b[tid_x] : ns_comm_a[tid_x]

24 s_comm = (ry%2) ? ns_comm_a[tid_x] : ns_comm_b[tid_x]

25 e_comm = (rx%2) ? ew_comm_b[tid_y] : ew_comm_a[tid_y]

26 w_comm = (rx%2) ? ew_comm_a[tid_y] : ew_comm_b[tid_y]

27 for (iter = 0; iter < niters; iter++) :

28 recv_from(n_rank, tag_ns, n_comm, &reqs[0], tid)

29 /* recv_from [s_|e_|w_]rank with [s_|e_|w_]comm */

30 send_to(n_rank, tag_ns, n_comm, &reqs[4], tid)

31 /* send_to [s_|e_|w_]rank with [s_|e_|w_]comm */

32 MPI_Waitall(8, reqs)

33 /* Compute after halo exchange */

34 }

Listing 1: 2D 5-point stencil using MPI communicators.

which thread 7 also uses for its receive operations.

Lesson 3: Communicators have high network resource

requirements to expose communication parallelism.

Even if the domain scientist achieves the ideal commu-

nicator usage, the number of communicators required to

express communication parallelism is much higher than the

minimum number of parallel channels required by the com-

munication pattern itself. Such high resource requirements

are concerning on today’s many-core architectures. Consider

the communication pattern of real-world stencil applications

which is typically a 3D 27-point stencil (e.g., hypre). Such

applications decompose their domain into cubical patches. If

[x, y, z] represents the cubic arrangement of threads in an

MPI process, the least number of communicators needed to

express all of the available logical communication parallelism

is 2xy + 2yz + 2xz + 8(xy + yz + xz � 1) + 4(xz + yz �
z) + 4(xy + yz � y) + 4(xy + xz � x). The first three

terms represent the directions perpendicular to the 6 faces,

the fourth term represents the 8 corner diagonals, and the

last three terms represent the edge diagonals. In terms of

parallelism alone, however, the minimum number of parallel

communication channels required is xyz�(x�2)(y�2)(z�2)
which is the number of threads communicating inter-node. If

we consider a 64-core processor (e.g., AMD EPYC Rome),

the minimum number of communicators required to express

communication parallelism is 808 (1 process per node with

[4, 4, 4] threads per process) which is over 14⇥ higher than

the minimum number of communication channels required by

the 3D 27-pt stencil communication pattern. For this same

pattern, other mechanisms use only as many resources as the

communication pattern requires (see “Mechanism 3” below).

The resource inefficiency of communicators can even hurt

performance on some networks where the number of network

hardware resources is limited (e.g., 160 hardware contexts on

Omni-Path [3]). Prior studies show hypre’s communication

time is over 2⇥ higher with communicators than with other

mechanisms on Omni-Path [68]. In such a scenario, the do-

main scientist is expressing all of the available communication

parallelism and the application is using all of the network

resources, but the observed performance benefit may not be

as expected because of contention on the limited number of

network resources which includes the software overheads of

thread synchronization to access shared network queues [66].

Lesson 4: Overloaded definitions of communicators can

lead to mismatch in expected mapping to the underlying

network parallelism.

A communicator has historically been viewed as a group of

processes or as a means to isolate matching of messages. That

it can double up as a means to express parallelism is a corollary

of its definition. The multiple functions of a communicator can

lead to a mismatch in expected mapping to the underlying

network parallelism. For example, an application can initially

create a set of communicators for grouping different processes

and later use communicators to express parallelism. The MPI

library underneath cannot differentiate between the two and

could end up allocating a significant portion of the underlying

network resources to the communicators used for grouping

different sets of processes, leaving fewer network resources to

map to for logical-parallelism-oriented communicators. MPI

libraries can prevent this type of mismatch in expected map-

ping by introducing hints that allow an application to inform

the library when it is creating communicators for the purposes

of expressing logically parallel communication. But such hints

would be implementation-specific.

Lesson 5: The matching semantics of communicators

limit communication parallelism for irregular and dy-

namic communication patterns.

As shown in Figure 4 and lines 23–26 in Listing 1, appli-

cations must ensure that the sending and receiving threads use

the same communicator. This matching constraint is limiting

for applications where the communication neighborhood of a

thread changes over time, as it does in graph (e.g., Vite [32])

and adaptive mesh refinement applications. This constraint

also holds for applications running on modern task-based

frameworks that exhibit irregular communication patterns.

Figure 5 portrays this limitation for Legion [18] applications.

Legion’s event-based runtime maintains a receiving polling

Fig. 5: Communicator vs. endpoints for Legion’s runtime that

implements an event-based system using multithreaded point-

to-point communication.

thread per node to process incoming requests from the task

threads on other nodes. The multiple task threads on a node

can issue operations using distinct communicators, but the

polling thread is forced to iterate over the communicators to

process all incoming messages. Thus, on a single node, the

polling thread conflicts with the communicators of the task

threads. The polling thread relies on wildcards, and hence

using partitioned operations for this communication pattern

is not straightforward. With endpoints, on the other hand,

the polling thread can use a distinct endpoint, use wildcards,

and satisfy matching requirements. Prior evaluations show that

Legion’s polling thread processes events 1.63⇥ slower with

communicators than with endpoints [68].

Mechanism 2: Tags with hints. The new Info hints in MPI

4.0 allow domain scientists to use tags instead of communi-

cators to express logical parallelism in applications that do

not use certain MPI semantics (see Section II-A). Tags bypass

some of the challenges with communicators, but introduce new

ones. We describe the lessons learned from using tags below.

Lesson 6: Using tags for communication parallelism is

intuitive.

Most MPI+threads applications that use

MPI_THREAD_MULTIPLE already encode thread IDs into

the tags of their communication to differentiate operations

that target different threads on the same target process (e.g.,

hypre and Smilei), indicating that domain scientists intuitively

think of tags as a means of expressing logical parallelism.

Hence, the approach of using tags requires the least amount

of changes to existing applications. These changes would

only be in the form of creating a new communicator with

Info hints that relax unneeded MPI semantics (see Listing 2).

Lesson 7: Achieving optimal multithreaded communica-

tion performance with tags is tedious.

Even though tags and communicators have the same match-

ing constraints, tags can provide more information. Consider

the MPICH library that features multiple virtual commu-

1 /* Existing THREAD_MULTIPLE stencil apps */

2 #pragma omp parallel num_threads(N_THREADS)

3 {

4 app_tag = src_tid << (NUM_TID_BITS + NUM_APP_BITS)

5 | dst_tid << NUM_APP_BITS

6 | app_tag;

7 MPI_Send(dest_proc, tag, app_comm);

8 }

1 /* Leveraging parallelism info in tags of existing apps */

2 //(1) Relax unneeded MPI semantics with MPI 4.0 hints

3 MPI_Info_set(info,"mpi_assert_no_any_tag", "true");

4 MPI_Info_set(info,"mpi_assert_no_any_source","true");

5 //(2) Achieve optimal mapping with MPI library hints

6 MPI_Info_set(info,"mpich_num_vcis", N_THREADS);

7 MPI_Info_set(info,"mpich_num_tag_bits_vci", NUM_TID_BITS);

8 MPI_Info_set(info,"mpich_place_tag_bits_local_vci","MSB");

9 MPI_Info_set(info,"mpich_tag_vci_hash_type","one-to-one");

10 MPI_Comm_dup_with_info(app_comm, info, &tag_par_app_comm);

11 #pragma omp parallel num_threads(N_THREADS)

12 {

13 ... // (Tag encoding same as above)

14 MPI_Send(dest_proc, app_tag, tag_par_app_comm);

15 }

Listing 2: Exposing logically parallel communication through

existing MPI tags in applications like Smilei and hypre.

nication interfaces (VCIs: network communication channels

mapping to distinct network hardware contexts) [67], and the

hypre library that encodes the IDs of the sending and receiving

threads into the tag along with other application-related infor-

mation. The thread IDs in the tag provide information about

which local and remote VCI to use. But if MPICH does not

know which bits of the tag encode communication parallelism

information, then hypre is at the mercy of how MPICH hashes

the tags into the multiple VCIs allocated to the communicator.

