Use of Real-Time Information to Predict Future Arrivals in the Emergency Department
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ABSTRACT

Study objective: We aimed to build prediction models for shift-level Emergency Department
(ED) patient volume that could be used to facilitate prediction-driven staffing. We sought to
evaluate the predictive power of rich real-time information, and understand 1) which real-time
information had predictive power, and 2) what prediction techniques were appropriate for
forecasting ED demand.

Methods: We conducted a retrospective study in an ED site in a large academic hospital in New

York City. We examined various prediction techniques including linear regression, regression



tree, extreme gradient boosting, and time series models. By comparing models with and without
real-time predictors, we assessed the potential gain in prediction accuracy from real-time
information.

Results: Real-time predictors improved prediction accuracy upon models without contemporary
information by 5%-11%. Among extensive real-time predictors examined, recent patient arrival
counts, weather, Google trends, and concurrent patient comorbidity information had significant
predictive power. Out of all the forecasting techniques explored, SARIMAX (Seasonal Auto-
Regressive Integrated Moving Average with eXogenous factors) achieved the smallest out-of-
sample RMSE (Root-Mean-Square Error) of 14.656 and MAPE (Mean Absolute Percentage
Error) of 8.703%. Linear regression was the second best with out-of-sample RMSE and MAPE
equal to 15.366 and 9.109%, respectively.

Conclusion: Real-time information was effective in improving prediction accuracy of ED
demand. Practice and policy implications for designing staffing paradigms with real-time
demand forecasts to reduce ED congestion were discussed.

INTRODUCTION

Background and Importance

Across the United States, there has been a growing focus within Emergency Medicine on
developing computational/machine learning models to predict demand for patient care in the
emergency departments (ED). Over the years, a variety of prediction techniques have been
examined. Early studies have utilized time-series models to forecast future arrivals based on
recent arrival count information.!*® Additional studies have utilized other prediction models with
exogenous predictors, such as linear regression, regression tree, etc.””!! There have also been

recent efforts that explored techniques to combine time-series models with exogenous features.!>



13 In addition to utilizing appropriate prediction techniques, it is important to identify what
information is most relevant in predicting ED demand, especially because vast amount of
information is now made available by electronic health records and various other data sources.
Most of the existing literature has utilized classic predictors such as seasonality, holidays,
weather, and previous arrival counts. A few other studies have examined limited real-time
information beyond weather and previous arrival counts, including ambulance diversion status
and physician workload.'*!'® However, to the best of our knowledge, little research has explored
the comprehensive patient-level and regional data that are now more readily available. Such data

could provide novel additional information and improve ED demand prognostication.

An important motivation behind these developments is that predictive information about ED
demand can be used to improve operational efficiency in resource allocation and better meet
patients’ needs.!” Such proactive planning is particularly relevant for nurse staffing, as nurses
provide a substantial portion of patient care and are an increasingly limited resource in the ED
(e.g., due to nursing shortages exacerbated by burnout and quitting during the coronavirus
(COVID-19) pandemic!'®-2). Inefficient and inadequate staffing is often associated with ED
crowding, reduced quality of care, clinician burnout, and reduced hospital revenue.?!?® In the
current nurse staffing practice, EDs typically divide a day into multiple shifts. The ED manager
staffs most of the nurses for a shift weeks to months in advance. A few hours before the nursing
shift, the ED manager could call in extra nurses with incentive pays if s/he senses a higher
patient volume that renders the planned staffing level insufficient (after taking into account
staffing fluctuations due to sick calls and personal emergencies). We refer to the former as base-
staffing and the later as surge-staffing. ED demand forecasts synchronized with these two

staffing decision epochs can greatly facilitate these decisions. Since overtime/surge staff are



more expensive and less convenient for nurses, it is important to understand how much we can
improve the prediction accuracy at the surge stage (when we can utilize more real-time
information) compared to the base stage (when limited information about the shift is available).
A recent study shows that even a small accuracy improvement at the surge stage can lead to
effective prediction-driven two-stage (base and surge) nurse staffing policies.?’” However, little is
known about whether (and if so, by how much) real-time information improves prediction

accuracy in practice.
Goals of This Investigation

The goal of this study was to explore and evaluate rich real-time information (including previous
arrival counts, temporal and seasonal variations, holidays, weather, electronic health records, and
Google trends), and a variety of prediction techniques. By comparing prediction models with and
without real-time predictors, we assessed the gain in prediction accuracy from real-time
information. Lastly, we described how these two types of prediction models (with and without

real-time information) could both contribute to a prediction-driven staffing framework.
METHODS
Study Setting and Objective

We conducted a retrospective study using data obtained from the electronic health records for an
adult ED in a large academic hospital in New York City. A total of 284,550 adult patients who
arrived at the ED from 12:00 AM January 1, 2018, through 11:59 PM January 31, 2021, were

included in the analysis.

At the hospital, each day was divided into two main 12-hour nursing shifts that start at 7:00 AM

and 7:00 PM, respectively. To facilitate relevant operational decision making (e.g., nurse staffing



decisions), the subject of prediction was the shift-level arrival count defined as the total number
of patients who arrived at the ED during each shift. Many hospitals have more nursing shifts than
the two listed above. In those cases, we can divide the day into non-overlapping intervals and

predict the interval-level arrival count similarly.

