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Flood risks in the United States have historically been underestimated,
particularly with respect to human well-being and within low-wealth and
marginalized communities. Here, we characterize a fuller range of risks
inLos Angeles, California, using a quantitative framework that intersects
flood hazards from rainfall, streamflow and storm tides with measures of
exposure and vulnerability including ethnicity, race and socioeconomic
disadvantage. We find that between 197,000 and 874,000 people (median
425,000) and between US$36 billion and US$108 billion in property
(median US$56 billion) are exposed to flooding greater than 30 cm within
the 100-year flood zone, risk levels far above federally defined floodplains
and similar to the most damaging hurricanes in US history. These risks
are disproportionately higher for non-Hispanic Black and disadvantaged

populations, burdening communities that may have greater challenges
recovering and reinforcing socioeconomic inequities. Our framework
creates opportunities for transparently and equitably reducing flood

risksinurban areas.

Flood damages and the frequency of billion-dollar flooding disasters
are on therise in the United States', especially in urban areas** due
to the combined effects of increasing development in flood zones*
and more intense precipitation and runoff from global warming and
urbanization®*. Floods damage property and infrastructure, disrupt
economic activity, displace people, harm communities and degrade
ecosystems™’. Aswith other environmental impacts®’, flood damages
are not evenly distributed across social and demographic groups. In
particular, poor and non-white populations have been disproportion-
ately affected and less well protected'® % Such inequities are criti-
callyimportant because recovery from floods is often prolonged and

incomplete among socially marginalized, low-wealth and vulnerable
communities, also due to unequal supportinfloodrisk reduction and
disaster recovery by governments, all of which serves to compound
and reinforce the inequities®.

Worldwide, the costliest flood disasters have been related to US
hurricanes (tropical cyclones): the top six events all occurred in the
United States and accounted for losses of >US$50 billion each™*. Hur-
ricanes have also accounted for 60% of all flood-related population
displacements in the United States since 1985 (ref. ™). This has drawn
considerable attention to hurricane risks facing cities along the coasts
of the Gulf of Mexico and Eastern seaboard where populations are
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concentrated, as well as more rural areas in the Southeast where high
hazards and high vulnerabilities align'>*¢. Although cities along the West
Coastrarely experience hurricanes, severe flooding from heavy rainfall
caused losses >US$1 billioninboth 2017 and 2021 (ref."), pointing to the
risks of catastrophic flooding from severe atmospheric river events''%,

The most notable recorded atmosphericriver eventin the United
States was the Great Flood of 1861-62, which caused a catastrophe
in California with major impacts to the fishing, ranching and mining
industries—the economic engines of the state at that time'. One-third
of taxable properties were destroyed, which bankrupted the state,
and deep flooding of Sacramento forced the temporary relocation
of the state government to San Francisco. The atmospheric event was
characterized by areturn period of 500-1,000 years and flooding of Los
Angeles was characterized by a return period of 500 years (ref.”). The
Los Angeles region was then mostly ranchlands with fewer than 15,000
residents and after 4 weeks of rain punctuated by more than a day of
intense rainfall, losses were marked by ~200,000 cattle, ~100,000 sheep
and-~500,000 lambs". Today, apopulation of 10 million people*’ and a
US$748 billion-per-year economy® occupy Los Angeles County, reliant
onanetwork of dams, levees and drainage channels for protection®.

The ARkStorm study led by the US Geological Survey (USGS) con-
templated the possibility of the Great Flood occurring in present-day
California, impacting the largest statewide economy and population
of the United States”. The study concluded that the existing flood
control infrastructure was undersized and flooding would resemble
what occurred before infrastructure was in place'. Economic losses
were estimated at over US$700 billion, which far exceeded damages
of climate-related disastersin recorded history (for example, ref.'*).In
astate that has adapted to earthquake risk with increased awareness
and the retrofit and upgrade of many structures, the project aimed to
increase flood risk awareness and stimulate risk reduction measures.
Unfortunately, the risk assessment had little traction with public works
and emergency managers who expressed confidenceininfrastructure
for protection’. Roughly a decade earlier, over US$200 million had
been spent to raise levees and construct flood walls along the Rio
Hondo Channel and lower Los Angeles River (Supplementary Fig.1) to
containal00-year return period event (ref.??, page 151).