Achieving the optimal mapping to VCIs requires hypre to

inform MPICH which bits encode the sender’s thread ID,

which bits encode the receiver’s thread ID, and how to map the

bits to the underlying VCIs. For example, with a one-to-one

mapping, MPICH can use the sender-thread-bits to map to a

VCI on the host process and the receiver-thread-bits to decide

which VCI to target on the remote process. Such intricate use

of tags requires domain scientists to learn about the Info hints

that are specific to an MPI library (see lines 6–9 in Listing 2).

Lesson 8: Programs that use tags for communication

parallelism may not be portable across MPI libraries.

As discussed above, achieving a high level of control and

flexibility with tags requires a careful use of implementation-

specific Info hints. It is likely that different MPI implemen-

tations will support tag-based and communicator-based mech-

anisms of exposing parallelism in different ways (VCIs are

specific to MPICH; CRIs are specific to Open MPI [49]). Since

HPC application developers are geared towards performance-

oriented codes, they are compelled to adopt Info hints to

optimally expose logically parallel communication to an MPI

implementation. Hence, existing MPI mechanisms can result

in reduced portability of codes which is highly undesirable.

Lesson 9: Encoding communication parallelism in tags is

limited by their existing use cases.

End users already use MPI tags for application-related

information. Since the number of bits in a tag is limited,

an application may not be able to encode further parallelism

information into the tag. Encoding parallelism information

with lesser-than-ideal number of bits is bound to hurt per-

formance. Although we have not encountered first-hand an

application that faces such a problem, others have reported

running into tag-overflow issues on prominent applications

(e.g., SNAP [11], Smilei [10], and MITgcm [9]). Such reports

indicate that applications already use a large portion of the tag

space; encoding parallelism information into tags exacerbates

the tag-overflow problem.

Mechanism 3: User-Visible Endpoints. Given their flexi-

ble interface (see Section II-B), endpoints combat the various

concerns associated with communicators and tags to expose

logically parallel point-to-point operations. Below, we delin-

eate the lessons learned from mapping endpoints to different

communication patterns.

Lesson 10: Endpoints are intuitive to use.

Endpoints are an easier alternative to express communi-

cation parallelism even for patterns such as a 3D 27-point

stencil since each local endpoint can flexibly address any

other endpoint through a global endpoint rank. They are

more intuitive to use than communicators because applica-

tion developers are innately familiar with the semantics of

traditional MPI ranks. Users express communication paral-

lelism by communicating between endpoints as they do for

MPI ranks in MPI everywhere programming. Lines 17–20

in Listing 3 shows this MPI-everywhere like addressing in

a 2D MPI+OpenMP 5-pt stencil that exposes communication

parallelism with endpoints. In fact, endpoints provide a level

of flexibility beyond MPI everywhere: threads are not bound

to an endpoint. In other words, endpoints do not enforce an

association between threads and the data they work on; a

thread is free to use any endpoint at any time. Thus, endpoints

map well to tasking frameworks like OpenMP Tasks [25].

Lesson 11: Endpoints distinguish between matching and

parallelism information and thus apply seamlessly to all

types of communication patterns.

Unlike existing MPI mechanisms, user-visible endpoints

separate the task of expressing communication parallelism

from the task of matching operations. Thus, using endpoints

is straightforward even for irregular communication patterns,

such as those of Legion applications (see Figure 5). Endpoints

can flexibly adapt to dynamically changing communication

neighborhoods because threads can address new remote end-

points while using the same local endpoint (lines 22–25

1 recv_from(ep_rank, tag, comm, *req, tid) :

2 if (need_mpi_op(tid)) :

3 MPI_Irecv(ep_rank, tag, comm, req)

4 else : /* use shared memory */

5 send_to(ep_rank, tag, comm, *req, tid) :

6 if (need_mpi_op(tid)) :

7 MPI_Isend(ep_rank, tag, comm, req)

8 else : /* use shared memory */

9 void main() :

10 /* px*py process grid with tx*ty local thread grid */

11 // Create as many endpoints as there are threads

12 MPI_Comm_create_endpoints(COMM_WORLD, N_THREADS, info,

13 &comm_ep)

14 #pragma omp parallel num_threads(N_THREADS)

15 {

16 /* Coords in local tx*ty thread grid: tid_x, tid_y */

17 n_ep = n_rank*N_THREADS + tx*(ty-1) + tid_x;

18 s_ep = s_rank*N_THREADS + tid_x;

19 e_ep = e_rank*N_THREADS + tid_y*tx + tx-1;

20 w_ep = w_rank*N_THREADS + tid_y*tx;

21 for (iter = 0; iter < niters; iter++) :

22 recv_from(n_ep, tag_ns, comm_ep[tid], &reqs[0], tid)

23 /* recv_from [s_|e_|w_]ep with comm_ep[tid] */

24 send_to (n_ep, tag_ns, comm_ep[tid], &reqs[4], tid)

25 /* send_to [s_|e_|w_]ep with comm_ep[tid] */

26 MPI_Waitall(8, reqs);

27 /* Compute after halo exchange */

28 }

Listing 3: 2D 5-point stencil using MPI endpoints.

in Listing 3). Additionally, endpoints do not suffer from

overloaded definitions of existing MPI objects. Users do not

need to compromise on the application’s existing use of

communicators or tags.

Lesson 12: Endpoints lead to efficient resource usage and

provide optimal mapping information without sacrificing

portability.

By creating an endpoints communicator, users explicitly

inform the MPI library that the new communicator is for

the purposes of exposing communication parallelism. This

information is baked into the API unlike the implementation-

specific solution of using hints with communicators or tags.

This is why endpoints do not suffer from high resource

requirements either. In the prior example of executing hypre’s

3D 27-point stencil on a 64-core processor, users need to create

only as many endpoints as there are communicating threads,

which is 56, 14.4⇥ fewer than that required by communicators.

Furthermore, the endpoints mechanism directly provides the

MPI library with all the information needed to optimally

map to the underlying network resources unlike the tag-based

mechanism which requires the application to inform the MPI

library about the specific tag bits that encode logical paral-

lelism information. Since the optimal mapping information can

be derived from a standardized interface, applications would

be portable across MPI implementations.

Mechanism 4: Partitioned Communication. MPI 4.0 in-

troduced the new semantics of partitioned operations for mul-

tithreaded point-to-point communication (see Section II-C).

