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Large and inequitable flood risks in Los 
Angeles, California

Brett F. Sanders    1,2,3  , Jochen E. Schubert1,3, Daniel T. Kahl    1, 
Katharine J. Mach    4,5, David Brady6,7, Amir AghaKouchak    1,3,8, 
Fonna Forman9,10, Richard A. Matthew2,3, Nicola Ulibarri    2,3 and 
Steven J. Davis    1,3,8

Flood risks in the United States have historically been underestimated, 
particularly with respect to human well-being and within low-wealth and 
marginalized communities. Here, we characterize a fuller range of risks 
in Los Angeles, California, using a quantitative framework that intersects 
flood hazards from rainfall, streamflow and storm tides with measures of 
exposure and vulnerability including ethnicity, race and socioeconomic 
disadvantage. We find that between 197,000 and 874,000 people (median 
425,000) and between US$36 billion and US$108 billion in property 
(median US$56 billion) are exposed to flooding greater than 30 cm within 
the 100-year flood zone, risk levels far above federally defined floodplains 
and similar to the most damaging hurricanes in US history. These risks 
are disproportionately higher for non-Hispanic Black and disadvantaged 
populations, burdening communities that may have greater challenges 
recovering and reinforcing socioeconomic inequities. Our framework 
creates opportunities for transparently and equitably reducing flood  
risks in urban areas.

Flood damages and the frequency of billion-dollar flooding disasters 
are on the rise in the United States1, especially in urban areas2,3 due 
to the combined effects of increasing development in flood zones4 
and more intense precipitation and runoff from global warming and 
urbanization5,6. Floods damage property and infrastructure, disrupt 
economic activity, displace people, harm communities and degrade 
ecosystems3,7. As with other environmental impacts8,9, flood damages 
are not evenly distributed across social and demographic groups. In 
particular, poor and non-white populations have been disproportion-
ately affected and less well protected10–12. Such inequities are criti-
cally important because recovery from floods is often prolonged and 

incomplete among socially marginalized, low-wealth and vulnerable 
communities, also due to unequal support in flood risk reduction and 
disaster recovery by governments, all of which serves to compound 
and reinforce the inequities13.

Worldwide, the costliest flood disasters have been related to US 
hurricanes (tropical cyclones): the top six events all occurred in the 
United States and accounted for losses of >US$50 billion each1,14. Hur-
ricanes have also accounted for 60% of all flood-related population 
displacements in the United States since 1985 (ref. 15). This has drawn 
considerable attention to hurricane risks facing cities along the coasts 
of the Gulf of Mexico and Eastern seaboard where populations are 
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to a high disaster risk and calls for a more detailed risk assessment, 
including the number of people and amount of property exposed, 
the capacity of the population to recover, hot spots of exposure and 
socioeconomic and racial inequities in exposure.

Here, we present an innovative framework to reveal the magni-
tude and inequity of flood exposure in Los Angeles at countywide and 
municipal scales. Improved risk awareness is crucial for protecting 
lives and livelihoods and for planning and designing cost-effective 
and equitable flood adaptation measures. The details of our analysis 
framework are described in the Methods. In summary, we use a statisti-
cal and hydrodynamic model30 to map inundation and flood hazards 
at 3 m resolution across Los Angeles County (Fig. 1a), a level of detail 
that captures patterns of street flooding from intense precipitation 
(Fig. 1c) and from excess streamflow that cannot be contained by major 
drainage channels (Fig. 1d,e). Using an extensive set of local gauge 
data, flooding from precipitation, streamflow and coastal storm tides  
(Fig. 1f–h) is evaluated separately for a canonical 100-year return period 
event estimated at the 5th, 50th and 95th percentile (to capture uncer-
tainty) and we then analyse composite and driver-specific flood risks 
at the parcel level on the basis of parcel land use and property value31 
and block-group-level estimates of income, race and ethnicity32. We 
also evaluate these risks according to indicators of census-tract-level 
social vulnerability (the national social vulnerability index, SoVI) and 
a higher-resolution assessment of neighbourhood disadvantage (the 
neighbourhood disadvantage index, NDI) based on block-group-level 
data from the American Community Survey32 (Methods).

Results
The composite 100-year flood zone for Los Angeles, the overall flood 
zone accounting for pluvial, fluvial and coastal hazards, exposes a popu-
lation of 1.3–2.4 million people (5th–95th percentile, median 1.7 miliion) 
and US$215 billion–US$346 billion in property (median US$265 billion) 
to flooding >3 cm and 197,000–874,000 people (median 425,000) and 
US$36 billion–US$108 billion in property (median US$56 billion) to 
flooding >30 cm (Fig. 1b and Supplementary Table 1). Flooding deeper 
than 3 cm is mainly related to pluvial hazards (1.2 million–1.8 million 
people, Fig. 1f) and fluvial hazards (81,000–1.1 million, Fig. 1g), which 
are much more widespread than coastal hazards (4,000–7,000,  
Fig. 1h). Flooding >100 cm, on the other hand, is mainly related to flu-
vial hazards (3,000–323,000 people, median 83,000) with a smaller 
contribution from pluvial hazards (31,000–58,000 people, median 
40,000), occurring when primary drainage channels are unable to 
contain flood flows (compare ref. 19).

Flood exposure representativeness (FER) is the fraction of a popu-
lation by race or ethnicity living in the flood zone divided by the frac-
tion of the same group within the region33 and differences in FER from 
unity indicate inequities in exposed populations. With the flood zone 
for Los Angeles evaluated at the 50th percentile, non-Hispanic Black 
and Hispanic residents are disproportionately exposed to flood risks 
based on FER of 1.24 and 1.06 and flood depths >3 cm, respectively, 
while non-Hispanic Asian and non-Hispanic White residents are dispro-
portionately less exposed based on FER of 0.92 and 0.93, respectively. 
Given the ratio of FER values, non-Hispanic Black and Hispanic residents 
are thus 31% and 13% more likely than non-Hispanic White residents to 
be exposed to flooding >3 cm. Moreover, non-Hispanic Black, Hispanic 
and non-Hispanic Asian residents are 79% (FER = 1.62), 17% (FER = 1.00) 
and 11% (FER = 0.94) more likely than non-Hispanic White residents 
(FER = 0.83) to be exposed to deep flooding (>100 cm).

Lorenz curves offer an integrated measure of flood risk inequity by 
comparing the cumulative distribution of flood depth with cumulative 
population sorted by a particular factor (for example, property value, 
income, disadvantage and race). Flood hazards equally distributed 
across the population would plot along a 1:1 line and any deviations 
reflect inequalities that, when integrated, are a quantitative indicator: 
the Gini coefficient34 (G).

concentrated, as well as more rural areas in the Southeast where high 
hazards and high vulnerabilities align12,16. Although cities along the West 
Coast rarely experience hurricanes, severe flooding from heavy rainfall 
caused losses >US$1 billion in both 2017 and 2021 (ref. 1), pointing to the 
risks of catastrophic flooding from severe atmospheric river events17,18.

