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The brain is a high-dimensional directed network system, as it consists
of many regions as network nodes that exert influence on each other. The
directed influence exerted by one region on another is referred to as di-
rected connectivity. We aim to reveal whole-brain directed networks based
on resting-state functional magnetic resonance imaging (fMRI) data of many
subjects. However, it is both statistically and computationally challenging
to produce scientifically meaningful estimates of whole-brain directed net-
works. To address the statistical modeling challenge, we assume modular
brain networks which reflect functional specialization and functional inte-
gration of the brain. We address the computational challenge by developing a
variational Bayesian method to estimate the new model. We apply our method
to resting-state fMRI data of many subjects and identify modules and directed
connections in whole-brain directed networks. The identified modules are ac-
cordant with functional brain systems specialized for different functions. We
also detect directed connections between functionally specialized modules,
which is not attainable by existing network methods, based on functional
connectivity. In summary, this paper presents a new computationally efficient
and flexible method for directed network studies of the brain as well as new
scientific findings regarding the functional organization of the human brain.

1. Introduction. The brain is a high-dimensional directed network system, as it consists
of many regions as network nodes that exert influence on each other. We refer to the directed
influence exerted by one region on another as directed connectivity (also called effective
connectivity (Friston (2011))). Identifying directed connections between all the regions and
revealing the whole-brain directed network are essential to understanding the functional or-
ganization of the brain. However, it is both statistically and computationally challenging to
produce brain network estimates that are scientifically meaningful because of the enormous
numbers of potential directed connections and possible patterns of the directed network be-
tween many network nodes. To address this challenge, we propose a new directed network
model that incorporates the principles of the functional organization of the brain.

The functional organization of the brain is governed by two principles: functional special-
ization and functional integration (Friston (1994)). The former indicates that different brain
areas are specialized for different brain functions, while the latter suggests different brain ar-
eas interact with each other to process information and perform various functions. Enormous
brain networks studies (Meunier et al. (2009), Park and Friston (2013), Sporns and Betzel
(2016)) have suggested that the modular organization (also called modularity) of networks is
tied with functional specialization and integration. Specifically, the brain network comprises
modules of brain regions, whose connections with regions in the same module are stronger
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and denser than connections with regions in different modules. Brain regions in the same
module tend to be specialized for the same or similar functions. Directed connections within
and between modules ensure integration among different functionally specialized brain areas.
Because modular networks have been widely reported in the literature to reflect the brain’s
functional organization (Fodor (1983), Sporns (2013)), we assume whole-brain directed net-
works to have a modular organization. The goal is to identify modules as well as directed
connections in whole-brain directed networks using resting-state functional magnetic reso-
nance imaging (fMRI) data of a large number of subjects. We use fMRI data because they
provide noninvasive measurements of the activity of the entire human brain with a high spa-
tial resolution (Lindquist (2008)).

We recognize multiple challenges in simultaneously identifying directed connections and
modules in whole-brain directed networks based on fMRI data of a large number of subjects.
First, it is difficult to find a “perfect” model that can accurately characterize the complex inter-
active relationship between many regions for many subjects due to the limited understanding
of the brain’s functional organization. Therefore, a model for the whole-brain directed net-
work inevitably has a model error, that is, the deviation of the assumed model from the true
network. Second, brain network structures vary across subjects (Mennes et al. (2010), Moussa
et al. (2012)). Third, fMRI data have a high degree of noise (Lindquist (2008)), bringing an
additional difficulty to the network analysis. Fourth, analysis of massive fMRI data and si-
multaneous identification of brain modules and directed connections for many subjects can be
computationally intensive. Existing approaches address part of these challenges, as explained
in detail below.