Today, the most recent Federal Emergency Management Agency
(FEMA) flood hazard maps for Los Angeles County (Supplementary
Fig. 1) show a very small ‘1% annual chance flood hazard’ area with a
population of only 23,169, or <0.3% of the population, where flood
insurance is required under the National Flood Insurance Program.
This exposure is reflective of fluvial and coastal flooding only, in line
with FEMA directives for flood hazard mapping?, so pluvial flood haz-
ards have notbeen addressed. Moreover, areas defended by the newly
raised levees and flood walls fall within an ‘area with reduced risk due
tolevee’ that contains a population 0f 287,235 (based on 2020 census)
and where flood insuranceis not required to limit financial burdens on
exposed populations—a motivating factor for the levee project (ref.,
page 149). However, FEMA flood maps that underestimate risks have
been well documented across the United States*, flood peaks have
continued to increase from urbanization across Los Angeles County”
andrecentreportsby the US Army Corps of Engineers and Los Angeles
County Department of Public Works reveal that segments of the Los
Angeles River, Dominguez Channel, Compton Creek and San Gabriel
River (Fig.1a) are either undersized to contain a100-year flood peak®*?’
orinunacceptable condition for flood protectionbecause of in-channel
sedimentation, vegetation growth, spalling of concrete and gaps in
flood walls*®, Furthermore, the region’s major dams are in poor condi-
tion. Onthe basis of the US Army Corps of Engineers Dam Safety Action
Classification for risk assessment*, one major dam has been classified
at the highest level of concern, ‘urgent and compelling’, and several
more at the second highest level, ‘urgent’ (Supplementary Fig. 1).
Collectively, these factors indicate that a 100-year flood event in Los
Angeles will not be contained by existing infrastructure, which points

to a high disaster risk and calls for a more detailed risk assessment,
including the number of people and amount of property exposed,
the capacity of the population to recover, hot spots of exposure and
socioeconomic and racial inequities in exposure.

Here, we present an innovative framework to reveal the magni-
tude andinequity of flood exposure in Los Angeles at countywide and
municipal scales. Improved risk awareness is crucial for protecting
lives and livelihoods and for planning and designing cost-effective
and equitable flood adaptation measures. The details of our analysis
framework are described in the Methods. In summary, we use a statisti-
cal and hydrodynamic model’*° to map inundation and flood hazards
at 3 mresolution across Los Angeles County (Fig. 1a), a level of detail
that captures patterns of street flooding from intense precipitation
(Fig.1c) and from excess streamflow that cannot be contained by major
drainage channels (Fig. 1d,e). Using an extensive set of local gauge
data, flooding from precipitation, streamflow and coastal stormtides
(Fig.1f-h) is evaluated separately for acanonical 100-year return period
event estimated at the 5th, 50th and 95th percentile (to capture uncer-
tainty) and we then analyse composite and driver-specific flood risks
at the parcel level on the basis of parcel land use and property value®
and block-group-level estimates of income, race and ethnicity*’. We
also evaluate these risks according to indicators of census-tract-level
social vulnerability (the national social vulnerability index, SoVI) and
ahigher-resolution assessment of neighbourhood disadvantage (the
neighbourhood disadvantage index, NDI) based on block-group-level
data from the American Community Survey* (Methods).

Results

The composite 100-year flood zone for Los Angeles, the overall flood
zone accounting for pluvial, fluvial and coastal hazards, exposes a popu-
lation of1.3-2.4 million people (5th-95th percentile, median 1.7 miliion)
and US$215 billion-US$346 billion in property (median US$265 billion)
toflooding >3 cmand197,000-874,000 people (median 425,000) and
US$36 billion-US$108 billion in property (median US$56 billion) to
flooding >30 cm (Fig. 1b and Supplementary Table1). Flooding deeper
than 3 cmis mainly related to pluvial hazards (1.2 million-1.8 million
people, Fig. 1f) and fluvial hazards (81,000-1.1 million, Fig. 1g), which
are much more widespread than coastal hazards (4,000-7,000,
Fig.1h). Flooding >100 cm, on the other hand, is mainly related to flu-
vial hazards (3,000-323,000 people, median 83,000) with a smaller
contribution from pluvial hazards (31,000-58,000 people, median
40,000), occurring when primary drainage channels are unable to
contain flood flows (compare ref. ).

Flood exposure representativeness (FER) is the fraction of a popu-
lation by race or ethnicity living in the flood zone divided by the frac-
tion of the same group within the region® and differences in FER from
unity indicate inequities in exposed populations. With the flood zone
for Los Angeles evaluated at the 50th percentile, non-Hispanic Black
and Hispanic residents are disproportionately exposed to flood risks
based on FER 0of 1.24 and 1.06 and flood depths >3 cm, respectively,
while non-Hispanic Asian and non-Hispanic White residents are dispro-
portionately less exposed based on FER 0f 0.92 and 0.93, respectively.
Giventheratio of FER values, non-Hispanic Black and Hispanicresidents
are thus 31% and 13% more likely than non-Hispanic White residents to
be exposed to flooding >3 cm. Moreover, non-Hispanic Black, Hispanic
and non-Hispanic Asianresidents are 79% (FER =1.62),17% (FER =1.00)
and 11% (FER = 0.94) more likely than non-Hispanic White residents
(FER =0.83) to be exposed to deep flooding (>100 cm).

