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ABSTRACT 

Study objective: We aimed to build prediction models for shift-level Emergency Department 

(ED) patient volume that could be used to facilitate prediction-driven staffing. We sought to 

evaluate the predictive power of rich real-time information, and understand 1) which real-time 

information had predictive power, and 2) what prediction techniques were appropriate for 

forecasting ED demand. 

Methods: We conducted a retrospective study in an ED site in a large academic hospital in New 

York City. We examined various prediction techniques including linear regression, regression 
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tree, extreme gradient boosting, and time series models. By comparing models with and without 

real-time predictors, we assessed the potential gain in prediction accuracy from real-time 

information. 

Results: Real-time predictors improved prediction accuracy upon models without contemporary 

information by 5%-11%. Among extensive real-time predictors examined, recent patient arrival 

counts, weather, Google trends, and concurrent patient comorbidity information had significant 

predictive power. Out of all the forecasting techniques explored, SARIMAX (Seasonal Auto-

Regressive Integrated Moving Average with eXogenous factors) achieved the smallest out-of-

sample RMSE (Root-Mean-Square Error) of 14.656 and MAPE (Mean Absolute Percentage 

Error) of 8.703%. Linear regression was the second best with out-of-sample RMSE and MAPE 

equal to 15.366 and 9.109%, respectively.  

Conclusion: Real-time information was effective in improving prediction accuracy of ED 

demand. Practice and policy implications for designing staffing paradigms with real-time 

demand forecasts to reduce ED congestion were discussed.  

INTRODUCTION   

Background and Importance  

Across the United States, there has been a growing focus within Emergency Medicine on 

developing computational/machine learning models to predict demand for patient care in the 

emergency departments (ED). Over the years, a variety of prediction techniques have been 

examined. Early studies have utilized time-series models to forecast future arrivals based on 

recent arrival count information.1-6 Additional studies have utilized other prediction models with 

exogenous predictors, such as linear regression, regression tree, etc.7-11 There have also been 

recent efforts that explored techniques to combine time-series models with exogenous features.12-
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13 In addition to utilizing appropriate prediction techniques, it is important to identify what 

information is most relevant in predicting ED demand, especially because vast amount of 

information is now made available by electronic health records and various other data sources. 

Most of the existing literature has utilized classic predictors such as seasonality, holidays, 

weather, and previous arrival counts. A few other studies have examined limited real-time 

information beyond weather and previous arrival counts, including ambulance diversion status 

and physician workload.14-16 However, to the best of our knowledge, little research has explored 

the comprehensive patient-level and regional data that are now more readily available. Such data 

could provide novel additional information and improve ED demand prognostication.  

An important motivation behind these developments is that predictive information about ED 

demand can be used to improve operational efficiency in resource allocation and better meet 

patients’ needs.17 Such proactive planning is particularly relevant for nurse staffing, as nurses 

provide a substantial portion of patient care and are an increasingly limited resource in the ED 

(e.g., due to nursing shortages exacerbated by burnout and quitting during the coronavirus 

(COVID-19) pandemic18-20). Inefficient and inadequate staffing is often associated with ED 

crowding, reduced quality of care, clinician burnout, and reduced hospital revenue.21-26 In the 

current nurse staffing practice, EDs typically divide a day into multiple shifts. The ED manager 

staffs most of the nurses for a shift weeks to months in advance. A few hours before the nursing 

shift, the ED manager could call in extra nurses with incentive pays if s/he senses a higher 

patient volume that renders the planned staffing level insufficient (after taking into account 

staffing fluctuations due to sick calls and personal emergencies). We refer to the former as base-

staffing and the later as surge-staffing. ED demand forecasts synchronized with these two 

staffing decision epochs can greatly facilitate these decisions. Since overtime/surge staff are 
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more expensive and less convenient for nurses, it is important to understand how much we can 

improve the prediction accuracy at the surge stage (when we can utilize more real-time 

information) compared to the base stage (when limited information about the shift is available). 

A recent study shows that even a small accuracy improvement at the surge stage can lead to 

effective prediction-driven two-stage (base and surge) nurse staffing policies.27 However, little is 

known about whether (and if so, by how much) real-time information improves prediction 

accuracy in practice.  

Goals of This Investigation  

The goal of this study was to explore and evaluate rich real-time information (including previous 

arrival counts, temporal and seasonal variations, holidays, weather, electronic health records, and 

Google trends), and a variety of prediction techniques. By comparing prediction models with and 

without real-time predictors, we assessed the gain in prediction accuracy from real-time 

information. Lastly, we described how these two types of prediction models (with and without 

real-time information) could both contribute to a prediction-driven staffing framework.  

METHODS 

Study Setting and Objective 

We conducted a retrospective study using data obtained from the electronic health records for an 

adult ED in a large academic hospital in New York City. A total of 284,550 adult patients who 

arrived at the ED from 12:00 AM January 1, 2018, through 11:59 PM January 31, 2021, were 

included in the analysis.  

At the hospital, each day was divided into two main 12-hour nursing shifts that start at 7:00 AM 

and 7:00 PM, respectively. To facilitate relevant operational decision making (e.g., nurse staffing 
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decisions), the subject of prediction was the shift-level arrival count defined as the total number 

of patients who arrived at the ED during each shift. Many hospitals have more nursing shifts than 

the two listed above. In those cases, we can divide the day into non-overlapping intervals and 

predict the interval-level arrival count similarly.  

Model fitting and selection was performed using one year of data from January 1, 2018 to 

January 31, 2019, which we hereafter refer to as the training set. Model performance was tested 

on the subsequent one-year data from February 1, 2019 to January 31, 2020, which we refer to as 

the test set. The remaining data from February 1, 2020 to January 31, 2021 contained the 

outbreak of the COVID-19 pandemic, and we thus refer to it as the COVID test set. Since patient 

volume was highly unpredictable during the pandemic and the pandemic is likely a unique 

generational event, we relegate the results and discussions regarding the COVID test set to 

Appendix A. The training, test, and COVID test sets were fixed across all prediction models. 

