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Doped graphene nanostructures are a promising platform for photonics due to their exceptionally strong

and tunable plasmonic resonances. When placed in a periodic array configuration, the plasmons supported

by the individual nanostructures interact with each other and, under the appropriate conditions, can give

rise to a collective mode known as a lattice resonance. Here, we perform a comprehensive analysis of the

response of periodic arrays of graphene nanodisks and identify the conditions under which the system is

able to support lattice resonances. We find that the ratio between the period of the array and the wavelength

of the plasmon completely determines the behavior of the system. As a consequence, strong lattice res-

onances are achieved for micron-size nanodisks in the terahertz regime. We develop a theoretical model

valid beyond the electrostatic approximation and use it to derive closed analytical expressions for the

strength, the wavelength, and the width of the optical resonance of the arrays. The theoretical framework

developed in this work paves the way for facile design and discovery of emerging properties of periodic

arrays of graphene nanostructures that could enable applications in photonics and plasmonics.

DOI: 10.1103/PhysRevApplied.18.044071

I. INTRODUCTION

Nanostructures carved out from graphene monolayers

are exceptional platforms for the manipulation of light

at the nanoscale [1,2]. When doped with charge carriers

(i.e., electrons or holes), these systems support localized

plasmons that lead to very strong optical cross sections

with record levels of field confinement [3]. Furthermore,

the wavelength of these plasmons can be tuned by mod-

ifying the number of carriers in the nanostructure, which

can be achieved, for example, through electrostatic gating

[4–6]. Thanks to their exceptional optical properties,

graphene nanostructures have been proposed as a plat-

form for a variety of applications, principally in the tera-

hertz regime [7]. These applications range from biosensing

[8–14] to the enhancement of dipole-forbidden transitions

[15–18], and nonlinear effects [19,20], as well as the imple-

mentation of polarizers, modulators, absorbers [21–24],

and even time-varying metasurfaces [25].

In order to fully exploit the potential offered by graphene

nanostructures, it is necessary to develop theoretical tools

capable of efficiently describing their optical response. In

*a.manjavacas@csic.es

this context, the plasmon wave function (PWF) formal-

ism has been shown to provide an accurate description

of the localized plasmon resonances supported by indi-

vidual graphene nanostructures of arbitrary shape, when

their sizes are much smaller than the wavelength of the

light used to excite them [3,26,27]. Nevertheless, many

interesting applications rely on using ensembles of nanos-

tructures ordered in a periodic arrangement. In such case,

it is well known that the interaction between the local-

ized plasmons supported by the nanostructures can give

rise to collective responses that can be very different from

those of the individual constituents [28]. A paradigmatic

example are lattice resonances, which are collective modes

that emerge from the coherent multiple scattering enabled

by the periodicity of the array [29–31]. Because of their

collective character, these resonances display very nar-

row lineshapes, which give rise to quality factors that are

significantly larger than those of the localized plasmons.

For that reason, lattice resonances are being exploited in

applications such as nanoscale light emission and color

generation [29–31], to cite a few.

However, despite the extensive research effort devoted

to studying the plasmonic response of graphene nanos-

tructures, the prospect of using them to support lat-

tice resonances remains largely unexplored. Here, we
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investigate the response of periodic arrays of graphene

nanodisks and analyze its dependence on the different geo-

metrical and material properties of the system. To that end,

we first introduce electrodynamic corrections to the PWF

formalism and then combine it with the coupled dipole

model (CDM) [28,32–36]. The resulting approach allows

us to derive analytical expressions for the spectral posi-

tion, the strength, and the quality factor of the resonances

supported by the array. We identify two different regimes

determined by the relative value of the period of the array

a and the resonance wavelength of the localized plasmon

of the individual nanodisks λp . For a < λp , the response of

the array resembles that of the localized plasmon supported

by the nanodisks, resulting in a strong extinction but a rel-

atively small quality factor. On the contrary, when a > λp ,

the array can support collective lattice resonances that pro-

duce a weaker extinction but with a much larger quality

factor. The results of this work provide a simple yet accu-

rate theoretical framework that facilitates the design and

implementation of applications exploiting the exceptional

properties of periodic arrays of graphene nanodisks.

