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Doped graphene nanostructures are a promising platform for photonics due to their exceptionally strong
and tunable plasmonic resonances. When placed in a periodic array configuration, the plasmons supported
by the individual nanostructures interact with each other and, under the appropriate conditions, can give
rise to a collective mode known as a lattice resonance. Here, we perform a comprehensive analysis of the
response of periodic arrays of graphene nanodisks and identify the conditions under which the system is
able to support lattice resonances. We find that the ratio between the period of the array and the wavelength
of the plasmon completely determines the behavior of the system. As a consequence, strong lattice res-
onances are achieved for micron-size nanodisks in the terahertz regime. We develop a theoretical model
valid beyond the electrostatic approximation and use it to derive closed analytical expressions for the
strength, the wavelength, and the width of the optical resonance of the arrays. The theoretical framework
developed in this work paves the way for facile design and discovery of emerging properties of periodic
arrays of graphene nanostructures that could enable applications in photonics and plasmonics.
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I. INTRODUCTION

Nanostructures carved out from graphene monolayers
are exceptional platforms for the manipulation of light
at the nanoscale [1,2]. When doped with charge carriers
(i.e., electrons or holes), these systems support localized
plasmons that lead to very strong optical cross sections
with record levels of field confinement [3]. Furthermore,
the wavelength of these plasmons can be tuned by mod-
ifying the number of carriers in the nanostructure, which
can be achieved, for example, through electrostatic gating
[4-6]. Thanks to their exceptional optical properties,
graphene nanostructures have been proposed as a plat-
form for a variety of applications, principally in the tera-
hertz regime [7]. These applications range from biosensing
[8—14] to the enhancement of dipole-forbidden transitions
[15—18], and nonlinear effects [19,20], as well as the imple-
mentation of polarizers, modulators, absorbers [21-24],
and even time-varying metasurfaces [25].

In order to fully exploit the potential offered by graphene
nanostructures, it is necessary to develop theoretical tools
capable of efficiently describing their optical response. In

* . .
a.manjavacas@csw.es

2331-7019/22/18(4)/044071(9)

044071-1

this context, the plasmon wave function (PWF) formal-
ism has been shown to provide an accurate description
of the localized plasmon resonances supported by indi-
vidual graphene nanostructures of arbitrary shape, when
their sizes are much smaller than the wavelength of the
light used to excite them [3,26,27]. Nevertheless, many
interesting applications rely on using ensembles of nanos-
tructures ordered in a periodic arrangement. In such case,
it is well known that the interaction between the local-
ized plasmons supported by the nanostructures can give
rise to collective responses that can be very different from
those of the individual constituents [28]. A paradigmatic
example are lattice resonances, which are collective modes
that emerge from the coherent multiple scattering enabled
by the periodicity of the array [29—31]. Because of their
collective character, these resonances display very nar-
row lineshapes, which give rise to quality factors that are
significantly larger than those of the localized plasmons.
For that reason, lattice resonances are being exploited in
applications such as nanoscale light emission and color
generation [29-31], to cite a few.

However, despite the extensive research effort devoted
to studying the plasmonic response of graphene nanos-
tructures, the prospect of using them to support lat-
tice resonances remains largely unexplored. Here, we
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investigate the response of periodic arrays of graphene
nanodisks and analyze its dependence on the different geo-
metrical and material properties of the system. To that end,
we first introduce electrodynamic corrections to the PWF
formalism and then combine it with the coupled dipole
model (CDM) [28,32—36]. The resulting approach allows
us to derive analytical expressions for the spectral posi-
tion, the strength, and the quality factor of the resonances
supported by the array. We identify two different regimes
determined by the relative value of the period of the array
a and the resonance wavelength of the localized plasmon
of the individual nanodisks A,. Fora < A,, the response of
the array resembles that of the localized plasmon supported
by the nanodisks, resulting in a strong extinction but a rel-
atively small quality factor. On the contrary, when a > A,,
the array can support collective lattice resonances that pro-
duce a weaker extinction but with a much larger quality
factor. The results of this work provide a simple yet accu-
rate theoretical framework that facilitates the design and
implementation of applications exploiting the exceptional
properties of periodic arrays of graphene nanodisks.

