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We consider a product X = E; x --- x E; of elliptic curves over a finite extension K
of Q, with a combination of good or split multiplicative reduction. We assume that at
most one of the elliptic curves has supersingular reduction. Under these assumptions,
we prove that the Albanese kernel of X is the direct sum of a finite group and a divisible
group, extending work by Raskind and Spiess to cases that include supersingular
phenomena. Our method involves studying the kernel of the cycle map CHy(X)/p" —
Hgtd X, u?,fi). We give specific criteria that guarantee this map is injective for every n > 1.
When all curves have good ordinary reduction, we show that it suffices to extend to a
specific finite extension L of K for these criteria to be satisfied. This extends previous

work by Yamazaki and Hiranouchi.

1 Introduction

Let X be a smooth, projective, and geometrically integral variety over a field K having
a K-rational point. We consider the group CH,(X) of zero cycles on X modulo rational
equivalence and let Ay(X) be the subgroup of zero cycles of degree zero. There is an
abelian variety, Alby, called the Albanese variety of X, universal for maps from X to

abelian varieties, and an induced homomorphism,

Ay(X) — Alby(K),
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called the Albanese map of X. When X is a curve, the group A,(X) coincides with Pic®(X)
and the Abel-Jacobi theorem tells us that the above map is an isomorphism. In higher
dimensions, however, the situation is far more mysterious and the Albanese map can
have a very significant kernel, which we denote by T'(X).

When K is an algebraic number field, the fascinating Bloch-Beilinson conjec-
tures predict that the Albanese kernel T(X) is a torsion group. At the same time, the
group CH,(X) is expected to be a finitely generated abelian group, so T(X) must be
finite. On the other hand, the Albanese kernel is expected to be enormous for varieties
with positive geometric genus over large fields like C or Q,,.

In this work, the case of interest to us is that of a p-adic base field K. In this

case, the expected structure of T(X) is given by the following conjecture.

Conjecture 1.1. Let X be a smooth projective and geometrically integral variety over a
finite extension of Qp. The Albanese kernel T'(X) is the direct sum of a finite group and

a divisible group.

A 1st version of this conjecture was formulated by Colliot-Thélene ([4]), and
a later one by Raskind and Spiess ([18]). In fact, Raskind and Spiess established the
conjecture for a product X = C; x --- x C; of smooth projective curves all of whose
Jacobians have a mixture of split multiplicative and good ordinary reduction.

More recently, S. Saito and K. Sato ([20]) proved a weaker form of this conjecture.
Namely, if k is the residue field of the p-adic field K, they established that, when X has
a regular projective flat model X over the ring of integers, O, on which the reduced
subscheme of the divisor X ®, k has simple normal crossings, the group A,(X) is the
direct sum of a finite group and a group that is m-divisible for every integer m coprime
to the residue characteristic. The result has since been extended ([4]) to every smooth
projective variety X over a p-adic field. Conjecture 1.1 is still very open though and we
do not have any general method to prove that the quotients T(X)/p™ are “small.”

In this paper we focus on the case of a product X = E; x - - - x E; of elliptic curves
over a p-adic field K. Following the method introduced by Raskind and Spiess in [18],
we manage to extend their result to include also supersingular reduction phenomena.

Our 1st result is a proof of Conjecture 1.1 in the following case.

Theorem 1.2. Let E|,---,E; be elliptic curves over a p-adic field K with either
good or split multiplicative reduction. We assume that at most one of the curves has
supersingular reduction. Then the Albanese kernel, T(X), of the product X = E; x---xE

is the direct sum of a finite group and a divisible group.
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1.1 The cycle map

An essential tool for the study of zero cycles on varieties defined over arithmetic fields

is the study of the cycle map to étale cohomology,
CHy(X)/n 25 H2A(X, u2%),

where d = dim(X). The map c,, is in general neither injective nor surjective. When X is
a smooth surface over a p-adic field and »n is coprime to p, Esnault and Wittenberg ([6])
give some far reaching computations of the kernel. However, when n is a power of p,
still very little is known.

Our primary goal in this paper is to describe as much as possible the kernel
of the cycle map c,» in the context of Theorem 1.2 and for every n > 1. Unlike
Theorem 1.2 that was already known when all the curves have good ordinary or split
multiplicative reduction, the injectivity of Cpn Was previously known only in very limited
cases. Under the assumptions of Theorem 1.2, it has been established by Raskind and
Spiess ([18]) and Hiranouchi ([8]) that the map c,. is injective under the additional
assumption that E;[p"] C E;(K) for every i € {1,---,d}. The only result independent
of n > 1 is due to Yamazaki ([29]), who proved injectivity of c, for every n > 1, for a
product X = C; x --- x Cz of Mumford curves, that is, higher genus analogues of Tate
curves.

In this article we focus on removing the strong K-rationality assumption,
E;[p"] C E;(K), and pass to the limit for p”. For a product X = E; x E, of two elliptic
curves not both having supersingular reduction, we give sufficient criteria for the
injectivity of c,n, for every n > 1. These criteria depend heavily on the reduction
type of E;,E, (Theorem 3.14, Proposition 3.21, Proposition 3.25) and when they are
satisfied, they give us very sharp results. Namely, Theorem 1.2 gives us a decomposition,
T(X) ~ D@ F, where D is a divisible group and F a finite group. Our method often allows
us to fully compute the finite group F, which to our knowledge is the 1st result in this

direction.

Example 1.3. Let X = E x E be the self-product of an elliptic curve over K with good
ordinary reduction. Under some mild assumptions, the cycle map c,. is injective for
every n > 1 and we have an isomorphism, T(X) >~ D & Z/p", if E[p"] Cc E(K) for some
n > 1 and n is the largest with this property. If n = 0, the Albanese kernel T(X) is

divisible.
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When the criteria for injectivity are not satisfied, we show that an obstruction to
injectivity is very possible to exist (Proposition 3.15, Proposition 3.22). However, when
all the curves have good ordinary reduction, we show that the obstruction goes away
after extending to a tower of finite extensions of K. Namely, we prove the following

theorem.

Theorem 1.4. Let E;,--- ,E, be elliptic curves over K with good ordinary reduction.

Let X = E; x --- x E4. Then there exists a finite extension L of K such that the cycle map
Cpn
CHy(X x ¢ L)/p" —> HZ (X @ L, u28),
is injective for every n > 1.

1.2 A corollary over global fields

One special case when we get sharp results is when the elliptic curves have complex
multiplication by an imaginary quadratic field. In this case we get the following global-
to-local corollary for a product X of elliptic curves defined over an algebraic number
field.

Corollary 1.5. Let X = E x E be the self-product of an elliptic curve over an algebraic
number field K. Assume that E has complex multiplication by an imaginary quadratic
field M. Let X, = X ®x K, be the base change to a completion of K at a finite place v.
Then the Albanese kernel, T(X,,), is divisible for almost all ordinary reduction places v
of K.

1.3 Outline of our method

In this paper we use a method introduced by Raskind and Spiess in [18] and continued
by more authors ([29], [17], [9], [8]).

Relation to the Somekawa K-group

Raskind and Spiess reduced the study of the Albanese kernel T'(X) on a product of curves
to the study of the Somekawa K-group K(K;A,,---,A,) attached to abelian varieties
Ay,---,A, over K. This group is a generalization of the Milnor K-group, KM (K) of the
field K. It is a quotient of the group

D awe--04w
L/K finite

€20z Ateniged zz uo Jesn Aleiqr eluiBuip Jo Ausienun Ad GZ€6/1.9/98501 /b 1L/220z/a10me/uIl/woo dno olwapese;/:sdiy Wwoly pepeojumod



10590 E. Gazaki and I. Leal

first by a relation similar to the projection formula of CH;(X) and then by a 2nd relation
coming from function fields of curves, known as Weil reciprocity.

The big advantage of this method is that the group K(K;A,,--- ,A,) has specific
generators and relations. More importantly, when working over a p-adic field K, the
projection formula is easy to use and in most cases it gives already enough relations

that guarantee that the quotients T(X)/p" are small.

The Galois symbol

Similarly to the case of the Milnor K-groups, for an integer n > 1 invertible in K, there

is a map to Galois cohomology, known as the generalized Galois symbol,
KK Ay, Ap/n > H' (K, AN ® - ®A,ln)).

This map is constructed similarly to the Galois symbol of the Bloch—Kato conjecture,
and it is conjectured by Somekawa ([25]) to always be injective. Nonetheless, a counterex-
ample has been found in [26], not for abelian coordinates but for the group K(X; T, T)
attached to two copies of a certain non-split torus over a 2-dimensional local field K.

Coming to the question of injectivity of the cycle map c,» for products of curves
over p-adic fields all having a K-rational point, this question has been reduced by
Yamazaki to verifying the Somekawa conjecture for abelian varieties.

For elliptic curves E}, - -- ,E, over a p-adic field K satisfying the assumptions of
Theorem 1.4, the conjecture has been established ([18], [8]) under the assumption that
E;[p"] C E;(K), fori = 1,---,r. This is the assumption we would like to remove. When
E;lp]l C E;(K) for every i = 1,--- ,d, we introduce a new method to pass to the limit for
p". Roughly speaking, our method is based on the following principle. “When E;[p] C
E;(K), the K-group K(K; E,, E,)/p is generated by p" torsion points for sufficiently large
N > 1." When this is not achieved over K, we construct a tower, K C L; C --- C L, of
finite extensions so that this condition is achieved in the tower. When the curve E; has
either good ordinary or split multiplicative reduction, we even manage to remove the
assumption E;[p] C E;(K) by using the theory of p-adic uniformization of elliptic curves.

We note that in all our computations we use a group larger than K(K; Ey,--- , E,.).
Namely, in the definition of the Somekawa K-group we forget the relations coming from
function fields of curves. For this larger group, we show that most of our conditions
become necessary for injectivity. This, however, does not disprove the Somekawa

conjecture.