Like endpoints, partitioned operations promote portability, but

their semantics can limit exposure of parallelism in irregular

and dynamic communication patterns. We expand on our

1 test_recv_from(part_id, req, *rx_flag, tid) :

2 if (need_mpi_op(tid)) :

3 MPI_Parrived(part_id, req, rx_flag)

4 else : /* use shared memory */

5 *rx_flag = 1

6 send_to(part_id, req, tid) :

7 if (need_mpi_op(tid)) :

8 MPI_Pready(part_id, req)

9 else : /* use shared memory */

10 void main() :

11 /* px*py process grid with tx*ty local thread grid

12 Each thread assigned to a tile_x*tile_y tile

13 Neighbor process ranks: n_rank,s_rank,e_rank,w_rank*/

14 // Create partitioned operations for parallel exchanges

15 MPI_Precv_init(n_rx_buf, tx, tile_x, MPI_DOUBLE, n_rank,

16 tag_ns, COMM_WORLD, info, &reqs[0])

17 /* MPI_Precv_init for s_rank with tx partitions

18 MPI_Precv_init for [e_|w_]rank with ty partitions */

19 MPI_Psend_init(n_tx_buf, tx, tile_x, MPI_DOUBLE, n_rank,

20 tag_ns, COMM_WORLD, info, &reqs[4])

21 /* MPI_Psend_init for s_rank with tx partitions

22 MPI_Psend_init for [e_|w_]rank with ty partitions */

23 MPI_Startall(8, reqs) // Activate all operations

24 #pragma omp parallel num_threads(N_THREADS)

25 {

26 /* Coords in local tx*ty thread grid: tid_x, tid_y */

27 for (iter = 0; iter < niters; iter++) :

28 send_to(tid_x, reqs[4], tid)

29 /* send_to s_rank with partition tid_x

30 send_to [e_|w_]rank with partition tid_y */

31 while (!n_rx_flag ||!s_rx_flag || !e_rx_flag

32 || !w_rx_flag) :

33 test_recv_from(tid_x, reqs[0], &n_rx_flag, tid)

34 /* test_recv_from s_rank with part tid_x

35 test_recv_from [e_|w_]rank with part tid_y */

36 /* Compute after halo exchange */

37 #pragma omp single

38 { // Complete the requests before issuing next parts

39 MPI_Waitall(8, reqs)

40 } // required implicit thread barrier

41 }

Listing 4: 2D 5-point stencil using MPI partitioned operations.

lessons learned with partitioned operations below.

Lesson 13: Partitioned operations do not overload existing

definitions, and they promote portability of codes.

Partitioned operations provide the same benefits as user-

visible endpoints on two fronts: (a) they do not overload the

definitions of existing MPI objects and hence minimize the

mismatch in expected mapping to network parallelism; (b) they

promote portability of applications across MPI implementa-

tions by their standardization. Unlike endpoints that build on

top of existing MPI semantics, partitioned operations introduce

new semantics. Given that research on partitioned operations

is ongoing, the usability of partitions remains to be seen.

Lesson 14: Partitioned semantics prevent threads from

being completely independent.

The fundamental limitation of partitioned communication

is that all threads (driving the multiple partitions in parallel)

share the same MPI request. So, all threads would either

contend on the MPI library’s resources of the shared request or

coordinate with each other to allow only a single thread to poll

for the completion of a partitioned operation. In either case,

threads will incur contention or synchronization overheads

before issuing their partition of the next message. Lines 37–

40 in Listing 4 shows this synchronization requirement for a

2D MPI+OpenMP 5-pt stencil that exposes communication

parallelism using partitioned operations. Application devel-

opers could use multiple partitioned operations (e.g., double

buffering) to dampen the overhead resulting from the semantic

limitation, but they cannot eliminate them in a manner like the

other two designs can. The implicit point of contention in the

partitioned interface makes an application prone to the known

high overheads of thread synchronization [15], [37], [43],

[53]. It is not yet clear how the synchronization limitations of

partitioned operations can be mitigated in modern applications

where threads operate independently of each other [55], [60].

Lesson 15: Persistence of partitioned operations prevent

them from being used in dynamic and irregular commu-

nication patterns.

In dynamic communication where the destination of a

message is not known apriori, using partitioned operations is

a challenge since they are persistent by definition (lines 15–23

in Listing 4). Also, partitioned receive operations cannot use

wildcards. Modern task-based runtimes (e.g., Legion [60] and

YGM [50]), however, have irregular communication patterns

and rely on wildcards in their polling threads. Mapping parti-

tions to the communication pattern in Figure 5 is challenging.

B. RMA communication

One-sided RMA have no matching semantics. Here, exist-

ing MPI mechanisms and user-visible endpoints are equally

straightforward to use, but they each have unique concerns.

The efficacy of partitioned operations for one-sided commu-

nication is yet to be studied.

Lesson 16: Where the semantics of existing MPI mech-

anisms limit the exposure of logically parallel atomic

operations, those of endpoints achieve optimal mapping

of operations to the underlying network parallelism.

Using windows to expose communication parallelism con-

strains the parallelism information with MPI’s atomicity se-

mantics. This constraint limits the user from explicitly ex-

posing logically parallel atomic operations within a sin-

gle window even when the application does not need

them to be ordered. Consider NWChem’s get-compute-

update pattern for its block-sparse matrix multiplication [57],

[67] where a thread uses MPI_Get operations to retrieve

the tiles it needs and, after the multiplication, uses an

MPI_Accumulate operation to update the destination tile

(see Figure 6). The MPI_Accumulate operations in a

multithreaded process must use a single window for correct

atomicity. Even though these parallel operations are indepen-

dent, users have no way to explicitly expose this parallelism.

Fig. 6: MPI+threads communication parallelism in NWChem’s

block-sparse matrix multiplication.

The best they can do is relax MPI’s ordering constraint

(accumulate_ordering=none) and rely on the MPI

library’s hashing policies to map operations to parallel network

channels. Any hashing policy, however, is prone to collisions

and will prevent some operations from mapping to distinct

network channels. With user-visible endpoints, on the other

hand, users can use multiple endpoints within a single window

to expose communication parallelism and maintain atomicity.

Lesson 17: There exists preconceived notions in the

MPI community about endpoints being direct handles to

network resources.

A common misconception in the MPI community is to

view endpoints as direct handles to network resources. This

concern holds not just for RMA operations but also for

point-to-point operations. As a result, the endpoints design

is sometimes incorrectly regarded as a way for MPI libraries

to dump the responsibility of managing network resources on

the domain scientist which would in turn reduce the portability

of applications. One explanation for this concern is the usage

of the term “endpoints,” which is typically associated with

“network endpoints.” The fact that user-visible endpoints were

introduced for the purposes of utilizing network parallelism

is likely to have exacerbated the misconception. User-visible

endpoints are not handles to network resources, rather they

are a means to flexibly express communication parallelism.

Their usage is separate from the MPI library’s task to map

the exposed parallelism to the underlying parallel network

resources. With the endpoints solutions, applications would

create as many endpoints as there are streams of logically

parallel communication. The MPI library would then funnel

the streams of logically parallel communication on distinct

network hardware contexts depending on their availability.

C. Collective communication

Research towards implementing collectives in a hybrid

MPI+threads environment has primarily revolved around hier-

archical algorithms where threads first implement the collec-

tive (e.g., allreduce) amongst themselves and then one thread

on each node participates in the internode collective [46],

[69]. Recent studies using a fast MPI+threads library (Intel

MPI 2019 [4]), however, demonstrate performance benefits

when multiple threads drive a collective in parallel [20],

[64]. Although existing MPI semantics require collectives

Fig. 7: Existing mechanisms vs. user-visible endpoints for collectives (e.g., multithreaded Allreduce in VASP [64]).

on a communicator to be issued serially, applications may

partition the collective-data of a process across threads and

issue parallel collectives on the different data segments using

a distinct communicator for each thread (e.g., VASP collectives

observe a speedup of over 2⇥ with such an approach [64]).