Most information theoretic measures, such as cross-correlations (Kramer, Kolaczyk and
Kirsch (2008), Schiff et al. (2005)), cross-coherence (Schröder and Ombao (2019)), transfer
entropy (Vicente et al. (2011)), directed transinformation (Hinrichs, Heinze and Schoenfeld
(2006)), directed information (Liu and Aviyente (2012)), and many others (van Mierlo et al.
(2013), Wilke, Worrell and He (2011)), quantify pairwise connectivity between regions and
cannot be directly used to identify modules. Popular models such as dynamic causal model-
ing (DCM, Frässle et al. (2018), Friston, Harrison and Penny (2003)) and neural mass models
(David and Friston (2003)) characterize directed connectivity but not modules. Methods such
as independent component analysis (Calhoun and Adalı (2012), Mejia et al. (2020), van de
Ven et al. (2004)) and spectral clustering (Craddock et al. (2012)) are effective in identify-
ing modules or functional systems in the brain. However, because these methods are based
on functional connectivity (i.e., statistical associations between activity in different regions
(Friston (2011))), they cannot provide information about the direction of connectivity be-
tween regions or the existence of directed connectivity between modules. Overall, existing
brain network studies identify modules (Sporns and Betzel (2016), Sporns, Honey and Kötter
(2007)) and directed connections (Chiang et al. (2017), Friston (2011), Kook et al. (2020))
separately with different approaches, resulting in two different and hard-to-track errors in
the estimated directed network. Despite the recent development of models (Li et al. (2021),
Zhang et al. (2015, 2017, 2019)) to characterize both directed connectivity and modules in
the human brain, these models are for single-subject analysis, and the estimation of these
models based on fMRI data of many subjects is computationally infeasible.

To address limitations in existing directed network analysis, we develop a new Bayesian
model for whole-brain directed networks of many subjects. At the subject level we use a mul-
tivariate autoregressive state-space (MARSS) model for fMRI data of each subject, because
the MARSS has the properties of robustness and flexibility in approximating various network
systems (Li et al. (2021)). At the population level we assign a mixed-membership stochastic
blockmodel (MMSB) as a prior for all the subjects’ MARSS parameters that denote directed
connections. The use of the MMSB prior enables brain network estimates to have the modular
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organization. That is, connections between regions in the same modules are much denser than
connections between regions in different modules. The use of the MMSB prior also allows
for each region to be in different modules and have different directed connections in different
subjects’ brain networks and accommodates the variation of directed brain networks across
subjects. Overall, the proposed Bayesian model provides a flexible and robust framework for
combining fMRI data of many subjects to characterize brain networks in modular organiza-
tion. Thus, the Bayesian model enables us to address the first three challenges in directed
network analysis of many subjects’ fMRI data.

We address the computational challenge in analyzing fMRI data of many subjects by de-
veloping a variational Bayesian method to estimate the proposed Bayesian model. Through
both simulation and real data analysis, we show that our new variational method is able to
identify the whole-brain directed network with both computational efficiency and estima-
tion accuracy. As far as we know, this is the first method that can identify brain modules
and directed connections simultaneously and reveal whole-brain directed networks for many
subjects.

We applied our method to all four resting-state fMRI runs of all subjects (995 subjects)
from the Human Connectome Project (Van Essen et al. (2013), HCP). Specifically, we divided
the entire resting-state fMRI data into two sets, each consisting of two fMRI runs collected
on two separate days for each of 995 subjects. We analyzed the two fMRI data sets indepen-
dently. Modules identified by our method are consistent with known brain functional systems
with different specialized functions, such as visual, default mode, auditory, cingulo-opercular
task-control systems, and many others. Our method also identified directed connections be-
tween the somatosensory-motor and auditory modules and between the cingulo-opercular
task control and salience modules. Moreover, we evaluated the reproducibility of our method
by taking advantage of multiple fMRI runs for each subject. We showed that brain network
results from independent analysis of two fMRI data sets are highly similar with overlap co-
efficients above 80%.

The rest of the article is organized as follows. In Sect. 2 we introduce the MARSS model
for multiple resting-state fMRI runs of multiple subjects. We then propose a new Bayesian hi-
erarchical model that uses the MMSB as a prior for MARSS parameters. In Sect. 3 we develop
a variational Bayesian approach to estimate the new Bayesian model. In Sect. 4 we examine
the robustness and effectiveness of the proposed method compared to existing network meth-
ods through simulation studies. Section 5 presents the analysis results of resting-state fMRI
data of many subjects. Section 6 concludes with a discussion.

2. The directed brain network model. We propose a directed network model for fMRI
data from L runs in d regions of S subjects. In the real data analysis we used the func-
tional atlas in the literature (Power et al. (2011)) to divide the entire brain into d = 264
nonoverlapping functional regions. These regions span the cerebral cortex, the cerebellum,
and subcortical structures.