II. RESULTS

We start by considering an individual graphene nanodisk

of diameter D, doped to a Fermi energy EF , which is placed

in the xy plane and surrounded by vacuum. The response

of this nanostructure can be described using the PWF for-

malism [3,13,16,18,26,27]. This approach is based on the

electrostatic approximation and, therefore, assumes that

the size of the nanodisk is much smaller than the wave-

length of light λ, such that kD ≪ 1 with k = 2π/λ. Using

the PWF formalism, and considering only the lowest order

dipolar mode, we can write the electrostatic polarizability

of a nanodisk as [3,13,27]

α0 =
D3ξ 2

−1/η − iωD/σ
, (1)

where η = −0.07249 and ξ = 0.85020 are constants [18,

26], ω = 2πc/λ is the angular frequency, and σ represents

the electric conductivity of graphene, which we describe

using the Drude model as σ = (ie2EF/π�2)/(ω + iγ ). In

this expression, γ = ev2
F/(µEF) is the damping coefficient

with vF ≈ c/300 being the Fermi velocity of graphene

and µ the electron mobility. Here, we assume that µ =
104 cm2/V s, a value that is within experimental reach

[37–39]. The electrostatic polarizability defined in Eq. (1)

displays a dipolar plasmon resonance with wavelength

λp ,0 =
2πc�

e

√

|η|π

√

D

EF
. (2)

In this work, we aim to explore arrays of graphene nan-

odisks with resonances in the terahertz regime, for which

the localized plasmon resonances of their constituents have

a wavelength of the same order as the array period, i.e.,

λp ∼ a. Therefore, we consider graphene nanodisks with

sizes of D = 10 µm and D = 20 µm and doping lev-

els in the range EF = 0.4–1.0 eV. As demonstrated by

previous works [3,40–42], this range of Fermi energies

is within experimental reach. Furthermore, using Eq. (2),

these systems are expected to have localized plasmon res-

onances in the wavelength range from 50 to 110 µm (i.e.,

approximately 3 THz to approximately 6 THz). This means

that the condition kD ≪ 1 may not be fully satisfied and,

therefore, in order to obtain an accurate description of

the response of the nanodisks, we need to incorporate the

appropriate electrodynamic corrections to α0. To do so,

we need to calculate the electrodynamic depolarization

field that the dipole induced in the nanodisk produces on

itself. Following the derivation shown in Appendix A, the

corrected polarizability is given by

α =
(

α−1
0 − 3

k2

D
−

2

3
ik3

)−1

. (3)

The second term on the right-hand side, which arises from

the real part of the depolarization field, is associated with

the dephasing of the field created at different points of the

nanodisk and produces a shift in the position of the plas-

mon resonance towards larger wavelengths [43]. As we

show below, the contribution of this term, which is usually

overlooked, is substantial for the systems under considera-

tion. The other term on the right-hand side is the so-called

radiative correction term, which provides the radiative

losses of the nanodisk that are not taken into account in the

electrostatic polarizability. Therefore, this term contributes

to reducing the strength of the plasmon resonance and to

increasing its linewidth [43,44].

We can characterize the optical response of an individual

nanodisk by calculating its extinction cross section, which,

in the dipolar limit, is defined in terms of its polarizabil-

ity as σext = 4πkIm{α}. Figure 1(a) displays the spectrum

of σext for a nanodisk with D = 10 µm and EF = 1 eV.

The yellow dot-dashed curve shows the results obtained

using the electrostatic polarizability α0. As anticipated,

these results depart significantly from those obtained from

full solutions of Maxwell’s equations solved using the

finite-element method (FEM), which are plotted with the

black solid curve. The FEM calculations are performed

following previous works [16] and are checked for conver-

gence with respect to all relevant discretization parameters.