The most notable recorded atmospheric river event in the United 
States was the Great Flood of 1861–62, which caused a catastrophe 
in California with major impacts to the fishing, ranching and mining 
industries—the economic engines of the state at that time19. One-third 
of taxable properties were destroyed, which bankrupted the state, 
and deep flooding of Sacramento forced the temporary relocation 
of the state government to San Francisco. The atmospheric event was 
characterized by a return period of 500–1,000 years and flooding of Los 
Angeles was characterized by a return period of 500 years (ref. 17). The 
Los Angeles region was then mostly ranchlands with fewer than 15,000 
residents and after 4 weeks of rain punctuated by more than a day of 
intense rainfall, losses were marked by ~200,000 cattle, ~100,000 sheep 
and ~500,000 lambs19. Today, a population of 10 million people20 and a 
US$748 billion-per-year economy21 occupy Los Angeles County, reliant 
on a network of dams, levees and drainage channels for protection22.

The ARkStorm study led by the US Geological Survey (USGS) con-
templated the possibility of the Great Flood occurring in present-day 
California, impacting the largest statewide economy and population 
of the United States17. The study concluded that the existing flood 
control infrastructure was undersized and flooding would resemble 
what occurred before infrastructure was in place19. Economic losses 
were estimated at over US$700 billion, which far exceeded damages 
of climate-related disasters in recorded history (for example, ref. 14). In 
a state that has adapted to earthquake risk with increased awareness 
and the retrofit and upgrade of many structures, the project aimed to 
increase flood risk awareness and stimulate risk reduction measures. 
Unfortunately, the risk assessment had little traction with public works 
and emergency managers who expressed confidence in infrastructure 
for protection19. Roughly a decade earlier, over US$200 million had 
been spent to raise levees and construct flood walls along the Rio 
Hondo Channel and lower Los Angeles River (Supplementary Fig. 1) to 
contain a 100-year return period event (ref. 22, page 151).

Today, the most recent Federal Emergency Management Agency 
(FEMA) flood hazard maps for Los Angeles County (Supplementary 
Fig. 1) show a very small ‘1% annual chance flood hazard’ area with a 
population of only 23,169, or <0.3% of the population, where flood 
insurance is required under the National Flood Insurance Program. 
This exposure is reflective of fluvial and coastal flooding only, in line 
with FEMA directives for flood hazard mapping23, so pluvial flood haz-
ards have not been addressed. Moreover, areas defended by the newly 
raised levees and flood walls fall within an ‘area with reduced risk due 
to levee’ that contains a population of 287,235 (based on 2020 census) 
and where flood insurance is not required to limit financial burdens on 
exposed populations—a motivating factor for the levee project (ref. 22, 
page 149). However, FEMA flood maps that underestimate risks have 
been well documented across the United States24, flood peaks have 
continued to increase from urbanization across Los Angeles County25 
and recent reports by the US Army Corps of Engineers and Los Angeles 
County Department of Public Works reveal that segments of the Los 
Angeles River, Dominguez Channel, Compton Creek and San Gabriel 
River (Fig. 1a) are either undersized to contain a 100-year flood peak26,27 
or in unacceptable condition for flood protection because of in-channel 
sedimentation, vegetation growth, spalling of concrete and gaps in 
flood walls28. Furthermore, the region’s major dams are in poor condi-
tion. On the basis of the US Army Corps of Engineers Dam Safety Action 
Classification for risk assessment29, one major dam has been classified 
at the highest level of concern, ‘urgent and compelling’, and several 
more at the second highest level, ‘urgent’ (Supplementary Fig. 1).  
Collectively, these factors indicate that a 100-year flood event in Los 
Angeles will not be contained by existing infrastructure, which points 
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The Lorenz curve of the composite 100-year flood hazard evalu-
ated at the 50th percentile (Fig. 2a, Supplementary Fig. 2 and Sup-
plementary Table 2) shows the strongest disproportionality when 
population is sorted by the share of Black population (G = 0.32), 
driven mainly by fluvial (G = 0.51) and pluvial flood hazards (G = 0.12). 
Figure 2b shows that areas near Carson have the highest shares of 
non-Hispanic Black population and high flood hazard (Fig. 1a,d).  

In contrast, non-Hispanic White populations are disproportionately 
less exposed to the composite flood hazard (G = −0.23) and espe-
cially fluvial hazards (G = −0.33). This is consistent with low shares of 
non-Hispanic White populations living in the high flood hazard region 
between Carson and South Gate (Fig. 2e). Hispanic populations are also 
somewhat disproportionately exposed to the composite (G = 0.07) 
and fluvial flood hazards (G = 0.12), consistent with the prevalence of 
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Fig. 1 | 100-year compound flood hazard in Los Angeles. a, Spatial distribution 
of simulated 100-year composite flood hazard depth evaluated at the 50th 
percentile and condition of major flood channels with respect to containing a 
100-year flood event. b, Exposed population (in millions) and exposed property 
(in US$ billions) for several depth thresholds far exceeds population within FEMA 
1% annual chance flood zone. c–e, Magnified view of pluvial flooding in the west 
side of Los Angeles County (c), compound fluvial–pluvial in the south central 

part of Los Angeles County (d) and compound fluvial–coastal flooding near Long 
Beach (e) shows the street-level detail resolved by the modelling framework. f–h, 
Spatial distributions of hazard and exposure corresponding to pluvial flooding 
(d), fluvial flooding (e) and coastal flooding (e) show that deep flooding (30–
100 cm) is driven by fluvial and pluvial hazards and widespread shallow flooding 
(3–10 cm) is driven by pluvial hazard. Note that coastal population exposure is in 
thousands. Basemaps in a and c–h are from World Terrain Base63.
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Fig. 2 | Flood exposure by race and ethnicity. a, Lorenz curves of population-
weighted flood hazard with Gini coefficients (G) for the 100-year return period 
composite hazard, pluvial hazard, fluvial hazard and coastal hazard evaluated at 
the 50th percentile and four racial/ethnic sorting variables. b–e, Maps showing 
non-Hispanic Black population fraction (b), Hispanic population fraction (c), 
non-Hispanic Asian population fraction (d) and non-Hispanic White population 
fraction (e). Gini coefficients show that fluvial flood hazards disproportionately 

impact non-Hispanic Black populations (G = 0.51) and Hispanic populations 
(G = 0.12), pluvial flood hazards disproportionately impact non-Hispanic Black 
populations (G = 0.12) and coastal hazards almost exclusively impact non-
Hispanic White populations (G = 0.95). Percentages reflect the fraction of the 
hazard associated with the upper half of the population by the sorting variable. 
See Fig. 3b for population density. Basemaps in b–e from World Terrain Base63.
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Fig. 3 | Flood exposure by socioeconomic indicators. a, Lorenz curves of 
population-weighted flood hazard with Gini coefficients (G), for the 100-year 
return period composite hazard, pluvial hazard, fluvial hazard and coastal hazard 
evaluated at the 50th percentile and four different sorting variables. b, Block-
group-scale population density used for dasymetric estimation of population at 
the parcel scale. c–e, Maps showing: property value, income (c), neighbourhood 
disadvantage (d) and the SoVI (e). Percentages reflect the fraction of the hazard 

associated with the upper half of the population by the sorting variable and 
show that exposure does not differ by property value, that more disadvantaged 
populations are disproportionately exposed to the composite hazard (G = 0.15), 
driven by fluvial flood hazards (G = 0.21) and that less disadvantaged populations 
are almost exclusively exposed to coastal hazards (G = −0.86). Basemaps in b–e 
from World Terrain Base63.