This study was approved by Columbia University Institutional Review Board: Protocol IRB-

AAAT6452. 

Data Source 

We utilized three sources of data: patient electronic health records, weather data published by the 

National Centers for Environmental Information,28 and Google trends.29 These data sources were 

selected based on past work, extant models, and our own novel hypotheses. While the 

importance of weather information has been well established in the literature,14-16  the prediction 

power of real-time patient electronic health records and Google trends has been relatively 

underexplored.  
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The data extracted from the patient electronic health records specified for each patient: (i) the 

patient’s clinical time stamps in the ED, including arrival time, first evaluation time, admission 

decision time, and departure time; (ii) the arrival source of the patient, e.g., walking in or by 

ambulance; (iii) the patient’s chief complaint(s), i.e., reason of visit; (iv) the patient’s Emergency 

Severity Index (ESI); (v) lab and imaging ordered: indicators for whether lab, CT, MRI, 

Ultrasonography, and X-ray were ordered; (vi) indicator for whether the patient was admitted 

into the hospital; (vii) the Charlson comorbidity index (CCI) based on a list of 17 comorbidities; 

(viii) age; and (ix) indicator for whether the patient left without being seen.  

In addition to the patient electronic health records, we obtained retrospective daily weather 

information, including the minimum temperature, precipitation, snow, wind, and a hot-weather 

indicator for whether the maximum temperature exceeds 86°F (30°C).  

The last source of data came from Google trends, which specified, for each day, the relative 

Google search volume for the words “flu”, “emergency room”, “abdominal pain”, “respiratory 

infection”, “chest pain”, “depression”, “heart attack”, “abuse”, “disorder”, “weather”, and 

“hospital” in New York State. We came up with the list of keywords based on existing studies 

and our own novel hypotheses. Araz et al. (2014)30 established that the Google trends for “flu” 

were able to forecast influenza-like-illness related ED visits. Tuominen et al. (2022)31 found that 

the Google trends for “ED” facilitated prediction. The other Google trends keywords were 

constructed based on our own hypotheses. Since the most frequent reasons for ED visits were 

abdominal pain, respiratory infection, and chest pain,32 we hypothesized that the Google search 

volumes for these keywords were positively correlated with ED visits. In addition, we 

hypothesized that the search volumes for “depression”, “heart attack”, “abuse”, “disorder” 

signaled relevant illnesses in the neighborhood. Moreover, the Google search record for 
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“weather” might reflect citizens’ subjective perception of weather conditions which might 

influence their stay-at-home/travel plans. Lastly, similar to “ED”, a higher Google search volume 

for “hospital” might indicate that more patients were seeking care.  

When selecting the data sources, we tried to be comprehensive by including as much potentially 

relevant information as possible. Later in the Model Training and Feature Selection section, we 

discuss procedures to train different prediction models and identify relevant predictors.      

Data Processing 

We processed the data into shift-level predictors. The data regarding day vs. night, day of the 

week, month, season, near-holiday indicators, weather, and Google trends were readily available 

at the shift level. As for the data from electric health records, we constructed the following three 

categories of shift-level predictors. 

The first category was the previous arrival counts, which specified for each shift, the arrival 

count 1 day ago and 7 days ago, as well as the moving average of the shift-level arrival count 

over the last 30 days. More precisely, the arrival count on the previous day was the total number 

of patients who arrived during the previous 24 hours. The arrival count on the previous nth day 

was the two shifts between the previous 24*(n-1)th and 24*nth hour.  

The second category of predictors was the patient comorbidity information, which we processed 

into the following three sets. The first set specified for each comorbidity, the total number of 

patients with that comorbidity on the previous day, i.e., during the previous two shifts, and the 

sum and weighted sum of CCIs for all patients on the previous day. The second set contained 

similar information as the first set, but instead of considering the previous-day, calculated the 

average daily number of patients with each comorbidity over the last 3 days, as well as the 
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average daily sum and weighted sum of CCIs for all patients over the last 3 days. The third set 

calculated for each comorbidity, the percentage of patients with that comorbidity over the last 3 

days, as well as the average sum and weighted sum of CCIs per patient over the last 3 days. The 

difference between the second and third sets was that the third set considered average 

comorbidity measures on the individual level, and was not influenced by how many patients 

arrived over the last 3 days. The motivation to consider comorbidity information over the last 3 

days was due to the existing findings that patients with certain comorbidities are more likely to 

be readmitted to the ED within 72 hours33-34. These three sets of information were likely to be 

correlated. Since it was a priori unclear which specification had the most predictive power, we 

left it to the model training and feature selection procedures to sift out redundant information and 

identify important features. 

The third category of predictors was the recent ED volume and patient severity information on 

the previous day (i.e., during the 24 hours before the focal shift). This included the total number 

of patients who arrived by ambulance, the total number of patients with ESI from 1 to 5, the total 

number of labs, CT, MRI, US, and XR ordered, the total number of patients admitted to the 

hospital, the total number of patients whose age exceeds 65 years old, the total number of 

patients whose age exceeds 80 years old, the total number of patients who left without being 

seen, the average waiting time (from arrival time to first evaluation time), the average treatment 

time (from first evaluation time to discharge decision time), and the average boarding time (from 

discharge decision time to departure time) on the previous day. Intuitively, the waiting and 

boarding times captured how busy the ED was on the previous day. 