Lorenz curves offer anintegrated measure of flood risk inequity by
comparing the cumulative distribution of flood depth with cumulative
population sorted by a particular factor (for example, property value,
income, disadvantage and race). Flood hazards equally distributed
across the population would plot along a 1:1 line and any deviations
reflectinequalities that, whenintegrated, are a quantitative indicator:
the Gini coefficient* (G).
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Fig.1|100-year compound flood hazard in Los Angeles. a, Spatial distribution
of simulated 100-year composite flood hazard depth evaluated at the 50th
percentile and condition of major flood channels with respect to containing a
100-year flood event. b, Exposed population (in millions) and exposed property
(in US$ billions) for several depth thresholds far exceeds population within FEMA
1% annual chance flood zone. c-e, Magnified view of pluvial flooding in the west
side of Los Angeles County (c), compound fluvial-pluvial in the south central

part of Los Angeles County (d) and compound fluvial-coastal flooding near Long
Beach (e) shows the street-level detail resolved by the modelling framework. f-h,
Spatial distributions of hazard and exposure corresponding to pluvial flooding
(d), fluvial flooding (e) and coastal flooding (e) show that deep flooding (30~

100 cm) is driven by fluvial and pluvial hazards and widespread shallow flooding
(3-10 cm) is driven by pluvial hazard. Note that coastal population exposure s in
thousands. Basemapsinaand c-hare from World Terrain Base®.

The Lorenz curve of the composite 100-year flood hazard evalu-
ated at the 50th percentile (Fig. 2a, Supplementary Fig. 2 and Sup-
plementary Table 2) shows the strongest disproportionality when
population is sorted by the share of Black population (G = 0.32),
driven mainly by fluvial (G = 0.51) and pluvial flood hazards (G = 0.12).
Figure 2b shows that areas near Carson have the highest shares of
non-Hispanic Black population and high flood hazard (Fig. 1a,d).

In contrast, non-Hispanic White populations are disproportionately
less exposed to the composite flood hazard (G =-0.23) and espe-
cially fluvial hazards (G =-0.33). This is consistent with low shares of
non-Hispanic White populations living in the high flood hazard region
between Carson and South Gate (Fig. 2e). Hispanic populations are also
somewhat disproportionately exposed to the composite (G = 0.07)
and fluvial flood hazards (G = 0.12), consistent with the prevalence of
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Fig. 2| Flood exposure by race and ethnicity. a, Lorenz curves of population-
weighted flood hazard with Gini coefficients (G) for the 100-year return period
composite hazard, pluvial hazard, fluvial hazard and coastal hazard evaluated at
the 50th percentile and four racial/ethnic sorting variables. b-e, Maps showing
non-Hispanic Black population fraction (b), Hispanic population fraction (c),
non-Hispanic Asian population fraction (d) and non-Hispanic White population
fraction (e). Gini coefficients show that fluvial flood hazards disproportionately

impact non-Hispanic Black populations (G = 0.51) and Hispanic populations
(G=0.12), pluvial flood hazards disproportionately impact non-Hispanic Black
populations (G = 0.12) and coastal hazards almost exclusively impact non-
Hispanic White populations (G = 0.95). Percentages reflect the fraction of the
hazard associated with the upper half of the population by the sorting variable.
See Fig. 3b for population density. Basemaps in b—e from World Terrain Base®’.
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Fig.3|Flood exposure by socioeconomicindicators. a, Lorenz curves of
population-weighted flood hazard with Gini coefficients (G), for the 100-year
return period composite hazard, pluvial hazard, fluvial hazard and coastal hazard
evaluated at the 50th percentile and four different sorting variables. b, Block-
group-scale population density used for dasymetric estimation of population at
the parcel scale. c-e, Maps showing: property value, income (c), neighbourhood
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disadvantage (d) and the SoVI (e). Percentages reflect the fraction of the hazard

associated with the upper half of the population by the sorting variable and

show that exposure does not differ by property value, that more disadvantaged
populations are disproportionately exposed to the composite hazard (G = 0.15),
driven by fluvial flood hazards (G = 0.21) and that less disadvantaged populations
are almost exclusively exposed to coastal hazards (G=-0.86). Basemapsinb-e
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representativeness is the fraction of the non-White populationin the flood zone
relative to the same fraction in the region. b-e, Prioritization could also consider
inequities across racialized groups indicated by FER at municipal levels for non-
Hispanic Black (b), Hispanic (c), non-Hispanic Asian (d) and non-Hispanic White
populations (e). Basemaps in b-e are from World Terrain Base®.

Hispanic populations in the high hazard region surrounding South
Gate (Fig. 2c). Meanwhile, there is little indication of inequality in the
exposure of non-Hispanic Asian populations to the composite hazard
(G=0.00;Fig.2d) and almost only non-Hispanic White populations are
exposed to coastal hazards (G = 0.95; Fig. 2e).