Nature Sustainability

Article https://doi.org/10.1038/s41893-022-00977-7

Hispanic populations in the high hazard region surrounding South 
Gate (Fig. 2c). Meanwhile, there is little indication of inequality in the 
exposure of non-Hispanic Asian populations to the composite hazard 
(G = 0.00; Fig. 2d) and almost only non-Hispanic White populations are 
exposed to coastal hazards (G = 0.95; Fig. 2e).

Despite the racial inequalities, our results suggest that extreme 
flooding in Los Angeles would not discriminate by property value. 
Lorenz curves for the composite hazard sorted with respect to property 
value (Fig. 3a, Supplementary Fig. 2 and Supplementary Table 2) closely 
track the line of perfect equality (G = 0.02), which is consistent with a 
mix of lower-than-median and higher-than-median property values 
within the main flood hazard corridor near South Gate and Carson 
(Fig. 3c). However, there are modest disproportionalities with respect 
to income (G = −0.11) and disadvantage as measured by NDI (G = 0.15) 
and a weak disproportionality with respect to vulnerability as meas-
ured by SoVI (G = 0.05). The main flood hazard corridor is associated 
with higher-than-median SoVI (Fig. 3e) and both higher-than-median 
and lower-than-median NDI (Fig. 3d), with higher SoVI and NDI values 
indicative of higher social vulnerability and neighbourhood disadvan-
tage, respectively. More disadvantaged populations will face greater 
challenges recovering from floods and Lorenz curves show that the 
more disadvantaged half of the population shoulders 65% of the com-
posite flood hazard, 56% of the pluvial flood hazard and 74% of the 
fluvial hazard but <1% of the coastal flood hazard.

In the United States, addressing flood risk begins with local gov-
ernment and requires regional, state and federal coordination. The 
demands of grant writing within a complex application process has 
led to greater success among more affluent municipalities in secur-
ing resources to address flooding35,36 and, conversely, less success for 
more disadvantaged communities. Our multidimensional modelling 
framework at the region scale supports identification of the most 
at-risk communities considering flood hazard severity, population 
exposed and disadvantage, which can be used to prioritize resource 
allocations more equitably and transparently. For example, Fig. 4a 
shows the relationship of disadvantage and flood hazard aggregated 
to the level of municipalities in the study area and reveals the relatively 
few cities where both disadvantage and flood risks are high. Among 
these doubly at-risk municipalities, the most populous are Long Beach, 
Paramount, Carson, Bell Gardens and South Gate. At a high level, our 
results suggest that these communities might be worthy priorities 

for mitigating regional flood risks. In each case, these municipalities 
are also home to a substantial share of non-white residents. Increas-
ing hazard and increasing disadvantage represent complementary, 
non-racialized considerations for prioritizing risk reduction resources 
on the basis of the magnitude of risks and the capacity of communi-
ties to recover, respectively. Furthermore, prioritization of resources 
could help to address racial disparities by additionally considering 
where non-white representativeness is high (Fig. 4a–e). For exam-
ple: Long Beach has an exposed population of 88,000–262,000 
(median 208,000) people that is disproportionately non-Hispanic 
Black (FER = 1.67, Fig. 4b); Paramount has an exposed population of 
15,000–53,000 (median 41,000) people that is disproportionately 
non-Hispanic Black (FER = 1.61) and Hispanic (FER = 1.61); Carson has 
an exposed population of 17,000–46,000 (median 21,000) people that 
is disproportionately non-Hispanic Black (FER = 3.27, Fig. 4b); Bell Gar-
dens has an exposed population of 25,000–30,000 (median 28,000) 
people that is disproportionately Hispanic (FER = 1.98); and South Gate 
has an exposed population of 13,000–29,000 (median 23,000) people 
that is disproportionately Hispanic (FER = 1.89, Fig. 4c). The largest 
municipal exposure corresponds to Los Angeles (514,000–882,000, 
median 654,000) with an average flood depth of 25 cm and dispro-
portionate exposure of non-Hispanic Black populations (FER = 1.38, 
Fig. 4b).

Discussion
A 100-year flood event in Los Angles would expose 197,000–874,000 
(median 425,000) people and US$36 billion–US$108 billion (median 
US$56 billion) in property to flooding >30 cm, rivalling the impacts of 
recent severe US hurricanes such as Katrina in 2005, Sandy in 2012 and 
Irma and Harvey in 2017, each of which incurred losses >US$50 billion14 
and displaced >200,000 people15. The risks of deep flooding (>100 cm) 
marked by an exposed population of 32,000–361,000 (median 119,000) 
and exposed property valued at US$7 billion–US$41 billion (median 
US$14 billion) are primarily linked to overtopping of flood channels 
mostly constructed in the decades following World War II22,37 and 
now undersized26,27 or inadequately maintained28. Precipitation and 
streamflow records were not widely available during the time of their 
construction and channel capacity has been reduced over time by 
sedimentation and in-channel vegetation37 while runoff rates have 
increased due to the expansion of impervious surfaces25. Our results 
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relative to the same fraction in the region. b–e, Prioritization could also consider 
inequities across racialized groups indicated by FER at municipal levels for non-
Hispanic Black (b), Hispanic (c), non-Hispanic Asian (d) and non-Hispanic White 
populations (e). Basemaps in b–e are from World Terrain Base63.
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show that overtopping of upslope channels distributes flood waters 
over the wide coastal plain, where they flow downslope along roadways 
and collect within the lowlands between South Gate and Long Beach 
(where braided channels, riparian wetlands and coastal marsh existed 
before human development) (ref. 22, page 21).

Flooding causes many types of harms: direct financial losses, 
property damage, mortality and other impacts to health and well-being, 
involuntary displacement and transportation and livelihood disrup-
tions, among others38. These impacts, in combination with differential 
vulnerability and coping capacity, can heighten existing inequalities, 
reduce funds available for governments for other social goods and 
erode connections to places and the vitality and cohesion of communi-
ties. Further, in many cases, flood management practices have served 
to exacerbate social, economic and political inequities, leading to both 
differential flood risks and differential relief and recovery following 
flood disasters11,39–42.

Models used for continental- and global-scale estimates of flood 
risk rely on a priori estimates of the level of protection provided by 
infrastructure (for example, exceedance probability) and assume that 
fluvial flooding does not occur for flow rates below the protection 
standard (for example, refs. 23,43). If FEMA levee ratings are the basis 
for protection standards used in large-scale models, this may explain 
why recent nationwide studies (for example, refs. 12,24,) point to much 
lower risks to Los Angeles than we do. Indeed, urban flood risks in the 
United States may be systematically underestimated in this way, which 
could help explain the high frequency of flooding disasters in major US 
cities2. But our results for Los Angeles show that the high-resolution 
compound flood hazard modelling framework presented here, free 
from a priori assumptions about channel capacity, can yield exposure 
assessments that are consistent with detailed studies at the local level 
(for example, refs. 25,26) documenting undersized or inadequately 
maintained channels while systematically characterizing impacts 
region wide.