Model Evaluation 
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We focused on two measures of forecast accuracy for shift-level arrival counts---the root mean 

square error (RMSE) and the mean absolute prediction error (MAPE). Let (y1, y2, …, yn) be the 

vector of observed arrival counts for a total of n shifts, and let (𝑦"1, 𝑦"2, …, 𝑦"n) be the 

corresponding vector of predicted arrival counts given by the prediction model. The RMSE was 

the square root of the mean squared error between the predicted and observed values: 

RMSE = #∑ ("#$	&	'$)!

)
)
*	+	,  . 

The MAPE was the average percentage error of the prediction: 

MAPE = ,
)
∑ |"#$	&	'$|

'$
)
*	+	,  . 

Both RMSE and MAPE are standard measures of prediction accuracy.1-13 Hereafter, we refer to 

the RMSE (MAPE) calculated on the training set as the training RMSE (MAPE), and on the test 

set as the test RMSE (MAPE). In addition to the overall RMSE and MAPE, we also examined 

the over-estimation and under-estimation error separately. 

Model Training and Feature Selection 

Using the predictors developed in the Data Processing section, we examined various prediction 

models. For the baseline models without real-time information, as we had relatively few 

predictors, we trained linear regression and regression tree models, only. As we incorporated 

more real-time information, in addition to linear regression and regression tree, we trained more 

sophisticated models including extreme gradient boosting (XGBoost), seasonal autoregressive 

integrated moving average (SARIMA), and SARIMA embedded with linear regression 

(SARIMAX). Comparatively, linear regression and regression tree models are highly 

interpretable statistical models, but may be inadequate for nonlinear or autocorrelated data. 



 10 

SARIMA and SARIMAX models are time-series models that are effective of modeling seasonal 

trends and autocorrelation. XGBoost is a sophisticated black-box model for complex and 

nonlinear relationships, but is less interpretable than the other models.10 To select the relevant 

features, for linear regression, we used a modulated two-way stepwise model selection method 

based on the Akaike's information criterion (AIC). For regression tree and XGBoost, we used 

10-fold cross-validation for hyperparameter tuning. For the time-series models, we used a 

variation of the Hyndman-Khandakar algorithm39 to determine the hyperparameters, Detailed 

training and feature selection procedures for each model are provided in Appendix B. 

RESULTS 

Models without Real-Time Information 

We referred to the linear regression model without real-time information as LR1. The significant 

covariates in LR1 were day vs. night, day of the week, month, and holidays. On the test set, LR1 

achieved an RMSE of 16.425 and an MAPE of 9.627%. Table 1 lists the estimated coefficients 

for the covariates in LR1. We refer to the tree model without real-time information as TR1, 

which had hyperparameters cp = 0.01 and maxdepth = 7. Figure 2 illustrates the structure of 

TR1. TR1 performed similarly to LR1 on the test set and achieved test RMSE of 16.644 and test 

MAPE of 9.353%.  

Models with Real-Time Information 

Linear Regression 

We referred to the linear regression model with real-time information as LR2. It contained the 

following predictors: day vs. night, day of the week, season, holidays, weather, the total number 

of arrivals 1 and 7 days ago, the moving average of daily arrival count over the last 30 days, 
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Google trends for “flu”, “respiratory infection”, “depression”, “heart attack”, “abuse”, “weather”, 

and “hospital” , and the average daily numbers of patients with comorbidity “HP” (hemiplegia or 

paraplegia), “CANC” (cancer), and “REND” (renal disease) over the last 3 days. LR2 achieved a 

test RMSE of 15.366 and a test MAPE of 9.109%. Table 1 lists the estimated coefficients for the 

covariates in LR2.  

Regression Tree 

We referred to the tree model with real-time information as TR2, which had hyperparameters cp 

= 0.01 and maxdepth = 7. Note that the model trained without vs. with real-time predictors (TR1 

vs. TR2 (Figure 2)) were identical.  

XGBoost 

The XGBoost model had the following hyperparameters: number of boosting rounds 

(num_round) equal to 180, (ii) maximum tree depth for base learners (max_depth) equal to 3, 

(iii) boosting learning rate (eta) equal to 0.1, (iv) L1 regularization term on weights (alpha) equal 

to 0.2, and (v) L2 regularization term on weights (lambda) equal to 0.8. Figure 3 illustrates the 

top 20 most informative predictors identified by the selected model, including day vs. night, day 

of the week, month, holidays, weather, Google trends for “respiratory infection”, “disorder” and 

“weather”, the daily average number of patients with comorbidity “AIDS” (acquired 

immunodeficiency syndrome) over the last 3 days, and the percentages of patients with 

comorbidity “CEVD” (cerebrovascular disease) over the last 3 days. The final model achieved a 

test RMSE of 16.315 and a test MAPE of 9.582%.  

SARIMA and SARIMAX 
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Among all SARIMA models, SARIMA(6,0,7)(7,1,3)14 was selected, achieving a test RMSE of 

15.501 and a test MAPE of 8.817%. After incorporating the external regressors and setting the 

seasonal term to 0, the final ARIMAX(3,1,4) model achieved a test RMSE of 14.656 and a test 

MAPE of 8.703%. Table 1 lists the estimated coefficients in the ARIMAX(3,1,4) model. As 

expected, the coefficients for the exogeneous covariates had the same signs (i.e., directional 

trends) as those for the final linear regression model (LR2). Moreover, as explicitly derived in 

Appendix B, the coefficients suggested a positive correlation between the arrival count during 

the current shift and the arrival counts during the previous two days.  

Comparison of Different Prediction Models 

For each prediction model examined, Table 2 summarizes the RMSE and MAPE on the training 

and test sets, and Table 3 lists the RMSE and MAPE associated with over-prediction and under-

prediction instances. Among models that did not utilize real-time information, the linear 

regression model (LR1) performed the best on the test set. After incorporating real-time 

information, the prediction accuracy on the test set can be improved. ARIMAX achieved the best 

performance among models that utilized real-time information, improving prediction accuracy 

from LR1 by 10.770% (in test RMSE) and 9.598% (in test MAPE). LR2 achieved the second 

best performance, with 6.630% reduction in test RMSE and 5.381% reduction in test MAPE 

compared to LR1. 