Despite the racial inequalities, our results suggest that extreme
flooding in Los Angeles would not discriminate by property value.
Lorenz curves for the composite hazard sorted with respect to property
value (Fig.3a, Supplementary Fig.2 and Supplementary Table 2) closely
track the line of perfect equality (G = 0.02), which is consistent with a
mix of lower-than-median and higher-than-median property values
within the main flood hazard corridor near South Gate and Carson
(Fig.3c). However, there are modest disproportionalities with respect
toincome (G = —0.11) and disadvantage as measured by NDI (G = 0.15)
and a weak disproportionality with respect to vulnerability as meas-
ured by SoVI (G = 0.05). The main flood hazard corridor is associated
with higher-than-median SoVI (Fig. 3e) and both higher-than-median
and lower-than-median NDI (Fig. 3d), with higher SoVIand NDI values
indicative of higher social vulnerability and neighbourhood disadvan-
tage, respectively. More disadvantaged populations will face greater
challenges recovering from floods and Lorenz curves show that the
more disadvantaged half of the population shoulders 65% of the com-
posite flood hazard, 56% of the pluvial flood hazard and 74% of the
fluvial hazard but <1% of the coastal flood hazard.

In the United States, addressing flood risk begins with local gov-
ernment and requires regional, state and federal coordination. The
demands of grant writing within a complex application process has
led to greater success among more affluent municipalities in secur-
ing resources to address flooding®?¢ and, conversely, less success for
more disadvantaged communities. Our multidimensional modelling
framework at the region scale supports identification of the most
at-risk communities considering flood hazard severity, population
exposed and disadvantage, which can be used to prioritize resource
allocations more equitably and transparently. For example, Fig. 4a
shows the relationship of disadvantage and flood hazard aggregated
tothelevel of municipalitiesin the study area and reveals the relatively
few cities where both disadvantage and flood risks are high. Among
these doubly at-risk municipalities, the most populous are Long Beach,
Paramount, Carson, Bell Gardens and South Gate. At a high level, our
results suggest that these communities might be worthy priorities

for mitigating regional flood risks. In each case, these municipalities
are also home to a substantial share of non-white residents. Increas-
ing hazard and increasing disadvantage represent complementary,
non-racialized considerations for prioritizing risk reduction resources
on the basis of the magnitude of risks and the capacity of communi-
tiestorecover, respectively. Furthermore, prioritization of resources
could help to address racial disparities by additionally considering
where non-white representativeness is high (Fig. 4a-e). For exam-
ple: Long Beach has an exposed population of 88,000-262,000
(median 208,000) people that is disproportionately non-Hispanic
Black (FER =1.67, Fig. 4b); Paramount has an exposed population of
15,000-53,000 (median 41,000) people that is disproportionately
non-Hispanic Black (FER =1.61) and Hispanic (FER =1.61); Carson has
anexposed population 0f17,000-46,000 (median 21,000) people that
is disproportionately non-Hispanic Black (FER = 3.27,Fig. 4b); Bell Gar-
dens has an exposed population of 25,000-30,000 (median 28,000)
peoplethatis disproportionately Hispanic (FER =1.98); and South Gate
hasanexposed population 0f13,000-29,000 (median23,000) people
that is disproportionately Hispanic (FER =1.89, Fig. 4c). The largest
municipal exposure corresponds to Los Angeles (514,000-882,000,
median 654,000) with an average flood depth of 25 cm and dispro-
portionate exposure of non-Hispanic Black populations (FER =1.38,
Fig.4b).

Discussion

A100-year flood event in Los Angles would expose 197,000-874,000
(median 425,000) people and US$36 billion-US$108 billion (median
US$56 billion) in property to flooding >30 cm, rivalling the impacts of
recentsevere US hurricanes such as Katrinain2005, Sandy in 2012 and
Irmaand Harvey in2017, each of which incurred losses >US$50 billion™
and displaced >200,000 people®. Therisks of deep flooding (>100 cm)
marked by anexposed population 0f32,000-361,000 (median119,000)
and exposed property valued at US$7 billion-US$41 billion (median
US$14 billion) are primarily linked to overtopping of flood channels
mostly constructed in the decades following World War 11°**” and
now undersized®**” or inadequately maintained”. Precipitation and
streamflow records were not widely available during the time of their
construction and channel capacity has been reduced over time by
sedimentation and in-channel vegetation®” while runoff rates have
increased due to the expansion of impervious surfaces®. Our results
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show that overtopping of upslope channels distributes flood waters
over the wide coastal plain, where they flow downslope along roadways
and collect within the lowlands between South Gate and Long Beach
(wherebraided channels, riparian wetlands and coastal marsh existed
before human development) (ref.??, page 21).