Underestimation of urban flood hazards in the United States may 
limit understanding of inequities in flood exposure. For example, 
nationwide flood modelling has suggested that non-Hispanic White 

populations are disproportionately exposed to flood risks at present, 
partly reflecting exposures concentrated in the Southeastern United 
States12,16. Flood hazards are also perceived and prioritized differently 
and, for coastal flooding in particular, amenity values may lead to over-
valuation of property values, in combination with underestimation of 
flood risks (for example, ref. 44). However, our compound hazard mod-
elling in Los Angeles vindicates the experiences of flood management 
that there are substantial racial and socioeconomic disparities in flood 
risks by hazard driver. Non-Hispanic Black, Hispanic and socioeconomi-
cally vulnerable populations in Los Angeles are disproportionately at 
risk of fluvial flooding, whereas risks of coastal flooding overwhelm-
ingly pertain to non-Hispanic White and low-disadvantage populations. 
Our results thus provide an evidentiary basis for understanding une-
qual distributions of flood risks across communities and demographic 
groups. As has been found in analyses of exposure to environmental 
contaminants9, inequities in flood risks among non-Hispanic Black 
populations (Fig. 2) seem substantially larger than inequities across 
levels of neighbourhood disadvantage (NDI, Fig. 3d) or social vulner-
ability (for example, SoVI, Fig. 3e).

Our results are subject to several important limitations, uncer-
tainties and caveats. First, major fluvial flood hazards simulated in 
this study are the result of levee and flood wall overtopping, which 
is sensitive to uncertainty in our estimates of 100-year flood peaks 
(Fig. 5 and Supplementary Table 5) and uncertainty in levee heights 
(~19.2 cm RMSE45). Combinations of lower peak flows and higher flood 
defenses would contribute to less overtopping, for example, and loca-
tions of overtopping are sensitive to local minima in levee heights 
(Supplementary Methods). Second, pluvial flood hazards may be 
overestimated in some areas because street runoff is assumed to reach 
secondary drainage pipes and channels by overland flow as opposed to 
subsurface drain pipes (Methods). On the other hand, fluvial hazards 
could be underestimated on the basis of the assumption of no levee 
or dam failures and no obstruction of channels by debris, which is at 
odds with the experiences of recent flood disasters such as Hurricane 
Katrina46 and is a realistic concern based on dam risk ratings and levee 
inspection reports for Los Angeles (Supplementary Fig. 1). A likely range 

0 10 20
km

95th percentile

50th percentile
5th percentile

1% annual chance
flood zone

Fig. 5 | Uncertainty in the 100-year return period flood hazard area. Estimated spatial extent of the 100-year return period (1% annual chance) flood hazard zone 
corresponding to the 5th, 50th and 95th percentiles for uncertainty. In areas of overlap, the lowest percentile is shown. Basemap from World Terrain Base63.
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of exposure is obtained by simulating the 100-year return event with 
each hazard driver evaluated the 5th and 95th percentile (Fig. 5 and 
Supplementary Table 1). Flood impacts could also be explored more 
deeply with measures such as expected losses, economic disruption, 
job losses, fatalities, injuries, human displacement and consequences 
for community cohesion, cultural heritage and social networks.

Yet the combination of high-resolution flood modelling and socio-
economic data reveals that flood risks within the densely populated Los 
Angeles region may be considerably underestimated—and that the great-
est risks are borne disproportionately by Black and disadvantaged popula-
tions. Such inequities are probably reinforced by the challenges and costs 
of navigating the numerous federal and state agencies and local govern-
ments that provide resources for flood protection, which may be a substan-
tial barrier to less affluent or marginalized communities. Our quantitative 
approach, which could be replicated for any US urban or rural region, thus 
highlights communities where flood risks are disproportionately large and 
provides critical data for more effective and equitable allocation of state 
and federal aid resources. Furthermore, integrated modelling of hazards 
and exposure as presented here offers an opening for dialogue among 
communities at risk of flooding, researchers and decision-makers in gov-
ernment (for example, ref. 47), thereby enabling a more inclusive process 
of planning and projects to reduce the risks of future flood disasters (for 
example, ref. 48). Replication elsewhere calls for acquiring and processing 
several urban datasets and local gauge records (Methods) and carrying out 
numerous checks for model accuracy and consistency, a manual process 
that can take an experienced modeller weeks to months. Nevertheless, 
the effort is likely to be far more cost-effective, time-sensitive and useful 
to marginalized communities than past practices in the United States of 
patching together reach-by-reach models of flood hazards24.

Methods
Site description and parcel data
The study domain corresponds to the coastal plain of Los Angeles south 
of the Santa Monica Mountains. Data characterizing flood hazards, land 
use, lot area, property value, population, income, race, ethnicity, dis-
advantage and vulnerability were characterized across 1,767,588 land 
parcels to enable regional- and municipal-scale exposure analysis. Land 
parcels represent the smallest unit of land for the purpose of owner-
ship. Flood hazard, land use, lot area and property values were resolved 
for each parcel and all other variables were downscaled from 2020 US 
census data at the block-group and/or census-tract scale. Tracts are 
small, contiguous, relatively permanent statistical subdivisions of a 
county or area, which generally have population sizes 1,200–8,000 and 
optimally near 4,000 (ref. 49). Block groups are divisions of the same 
census tract, generally containing 600–3,000 people.

Parcel shapefiles with lot area, land use and assessor’s value were 
accessed from the Los Angeles County Open Data Portal31. Population was 
estimated dasymetrically by apportioning the block-group population 
from the 2020 census across residential parcels in proportion to lot area16 
and zero population was ascribed to commercial or other parcel types. 
Each residential parcel was also assigned a non-Hispanic Black, Hispanic, 
non-Hispanic Asian and non-Hispanic White population fraction corre-
sponding to the block-group fraction computed from census data. The 
study area population is 9,105,286 which by ethnicity is 48.2% Hispanic and 
by race is 49% White, 22.0% other, 14.2% Asian, 8.6% Black, 4.4% two or more 
races, 0.7% Native American and 0.3% Hawaii and other Pacific Islander.

Neighbourhood disadvantage index
NDI was developed from literatures on neighbourhood disadvantage, 
urban and concentrated poverty, neighbourhood effects and resi-
dential segregation (for example, refs. 50,51). NDI was estimated at the 
block-group rather than census-tract level to enable a more precise 
understanding of social exposure in terms of exactly who is affected 
by flood hazards. The NDI closely follows recent sociological indices of 
neighbourhood disadvantage (for example, ref. 52). The NDI incorporates 

25 different indicators into one scale (Supplementary Table 3). The indi-
cators were drawn from the 2019 5-year Census American Community 
Survey32. The unit of analysis is 216,498 block groups with valid data 
across the United States. The index is composed of measures across 
five domains: economic resources (for example, poverty and income), 
social policy (for example, access to welfare programmes), housing (for 
example, home ownership and rent burden), labour market (for exam-
ple, unemployment rate) and demographics (single motherhood and 
educational attainment). All indicators and the NDI are signed such that 
higher values indicate greater disadvantage. The NDI is scaled to range 
from 0 to 1. The scale was constructed by using the standardized (mean 
0, variance 1) values of the individual indicators and the scale reliability 
alpha was computed to be 0.92 using the Spearman–Brown Prophecy 
Formula53. Our analyses assign every land parcel within a block group 
the same NDI score. For the study area, 5th, 50th and 95th quantiles of 
NDI by land parcel are 0.27, 0.40 and 0.58, respectively.