Examining these results, we observe that the inclusion of

the radiative correction term improves the agreement of

both the strength and the linewidth of the plasmon reso-

nance, but its spectral position is still off by a significant

amount. It is only when we use the fully corrected polariz-

ability α (yellow solid curves) that we obtain a result in
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(a)

(b)

 

FIG. 1. Extinction cross section for an individual graphene

nanodisk with diameter D = 10 µm (a) and D = 20 µm (b).

In both cases the nanodisk is doped to a Fermi energy of EF = 1

eV. As indicated by the legend, the yellow curves display the

results obtained with the PWF formalism including different lev-

els of electrodynamic corrections as described in the main text.

For comparison, the black solid curves show the results obtained

using a finite-element method (FEM) approach.

excellent agreement with the FEM simulations. A simi-

lar behavior is observed for a nanodisk with D = 20 µm,

shown in Fig. 1(b), although, in this case, the larger size of

the nanodisk makes the electrodynamic corrections even

more relevant. Importantly, with these corrections, the

wavelength at which the localized plasmon resonance of

the nanodisk appears in the spectrum becomes

λp =
√

λ2
p ,0 + 12π2|η|ξ 2D2,

which confirms that the electrodynamic corrections pro-

duce a redshift of the plasmon resonance with respect to

the PWF results.

Once equipped with an accurate model to describe the

response of individual graphene nanodisks, we proceed to

analyze the response of periodic arrays built with these

nanostructures. Specifically, as sketched in Fig. 2(a), we

focus on arrays with a square lattice of period a, which are

located in the xy plane and surrounded by vacuum. When

the array is illuminated with an electromagnetic field, the

graphene nanodisks are excited by the incident field as

well as by the field scattered by the other constituents of

the array. In this context, the CDM [28,32,34–36] can be

used to describe the response of the array in the limit of the

nanostructures being smaller than both the wavelength of

light and the periodicity of the array. In our case, we choose

the incident field to be a plane wave that propagates along

the negative z axis and is polarized along the x axis. Due

to the symmetry of the problem, we only need to consider

the x component of the dipole induced in the nanodisks,

which, for the nanodisk located at position Ri, reads

pi = αE0 + α
∑

j �=i

Gij pj . (4)

Here, α is the corrected polarizability of the nan-

odisks defined in Eq. (3), E0 is the amplitude of

the incident field, and Gij is the xx component of

the dipole-dipole interaction tensor, defined as Gij =
[

k2 + ∂2
x

]

eik|Ri−Rj |/
∣

∣Ri − Rj

∣

∣. Thanks to the periodicity

of the system, Eq. (4) admits the following solution in the

form of a Bloch wave:

p = AE0.

Here, A =
[

α−1 − G
]−1

is the effective polarizability of

the array and G =
∑∞

i �=0 Gi0 is the lattice sum [34,36,45],

which contains the information of the interaction between

the elements of the array.

In order to investigate the response of the array of

graphene nanodisks, we analyze the extinction efficiency

of the system, which is defined in terms of the array

polarizability as

E =
4πk

a2
Im{A}. (5)

This quantity constitutes a generalization of the extinc-

tion cross section of an individual nanodisk to an infinite

array [46]. Figure 2(b) shows the extinction efficiency

for different arrays of graphene nanodisks. In particular,

we investigate arrays made of nanodisks with either D =
10 µm (left column) or D = 20 µm (right column) and a

period satisfying a/D = 2.0 (top row), a/D = 5.5 (middle

row), or a/D = 7.0 (bottom row). For each of the cases, we

consider four different Fermi energies: EF = 0.4 eV (pur-

ple curves), EF = 0.6 eV (blue curves), EF = 0.8 eV (red

curves), and EF = 1.0 eV (yellow curves).