Lesson 18: Users need to perform the intranode portion

of a collective with existing MPI mechanisms, but not

with endpoints or partitioned operations.

With existing MPI mechanisms, users need to perform

the intranode portion of the collective (see Figure 7). For

example, in an allreduce collective, the user needs to perform

a reduction step after all threads have completed the internode

part of the allreduce. With user-visible endpoints or partitioned

operations, on the other hand, the collective is only one step—

all threads participate in a collective of the same communicator

through different endpoints or partitions. The MPI library

then conducts both the internode and intranode parts of the

collective before returning from the operation. Although the

performances of the two approaches are yet to be compared,

we note that, from a design perspective, the endpoints and

partitioned approaches are better because they do not force the

user to manually handle the intranode portion of a collective.

Arguably, shared-memory programming models feature direct

support for collectives between threads; for example, OpenMP

supports a reduction operation through compiler directives.

But such support does not apply to all types of collective

communication that MPI features (e.g., MPI_Alltoall).

A naı̈ve implementation for such cases is likely to hurt

performance for high thread counts (relevant on existing and

upcoming many-core processors). Efficiently implementing a

collective is not a trivial task; researchers have spent numerous

efforts into optimizing collectives [22], [39]. Manually imple-

menting tree-style and bucket algorithms is a tedious task that

could instead be handled by the MPI library as is the case in

the user-visible endpoints and partitioned operations designs.

Lesson 19: Unlike existing MPI mechanisms and parti-

tioned operations, user-visible endpoints lead to dupli-

cated buffers on a node for some collectives.

The interface of user-visible endpoints results in duplication

of data per node in cases where the result of the collective

is the same across all ranks participating in the operation

(e.g., allreduce, broadcast, etc.). The destination buffers of the

endpoints on a single process contain the same values (like

MPI everywhere where each process features a copy of the

resulting buffer) when only one such buffer is needed since

all threads can directly read from the single buffer. With com-

municators, on the other hand, such duplication does not exist.

For example, the user can perform an intra-node reduction into

a single buffer that all threads can read from. The partitioned

communication interface overcomes the duplication issue with

endpoints. Each partition of a partitioned collective would be

different sections of the input buffer. With threads driving

distinct partitions, the MPI library would implement both

the intranode and internode portion of a collective, and each

process would host only one buffer that contains the result of

the collective. We note, however, that we have yet to identify

a case where an MPI everywhere application has run out of

memory solely because of duplication of a collective’s result-

ing data. Hence, the duplication of data in collectives with

user-visible endpoints is not as concerning as the duplication

of domain-level data that has caused applications to run out of

memory with MPI everywhere. Furthermore, the duplication

does not hold for collectives where the result of the collective

is different for different ranks (e.g., alltoall).

D. Heterogenous computing environments

The discussion in this paper so far has largely been in

the context of (CPU-initiated) MPI+threads communication

because the performance-oriented studies of the designs in the

context of accelerators are yet to be conducted. Nevertheless,

we briefly discuss how the different designs compare and apply

to heterogeneous computing environments. Today’s distributed

applications that use accelerated computing have to largely

rely on the control transferring back to the CPU from the accel-

erator (e.g., GPU) before exchanging data with remote nodes.

The system and runtime overheads (e.g., GPU kernel launch

latencies), however, limit the parallel efficiency of an accel-

erated application. One way to combat the scalability issue is

to initiate communication from the accelerator. Technologies

like NVSHMEM [42] and ROC SHMEM [36] support GPU-

initiated communication for the OpenSHMEM [23] program-

ming model. GPU-initiated (point-to-point) MPI communica-

tion, however, remains an open problem. Executing MPI’s

matching engine on the GPU is known to be expensive [45].

Lesson 20: Partitioned operations provide lightweight

interfaces for device-initiated communication; the other

two designs do not.

Out of the three designs, partitioned operations are best

suited for high-speed device-initiated point-to-point opera-

tions. Through its non-critical-path P[send|recv]_init

APIs, partitioned communication enables most of the serial

overhead of setting up a low-level network message to be

executed on a low-latency CPU core (before kernel launch)

rather than a high-latency GPU compute unit. GPU thread

blocks would then trigger or check for arrival of partitions

with the lightweight Pready and Parrived operations [1].

Nonetheless, the limitations of partitioned operations described

in Lessons 14 and 15 apply to heterogeneous computing

scenarios as well—program control would need to return

back to the CPU (e.g., to execute an MPI_Wait) before

the GPU can issue the next partitions of a message. Such

repeated transfers of control will re-introduce device runtime

overheads that device-initiated communication aims to address

in the first place. Extensions that enable MPI operations to be

enqueued into accelerator’s work queues (similar to Nvidia’s

NCCL runtime [7]) may reduce such runtime synchronization

overheads. These extensions, however, could apply to existing

MPI objects and user-visible endpoints too.

Another way for applications to combat the device runtime

overheads that hurt scalability is to use persistent GPU kernels

that offload communication operations to the faster CPU cores

through lightweight atomics or flags. How such an approach

compares to device-initiated communication remains to be

seen. Such application-level techniques are promising given

the move towards system architectures with tightly integrated

CPUs and GPUs where the latency to communicate between

the two types of PUs will diminish [8], [61].

Furthermore, the benefits of device-initiated communication

either compared to or in conjuction with techniques that lever-

age smart NICs or network hardware tag matching remains to

be seen. All in all, the lessons from this paper remain relevant

for heterogeneous computing environments moving forward.

IV. MEETING THE NEEDS OF DOMAIN SCIENTISTS

”Rule of thumb for UX: More options, more problems.”

— Scott Belsky

Table I shows a summary of the design choices to expose

logically parallel communication for different types of MPI

operations. With existing MPI mechanisms, users have to be

aware of a multitude of options since each mechanism does

not uniformly apply to all communication types and patterns.

Domain scientists need to be aware about the mechanisms

that become available when hints relax different semantics.

Furthermore, each mechanism poses unique challenges: using

communicators is hard because of MPI’s matching seman-

tics; the optimal use of tags is highly dependent on MPI

implementation-specific hints; windows may not allow users to

optimally expose the available communication independence.

The new partitioned communication interface also poses

challenges to the user. The new semantics of partitions and

the large expansion in MPI’s API space indicate a multitude

of options for the user to learn about and choose from. The

interface is challenging to use for dynamic and irregular com-

munication patterns especially those that use wildcards. More

important, the semantic limitations of the interface prevent the

user from achieving complete independence between threads.

One way to combat the limitations of the interfaces in MPI

4.0 is to design an abstraction on top of MPI that allows

users to seamlessly expose communication independence in a

user-friendly manner. The abstract layer would then use MPI

4.0 mechanisms underneath with MPI-implementation specific

hints where needed (analogous to how different interconnects

support the Open Fabrics Interfaces (OFI) [35] API through

their own OFI providers). The challenge of such an abstraction

is the design of an interface that applies to all communication

patterns. The interface of user-visible endpoints is in fact an

example of such a general abstraction; other forms remain to

be investigated. But, more important, the implementation of

any abstraction faces the semantic constraints of both existing

MPI mechanisms (e.g., matching semantics of communicators)

and partitioned operations (e.g., no wildcards).