The NDI includes many of the same indicators as earlier vulnerability 
indices including the social vulnerability index (SVI) developed by the 
Centers for Disease Control Agency for Toxic Substances and Disease 
Registry (CDC/ATSDR SVI)54 and the SoVI developed at the University 
of South Carolina55, with a few key exceptions (Supplementary Table 3). 
Unlike the CDC/ATSDR SVI and SoVI, we intentionally and purposefully 
chose to omit racial/ethnic minority status. We did so because includ-
ing it problematically conflates indicators of disadvantage with causes 
of disadvantage. Having a high Black and Latino population share cer-
tainly may correlate with neighbourhood disadvantage but it is theo-
retically problematic to treat the presence of Black and Latino people 
as a disadvantage in itself. Also, unlike the CDC/ATSDR SVI, we omitted 
the measures of housing type and transportation (for example, mobile 
homes and multi-unit structures). Similarly, unlike SoVI, we omitted other 
infrastructure-related measures like hospitals per capita (measured at 
county level) and percentage housing units without a car. Although of 
course these certainly matter to vulnerability, we intentionally and strictly 
focused on socioeconomic disadvantage itself, not the physical environ-
ment and physical infrastructure in the neighbourhood. Finally, unlike 
previous indices, we omitted several demographic indicators that are only 
loosely related to disadvantage. For instance, we omitted the CDC/ATSDR 
SVI and SoVI measures of age structure (for example, percentage <5 or 
<17 or ≥65 years of age), the CDC measure of percentage with a disability 
and the SoVI measures of other demographics (for example, percentage 
females, median age, nursing home residents per capita, people per unit, 
female labour force participation and percentage employed in extractive 
or service industries). Supplementary Fig. 3 shows the distribution of NDI, 
SVI and SoVI for the United States and Los Angeles County.

The comparative analysis uses 67,864 census tracts across the 
United States and 1,955 tracts across Los Angeles County, for which SVI 
and SoVI data are jointly available from FEMA’s National Risk Map56. 
Block-group resolution NDI values were averaged across each tract. 
For comparative purposes, each vulnerability index was normalized 
and tracts with NoData values were removed. US-wide, SVI exhibits the 
broadest distribution of vulnerability, centred on the median value of 
0.5 and with an interquartile range between 0.37 and 0.64. SoVI and NDI 
have lower characterizations of vulnerability, exhibiting both lower 
median values and narrower interquartile ranges. All three distribu-
tions are minimally skewed, whereby SoVI exhibits the most skew of 
0.78. For all three vulnerability indexes, the least vulnerable tracts 
(bottom 5th percentile) are marked by values around 0.2, while for 
the most vulnerable tracts (upper 5th percentile), the index range 
varies between 0.8 for SVI, 0.7 for NDI and 0.42 for SoVI. Compared to 
the United States as a whole, Los Angeles County median NDI and SVI 
values are ~18% higher, while the median SoVI value is nearly equal.

Compound flood hazard modelling
Flood hazard was estimated using the Parallel Raster Inundation 
Model (PRIMo) which solves the full shallow-water equations using 
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a dual-grid finite volume scheme that combines topographic data on 
a fine-grid with solution updates on a relatively coarse grid to over-
come the computational bottlenecks of metropolitan-wide urban 
flood simulation57. Here, topography was resolved at 3 m resolution, 
shallow-water solution states were updated at 30 m resolution and 
depth was downscaled to 3 m resolution to estimate exposure. A 3 m 
resolution digital elevation model (DEM) was constructed mainly from 
two sources, 1/9th arcsec (3 m) USGS National Elevation Dataset (NED) 
DEM (primarily from 2016 lidar data45) for elevations >10 m and a 1 m 
resolution USGS topobathymetric DEM for elevations <10 m NAVD 88 
including coastal bathymetry (data sources collected between 1930 
and 2014; Supplementary Methods). The DEM was further subjected to 
several types of hydroconditioning for urban flood hazard modelling. 
First, channels in the land surface were ‘burned’ into the DEM to over-
come line-of-site laser-scanning interference (for example, drainage 
channels that pass under roadways) and to approximate the capacity 
of culverts and subsurface gravity mains connecting open channels. 
These channels were aligned and sized with storm drain centerline and 
geometry data available from the County of Los Angeles58. Second, 
for roadway underpasses, the DEM was hydroconditioned to match 
the lower grade which is critical for flood water spreading through 
developed areas—otherwise underpasses are inaccurately modelled as 
blockage features. Data for roadway overpass locations were extracted 
from OpenStreetMap (https://www.openstreetmap.org/). Third, DEM 
heights representing major dams including Whittier Narrows Dam and 
Sepulveda Dam were buffered by 100 m to prevent artificial leakage 
flows arising from the PRIMo upscaling technique53. Fourth, a grid-edge 
classification technique was used to sharpen the representation of 
levees and flood walls30. With hydroconditioning of the DEM, the Los 
Angeles PRIMo model is configured to account for level 1 drainage 
infrastructure (dams/levees) and level 2 drainage infrastructure (sec-
ondary channels, culverts and drain pipes) but not level 3 drainage 
infrastructure (curb inlets and small storm pipes to nearest drainage 
channels). To model flow resistance, a 3 m resolution raster grid model 
of the Manning coefficient was developed on the basis of land use data 
available from OpenStreetMap and tabulated values of the Manning 
parameter for each land use category (Supplementary Table 4). The 
PRIMo model was configured to run using 756 tiles of raster grids of 
size 1,000 × 1,000, which corresponds to 756 million points.

PRIMo was configured to simulate pluvial, fluvial and coastal 
scenarios corresponding to 100-year return period events using 
different types of inputs. The pluvial scenario was configured by 
specifying a spatially distributed rainfall rate corresponding to the 
100-year 24 h rainfall intensity defined by NOAA Atlas 14 (ref. 59) and 
by simulating flood inundation for a period of 24 h which exceeds 
the time of concentration for the coastal plain (several hours). No 
infiltration was assumed because historical extreme flood events 
in the region (for example, 1861–62 and 1931) have been associated 
with several weeks of persistent rainfall that saturate the ground 
surface before episodes of extreme rainfall lasting hours37. The fluvial 
scenario was configured by specifying sources of water into primary 
and secondary flood channels to create flow rates representative 
of a 100-year return period streamflow event. The 100-year flow 
rate across the study area was estimated on the basis of frequency 
analysis of 51 different gauges maintained by the USGS, Los Angeles 
County and Orange County (Supplementary Table 5, Supplementary 
Fig. 1 and Supplementary Methods). Finally, the coastal scenario was 
developed by specifying a constant water level at the ocean bound-
ary of PRIMo corresponding to the peak storm tide height with a 
100-year return period based on water-level measurements at the 
Los Angeles NOAA tide gauge (9410660) and a period corresponding 
to 12 h. This accounts for the combined effects of tide and non-tide 
residuals but does not account for wave-driven flooding that occurs 
locally along the coast with the coincidence of high tides and long 
period swell. Hence, the coastal flood hazard assessment presented 