LIMITATIONS 

Limitations of the study include the limited amount of training data. The training set only 

contained one year of data with 730 observations, which limited the performance of more 

sophisticated models that required substantial hyper-parameter tuning such as XGBoost. In 
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addition, our study was performed for a single quaternary care facility in New York City. A 

meaningful extension is to apply our analysis to multiple ED sites and compare the prediction 

accuracy and trends. That said, the directional and structural insights (e.g., procedures to develop 

prediction models, and the value of real-time information) should be valid across facilities.  

DISCUSSION 

Our work employed rich real-time information to build prediction models for ED demand which 

can be an integrated part of the two-stage nurse staffing framework. Existing studies have 

applied different prediction techniques to forecast ED arrivals, but have not explored as 

comprehensive real-time information as in our study.35 By exploring a novel large set of real-

time predictors from the concurrent patient electronic health records, weather, and Google 

trends, we demonstrated that this real-time information was able to improve demand forecasts 

compared to base prediction models. The improvement in prediction accuracy can be used to 

develop prediction-driven two-stage staffing policies to improve operational efficiency. 

Non-Inferiority of the “Tried-And-True” Prediction Models 

As illustrated by Tables 2 and 3, LR2 and ARIMAX achieved the best performance among all 

prediction models that utilized real-time information, improving prediction accuracy by 5%–11% 

in RMSE and MAPE compared to models without real-time information (LR1). The worse 

performance of the regression tree and SARIMA models was well expected due to their 

relatively simple structure, e.g., the SARIMA models only took previous arrival counts into 

account. On the other hand, the performance of the more advanced XGBoost model could be 

impeded by overfitting, e.g., the XGBoost model was trained with 128 features on 730 

observations (shifts) only. The XGBoost model also had the disadvantage of lacking 
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interpretability, which was especially concerning in healthcare settings due to the high-stakes 

decision making. Hence, by establishing the non-inferiority of the “tried-and-true” linear 

regression and time series models (embedded with exogeneous variables), we provided the 

foundation for ED managers to deploy more interpretable models.  

Relevant Real-Time Information in Predicting ED Demand 

Among the extensive amount of real-time information examined, only a few real-time predictors 

had predictive power and were coherently identified by different prediction models. According 

to the estimated coefficients by LR2 and ARIMAX (Table 1), ED arrivals were positively 

correlated with the patient volume 1 day and 7 days prior. Severe weather such as snow, 

precipitation, and extremely cold or hot temperature could reduce ED arrivals. Nevertheless, the 

ED tended to see more patients on days with strong wind. In addition, ED arrivals increased 

during the weeks when there were more Google search records for “flu”. Intuitively, the search 

volume for “flu” could be seen as the concurrent flu trend information. Moreover, the total 

number of patients with a history of cancer (CANC) over the last 72 hours was positively 

correlated with ED arrivals. This trend could be corroborated by the findings that patients with 

higher weighted sum of CCIs were more likely to return to the ED within 72 hours.33-34 The 

selected XGBoost model identified similar significant predictors (Figure 3), with several new 

features such as the Google trends for “disorder”, the percentages of patient with comorbidities 

of cerebrovascular disease (CEVD) and acquired immunodeficiency syndrome (AIDS) over the 

last 3 days.  

Implication for Prediction-Driven Staffing  
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The development of accurate prediction models for ED demand was an integrated part of our 

efforts in utilizing predictive analytics to facilitate better medical resource planning. As 

mentioned before, ED staffing generally involves two stages: a base stage, which takes place 

weeks to months ahead of the actual shift, and surge stage, which happens days to hours before 

the shift starts. The base prediction model without real-time information can be used to guide the 

base staffing decision, while the more sophisticated prediction model with real-time information 

can be used to guide surge staffing decisions. At the base stage, the staffing cost is lower and 

more preferrable by nurses due to consistency and predictability of work hours. However, the 

accuracy of the prediction model may be low. On the other hand, at the surge stage, the staffing 

cost is higher, but more accurate prediction of patients’ demand is available. How to optimally 

balance the tradeoff depends on how much real-time predictors improve prediction accuracy over 

the base prediction. Our results provide important quantification of this, which can be 

incorporated into the two-stage staffing framework developed in Hu et al. 202227 to reduce the 

staffing cost and ED waiting times. We note that even relatively small prediction accuracy 

improvement, i.e., 5%–11% as found in our study, can lead to significant cost savings, 11%–16% 

as demonstrated in Hu et al. 2022.27 Lastly, we remark that alternative prediction targets other 

than shift-level arrival counts could be used in the prediction-driven staffing framework. In 

Appendix C, we constructed logistic regression models to predict “outlier” shifts that would have 

demand surges, and obtained similar insights on the value of real-time information. That said, 

predicting shift-level arrival counts (compared to a binary indicator on whether there would be 

demand surge) led to more actionable staffing implications.  