In contrast, with user-visible endpoints, the interface that has

not been standardized yet, users need to be aware of only one

mechanism: endpoints, which applies uniformly to all types of

MPI operations. Endpoints provide a flexible, straightforward

interface for users to express logically parallel communication

in a way that they are already familiar with (i.e., using ranks).

The concern with user-visible endpoints is a misimpression

among domain experts about what endpoints represent. A

reason for this is that the terminology in the MPI Endpoints

proposal is oriented towards the community of MPI library

developers. Since the ultimate goal of the proposal is to aid the

domain scientist to express logically parallel communication,

it is imperative that the proposal be user-facing.

To resonate with domain experts, we suggest rebranding1

the proposal to MPI Rankpoints since it emphasizes that users

can create multiple MPI ranks within a process. The goal is

1Rebranding techniques have proven to be successful with many technolo-
gies (e.g., Android, Airbnb, etc.).

TABLE I: Summary of design choices to expose logically parallel communication (TBD: to be defined).

Operation Existing MPI mechanisms User-Visible Endpoints Partitioned Communication

Point-to-point Communicators or tags Endpoints Partitioned point-to-point APIs

RMA Window(s) Endpoints Partitioned RMA APIs (TBD)

Collective
Communicators +

user-driven intra-node collective
Endpoints Partitioned collective APIs (TBD)

to educate and reinforce the understanding that rankpoints are

not handles to network resources, rather they are a flexible,

straightforward means of expressing parallelism that promotes

portability of applications. While it requires one new API—

MPI_Comm_create_rankpoints—it prevents the limita-

tions of existing MPI mechanisms and partitioned operations.

Rebranding is more than just a change in the name of the

proposal. It requires a concerted effort by the MPI community

in re-education through venues such as presentations and

tutorials at flagship conferences and workshops.

V. CONCLUDING REMARKS

”People ignore design that ignores people.”

— Frank Chimero

MPI+threads is a critical model to program the many-core

processors of the current HPC clusters and the upcoming ex-

ascale systems. It is imperative that applications perform pro-

ductively with it. The key to achieving high performance with

MPI+threads requires effort from both MPI library developers

and application developers. Recently, MPI libraries have made

significant strides in this regard, and now the ball is in the court

of domain scientists to expose communication parallelism to

utilize the new fast MPI+threads libraries. Domain scientists,

however, face many programming challenges (Lessons 1–5, 7–

9, 14–16, 18) with the designs present in MPI 4.0 with respect

to exposing the communication independence between threads.

These solutions have their own merits (Lessons 6, 13, 20), but

we show that they do not meet the needs of key communication

patterns sufficiently. The MPI Rankpoints alternative, on the

other hand, elegantly addresses the various limitations of the

designs in MPI 4.0. MPI Rankpoints has its own challenges

(Lessons 17 and 19), but its benefits (Lessons 10–12, 16, 18)

prove to be a seamless option for domain scientists given that

the design applies generally to all communication patterns. The

lessons in this paper show that MPI Rankpoints, or a solution

that is as flexible, warrants continued consideration as a viable

solution for the MPI+threads programming model.

ACKNOWLEDGMENTS

We thank the following individuals for their discussions and

viewpoints on the different mechanisms of exposing logically

parallel MPI communication: Damodar Sahasrabudhe from

the University of Utah, Hengjie Wang from the University

of California, Irvine, Julien Derouillat from Maison de la

Simulation, Peter Mendygral from HPE Cray, Sayan Ghosh

and Mahantesh Halappanavar from Pacific Northwest National

Laboratory, Roger Pearce from Lawrence Livermore National

Laboratory, and Hui Zhou and Pavan Balaji from Argonne

National Laboratory. This work is supported by the National

Science Foundation (NSF) under the award number 1750549.

REFERENCES

[1] Accelerator Bindings for Partitioned Communication. https://github.
com/mpiwg-hybrid/hybrid-issues/issues/4.

[2] Fujitsu Processor A64X. https://www.fujitsu.com/global/products/
computing/servers/supercomputer/a64fx/.

[3] Intel Omni-Path Fabric Host Software. https://www.intel.com/content/
dam/support/us/en/documents/network-and-i-o/fabric-products/Intel
OP Fabric Host Software UG H76470 v9 0.pdf.

[4] Intel® MPI Multiple Endpoints Support. https://software.intel.com/
en-us/mpi-developer-guide-linux-multiple-endpoints-support.

[5] Latest draft of MPI Endpoints. https://github.com/mpi-forum/
mpi-issues/issues/56.

[6] Legion’s MPI backend. https://github.com/StanfordLegion/legion/tree/
stable/runtime/realm/mpi.

[7] Nvidia Collective Communication Library (NCCL). https://developer.
nvidia.com/nccl.

[8] Nvidia Grace Hopper Superchip. https://www.nvidia.com/en-us/
data-center/grace-cpu/.

[9] Tag overflow issue with MITgcm. http://mailman.mitgcm.org/pipermail/
mitgcm-support/2014-October/009535.html.

[10] Tag overflow issue with Smilei. https://github.com/SmileiPIC/Smilei/
issues/270.

[11] Tag overflow issue with SNAP. https://github.com/lanl/SNAP/issues/6.

[12] Tensorflow networking. https://github.com/tensorflow/networking/
issues/17.

[13] A. Amer, C. Archer, M. Blocksome, C. Cao, M. Chuvelev, H. Fujita,
M. Garzaran, Y. Guo, J. R. Hammond, et al. Software combining to
mitigate multithreaded MPI contention. In Proceedings of the ACM

International Conference on Supercomputing, pages 367–379. ACM,
2019.

[14] A. Amer, H. Lu, Y. Wei, P. Balaji, and S. Matsuoka. MPI+threads:
Runtime contention and remedies. ACM SIGPLAN Notices, 50(8):239–
248, 2015.

[15] A. H. Baker, R. D. Falgout, et al. Scaling hypre’s multigrid solvers to
100,000 cores. In High-Performance Scientific Computing, pages 261–
279. Springer, 2012.

[16] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and R. Thakur. Fine-
grained multithreading support for hybrid threaded MPI programming.
The International Journal of High Performance Computing Applications,
24(1):49–57, 2010.

[17] P. Bangalore, A. Worley, D. Schafer, R. Grant, A. Skjellum, and
S. Ghafoor. A Portable Implementation of Partitioned Point-to-Point
Communication Primitives. Technical report, Sandia National Lab.(SNL-
NM), Albuquerque, NM (United States), 2020.

[18] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion: Expressing
locality and independence with logical regions. In SC’12: Proceedings

of the International Conference on High Performance Computing, Net-

working, Storage and Analysis, pages 1–11. IEEE, 2012.

[19] D. E. Bernholdt, S. Boehm, G. Bosilca, M. Gorentla Venkata, R. E.
Grant, T. Naughton, H. P. Pritchard, M. Schulz, and G. R. Vallee. A
survey of MPI usage in the US exascale computing project. Concurrency

and Computation: Practice and Experience, 32(3):e4851, 2020.

[20] P. Boyle, M. Chuvelev, G. Cossu, C. Kelly, C. Lehner, and L. Mead-
ows. Accelerating HPC codes on Intel (r) Omni-Path architecture
networks: From particle physics to machine learning. arXiv preprint

arXiv:1711.04883, 2017.