here is most representative within embayments sheltered from ocean 
waves (for example, Port of Los Angeles and Long Beach, Marina Del 
Ray) and may underestimate exposure along the open coast where 
wave transformation, runup and overtopping are drivers of coastal 
hazard (for example, Malibu). The 100-year return period value for 
each hazard driver (rainfall rate, streamflow and storm tide) was 
estimated at the 50th percentile to provide a most likely estimate 
of exposure for equity analysis and also at the 5th and 95th level to 
characterize uncertainty in exposure. Hazard drivers at the 5th and 
95th percentile were estimated in the following ways: for the coastal 
hazard scenario, 5th and 95th percentile water surface elevations 
were extracted from the process-informed non-stationary extreme 
value analysis (ProNEVA) software package60 executed using a 98-year 
block-maximum time series of observed ocean surface elevations 
at NOAA’s Los Angeles tide gauge (NOAA 9410660); for the fluvial 
scenario, 5th and 95th percentile discharge values at each gauge 
location were extracted from HEC-SSP software (Supplementary 
Table 5); and for the pluvial scenario, 5th and 95th percentile spatially 
distributed depths were obtained from NOAA Atlas 14 as GIS grids59. 
PRIMo flood hazard simulations were performed in parallel over 756 
compute cores on Cheyenne at the NCAR-Wyoming Supercomputing 
Center57. The model speed (ratio of simulation duration to wall clock 
time) for an upscale factor of 2 and 10 was 0.29 and 27.4, respectively. 
Flood hazard depth at 3 m spatial resolution was output from PRIMo 
for all three scenarios and a composite flood hazard distribution was 
also computed for the region on the basis of the pointwise maximum 
across the scenarios. Flood hazard at each land parcel was estimated 
on the basis of the average value across the area of the land parcel61. 
Model validation was approached with a combination of bottom-up 
exploration of model sensitivities and top-down assessment of the 
credibility of aggregated information (Supplementary Methods)62.

Exposure and equity analysis
Exposed populations were computed by summing parcel-level popu-
lation across parcels with a flood depth above a prescribed threshold 
(for example, 3, 10, 30 and 100 cm). Furthermore, populations by race 
and ethnicity were estimated by summing the product of parcel-level 
population and ethnic/racial fractions. Summations were performed 
at the County and local (municipal) scale on the basis of municipal tax 
rate affiliations for each parcel provided by Los Angeles County. FER 
is computed at the County scale and at the local (municipal) scale. In 
both cases, population fractions at the County scale are the basis for 
normalization (that is, fractions used in the denominator of the FER 
calculation) to frame representativeness by city in a regional con-
text. Lorenz curves were developed at the County scale by sorting the 
parcel-level dataset in accordance with a specific factor (for example, 
property value per area) and then building cumulative distribution 
functions for population (for the x axis) and population-weighted 
flood hazard (for the y axis). Factors considered for sorting include 
non-Hispanic Black, Hispanic, non-Hispanic Asian and non-Hispanic 
White population fractions, property value per area, income, NDI and 
SoVI. All cumulative distribution functions were normalized by the 
maximum values so Lorenz curves scale from zero to unity on both 
axes. Furthermore, Gini coefficients are computed as indicators of 
inequality34 and the fraction of the hazard associated with the upper 
half of the population is computed as a second indicator of inequality.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
The parcel-level dataset developed for this study is available through 
the Dryad and digital repository accessible at https://doi.org/10.7280/
D1RH7Z.

https://www.openstreetmap.org/
https://doi.org/10.7280/D1RH7Z
https://doi.org/10.7280/D1RH7Z
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Code availability
Codes used for exposure and equity analysis are available through 
the Zenodo digital repository accessible at https://doi.org/10.7280/
D1RH7Z. Custom codes in Fortran, Matlab, Python and R used for data 
preparation, flood simulation and postprocessing are available upon 
written request from the authors.

References
1.	 Smith, A. B. U.S. Billion-dollar Weather and Climate Disasters, 

1980–Present (NCEI, 2020); https://doi.org/10.25921/stkw-7w73
2.	 National Academies of Sciences, Engineering, and Medicine 

Framing the Challenge of Urban Flooding in the United States 
(National Academies Press, 2019).

3.	 Rainey, J. L., Brody, S. D., Galloway, G. E. & Highfield, W. E. 
Assessment of the growing threat of urban flooding: a case study 
of a national survey. Urban Water J. 18, 375–381 (2021).

4.	 Gall, M., Borden, K. A., Emrich, C. T. & Cutter, S. L. The 
unsustainable trend of natural hazard losses in the United States. 
Sustainability 3, 2157–2181 (2011).

5.	 Zhang, W., Villarini, G., Vecchi, G. A. & Smith, J. A. Urbanization 
exacerbated the rainfall and flooding caused by hurricane Harvey 
in Houston. Nature 563, 384–388 (2018).

6.	 Davenport, F. V., Burke, M. & Diffenbaugh, N. S. Contribution of 
historical precipitation change to US flood damages. Proc. Natl 
Acad. Sci. USA 118, e2017524118 (2021).

7.	 Hino, M. & Nance, E. Five ways to ensure flood-risk research helps 
the most vulnerable. Nature 595, 27–29 (2021).

8.	 Bullard, R. D. & Wright, B. The Wrong Complexion for Protection: 
How the Government Response to Disaster Endangers African 
American Communities (New York Univ. Press, 2012).

9.	 Chambliss, S. E. et al. Local- and regional-scale racial and ethnic 
disparities in air pollution determined by long-term mobile 
monitoring. Proc. Natl Acad. Sci. USA 118, e2109249118 (2021).

10.	 Chakraborty, J., Collins, T. W. & Grineski, S. E. Exploring the 
environmental justice implications of Hurricane Harvey flooding 
in Greater Houston, Texas. Am. J. Public Health 109, 244–250 
(2019).

11.	 Siders, A. R. & Keenan, J. M. Variables shaping coastal adaptation 
decisions to armor, nourish, and retreat in North Carolina. Ocean 
Coast. Manag. 183, 105023 (2020).

12.	 Wing, O. E. J. et al. Inequitable patterns of US flood risk in the 
Anthropocene. Nat. Clim. Change 12, 156–162 (2022).

13.	 Finch, C., Emrich, C. T. & Cutter, S. L. Disaster disparities and 
differential recovery in New Orleans. Popul. Environ. 31, 179–202 
(2010).

14.	 WMO Atlas of Mortality and Economic Losses from Weather, 
Climate and Water Extremes (1970–2019) (World Meteorological 
Organization, 2021).

15.	 Brakenridge, R. Global Active Archive of Large Flood Events, 
1985–Present (Dartmouth Flood Observatory, 2021); https://
floodobservatory.colorado.edu/Archives/index.html

16.	 Tate, E., Rahman, M. A., Emrich, C. T. & Sampson, C. C. Flood 
exposure and social vulnerability in the United States. Nat. 
Hazards 106, 435–457 (2021).

17.	 Porter, K. et al. Overview of the ARkStorm Scenario (USGS, 2011); 
https://pubs.usgs.gov/of/2010/1312/

18.	 Ralph, F. M., Dettinger, M. D., Cairns, M. M., Galarneau, T. J. & 
Eylander, J. Defining “atmospheric river”: how the glossary of 
meteorology helped resolve a debate. Bull. Am. Meteorol. Soc. 
99, 837–839 (2018).