Model fitting and selection was performed using one year of data from January 1, 2018 to
January 31, 2019, which we hereafter refer to as the training set. Model performance was tested
on the subsequent one-year data from February 1, 2019 to January 31, 2020, which we refer to as
the test set. The remaining data from February 1, 2020 to January 31, 2021 contained the
outbreak of the COVID-19 pandemic, and we thus refer to it as the COVID test set. Since patient
volume was highly unpredictable during the pandemic and the pandemic is likely a unique
generational event, we relegate the results and discussions regarding the COVID test set to
Appendix A. The training, test, and COVID test sets were fixed across all prediction models.
This study was approved by Columbia University Institutional Review Board: Protocol IRB-

AAAT6452.
Data Source

We utilized three sources of data: patient electronic health records, weather data published by the
National Centers for Environmental Information,?® and Google trends.?’ These data sources were
selected based on past work, extant models, and our own novel hypotheses. While the
importance of weather information has been well established in the literature,'*!'® the prediction
power of real-time patient electronic health records and Google trends has been relatively

underexplored.



The data extracted from the patient electronic health records specified for each patient: (i) the
patient’s clinical time stamps in the ED, including arrival time, first evaluation time, admission
decision time, and departure time; (ii) the arrival source of the patient, e.g., walking in or by
ambulance; (iii) the patient’s chief complaint(s), i.e., reason of visit; (iv) the patient’s Emergency
Severity Index (ESI); (v) lab and imaging ordered: indicators for whether lab, CT, MRI,
Ultrasonography, and X-ray were ordered; (vi) indicator for whether the patient was admitted
into the hospital; (vii) the Charlson comorbidity index (CCI) based on a list of 17 comorbidities;

(viii) age; and (ix) indicator for whether the patient left without being seen.

In addition to the patient electronic health records, we obtained retrospective daily weather
information, including the minimum temperature, precipitation, snow, wind, and a hot-weather

indicator for whether the maximum temperature exceeds 86°F (30°C).

The last source of data came from Google trends, which specified, for each day, the relative
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Google search volume for the words “flu”, “emergency room”, “abdominal pain”, “respiratory
infection”, “chest pain”, “depression”, “heart attack”, “abuse”, “disorder”, “weather”, and
“hospital” in New York State. We came up with the list of keywords based on existing studies
and our own novel hypotheses. Araz et al. (2014)° established that the Google trends for “flu”
were able to forecast influenza-like-illness related ED visits. Tuominen et al. (2022)*! found that
the Google trends for “ED” facilitated prediction. The other Google trends keywords were
constructed based on our own hypotheses. Since the most frequent reasons for ED visits were
abdominal pain, respiratory infection, and chest pain,* we hypothesized that the Google search
volumes for these keywords were positively correlated with ED visits. In addition, we

hypothesized that the search volumes for “depression”, “heart attack”, “abuse”, “disorder”

signaled relevant illnesses in the neighborhood. Moreover, the Google search record for



“weather” might reflect citizens’ subjective perception of weather conditions which might
influence their stay-at-home/travel plans. Lastly, similar to “ED”, a higher Google search volume

for “hospital” might indicate that more patients were seeking care.

When selecting the data sources, we tried to be comprehensive by including as much potentially
relevant information as possible. Later in the Model Training and Feature Selection section, we

discuss procedures to train different prediction models and identify relevant predictors.

Data Processing

We processed the data into shift-level predictors. The data regarding day vs. night, day of the
week, month, season, near-holiday indicators, weather, and Google trends were readily available
at the shift level. As for the data from electric health records, we constructed the following three

categories of shift-level predictors.

The first category was the previous arrival counts, which specified for each shift, the arrival
count 1 day ago and 7 days ago, as well as the moving average of the shift-level arrival count
over the last 30 days. More precisely, the arrival count on the previous day was the total number
of patients who arrived during the previous 24 hours. The arrival count on the previous nth day

was the two shifts between the previous 24*(n-1)th and 24*nth hour.

The second category of predictors was the patient comorbidity information, which we processed
into the following three sets. The first set specified for each comorbidity, the total number of
patients with that comorbidity on the previous day, i.e., during the previous two shifts, and the
sum and weighted sum of CCIs for all patients on the previous day. The second set contained
similar information as the first set, but instead of considering the previous-day, calculated the

average daily number of patients with each comorbidity over the last 3 days, as well as the



average daily sum and weighted sum of CCls for all patients over the last 3 days. The third set
calculated for each comorbidity, the percentage of patients with that comorbidity over the last 3
days, as well as the average sum and weighted sum of CCIs per patient over the last 3 days. The
difference between the second and third sets was that the third set considered average
comorbidity measures on the individual level, and was not influenced by how many patients
arrived over the last 3 days. The motivation to consider comorbidity information over the last 3
days was due to the existing findings that patients with certain comorbidities are more likely to
be readmitted to the ED within 72 hours®**. These three sets of information were likely to be
correlated. Since it was a priori unclear which specification had the most predictive power, we
left it to the model training and feature selection procedures to sift out redundant information and

identify important features.