2.1. The multivariate autoregressive state-space model. Let ys,l(t) = (y
s,l
1 (t), . . . ,

y
s,l
d (t))′ be fMRI measurements in d brain regions (i.e., d network nodes of the whole-brain

directed network) at time t from the lth fMRI run of subject s for s = 1, . . . , S, t = 1, . . . , T ,
and l = 1, . . . ,L. Each data point, y

s,l
j (t), is an average of fMRI data of all voxels in region j

at time t in the lth run for subject s. Each time series, {ys,l
j (1), . . . , y

s,l
j (T )}, is standardized

to have mean zero and variance one. Let xs,l(t) = (x
s,l
1 (t), . . . , x

s,l
d (t))′ be the state func-

tions of the d brain regions at time t in the lth run of subject s. The state function, xs,l(t),
represents the brain activity in d regions at time t in the lth fMRI run for subject s. We
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model directed connections between the d regions of each subject s using a multivariate
autoregressive state-space model (MARSS),

y
s,l
i (t) = c

s,l
i · xs,l

i (t) + ε
s,l
i (t), i = 1, . . . , d, s = 1, . . . , S, l = 1, . . . ,L,(1)

x
s,l
i (t) =

d∑
j=1

γ s
ij · As,l

ij · xs,l
j (t − 1) + η

s,l
i (t), t = 1, . . . , Tl,(2)

where c
s,l
i is an unknown parameter for standardizing activity of different regions; γ s

ij is an
indicator with 1 indicating the presence of the directed connection from region j to region i

in the directed brain network of subject s and 0 for the absence; A
s,l
ij ’s are coefficients; and

η
s,l
i (t) and ε

s,l
i (t) are error terms with mean zero.

We use the first-order MARSS to model directed connectivity among many brain regions,
because it is robust to the model error and data error and also is parsimonious in terms of the
number of free parameters for characterizing directed connectivity between many regions (Li
et al. (2021)).

We use indicators, γ s
ij ’s, to distinguish nonzero directed connections from zero ones. Mod-

els (1) and (2) distinguish two connections in different directions between every pair of re-
gions i and j by using two different indicators, γ s

ij and γ s
ji , to represent the two connections

in two different directions between the two regions. For example, suppose only γ s
ij is identi-

fied to be nonzero, and γ s
ji is identified to be zero. We deem that a directed connection exists

only from region j to region i in subject s’s brain network and not otherwise.
Following standard practice in connectivity studies (Hayden et al. (2016), Sato et al.

(2010)), we fix γ s
ii = 0 for i = 1, . . . , d , s = 1, . . . , S. We let indicators for directed connec-

tions, γ s
ij , be shared in common across different fMRI runs for each subject. This is because

fMRI data in separate runs for each subject were collected under the same condition, and it
is intuitive to assume that the subject’s brain networks are identical in these runs. Moreover,
this assumption enables combining data information across multiple fMRI runs to estimate
directed networks more efficiently than otherwise.

Under the MARSS, (1) and (2), we focus on identifying nonzero γ s
ij ’s for all pairs of

regions i and j and for every subject s. That is, we identify directed connections by using
the MARSS as a working model to detect the existence of temporal dependencies between
activity of different regions. Detecting the existence of temporal dependencies is robust to
the model error and data noise, as demonstrated in the literature (Li et al. (2021)) and the
simulation study (Section 4). For mathematical simplicity and computational efficiency, we

let η
s,l
i (t)

i.i.d.∼ N(0,1) and ε
s,l
i (t)

i.i.d.∼ N(0, τ 2
i ).

2.2. Bayesian hierarchical model for modular networks. Given that the modular brain
network is tied with functional specialization and integration of the brain (Newman (2006),
Sporns (2011)), we impose modularity on γ s

ij ’s by using a mixed membership stochastic
blockmodel (MMSB) (Airoldi et al. (2008), Durante and Dunson (2014), Fienberg, Meyer
and Wasserman (1985), Nowicki and Snijders (2001)) prior for γ s

ij ’s. The details of the prior
specification are given below.

Let K be the prespecified number of modules. Let ms
i = (ms

i1, . . . ,m
s
iK)′ label the module

of region i in the directed brain network of subject s. Only one element of ms
i equals 1, and

the rest elements equal 0. For example, ms
ik = 1 indicates that region i is in module k in the

brain network of subject s. Let Bk1k2 , k1, k2 = 1, . . . ,K , denote the prior probability of a
nonzero directed connection from a region in module k2 to another region in module k1. Let
B be a K × K matrix with entries Bk1k2 for k1, k2 = 1, . . . ,K .
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Prior specification for modularity. The prior for whole-brain directed networks with
modularity is a joint distribution for γ s

ij ’s (indicators), ms
i ’s (module labels), and B (the prob-

ability matrix) as follows:

γ s
ij |ms

i ,m
s
j ,B

ind∼ Bernoulli
((

ms
i

)′Bms
j

)
, i, j = 1, . . . , d;(3)

ms
i

i.i.d.∼ Multinomial(1;pi1, . . . , piK) and

(pi1, . . . , piK) ∼ Dirichlet
(

1

K
1K

)
;

(4)

Bkk
i.i.d.∼ Uniform(l0,1) and

Bk1k2

i.i.d.∼ Uniform(0, u0), k, k1, k2 = 1, . . . ,K, k1 �= k2,

(5)

where l0 and u0 are prespecified constants between 0 and 1 and 1K is a K-dimensional vector
with all entries equal to 1.

The distribution (3) specifies prior probabilities for nonzero directed connections between
regions either in the same module (referred to as within-module directed connections) or in
different modules (referred to as between-module directed connections) in the directed brain
network of subject s. For example, if ms

ik1
= 1 and ms

jk2
= 1, the prior probability of the

nonzero directed connection from region j to regions i equals (ms
i )

′ B ms
j = Bk1k2 .

We let l0 = 0.9 and u0 = 0.1 to reflect the prior belief that within-module connections
are dense while between-module connections are much sparser (Park and Friston (2013)).
We make the difference between the lower bound, l0, and the upper bound, u0, large to fa-
cilitate module identification. The practice of module identification rests on the difference
between the densities of within-module and between-module connections. The closer are the
densities of within-module and between-module connections, the more difficult it is to iden-
tify modules correctly. We choose a high lower bound (i.e., l0 = 0.9) for prior distributions
of within-module connections to identify the most closely connected regions. More impor-
tantly, we found that if we lower the upper bound l0 from 0.9 to 0.8, many modules would
be merged together because a lower l0 allows for regions with fewer connections to form one
module. On the other hand, the upper bound u0 = 0.1 is chosen because it is the upper bound
threshold used by Power et al. (2011) to detect connections. Through both simulation and
real data analysis, we found that the combination of l0 = 0.9 and u0 = 0.1 leads to the most
accurate module identification: the regions identified to be in the same module have the same
brain functions according to the functional atlas provided by Power et al. (2011).

The MMSB prior, (3)–(5), allows for each region to be in different modules and have dif-
ferent directed connections in different subjects’ brain networks and thus accommodates the
variation of brain networks across subjects. Under the MARSS, (1) and (2), with the MMSB
prior (3)–(5) (BMMSB), our goal is to identify modules and directed connections by estimat-
ing the population-mean probabilities of region i in different modules, pi = (pi1, . . . , piK),
posterior probabilities of ms

i s, and posterior probabilities of γ s
ij s, for all regions i, j = 1, . . . d

and subjects s = 1, . . . , S.

3. Variational Bayesian inference. The standard Bayesian approach that uses Markov
chain Monte Carlo simulations is computationally infeasible to estimate the above Bayesian
model for the massive fMRI data under study (the number of regions, d , is in hundreds; the
number of subjects, S, is almost one thousand, and the number of time series points, Tl , is
in thousands). We develop a variational Bayesian approach to estimate the above Bayesian
model and address the computational challenge, as explained below.
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We first estimate xs,l(t) using the standard MARSS (Holmes, Ward and Wills (2012))
(where γ s

ij ’s in (2) are all fixed at 1) instead of using a fully Bayesian approach. State func-

tions xs,l(t) are not of interest in our study, but their estimation through a fully Bayesian
approach is computationally time consuming. In addition, we found that estimated xs,l(t)

under the standard MARSS (Holmes, Ward and Wills (2012)) are similar to those under the
fully Bayesian approach.

Let As,l be a d × d matrix whose (i, j)th entry is A
s,l
ij , i, j = 1, . . . , d and l = 1, . . . ,L,

Xs,l = {xs,l(0), . . . ,xs,l(Tl)}, and X = {Xs,l, s = 1, . . . , S, l = 1, . . . ,L}. Let � denote all
the unknown parameters,

� = {
γ s
ij , As,l,ms

i ,pi ,B, i, j = 1, . . . , d, l = 1, . . . ,L, s = 1, . . . , S
}
.