19.	 Jones, L. M. The Big Ones: How Natural Disasters have Shaped Us 
(and What we can do About Them) (Anchor Books, 2019).

20.	 Population Estimates for Los Angeles County for July 1, 2021 (U.S. 
Census Bureau, accessed 1 February 2022); https://www.census.
gov/quickfacts/losangelescountycalifornia

21.	 Regional Data, GDP and Personal Income for Los Angeles, CA (U.S. 
Bureau of Economic Analysis, accessed 1 February 2022); https://
apps.bea.gov/itable/iTable.cfm?ReqID=70&step=1&acrdn=5

22.	 Orsi, J. Hazardous Metropolis: Flooding and Urban Ecology in Los 
Angeles (Univ. of California Press, 2004).

23.	 Wing, O. E. J. et al. Validation of a 30 m resolution flood hazard 
model of the conterminous United States. Water Resour. Res. 53, 
7968–7986 (2017).

24.	 Bates, P. D. et al. Combined modeling of US fluvial, pluvial, and 
coastal flood hazard under current and future climates. Water Res. 
57, e2020WR028673 (2021).

25.	 Sheng, J. & Wilson, J. P. Watershed urbanization and changing 
flood behavior across the Los Angeles metropolitan region. Nat. 
Hazards 48, 41–57 (2009).

26.	 Hydraulics Report. Floodplain Analysis, Los Angeles River: Barham 
Boulevard to First Street. Flood Plain Management Services Special 
Study. Los Angeles, California (U.S. Army Corps of Engineers, 
2016); https://eng2.lacity.org/projects/LARIVER_Glendale_
Narrows/docs/LAR_FPMS_Hydraulic_Report_FINAL_October2016_
CompleteDocument.pdf

27.	 Levee Certification Program (Los Angeles County Department of 
Public Works, accessed 1 February 2022); https://dpw.lacounty.
gov/wmd/nfip/dsp_LeveeCertificationFAQs.aspx

28.	 Levee Safety Program. Inspection Summaries for the Los Angeles 
River, San Gabriel River, Rio Hondo Channel, and Compton Creek 
(US Army Corps of Engineers, 2022); https://www.spl.usace.army.
mil/Missions/Civil-Works/Levee-Safety-Program/

29.	 Engineering and Design, Safety of Dams—Policy and Procedures 
(US Army Corps of Engineers, 2011).

30.	 Kahl, D. T., Schubert, J. E., Jong-Levinger, A. & Sanders, B. F. 
Grid edge classification method to enhance levee resolution in 
dual-grid flood inundation models. Adv. Water Res. 168, 104287 
(2022).

31.	 County of Los Angeles Open Data (County of Los Angeles, 
accessed 1 February 2022); https://data.lacounty.gov/

32.	 American Community Survey 5-Year Data (2009–2019): Detailed 
Tables (U.S. Census Bureau, 2020); https://www.census.gov/data/
developers/data-sets/acs-5year.html

33.	 Messager, M. L., Ettinger, A. K., Murphy-Williams, M. & Levin, P. S. 
Fine-scale assessment of inequities in inland flood vulnerability. 
Appl. Geogr. 133, 102492 (2021).

34.	 Dorfman, R. A formula for the Gini coefficient. Rev. Econ. Stat. 61, 
146 (1979).

35.	 Mach, K. J. et al. Managed retreat through voluntary buyouts of 
flood-prone properties. Sci. Adv. 5, eaax8995 (2019).

36.	 Lehmann, M., Major, D. C., Fitton, J. M., Doust, K. & O’Donoghue, S. 
Towards a typology for coastal towns and small cities for climate 
change adaptation planning. Ocean Coast. Manag. 212, 105784 
(2021).

37.	 Sanders, B. F. & Grant, S. B. Re‐envisioning stormwater 
infrastructure for ultrahazardous flooding. WIREs Water 7, e1414 
(2020).

38.	 Markhvida, M., Walsh, B., Hallegatte, S. & Baker, J. Quantification 
of disaster impacts through household well-being losses. Nat. 
Sustain. 3, 538–547 (2020).

39.	 Shi, L. From Progressive cities to resilient cities: lessons from 
history for new debates in equitable adaptation to climate 
change. Urban Aff. Rev. 57, 1442–1479 (2021).

40.	 Domingue, S. J. & Emrich, C. T. Social vulnerability and  
procedural equity: exploring the distribution of disaster aid across 
counties in the United States. Am. Rev. Public Admin. 49, 897–913 
(2019).

41.	 Hornbeck, R. & Naidu, S. When the levee breaks: black migration 
and economic development in the American South. Am. Econ. 
Rev. 104, 963–990 (2014).

https://doi.org/10.7280/D1RH7Z
https://doi.org/10.7280/D1RH7Z
https://doi.org/10.25921/stkw-7w73.
https://floodobservatory.colorado.edu/Archives/index.html
https://floodobservatory.colorado.edu/Archives/index.html
https://pubs.usgs.gov/of/2010/1312/
https://www.census.gov/quickfacts/losangelescountycalifornia
https://www.census.gov/quickfacts/losangelescountycalifornia
https://apps.bea.gov/itable/iTable.cfm?ReqID=70&step=1&acrdn=5
https://apps.bea.gov/itable/iTable.cfm?ReqID=70&step=1&acrdn=5
https://eng2.lacity.org/projects/LARIVER_Glendale_Narrows/docs/LAR_FPMS_Hydraulic_Report_FINAL_October2016_CompleteDocument.pdf
https://eng2.lacity.org/projects/LARIVER_Glendale_Narrows/docs/LAR_FPMS_Hydraulic_Report_FINAL_October2016_CompleteDocument.pdf
https://eng2.lacity.org/projects/LARIVER_Glendale_Narrows/docs/LAR_FPMS_Hydraulic_Report_FINAL_October2016_CompleteDocument.pdf
https://dpw.lacounty.gov/wmd/nfip/dsp_LeveeCertificationFAQs.aspx
https://dpw.lacounty.gov/wmd/nfip/dsp_LeveeCertificationFAQs.aspx
https://www.spl.usace.army.mil/Missions/Civil-Works/Levee-Safety-Program/
https://www.spl.usace.army.mil/Missions/Civil-Works/Levee-Safety-Program/
https://data.lacounty.gov/
https://www.census.gov/data/developers/data-sets/acs-5year.html
https://www.census.gov/data/developers/data-sets/acs-5year.html


Nature Sustainability

Article https://doi.org/10.1038/s41893-022-00977-7

42.	 Smiley, K. T. Social inequalities in flooding inside and outside 
of floodplains during Hurricane Harvey. Environ. Res. Lett. 15, 
0940b3 (2020).

43.	 Winsemius, H. C., Van Beek, L. P. H., Jongman, B., Ward, P. J. & 
Bouwman, A. A framework for global river flood risk assessments. 
Hydrol. Earth Syst. Sci. 17, 1871–1892 (2013).

44.	 Bakkensen, L. & Barrage, L. Flood Risk Belief Heterogeneity 
and Coastal Home Price Dynamics: Going Under Water? (NBER, 
2017); http://www.nber.org/papers/w23854.pdf; https://doi.
org/10.3386/w23854

45.	 2015–2016 LARIAC Lidar: Los Angeles Region, CA. (OCM Partners, 
2022); https://www.fisheries.noaa.gov/inport/item/55233

46.	 Galloway, G. E. Flood risk management in the United States 
and the impact of Hurricane Katrina. Int. J. River Basin Manag. 6, 
301–306 (2008).