The third category of predictors was the recent ED volume and patient severity information on
the previous day (i.e., during the 24 hours before the focal shift). This included the total number
of patients who arrived by ambulance, the total number of patients with ESI from 1 to 5, the total
number of labs, CT, MRI, US, and XR ordered, the total number of patients admitted to the
hospital, the total number of patients whose age exceeds 65 years old, the total number of
patients whose age exceeds 80 years old, the total number of patients who left without being
seen, the average waiting time (from arrival time to first evaluation time), the average treatment
time (from first evaluation time to discharge decision time), and the average boarding time (from
discharge decision time to departure time) on the previous day. Intuitively, the waiting and

boarding times captured how busy the ED was on the previous day.

Model Evaluation



We focused on two measures of forecast accuracy for shift-level arrival counts---the root mean
square error (RMSE) and the mean absolute prediction error (MAPE). Let (y1, y2, ..., yn) be the
vector of observed arrival counts for a total of n shifts, and let (V1, J2, ..., n) be the
corresponding vector of predicted arrival counts given by the prediction model. The RMSE was

the square root of the mean squared error between the predicted and observed values:

_ / (i -yi)?
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The MAPE was the average percentage error of the prediction:

_lyn i-yil
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Both RMSE and MAPE are standard measures of prediction accuracy.'"!3 Hereafter, we refer to
the RMSE (MAPE) calculated on the training set as the training RMSE (MAPE), and on the test
set as the test RMSE (MAPE). In addition to the overall RMSE and MAPE, we also examined

the over-estimation and under-estimation error separately.
Model Training and Feature Selection

Using the predictors developed in the Data Processing section, we examined various prediction
models. For the baseline models without real-time information, as we had relatively few
predictors, we trained linear regression and regression tree models, only. As we incorporated
more real-time information, in addition to linear regression and regression tree, we trained more
sophisticated models including extreme gradient boosting (XGBoost), seasonal autoregressive
integrated moving average (SARIMA), and SARIMA embedded with linear regression
(SARIMAX). Comparatively, linear regression and regression tree models are highly

interpretable statistical models, but may be inadequate for nonlinear or autocorrelated data.



SARIMA and SARIMAX models are time-series models that are effective of modeling seasonal
trends and autocorrelation. XGBoost is a sophisticated black-box model for complex and
nonlinear relationships, but is less interpretable than the other models.!° To select the relevant
features, for linear regression, we used a modulated two-way stepwise model selection method
based on the Akaike's information criterion (AIC). For regression tree and XGBoost, we used
10-fold cross-validation for hyperparameter tuning. For the time-series models, we used a
variation of the Hyndman-Khandakar algorithm*® to determine the hyperparameters, Detailed

training and feature selection procedures for each model are provided in Appendix B.
RESULTS
Models without Real-Time Information

We referred to the linear regression model without real-time information as LR1. The significant
covariates in LR1 were day vs. night, day of the week, month, and holidays. On the test set, LR1
achieved an RMSE of 16.425 and an MAPE of 9.627%. Table 1 lists the estimated coefficients
for the covariates in LR1. We refer to the tree model without real-time information as TR1,
which had hyperparameters cp = 0.01 and maxdepth = 7. Figure 2 illustrates the structure of
TR1. TR1 performed similarly to LR1 on the test set and achieved test RMSE of 16.644 and test

MAPE of 9.353%.
Models with Real-Time Information
Linear Regression

We referred to the linear regression model with real-time information as LR2. It contained the
following predictors: day vs. night, day of the week, season, holidays, weather, the total number

of arrivals 1 and 7 days ago, the moving average of daily arrival count over the last 30 days,
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Google trends for “flu”, “respiratory infection”, “depression”, “heart attack™, “abuse”, “weather”,
and “hospital” , and the average daily numbers of patients with comorbidity “HP” (hemiplegia or
paraplegia), “CANC” (cancer), and “REND” (renal disease) over the last 3 days. LR2 achieved a
test RMSE of 15.366 and a test MAPE of 9.109%. Table 1 lists the estimated coefficients for the

covariates in LR2.
Regression Tree

We referred to the tree model with real-time information as TR2, which had hyperparameters cp
=0.01 and maxdepth = 7. Note that the model trained without vs. with real-time predictors (TR1

vs. TR2 (Figure 2)) were identical.
XGBoost

The XGBoost model had the following hyperparameters: number of boosting rounds
(num_round) equal to 180, (ii) maximum tree depth for base learners (max_depth) equal to 3,
(ii1) boosting learning rate (eta) equal to 0.1, (iv) L1 regularization term on weights (alpha) equal
to 0.2, and (v) L2 regularization term on weights (lambda) equal to 0.8. Figure 3 illustrates the
top 20 most informative predictors identified by the selected model, including day vs. night, day
of the week, month, holidays, weather, Google trends for “respiratory infection”, “disorder” and
“weather”, the daily average number of patients with comorbidity “AIDS” (acquired
immunodeficiency syndrome) over the last 3 days, and the percentages of patients with
comorbidity “CEVD” (cerebrovascular disease) over the last 3 days. The final model achieved a

test RMSE of 16.315 and a test MAPE 0f 9.582%.

SARIMA and SARIMAX
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Among all SARIMA models, SARIMA(6,0,7)(7,1,3)14 was selected, achieving a test RMSE of
15.501 and a test MAPE of 8.817%. After incorporating the external regressors and setting the
seasonal term to 0, the final ARIMAX(3,1,4) model achieved a test RMSE of 14.656 and a test
MAPE of 8.703%. Table 1 lists the estimated coefficients in the ARIMAX(3,1,4) model. As
expected, the coefficients for the exogeneous covariates had the same signs (i.e., directional
trends) as those for the final linear regression model (LR2). Moreover, as explicitly derived in
Appendix B, the coefficients suggested a positive correlation between the arrival count during

the current shift and the arrival counts during the previous two days.