Examining these results, we note that, for a/D = 2.0,

the spectra of all of the arrays under consideration dis-

play relatively broad resonances. These resonances are

located very close to the wavelength at which the indi-

vidual nanodisks have their localized plasmon λp , which

is indicated by the vertical dotted lines. In contrast, as the

value of a/D is increased to 5.5 and 7.0, we observe the
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(a)

(b)

(c)

FIG. 2. (a) Schematics of a periodic array of graphene nanodisks. (b) Extinction efficiency spectra for arrays made of nanodisks

with D = 10 µm (left column) and D = 20 µm (right column). The panels in the top, middle, and bottom rows show results for arrays

with a/D = 2.0, a/D = 5.5, and a/D = 7.0, respectively. In all of the panels, each of the colors represents the results for a different

value of EF , as indicated by the legend located in the top left panel. For comparison, the dashed curves in the panels of the middle

row show results obtained from FEM simulations. In all of the cases, the colored dotted lines indicate the value of λp , while the black

arrows signal the position of the first Rayleigh anomaly λ = a. (c) Field amplitude |E| on the unit cell, for the arrays with a/D = 5.5

and EF = 0.8 eV. In both cases, the results are calculated at the wavelength of maximum extinction efficiency and normalized to the

amplitude of the incident field E0.

emergence of much narrower resonances, which appear at

wavelengths slightly larger than the array period a. While

the broad resonances located near λp completely resem-

ble the localized plasmon of the individual nanodisks, the

narrow resonances that appear at λ � a display the charac-

teristics of a collective lattice resonance. The existence of

these two types of resonances is connected to the relative

value of λp and a. The reason is that, while the localized

plasmon of the nanodisks is associated with the pole of

their polarizability α, lattice resonances appear at the poles

of the array polarizability A [34,45,47,48]. These poles

are located at wavelengths larger than, but close to, the

Rayleigh anomalies, where Re{G} diverges to +∞. For

normal incidence, the first Rayleigh anomaly appears at

λ = a (see the black arrows). Therefore, in order for the

array to be able to sustain a collective lattice resonance,

the localized plasmon of the nanodisks must be located at

a wavelength smaller than the array period (i.e., λp � a).
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In that way, Re{α−1} can take large positive values for λ �
a, that is, in the region where Re{G} also reaches large val-

ues, thus allowing there to be the pole of A [34,45,47,48].

This condition is not satisfied for any of the arrays with

a/D = 2.0 under study, and, as anticipated, the resonance

in the extinction spectra mostly corresponds to the local-

ized plasmon of the nanodisks, with both a blueshift and

an increased linewidth caused by the interaction between

the elements of the array. Indeed, comparing the top left

and middle left panels, we observe that both of these effects

become smaller with the increase of a/D, as expected from

the decrease of the interaction between the nanodisks.

The middle right and bottom left panels show a tran-

sition between the two different behaviors. While, for

EF = 0.4 eV, the array still displays the resonance associ-

ated with the localized plasmon of the nanodisks, for the

rest of the Fermi energies under consideration, the sys-

tem is able to sustain a lattice resonance. This resonance,

which is located right on the red side of the first Rayleigh

anomaly, has a much narrower linewidth than the plasmon

of the nanodisks. The transition is completed for the array

analyzed in the bottom right panel. In this case, for all val-

ues of EF , the array displays a lattice resonance with an

extremely narrow linewidth. Incidentally, in this case, we

can also observe the second-order lattice resonance, which

appears at wavelengths of approximately a/
√

2, for the

two largest values of EF .

In order to confirm the accuracy of our model, we bench-

mark the results displayed in the panels of the middle

row against calculations obtained from FEM simulations,

which are plotted with dashed curves. In all of the cases

analyzed, the results of both approaches are in excellent

agreement. Furthermore, we use the results of the FEM

simulations to plot maps of field amplitude produced by the

array for two different resonances. In particular, Fig. 2(c)

shows the normalized field amplitude |E|/E0 over one

unit cell, for the arrays with a/D = 5.5 and EF = 0.8 eV.