II. RESULTS

We start by considering an individual graphene nanodisk
of diameter D, doped to a Fermi energy Er, which is placed
in the xy plane and surrounded by vacuum. The response
of this nanostructure can be described using the PWF for-
malism [3,13,16,18,26,27]. This approach is based on the
electrostatic approximation and, therefore, assumes that
the size of the nanodisk is much smaller than the wave-
length of light X, such that kD <« 1 with k£ = 27 /). Using
the PWF formalism, and considering only the lowest order
dipolar mode, we can write the electrostatic polarizability
of a nanodisk as [3,13,27]
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where n = —0.07249 and & = 0.85020 are constants [18,
26], w = 2mc/A is the angular frequency, and o represents
the electric conductivity of graphene, which we describe
using the Drude model as o = (ie’Er/mh?)/(w + iy). In
this expression, y = evZ/(uEr) is the damping coefficient
with vg = ¢/300 being the Fermi velocity of graphene
and p the electron mobility. Here, we assume that p© =
10* cm?/V's, a value that is within experimental reach
[37-39]. The electrostatic polarizability defined in Eq. (1)
displays a dipolar plasmon resonance with wavelength
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In this work, we aim to explore arrays of graphene nan-
odisks with resonances in the terahertz regime, for which

the localized plasmon resonances of their constituents have
a wavelength of the same order as the array period, i.e.,
Ap ~ a. Therefore, we consider graphene nanodisks with
sizes of D =10 um and D =20 um and doping lev-
els in the range Er = 0.4-1.0 eV. As demonstrated by
previous works [3,40-42], this range of Fermi energies
is within experimental reach. Furthermore, using Eq. (2),
these systems are expected to have localized plasmon res-
onances in the wavelength range from 50 to 110 um (i.e.,
approximately 3 THz to approximately 6 THz). This means
that the condition kD <« 1 may not be fully satisfied and,
therefore, in order to obtain an accurate description of
the response of the nanodisks, we need to incorporate the
appropriate electrodynamic corrections to «y. To do so,
we need to calculate the electrodynamic depolarization
field that the dipole induced in the nanodisk produces on
itself. Following the derivation shown in Appendix A, the
corrected polarizability is given by

-1
o = <a01 — 35 — gik3> . 3)

The second term on the right-hand side, which arises from
the real part of the depolarization field, is associated with
the dephasing of the field created at different points of the
nanodisk and produces a shift in the position of the plas-
mon resonance towards larger wavelengths [43]. As we
show below, the contribution of this term, which is usually
overlooked, is substantial for the systems under considera-
tion. The other term on the right-hand side is the so-called
radiative correction term, which provides the radiative
losses of the nanodisk that are not taken into account in the
electrostatic polarizability. Therefore, this term contributes
to reducing the strength of the plasmon resonance and to
increasing its linewidth [43,44].

We can characterize the optical response of an individual
nanodisk by calculating its extinction cross section, which,
in the dipolar limit, is defined in terms of its polarizabil-
ity as oext = 4mwklm{a}. Figure 1(a) displays the spectrum
of oex¢ for a nanodisk with D = 10 um and Er = 1 eV.
The yellow dot-dashed curve shows the results obtained
using the electrostatic polarizability «g. As anticipated,
these results depart significantly from those obtained from
full solutions of Maxwell’s equations solved using the
finite-element method (FEM), which are plotted with the
black solid curve. The FEM calculations are performed
following previous works [16] and are checked for conver-
gence with respect to all relevant discretization parameters.
Examining these results, we observe that the inclusion of
the radiative correction term improves the agreement of
both the strength and the linewidth of the plasmon reso-
nance, but its spectral position is still off by a significant
amount. It is only when we use the fully corrected polariz-
ability o (yellow solid curves) that we obtain a result in
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FIG. 1. Extinction cross section for an individual graphene
nanodisk with diameter D = 10 um (a) and D =20 pum (b).
In both cases the nanodisk is doped to a Fermi energy of Ep = 1
eV. As indicated by the legend, the yellow curves display the
results obtained with the PWF formalism including different lev-
els of electrodynamic corrections as described in the main text.
For comparison, the black solid curves show the results obtained
using a finite-element method (FEM) approach.

excellent agreement with the FEM simulations. A simi-
lar behavior is observed for a nanodisk with D = 20 um,
shown in Fig. 1(b), although, in this case, the larger size of
the nanodisk makes the electrodynamic corrections even
more relevant. Importantly, with these corrections, the
wavelength at which the localized plasmon resonance of
the nanodisk appears in the spectrum becomes

by = 12y + 1272I182D2,

which confirms that the electrodynamic corrections pro-
duce a redshift of the plasmon resonance with respect to
the PWF results.