Comparison of Different Prediction Models

For each prediction model examined, Table 2 summarizes the RMSE and MAPE on the training
and test sets, and Table 3 lists the RMSE and MAPE associated with over-prediction and under-
prediction instances. Among models that did not utilize real-time information, the linear
regression model (LR 1) performed the best on the test set. After incorporating real-time
information, the prediction accuracy on the test set can be improved. ARIMAX achieved the best
performance among models that utilized real-time information, improving prediction accuracy
from LR1 by 10.770% (in test RMSE) and 9.598% (in test MAPE). LR2 achieved the second
best performance, with 6.630% reduction in test RMSE and 5.381% reduction in test MAPE

compared to LR1.

LIMITATIONS

Limitations of the study include the limited amount of training data. The training set only
contained one year of data with 730 observations, which limited the performance of more

sophisticated models that required substantial hyper-parameter tuning such as XGBoost. In
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addition, our study was performed for a single quaternary care facility in New York City. A
meaningful extension is to apply our analysis to multiple ED sites and compare the prediction
accuracy and trends. That said, the directional and structural insights (e.g., procedures to develop

prediction models, and the value of real-time information) should be valid across facilities.
DISCUSSION

Our work employed rich real-time information to build prediction models for ED demand which
can be an integrated part of the two-stage nurse staffing framework. Existing studies have
applied different prediction techniques to forecast ED arrivals, but have not explored as
comprehensive real-time information as in our study.*> By exploring a novel large set of real-
time predictors from the concurrent patient electronic health records, weather, and Google
trends, we demonstrated that this real-time information was able to improve demand forecasts
compared to base prediction models. The improvement in prediction accuracy can be used to

develop prediction-driven two-stage staffing policies to improve operational efficiency.
Non-Inferiority of the “Tried-And-True” Prediction Models

As illustrated by Tables 2 and 3, LR2 and ARIMAX achieved the best performance among all
prediction models that utilized real-time information, improving prediction accuracy by 5%—11%
in RMSE and MAPE compared to models without real-time information (LR1). The worse
performance of the regression tree and SARIMA models was well expected due to their
relatively simple structure, e.g., the SARIMA models only took previous arrival counts into
account. On the other hand, the performance of the more advanced XGBoost model could be
impeded by overfitting, e.g., the XGBoost model was trained with 128 features on 730

observations (shifts) only. The XGBoost model also had the disadvantage of lacking
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interpretability, which was especially concerning in healthcare settings due to the high-stakes
decision making. Hence, by establishing the non-inferiority of the “tried-and-true” linear
regression and time series models (embedded with exogeneous variables), we provided the

foundation for ED managers to deploy more interpretable models.
Relevant Real-Time Information in Predicting ED Demand

Among the extensive amount of real-time information examined, only a few real-time predictors
had predictive power and were coherently identified by different prediction models. According
to the estimated coefficients by LR2 and ARIMAX (Table 1), ED arrivals were positively
correlated with the patient volume 1 day and 7 days prior. Severe weather such as snow,
precipitation, and extremely cold or hot temperature could reduce ED arrivals. Nevertheless, the
ED tended to see more patients on days with strong wind. In addition, ED arrivals increased
during the weeks when there were more Google search records for “flu”. Intuitively, the search
volume for “flu” could be seen as the concurrent flu trend information. Moreover, the total
number of patients with a history of cancer (CANC) over the last 72 hours was positively
correlated with ED arrivals. This trend could be corroborated by the findings that patients with
higher weighted sum of CClIs were more likely to return to the ED within 72 hours.>3-** The
selected XGBoost model identified similar significant predictors (Figure 3), with several new
features such as the Google trends for “disorder”, the percentages of patient with comorbidities
of cerebrovascular disease (CEVD) and acquired immunodeficiency syndrome (AIDS) over the

last 3 days.

Implication for Prediction-Driven Staffing

14



The development of accurate prediction models for ED demand was an integrated part of our
efforts in utilizing predictive analytics to facilitate better medical resource planning. As
mentioned before, ED staffing generally involves two stages: a base stage, which takes place
weeks to months ahead of the actual shift, and surge stage, which happens days to hours before
the shift starts. The base prediction model without real-time information can be used to guide the
base staffing decision, while the more sophisticated prediction model with real-time information
can be used to guide surge staffing decisions. At the base stage, the staffing cost is lower and
more preferrable by nurses due to consistency and predictability of work hours. However, the
accuracy of the prediction model may be low. On the other hand, at the surge stage, the staffing
cost is higher, but more accurate prediction of patients’ demand is available. How to optimally
balance the tradeoff depends on how much real-time predictors improve prediction accuracy over
the base prediction. Our results provide important quantification of this, which can be
incorporated into the two-stage staffing framework developed in Hu et al. 2022%7 to reduce the
staffing cost and ED waiting times. We note that even relatively small prediction accuracy
improvement, i.e., 5%—11% as found in our study, can lead to significant cost savings, 11%—16%
as demonstrated in Hu et al. 2022.27 Lastly, we remark that alternative prediction targets other
than shift-level arrival counts could be used in the prediction-driven staffing framework. In
Appendix C, we constructed logistic regression models to predict “outlier” shifts that would have
demand surges, and obtained similar insights on the value of real-time information. That said,
predicting shift-level arrival counts (compared to a binary indicator on whether there would be

demand surge) led to more actionable staffing implications.