Flooding causes many types of harms: direct financial losses,
property damage, mortality and otherimpactsto healthand well-being,
involuntary displacement and transportation and livelihood disrup-
tions,among others®®. These impacts, in combination with differential
vulnerability and coping capacity, can heighten existing inequalities,
reduce funds available for governments for other social goods and
erode connections to places and the vitality and cohesion of communi-
ties. Further, in many cases, flood management practices have served
to exacerbate social, economic and political inequities, leading toboth
differential flood risks and differential relief and recovery following
flood disasters™****,

Models used for continental- and global-scale estimates of flood
risk rely on a priori estimates of the level of protection provided by
infrastructure (for example, exceedance probability) and assume that
fluvial flooding does not occur for flow rates below the protection
standard (for example, refs. >**). If FEMA levee ratings are the basis
for protection standards used in large-scale models, this may explain
why recent nationwide studies (for example, refs.'>**,) point to much
lower risks to Los Angeles than we do. Indeed, urban flood risks in the
United States may be systematically underestimated in this way, which
could help explain the high frequency of flooding disasters in major US
cities”. But our results for Los Angeles show that the high-resolution
compound flood hazard modelling framework presented here, free
froma prioriassumptions about channel capacity, canyield exposure
assessments that are consistent with detailed studies at the local level
(for example, refs. ?°) documenting undersized or inadequately
maintained channels while systematically characterizing impacts
regionwide.

Underestimation of urban flood hazards in the United States may
limit understanding of inequities in flood exposure. For example,
nationwide flood modelling has suggested that non-Hispanic White

populations are disproportionately exposed to flood risks at present,
partly reflecting exposures concentrated in the Southeastern United
States'>'°. Flood hazards are also perceived and prioritized differently
and, for coastal flooding in particular,amenity values may lead to over-
valuation of property values, in combination with underestimation of
flood risks (for example, ref. **). However, our compound hazard mod-
ellingin Los Angeles vindicates the experiences of flood management
that there are substantial racialand socioeconomic disparitiesin flood
risks by hazard driver. Non-Hispanic Black, Hispanic and socioeconomi-
cally vulnerable populations in Los Angeles are disproportionately at
risk of fluvial flooding, whereas risks of coastal flooding overwhelm-
ingly pertain to non-Hispanic White and low-disadvantage populations.
Our results thus provide an evidentiary basis for understanding une-
qualdistributions of flood risks across communities and demographic
groups. As has been found in analyses of exposure to environmental
contaminants’, inequities in flood risks among non-Hispanic Black
populations (Fig. 2) seem substantially larger than inequities across
levels of neighbourhood disadvantage (NDI, Fig. 3d) or social vulner-
ability (for example, SoVI, Fig. 3e).

Our results are subject to several important limitations, uncer-
tainties and caveats. First, major fluvial flood hazards simulated in
this study are the result of levee and flood wall overtopping, which
is sensitive to uncertainty in our estimates of 100-year flood peaks
(Fig. 5 and Supplementary Table 5) and uncertainty in levee heights
(-19.2 cm RMSE®). Combinations of lower peak flows and higher flood
defenses would contribute to less overtopping, for example, and loca-
tions of overtopping are sensitive to local minima in levee heights
(Supplementary Methods). Second, pluvial flood hazards may be
overestimated in some areas because street runoffisassumed toreach
secondary drainage pipes and channels by overland flow as opposed to
subsurface drain pipes (Methods). On the other hand, fluvial hazards
could be underestimated on the basis of the assumption of no levee
or dam failures and no obstruction of channels by debris, which is at
odds with the experiences of recent flood disasters such as Hurricane
Katrina*® andis arealistic concern based on damrisk ratings and levee
inspectionreports for Los Angeles (Supplementary Fig.1). Alikely range

Nature Sustainability



Article

https://doi.org/10.1038/s41893-022-00977-7

of exposure is obtained by simulating the 100-year return event with
each hazard driver evaluated the 5th and 95th percentile (Fig. 5 and
Supplementary Table 1). Flood impacts could also be explored more
deeply with measures such as expected losses, economic disruption,
joblosses, fatalities, injuries, human displacement and consequences
for community cohesion, cultural heritage and social networks.