We treat estimated X as given data, and the posterior distribution of �, given X, is

(6) p(�|X) ∝
S∏

s=1

L∏
l=1

{
Tl∏

t=1

p
(
xs,l(t)|xs,l(t − 1),�

)} · p(�),

where p(xs,l(t)|xs,l(t − 1),�) is derived using the state model (2). The prior distribution for
the parameters γ s

ij , ms
i , and B is the MMSB prior, (3), (4), and (5). We assign normal priors

to A
s,l
ij s,

(7) A
s,l
ij

i.i.d.∼ Normal
(
0, ξ2

0
)
,

where ξ0 is a prespecified positive constant. Explicit formulas of the posterior distribution,
p(�|X) are provided in Section 1 of the Supplementary Material (Wang et al. (2023)).

We use a variational method to approximate the posterior distribution p(�|X) in (6).
Variational methods (Blei, Kucukelbir and McAuliffe (2017)) have received enormous pop-
ularity in estimating graphical models and network models (Airoldi et al. (2008), Durante
and Dunson (2014), Fienberg, Meyer and Wasserman (1985), Nowicki and Snijders (2001),
Wainwright and Jordan (2008)). However, existing variational methods are mainly for ob-
served networks whose network edges are known. We here address a more complicated
problem: simultaneously identifying directed network edges (i.e., directed connections) and
modules based on multivariate time series measurements of activity of many networks nodes.
Our new variational method is based on a new factorized approximation to p(�|X). The
factorized distribution is given as follows:

q(�|V) =
S∏

s=1

d∏
i,j=1,i �=j

q1
(
A

s,1
ij , . . . ,A

s,L
ij , γ s

ij |�s
ij

)

·
S∏

s=1

d∏
i=1

q2
(
ms

i |�ms
i
) ·

d∏
i=1

q3
(
pi |�pi

)

·
K∏

k1,k2=1

q4
(
Bk1k2 |�Bk1k2

)
,

(8)

where V = {�s
ij ,�

ms
i ,�pi ,�Bk1k2 , s = 1, . . . , S, i, j = 1, . . . , d, k1, k2 = 1, . . . ,K} is the

set of free variational parameters.
The variational distribution factors in the factorized distribution (8) and their variational

parameters are given below,

q1
(
γ s
ij |�s

ij

) = Bernoulli
(
γ s
ij |αs

ij

);
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q1
(
A

s,1
ij , . . . ,A

s,L
ij |γ s

ij ,�
s
ij

) =
L∏

l=1

q1
(
A

s,l
ij |γ s

ij , u
s,l
ij ,w

s,l
ij

)
,

where q1
(
A

s,l
ij |γ s

ij , u
s,l
ij ,w

s,l
ij

) =
{

Normal
(
A

s,l
ij |us,l

ij ,w
s,l
ij

)
if γ s

ij = 1,

Normal
(
A

s,l
ij |0, ξ2

0
)

if γ s
ij = 0;

q2
(
ms

i |�ms
i
) = Multinomial

(
ms

i |1,�ms
i
);

q3
(
pi |�pi

) = Dirichlet
(
pi |�pi

);
q4

(
Bk1k2 |�Bk1k2

) =
{

Beta(Bk1k1 |β1,k1, β2,k1) · 1{l0<Bk1k2<1}(Bk1k1) if k1 = k2,

Beta(Bk1k2 |β1,k1k2, β2,k1k2) · 1{0<Bk1k2<u0}(Bk1k2) if k1 �= k2,

where �s
ij = {αs

ij , u
s,l
ij ,w

s,l
ij , l = 1, . . . ,L}, �ms

i = {	ms
i

1 , . . . ,	
ms

i

K }, �pi = {	pi

1 , . . . ,	
pi

K },
�Bk1k2 = {β1,k1, β2,k1} for k1 = k2, �Bk1k2 = {β1,k1k2, β2,k1k2} for k1 �= k2, and 1ℵ(x) is an
indicator function which equals 1 if x falls into the set ℵ and 0 otherwise.

A crucial novelty of our variational Bayesian method is to let γ s
ij and A

s,l
ij be dependent on

each other in our approximating distribution (8). Although using a fully factorized approxi-
mating distribution is more common in practice, it is not effective in approximating our target
distribution, p(�|X). A fully factorized approximating distribution is based on the mean field
theory (Chaikin, Lubensky and Witten (1995)). The theory suggests that a joint distribution
of many random variables that are dependent on each other can be effectively approximated
by a product of independent distributions of these variables. However, the mean field approx-
imation is usually effective when each random variable depends on many other variables and
pairwise dependencies between variables are weak. In the posterior distribution (6), each A

s,l
ij

mostly depends on γ s
ij , and a full factorization of the posterior distributions of A

s,l
ij and γ s

ij

leads to a large bias. Therefore, we keep the dependence structure between A
s,l
ij and γ s

ij in
the approximating distribution (8). A similar idea is implemented in structured variational
inference (Hoffman and Blei (2015)).