CONCLUSION

15



We constructed and evaluated predictions models with rich real-time information to forecast ED
patient volume. In alignment with the nursing shift structure in an ED site at a quaternary care
facility in New York City, we aimed to predict the shift-level patient arrival count. Various
prediction techniques were examined, including linear regression, regression tree, XGBoost,
SARIMA, and (S)ARIMAX. Based on the data from our partner ED site, linear regression and
ARIMAX when combined with real-time information achieved the highest prediction accuracy
measured by RMSE and MAPE. Comparing to prediction models without real-time predictors,
we found that contemporary information was able to improve prediction accuracy in near-real
time. Among the extensive list of real-time predictors tested, recent patient arrival counts,
weather, Google trends, and concurrent patient comorbidity information had the highest
predictive power. The effectiveness of real-time information in improving demand forecast has
policy implications for staffing. ED management can utilize real-time demand forecast to make

timely adjustments to staffing levels, which in turn can effectively mitigate ED overcrowding.
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Figure 1. Shift-level arrival count from February 1, 2018 to January 31, 2020"
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* The solid blue line is the best regression line where y: = 134.4 + 0.00372 * t, and the dashed

red line is the average arrival count, where t is the count of shifts since February 1, 2018.
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Table 1. Estimated 95% confidence intervals for the coefficients of covariates in LR1, LR2, and

ARIMAX(3, 1, 4)

Covariate LR1 LR2 ARIMAX
(Intercept) (82.954, (40.041, NA
93.912) 165.262)
Monday day (113.957, (114.435, | (113.382,
125.610) 125.615) 128.438)
Monday night (3.784, (3.620, (5.719,
15.437) 16.707) 16.199)
Tuesday day (91.385, (91.313, (92.285,
103.079) 104.781) 107.536)
Tuesday night (0.288, (0.860, (2.217,
11.983) 13.486) 13.428)
Wednesday day (90.286, (90.611, (90.727,
101.881) 103.142) 106.277)
Wednesday night (-2.867, (-2.334, (-1.043,
8.727) 10.078) 9.901)
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Thursday day (89.011, (88.355, (88.250,
100.577) 100.533) 103.409)
Thursday night (-0.989, (-1.515, (-0.382,
10.577) 10.850) 10.772)
Friday day (78.765, (77.643, (77.419,
90.382) 90.024) 93.023)
Friday night (0.285, (0.115, (0.735,
11.902) 13.058) 12.967)
Saturday day (50.904, (51.835, (51.470,
62.516) 64.912) 67.691)
Saturday night (-1.961, (-0.265, (0.045,
9.651) 12.516) 12.018)
Sunday day (45.860, (47.924, (47.012,
57.365) 60.746) 63.448)
January (0.888, NA NA
11.453)
February (4.473, NA NA
15.292)
March (-8.061, NA NA
2.530)
April (-7.621, NA NA
3.061)
May (-2.615, NA NA
7.933)
June (-5.389, NA NA
5.289)
July (1.364, NA NA
11.908)
August (-1.765, NA NA
8.832)
September (-2.706, NA NA
7.923)
October (0.292, NA NA
10.838)
November (-8.843, NA NA
1.806)
Fall NA (-6.185, (-6.102,
1.684) 1.843)
Summer NA (-5.770, (-5.806,
3.182) 3.237)
Winter NA (-2.920, (-2.978,
7.158) 7.531)
Holiday (-29.459, (-30.387, (-30.600,
-15.608) -16.367) -17.402)
Holiday — 1 day (-17.293, (-17.416, (-17.879,
-3.456) -3.808) -4.844)
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Holiday + 1 day (8.760, (8.709, (8.49¢,
22.594) 22.486) 21.584)
Min temperature NA (0.267, (0.274,
0.701) 0.702)
Precipitation NA (-0.257, (-0.247,
-0.043) -0.049)
Snow NA (-0.231, (-0.230,
-0.100) -0.109)
Wind NA (0.003, (0.008,
0.149) 0.145)
Max temperature = 86°F NA (-9.508, (-8.879,
-1.155) -0.749)
Recent arrival count 1-day | NA (-0.039, NA
prior 0.065)
Recent arrival count 7-day | NA (-0.006, (-0.010,
prior 0.090) 0.089)
30-day moving average NA (-0.749, (-0.772,
0.217) 0.210)
Google trend “abuse” NA (-0.295, (-0.315,
0.007) -0.007)
Google trend “depression” | NA (-0.230, (-0.234,
0.114) 0.113)
Google trend “flu” NA (0.142, (0.153,
0.531) 0.547)
Google trend “heart attack” | NA (-0.198, (-0.197,
0.062) 0.065)
Google trend “hospital” NA (-0.045, (-0.038,
0.711) 0.726)
Google trend “respiratory NA (-0.061, (-0.059,
infection” 0.198) 0.203)
Google trend “weather” NA (-0.149, (-0.151,
0.132) 0.131)
Total # patients with NA (-0.001, (0.043,
comorbidity CANC over 1.976) 1.895)
the last 3 days
Total # patients with NA (-7.601, (-7.049,
comorbidity HP over the 2.989) 2.764)
last 3 days
Total # patients with NA (-1.659, (-1.629,
comorbidity REND over 0.044) -0.043)
the last 3 days
ARI1 (¢;) NA NA (-0.758,
0.144)
AR2 (¢,) NA NA (-0.320,
0.363)
AR3 (¢3) NA NA (-0.988,
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-0.266)
MAL (6,) NA NA (-1.139,
MA2 (6,) NA NA 2?6%50547),
MA3 (65) NA NA ?0127355)
MA4 (6,) NA NA ?;(259?39)6),
-0.37