€20z Ateniged zz uo Jesn Aleiqr eluiBuip Jo Ausienun Ad GZ€6/1.9/98501 /b 1L/220z/a10me/uIl/woo dno olwapese;/:sdiy Wwoly pepeojumod



Zero Cycles on a Product of Elliptic Curves 10591
Some corollaries

As a byproduct of our proofs, we obtain some important corollaries. First, in the context
of Theorem 1.2, we get a decomposition T(X) >~ F & D, with the finite group F generated
by K-rational points. We hope that this corollary could have potential applications over
global fields.

Moreover, using computations of Yamazaki ([29]), we obtain a corollary about
the Brauer-Manin pairing, CH,(X) x Br(X) — Q/Z, where by Br(X) we denote the Brauer
group of X (Corollary 3.29).

We wish our methods could be used to establish Theorem 1.2 for any product of
elliptic curves. Unfortunately, there is a very serious obstruction for a product E; x E,
of two curves with supersingular reduction. Namely, in this case, the easy projection
formula of the Albanese kernel does not seem to give us enough relations that guarantee

the quotient T(E; x E,)/p is finite.

Notation

Unless otherwise specified, all cohomology groups considered in this paper will be
over the étale site. In particular, for a field K, we will denote by H!{(K,—) the Galois
cohomology groups of K. Moreover, we will denote the separable closure of a field
FbyF.

If L/K is an extension of fields and X is a variety over K, we will denote the base
change X @y L by X;.

2 Mackey Functors and Somekawa K-Groups

In this section we review the definition of the Somekawa K-group K(K;A,,--- ,A,) for
abelian varieties A,,--- , A, over a perfect field K. We start by reviewing the definition
of a Mackey functor.

Let K be a perfect field. A Mackey functor F over K is a presheaf on the
category of étale K-schemes having the following additional property. For every finite
morphism X i> Y of étale K-schemes, in addition to the restriction map F(Y) L F(X),
there is also a push-forward map, F(X) LN F(Y). The maps f* and f, satisfy certain
functoriality conditions, for example, for a composition X L Y EN Z, we have an
equality, (fog), = f, 0g,. Moreover, there is a decomposition F(X; UX,) = F(X;) & F(X,).
Therefore, F is fully determined by its value F(L) := F(SpecL) at every finite extension
L over K. For a more detailed discussion on the properties of Mackey functors we refer
to [18, page 13, 14].
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10592 E. Gazaki and I. Leal
Notation

From now, if K fi> L is a finite extension of perfect fields, we will denote the restriction
map by resy g F(K) — F(L) and the push-forward map by Npk: F(L) - F(K) and call

it the norm.

Example 2.1. Let A be an abelian variety over K. Then A induces a Mackey functor by
assigning to a finite extension L/K, A(L) := Hom(SpecL, A). For a finite extension F/L,

the push-forward is the norm map on abelian varieties, Ngp : A(F) — A(L).

Kahn proved in [11] that the category MFy of Mackey functors on (SpecK), is an
abelian category with a tensor product . For abelian varieties A, --- , A, over K, we
review the definition of A; ®" -.- @M A, below. The definition is in fact very similar for

general Mackey functors Fi, - - , F,, but here we only need the abelian variety case.

Definition 2.2. Let A,,---,A, be abelian varieties over a perfect field K. The Mackey

product 4; ®" ... @M A, is defined at a finite extension L over K as follows:

@, " e"a)m = @ A4E & -QAF) |/R,.
F/L finite

Here R, is the subgroup generated by elements of the form
Q- QNpp(@) ®---®a, —resp p(a)) ® - ®a;® - Qresp p(a,),

where F' O F D L is a tower of finite extensions of K, a; € A;(F') for some i € {1,---,1},

and a; € A;(F) for every j # i.

Notation 2.3. From now on we will be using the standard symbol notation for the

generators of (4; @ .- ®M A,)(L), namely {a,, - -- @) for a; € Ay(F).

Norm and restriction

Since A; ®" ... @™ A, is a Mackey functor, there are norm and restriction maps

corresponding to any finite extension L/K. Namely,

res; i i (A; @M @M A)K) > (4, @Y - @M A) (D),
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Zero Cycles on a Product of Elliptic Curves 10593

and
Ny : A 0V MA@ - A4, &Y - oM A)K).

Moreover, we have the relation Ny x ores; x = [L: K].

Remark 2.4. We note that the symbol {a;,---,a,}p/; € (4; M ... @M A )(L) is nothing
but Ng;({a,, -, a,}p/p). The defining relation R, is classically referred to as projection

formula. We rewrite it using the symbolic notation:

{alf s 'NF/L(ai)' ey ar}L/L = NF/L({I‘eSF/L(al), e Qg ,resF/L(ar)}F/F). (2.5)

2.1 The Somekawa K-group

We are now ready to review the definition of the K-group K(K;A,,--- ,A,) attached to

abelian varieties over a perfect field K.

Definition 2.6. The Somekawa K-group K(K;A,,---,A,) is defined as
K(KrAll e /Ar) = (Al ®M e ®MAr)(K)/R21

where the subgroup R, is generated by the following family of elements. Let C be a
smooth complete curve over K endowed with morphisms g; : C — A; fori =1,---,r.

Then for every function f € k(C)* we require

Z Ordx(f){gl(x)r te lgr(X)}K(X)/K € RZ'

xeC

The above definition was given by Somekawa ([25]), following a suggestion of K.
Kato. Somekawa defined more generally a K-group K(K; G,,---,G,) attached to semi-
abelian varieties over a field K, that in the special case when G; = G,, for every i, it
turns out to be isomorphic to the Milnor K-group, KM (K). Recently this definition has
been generalized to include more general coordinates. We refer to [10] and [12] for more
details.

Remark 2.7. In most of this paper we will be using the Mackey product (4; @ - .. @M

A,)(K) for our calculations. From now on we will use the same symbolic notation,
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10594 E. Gazaki and I. Leal

{ay,---.a,} k., for the generators of both the Mackey product and the Somekawa

K-group. To avoid confusion, we will always clarify which group we are using.

Galois symbol

Let A, -+, A, be abelian varieties over a perfect field K and n be an integer invertible
in K. The Kummer maps, 4;(L)/n < H(L, A;[n]), together with the cup product and the
norm map of Galois cohomology (i.e., the corestriction map) induce a generalized Galois

symbol,
s, K(K; A, A)/n— H (K,Anl® - ®A,ln.
Conjecture 2.8. ([25]) The generalized Galois symbol s,, is always injective.

This conjecture is the analogue of the Bloch-Kato conjecture for the Somekawa
K-groups. It is still very open in general and as already mentioned in the introduction,

a counterexample has been found ([26]) for non-abelian coordinates.

2.2 Relation to zero cycles

For a product X = E; x --- x E; of elliptic curves over a field K, Raskind and Spiess
([18, Corollary 2.4.1]) constructed a finite decreasing filtration FC > F! > ... > F¥ 50
of CHy(X) such that the successive quotients F!/F'*1 are isomorphic to Somekawa K-

groups of the form K(K; E, ,--- E; ), for1 <i; < --- < 1. < d. More precisely, they

1 ’
proved an isomorphism (We note that the construction of Raskind and Spiess was a
lot more general, for a product of smooth complete and geometrically connected curves
all having a K-rational point, and the filtration was constructed using the Somekawa

K-groups attached to their Jacobian varieties.)

CHyX)~Z& P P KKE,.. . .E).

1<v<dl1<ii<---<i,<d

Additionally, the subgroups F! and F? coincide with A,(X) and T(X), respectively, ([18,
Remark 2.4.2 (b)], [29, Example 2.2]).
Yamazaki then showed ([29, Proposition 2.4]) that in the above set-up, the

injectivity of the cycle map

Cn,
CHo(X)/n = HZH(X, u3?)

€20z Ateniged zz uo Jesn Aleiqr eluiBuip Jo Ausienun Ad GZ€6/1.9/98501 /b 1L/220z/a10me/uIl/woo dno olwapese;/:sdiy Wwoly pepeojumod



Zero Cycles on a Product of Elliptic Curves 10595

can be reduced to verifying the Somekawa conjecture for all the Galois symbols

KE; ,-- ,Eir)/n Sn, Hzr(K; Eil he--- ®Eir[n])~

11’

2.3 Injectivity in the p-adic case

From now on we focus on the case of a p-adic field K. In fact we make the following

convention.

Convention 2.9. From now on, unless specified otherwise, we assume that K is a p-
adic field with ring of integers O, maximal ideal mg, and residue field k. Moreover,
we assume that all the elliptic curves considered in this paper have split semistable

reduction.

We give an overview of the status of Conjecture 2.8.

When n is coprime to p

In this case the problem is easier to handle. When at least two of the abelian varieties
A,,--- A, have good reduction, the injectivity of s,, follows from the following stronger

result.

Theorem 2.10. (Raskind and Spiess [18, Theorem 3.5]) If n is coprime to p and at least
two of the abelian varieties A,,--- , A, have good reduction, the group K(K;A,,--- ,A,)

is n-divisible. In particular the Galois symbol vanishes, s, = 0.

When n is a power of p

Proving injectivity of s,» for n > 1 over a p-adic field K is a mixed characteristic problem
of great difficulty. Raskind and Spiess described a general method that could be used to
establish injectivity, under the additional assumption that ;1,» C K and A;lp™ C A/(K),
fori=1,---,r. We briefly review this method only for two elliptic curves E;, E, over K,
to keep the notation simple.

The main idea is to relate the generalized Galois symbol s,. to the classical

Galois symbol of the Bloch-Kato conjecture,

gpn
K3'(K)/p" = H* (K, u57).
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10596 E. Gazaki and I. Leal

When p),n C K, the latter has a concrete description in terms of central simple algebras.

Moreover, for

tcbcol@upper

a symbol {x, y} the following equivalence is known.

