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The complexity of microbial com-
munities suggests prevalent inter-
actions involving more than just
pairs of species. These so-called
higher-order interactions may reveal
new molecules that enable bacteria
to deal with complex environments.
This forum article discusses how
higher-order interactions can be de-
tected and why molecular biologists
might care.

Introduction

Bacteria interact with one another and
their environment through molecules that
are the products of genes. The study of
molecules induced by microbial interac-
tions spans from the historic discovery of
penicillin (mold-bacteria interactions) to
current innovations with Cas9 (bacteria—
phage interactions). Microbial communi-
ties often contain tens to thousands of
strains, each with its own biochemical po-
tential. Most of the molecules of microbial
interactions are unknown, and some
can aid humanity. However, just as the
different cell types of a human liver utilize
distinct sets of genes to perform their
functions, bacteria use specific genes
in specific contexts, meaning that many
molecules remain unexpressed in laboratory
monocultures. Context-dependence is cru-
cial for organisms in nature because condi-
tions are constantly changing and evolution
has undoubtedly adapted genomes to
deal with multiple contexts, for example,
the diauxic shift. An important question
then is: how do organisms deal with a
wide range of contexts? Experimentally,

618  Trends in Microbiology, July 2022, Vol. 30, No. 7

how can we detect important contexts?
The framework of epistasis, which has
been applied at the genomic scale to
infer genetic pathways, can be adapted
to the scale of microbial communities to
detect interactions [1]. These interactions
in turn define the contexts that are im-
portant for turning on unstudied genes,
allowing targeted approaches to uncover
new molecules of consequence, including
environmental sensors, information pro-
cessors, and effectors such as antibiotics.

Does community complexity require
new biology?

How do organisms sense a complex
environment? How do they decide on
the optimal response? And how do
they dynamically regulate their behavior
[2]? Answering these fundamental ques-
tions has revealed genetic switches,
recombinases, persister cells, and the
stringent response. Do the needs of a
species adapting to its environment be-
come more complex as the number of
neighboring species increases? For in-
stance, can a limited number of receptors
recognize an exponentially large set of con-
ditions? Do cells handle this complexity
with higher-level regulatory programs? Or
do they simply deal with the unpredictability
of their environment through ecological
mechanisms such as bet-hedging [3]?
Evolution has often crafted specific mole-
cules to deal with specific circumstances.
Encoding a separate sensor (e.g., a two-
component system) for each different envi-
ronmental factor (e.g., nutrients, stressors,
toxins, competitors) might be sufficient
in laboratory monocultures but cannot
account for the level of complexity found
in nature, when these environmental fac-
tors (100s of them) come in complex
combinations (~2'°°) [4]. How do bacte-
rial information-processing systems deal
with such complex environments? How
does a cell tune into its own quorum sens-
ing system and tune out its neighbors
when 100 species coexist and the signals
overlap imperfectly? Understanding cell
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behaviors requires a precise understanding
of the contexts that elicit the behaviors.

Experimental approaches to detect
interactions in communities use
combinatorics

Many interactions occur only in a specific
context of other organisms and environ-
mental conditions [5,6] (Figure 1). Explor-
atory work to map the extent of context
dependence using complete combinato-
rial experimental designs [6,7] has been
enabled by new high-throughput tech-
niques [8], where a given set of biological
phenotypes are measured under all possi-
ble permutations of species. This has also
spurred the development of new theory,
with a goal of predicting the complexity of
microbial communities [9]. We classify
two main types of experiments to explore
microbial interactions. Omics-style ap-
proaches, which are covered in other re-
views, try to characterize, for example,
the genes expressed for each organism in
a community. Combinatorial experiments
typically measure an explicit phenotype
with all possible permutations of organisms
(Figure 2). Epistatic genetic screens use
this approach to define the genetic path-
ways of cells. Here, we apply the epistatic
screen approach to microbial ecology. A
mathematical model of epistasis is needed
to calculate the interactions.

Applying the genetic epistasis
concept to detect microbial
interactions

The fundamental concept behind all epis-
tasis frameworks is the null hypothesis
of additivity between genetic elements: if
we understand how each element works
independently, can we predict how they
will work in combination? Statistically sig-
nificant deviations from the additive pre-
diction are interactions. When genetic
epistasis is used to determine whether
two genes are in the same pathway,
the basic question is whether a double-
mutant phenotype can be predicted by
adding the two corresponding single
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Figure 1. Two hypothetical microbial higher-order interactions. (A) This highly simplified cartoon
symbolically illustrates the principle of a higher-order interaction. Interactions can be detected through
expression of a novel phenotype, such as when Actinobacteria are induced to produce an antibiotic by
another strain [15]. The cartoon depicts a three-way interaction where strain 'a' produces a new colony
color when both 'b' and 'c' are present. (B) Higher-order interactions can be detected through changes in
abundance of the individual strains (‘a', 'b', and 'c') grown separately, in pairs, and all three together. The
size of the cartoon cells indicates the resulting population sizes. A three-way interaction is demonstrated
because the blue strain grows really well only in the presence of the orange and pink strains. Why does this
happen? Two possible scenarios are (i) nutritional competition and provisioning versus (ii) signaling. In
scenario (i), the pink and orange cells each compete with the blue strain for one nutrient but also provide a
different essential nutrient. Overlaps in their provisioning and competition provides complete nutrition for
blue only when both are present. In scenario (ji) blue waits to grow until it receives a combined signal from

orange and pink despite having sufficient nutrition to grow.