[21] A. Buluç, S. Beamer, K. Madduri, K. Asanovic, and D. Patterson.
Distributed-memory breadth-first search on massive graphs. arXiv

preprint arXiv:1705.04590, 2017.

[22] E. Chan, M. Heimlich, A. Purkayastha, and R. Van De Geijn. Collective
communication: theory, practice, and experience. Concurrency and

Computation: Practice and Experience, 19(13):1749–1783, 2007.

[23] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel,
and L. Smith. Introducing OpenSHMEM: SHMEM for the PGAS
community. In Proceedings of the Fourth Conference on Partitioned

Global Address Space Programming Model, pages 1–3, 2010.

[24] J. Daily, A. Vishnu, C. Siegel, T. Warfel, and V. Amatya. Gossipgrad:
Scalable deep learning using gossip communication based asynchronous
gradient descent. arXiv preprint arXiv:1803.05880, 2018.

[25] B. R. de Supinski, T. R. Scogland, A. Duran, M. Klemm, S. M. Bellido,
S. L. Olivier, C. Terboven, and T. G. Mattson. The ongoing evolution
of openmp. Proceedings of the IEEE, 106(11):2004–2019, 2018.

[26] E. D. Demaine, I. Foster, C. Kesselman, and M. Snir. Generalized
communicators in the message passing interface. IEEE Transactions on

Parallel and Distributed Systems, 12(6):610–616, 2001.

[27] J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello, A. Grassi,
M. Flé, G. Bouchard, I. Plotnikov, N. Aunai, et al. Smilei: A col-
laborative, open-source, multi-purpose particle-in-cell code for plasma
simulation. Computer Physics Communications, 222:351–373, 2018.

[28] J. Dinan, P. Balaji, D. Goodell, D. Miller, M. Snir, and R. Thakur. En-
abling MPI interoperability through flexible communication endpoints.
In Proceedings of the 20th European MPI Users’ Group Meeting, pages
13–18. ACM, 2013.

[29] J. Dinan, R. E. Grant, P. Balaji, D. Goodell, D. Miller, M. Snir, and
R. Thakur. Enabling communication concurrency through flexible MPI
endpoints. The International Journal of HPC Applications, 28(4):390–
405, 2014.

[30] M. G. Dosanjh, A. Worley, D. Schafer, P. Soundararajan, S. Ghafoor,
A. Skjellum, P. V. Bangalore, and R. E. Grant. Implementation and
evaluation of MPI 4.0 partitioned communication libraries. Parallel

Computing, 108:102827, 2021.

[31] I. Foster, C. Kesselman, and M. Snir. Generalized communicators in
the message passing interface. In Proceedings. Second MPI Developer’s

Conference, pages 42–49. IEEE, 1996.

[32] N. Gawande, S. Ghosh, M. Halappanavar, A. Tumeo, and A. Kalya-
naraman. Towards scaling community detection on distributed-memory
heterogeneous systems. Parallel Computing, 111:102898, 2022.

[33] S. Ghosh, M. Halappanavar, A. Tumeo, A. Kalyanaraman, and A. H.
Gebremedhin. Scalable Distributed Memory Community Detection
Using Vite. In 2018 IEEE High Performance extreme Computing

Conference (HPEC), pages 1–7. IEEE, 2018.

[34] R. E. Grant, M. G. Dosanjh, M. J. Levenhagen, R. Brightwell, and
A. Skjellum. Finepoints: Partitioned multithreaded MPI communication.
In International Conference on High Performance Computing, pages
330–350. Springer, 2019.

[35] P. Grun, S. Hefty, S. Sur, D. Goodell, R. D. Russell, et al. A brief
introduction to the OpenFabrics Interfaces–a new network API for
maximizing high performance application efficiency. In 2015 IEEE 23rd

Annual Symposium on High-Performance Interconnects, pages 34–39.
IEEE, 2015.

[36] K. Hamidouche and M. LeBeane. GPU Initiated OpenSHMEM: Correct
and Efficient Intra-Kernel Networking for dGPUs. In Proceedings of the

25th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pages 336–347, 2020.

[37] C. Hetland, G. Tziantzioulis, B. Suchy, M. Leonard, J. Han, J. Albers,
N. Hardavellas, and P. Dinda. Paths to fast barrier synchronization on
the node. In Proceedings of the 28th International Symposium on High-

Performance Parallel and Distributed Computing, pages 109–120, 2019.

[38] E. Higgins, M. Probert, et al. Hybrid OpenMP and MPI within the
CASTEP code. Technical report, ARCHER eCSE Technical Report,
2015.

[39] T. Hoefler and D. Moor. Energy, memory, and runtime tradeoffs for
implementing collective communication operations. Supercomputing

frontiers and innovations, 1(2):58–75, 2014.

[40] D. Holmes. Introducing Endpoints into the EMPI4Re MPI library.

[41] D. J. Holmes, A. Skjellum, J. Jaeger, R. E. Grant, P. V. Bangalore,
M. G. Dosanjh, A. Bienz, and D. Schafer. Partitioned collective
communication. In 2021 Workshop on Exascale MPI (ExaMPI), pages
9–17. IEEE, 2021.

[42] C.-H. Hsu, N. Imam, A. Langer, S. Potluri, and C. J. Newburn. An Initial
Assessment of NVSHMEM for High Performance Computing. In 2020

IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), pages 1–10. IEEE, 2020.

[43] C. Iwainsky, S. Shudler, A. Calotoiu, A. Strube, M. Knobloch,
C. Bischof, and F. Wolf. How many threads will be too many? On
the scalability of OpenMP implementations. In European Conference

on Parallel Processing, pages 451–463. Springer, 2015.

[44] H. Jin, D. Jespersen, P. Mehrotra, R. Biswas, L. Huang, and B. Chapman.
High performance computing using MPI and OpenMP on multi-core
parallel systems. Parallel Computing, 37(9):562–575, 2011.

[45] B. Klenk, H. Fröening, H. Eberle, and L. Dennison. Relaxations for
high-performance message passing on massively parallel SIMT proces-
sors. In 2017 IEEE International Parallel and Distributed Processing

Symposium (IPDPS), pages 855–865. IEEE, 2017.

[46] S. Li, T. Hoefler, and M. Snir. NUMA-aware shared-memory collective
communication for MPI. In Proceedings of the 22nd international

symposium on High-performance parallel and distributed computing,
pages 85–96, 2013.

[47] P. Mendygral, N. Radcliffe, K. Kandalla, D. Porter, B. J. ONeill,
C. Nolting, P. Edmon, J. M. Donnert, and T. W. Jones. WOMBAT:
A scalable and high-performance astrophysical magnetohydrodynamics
code. The Astrophysical Journal Supplement Series, 228(2):23, 2017.

[48] S. Páll, M. J. Abraham, C. Kutzner, B. Hess, and E. Lindahl. Tackling
exascale software challenges in molecular dynamics simulations with
GROMACS. In International conference on exascale applications and

software, pages 3–27. Springer, 2014.

[49] T. Patinyasakdikul, D. Eberius, G. Bosilca, and N. Hjelm. Give MPI
Threading a Fair Chance: A Study of Multithreaded MPI Designs. In
2019 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2019.