Ipr (X, 7)) = 0 & X € Ny(piy i K(PY/P)) &y € N s (KCVR)X),

The steps of the method are as follows:

Because of the K-rationality assumption, we can fix an isomorphism

E;[p"] ~ (/Lpn)@z, fori=1,2. This in turn gives us isomorphisms

4 4 4
H*(K,E,[p"1 ® Eylp")) ~ (P H* (K, upn) ~ EP Br&)p™ ~ P Z/p".

The next step is to describe realizations of the Mackey functors E; /p"
and E,/p" as subfunctors of G,,/p". If such realizations exist and are
compatible with the Kummer map, E;(L)/p" < H'(L,E;[p"]), for every
finite extension L of K, then this description can be used in order to

compute the image of
n oM n Spn 2 n n
(E,/p" ®" E3/p™)(K) — H (K, E,[p"] ® E,[p"]),

using known facts about the classical Galois symbol.

After computing the image, one could try to show an isomorphism,

(E1/p" @M Ey/p")(K) —— Im(spn)

| =

This would imply that the projection (E, /p"®ME,/p™)(K) — K(K; E, , E,) /p"

is an equality and in particular the diagonal s, is an isomorphism as well.

Following the above method, Raskind and Spiess established injectivity of s,»

for abelian varieties with a mixture of good ordinary and split multiplicative reduction

under the above K-rationality assumption. Their work has since been generalized by

Yamazaki ([29

1) who managed to remove the assumption but only for abelian varieties

with split multiplicative reduction. More recently Hiranouchi ([8]) extended the original

computation to include also supersingular reduction elliptic curves. We will review his
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result in the next section. See also [17] for an alternative proof for the self-product E x E

of an ordinary reduction elliptic curve.

Remark 2.11. We note that for elliptic curves Ej, - - - , E, over the p-adic field K with
r > 3, proving Conjecture 2.8 amounts to showing the K-group K(K;E,,--- ,E,) is
divisible. As we will see later in the paper Corollary 3.28, this usually follows as an

easy corollary after proving the conjecture for the product of two elliptic curves.

Remark 2.12. Raskind and Spiess imagined that the Mackey functor relation should be
enough to establish injectivity when working with abelian varieties over p-adic fields,
while the function field relation of K(K; A,, - - - , A,) is expected to be crucial for varieties
over number fields. We will show in the forthcoming sections, however, that without the
K-rationality assumption, injectivity is not always guaranteed by the Mackey functor

relations, even over p-adic fields.

2.4 Decomposing the Mackey functor E/p for an elliptic curve E

Let E be an elliptic curve over K such that E[p] C E(K). In this subsection we review
the aforementioned realization of the Mackey functor E/p as a subfunctor of G,,,/p. We
first need some information about the filtration of K* arising from the groups of units,

X 1 2 i _ i
Og DUg D Ug D -+, where Uy =1+ mk.
The unit groups as Mackey functors

We assume u,, C K. We define the following filtration of the group K /p := K> /(K*)P.

Fori > 0,
Uy :=Im(U, — K*/p).

Note that the assumption u,, C K implies that p — 1 divides the absolute ramification

index ex. We denote ey(K) := ;. The graded quotients Uy /Us " are known to satisfy

the following.

Lemma 2.13. ([15, Lemma 2.1.4]) Assume Ky C K.

(@) If0 <1i < pey(K) and i is coprime to p, then ﬁZ/I_I?I ~ k.
(b) If0 <i < pey(K) andiis divisible by p, then ﬁ;{/ﬁ?l ~1.
(c) Ifi=pey(K), then Uy/Tg =~ Z/p.

(d) Ifi> pey(K), then Uy = 1.
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10598 E. Gazaki and I. Leal

Definition 2.14. For every i > 0, we define a Mackey functor, U as follows. If L is a

finite extension of K, then
T =",

For a finite extension F/L, the norm Ny, and restriction maps resg , are induced by the

norm and restriction on G,,,.

Theorem 2.15. ([15], [27]) Let E be an elliptic curve over K with split semistable
reduction such that E[p] C E(K). The Mackey funtor E/p is calculated as follows:

G:m/p, if E is a Tate curve
=0 _ 73peo(K) . . )
E/lp=1 U U , if E has ordinary reduction
=pt _ 73p(eo(K)—t) . . .
U U , if E has supersingular reduction.

For the case of a supersingular reduction elliptic curve, there is an invariant ¢

that appears in the above decomposition. This invariant is defined as follows.

Definition 2.16. For an elliptic curve E over K with supersingular reduction such that

Elp] C E(K), the invariant ¢ is defined to be
t:=max{i>0:Pc¢c E‘(m%), for every P € Elpl}.

The fact that E has supersingular reduction yields that ¢ > 1. Moreover,
t < pey(K). This is because for every j > pey(K) the group fi‘(m]K) is known to be torsion
free ([23]).

Remark 2.17. We note that the decomposition given in Theorem 2.15 is constructed
using the image of the Kummer map, E(L)/p < H'(L,Elp)), for L a finite extension of
K. In fact, the assumption E[p] C E(L) for every such extension L gives an isomorphism
between H!(L, Elp]) and L* /p & L* /p, so via the Kummer map we may view E(L)/p as
subgroup of L* /p & L* /p. This compatibility allows us to use the above decomposition
for the generalized Galois symbol, (E; ® E,)/p(K) — H2%(K, E,[pl ® E,[p)).

Example 2.18. Assume for example that E; is an elliptic curve with good ordinary
reduction and E, is a Tate curve, with E;[p] C E;(K) for i = 1,2. Let a € E;(K) and
b € E,(K) be two closed points. Under the decomposition given by Theorem 2.15, the
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image of b € E,(K)/p can be thought of as the class of a point b € K*/p. Moreover, the

image of a € E,(K)/p is of the form (a,, a,) with a, € Uy and a, € Ux°"~. Then,

sp{a, blg/x) = (gp({a,, b)), gp({ay, b)) € Z/p ® Z/p,

where g, : KM(K)/p — Br(K)Ip] ~ Z/p is the classical Galois symbol.

3 The Main Theorems

We make the following assumption for the rest of this section.

Assumption 3.1. Unless otherwise specified, E;, E, shall denote elliptic curves over
the p-adic field K, both with split semistable reduction, and such that at least one of
them does not have supersingular reduction. Moreover, if E is an elliptic curve over K
with good reduction, we will denote by £ its Néron model, (which is an abelian scheme
over Spec(Og)) and by E := & ®p, k the special fiber (which is an elliptic curve over the
residue field k).

We consider the local Galois symbol
spn i K(K; Ey, Ey) /p" — H*(K, E, [p"] ® Ey[p"]).

We recall the following result.
Theorem 3.2. (Hiranouchi, [8]) If E;[p"] C E;(K) for i = 1,2, the map Spn is injective.

Hiranouchi used an involved argument to prove injectivity of s,. The injectivity
of s,» follows by diagram chasing and induction. Theorem 3.2, together with the
computation of the image of s, by Hiranouchi and Hirayama ([9, Theorem 3.4]), yield

the following theorem.

Theorem 3.3. (Hiranouchi [8], Hiranouchi-Hirayama [9]) Assume that E;[p"] C E;(K)
fori=1,2. Then

K(K;E,E,) E QM E, ® 7/p", if E|, E, have the same reduction type
p" -t ~ |z/p* @ z/p", if E,, E, have different reduction type
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10600 E. Gazaki and I. Leal

Remark 3.4. It is important to note that, while proving injectivity of s,, Hiranouchi

showed that the group (E; ® E,)/p can be generated by symbols of the form {a, blk/k-

Our 1st goal is to remove the strong assumption E;[p"] C E;(K) and pass to the
limit for p™. Starting with the case when E,[p] C E;(K), for i = 1, 2, the following quite
general lemma provides a sufficient criterion that guarantees injectivity of s for every

n>1.

Lemma 3.5. Let E;,E, be elliptic curves over K. Assume that E;[p"] C E;(K), i = 1,2,
for some n > 1, which is the largest with this property. Further, assume that the Galois
symbol s, is injective. If K(K; E;, E,) /p can be generated by symbols of the form {a, b}K/K
with either a € E|[p"] or b € E,[p"], then the group p"K(K; E,, E,) is p-divisible, that is,
pP"K(K;E,,E,) = p°K(K; E,,E,), for every s > n. In particular, the Galois symbol s, is

injective for every m > 1.

Proof. Letx € p"K(K;E;,E,). We may write x = p"y for some y € K(K; E;,E,). We
consider the image of y in K(K; E;, E,)/p. By the assumption of the lemma, we may write

y in the following form,

y= Z{ai, bi}k/x +pz, (3.6)
1

where z € K(K; E,, E,) and either a; € E,[p"] or b; € E,[p"]. We conclude that the element

p"y is p-divisible.
Notice that this implies that the Galois symbol s, is injective for every m > 1.
For, if m < n, the injectivity follows from Theorem 3.2. On the other hand, if x € ker(sps)
for some s > n, a simple induction and diagram chasing shows that x € p"K(K; E;, E,)
and the claim follows by the p-divisibility of p"K(K; E|, E,). |

Remark 3.7. It is clear that if the elliptic curves E;,E, satisfy Lemma 3.5, then
Theorem 1.2 holds for the product X = E; x E,. Indeed, if D is the maximal p-divisible
subgroup of K(X;E;,E,), then we can write K(X;E;,E,) ~ D & F for some subgroup
F. The lemma together with the fact that K(X; EI,EZ)/pi is a finite group for every
i > 1 imply that subgroup F is finite. In many cases, we won't be able to verify the
assumptions of Lemma 3.5. However, very often we will be able to show the weaker
condition that the group p"K(K; E;, E,) is p-divisible for some N > n, by showing that
the K-group K(K; Ey, E;)/p can be generated by symbols of the form {a, b} g, with either
a € E|[p"1(K) or b € E,[p"1(K), for some N > n.
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Remark 3.8. We note that if either Lemma 3.5 or the weaker condition of Remark
3.7 holds, we can show that the finite summand F of K(K; E;,E,) can be generated by
symbols {x, y}x x defined over K, as long as this is true for the group K(K; E}, E;)/p. This
follows inductively using the exact sequence K(X; E;,E,)/p p—m> K(K;Ey,E;)/p™! —
K(K;E, E,)/p™ — 0. When E,,E, satisfy Assumption 3.1, this has been proved by

Hiranouchi (see Remark 3.4).