In both cases, the results are obtained for the wavelength at

which the extinction reaches its maximum value. Examin-

ing these plots, we observe how the field amplitude for the

array with D = 10 µm only takes significant values around

the nanodisk. This is the expected behavior for a reso-

nance resembling the localized plasmon of the individual

nanodisks. In contrast, for D = 20 µm, the field ampli-

tude extends over the whole unit cell, showing fringes that

change in the direction perpendicular to the polarization

of the incident field. The period of these fringes is consis-

tent with the field oscillating at λ � a, exactly as expected

from a collective lattice resonance [34]. Therefore, we

conclude from the results of Fig. 2 that, as the array tran-

sitions from a < λp to a > λp , its response evolves from a

regime in which it is dominated by the localized plasmon

of the individual nanodisks, with a large extinction effi-

ciency but a broad linewidth, to another regime in which it

supports a lattice resonance, resulting in a smaller

extinction efficiency but a much narrower linewidth. It

is important to note that the extinction spectra of the

arrays that support a lattice resonance also display the peak

corresponding to the localized plasmon of the individual

nanodisks, although these always produce smaller values

of extinction for the systems under consideration.

One interesting aspect of the results displayed in

Fig. 2(b) is that the peak value of the extinction efficiency

for a fixed EF only depends on the ratio a/D, as can be seen

by comparing the curves with the same color of the panels

in the same row. To understand this phenomenon and get

further insight into the optical response of the arrays, in the

following, we derive analytical expressions for different

relevant quantities. We start by noting that, at the reso-

nance of the array, we can approximate Re{α−1 − G} ≈ 0

and, therefore, Im{A} ≈ −1/Im{α−1 − G}. Furthermore,

the Weyl identity [49,50] allows us to write Im{G} =
2πk/a2 − 2k3/3 for λ > a. Then, using Eqs. (3) and (5),

we can write the peak value of the extinction efficiency for

the resonance sustained by the array as

Epeak =
2

1 + (C/E2
Fµ) (a/D)2

, (6)

with C = cv2
F�2/

(

2eξ 2
)

being a constant. Importantly, this

expression predicts a peak value of the extinction effi-

ciency that is always smaller than 2, in accordance with the

theoretical limit for infinitely extended systems [51]. Fur-

thermore, this expression confirms that, for a given value

of EF and µ, Epeak only depends on the ratio a/D.

As shown in Fig. 3, the prediction of Eq. (6) (solid

curves) perfectly matches the results from the CDM cal-

culations, which are represented with circles and crosses

for arrays made of nanodisks with D = 10 µm and D =
20 µm, respectively. This excellent agreement, which

holds for all of the values of a/D and EF under consid-

eration, confirms the accuracy of Eq. (6) and allows us to

extract some important general trends. First, the increase of

a/D results in a decrease of the peak extinction efficiency,

which is clearly shown by the results analyzed in Fig. 2(b).

Furthermore, a larger Fermi energy and a larger mobility

always contribute to increasing Epeak. This is consistent

with the system having a larger number of free carriers,

whose density is proportional to E2
F , and a smaller damping

coefficient γ .

The next quantity for which we want to obtain an

analytical expression is the wavelength of the resonance

supported by the periodic array of graphene nanodisks

λpeak. We analyze this quantity through the function � =
λpeak/a − 1, which represents the normalized shift of

the resonance wavelength with respect to the Rayleigh

anomaly. Unfortunately, in this case, it is not possible

to obtain a simple analytical expression that is valid for

all of the arrays under consideration, as we did for the

peak extinction efficiency. Therefore, we analyze the two
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FIG. 3. Peak value of the extinction efficiency plotted as a

function of a/D. The circles and crosses represent the results

from the CDM calculations for arrays made of nanodisks with

D = 10 µm and D = 20 µm, respectively, while the solid curves

correspond to the predictions of Eq. (6). Each color represents a

different value of EF , as indicated by the legend.

regimes identified in the description of Fig. 2(b) separately.