Once equipped with an accurate model to describe the
response of individual graphene nanodisks, we proceed to
analyze the response of periodic arrays built with these
nanostructures. Specifically, as sketched in Fig. 2(a), we
focus on arrays with a square lattice of period a, which are
located in the xy plane and surrounded by vacuum. When
the array is illuminated with an electromagnetic field, the

graphene nanodisks are excited by the incident field as
well as by the field scattered by the other constituents of
the array. In this context, the CDM [28,32,34-36] can be
used to describe the response of the array in the limit of the
nanostructures being smaller than both the wavelength of
light and the periodicity of the array. In our case, we choose
the incident field to be a plane wave that propagates along
the negative z axis and is polarized along the x axis. Due
to the symmetry of the problem, we only need to consider
the x component of the dipole induced in the nanodisks,
which, for the nanodisk located at position R;, reads

pi=aEy+ay Gp;. (4)
J#i

Here, o is the corrected polarizability of the nan-
odisks defined in Eq. (3), Ey is the amplitude of
the incident field, and G; is the xx component of
the dipole-dipole interaction tensor, defined as G; =
[F + 02] FIRi—R; |/ |R; — R;|. Thanks to the periodicity
of the system, Eq. (4) admits the following solution in the
form of a Bloch wave:

p=.AE().

Here, A=[a"' -G ! is the effective polarizability of
the array and G = Z#O G is the lattice sum [34,36,45],
which contains the information of the interaction between
the elements of the array.

In order to investigate the response of the array of
graphene nanodisks, we analyze the extinction efficiency
of the system, which is defined in terms of the array
polarizability as

£ = Kimiay. 5)
a

This quantity constitutes a generalization of the extinc-
tion cross section of an individual nanodisk to an infinite
array [46]. Figure 2(b) shows the extinction efficiency
for different arrays of graphene nanodisks. In particular,
we investigate arrays made of nanodisks with either D =
10 um (left column) or D = 20 um (right column) and a
period satisfying a/D = 2.0 (top row), a/D = 5.5 (middle
row), or a/D = 7.0 (bottom row). For each of the cases, we
consider four different Fermi energies: Er = 0.4 eV (pur-
ple curves), Er = 0.6 eV (blue curves), Er = 0.8 eV (red
curves), and Er = 1.0 eV (yellow curves).

Examining these results, we note that, for a/D = 2.0,
the spectra of all of the arrays under consideration dis-
play relatively broad resonances. These resonances are
located very close to the wavelength at which the indi-
vidual nanodisks have their localized plasmon A, which
is indicated by the vertical dotted lines. In contrast, as the
value of a/D is increased to 5.5 and 7.0, we observe the
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(a) Schematics of a periodic array of graphene nanodisks. (b) Extinction efficiency spectra for arrays made of nanodisks

with D = 10 um (left column) and D = 20 um (right column). The panels in the top, middle, and bottom rows show results for arrays
with a/D = 2.0, a/D = 5.5, and a/D = 7.0, respectively. In all of the panels, each of the colors represents the results for a different
value of Er, as indicated by the legend located in the top left panel. For comparison, the dashed curves in the panels of the middle
row show results obtained from FEM simulations. In all of the cases, the colored dotted lines indicate the value of A,,, while the black
arrows signal the position of the first Rayleigh anomaly A = a. (c) Field amplitude |E| on the unit cell, for the arrays with a/D = 5.5
and Er = 0.8 eV. In both cases, the results are calculated at the wavelength of maximum extinction efficiency and normalized to the

amplitude of the incident field E.

emergence of much narrower resonances, which appear at
wavelengths slightly larger than the array period a. While
the broad resonances located near A, completely resem-
ble the localized plasmon of the individual nanodisks, the
narrow resonances that appear at A > a display the charac-
teristics of a collective lattice resonance. The existence of
these two types of resonances is connected to the relative
value of A, and a. The reason is that, while the localized
plasmon of the nanodisks is associated with the pole of