3.1 The product of two elliptic curves with ordinary reduction

Our 1st computation will be for the product E; x E, of two elliptic curves over K, both
having good ordinary reduction. We start with a preliminary discussion, which includes

some background on elliptic curves of such reduction type.

The connected-étale exact sequence

Let E be an elliptic curve over K with good ordinary reduction, and n > 1 a positive
integer. The Gg-module E[p"] has a one-dimensional Gg-invariant submodule. Namely,

we have a short exact sequence of Gx-modules,
0 — E[p"]° — Elp"] — E[p"* — 0, (3.9)

where E[p"]° := E[p"] are the p"-torsion points of the formal group E of E.
If we further assume that E[p"~!] c E(K), then after a finite unramified

extension Ly/K of degree coprime to p, this sequence becomes
0 — fipn — Elp"l - Z/p"™ — 0. (3.10)

The short exact sequence (3.9) is known as the connected-étale exact sequence for E[p"].
The reason for the name is that this exact sequence can be obtained from the exact

sequence of finite flat group schemes over Spec(Oy),
0 — &lp"l° — Elp™ — Ep"I¢t — 0,

by extending to the generic fiber. Here we denoted by £ the Néron model of E.
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10602 E. Gazaki and I. Leal
The Serre-Tate parameter

We next assume that u, C K and that we have a non-splitting short exact sequence of

finite flat group schemes over Spec(Oy),
0—>up—>5[p]—>Z/p—>O. (3.11)

This in particular means that E[p] C ]:L'(OK). Notice that £[p] defines in this case a non-
trivial element of EthK(Z/p,up) ~ H}ppf((’)K,up). This group is isomorphic to OE/OIEP
and therefore the extension £[p] (or equivalently the Galois module E[p]) corresponds
to a unit u € Og that is not a pth power. That is, the sequence (3.11) becomes split
after extending to the finite extension K(&u). The unit u is known as the Serre-Tate
parameter of E. For more information we refer to [14, Chapter 8, Section 9].

Next we want to give a new interpretation of this unit u that will be more helpful
for our purposes. We first need some information about the Mackey functor ﬁ'/[p], where
E is the formal group of E and [p] : E — Eis the multiplication by p isogeny. Because
we assumed that E has ordinary reduction, the isogeny [p] has height one. Recall that E
induces a Mackey functor that is defined at a finite extension L/K as E(L) := E'(OL) with

the obvious norm and restriction maps.

Proposition 3.12. Let E be an elliptic curve over K with good ordinary reduction,
and E be its formal group. Assume that ﬁ'[p] C E(OK) and up C K. Then we have an
isomorphism of Mackey functors, E/[p] ~T' ~ T".

Proof. The 1st isomorphism follows directly from [15, Theorem 2.1.6, Corollary 2.1.7],
if we apply it to the height 1 isogeny, [p] : E — E. To make this more precise, for every

ﬁf(eo L)—tL)+1

finite extension L/K, we have an isomorphism, ]:L'((’)L)/[p]E(OL) ~ , where

the invariant t(L) is defined as
t(L)=max{i >0:Pe ﬁ'(mi), for every P € E‘[p]}.

We claim that (L) = ey(L). Since for every finite extension L' /L we have equalities, t(L') =
e(L’/L)t(L) and ey(L') = e(L'/L)ey(L), it suffices to prove this equality after extending to
L(Elp]). But then the result follows from Theorem 2.15. The 2nd isomorphism follows

from Lemma 2.13. |
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We next consider the short exact sequence of abelian groups,
0 > EOg) L E®) > E(k) - 0, (3.13)

where E(K) — E(k) is the reduction map. By tensoring (3.13) with Z/p and using

Proposition 3.12 we get an exact sequence,
—0 J r =
Uy — E(K)/p — E(k)/p — 0.

The claim is that the map ﬁ% J, E(K)/p is not injective. Namely there is a unit u € ﬁ?{
that generates the kernel and this unit is the Serre-Tate parameter of E. To construct u,
we proceed as follows. Let b € E[pl(k) be a p-torsion point with b # 0. Such a point exists
because E[p] ~ E€![p] ~ Z/p. Since the reduction map is surjective, we may choose a lift
b of b in E(K). We claim that r(pf)) =pb =0, but pE is nonzero. Indeed, if pB = 0, then
b would be a K-rational p-torsion point of E, which would contradict the non-splitting
of the short exact sequence (3.11). Next, the exactness of the sequence (3.13) yields the
existence of a unit u € Og such that j(u) = pB. The class of u € OE/O;F is independent
of the choice of lift. To finish the claim, we need to verify that u ¢ K*P. Assume to the
contrary that u is a pth power, that is, u = v” for some v in K*. Then the equation
pj(v) = pb yields that b — j(v) is a non-zero p-torsion point of E. Since r(b) = b # 0, this
would imply that E[p] C E(K), which is a contradiction.

Injectivity in the wild case

In this subsection we consider the question of injectivity of the Galois symbol for
two elliptic curves E;,E, with ordinary reduction. We will often work with the
Mackey product, (E; ®" E,)(K)/p" instead of the Somekawa K-group K(K;E,,E,)/p".

To distinguish between the two groups, we will call the map
M n Sp" 2 n n
(E, ®" E,)(K)/p" — H"(K,E,[p"1 ® E,[p"])

the Mackey functor Galois symbol. Recall that the latter has the same image as the

actual Galois symbol
Sy,n
K(K;E,, Ey)/p" = H*(K,E,[p"1 ® E,[p")),

but it might have a larger kernel.
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Theorem 3.14. Assume Kp C K. Let Ey, E, be elliptic curves over K with good ordinary
reduction and let n > 0 be the largest integer such that E;[p"] C E;(X), fori = 1,2.

Assume:

e The extension L = K(E,[p"*!], E,[p"!]) has wild ramification.

e Fori=1,2 we have short exact sequences of Gx-modules,
0 = Upni1 —> Ei[p”“] — 7Z/p" - 0.

Then the Galois symbol s,» : K(K; Ey, E;)/p™ — H?(K,E,[p™ ® E,[p™]) is injective for
every m > 1. In particular, if n = 0, the K-group K(K; E;, E,) is p-divisible.

Proof. We first prove injectivity when n > 1, which implies E;[p] C E;(K) fori =1, 2.
Without loss of generality assume that K(E;[p"*!])/K is wildly ramified. Then there
exists a p"-torsion point w € E;[p"] such that the extension L, = K(Il)w) is wildly
ramified over K. We will show that the assumption of Lemma 3.5 holds, more precisely,
that K(K; E;, E,)/p is generated by symbols of the form {w, y}g x with y € E»(K).

By Theorem 3.2 we get that the Galois symbol s, is injective and can be computed

by the following composition,
K(K; Ey, Ey)/p =~ (T° &M T)(K) 2> Br(K)lpl ~ Z/p,

where g, is the classical Galois symbol. Moreover, recall (2.15) that we have a decom-
position, E;(K)/p ~ Uy ® U2 . We consider the image of w = (wy,w,) under
this decomposition. Since L, /K is wildly ramified, we necessarily have w; # 0 and
even stronger, that w; € ﬁé{ \ ﬁ?l for some i coprime to p. To prove the claim, it
suffices therefore to show that there exists some y € ﬁO(K) C E,(K)/p such that
9wy, ¥} # 0. Equivalently, it suffices to show that there exists a unit y € I_IO(K)
such that y ¢ N W)/K(K(W/)X). The existence of such a y follows by [21, page 86,
Corollary 71.

Now we prove injectivity when n = 0. In this case, either E,[p] ¢ E;(K) or E,[p] ¢
E,(K). We will show that (E; @ E,)/p = 0, which in particular implies that the K-group
K(K;E,,E,) is p-divisible.

We have that Mp C K, and for i = 1,2, there are short exact sequences of Gg

modules

0— Mp—>Ei[p]—> Z/p — 0.
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Without loss of generality, assume that K(E, [p])/K is wildly ramified. In particular, the
extension 0 — u, — E;[p] - Z/p — 0 does not split, and the corresponding Serre-Tate
parameter u has the property that K(&u)/K is a totally ramified degree p extension.
Recall that the category of Mackey functors is abelian with a tensor product.
The short exact sequence of abelian groups (3.13) induces a short sequence of Mackey

functors,
0— Ei — E;, — [Ei/ﬁ'i] — 0,

where [E;/E;] is the Mackey functor defined as follows. For a finite extension F/K, denote
the residue field of F by kg, and let [E,/E;|(F) := E;(ky). Moreover, the restriction resg g
[E;/E])(K) — [E;/E;1(F) is the usual restriction, E;(k) iy E;(kg), while the norm Np/g
[E;/E;)(F) — [E;/E;J(K) is the map e(F/K) - Ng /g : E;(kg) — E;(k). The fact that [E;/E;] is a
Mackey functor has been shown by Raskind and Spiess ([18, page 15]). We consider the
sequence for i = 2 and we apply the right exact functor, ®Z/p. Using Proposition 3.12,
we obtain an exact sequence of Mackey functors,

T eMT° L T @M E,/p > T’ @M [E,/E,l/p — O.

We claim that T° @M [E,/E,l/p = 0. Indeed, consider a symbol {X, y}p/x, Where F is
some finite extension of K, x € ﬁO(F), and y € [EZ/E'Z](F). There is y' € [Ez/ﬁ'z](?) such
that py’ = y; more precisely, for some finite unramified extension F’'/F, we can find
y' € [E,/E,)(F') such that py’ = y. But, since F//F is unramified, the norm map Np p
ﬁo(F’) — ﬁO(F) is surjective ([21, page 81, Proposition 1]), so the claim follows. We
conclude that there is an exact sequence U° @M T° L, 50 eM E,/p — O.