Figure 2. Visualization of TR1 and TR2*

Day v.s. night
Day Night
Day of the week
Mon

(o ) (o0 ) (o ) (o ) (e ) (o ) (o

*TR1 and TR2 are regression trees that can be interpreted from the visualization as follows: 1)

Start from the root node (“Day vs. night”). 2) Go to the next node if the covariate at the root node
is equal to the value specified by the edge. 3) The predicted value is given at the leaf node. For

example, the predicted arrival count during a Monday day shift is 208.

Figure 3. Top 20 informative predictors in the final XGBoost model
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Relative importance

Table 2. Comparison of the selected models

Model Utilize real-time | Training | Training | Test Test
information RMSE* | MAPE* | RMSE | MAPE

LRI No 14.643 9.253% | 16.425 | 9.627%
TR1/TR2 | No 15.979 9.590% | 16.644 | 9.353%
LR2 Yes 13.892 8.884% | 15.336 | 9.109%
XGBoost | Yes 8.051 5.500% | 16.254 | 9.455%
SARIMA | Yes 13.902 7.797% | 15.501 | 8.817%
ARIMAX | Yes 13.604 8.618% | 14.656 | 8.703%

*RMSE: Root mean squared error; MAPE: mean average percentage error; see the Model

Evaluation section for detailed definition

Table 3. Over- prediction and under-prediction error

Model Training set Test set

RMSE* | MAPE* RMSE | MAPE
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Over- Under- | Over- Under Over- | Under- | Over- Under-

prediction
LR1 15.242 14.052 | 10.839% | 7.752% | 13.763 | 18.215 | 10.769% | 8.746%
TR1/TR2 | 16.811 15.155 | 11.336% | 7.930% | 14.153 | 18.423 | 10.385% | 8.546%
LR2 14.209 13.574 | 10.114% | 7.682% | 13.267 | 16.961 | 10.253% | 8.128%
XGBoost | 8.132 7.969 |6.669% |4.331% | 13.972 | 17.973 | 11.005% | 8.132%

SARIMA | 15.626 14.759 | 10.886% | 7.826% | 14.681 | 16.235 | 9.804% | 7.887%

ARIMAX | 13.989 13.241 | 9.877% | 7.465% | 13.528 | 15.597 ]9.634% | 7.868%

*RMSE: Root mean squared error; MAPE: mean average percentage error; see the Model

Evaluation section for detailed definition

Appendix A. Model Performance During The COVID-19 Pandemic

We also examined the performance of the trained models on the COVID test set (Table 4). Since
the patient volume during the pandemic was highly unpredictable and behaved very differently
from the pre-pandemic data, all models trained on the pre-pandemic training set had larger
prediction errors. Among models without real-time predictors, the base linear regression model
LRI achieved the smallest RMSE of 32.998 and MAPE of 28.286%. Some of the models with
real-time covariates did not improve prediction accuracy. However, the SARIMA model
achieved a significant better performance than the baseline model, with RMSE of 21.663 and

MAPE of 16.091%.

The unsatisfactory performance of the prediction models on the COVID test set suggested that
the predictors and their estimated parameters based on the pre-pandemic training set were less
relevant during the pandemic. However, recent arrival counts still had predictive power, enabling
the SARIMA model to improve prediction accuracy by 34.351% in RMSE and 43.113% in

MAPE compared to the base linear regression model LR1. Hence, in the presence of unforeseen
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disruptions, time series models that took recent arrival counts into account were more reliable

than other prediction techniques.

Table 4. Performance of the selected models on the COVID test set

Model Utilize real-time information | RMSE* MAPE*

LR1 No 32.998 28.286%
TR1/TR2 | No 33.500 28.637%
LR2 Yes 38.350 34.370%
XGBoost | Yes 30.767 27.108%
SARIMA | Yes 21.663 16.091%
ARIMAX | Yes 32.179 27.826%

*RMSE: Root mean squared error; MAPE: mean average percentage error; see the Model

Evaluation section for detailed definition
Appendix B. Model Training and Feature Selection Procedures
Linear Regression

To train the linear regression model, we used a modulated two-way stepwise model selection
method based on the Akaike's information criterion (AIC). The standard two-way stepwise
procedure started by including all the predictors in consideration, and in each step, it excluded or
included one predictor that gave the largest reduction of the AIC, until the AIC could not be
further reduced.’® However, this stepwise selection procedure could be impeded by the extremely
large number of predictors at initialization. To improve upon the standard stepwise procedure,
we proposed the following modulated two-way stepwise selection procedure that conducted the
standard stepwise selection on carefully designed subsets of covariates. In particular, we used the
day vs. night, day of the week, season, and holidays as the base predictors, and constructed six
subsets of covariates: (i) base predictors, (ii) base predictors and weather, (iii) base predictors
and Google trends, (iv) base predictors and patient comorbidity information, (v) base predictors

and previous-shift counts, and (vi) base predictors and the remaining real-time predictors
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described in the Data Processing section. For each of the six smaller-scale subsets of covariates,
we performed the standard stepwise selection procedure and identified the significant covariates
in each subset. Covariates that were highly correlated (with correlation coefficient larger than