CONCLUSION 
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We constructed and evaluated predictions models with rich real-time information to forecast ED 

patient volume. In alignment with the nursing shift structure in an ED site at a quaternary care 

facility in New York City, we aimed to predict the shift-level patient arrival count. Various 

prediction techniques were examined, including linear regression, regression tree, XGBoost, 

SARIMA, and (S)ARIMAX. Based on the data from our partner ED site, linear regression and 

ARIMAX when combined with real-time information achieved the highest prediction accuracy 

measured by RMSE and MAPE. Comparing to prediction models without real-time predictors, 

we found that contemporary information was able to improve prediction accuracy in near-real 

time. Among the extensive list of real-time predictors tested, recent patient arrival counts, 

weather, Google trends, and concurrent patient comorbidity information had the highest 

predictive power. The effectiveness of real-time information in improving demand forecast has 

policy implications for staffing. ED management can utilize real-time demand forecast to make 

timely adjustments to staffing levels, which in turn can effectively mitigate ED overcrowding.  
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Figure 1. Shift-level arrival count from February 1, 2018 to January 31, 2020* 
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* The solid blue line is the best regression line where yt = 134.4 + 0.00372 * t, and the dashed 

red line is the average arrival count, where t is the count of shifts since February 1, 2018. 

 

Table 1. Estimated 95% confidence intervals for the coefficients of covariates in LR1, LR2, and 

ARIMAX(3, 1, 4) 

Covariate LR1 LR2 ARIMAX 
(Intercept) (82.954, 

93.912) 
(40.041, 
165.262) 

NA 

Monday day (113.957, 
125.610) 

(114.435, 
125.615) 

(113.382, 
128.438) 

Monday night (3.784, 
15.437) 

(3.620, 
16.707) 

(5.719, 
16.199) 

Tuesday day  (91.385, 
103.079) 

(91.313, 
104.781) 

(92.285, 
107.536) 

Tuesday night (0.288, 
11.983) 

(0.860, 
13.486) 

(2.217, 
13.428) 

Wednesday day (90.286, 
101.881) 

(90.611, 
103.142) 

(90.727, 
106.277) 

Wednesday night (-2.867, 
8.727) 

(-2.334, 
10.078) 

(-1.043, 
9.901) 
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Thursday day (89.011, 
100.577) 

(88.355, 
100.533) 

(88.250, 
103.409) 

Thursday night (-0.989, 
10.577) 

(-1.515, 
10.850) 

(-0.382, 
10.772) 

Friday day (78.765,  
90.382) 

(77.643, 
90.024) 

(77.419, 
93.023) 

Friday night (0.285, 
11.902) 

(0.115, 
13.058) 

(0.735, 
12.967) 

Saturday day (50.904, 
62.516) 

(51.835, 
64.912) 

(51.470, 
67.691) 

Saturday night (-1.961,  
9.651) 

(-0.265, 
12.516) 

(0.045, 
12.018) 

Sunday day (45.866,  
57.365) 

(47.924, 
60.746) 

(47.012, 
63.448) 

January (0.888,  
11.453) 

NA NA 

February (4.473, 
15.292) 

NA NA 

March (-8.061, 
2.530) 

NA NA 

April (-7.621, 
3.061) 

NA NA 

May (-2.615, 
7.933) 

NA NA 

June (-5.389, 
5.289) 

NA NA 

July (1.364, 
11.908) 

NA NA 

August (-1.765, 
8.832) 

NA NA 

September (-2.706, 
7.923) 

NA NA 

October (0.292, 
10.838) 

NA NA 

November (-8.843, 
1.806) 

NA NA 

Fall NA (-6.185, 
1.684) 

(-6.102, 
1.843) 

Summer NA (-5.770, 
3.182) 

(-5.806, 
3.237) 

Winter NA (-2.920, 
7.158) 

(-2.978, 
7.531) 

Holiday (-29.459,  
-15.608) 

(-30.387, 
-16.367) 

(-30.600, 
-17.402) 

Holiday – 1 day (-17.293,  
-3.456) 

(-17.416,  
-3.808) 

(-17.879,  
-4.844) 
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Holiday + 1 day (8.760, 
22.594) 

(8.709, 
22.486) 

(8.496, 
21.584) 

Min temperature NA (0.267, 
0.701) 

(0.274, 
0.702) 

Precipitation NA (-0.257,  
-0.043) 

(-0.247, 
-0.049) 

Snow NA (-0.231,  
-0.100) 

(-0.230, 
-0.109) 

Wind NA (0.003, 
0.149) 

(0.008, 
0.145) 

Max temperature ≥ 86°F NA (-9.508,  
-1.155) 

(-8.879, 
-0.749) 

Recent arrival count 1-day 
prior 

NA (-0.039, 
0.065) 

NA 

Recent arrival count 7-day 
prior 

NA (-0.006, 
0.090) 

(-0.010, 
0.089) 

30-day moving average NA (-0.749, 
0.217) 

(-0.772, 
0.210) 

Google trend “abuse” NA (-0.295, 
0.007) 

(-0.315, 
-0.007) 

Google trend “depression” NA (-0.230, 
0.114) 

(-0.234, 
0.113) 

Google trend “flu” NA (0.142, 
0.531) 

(0.153, 
0.547) 

Google trend “heart attack” NA (-0.198, 
0.062) 

(-0.197, 
0.065) 

Google trend “hospital” NA (-0.045, 
0.711) 

(-0.038, 
0.726) 

Google trend “respiratory 
infection” 

NA (-0.061,  
0.198) 

(-0.059,  
0.203) 

Google trend “weather” NA (-0.149, 
0.132) 

(-0.151, 
0.131) 

Total # patients with 
comorbidity CANC over 
the last 3 days 

NA (-0.001, 
1.976) 

(0.043, 
1.895) 

Total # patients with 
comorbidity HP over the 
last 3 days 

NA (-7.601, 
2.989) 

(-7.049, 
2.764) 

Total # patients with 
comorbidity REND over 
the last 3 days 

NA (-1.659, 
0.044) 

(-1.629, 
-0.043) 

AR1 (𝜙,) NA NA (-0.758, 
0.144) 

AR2 (𝜙.) NA NA (-0.320, 
0.363) 

AR3 (𝜙/) NA NA (-0.988, 
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-0.266) 
MA1 (𝜃,) NA NA (-1.139, 

-0.304) 
MA2 (𝜃.) NA NA (-0.557, 

0.175) 
MA3 (𝜃/) NA NA (0.235, 

0.956) 
MA4 (𝜃0) NA NA (-0.986, 

-0.379) 
 

 

Figure 2. Visualization of TR1 and TR2*  

 
*TR1 and TR2 are regression trees that can be interpreted from the visualization as follows: 1) 

Start from the root node (“Day vs. night”). 2) Go to the next node if the covariate at the root node 

is equal to the value specified by the edge. 3) The predicted value is given at the leaf node. For 

example, the predicted arrival count during a Monday day shift is 208. 