Using a similar argument, we obtain an exact sequence of Mackey functors,
—0 j A
U @Y Ey/p — By /p &M Ey/p — B, /E1)/p @ Ey/p — 0.

We can again conclude that [El/ﬁ'll/p ®M E,/p = 0, because the elliptic curve E, has
good reduction, and hence for every finite unramified extension F'/F, the norm map
Np g : Ey(F') — E,(F) is surjective ([16, Corollary 4.4]). Finally, the two exact sequences
induce a surjection,

-0 =0 j
U oMU L E /p @Y E,/p— 0.
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Evaluating at Spec(K), we get a surjection,
—0 —0 '
@ " U)(K) = (E/p &" E,/p)(K) — 0.

The group (ﬁo ®Mﬁo)(K) is isomorphic via the classical Galois symbol to Z/p ([8, Lemma
3.3]). It suffices therefore to show that some non-zero element of (ﬁo M ﬁo)(K) is
mapped to zero under j. But this now is easy, using the description of the Serre-Tate
parameter u described in the beginning of this section. Namely, by our assumption,
the extension K (&) is totally ramified of degree p over K, and hence there exists a unit
be [_IO(K) such that g, ({u, b} ) # 0. Thus we get a generator {u, b}y x of ([_IO ®M[_]O)(K),

which is clearly mapped to zero under j. |

Possible kernel in the unramified case

We will now show that if the assumption of Theorem 3.14 does not hold, the Mackey
functor Galois symbol has a nontrivial kernel. We emphasize that this does not disprove
Conjecture 2.8, since the group (E,/p ®" E,/p)(K) could in general be larger than the
Somekawa K-group K(K; E;,E,)/p.

Proposition 3.15. Let E}, E, be elliptic curves over K with good ordinary reduction. We

assume that /1, C K and the Gx modules E;[p] fit into short exact sequences,
0— pnp— E;lpl - Z/p — 0.

Suppose that the extension K(E, [pl, E,[p]) is nontrivial and unramified over K. Then the
Galois symbol Sp vanishes, while (E,/p ®" E,/p)(K) ~ Z/p. In particular, the Mackey
functor E; /p ®™ E,/p is isomorphic to T M7,

Proof. First we show that (E;/p ®" E, /p)(K) =~ Z/p. This follows similarly to the proof
of Theorem 3.14. Without loss of generality, we assume that the extension K(E,[p]) is

nontrivial and unramified over K. We have an exact sequence of Mackey functors,
0 (w -0 L E,/p — |E;/E,]/p — 0,
where u is the Serre-Tate parameter of E;. Here we denoted by (u) the Mackey sub-

functor of T° generated by u. Note that for a finite extension L of K, (u)(L) is either

0 or Z/p depending on whether u is a pth power in L or not. When we apply ®Mﬁo to
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the above sequence, the Mackey functor (u) @ T° vanishes. If L/K is a finite extension
such that u ¢ L*?, then the extension L(¥/w) is unramified over L and therefore the norm
map ﬁg — ﬁ% is surjective. We conclude that in this case the surjection T° @™ T° N
E,/p ®" E,/p — 0 is an isomorphism, and hence (E, /p " E,/p)(K) ~ Z/p.

Next we show that S, = 0. To show this, we use local Tate duality. The local
Tate duality pairing for the finite Gg-module E| [p] ® E,[p] and for i = 0,1, 2 is a perfect

pairing,
(-.-) : H(K, E,[p] ® E,[p]) x H>"(K, Hom(E, [p] ® Eylpl, np)) — Z/p.

Using the Weil pairing and the fact that elliptic curves are self-dual abelian varieties,

the above pairing for i = 2 becomes,
(-,-) : H*(K, E,[p] ® E,[p]) x Homg, (E, [pl, E,[pl) — Z/p.

According to the main theorem of [7, Theorem 1.1], the orthogonal complement under
(.-) of the image of s,, consists precisely of those homomorphisms f : E; [p] — E,[pl that
extend to a homomorphism f : £;[p] — &,lp] of finite flat group schemes over Spec(Oy),
where &; is the Néron model of E; for i = 1,2. Since both elliptic curves have ordi-
nary reduction, the above subgroup of Homg, (E,[pl, E,[p]) has a simpler description.
Namely, according to [7, Proposition 8.8], the orthogonal complement of Im(s,) is the

subgroup
H = {f € Homg, (E,[pl, E;[p]) : f(E,[p]°) C E,[pI°}.

We will show that every Gg-homomorphism f : E|[p] — E,[p] lies in H, which will imply
that s, = 0. By the assumption of the proposition, E;[p]° >~ u,, for i = 1,2, and the G¢
Oli(U)
1
Hom(Z/p, Kp)- Since we assumed that the extension K(E,[pl, E,[p]) is nontrivial, at least

1
action on E;[p] is upper triangular of the form ( 0 ) foro € Gg, where o; : Gy —

one of the two characters «; is nonzero of order exactly p.
Let f : E;[p] — E,Ip] be a Gx-homomorphism. After we consider splittings as

abelian groups (and not as Gg-modules), E;[p] ~ Kp © Z/p, we can write f in a matrix

€20z Ateniged zz uo Jesn Aleiqr eluiBuip Jo Ausienun Ad GZ€6/1.9/98501 /b 1L/220z/a10me/uIl/woo dno olwapese;/:sdiy Wwoly pepeojumod



10608 E. Gazaki and I. Leal

form f = ( ;1 j:z ) We want to show that the function f; : E,[p]° A E,[p] — E,[pl®
3 Ja

vanishes. This follows by the equality of matrices,

(fl £ )(1 on(o)):(l () )(fl fz)
fi i J\o 1 0 1 fi fa)’

which yields a,(0)f; = fy1(0) = 0, for every o € Gg. |

Corollary 3.16. Theorem 1.4 holds for a product X = E; x E, of elliptic curves with

good ordinary reduction.

Proof. Asusual, let n > 0 be the largest integer such that E;[p"] C E;(K) fori =1, 2. By
extending to a finite extension if necessary, we may assume that u,, C K and fori =1, 2

we have short exact sequences of Gi-modules,
0 — pyni1 — Ejlp" ' — Z/p"* — 0.
The only case when we need to extend the base field is when the extension
Ly = K(E [p""], Elp"*'D)

is unramified over K. After extending to L, we examine whether the extension L, :=
K(E,[p"*"?], E,[p"*"?]) has wild ramification over L. After repeating this process finitely
many times, we get an extension L,,,/L,, for some r > 1, that has wild ramification.
Indeed, there is a largest integer N > n such that u,v C K, so L.,;/K has wild
ramification for some r > 1. Choosing r the smallest with that property, we have that

L,,,/L, has wild ramification and injectivity holds over L. |

Structural results

We next consider the Albanese kernel, T(E; x E,). Recall that by the work of Raskind

and Spiess ([18]) we have an isomorphism,

T(E, x Ey) ~ K(K; E}, Ey) ~ T(E; x Ey)g;y @ (finite),
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where we denoted by T(E; x E,)4;, the maximal divisible subgroup of the Albanese
kernel. Theorem 3.14 and Proposition 3.15 allow us in most cases to fully determine

the finite summand of T(E; x Ej).

Corollary 3.17. Let X = E; x E, be the product of two elliptic curves over K with good
ordinary reduction. Let n > 0 be the largest nonnegative integer such that E;[p"] C E;(K)
for i = 1,2. Assume that the extension K(E,[p"*!], E,[p"*']) has wild ramification. Then

we have an isomorphism for the Albanese kernel,

T(X) Z/p", ifn>1
T(X) ~ ( )dlv ® /p : =
T(X)dlv’ 1f n = 0
Proof. Case 1: Assume that n > 1. We consider first the special case when fori =1,2

we have short exact sequences of Gi-modules,
0 — ppni1 — Elp"™ - z/p"™ — 0.

In this case the corollary follows directly from Theorem 3.14 and Theorem 3.3, since we

already know by the computations of Hiranouchi (Theorem 3.3) that
K(K;E\, Ey)/p" ~ L/p".

For the general case, let L/K be the smallest finite extension such that the special
case holds for the product E; ; x E,;. It suffices to show that for every m > 1 the

norm map,
Ny K(L,'ELL,EZIL)/pm — K(K; E,,E,)/p™

is surjective. For, the surjectivity of the norm together with Theorem 3.14 will imply that
for every s > n the K-group p’K(K; E;, E,) is p-divisible. At the same time Theorem 3.3
gives us an isomorphism, K(K; E;, E,)/p"™ ~ Z/p", and hence the norm will in fact be an
isomorphism, from which the claim follows.

The surjectivity of the norm follows easily, since L/K is a finite unramified
extension. For such extensions, the norm map Ny x : E;(L) — E;(K) is surjective [16,
Corollary 4.4]. Using the projection formula (2.5) of the Somekawa K-group, we can easily
show that Ny x : K(L; E 1, E; ;) — K(K; E;, E,) is also surjective.
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10610 E. Gazaki and I. Leal

Case 2: Assume that n = 0. Let L/K be the smallest finite extension such that

Kp C L and the G -modules E;[p] fit into short exact sequences,
0 — u, — Ejlp] - Z/p — 0. (3.18)

The assumption of Theorem 3.17 implies that for at least one i € {1, 2} the sequence (3.18)
does not split. More importantly, it corresponds to a non-trivial Serre-Tate parameter
ue (’)I;‘./O;p, which is such that the extension L(&/u)/L is totally ramified. In this case,
the argument is exactly the same as when n > 1. Namely, Theorem 3.14 gives us that the
K-group K(L; E, 1, E, ;) is p-divisible. The general case follows again by the surjectivity

of the norm map,

Np/x
K(LE, 1,Ey1)/p —> K(K; E,, Ey)/p.