47.	 Sanders, B. F. et al. Collaborative modeling with fine‐resolution 
data enhances flood awareness, minimizes differences in flood 
perception, and produces actionable flood maps. Earth’s Future 8, 
2019 (2020).

48.	 Goodrich, K. A. et al. Addressing pluvial flash flooding through 
community-based collaborative research in Tijuana, Mexico. 
Water 12, 1257 (2020).

49.	 Glossary (U.S. Census Bureau, 2022); https://www.census.gov/
programs-surveys/geography/about/glossary.html

50.	 Carpiano, R. M. Neighborhood social capital and adult health: 
an empirical test of a Bourdieu-based model. Health Place 13, 
639–655 (2007).

51.	 Sampson, R. J., Raudenbush, S. W. & Earls, F. Neighborhoods and 
violent crime: a multilevel study of collective efficacy. Science 
277, 918–924 (1997).

52.	 Wodtke, G. T., Elwert, F. & Harding, D. J. Neighborhood effect 
heterogeneity by family income and developmental period. Am. J. 
Sociol. 121, 1168–1222 (2016).

53.	 Stata: Release 17 Multivariate Statistics Reference Manual 
(StataCorp, 2021).

54.	 The CDC/ATSDR Social Vulnerability Index (CDC/ATSDR SVI) (The 
Center for Disease Control and Agency for Toxic Substances and 
Disease Registry, accessed 1 February 2022); https://www.atsdr.
cdc.gov/placeandhealth/svi/index.html

55.	 The Social Vulnerability Index (SoVI) 2010–2014 (The University 
of South Carolina Hazards and Vulnerability Research Institute, 
accessed 1 February 2022); https://www.sc.edu/study/colleges_
schools/artsandsciences/centers_and_institutes/hvri/data_and_
resources/sovi/index.php

56.	 Zuzak, C. et al. The national risk index: establishing a nationwide 
baseline for natural hazard risk in the US. Nat. Hazards https://doi.
org/10.1007/s11069-022-05474-w (2022).

57.	 Sanders, B. F. & Schubert, J. E. PRIMo: parallel raster inundation 
model. Adv. Water Resour. 126, 79–95 (2019).

58.	 Los Angeles County Storm Drain (Los Angeles County Public 
Works, accessed 1 February 2022); https://pw.lacounty.gov/fcd/
StormDrain/index.cfm

59.	 Perica, S. et al. Precipitation-Frequency Atlas of the United States, 
California NOAA Atlas 14 Vol. 6 v.2.3 (NOAA, 2014).

60.	 Ragno, E., AghaKouchak, A., Cheng, L. & Sadegh, M. A 
generalized framework for process-informed nonstationary 
extreme value analysis. Adv. Water Res. 130, 270–282 (2019).

61.	 Moftakhari, H., Schubert, J. E., AghaKouchak, A., Matthew, R. A. 
& Sanders, B. F. Linking statistical and hydrodynamic modeling 
for compound flood hazard assessment in tidal channels and 
estuaries. Adv. Water Resour. 128, 28–38 (2019).

62.	 Sayers, P. et al. Believe it or not? The challenge of validating  
large scale probabilistic risk models. E3S Web Conf. 7, 11004 
(2016).

63.	 World Terrain Base (ESRI, 2022); https://www.arcgis.com/home/
item.html?id=33064a20de0c48d2bb61efa8faca93a8

Acknowledgements
We express our thanks to the County of Los Angeles and the 
County of Orange for assistance with access to data used for 
this study. We thank S. Grant for valuable discussion and A. 
Jong-Levinger for assistance preparing model data. We also 
acknowledge high-performance computing support from the 
NCAR-Wyoming Supercomputing Center provided by the National 
Science Foundation and the State of Wyoming and supported 
by NCAR’s Computational and Information Systems Laboratory. 
Figures with maps were created using ArcGIS software by Esri. 
This work was supported by grants from the National Science 
Foundation (Coastlines and People grant no. ICER-1940171,  
INFEWS grant no. EAR-1639318 and grant no. HDBE-2031535), 
the NOAA Effects of Sea Level Rise Program (grant no. 
NA16NOS4780206) and the Ridge to Reef NSF Research 
Traineeship (grant no. DGE-1735040).

Author contributions
The project concept was conceived by A.A., D.B., S.J.D., F.F., K.J.M., 
R.A.M., B.F.S., J.E.S. and N.U. who also contributed to funding 
acquisition. The methodology was developed and validated by D.B., 
S.J.D., D.K., B.F.S. and J.E.S. The investigation and formal analysis was 
by S.J.D., K.J.M., B.F.S. and J.E.S. The original draft was prepared by 
D.B., S.J.D., K.J.M, B.F.S. and J.E.S. All authors contributed to review and 
editing.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains 
supplementary material available at  
https://doi.org/10.1038/s41893-022-00977-7.

Correspondence and requests for materials should be addressed to 
Brett F. Sanders.

Peer review information Nature Sustainability thanks Paul Bates, 
Oronde Drakes and Mathis Messager for their contribution to the peer 
review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this 
article under a publishing agreement with the author(s) or other 
rightsholder(s); author self-archiving of the accepted manuscript 
version of this article is solely governed by the terms of such 
publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 
2022

http://www.nber.org/papers/w23854.pdf
https://doi.org/10.3386/w23854
https://doi.org/10.3386/w23854
https://www.fisheries.noaa.gov/inport/item/55233
https://www.census.gov/programs-surveys/geography/about/glossary.html
https://www.census.gov/programs-surveys/geography/about/glossary.html
https://www.atsdr.cdc.gov/placeandhealth/svi/index.html
https://www.atsdr.cdc.gov/placeandhealth/svi/index.html
https://www.sc.edu/study/colleges_schools/artsandsciences/centers_and_institutes/hvri/data_and_resources/sovi/index.php
https://www.sc.edu/study/colleges_schools/artsandsciences/centers_and_institutes/hvri/data_and_resources/sovi/index.php
https://www.sc.edu/study/colleges_schools/artsandsciences/centers_and_institutes/hvri/data_and_resources/sovi/index.php
https://doi.org/10.1007/s11069-022-05474-w
https://doi.org/10.1007/s11069-022-05474-w
https://pw.lacounty.gov/fcd/StormDrain/index.cfm
https://pw.lacounty.gov/fcd/StormDrain/index.cfm
https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8
https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8
https://doi.org/10.1038/s41893-022-00977-7
http://www.nature.com/reprints







	Large and inequitable flood risks in Los Angeles, California

	Results

	Discussion

	Methods

	Site description and parcel data

	Neighbourhood disadvantage index

	Compound flood hazard modelling

	Exposure and equity analysis

	Reporting summary


	Acknowledgements

	Fig. 1 100-year compound flood hazard in Los Angeles.
	Fig. 2 Flood exposure by race and ethnicity.
	Fig. 3 Flood exposure by socioeconomic indicators.
	Fig. 4 Prioritization of risk reduction resources.
	Fig. 5 Uncertainty in the 100-year return period flood hazard area.