mutant phenotypes, with the null hypothe-
sis that the phenotypes are additive and
thus the genes are in separate pathways.
To conceptualize epistasis between bacte-
rial strains, consider each bacterial genome
as a genetic locus for epistasis. As an
analogy, the abundance of a species cor-
responds to the expression of a set of
genes from the genome. Mathematically,
the same approach has been applied to
understand community interactions in
ecosystems, with the loci being animals
and plants [10]. The key result that the
analysis provides is a defined context (in
terms of which other species are present)

that drives an interaction between a pair
of species.

Higher-order interactions

The frameworks to detect epistasis have
been extended to three or more species
in what are called higher-order interactions
(reviewed in [1]). A higher-order interaction
means that three or more strains are nec-
essary for the interaction, for instance, a
third species can change the interaction
between two species (Figure 1B). This is
similar to how the genetic background
can change the interaction between two
genes [11]. Interactions can be direct, for
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example, contact-dependent killing of an-
other organism or production of a targeted
antibiotic; interactions can also be indirect,
for example, changing the pH of the envi-
ronment, consuming a shared resource,
or changing host physiology (Figure 2).
The types of interactions that are detected
depend on the phenotypes analyzed. For
instance, an example of a higher-order in-
teraction phenotype would be the produc-
tion of a pigment in one species only when
two specific other species are also present
(Figure 1A). For molecular biologists, this
simple paradigm can be adapted to in-
teraction discovery without a complex
mathematical framework. To discover new
molecules, including secondary metabo-
lites, environmental sensors, and cellular
decision machinery, traditional bioassays
including microbial growth inhibition and
switches in colony morphology or color
can be adapted to the context of a micro-
bial community (Figure 1A).

Experimental considerations

A true higher-order interaction is estab-
lished by analyzing all possible combina-
tions of the interacting organisms [12]
(Figure 1). Thus, the number of conditions
scales as 2\ (number of species) minus
one (Figure 2). In practice, five species
is convenient because three replicates
of all combinations (2° = 32) can be run
together on one 96-well plate.

An important consideration is: which spe-
cies are combined? A simplistic approach,
in which stock center isolates are com-
bined, potentially misses a vast amount
of biology because the stock center
strains did not evolve together in a com-
munity. Isolating wild strains from natural
communities circumvents this pitfall but
also brings along additional constraints
in terms of genetic tractability and devel-
oping appropriate experimental condi-
tions to elicit interactions.

Many technical factors can influence the
outcome of a combinatorial experiment
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Figure 2. Cartoon of a combinatorial experiment from the fly gut microbiome to detect
interactions that affect the host. (A) Five bacterial strains are naturally present in the Canton-S lab
fly. (B) Making each combination of the five strains produces 32 different microbial treatments.
(C) Each of the combinations is inoculated onto germ-free fly food. Then germ-free flies are added.
Phenotypes, for example, survival and fecundity, are measured. Finally, the phenotypes for each
combination are input into a mathematical model to extract the interactions.

and can also be used to narrow the candi-
date mechanisms. One important factor is
how the abundances of individual species
vary across combinations. Abundance is
important to track to make sure that all
inoculated species are present. Moreover,
if a species’ abundance correlates (or
anticorrelates) with a measured pheno-
type, this can suggest hypotheses about
causation. CFUs plating is often used to
quantify viable cell populations. Alterna-
tively, 16S amplicon sequencing or gPCR
can be paired with an internal reference
standard. Another important consider-
ation is how dynamics contribute to the
phenotype. For instance, can a lag time
in growth explain a lower abundance at
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the time of quantification? Could such a
delay reduce the apparent phenotype?
Quantifying the dynamics can potentially
aid in determining the mechanism for
an interaction. For instance, spatiotem-
poral dynamics are useful to consider
because interactions through diffusible
molecules can be differentiated by com-
paring solid media versus well-mixed
liquid culture [13].

What higher-order interactions we
might find

In the organs and tissues of higher
eukaryotes, distinct cell types coordinate
their physiology to produce higher level
functions, for example, detoxification, fat
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redistribution, and immunity by the liver.
Microbial communities may have similar
higher-level functions that require coordi-
nation between multiple cells types. For
example, multicellular biofilms with con-
served taxonomic makeup and physical
structure recur, for instance, in oral
microbiomes or in wastewater treatment
systems. How microbial cells coordinate
their physiology to develop these com-
plex structures remains poorly under-
stood. Interactions could be coordinated
through new quorum molecules, nutri-
tional cues, or higher-order signal logic,
such as AND, OR, XOR, and NOR gates
that allow cellular decision-making in com-
plex environments [14]. Higher-order inter-
action screens can help to define the
natural contexts for such genes, leading
to new molecular discoveries.
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