Note that in this case we have a tower, K C Ly C L with Ly/K unramified and L is at
most Ly(1p,). Since the latter is an extension of degree coprime to p, the norm map Ny

is surjective. |

The case of complex multiplication

We close the story of two ordinary reduction elliptic curves by considering a very special
case, the one of a product X = E; x E, of two elliptic curves both having complex
multiplication by an imaginary quadratic field. We note that this case is only partially
covered by Corollary 3.17. Namely, if E;[p] C E;(K) for i = 1,2, then we can apply
Theorem 3.14 and Corollary 3.17 for X.

The reason we cannot apply Corollary 3.17 when E;[p] ¢ E;(K) for at least one i
is the following. After extending to a tower, K C Ly C L, such that L;/K is unramified

and L is at most Lo(1p), the G;-module E;[p] fits into a short exact sequence,
0— up— E;lpl - Z/p — 0.

This sequence splits over L, that is, the corresponding Serre-Tate parameter is trivial.

This follows by [22, A.2.4]. We therefore have an isomorphism,

T(E; x Ep x L) = Z/p @ T(Ey X Ey X L)gjy-
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Question 3.19. What happens over K? Is T(X) divisible? Or is its finite summand
isomorphic to Z/p?

We do not have a method to answer this question in great generality, but we can
say something when K is unramified over Qp. This case is of particular importance, as

it will give us global-to-local applications (see Section 4).

Proposition 3.20. LetX = E; xE, be the product of two elliptic curves over K with good
ordinary reduction. Assume that K is unramified over Q, and that the elliptic curves
E,,E, have complex multiplication by an imaginary quadratic field. Then T(E; x E,) is

divisible.
Proof. By the usual surjectivity of the norm argument, we may reduce to the case when
L := K(E,[pl, E5[p]) = K(up).

By Theorem 3.14, we have an isomorphism, K(L; E 1, E, ;)/p >~ Z/p and this K-group can
be generated by symbols of the form {w, b}, with w € E;[pl(L). We can even choose
we E’l [pl(O;). We will show that the norm,

Ny KL Ey 1, Ey1)/p — K(K; Ey, Ey) /p

vanishes. Since it is also surjective, this will imply that K(K; E;, E,) is p-divisible. Since
K(L; E, 1, E5 1) /p is cyclic, it suffices to show that Ny x ({w, b} ;) = 0 for some nontrivial

symbol {w, b}; ;. Recall from Proposition 3.12 that the p-torsion point w satisfies
we El (mEO(L)) \El (mEO(L)+1).

Since we assumed that K is unramified over Q,, we have ey(L) = 1 and hence w ¢
E; (m})\E, (m?). By [15, Theorem 2.1.6] we get that the image of w in T) lies in U;\U-. This
means that the jump of the ramification filtration of L(ll—)w) /L is exactly at p— 1. Coming
to the symbol {w, b} ;, we can write b = (b;, b,) for the image of b in E,(L)/p =~ T aT.
We therefore conclude that if {w, b}; ; # O, then b, € ﬁlg_l.

We next consider the restriction map,

resy . 1 Ey(Og) /IpIEy(O) — Ey(O})/IplE,(Oy).

€20z Ateniged zz uo Jesn Aleiqr eluiBuip Jo Ausienun Ad GZ€6/1.9/98501 /b 1L/220z/a10me/uIl/woo dno olwapese;/:sdiy Wwoly pepeojumod



10612 E. Gazaki and I. Leal

Since e(L/K) = p — 1, we can easily see that the image of res; x lies in the subgroup
E‘z(mffl)/([p]ﬁ'z(OL) N mffl). Because L/K is totally ramified, the image in fact equals
this subgroup. Using [15, Theorem 2.1.6] once more we conclude that the image of

resp/k

Ey(00)/Ip1Ey (0) —25 Ep(0)/Ip)Ey(0)) = T

is exactly ﬁf_l. Thus, we can find a generator of the K-group K(L;E,,E,;)/p of
the form {w, res; x(b")};,, for some b’ € E,(K). The projection formula (2.5) yields an

equality,
NL/K({W/ reSL/K(b/)}L/L) = {NL/K(W)r b/}K/K~

But the latter symbol is zero. For, w is a p-torsion point of E,;(L). Since the norm is a
homomorphism, the same is true for Ny x(w). But the formal group E,(Og) is torsion-

free, and hence Ny i (w) = 0. |

3.2 The product of two elliptic curves, one with ordinary and the other with supersingular

reduction

In this subsection, we consider the product of two elliptic curves E; and E, over K, and
we assume E; has ordinary reduction and E, has supersingular reduction. We recall

that, when E;[p] C E;(K) for i = 1,2, we have an isomorphism
sp: K(K; By, Ey)/p > (B, @ Ey)/p > Z/p & Z/p.

We proceed similarly to the case of two ordinary reduction elliptic curves, considering

first some cases when the injectivity of Spn Can be verified for every n > 1.

Proposition 3.21. Let E|, E, be elliptic curves with good reduction over K, where E;
has ordinary reduction, and E, has supersingular reduction. The Galois symbol s, is

injective for every n > 1 in each of the following cases.
(1) When E;[p"] C E;K) fori = 1,2 and some n > 1, which is the largest
with this property, and there is some w € E;[p"] such that under the
decomposition E;(K)/p = ﬁ% &) ﬁigoa{), w can be written in the form

. =i it . .
w = (wy, w,) with w, € Ug \ Ug for some i coprime to p and such that

i < min{pt(K), p(ey(K) — t(K))}.
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(2) When E,[pl C E,(K), and the Gg-module E| [p] fits into a short exact sequence
of the form (3.10) having a non-trivial Serre-Tate parameter u such that u €
ﬁ}-{ \ﬁ?l for some i coprime to p with i < min{pt(K), p(ey(K) — t(K))}. In this
case the K-group K(K; E,, E,) is p-divisible.

Proof. Note that the assumption E,[p] C E,(K) implies u,, C K*. Recall that we have a
decomposition as Mackey functors,

K)—t(K —=pt(K
E,/p —> Up(eo( )—t(K)) @ Upt( ),

where t(K) is the invariant of E, defined in section 2.

We first consider case (1). From Lemma 3.5, it is enough to prove that the K-
group K(K; Ey, E;)/p can be generated by symbols of the form {a, b}g x with either a €
E,[p"l or b € E,[p"]. The key idea is to show that there exist elements b; € U;}(eO(K) o
and b, € U;}( ) such that sp({w, (b1, 0)}g k) # 0and s,({w, (0,by)}g/x) # 0, and therefore,
by injectivity of s,, elements of the form {w, (b;,0)}gx and {w,(0,b,)}g x generate
K(K;E, E,)/p.

We have that w, € ﬁj;{ \ﬁ?l for some i < pey(K) coprime to p that satisfies
i < min{pt(K), p(ey(K) — t(K))}.

If i + pey(K) — pt(K) < pey(K), then, from the computations in [8, Lemma 3.4],
we can find b, € UK(eO(K) "0 such that {w, (by,0)}g/xk # 0; on the other hand, if i +
pPt(K) < pey(K), then we can find b, € UZ“K) such that {w, (O, bz)}K/K # 0. The 1st
case occurs if i < pt(K), while the 2nd one occurs if i < p(ey(K) — t(K)). Since we have
i < min{pt(K), p(ey(K) — t(K))}, we get the result.

We now consider case (2). As usual, using Proposition 3.12 we get a surjection of

Mackey functors,

T° M E,/p > (E, @™ Ey)/p — 0.

The 1st Mackey functor is isomorphic to (ﬁo MTP' R g (T @M P 0K
3.4] gives that the group T° @M TF'E g 7° @M pP @& ~1® )(K) is isomorphic via the
g group 1Y

classical Galois symbol to Z/p & Z/p. Moreover, because we assumed that u € UK \ U?l

). [8, Lemma

with i coprime to p and i < min{pt(K), p(ey(K) — t(K))}, the same lemma [8, Lemma
3.4] together with the discussion preceding it imply that there exist b;,b, € E,(K)/p
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10614 E. Gazaki and I. Leal

such that {u, bl}K/K and {u, bZ}K/K generate (I_IO ®ME2/p)(K). But both these symbols are
mapped to zero under j. We conclude that (E; ® E,)(K)/p = 0 and in particular that the
K-group K(K; E,,E,) is p-divisible. |

Similarly to the case of two ordinary reduction elliptic curves, we can show
that if some of the assumptions of Proposition 3.21 are not satisfied, the Mackey
functor Galois symbol has a non-trivial kernel. This is the purpose of the next

proposition.

Proposition 3.22. Let E;, E, be elliptic curves with good reduction over K, where E; has
ordinary reduction, and E, has supersingular reduction. We assume that E,[p] C E,(K),
and the Gi-module E;[p] fits into a short exact sequence of the form (3.10) having a
non-trivial Serre-Tate parameter u. Suppose that u € ﬁ; \ﬁ?l for some integer i such
that i > min{pt(K), p(e;(K) —t(K))}. Then the Galois symbol Sp vanishes, while the group
(E,/p ®™ E,/p)(K) contains Z/p.