[50] B. Priest, T. Steil, G. Sanders, and R. Pearce. You’ve Got Mail (YGM):
Building Missing Asynchronous Communication Primitives. In 2019

IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), pages 221–230. IEEE, 2019.

[51] R. Rabenseifner, G. Hager, and G. Jost. Hybrid MPI/OpenMP parallel
programming on clusters of multi-core SMP nodes. In 2009 17th Eu-

romicro International Conference on Parallel, Distributed and Network-

based Processing, pages 427–436. IEEE, 2009.

[52] K. Raffenetti, A. Amer, L. Oden, C. Archer, W. Bland, H. Fujita,
Y. Guo, T. Janjusic, D. Durnov, M. Blocksome, et al. Why is MPI
so slow?: Analyzing the fundamental limits in implementing MPI-3.1.
In Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, page 62. ACM, 2017.

[53] A. Rodchenko, A. Nisbet, A. Pop, and M. Luján. Effective barrier
synchronization on Intel Xeon Phi coprocessor. In European Conference

on Parallel Processing, pages 588–600. Springer, 2015.

[54] D. Sahasrabudhe and M. Berzins. Improving Performance of the
Hypre Iterative Solver for Uintah Combustion Codes on Manycore
Architectures Using MPI Endpoints and Kernel Consolidation. In
International Conference on Computational Science, pages 175–190.
Springer, 2020.

[55] D. Sahasrabudhe, R. Zambre, A. Chandramowlishwaran, and
M. Berzins. Optimizing the hypre solver for manycore and GPU
architectures. Journal of Computational Science, 49:101279, 2021.

[56] W. Schonbein, S. Levy, W. P. Marts, M. G. Dosanjh, and R. E. Grant.
Low-cost MPI multithreaded message matching benchmarking. In 2020

IEEE 22nd International Conference on High Performance Computing

and Communications; IEEE 18th International Conference on Smart

City; IEEE 6th International Conference on Data Science and Systems

(HPCC/SmartCity/DSS), pages 170–179. IEEE, 2020.

[57] M. Si, A. J. Pena, J. Hammond, P. Balaji, and Y. Ishikawa. Scaling
NWChem with efficient and portable asynchronous communication in
MPI RMA. In 15th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, pages 811–816. IEEE, 2015.

[58] S. Sridharan, J. Dinan, and D. D. Kalamkar. Enabling efficient multi-
threaded MPI communication through a library-based implementation of
MPI endpoints. In SC’14: Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis,
pages 487–498. IEEE, 2014.

[59] R. Thakur, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler,
S. Kumar, E. Lusk, and J. L. Träff. MPI at Exascale. Proceedings of

SciDAC, 2:14–35, 2010.

[60] S. Treichler, M. Bauer, and A. Aiken. Realm: An event-based low-level
runtime for distributed memory architectures. In Proceedings of the 23rd

International Conference on Parallel architectures and compilation,
pages 263–276, 2014.

[61] T. Vijayaraghavan, Y. Eckert, G. H. Loh, M. J. Schulte, M. Igna-
towski, B. M. Beckmann, W. C. Brantley, J. L. Greathouse, W. Huang,
A. Karunanithi, et al. Design and Analysis of an APU for Exascale Com-
puting. In 2017 IEEE International Symposium on High Performance

Computer Architecture (HPCA), pages 85–96. IEEE, 2017.

[62] H. Wang. Algorithm Design for High-Performance CFD Solvers on

Structured Grids. PhD thesis, University of California, Irvine, 2021.

[63] H. Wang and A. Chandramolwishwaran. Pencil: A Pipelined Algorithm
for Distributed Stencils. In SC’20: Proceedings of the International

Conference on High Performance Computing, Networking, Storage and

Analysis, pages 1–11. IEEE/ACM, 2020.

[64] F. Wende, M. Marsman, J. Kim, F. Vasilev, Z. Zhao, and T. Steinke.
OpenMP in VASP: Threading and SIMD. International Journal of

Quantum Chemistry, 119(12):e25851, 2019.

[65] A. P. Worley. A Portable Implementation of Partitioned Point-To-

Point Communication Primitives. PhD thesis, Tennessee Technological
University, 2021.

[66] R. Zambre, A. Chandramowlishwaran, and P. Balaji. Scalable commu-
nication endpoints for MPI+Threads applications. In 2018 IEEE 24th

International Conference on Parallel and Distributed Systems (ICPADS),
pages 803–812. IEEE, 2018.

[67] R. Zambre, A. Chandramowliswharan, and P. Balaji. How I learned to
stop worrying about user-visible endpoints and love MPI. In Proceedings

of the 34th ACM International Conference on Supercomputing, pages 1–
13, 2020.

[68] R. Zambre, D. Sahasrabudhe, H. Zhou, M. Berzins, A. Chandramowlish-
waran, and P. Balaji. Logically Parallel Communication for Fast MPI+
Threads Applications. IEEE Transactions on Parallel and Distributed

Systems, 2021.
[69] H. Zhou, J. Gracia, N. Zhou, and R. Schneider. Collectives in hybrid

MPI+ MPI code: Design, practice and performance. Parallel Computing,
99:102669, 2020.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

Although this paper is not a performance-oriented study, it is mo-

tivated by performance studies that we had previously conducted

(references 65, and 66 in the paper submission). We included results

from our prior performance studies in a format relevant for this

paper (for completeness) in Figure 1. These experiments in Figure

1 were all conducted on the Bebop cluster at Argonne National

Laboratory on both of its bdw (Intel Broadwell processors) and knl

(Intel Knights Landing processors) partitions. The servers in both

partitions are connected with the Intel Omni-Path interconnect.

Figures 1(a) (Artifact 1) and 1(c) (Artifacts 3 and 4) were run on Be-

bop’s bdw partition, and Figure 1(b) (Artifact 6) was run on Bebop’s

knl partition.

The primary purpose of the attached artifacts is not the repro-

ducibility of the performance studies published in our prior studies,

but to back our claims of implementing the different mechanisms

of exposing logically parallel communication in the various appli-

cations which is the main focus of our paper.

Our prior performance experiments were conducted during our

design and development of a new MPI library (Artifacts 1 and 2)

for MPI+threads, and during our performance evaluation of appli-

cations (Artifacts 3ś8) using the new MPI library. The experiments

related to MPI library designs were primarily conducted on the

Skylake (Intel Skylake processors) and Gomez (Intel Haswell pro-

cessors) clusters at the Joint Laboratory for System Evaluation

(JLSE) at Argonne National Laboratory. At the time of the perfor-

mance experiments, the clusters featured different interconnects:

Skylake servers were interconnected with Intel Omni-Path, and

Gomez servers were interconnected with Mellanox InfiniBand (IB)

EDR. NWChem’s BSPMM (discussed in Figure 7 and Section III-B)

was evaluated on JLSE’s Gomez cluster. The hypre and Uintah appli-

cations (discussed in Section III-A) were evaluated on Bebop’s knl

partition (described above). The Legion-based Circuit application

(discussed in Figure 5) was evaluated on Bebop’s bdw partition

(described above). The WOMBAT application was evaluated on

the HPC3 cluster at the University of California, Irvine. The HPC3

cluster features Intel Skylake nodes that are interconnected using

Mellanox IB EDR.