 

Figure 3. Top 20 informative predictors in the final XGBoost model 

Day of the week

Day Night 

208 189 187 185 175 147 141

95

Mon Tue Wed Thur Fri Sat Sun

Day v.s. night
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Table 2. Comparison of the selected models 

Model Utilize real-time  
information 

Training 
RMSE* 

Training 
MAPE* 

Test 
RMSE 

Test 
MAPE 

LR1 No 14.643 9.253% 16.425 9.627% 
TR1/TR2 No 15.979 9.590% 16.644 9.353% 
LR2  Yes 13.892 8.884% 15.336 9.109% 
XGBoost Yes 8.051 5.500% 16.254 9.455% 
SARIMA Yes 13.902 7.797% 15.501 8.817% 
ARIMAX Yes 13.604 8.618% 14.656 8.703% 

*RMSE: Root mean squared error; MAPE: mean average percentage error; see the Model 

Evaluation section for detailed definition  

 

 

Table 3. Over- prediction and under-prediction error 

Model Training set Test set 
 RMSE* MAPE* RMSE MAPE 
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 Over-
prediction 

Under- Over- Under Over- Under- Over- Under- 

LR1 15.242 14.052 10.839% 7.752% 13.763 18.215 10.769% 8.746% 
TR1/TR2 16.811 15.155 11.336% 7.930% 14.153 18.423 10.385% 8.546% 
LR2  14.209 13.574 10.114% 7.682% 13.267 16.961 10.253% 8.128% 
XGBoost 8.132 7.969 6.669% 4.331% 13.972 17.973 11.005% 8.132% 
SARIMA 15.626 14.759 10.886% 7.826% 14.681 16.235 9.804% 7.887% 
ARIMAX 13.989 13.241 9.877% 7.465% 13.528 15.597 9.634% 7.868% 

*RMSE: Root mean squared error; MAPE: mean average percentage error; see the Model 

Evaluation section for detailed definition  

 

Appendix A. Model Performance During The COVID-19 Pandemic 

We also examined the performance of the trained models on the COVID test set (Table 4). Since 

the patient volume during the pandemic was highly unpredictable and behaved very differently 

from the pre-pandemic data, all models trained on the pre-pandemic training set had larger 

prediction errors. Among models without real-time predictors, the base linear regression model 

LR1 achieved the smallest RMSE of 32.998 and MAPE of 28.286%. Some of the models with 

real-time covariates did not improve prediction accuracy. However, the SARIMA model 

achieved a significant better performance than the baseline model, with RMSE of 21.663 and 

MAPE of 16.091%. 

The unsatisfactory performance of the prediction models on the COVID test set suggested that 

the predictors and their estimated parameters based on the pre-pandemic training set were less 

relevant during the pandemic. However, recent arrival counts still had predictive power, enabling 

the SARIMA model to improve prediction accuracy by 34.351% in RMSE and 43.113% in 

MAPE compared to the base linear regression model LR1. Hence, in the presence of unforeseen 
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disruptions, time series models that took recent arrival counts into account were more reliable 

than other prediction techniques.  

Table 4. Performance of the selected models on the COVID test set 

Model Utilize real-time information RMSE* MAPE* 
LR1 No 32.998 28.286% 
TR1/TR2 No 33.500 28.637% 
LR2  Yes 38.350 34.370% 
XGBoost Yes 30.767 27.108% 
SARIMA Yes 21.663 16.091% 
ARIMAX Yes 32.179 27.826% 

*RMSE: Root mean squared error; MAPE: mean average percentage error; see the Model 

Evaluation section for detailed definition  

Appendix B. Model Training and Feature Selection Procedures  

Linear Regression 

To train the linear regression model, we used a modulated two-way stepwise model selection 

method based on the Akaike's information criterion (AIC). The standard two-way stepwise 

procedure started by including all the predictors in consideration, and in each step, it excluded or 

included one predictor that gave the largest reduction of the AIC, until the AIC could not be 

further reduced.36 However, this stepwise selection procedure could be impeded by the extremely 

large number of predictors at initialization. To improve upon the standard stepwise procedure, 

we proposed the following modulated two-way stepwise selection procedure that conducted the 

standard stepwise selection on carefully designed subsets of covariates. In particular, we used the 

day vs. night, day of the week, season, and holidays as the base predictors, and constructed six 

subsets of covariates: (i) base predictors, (ii) base predictors and weather, (iii) base predictors 

and Google trends, (iv) base predictors and patient comorbidity information, (v) base predictors 

and previous-shift counts, and (vi) base predictors and the remaining real-time predictors 
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described in the Data Processing section. For each of the six smaller-scale subsets of covariates, 

we performed the standard stepwise selection procedure and identified the significant covariates 

in each subset. Covariates that were highly correlated (with correlation coefficient larger than 

0.5) were sifted out by comparing the correlation matrix.  