For a < λp , as discussed above, the resonance supported

by the array corresponds mostly to the localized plas-

mon of the individual nanodisks, with a relatively small

shift caused by the interaction between the elements of the

array. Therefore, we can directly write λpeak = λp and

�a<λp = λp/a − 1. (7)

In the opposite limit, when a > λp , the array is able to sup-

port a lattice resonance, whose wavelength, as shown in

Fig. 2(b), can strongly differ from λp . Therefore, to find an

expression for � in this regime, we look for the solution

of Re{α−1 − G} ≈ 0. Following Refs. [28,50,52], the real

part of the lattice sum of a square array can be approx-

imated near the first Rayleigh anomaly (i.e., for λ � a)

as Re{G} ≈ 4π2
√

2/(a3
√

λ/a − 1) − 118/a3. Using this

expression, together with the definition of α given in Eq.

(3), we have

�a>λp = 32π4

[

1

|η|ξ 2

a3

D3

(

1 −
λ2

p

a2

)

+ 118

]−2

. (8)

To verify the accuracy of Eqs. (7) and (8), we compare

in Figs. 4(a) and 4(b) the value of �a<λp (dashed curves)

and �a>λp (solid curves) against the results of the CDM

calculations (dots). We observe that, for all of the arrays

under study, the predictions of the analytical expressions

are in excellent agreement with the CDM results in their

corresponding regimes. As expected, the agreement dete-

riorates in the transition region between the two regimes.

The location of this transition region, which corresponds to

λp ∼ a, has a nontrivial dependence on EF , D, and a, but

can be visually identified as the point where �a<λp goes to

zero.

The last quantity necessary to fully characterize the

resonance supported by the periodic array of graphene

nanodisks is its quality factor. This quantity is defined as

Q = λpeak/Ŵ, with Ŵ being the full width at half maximum

of the resonance. Noting that E ∝ −Im{α−1 − G}/|α−1 −
G|2 and assuming that the resonance has a Lorentzian pro-

file, we can perform a Taylor expansion of α−1 − G around

the resonance wavelength and get

Ŵ ≈

∣

∣

∣

∣

∣

2 Im
{

α−1 − G
}

(∂/∂λ) Re
{

α−1 − G
}

∣

∣

∣

∣

∣

,

where we have assumed that Re{α−1 − G} ≈ 0 and

(Ŵ/2)∂Im{α−1 − G}/∂λ ≪ Im{α−1 − G}. Importantly, all

of the expressions above are to be evaluated at the wave-

length of the resonance. To further simplify this expres-

sion, it is again necessary to distinguish between the two

regimes discussed above. For a < λp , the response of

the system is dominated by the localized plasmon of the

individual nanodisks and, therefore, we can assume that

∂Re{α−1}/∂λ ≫ ∂Re{G}/∂λ. By doing so, we are able to

write the quality factor as

Qa<λp =
Epeak

8π2|η|ξ 2

a3

D3
(�a<λp + 1). (9)

On the other hand, for a > λp , we take the oppo-

site approximation, i.e., we assume that ∂Re{α−1}/∂λ ≪
∂Re{G}/∂λ. Therefore, in this case, we have

Qa>λp =
Epeak

4
√

2

1

�
3/2
a>λp

. (10)

Interestingly, using Eq. (8), the leading term of this expres-

sion scales as (a/D)9, similar to what was previously

obtained for arrays of metallic nanospheres [45].