Proof. The proof is very analogous to the proof of Proposition 3.15, so we give a less
detailed analysis of the argument. All the cases to consider are similar, so without loss
of generality we assume that pt(K) < i < p(ey(K) — t(K)). In this case we will show that
s, = 0, while the Mackey functor E; /p ®" E,/p is isomorphic to T° @M gPe® 1)

We consider the exact sequence of Mackey functors,
—0 |
(u) @ Ey/p - U’ &M Ey/p & E;/p 8" Ey/p > 0,

where (u) is the Mackey functor defined in the proof of Theorem 3.14. We have a

M ﬁpt(K)) @ () QM ﬁp(eo(K)—t(K))

decomposition (u) @ E,/p ~ (u) ® ). Similarly to the

proof of Proposition 3.21, because we assumed i < p(ey(K)—t(K)), we can find x € I_I?(K)
such that the symbol {u, x}g x € () M ﬁpt(K))(K) C (ﬁo QM gP'®
On the other hand, the inequality i > pt(K) implies that (u) @V

conclude that E, /p ®¥ E,/p ~ T° @M gP X&),

)(K) is non-trivial.
TP —HE) _ e

Next we show that s, = 0. We consider the orthogonal complement of Im(sy)
under local Tate duality. According to [7, Proposition 8.11], the complement in this case

coincides with the following subgroup of Homg (E, [pl, E;[p)),

{f € Hom, (E,[p], E;[p)) : f(E,[p]°) = 0}.
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1
The Gg-action on E[p] is of the form ( 0 oz(lo) ), for 0 € Gg, where o : G —
Hom(Z/p, j1p,) is a non-trivial character. Let f € Homg, (E;[pl, E;[p]). Once again we may

h 1
fz fa

(f1 fz)z(fl £ )(1 a(a))
fi fa fi nJ\O 1)

which yields fia(o) = faa(o) = 0, for every o € Gi and hence f; = f; = 0. This means

write f in a matrix form, f = ( ) We have a matrix equality,

exactly that f vanishes when restricted to E; [p]°. |

Our main goal now is to show that when the assumptions of Proposition 3.21
do not hold, we can construct a tower K C K --- C K, of finite extensions of K so that
the weaker criterion described in Remark 3.7 holds over K,. This will imply that there
exists a large enough integer N > 1 such that the K-group p"K(K; E, , E,) is p-divisible.

In particular Theorem 1.2 holds for E; x E,. We start with the following lemma.

Lemma 3.23. Let K be a p-adic field containing a primitive p?th root of unity, {p2. Let
u € Uy be such that u € Uy \ Uyg ', where 0 < i < pey(K) and i is coprime to p. Let
L = K(¥/u). Write v = ¥u. Thenv e U, \ T, .

Proof. We have v e U, \ U, " for some j. We will show that j = i. Write M = L(¥v),
and we therefore have a tower K C L C M of totally ramified degree p extensions. Using

Takemoto’s computation of the Hasse-Herbrand function ([27, Lemma 2.2 (2)]), we have

0<t<peykK)—1i

V@ = . '
pt—pex + (p—1i, peg(K)—i=<t,
t, 0<t<peyXK)—1i
Ym/x(® = 1 pt — pex + (p — D, pey(K) —i <t < pey(K) +ex —1i

p*t—2pex + (p* — i, pey(K)+ex—i<t
and

0<t=<p’ey(K) —j
Vi () = ) ., ,
pt—pieg+(p—1), peX)—j=t
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The function Y x = ¥ © ¥k is non-differentiable at two points in (0, 00);
one corresponds to the unique point where y; ¢ is non-differentiable, pey(K)—i, and the
other corresponds to the unique point where v, is non-differentiable. On one hand,
the 2nd point where ¥k is non-differentiable is ¢ = pey(K) + ex —i. On the other hand,

V1, is non-differentiable at p?ey(K) —j, so we have
¥k (B = pPey(K) —J.
Using Takemoto’s formula for v x and the fact that t > pey(K) — 1, we get

p*eg(K) —j = ¥y (peg(K) + ex — i)
=p(pey(K) +ex —1i) —pex + (p — Di

=pzeO(K) — 1.

Hence we conclude that i = . u

Theorem 3.24. Let E|, E, be elliptic curves with good reduction over K, where E; has
ordinary reduction, and E, has supersingular reduction. There exists a positive integer
N > 1 such that the group p"K(K; E;, E,) is p-divisible. In particular, the Albanese kernel

of the product X = E; x E, is the direct sum of a finite group and a divisible group.

Proof. We start by extending the base field K to a finite extension K;, which is such
that,

e Elpl CE;K;), fori=1,2,

o up2 C K,

o E[p"] C E|(Ok,) for some n > 1 and n is the largest with this property.
We consider a p™-torsion point wy € ﬁ'l [p™] such that w; does not lie in the image of
lpl: E, (Og,) — E, (Ok,)- Simply speaking, %WO ¢ E;(K;). We consider the decomposition
E, (K))/p =~ ﬁlo{l ® ﬁﬁfoa{l) and we write wy = (W |, W ). Assume that wy , € ﬁ;q \ﬁ;l
for some 0 < i < pey(K;). Let t = t(K;) be the t-invariant of the elliptic curve E, over
K. If i < min{pt(K;), p(ey(K;) — t(K;))}, then we can imitate the method of Proposition
3.21 to find elements by, b, € E,(K;)/p such that {wy, b, }g, x, and {wy, by}k, k, generate
K(Ky;E, E;)/p. Using Remark 3.7, in this case, we get that the group p"K(K;; E,, E,) is
p-divisible.
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If the index i does not satisfy the above inequality, we perform the following
algorithmic process. By extending the base field if necessary, we may assume that the
extension L; = Kl(l%wo)/K1 has wild ramification. This in particular means that the
index i is coprime to p. Note that this will always happen eventually (see Corollary
3.16). We fix an element w, € E, (Or,) such that [plw; = w,. Moreover we write w; =
(wy 1, W) ») € E{(L))/p. The claim is that w, , € ﬁil \ﬁﬁrl. This follows by Lemma 3.23.
Note that in order to apply this lemma, we needed to assume .2 C K.

Next, notice that ey(L,) = pey(K;) and t(L,;) = pt(K;). We check again whether

i < min{p®t(K,), p*(ey(K;) — t(Ky))}.

If not, we repeat the process, adding more torsion points of the formal group until we
find a finite extension L, such that i < min{p"!t(K;), p""!(ey(K;) — t(K;))}. We conclude
that for some r > 0 the group p"*"K(L,; E, , E,) is p-divisible.

To finish the argument, we need to show that Theorem 1.2 holds for the product
X = E, x E,. Let s = [L, : K] = p! - m, where m is coprime to p. Let x € K(K; E;,E,). We
have, s-x = N g (res; g(x)). Sety = m-x and v =res; x(x) € K(L,; Ey, E;), so that we

have an equality ply = N, x(v). By the previous step, we get
Py = Ny g (p"v) = 0mod pHTHIN, i (R(L,; Ey, Ey)).

Since the K-group K(K; E;, E,) is m-divisible ([18, Theorem 3.5]), the above relation holds
for every y € K(K; E;, E,). We can therefore set N = [4n 4 r to make the statement of the

theorem true. [ |

3.3 When one curve is a Tate elliptic curve

In this section we extend our computations to the case when at least one of the two
curves is a Tate elliptic curve. When both E,,E, are Tate curves, the injectivity of
K(K;E|,E))/n — H2%(K, E,[n]®E,[n]) has been proved by Yamazaki ([29]), for every n > 1.
We therefore assume that E, is a Tate elliptic curve and E, has good reduction.

We want to proceed as in the previous subsections, giving sufficient (and for the

Mackey functor necessary) criteria for the map

Sy,n
K(K;E,, E,)/p" = H*(K,E,[p"] ® E,[p™)
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to be injective. In this case it suffices to consider only the injectivity of s, when p,, C K
and the g-invariant of E, is not a pth power. Indeed, if ¢ = " for some ¢’ € mg that
is not a pth power and some n > 1, we can replace E; with the isogenous elliptic curve
E| = G,,/q”. Namely, the p"-power map gives an isogeny, Ej 4 E,, which induces a

map on K-groups,
K(K;Ey,E)) ﬂ K(K; E,,E,).

The image of ¢ is exactly the subgroup p"K(K; E;, E,). We conclude that proving that the
group p"K(K; E,, E,) is p-divisible is equivalent to proving that the K-group K(K; E}, E,)
is p-divisible.

We start by fixing a uniformizer mx of K. The analogue of Theorem 3.14 and

Proposition 3.21 in this case is given by the following proposition.

Proposition 3.25. Let E;, E, be elliptic curves over K such that E; is a Tate curve and
E, has good reduction. Assume u,, C K and E,[pl C E,(K). Moreover, suppose that E, has
invariant q € mg such that /g ¢ K.

(1) If E, has ordinary reduction, then a necessary and sufficient condition for

the injectivity of the Mackey functor Galois symbol

S
(E, @ E,)(K)/p = H*(K, E, [p] ® E,[pl)
is that g € mé{ \ m};“ for some i coprime to p.
(2) If E, has supersingular reduction with E,[p] C E,(K) and E, has invariant
t(K), then a necessary and sufficient condition for the injectivity of the
Mackey functor Galois symbol s, is that g can be written as g = nIi{u, with

either i coprime to p, or u € ﬁ]}{ \ﬁ];l with j < min{pt(K), p(ey(K) — t(K))}.

In the above cases, the K-group K(K; E;, E,) is p-divisible.

Proof. The two cases are very similar, therefore we only prove the proposition when
E, has ordinary reduction. We first prove that, if g € m% \ m};rl for some i coprime to p,
then K(K; E, ,E,) is p-divisible.

We have an exact sequence of Mackey functors G,,/p 5 E,/p — 0. Since the
functor ®"E,/p is right exact, we get a surjection, (G,,/p ® E,/p)(K) > (E,/p &M
E,/p)(K). We want to show that the group (E;/p®Y E,/p)(K) vanishes. Since we assumed

that ¢/q ¢ K, the above map ¢ has a kernel generated by the image of g. We can proceed
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similarly to the proof of the 2nd part of Theorem 3.14. Namely, we will show that the
group (G,,/p ® E,/p)(K) is generated by symbols of the form {q, X} x With x € E5(K).

Since we assumed that ]:;'2 [p] C E(K), we have an exact sequence of Mackey functors,
_0 A
U — E,/p— [E,/E;]/p — 0O,

where [E, /E'Z] is the Mackey functor defined in Theorem 3.14. Since G,,/p®" is right

exact, we obtain an exact sequence
G:m/pMT° — G:m/p @ E,/p— G: m/p @™ [E,/E,)/p — O. (3.26)

It suffices therefore to show that the groups (G,,/p ® 7°)(K) and (G,,/p @M
[Ez/ﬁ'z]/p)(K) can be generated by symbols of the form {g,x}g x with x € ﬁlo( and
x € [E,/E,]/p(K), respectively.