0.5) were sifted out by comparing the correlation matrix.
Regression Tree

Regression tree model was implemented via the rpart package in R.3” The following
hyperparameters were tuned: (i) complexity parameter (cp) ranging from 0 to 0.08 in increment
0f 0.01, and (i1) maximum depth of any node of the final tree (maxdepth) ranging from 1 to 10 in

increment of 1. The other hyperparameters are set to their default values (https://stat.ethz.ch/R-

manual/R-devel/library/rpart/html/rpart.control.html). For each specification of hyperparameters,

we evaluated the model’s performance using 10-fold cross-validation on the training set and
referred to the resulting average RMSE (MAPE) as the validation RMSE (MAPE). The
hyperparameters that gave the smallest validation RMSE were selected. The final model was

then trained with these hyperparameters on the training set and evaluated on the test sets.

XGBoost

XGBoost model was implemented via the xgboost package in python

(https://xgboost.readthedocs.io/en/latest/python/index.html). The following hyperparameters

were tuned: (i) number of boosting rounds (num_round) ranging from 10 to 200 in increment of
10, (i1) maximum tree depth for base learners (max_depth) ranging from 1 to 9 in increment of 1,
(ii1) boosting learning rate (eta) ranging from 0.1 to 0.5 in increment of 0.1, (iv) L1
regularization term on weights (alpha) ranging from 0.2 to 1 in increment of 0.2, and (v) L2

regularization term on weights (lambda) ranging from 0.2 to 1 in increment of 0.2. The other
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hyperparameters were set to their default values

(https://xgboost.readthedocs.io/en/latest/parameter.html). For each specification of

hyperparameters, we evaluated the model’s performance using 10-fold cross-validation on the
training set. The hyperparameters that gave the smallest validation RMSE was selected, and the
final model was then trained with these hyperparameters on the training set and evaluated on the
test sets. Different from the other prediction models considered, XGBoost was a “black-box”
model that did not specify explicitly how each covariate drove the prediction. We used relative
importance, a measure that quantifies the improvement in prediction accuracy of tree-based
algorithms (including XGBoost) from a split based on a given covariate, to identify relevant
predictors.® Note that relative importance did not specify directionality, but instead only
indicated the predictive power of a covariate.

SARIMA and SARIMAX
To express the SARIMA model explicitly, we let B be the backward shift operator, where
Bjyt = YVt—j» ] =0,%1,-.

In the equation above and hereafter, the subscript t is a time index for each shift. We define the

related operators
¢(B) =1~ ¢1B — §,B> — -+ — ¢, B”
®(B) =1 — ®,BS — ,B% — ... — ®,BPS
6(B) =1+ 6,B +6,B*> + -+ 6,B1

(:.')(B) = 1 + GlBS + @zBZS + + OQBQS
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where ¢ (B) is the non-seasonal AR polynomial, ®(B) is the seasonal AR polynomial, 6(B) is
the non-seasonal MA polynomial, ®(B) is the seasonal MA polynomial, A is the non-seasonal
difference operator, and A, is the seasonal difference operator. A SARIMA(p,d,q)(P,D,Q)s

model can be formally written as
(B)P(B)A'ATy, = 0(B)O(B)ey,
where €, is a noise term that follows a normal distribution with mean 0 and standard deviation o.

The ARIMAX(p,d,q) model combines the SARIMA(p,d,q)(P,D,Q)s model (where the seasonal
hyperparameters (P, D, Q, s) are set to 0) and a linear regression model with external regressors.
Let x, be the vector of covariates in the linear regression model, and x! be its transpose. Let §
be the vector of coefficients for the covariates. Then a ARIMAX(p,d,q) model can be formally

represented as

By, = x{ B + O(B)er.

To train the SARIMA model, we set the seasonal term to 14 (i.e., s = 14) to distinguish the day
vs. night and day of the week effects. In addition, since the time series had a stationary
increasing trend (Figure 1), it was reasonable to conduct a difference for the original series.
However, whether to conduct the difference directly (i.e., setting d = 1, D = 0) or seasonally (i.e.,
setting d = 0, D = 1) needed to be determined. For each of these two options, we conducted the
Dickey-Fuller test to check whether the differenced time series was stationary. The resulting p-
values were both 0.01, which suggested at 99% confidence level that the differenced time series
under each option did not have a unit root and was therefore stationary. We then used a variation
of the Hyndman-Khandakar algorithm?® to determine the hyperparameters. In particular, for

each differencing method, we varied the AR term (p), the seasonal AR term (P), the MA term
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(q), and the seasonal MA term (Q) from 1 to 7 in increment of 1. We considered models
where the highest-order AR and MA terms were statistically significant. The final model was
then selected based on AIC on the training set and evaluated on the test sets. As for the
SARIMAX model, we used the same covariates in the selected linear regression model (LR2)
as external regressors, except that we excluded the previous-day arrival count in the
covariates to avoid double counting the recent arrival counts information. Since the embedded
linear regression model already took into account the day vs. night and day of the week
variations, as well as the arrival counts over the last 7 and 30 days, we set the seasonal
hyperparameters (P, Q, s) in the SARIMAX model to 0 to avoid overfitting, which leads to an

ARIMAX model.