Yet the combination of high-resolution flood modelling and socio-
economic data reveals that flood risks within the densely populated Los
Angelesregionmay be considerably underestimated—and that the great-
estrisksarebornedisproportionately by Black and disadvantaged popula-
tions. Suchinequities are probably reinforced by the challenges and costs
of navigating the numerous federal and state agencies and local govern-
mentsthat provideresourcesforflood protection, whichmaybeasubstan-
tial barrier toless affluent or marginalized communities. Our quantitative
approach, which could bereplicated forany USurbanor ruralregion, thus
highlights communities where flood risks are disproportionately large and
provides critical data for more effective and equitable allocation of state
andfederalaidresources. Furthermore, integrated modelling of hazards
and exposure as presented here offers an opening for dialogue among
communities atrisk of flooding, researchers and decision-makersingov-
ernment (for example, ref.*’), thereby enabling amore inclusive process
of planning and projects to reduce the risks of future flood disasters (for
example, ref. **). Replication elsewhere calls for acquiring and processing
severalurbandatasets and local gauge records (Methods) and carrying out
numerous checks for modelaccuracy and consistency, amanual process
that can take an experienced modeller weeks to months. Nevertheless,
the effort s likely to be far more cost-effective, time-sensitive and useful
to marginalized communities than past practices in the United States of
patching together reach-by-reach models of flood hazards™.

Methods

Site description and parcel data

The study domain corresponds to the coastal plain of Los Angeles south
ofthe SantaMonica Mountains. Data characterizing flood hazards, land
use, lot area, property value, population, income, race, ethnicity, dis-
advantage and vulnerability were characterized across 1,767,588 land
parcelsto enable regional-and municipal-scale exposure analysis. Land
parcels represent the smallest unit of land for the purpose of owner-
ship.Flood hazard, land use, lot area and property values were resolved
foreach parcel and all other variables were downscaled from 2020 US
census data at the block-group and/or census-tract scale. Tracts are
small, contiguous, relatively permanent statistical subdivisions of a
county or area, which generally have population sizes 1,200-8,000 and
optimally near 4,000 (ref. *°). Block groups are divisions of the same
censustract, generally containing 600-3,000 people.

Parcel shapefiles with lot area, land use and assessor’s value were
accessed fromthe Los Angeles County Open DataPortal®. Populationwas
estimated dasymetrically by apportioning the block-group population
fromthe 2020 census across residential parcelsin proportiontolotarea™
and zero population was ascribed to commercial or other parcel types.
Eachresidential parcel was also assigned a non-Hispanic Black, Hispanic,
non-Hispanic Asian and non-Hispanic White population fraction corre-
sponding to the block-group fraction computed from census data. The
study areapopulationis 9,105,286 which by ethnicity is 48.2% Hispanicand
byraceis49% White, 22.0% other, 14.2% Asian, 8.6%Black, 4.4% two or more
races, 0.7% Native American and 0.3% Hawaii and other Pacific Islander.

Neighbourhood disadvantage index

NDIwas developed from literatures on neighbourhood disadvantage,
urban and concentrated poverty, neighbourhood effects and resi-
dential segregation (for example, refs. **°"). NDI was estimated at the
block-group rather than census-tract level to enable a more precise
understanding of social exposure in terms of exactly who is affected
by flood hazards. The NDI closely follows recent sociological indices of
neighbourhood disadvantage (for example, ref.*?). The NDlincorporates

25differentindicatorsinto onescale (Supplementary Table 3). The indi-
cators were drawn from the 2019 5-year Census American Community
Survey*. The unit of analysis is 216,498 block groups with valid data
across the United States. The index is composed of measures across
five domains: economicresources (for example, poverty andincome),
social policy (for example, access to welfare programmes), housing (for
example, home ownership and rent burden), labour market (for exam-
ple, unemployment rate) and demographics (single motherhood and
educational attainment). Allindicators and the NDl are signed such that
higher valuesindicate greater disadvantage. The NDlis scaled to range
from0to1l. The scale was constructed by using the standardized (mean
0, variance1) values of the individual indicators and the scale reliability
alpha was computed to be 0.92 using the Spearman-Brown Prophecy
Formula®. Our analyses assign every land parcel within a block group
the same NDI score. For the study area, 5th, 50th and 95th quantiles of
NDI by land parcel are 0.27,0.40 and 0.58, respectively.

TheNDlincludes many of the same indicators as earlier vulnerability
indices including the social vulnerability index (SVI) developed by the
Centers for Disease Control Agency for Toxic Substances and Disease
Registry (CDC/ATSDR SVI)** and the SoVI developed at the University
of South Carolina®, with a few key exceptions (Supplementary Table 3).
Unlike the CDC/ATSDR SVIand SoVI, we intentionally and purposefully
chose to omit racial/ethnic minority status. We did so because includ-
ing it problematically conflates indicators of disadvantage with causes
of disadvantage. Having a high Black and Latino population share cer-
tainly may correlate with neighbourhood disadvantage but it is theo-
retically problematic to treat the presence of Black and Latino people
as a disadvantage in itself. Also, unlike the CDC/ATSDR SVI, we omitted
the measures of housing type and transportation (for example, mobile
homes and multi-unit structures). Similarly, unlike SoVI, we omitted other
infrastructure-related measures like hospitals per capita (measured at
county level) and percentage housing units without a car. Although of
course these certainly matter to vulnerability, we intentionally and strictly
focused onsocioeconomic disadvantageitself, not the physical environ-
ment and physical infrastructure in the neighbourhood. Finally, unlike
previousindices, we omitted several demographicindicatorsthatareonly
loosely related to disadvantage. For instance, we omitted the CDC/ATSDR
SVIand SoVI measures of age structure (for example, percentage <5 or
<17 or 265 years of age), the CDC measure of percentage with adisability
and the SoVImeasures of other demographics (for example, percentage
females, median age, nursing home residents per capita, people per unit,
femalelabour force participationand percentage employedin extractive
orserviceindustries). Supplementary Fig. 3 shows the distribution of NDI,
SVIand SoVIfor the United States and Los Angeles County.