Regression Tree 

Regression tree model was implemented via the rpart package in R.37 The following 

hyperparameters were tuned: (i) complexity parameter (cp) ranging from 0 to 0.08 in increment 

of 0.01, and (ii) maximum depth of any node of the final tree (maxdepth) ranging from 1 to 10 in 

increment of 1. The other hyperparameters are set to their default values (https://stat.ethz.ch/R-

manual/R-devel/library/rpart/html/rpart.control.html). For each specification of hyperparameters, 

we evaluated the model’s performance using 10-fold cross-validation on the training set and 

referred to the resulting average RMSE (MAPE) as the validation RMSE (MAPE). The 

hyperparameters that gave the smallest validation RMSE were selected. The final model was 

then trained with these hyperparameters on the training set and evaluated on the test sets.  

XGBoost 

XGBoost model was implemented via the xgboost package in python 

(https://xgboost.readthedocs.io/en/latest/python/index.html). The following hyperparameters 

were tuned: (i) number of boosting rounds (num_round) ranging from 10 to 200 in increment of 

10, (ii) maximum tree depth for base learners (max_depth) ranging from 1 to 9 in increment of 1, 

(iii) boosting learning rate (eta) ranging from 0.1 to 0.5 in increment of 0.1, (iv) L1 

regularization term on weights (alpha) ranging from 0.2 to 1 in increment of 0.2, and (v) L2 

regularization term on weights (lambda) ranging from 0.2 to 1 in increment of 0.2. The other 
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hyperparameters were set to their default values 

(https://xgboost.readthedocs.io/en/latest/parameter.html). For each specification of 

hyperparameters, we evaluated the model’s performance using 10-fold cross-validation on the 

training set. The hyperparameters that gave the smallest validation RMSE was selected, and the 

final model was then trained with these hyperparameters on the training set and evaluated on the 

test sets. Different from the other prediction models considered, XGBoost was a “black-box” 

model that did not specify explicitly how each covariate drove the prediction. We used relative 

importance, a measure that quantifies the improvement in prediction accuracy of tree-based 

algorithms (including XGBoost) from a split based on a given covariate, to identify relevant 

predictors.38 Note that relative importance did not specify directionality, but instead only 

indicated the predictive power of a covariate.  

SARIMA and SARIMAX 

To express the SARIMA model explicitly, we let B be the backward shift operator, where 

𝐵1𝑦2 = 𝑦2&1 ,			𝑗 = 0,±1,⋯. 

In the equation above and hereafter, the subscript t is a time index for each shift. We define the 

related operators 

𝜙(𝐵) = 1 − 𝜙,𝐵 − 𝜙.𝐵. −⋯− 𝜙3𝐵3	

Φ(𝐵) = 1 − Φ,𝐵4 −Φ.𝐵.4 −⋯−Φ5𝐵54	

𝜃(𝐵) = 1 + 𝜃,𝐵 + 𝜃.𝐵. +⋯+ 𝜃6𝐵6 	

Θ(𝐵) = 1 + Θ,𝐵4 + Θ.𝐵.4 +⋯+ Θ7𝐵74	

Δ = 1 − 𝐵	

Δ4 = 1 − 𝐵4, 
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where 𝜙(𝐵) is the non-seasonal AR polynomial, Φ(𝐵) is the seasonal AR polynomial, 𝜃(𝐵) is 

the non-seasonal MA polynomial, Θ(𝐵) is the seasonal MA polynomial, Δ is the non-seasonal 

difference operator, and  Δ4 is the seasonal difference operator. A SARIMA(p,d,q)(P,D,Q)s 

model can be formally written as  

𝜙(𝐵)Φ(𝐵)Δ8Δ49𝑦2 = 	𝜃(𝐵)Θ(𝐵)𝜖2 , 

where 𝜖2 is a noise term that follows a normal distribution with mean 0 and standard deviation 𝜎. 

The ARIMAX(p,d,q) model combines the SARIMA(p,d,q)(P,D,Q)s model (where the seasonal 

hyperparameters (P, D, Q, s) are set to 0) and a linear regression model with external regressors. 

Let 𝑥2 be the vector of covariates in the linear regression model, and 𝑥2: be its transpose. Let 𝛽 

be the vector of coefficients for the covariates. Then a ARIMAX(p,d,q) model can be formally 

represented as  

𝜙(𝐵)Δ8𝑦2 = 𝑥2:𝛽 + 𝜃(𝐵)𝜖2 . 

To train the SARIMA model, we set the seasonal term to 14 (i.e., s = 14) to distinguish the day 

vs. night and day of the week effects. In addition, since the time series had a stationary 

increasing trend (Figure 1), it was reasonable to conduct a difference for the original series. 

However, whether to conduct the difference directly (i.e., setting d = 1, D = 0) or seasonally (i.e., 

setting d = 0, D = 1) needed to be determined. For each of these two options, we conducted the 

Dickey-Fuller test to check whether the differenced time series was stationary. The resulting p-

values were both 0.01, which suggested at 99% confidence level that the differenced time series 

under each option did not have a unit root and was therefore stationary. We then used a variation 

of the Hyndman-Khandakar algorithm39 to determine the hyperparameters. In particular, for 

each differencing method, we varied the AR term (p), the seasonal AR term (P), the MA term 
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(q), and the seasonal MA term (Q) from 1 to 7 in increment of 1. We considered models 

where the highest-order AR and MA terms were statistically significant. The final model was 

then selected based on AIC on the training set and evaluated on the test sets. As for the 

SARIMAX model, we used the same covariates in the selected linear regression model (LR2) 

as external regressors, except that we excluded the previous-day arrival count in the 

covariates to avoid double counting the recent arrival counts information. Since the embedded 

linear regression model already took into account the day vs. night and day of the week 

variations, as well as the arrival counts over the last 7 and 30 days, we set the seasonal 

hyperparameters (P, Q, s) in the SARIMAX model to 0 to avoid overfitting, which leads to an 

ARIMAX model.  