For our selected ARIMAX(3,1,4) model, the expression for y, reduces to

Ve =)+ A+ dDyeor + (P53 — ¢1)Ye—2 + (03 — $3)Ve—3 — P3Ve—s + €/ + 07€/4
+ 02605+ 0363+ 0,6,
= (x)TB* + 0.693y,_1 + 0.328y,_, — 0.648y,_5 + 0.627y,_4 + €/ + O7€;_, + O05€;_,

+ 036/ 5+ 0,€/_4,

where x; is the vector of covariates in the embedded linear regression model, and 8* is the
associated vector of estimated coefficients, whose value, together with the other estimated
parameters denoted with an asterisk in the superscript, is provided in Table 3. In addition, the
estimated value for o is 14.032. Note that y;_, is the arrival count during the previous shift, y;_,
is the arrival count during the shift before the previous shift, and y,_, is the arrival count during
the same day/night shift on the day before previous day. The estimated coefficients suggest that

Ye—1, Ye—2, and y,_, are positively correlated with y,, the arrival count during the focal shift.
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Specifically, the higher patient count was during the previous day and during the same type of
shift (day vs. night) two days ago, the more likely that the focal shift experienced a larger patient

volume.
Appendix C. Logistic Regression for Predicting Outlier Shifts

To complement to the findings that real-time information was valuable in improving prediction
accuracy for shift-level arrival counts, we investigated the predictive power of real-time
information in predicting outlier shifts. To this end, we used the same data set from January 1,
2018 to January 31, 2021, and grouped the shifts by their day of the week and type of shift (day
vs. night). This resulted in 14 different classes of shifts in a week. We defined a shift to be an
outlier if its shift-level arrival count exceeded the 90th percentile within its class. We then
constructed logistic regression models to predict the outlier shifts. Importantly, by grouping the
shifts into 14 classes and finding the outlier shifts within each class, we uncoupled the prediction
model from seasonal/weekly variations. Namely, predicting the outlier shifts can be considered

as “predicting the unpredictable”, i.e., surges in patient volume over the baseline.

To demonstrate the power of real-time information in predicting outlier days, we constructed
logistic regression models with and without real-time predictors, and denoted them by Logitl
and Logit2, respectively. To select the variables in Logitl and Logit2, we followed similar
variable-selection procedures as those for the linear regression models; see Table 5 for the
selected predictors and estimated coefficients. To assess the prediction accuracy, we examined
the resulting receiver operating characteristic (ROC) curve and area under the curve (AUC)3¢ in
Figure 4. Logit2 achieved larger AUC than Logit] on the training set, test set, and COVID test
set, implying that real-time information improved prediction accuracy. Moreover, the

informative covariates were consistent to those identified in the models for predicting shift-level
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arrival counts, including season, holiday, weather, Google trends, and comorbidity. A shift was
more likely to have demand surges if it was immediately after a holiday, had larger number of
patients with comorbidity of cancer (CANC) over the last 3 days, and had higher recent Google

trends for “flu”.

Predicting outlier shifts using real-time information could be meaningful in the two-stage
staffing framework. For example, at the surge stage of the staffing timeline, if the logistic
regression model predicted a demand surge in the upcoming shift, then the ED manager might
call in additional surge nurses. That said, predicting shift-level arrival counts (compared to a
binary indicator on whether there would be demand surge in the upcoming shift) led to more
quantitative and actionable staffing implications. By knowing the exact difference in the
predicted shift-level arrival counts at the base and surge stages, the ED manager could make
better-informed decisions on not only whether, but also how many additional nurses to call in at

the surge stage.

Table 5. Estimated 95% confidence intervals for the coefficients of covariates in Logitl and

Logit2
Covariate Logitl Logit2
(Intercept) (-2.793, (-6.678,
-1.807) 3.663)
Fall (-1.171, (-1.799,
0.334) -0.128)
Summer (-0.376, (-1.489,
0.946) 0.423)
Winter (-0.134, (-1.048,
1.145) 1.276)
Holiday + 1 day (0.530, (0.989,
2.521) 3.349)
Holiday + 3 days (-0.102, (0.489,
2.076) 3.125)
Min temperature NA (0.029,
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0.127)

Precipitation NA (-0.103,
-0.021)
Wind NA (-0.002,
0.026)
Max temperature = 86°F NA (-2.177,
-0.073)
Recent arrival count 1-day | NA (-0.006,
prior 0.011)
Google trend “flu” NA (0.024,
0.079)
Google trend “hospital” NA (-0.024,
0.172)
Google trend “emergency NA (-0.092,
room” -0.014)
Google trend “disorder” NA (-0.075,
-0.002)
Total # patients with NA (0.049,
comorbidity CANC over 0.465)
the last 3 days
Total # patients with NA (-0.528,
comorbidity CEVD over -0.085)

the last 3 days

Figure 4. ROC curve and AUC of Logitl and Logit2
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