We determine the values of V through iteratively minimizing the KL-divergence between
the approximating distribution q(�|V) and the posterior distribution p(�|X),

KL
(
q(�|V)||p(�|X)

) = −Eq

(
log

p(�|X)

q(�|V)

)
.

To provide a flexible Bayesian model, we let K = d and the initial values of the vari-

ational parameters for module labels, 	
ms

i

i = 1 and 	
ms

i

k = 0 for k �= i, i = 1, . . . , d , and
s = 1, . . . , S. The initial values of the other variational parameters and detailed steps in the it-
erative optimization algorithm for evaluating variational parameters are provided in Section 2
of the Supplementary Material (Wang et al. (2023)).

Algorithm 1 provides the pseudocode of the iterative optimization algorithm. Let KLt

denote the KL-divergence value calculated (up to an arbitrary additive constant) at the t iter-
ation and MKL = max{KLt −KLt−1, t = 1, . . .}, where MKL can be estimated based on the
algorithm outputs in the first a few iterations.

We use KLt −KLt−1 to examine the convergence of the iterative optimization algorithm,
because the KL-divergence can be evaluated only up to an arbitrary additive constant and
KLt − KLt−1 does not involve this constant. The algorithm terminates when KLt − KLt−1

is smaller than 1% of the maximum possible change in the KL-divergence, that is, MKL.
We employ parallel computing (Kontoghiorghes (2006), Rosenthal (2000)) to implement

the above iterative algorithm. The use of parallel computing with a 16-core node can reduce
the computation time by 90%. The analysis of two runs of fMRI data of 1000 subjects by our
method takes no more than 20 hours.
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Algorithm 1 Pseudocode for variational Bayesian method

Let t = 0 and set initial values V0.
Let V =V

0.
while t = 0 or KLt − KLt−1 > 0.01 × MKL do
Let t = t + 1.

1. For s = 1, . . . , S and i = 1, . . . , d:
Update �ms

i in V based on the rest parameters in V.
2. For s = 1, . . . , S and i, j = 1, . . . , d:

Update �s
ij in V based on the rest parameters in V.

3. For i = 1, . . . , d:
Update �pi in V based on the rest parameters in V.

4. For k1, k2 = 1, . . . ,K :
Update �Bk1k2 in V based on the rest parameters in V.

5. Let Vt =V.
6. If t = 1:

Let MKL = KLt − KLt−1.
7. Else if t > 1 and MKL < KLt − KLt−1:

Let MKL = KLt − KLt−1.

end while

3.1. Posterior inference. Posterior inference of directed brain networks is equivalent to
identifying directed connections and modules in these networks. In the following we elab-
orate the procedures to identifying modules and directed connections using the variational
parameters output from the above variational Bayesian method.

3.1.1. Identification of modules in subject-specific brain networks. Intuitively, given an
appropriate number of modules K , one can use the variational parameters �ms

i output from
the variational Bayesian method to determine the module for region i in the directed brain
network of subject s. However, we let K = d , instead of using a carefully chosen K . This
is because, even though we can identify the correct number of modules, it is difficult to
correctly specify initial module assignments for many regions under study with K much
smaller than d . As pointed out by Blei, Kucukelbir and McAuliffe (2017), the KL-divergence,
KL(q(�|V)||p(�|X)), is a nonconvex optimization function, and its optimization is sensi-
tive to initial values. If K is assigned a value much smaller than d , many regions would be
incorrectly assigned to the same module in the initial step, resulting in the algorithm being
stuck at a local mode that can be far from the truth. In contrast, in our initialization with
K = d , we let each region be in one unique module and separate from each other. This ini-
tialization lets the algorithm automatically group regions and find the right module for every
region. We found that this approach is more reliable than using the initial values where many
regions could be incorrectly grouped together. Moreover, this initialization avoids the issues
of identifying the correct number of modules and rerunning the algorithm.