their polarizability «, lattice resonances appear at the poles
of the array polarizability A [34,45,47,48]. These poles
are located at wavelengths larger than, but close to, the
Rayleigh anomalies, where Re{G} diverges to 4o00. For
normal incidence, the first Rayleigh anomaly appears at
A = a (see the black arrows). Therefore, in order for the
array to be able to sustain a collective lattice resonance,
the localized plasmon of the nanodisks must be located at
a wavelength smaller than the array period (i.e., A, < a).
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In that way, Re{ar '} can take large positive values for A 2>
a, that is, in the region where Re{G} also reaches large val-
ues, thus allowing there to be the pole of A [34,45,47,48].
This condition is not satisfied for any of the arrays with
a/D = 2.0 under study, and, as anticipated, the resonance
in the extinction spectra mostly corresponds to the local-
ized plasmon of the nanodisks, with both a blueshift and
an increased linewidth caused by the interaction between
the elements of the array. Indeed, comparing the top left
and middle left panels, we observe that both of these effects
become smaller with the increase of a/D, as expected from
the decrease of the interaction between the nanodisks.

The middle right and bottom left panels show a tran-
sition between the two different behaviors. While, for
Er = 0.4 eV, the array still displays the resonance associ-
ated with the localized plasmon of the nanodisks, for the
rest of the Fermi energies under consideration, the sys-
tem is able to sustain a lattice resonance. This resonance,
which is located right on the red side of the first Rayleigh
anomaly, has a much narrower linewidth than the plasmon
of the nanodisks. The transition is completed for the array
analyzed in the bottom right panel. In this case, for all val-
ues of Er, the array displays a lattice resonance with an
extremely narrow linewidth. Incidentally, in this case, we
can also observe the second-order lattice resonance, which
appears at wavelengths of approximately a/+/2, for the
two largest values of Er.

In order to confirm the accuracy of our model, we bench-
mark the results displayed in the panels of the middle
row against calculations obtained from FEM simulations,
which are plotted with dashed curves. In all of the cases
analyzed, the results of both approaches are in excellent
agreement. Furthermore, we use the results of the FEM
simulations to plot maps of field amplitude produced by the
array for two different resonances. In particular, Fig. 2(c)
shows the normalized field amplitude |E|/E, over one
unit cell, for the arrays with a/D = 5.5 and Er = 0.8 eV.
In both cases, the results are obtained for the wavelength at
which the extinction reaches its maximum value. Examin-
ing these plots, we observe how the field amplitude for the
array with D = 10 um only takes significant values around
the nanodisk. This is the expected behavior for a reso-
nance resembling the localized plasmon of the individual
nanodisks. In contrast, for D = 20 pum, the field ampli-
tude extends over the whole unit cell, showing fringes that
change in the direction perpendicular to the polarization
of the incident field. The period of these fringes is consis-
tent with the field oscillating at A = a, exactly as expected
from a collective lattice resonance [34]. Therefore, we
conclude from the results of Fig. 2 that, as the array tran-
sitions from a < A, to @ > 1, its response evolves from a
regime in which it is dominated by the localized plasmon
of the individual nanodisks, with a large extinction effi-
ciency but a broad linewidth, to another regime in which it
supports a lattice resonance, resulting in a smaller

extinction efficiency but a much narrower linewidth. It
is important to note that the extinction spectra of the
arrays that support a lattice resonance also display the peak
corresponding to the localized plasmon of the individual
nanodisks, although these always produce smaller values
of extinction for the systems under consideration.

One interesting aspect of the results displayed in
Fig. 2(b) is that the peak value of the extinction efficiency
for a fixed Er only depends on the ratio a/D, as can be seen
by comparing the curves with the same color of the panels
in the same row. To understand this phenomenon and get
further insight into the optical response of the arrays, in the
following, we derive analytical expressions for different
relevant quantities. We start by noting that, at the reso-
nance of the array, we can approximate Re{a™! — G} ~ 0
and, therefore, Im{A} ~ —1/Im{a~" — G}. Furthermore,
the Weyl identity [49,50] allows us to write Im{G} =
2mk/a? — 2k*/3 for A > a. Then, using Egs. (3) and (5),
we can write the peak value of the extinction efficiency for
the resonance sustained by the array as

2
1 + (C/E%p) (a/D)*

(6)

gpeak =

with C = cv}h?/ (2e£?) being a constant. Importantly, this
expression predicts a peak value of the extinction effi-
ciency that is always smaller than 2, in accordance with the
theoretical limit for infinitely extended systems [51]. Fur-
thermore, this expression confirms that, for a given value
of Er and i, Eeak only depends on the ratio a/D.