AUTHOR-CREATED OR MODIFIED

ARTIFACTS:

Artifact 1

Persistent ID: https://doi.org/10.5281/zenodo.6941794

Artifact name: Multi-VCI MPICH for fast MPI+threads (OFI netmod)

Artifact 2

Persistent ID: https://doi.org/10.5281/zenodo.6941795

Artifact name: Multi-VCI MPICH for fast MPI+threads (UCX net-

mod)

Artifact 3

Persistent ID: https://doi.org/10.5281/zenodo.6941805

Artifact name: Hypre linear solver with logically parallel communi-

cation

Artifact 4

Persistent ID: https://doi.org/10.5281/zenodo.6941807

Artifact name: Uintah using hypre with logically parallel communi-

cation.

Artifact 5

Persistent ID: https://archive.softwareheritage.org/

swh:1:dir:1303d1809238257a980ba5067a4f3e8f2cf40eb9

Artifact name: WOMBAT with logically parallel communication

Artifact 6

Persistent ID: https://doi.org/10.5281/zenodo.6941812

Artifact name: Legion’s MPI backend with logically parallel com-

munication

Artifact 7

Persistent ID: https://doi.org/10.5281/zenodo.6941820

Artifact name: NWChem’s BSPMM with logically parallel commu-

nication

Artifact 8

Persistent ID: https://doi.org/10.5281/zenodo.6941816

Artifact name: MPI+threads microbenchmarks with logically paral-

lel communication

Reproduction of the artifact without container: The provided arti-

facts are MPI applications that use a modified MPI library. Hence,

the primary requirements for building the artifacts are OFED li-

braries which involve kernel modules. Additionally, we no longer

have access to the machines (Bebop and JLSE) on which the perfor-

mance numbers for Figure 1 were collected.

More importantly, the primary contributions of our paper are not

performance evaluations of applications, rather they are qualitative

comparisons of the different mechanisms of exposing logically par-

allel communication in MPI+threads applications. The quantitative

performance-oriented comparisons of the different mechanisms

were published in our prior publications (references 65 and 66).

Regardless, here are the steps to reproduce the results in Figure

1(a).

1) Build Artifact 1 using ‘../configure świth-device=ch4:ofi:psm2

świth-libfabric=/path/to/your/libfabric/psm2-install ś

prefix=/path/to/your/install/ śenable-thread-cs=per-vci śenable-

ch4-direct=netmod świth-ch4-max-vcis=X śenable-fast=O3 &&

make -j install‘

2) Build pt2pt/multiple_isir_waitall_mbw_mr.c and

pt2pt/single_isir_waitall_mbw_mr.c in Artifact 8 using ‘make multi-

ple_isir_waitall_mbw_mr‘ and ‘make single_isir_waitall_mbw_mr‘

respectively.

3) To run the microbenchmark with 16 threads and logically

parallel communication, use ‘mpiexec -n 2 -ppn 1 -f ${HOSTFILE}

-env MPIR_CVAR_CH4_OFI_MAX_VNIS 16 -env OMP_PLACES

Zambre, et al.

cores -env OMP_PROC_BIND close -env HFI_NO_CPUAFFINITY

1 ./multiple_isir_waitall_mbw_mr -S 8 -T 16‘

4) To run the microbenchmark with 16 threads but with-

out logically parallel communication, use ‘mpiexec -n 2 -ppn

1 -f ${HOSTFILE} -env MPIR_CVAR_CH4_OFI_MAX_VNIS 1 -

env OMP_PLACES cores -env OMP_PROC_BIND close -env

HFI_NO_CPUAFFINITY 1 ./multiple_isir_waitall_mbw_mr -S 8

-T 16‘

5) To run the microbenchmark with equivalent (16 cores) MPI

everywhere parallelism, use ‘mpiexec -n 32 -ppn 16 -f ${HOST-

FILE} -env MPIR_CVAR_CH4_OFI_MAX_VNIS 1 -bind-to core -env

HFI_NO_CPUAFFINITY 1 ./single_isir_waitall_mbw_mr -S 8‘

The apps in both Figures 1(b) and 1(c) use the MPI library in

Artifact 1 (see build instructions for it above). The build instructions

for Uintah+hypre (Figure 1(b)) and Circuit Legion (Figure 1(c)) are

in the READMEs of Artifacts 3, 4, and 6.

To run Uintah+hypre with the multi-VCI MPICH on 8

nodes with 1 process per node and 64 threads per pro-

cess with logically parallel communication: ‘mpiexec -n 8 -

ppn 1 -f ${HOSTFILE} -env HFI_NO_CPUAFFINITY 1 -env

MPIR_CVAR_CH4_OFI_MAX_VNIS 64 -env OMP_NESTED true

-env OMP_PROC_BIND "spread,spread" -env OMP_PLACES

threads -env OMP_NUM_THREADS 64 -env HYPRE_TAG "6,12"

./${BINARY} -xthreads 4 -ythreads 4 -zthreads 4 -teamsize 1

8nodes_RMCRT_bm1_DO_solvertest.ups‘

To run Uintah+hypre with the multi-VCI MPICH on 8

nodes with 1 process per node and 64 threads per pro-

cess without logically parallel communication: ‘mpiexec -n

8 -ppn 1 -f ${HOSTFILE} -env HFI_NO_CPUAFFINITY 1 -

env MPIR_CVAR_CH4_OFI_MAX_VNIS 1 -env OMP_NESTED

true -env OMP_PROC_BIND "spread,spread" -env OMP_PLACES

threads -env OMP_NUM_THREADS 64 -env HYPRE_TAG "6,12"

./${BINARY} -xthreads 4 -ythreads 4 -zthreads 4 -teamsize 1

8nodes_RMCRT_bm1_DO_solvertest.ups‘

To run Uintah+hypre with MPI everywhere parallelism

on 8 nodes with 64 processes per node: mpiexec -n 512 -

ppn 64 -f ${HOSTFILE} -env HFI_NO_CPUAFFINITY 1 -env

MPIR_CVAR_CH4_OFI_MAX_VNIS 1 -env OMP_NESTED true -

env OMP_PROC_BIND "spread,spread" -env OMP_PLACES threads

-env OMP_NUM_THREADS 1 -bind-to core ./1_mpi -npartitions 1

-nthreadsperpartition 1 8nodes_RMCRT_bm1_DO_solvertest.ups

To run Uintah+hypre with the multi-VCI MPICH on 8 nodes

with 1 process per node and 64 threads per process: ‘mpiexec

-n 8 -ppn 1 -f ${HOSTFILE} -env HFI_NO_CPUAFFINITY 1 -

env MPIR_CVAR_CH4_OFI_MAX_VNIS 64 -env OMP_NESTED

true -env OMP_PROC_BIND "spread,spread" -env OMP_PLACES

threads -env OMP_NUM_THREADS 64 -env HYPRE_TAG

"6,12" ./2_ep -xthreads 4 -ythreads 4 -zthreads 4 -teamsize 1

8nodes_RMCRT_bm1_DO_solvertest.ups‘

To run Circuit Legion on N nodes with logically paral-

lel communication: mpiexec -n ${N} -ppn 1 -f ${HOSTFILE} -

env MPIR_CVAR_CH4_OFI_MAX_VNIS 10 ./circuit -p ${N} To

run Circuit Legion on 128 nodes without logically parallel

communication: mpiexec -n ${N} -ppn 1 -f ${HOSTFILE} -env

MPIR_CVAR_CH4_OFI_MAX_VNIS 1 ./circuit -p ${N}

Artifacts 3-7 contain READMEs that provide instructions on

building the applications.