By [8, Lemma 3.3], (G,,,/p ®Mﬁo)(K) is isomorphic to Z/p via the classical Galois
symbol g,,. Since we assumed that g € m}'{ \ m?l for some i coprime to p, we can write
q = JTIi{V, for some unit v € UI%. We consider the extension L = K(g/7g). According
to [27, Lemma 2.2 (1)], this extension is totally ramified of degree p whose Galois
group Gal(L/K) has a jump at the ramification filtration at pey(K). By [21, page 86,
Corollary 7], there exists x € UﬁeO(K) such that g,({mg, x}g/x) # 0. Therefore, {7g, X} /x
generates (G,,,/p @ T°)(K). We claim that {q, x}g x also generates (G,,/p M T°)(K).
Indeed, observe that . %}k /x = i{nK,X}K/K+{V,X}K/K, and, since K(¥&x)/K is unramified,
{v,x}g/x = 0. Since i is coprime to p and {rg, X}g,x # 0, we get {g, x}g x # 0. It follows
that {q. X}k /k generates (G, /p M ﬁo)(K).

The computation for (G,,/p @ [Ez/]:j'z]/p) (K) is similar, so we omit it.

We next want to show that the condition on the invariant g is necessary for the
injectivity of s,, at the level of the Mackey product, (E;/p ®M E,/p)(K). We assume that
q= nII;SV, for some s > 1 and some unit v € O that is not a pth power. In this case we
claim that the group (E, ®" E,)/p contains Z/p, while s, = 0. The proof is very similar
to the proofs of Proposition 3.15 and Proposition 3.22, so we only sketch the argument
here.

The 1st claim follows by the sequence (3.26). Namely, we can show that the map

((q) ®™ E,/p)(K) — (G : m/p @M [E,/E,)/p)(K)
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vanishes. On the other hand, the group (G,,,/p & ﬁo)(K) can be generated by a symbol
of the form {g, x}g k., unless the unit v is in [_IieO(K).

To show that the map s, vanishes, we need to compute again the orthogonal
complement of Im(s,) under Tate duality. We claim that this complement coincides with
the following subgroup of Homg, (E;[pl, E;[p)), {f € Homg, (E,[pl, E,[p]) If(Mp) = 0}. The

claim follows by the following commutative diagram,

(Gn/p M Ez/p)(K) —"— H*(K, 1, ® E3[p])

I |

(Er/p @M By /p)(K) —— H*(K, Ei[p] ® Es[p])

We already saw that the map ¢ is surjective. Note that the top s, is also surjective. This

follows by [2, Theorem 2.9]. The rest of the argument is the same as in Proposition 3.2H
We end this section with the analogue of Theorem 3.24.

Corollary 3.27. Let E, be a Tate curve and E, a supersingular reduction elliptic curve.
Then the Albanese kernel of the product X = E; x E, is the direct sum of a finite group

and a divisible group.

Proof. By [18, Theorem 3.5] we have an isomorphism, T(E; x E,) ~ D & F, where
D is a group that is m-divisible for every integer m coprime to p and F is a finite
group. Let M be the order of F. It suffices to show that the group M - T(E; x E,) is
the direct sum of a p-divisible group and a finite group. To do this we imitate the proof
of Theorem 3.24, which applies almost verbatim. In fact it becomes even easier, since
we can construct a tower of finite extensions, L, D --- D L; D K, by attaching roots
of unity, {gpn : ng < n < ng+ r}, which are considered as torsion points of the Tate
curve E;. Lemma 3.23 reassures that after attaching a finite number of roots of unity
the assumptions of Proposition 3.25 will eventually hold over L,. The rest of the proof

is exactly the same as Theorem 3.24 but now applied to the m-divisible group D. |

3.4 The product of more than two curves

To finish the proof of theorems (1.2) and (1.4), we need to consider also the case of the K-

group K(K;E,,--- ,E,) attached to more than two elliptic curves. Everything will follow
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from the next corollary, which generalizes previous computations of Raskind and Spiess
([18, Theorem 4.5, Remark 4.4.5]) and Hiranouchi ([8, Proposition 4.3]).

Corollary 3.28. LetE,,--- ,E, be elliptic curves over K with split semistable reduction.
Assume that E; does not have supersingular reduction and if E; has supersingular
reduction for some i > 2, then E;[p] C E;(K). If r > 3, the K-group K(K;E,,--- ,E,) is
p-divisible.

Proof. We will show that the Mackey product, (E;/p @ --- ®¥ E,/p)(K) = 0. Using
associativity of the product, it suffices to prove the claim when r = 3. Moreover, using
the surjectivity of the norm, we may assume that 4, C K and if E; has ordinary reduction
for some i € {2, 3}, then E;[p] C E;(K).

We will prove the corollary in the following two specific cases to illustrate the

method. Any other case can be proved in a very analogous way.

e Assume that all three curves have good ordinary reduction. Imitating the

proof of Theorem 3.14, we can prove a surjection of Mackey functors,

—0 —0 —0
U MU MU — (B, ™ E, @™ E,)/p — 0.

The claim then follows after we observe that the functor U° @™ T° @M T°

vanishes by [18, Lemma 4.2.1].

e Assume that E; has ordinary reduction and E,,E; have supersingular
reduction. Since we assumed that E;[p] C E;(K) for i = 2,3, we can use
Theorem 2.15 to compute the Mackey functors E;/p. We consider the product
(E, M E,)/p. By Proposition 3.21 and Proposition 3.22 we get that this
product is either O or isomorphic to a direct sum of Mackey functors of the

form T° @ T° for some s > 0. By [8, Lemma 3.3] we get an isomorphism,
TMT ~G:meMG:m/p~T MT".

Therefore the Mackey functor, (E; ® E, @ E;)/p can be decomposed in
direct pieces that look like T° @M T’ @M E;/p. By imitating the argu-
ment for the product 7° ®M E,/p, the claim follows once again by [18,
Lemma 4.2.1]. m
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3.6 The Brauer-Manin pairing

We close this section by discussing a corollary about the Brauer-Manin pairing,
CH,y(X) x Br(X) — Q/Z

between the group CHy(X) and the Brauer group, Br(X) of X. This corollary follows
directly by the work by Yamazaki ([29, Theorem 1.2]).

Corollary 3.29. Let Ej,---,E, be elliptic curves over a p-adic field K with good
reduction and such that at least one does not have supersingular reduction. Let X =
E, x --- x E,. There is a finite extension L of K such that the left kernel of the Brauer—

Manin pairing
CHy(X xx L) x Br(X xx L) — Q/Z
is the maximal divisible subgroup of CHy(X xy L).
Proof. Yamazaki showed the left kernel of the pairing
CHy(X) x Br(X) — Q/Z

is the maximal divisible subgroup of CH,(X) if and only if the cycle map ¢, is injective

for every n > 1. The corollary then follows by Theorem 1.4. |

4 Applications Over Number Fields

We close this paper by suggesting a conjecture for varieties defined over algebraic
number fields. In this section, K shall denote a number field. We will denote by Q2 the
set of all places of K.

Conjecture 4.1. Let X be smooth projective geometrically connected variety over a
number field K such that X has a K-rational point. Let X, := X X K, be the base change
to the completion, K, at a finite place v of K. If the Albanese kernel, T(X,), is the direct
sum of a divisible group, D, and a finite group, F,, then T(X,) is divisible for almost all

finite places v of K, that is F,, = 0 for almost all places v.

We already saw that even the local picture has only been established in very few

cases. However, we saw that for X = E; x --- x E; a product of elliptic curves over a
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p-adic field K, Conjecture 1.1 has been established in most cases. We will focus on this

case to provide two pieces of evidence towards Conjecture 4.1.

Complex multiplication

The 1st evidence comes from Theorem 3.14. In fact, the following is a direct corollary of

Proposition 3.20

Corollary 4.2. Let X = E x E be the self-product of an elliptic curve over an algebraic
number field K. Assume that E has complex multiplication by an imaginary quadratic
field M. Then the Albanese kernel, T(X,), is divisible for almost all ordinary reduction
places v of K.

Proof. Let v be an ordinary reduction place of X. Assume that v lies above a rational
prime p. The corollary follows immediately from Proposition 3.20 after we observe that

for all but finitely many v the extension K,/Q,, is unramified. |

Local-to-global expectations

Our 2nd motivation for Conjecture 4.1 comes from a local-to-global conjecture for zero
cycles and its compatibility with a famous conjecture of Beilinson ([1]) and Bloch ([3]).
The latter predict that for a smooth projective geometrically connected variety X over
a number field K, the Albanese kernel T(X) is a finite group. On the other hand, the

Brauer-Manin pairing gives rise to a complex
Ay(X) > Ay 4 (X) — Hom(Br(X)/Br(K),Q/2),

where for an abelian group M we denote by M := l(Eln M/nM. The adelic Chow
group, Ay 5(X), is defined to be [], ginie Ag(X,) when K is a totally imaginary number
field. In the general case it has a more complicated expression. It was originally
proposed by Colliot-Théléne and Sansuc ([5, Section 4]) that for geometrically ratio-
nal varieties the above complex is exact. This conjecture was later generalized to
arbitrary varieties by blackKato and Saito ([13, 7.6.2], see also [19, page 394]). For
more information on the local-to-global conjecture we refer to [4, Conjéctures 1.5] and
[28, Section 2.6].

From now on suppose X = E; x E, is the product of two elliptic curves over K.

Restricting the above complex to the Albanese kernel gives rise to a complex,

K(K;Ey, Ey) —> K(K: E,,, E,,) — Hom(Br(X)/Br,(X), Q/Z),
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where Bry (X) := ker(Br(X) — Br(Xg)). By a result of Skorobogatov and Zarhin ([24]) the
quotient Br(X)/Br;(X) is finite. Assuming Conjecture 1.1 is true for X, it implies that
the middle term of the complex is an infinite product of finite groups. The only way
that all three conjectures are compatible with each other is if in the group K (K;/E;EZV)
only finitely many places give nontrivial contribution. That is, the group K(X; E,, E,,)

should be divisible for all but finitely many places v of K.
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