As shown in Fig. 3, the prediction of Eq. (6) (solid
curves) perfectly matches the results from the CDM cal-
culations, which are represented with circles and crosses
for arrays made of nanodisks with D = 10 um and D =
20 pm, respectively. This excellent agreement, which
holds for all of the values of a/D and Er under consid-
eration, confirms the accuracy of Eq. (6) and allows us to
extract some important general trends. First, the increase of
a/D results in a decrease of the peak extinction efficiency,
which is clearly shown by the results analyzed in Fig. 2(b).
Furthermore, a larger Fermi energy and a larger mobility
always contribute to increasing &pcak. This is consistent
with the system having a larger number of free carriers,
whose density is proportional to £%, and a smaller damping
coefficient y.

The next quantity for which we want to obtain an
analytical expression is the wavelength of the resonance
supported by the periodic array of graphene nanodisks
Apeak- We analyze this quantity through the function A =
Apeak/@ — 1, which represents the normalized shift of
the resonance wavelength with respect to the Rayleigh
anomaly. Unfortunately, in this case, it is not possible
to obtain a simple analytical expression that is valid for
all of the arrays under consideration, as we did for the
peak extinction efficiency. Therefore, we analyze the two
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FIG. 3. Peak value of the extinction efficiency plotted as a
function of a/D. The circles and crosses represent the results
from the CDM calculations for arrays made of nanodisks with
D =10 pm and D = 20 um, respectively, while the solid curves
correspond to the predictions of Eq. (6). Each color represents a
different value of Er, as indicated by the legend.

regimes identified in the description of Fig. 2(b) separately.
For a < A,, as discussed above, the resonance supported
by the array corresponds mostly to the localized plas-
mon of the individual nanodisks, with a relatively small
shift caused by the interaction between the elements of the
array. Therefore, we can directly write Apeax = A, and

Aa<Ap = )"p/a - L (7)

In the opposite limit, when a > A, the array is able to sup-
port a lattice resonance, whose wavelength, as shown in
Fig. 2(b), can strongly differ from A,,. Therefore, to find an
expression for A in this regime, we look for the solution
of Re{a™! — G} ~ 0. Following Refs. [28,50,52], the real
part of the lattice sum of a square array can be approx-
imated near the first Rayleigh anomaly (i.e., for A = a)
as Re{G} ~ 4n2\/2/(a®>/AJa— 1) — 118/a>. Using this
expression, together with the definition of o given in Eq.
(3), we have

-2
1 & 22
Aoy = 3274 —|1-2 18| . (8

To verify the accuracy of Egs. (7) and (8), we compare
in Figs. 4(a) and 4(b) the value of A,-;, (dashed curves)
and A,-;, (solid curves) against the results of the CDM
calculations (dots). We observe that, for all of the arrays
under study, the predictions of the analytical expressions
are in excellent agreement with the CDM results in their
corresponding regimes. As expected, the agreement dete-
riorates in the transition region between the two regimes.
The location of this transition region, which corresponds to
Ap ~ a, has a nontrivial dependence on Er, D, and a, but

can be visually identified as the point where A,;, goes to
ZeTo.

The last quantity necessary to fully characterize the
resonance supported by the periodic array of graphene
nanodisks is its quality factor. This quantity is defined as
O = Apear/ T, with I being the full width at half maximum
of the resonance. Noting that £ oc —Im{a~! — G}/|a~! —
G|? and assuming that the resonance has a Lorentzian pro-
file, we can perform a Taylor expansion of @ ~! — G around
the resonance wavelength and get

N 2Im {a‘1 — g}
@/ Re{a = G}

>

where we have assumed that Re{a™' — G} ~ 0 and
(I'/2)dIm{a~" — G}/9r < Im{a~! — G}. Importantly, all
of the expressions above are to be evaluated at the wave-
length of the resonance. To further simplify this expres-
sion, it is again necessary to distinguish between the two
regimes discussed above. For a < X,, the response of
the system is dominated by the localized plasmon of the
individual nanodisks and, therefore, we can assume that
oRe{a~'}/0A > dRe{G}/dA. By doing so, we are able to
write the quality factor as

3
gpeak a

Ou<s, = WE(ALI<XP + D). )
On the other hand, for a > A,, we take the oppo-
site approximation, i.e., we assume that dRe{a~!}/91 <

dRe{G}/0d). Therefore, in this case, we have

& eak 1
Qa>)»p =2 3 . (10)
/2
42 AL

Interestingly, using Eq. (8), the leading term of this expres-
sion scales as (a/D)°, similar to what was previously
obtained for arrays of metallic nanospheres [45].