The comparative analysis uses 67,864 census tracts across the
United States and 1,955 tracts across Los Angeles County, for which SVI
and SoVl data are jointly available from FEMA’s National Risk Map*°.
Block-group resolution NDI values were averaged across each tract.
For comparative purposes, each vulnerability index was normalized
and tracts with NoData values were removed. US-wide, SVl exhibits the
broadest distribution of vulnerability, centred on the median value of
0.5andwith aninterquartile range between 0.37 and 0.64. SoVland NDI
have lower characterizations of vulnerability, exhibiting both lower
median values and narrower interquartile ranges. All three distribu-
tions are minimally skewed, whereby SoVI exhibits the most skew of
0.78. For all three vulnerability indexes, the least vulnerable tracts
(bottom 5th percentile) are marked by values around 0.2, while for
the most vulnerable tracts (upper 5th percentile), the index range
varies between 0.8 for SVI, 0.7 for NDland 0.42 for SoVIl. Compared to
the United States as awhole, Los Angeles County median NDI and SVI
values are ~18% higher, while the median SoVI value is nearly equal.

Compound flood hazard modelling
Flood hazard was estimated using the Parallel Raster Inundation
Model (PRIMo) which solves the full shallow-water equations using
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adual-grid finite volume scheme that combines topographic data on
afine-grid with solution updates on a relatively coarse grid to over-
come the computational bottlenecks of metropolitan-wide urban
flood simulation®. Here, topography was resolved at 3 m resolution,
shallow-water solution states were updated at 30 m resolution and
depth was downscaled to 3 m resolution to estimate exposure. A3 m
resolution digital elevation model (DEM) was constructed mainly from
two sources, 1/9th arcsec (3 m) USGS National Elevation Dataset (NED)
DEM (primarily from 2016 lidar data*) for elevations >I0 mandalm
resolution USGS topobathymetric DEM for elevations <10 m NAVD 88
including coastal bathymetry (data sources collected between 1930
and 2014; Supplementary Methods). The DEM was further subjected to
several types of hydroconditioning for urban flood hazard modelling.
First, channelsin the land surface were ‘burned’into the DEM to over-
come line-of-site laser-scanning interference (for example, drainage
channels that pass under roadways) and to approximate the capacity
of culverts and subsurface gravity mains connecting open channels.
These channels were aligned and sized with storm drain centerline and
geometry data available from the County of Los Angeles®. Second,
for roadway underpasses, the DEM was hydroconditioned to match
the lower grade which is critical for flood water spreading through
developed areas—otherwise underpasses areinaccurately modelled as
blockage features. Data for roadway overpass locations were extracted
from OpenStreetMap (https://www.openstreetmap.org/). Third, DEM
heights representing major damsincluding Whittier Narrows Dam and
Sepulveda Dam were buffered by 100 m to prevent artificial leakage
flows arising from the PRIMo upscaling technique®. Fourth, agrid-edge
classification technique was used to sharpen the representation of
levees and flood walls*°. With hydroconditioning of the DEM, the Los
Angeles PRIMo model is configured to account for level 1 drainage
infrastructure (dams/levees) and level 2 drainage infrastructure (sec-
ondary channels, culverts and drain pipes) but not level 3 drainage
infrastructure (curb inlets and small storm pipes to nearest drainage
channels). Tomodel flow resistance, a3 mresolution raster grid model
of the Manning coefficient was developed on the basis of land use data
available from OpenStreetMap and tabulated values of the Manning
parameter for each land use category (Supplementary Table 4). The
PRIMo model was configured to run using 756 tiles of raster grids of
size1,000 x 1,000, which corresponds to 756 million points.