The two analytical expressions defined above provide a

simple way to compute the quality factor of the resonance

of the array. However, the nontrivial dependence of Epeak,

�a<λp , and �a>λp on the different geometrical and mate-

rial parameters of the array complicates the extraction of

general trends. Therefore, to analyze the behavior of the

quality factor and to verify the accuracy of the analyti-

cal expressions derived above, we plot their predictions

in Figs. 4(c) and 4(d). Once again, we use dashed and

solid curves to represent the results of Eqs. (9) and (10),

respectively, while the dots correspond to the CDM cal-

culations. Examining these results, we conclude that, as

is the case for the normalized spectral shift, each of the

analytical expressions for the quality factor is in excellent

agreement with the CDM calculations within its regime

of applicability. In addition, we observe that, as the sys-

tem transitions from the a < λp regime (dashed curves) to
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(a) (b)

(d)(c)

FIG. 4. Normalized spectral shift � (a),(b) and quality factor Q (c),(d) of the resonance of arrays made of nanodisks with either

D = 10 µm (a),(c) or D = 20 µm (b),(d). In all of the panels, the dots indicate the results from the CDM calculations, while the

dashed and solid curves represent, respectively, the predictions of Eqs. (7) and (8) in panels (a) and (b), and Eqs. (9) and (10) in panels

(c) and (d). In all of the cases, the different colors correspond to different values of EF , as indicated by the legends.

the a > λp regime (solid curves), the quality factor under-

goes a dramatic increase. As this happens, the value of

Q becomes strongly dependent on both a/D and EF . All

of these behaviors are consistent with the resonance sup-

ported by the array changing from the localized plasmon of

the individual nanodisks to a collective lattice resonance.

III. CONCLUSIONS

In summary, we have performed a comprehensive anal-

ysis of the optical response of periodic arrays of graphene

nanodisks. To do so, we have introduced electrodynamic

corrections to the PWF formalism, which has allowed us

to describe the response of individual nanodisks beyond

the electrostatic regime. Then, we have used the CDM

to account for the interactions between the nanodisks in

the array. With this combined approach, we have inves-

tigated the resonances supported by arrays with different

geometrical and material properties, identifying two differ-

ent regimes. When the period of the array is smaller than

the wavelength of the localized plasmon of the nanodisks,

i.e., a < λp , the extinction spectrum of the array displays a

resonance with a large extinction efficiency but a relatively

small quality factor, which resembles the localized plas-

mon of the individual nanodisks. In the opposite regime,

i.e., a > λp , the array supports a lattice resonance with a

much larger quality factor but a smaller extinction. Taking

advantage of the simplicity of our model, we have derived

analytical expressions for the peak extinction efficiency,

the wavelength, and the quality factor of the resonance

supported by the array, which completely characterize the

optical response of these systems in both regimes. Impor-

tantly, these expressions are valid beyond the range of

parameters investigated in this work, provided the dipo-

lar approximation is valid. Therefore, our work provides a

simple and accurate theoretical tool to investigate emerg-

ing phenomena in periodic arrays of graphene nanodisks

as well as to guide experimental efforts seeking to exploit

the extraordinary properties of these systems.
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APPENDIX A: ELECTRODYNAMIC

CORRECTIONS TO THE PWF POLARIZABILITY

In order to incorporate the electrodynamic corrections

to the PWF polarizability, we begin by writing the dipole

induced in the nanodisk as

p = α0 (E0 + Ed) ,

where Ed represents the electrodynamic terms of the depo-

larization field. To calculate this field, we assume that the

induced dipole is uniformly distributed over the nanodisk

and then add up the field produced by each infinitesimal

surface element at the center of the nanodisk. Therefore,

considering only the lowest order electrodynamic terms

and exploiting the symmetry of the system, we have [43]

Ed =
4p

πD2

∫ 2π

0

dθ

∫ D/2

0

dr
[

k2

2

(

cos2 θ + 1
)

+ i
2

3
k3r

]

,

which, upon integration, results in Ed = ((3/D)k2 +
i(2/3)k3)p . Then, noting that the corrected polarizability

is defined as p = αE0, we get Eq. (3).
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