The two analytical expressions defined above provide a
simple way to compute the quality factor of the resonance
of the array. However, the nontrivial dependence of &Epeak,
Da<iys and A,. 3, On the different geometrical and mate-
rial parameters of the array complicates the extraction of
general trends. Therefore, to analyze the behavior of the
quality factor and to verify the accuracy of the analyti-
cal expressions derived above, we plot their predictions
in Figs. 4(c) and 4(d). Once again, we use dashed and
solid curves to represent the results of Egs. (9) and (10),
respectively, while the dots correspond to the CDM cal-
culations. Examining these results, we conclude that, as
is the case for the normalized spectral shift, each of the
analytical expressions for the quality factor is in excellent
agreement with the CDM calculations within its regime
of applicability. In addition, we observe that, as the sys-
tem transitions from the a < A, regime (dashed curves) to

044071-6



OPTICAL RESPONSE OF PERIODIC ARRAYS OF GRAPHENE...

PHYS. REV. APPLIED 18, 044071 (2022)

D =10 pum D =20 pum
Y T
100 t=5¢ ST
—1L
U p— Eq. (7)
41077 — Ea.(8)
3L Er=04eV
10 A Er=0.6eV
107°[ Ep=08eV
107°
108
10°
o 104
10°
10
10!

FIG. 4. Normalized spectral shift A (a),(b) and quality factor Q (c),(d) of the resonance of arrays made of nanodisks with either
D =10 um (a),(c) or D =20 pum (b),(d). In all of the panels, the dots indicate the results from the CDM calculations, while the
dashed and solid curves represent, respectively, the predictions of Egs. (7) and (8) in panels (a) and (b), and Egs. (9) and (10) in panels
(c) and (d). In all of the cases, the different colors correspond to different values of Er, as indicated by the legends.

the a > A, regime (solid curves), the quality factor under-
goes a dramatic increase. As this happens, the value of
0O becomes strongly dependent on both a/D and Er. All
of these behaviors are consistent with the resonance sup-
ported by the array changing from the localized plasmon of
the individual nanodisks to a collective lattice resonance.

II1. CONCLUSIONS

In summary, we have performed a comprehensive anal-
ysis of the optical response of periodic arrays of graphene
nanodisks. To do so, we have introduced electrodynamic
corrections to the PWF formalism, which has allowed us
to describe the response of individual nanodisks beyond
the electrostatic regime. Then, we have used the CDM
to account for the interactions between the nanodisks in
the array. With this combined approach, we have inves-
tigated the resonances supported by arrays with different
geometrical and material properties, identifying two differ-
ent regimes. When the period of the array is smaller than
the wavelength of the localized plasmon of the nanodisks,
i.e., a < A,, the extinction spectrum of the array displays a
resonance with a large extinction efficiency but a relatively
small quality factor, which resembles the localized plas-
mon of the individual nanodisks. In the opposite regime,
i.e., a > A,, the array supports a lattice resonance with a
much larger quality factor but a smaller extinction. Taking
advantage of the simplicity of our model, we have derived

analytical expressions for the peak extinction efficiency,
the wavelength, and the quality factor of the resonance
supported by the array, which completely characterize the
optical response of these systems in both regimes. Impor-
tantly, these expressions are valid beyond the range of
parameters investigated in this work, provided the dipo-
lar approximation is valid. Therefore, our work provides a
simple and accurate theoretical tool to investigate emerg-
ing phenomena in periodic arrays of graphene nanodisks
as well as to guide experimental efforts seeking to exploit
the extraordinary properties of these systems.
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APPENDIX A: ELECTRODYNAMIC
CORRECTIONS TO THE PWF POLARIZABILITY

In order to incorporate the electrodynamic corrections
to the PWF polarizability, we begin by writing the dipole
induced in the nanodisk as

p =oay(Ey+Ey),

where E; represents the electrodynamic terms of the depo-
larization field. To calculate this field, we assume that the
induced dipole is uniformly distributed over the nanodisk
and then add up the field produced by each infinitesimal
surface element at the center of the nanodisk. Therefore,
considering only the lowest order electrodynamic terms
and exploiting the symmetry of the system, we have [43]

4 2 D/2 k2 2
Ed:n—ngo de/() dr[? (00529+1)+i§k31’:|,

which, upon integration, results in E; = ((3/D)k* +
i(2/3)k*)p. Then, noting that the corrected polarizability
is defined as p = aEy, we get Eq. (3).
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