For our selected ARIMAX(3,1,4) model, the expression for 𝑦2 reduces to 

𝑦2 = (𝑥2∗):𝛽∗ + (1 + 𝜙,∗)𝑦2&, + (𝜙.∗ − 𝜙,∗)𝑦2&. + (𝜙/∗ − 𝜙.∗)𝑦2&/ − 𝜙/∗𝑦2&0 + 𝜖2∗ + 𝜃,∗𝜖2&,∗

+ 𝜃.∗𝜖2&.∗ + 𝜃/∗𝜖2&/∗ + 𝜃0∗𝜖2&0∗ 	

						= 	 (𝑥2∗):𝛽∗ + 0.693𝑦2&, + 0.328𝑦2&. − 0.648𝑦2&/ + 0.627𝑦2&0 + 𝜖2∗ + 𝜃,∗𝜖2&,∗ + 𝜃.∗𝜖2&.∗

+ 𝜃/∗𝜖2&/∗ + 𝜃0∗𝜖2&0∗ , 

where 𝑥2∗ is the vector of covariates in the embedded linear regression model, and 𝛽∗ is the 

associated vector of estimated coefficients, whose value, together with the other estimated 

parameters denoted with an asterisk in the superscript, is provided in Table 3. In addition, the 

estimated value for 𝜎 is 14.032. Note that 𝑦2&, is the arrival count during the previous shift, 𝑦2&. 

is the arrival count during the shift before the previous shift, and 𝑦2&0 is the arrival count during 

the same day/night shift on the day before previous day. The estimated coefficients suggest that 

𝑦2&,, 𝑦2&., and 𝑦2&0 are positively correlated with 𝑦2, the arrival count during the focal shift. 
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Specifically, the higher patient count was during the previous day and during the same type of 

shift (day vs. night) two days ago, the more likely that the focal shift experienced a larger patient 

volume. 

Appendix C. Logistic Regression for Predicting Outlier Shifts 

To complement to the findings that real-time information was valuable in improving prediction 

accuracy for shift-level arrival counts, we investigated the predictive power of real-time 

information in predicting outlier shifts. To this end, we used the same data set from January 1, 

2018 to January 31, 2021, and grouped the shifts by their day of the week and type of shift (day 

vs. night). This resulted in 14 different classes of shifts in a week. We defined a shift to be an 

outlier if its shift-level arrival count exceeded the 90th percentile within its class. We then 

constructed logistic regression models to predict the outlier shifts. Importantly, by grouping the 

shifts into 14 classes and finding the outlier shifts within each class, we uncoupled the prediction 

model from seasonal/weekly variations. Namely, predicting the outlier shifts can be considered 

as “predicting the unpredictable”, i.e., surges in patient volume over the baseline. 

To demonstrate the power of real-time information in predicting outlier days, we constructed 

logistic regression models with and without real-time predictors, and denoted them by Logit1 

and Logit2, respectively. To select the variables in Logit1 and Logit2, we followed similar 

variable-selection procedures as those for the linear regression models; see Table 5 for the 

selected predictors and estimated coefficients. To assess the prediction accuracy, we examined 

the resulting receiver operating characteristic (ROC) curve and area under the curve (AUC)36 in 

Figure 4. Logit2 achieved larger AUC than Logit1 on the training set, test set, and COVID test 

set, implying that real-time information improved prediction accuracy. Moreover, the 

informative covariates were consistent to those identified in the models for predicting shift-level 
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arrival counts, including season, holiday, weather, Google trends, and comorbidity. A shift was 

more likely to have demand surges if it was immediately after a holiday, had larger number of 

patients with comorbidity of cancer (CANC) over the last 3 days, and had higher recent Google 

trends for “flu”.  

Predicting outlier shifts using real-time information could be meaningful in the two-stage 

staffing framework. For example, at the surge stage of the staffing timeline, if the logistic 

regression model predicted a demand surge in the upcoming shift, then the ED manager might 

call in additional surge nurses. That said, predicting shift-level arrival counts (compared to a 

binary indicator on whether there would be demand surge in the upcoming shift) led to more 

quantitative and actionable staffing implications. By knowing the exact difference in the 

predicted shift-level arrival counts at the base and surge stages, the ED manager could make 

better-informed decisions on not only whether, but also how many additional nurses to call in at 

the surge stage. 

Table 5. Estimated 95% confidence intervals for the coefficients of covariates in Logit1 and 

Logit2 

Covariate Logit1 Logit2 
(Intercept) (-2.793, 

-1.807) 
(-6.678, 
3.663) 

Fall (-1.171, 
0.334) 

(-1.799, 
-0.128) 

Summer (-0.376, 
0.946) 

(-1.489, 
0.423) 

Winter (-0.134, 
1.145) 

(-1.048, 
1.276) 

Holiday + 1 day (0.530, 
2.521) 

(0.989, 
3.349) 

Holiday + 3 days (-0.102, 
2.076) 

(0.489, 
3.125) 

Min temperature NA (0.029, 
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0.127) 
Precipitation NA (-0.103, 

-0.021) 
Wind NA (-0.002, 

0.026) 
Max temperature ≥ 86°F NA (-2.177, 

-0.073) 
Recent arrival count 1-day 
prior 

NA (-0.006, 
0.011) 

Google trend “flu” NA (0.024, 
0.079) 

Google trend “hospital” NA (-0.024, 
0.172) 

Google trend “emergency 
room” 

NA (-0.092, 
-0.014) 

Google trend “disorder” NA (-0.075, 
-0.002) 

Total # patients with 
comorbidity CANC over 
the last 3 days 

NA (0.049, 
0.465) 

Total # patients with 
comorbidity CEVD over 
the last 3 days 

NA (-0.528, 
-0.085) 

 

Figure 4. ROC curve and AUC of Logit1 and Logit2 
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