PRIMo was configured to simulate pluvial, fluvial and coastal
scenarios corresponding to 100-year return period events using
different types of inputs. The pluvial scenario was configured by
specifying a spatially distributed rainfall rate corresponding to the
100-year 24 hrainfall intensity defined by NOAA Atlas 14 (ref.>’) and
by simulating flood inundation for a period of 24 h which exceeds
the time of concentration for the coastal plain (several hours). No
infiltration was assumed because historical extreme flood events
in the region (for example, 1861-62 and 1931) have been associated
with several weeks of persistent rainfall that saturate the ground
surface before episodes of extreme rainfall lasting hours®. The fluvial
scenario was configured by specifying sources of water into primary
and secondary flood channels to create flow rates representative
of a100-year return period streamflow event. The 100-year flow
rate across the study area was estimated on the basis of frequency
analysis of 51 different gauges maintained by the USGS, Los Angeles
County and Orange County (Supplementary Table 5, Supplementary
Fig.1and Supplementary Methods). Finally, the coastal scenario was
developed by specifying a constant water level at the ocean bound-
ary of PRIMo corresponding to the peak storm tide height with a
100-year return period based on water-level measurements at the
Los Angeles NOAA tide gauge (9410660) and a period corresponding
to 12 h. This accounts for the combined effects of tide and non-tide
residuals but does not account for wave-driven flooding that occurs
locally along the coast with the coincidence of high tides and long
period swell. Hence, the coastal flood hazard assessment presented

here is most representative withinembayments sheltered from ocean
waves (for example, Port of Los Angeles and Long Beach, Marina Del
Ray) and may underestimate exposure along the open coast where
wave transformation, runup and overtopping are drivers of coastal
hazard (for example, Malibu). The 100-year return period value for
each hazard driver (rainfall rate, streamflow and storm tide) was
estimated at the 50th percentile to provide a most likely estimate
of exposure for equity analysis and also at the 5th and 95th level to
characterize uncertainty in exposure. Hazard drivers at the 5th and
95th percentile were estimated in the following ways: for the coastal
hazard scenario, 5th and 95th percentile water surface elevations
were extracted from the process-informed non-stationary extreme
value analysis (ProNEVA) software package®® executed using a 98-year
block-maximum time series of observed ocean surface elevations
at NOAA’s Los Angeles tide gauge (NOAA 9410660); for the fluvial
scenario, 5th and 95th percentile discharge values at each gauge
location were extracted from HEC-SSP software (Supplementary
Table 5); and for the pluvial scenario, 5th and 95th percentile spatially
distributed depths were obtained from NOAA Atlas 14 as GIS grids>’.
PRIMo flood hazard simulations were performed in parallel over 756
compute cores on Cheyenne at the NCAR-Wyoming Supercomputing
Center”. The model speed (ratio of simulation duration to wall clock
time) for an upscale factor of 2and 10 was 0.29 and 27.4, respectively.
Flood hazard depth at 3 m spatial resolution was output from PRIMo
forall three scenarios and acomposite flood hazard distribution was
also computed for the region on the basis of the pointwise maximum
acrossthe scenarios. Flood hazard at each land parcel was estimated
on the basis of the average value across the area of the land parcel®..
Model validation was approached with acombination of bottom-up
exploration of model sensitivities and top-down assessment of the
credibility of aggregated information (Supplementary Methods)®’.

Exposure and equity analysis

Exposed populations were computed by summing parcel-level popu-
lation across parcels with aflood depth above a prescribed threshold
(forexample, 3,10,30 and 100 cm). Furthermore, populations by race
and ethnicity were estimated by summing the product of parcel-level
population and ethnic/racial fractions. Summations were performed
atthe County and local (municipal) scale on the basis of municipal tax
rate affiliations for each parcel provided by Los Angeles County. FER
is computed at the County scale and at the local (municipal) scale. In
both cases, population fractions at the County scale are the basis for
normalization (that s, fractions used in the denominator of the FER
calculation) to frame representativeness by city in a regional con-
text. Lorenz curves were developed at the County scale by sorting the
parcel-level dataset in accordance with aspecific factor (forexample,
property value per area) and then building cumulative distribution
functions for population (for the x axis) and population-weighted
flood hazard (for the y axis). Factors considered for sorting include
non-Hispanic Black, Hispanic, non-Hispanic Asian and non-Hispanic
White population fractions, property value per area, income, NDland
SoVI. All cumulative distribution functions were normalized by the
maximum values so Lorenz curves scale from zero to unity on both
axes. Furthermore, Gini coefficients are computed as indicators of
inequality®* and the fraction of the hazard associated with the upper
half of the populationis computed as asecond indicator of inequality.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The parcel-level dataset developed for this study is available through
the Dryad and digital repository accessible at https://doi.org/10.7280/
DI1RH7Z.

Nature Sustainability


https://www.openstreetmap.org/
https://doi.org/10.7280/D1RH7Z
https://doi.org/10.7280/D1RH7Z

Article

https://doi.org/10.1038/s41893-022-00977-7

Code availability

Codes used for exposure and equity analysis are available through
the Zenodo digital repository accessible at https://doi.org/10.7280/
DIRH7Z.Custom codesin Fortran, Matlab, Pythonand Rused for data
preparation, flood simulation and postprocessing are available upon
written request from the authors.
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