On the other hand, because K = d is much larger than the true number of modules, bring-

ing uncertainty in determining the module of each region i, the probabilities, 	
ms

i

k , of each
region i in different modules are small. More importantly, allowing for each region to be in
different modules in different subjects’ networks in the Bayesian model can lead to an iden-
tifiability issue because the same module can be given different labels in different subjects’
networks.

We propose the following computationally fast steps to determine an appropriate number
of modules and reevaluate posterior probabilities of each region i in different modules. We
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first identify the regions that are in the same module in most subjects’ directed brain networks.
We use these regions to determine modules and the number of modules, based on which, we
reevaluate the probabilities of module assignments for the other regions. In the following, �

denotes the variational parameter output of the variational Bayesian method, and a notation
θ̂ denotes a quantity evaluated based on the output:

1. Evaluate the probability of two regions, i and j , in the same module in the directed

brain network of each subject s by �̂s
ij = ∑d

k=1 	
ms

i

k · 	ms
j

k .
2. Two regions i and j are deemed to be in the same module in the directed brain net-

work of subject s if �̂s
ij > 1

d
.

3. Identify sets of regions, Ck , k = 1, . . . , K̂ , that satisfy three conditions: (1) Each Ck

contains at least two regions; (2) for any two regions ik1, ik2 ∈ Ck , either ik1 and ik2 are in the
same module in more than 50% of subjects’ directed brain networks or there exists a third
region jk ∈ Ck such that ik1 with jk and jk with ik2 are in the same module in more than 50%
of subjects’ directed brain networks; and (3) for any two regions in two different sets, i ∈ Ck ,
j ∈ C

k̃
, and k �= k̃, i and j are different regions, and i and j are in the same module in fewer

than 50% of subjects’ brain networks.
4. For all regions ik ∈ Ck , let m̂s

ik,k
= 1 and p̂ik,k = 1. That is, we deem all the regions

in Ck to be in the same module k in directed brain networks of all subjects.

In Step 1 we calculate �̂s
ij , based on the factorized distribution (8), in which the distribu-

tions of module labels for regions i and j are independent. In Step 2 the value 1/d is calcu-
lated based on the worst scenario where the probabilities of module labels of either region i or

region j are identical for K = d modules (i.e., 	
ms

i

k or 	
ms

j

k = 1/d for all k = 1, . . . , d). Step
3 identifies groups of regions that are in the same module in most subjects’ brain networks.
Step 4 lets the K̂ sets of regions, identified in Step 3, define K̂ modules.

Given the K̂ region sets, Ck , k = 1, . . . , K̂ , we reevaluate the variational parameters of
module labels for each region i /∈ {Ck, k = 1, . . . , K̂} and subject s. Specifically, we let

	̂
ms

i

k =
d∑

h=1

	
ms

i

h · max
{
	

ms
ik

h , ik ∈ Ck

}
for k = 1, . . . , K̂,

and 	̂
ms

i

k = 0 for k = K̂ + 1, . . . , d . The above calculates the probability of region i in the

same module as any one of the regions in Ck . Then, we standardize 	̂
ms

i

k , k = 1, . . . , K̂ such
that their sum equals 1 for every region i and subject s.

We use �̂
ms

i = {	̂ms
i

1 , . . . , 	̂
ms

i

K̂
} to identify the module of region i in the directed brain

network of subject s. If region i’s largest module probability, 	̂
ms

i

k(1)
, is larger than 50%, we

deem that region i falls into module k(1) in the directed brain network of subject s; otherwise,
region i does not fall into any module.

3.1.2. Identification of modules in the population-mean brain network. Given modules
identified in S subjects’ directed brain networks, we reevaluate the population-mean proba-
bility of region i in module k, p̂ik , by the percentage of the S subjects’ networks in which
region i is in module k,

p̂ik = 1

S

S∑
s=1

1
	̂

ms
i

k >50%
.
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After normalizing p̂i = {p̂i1, . . . , p̂iK̂
} to have a sum one, we use it to determine the mod-

ule(s) of each region i in the population-mean directed brain network. The module assign-
ment of each region i falls into four scenarios: (1) If the largest module probability of re-
gion i, p̂ik(1)

, is larger than 50%, we deem that region i falls into module k(1) only; (2) if
p̂ik(1)

≤ 50% and p̂ik(1)
+ p̂ik(2)

> 50%, we deem that region i falls into modules k(1) and
k(2); (3) if p̂ik(1)

+ p̂ik(2)
≤ 50% and p̂ik(1)

+ p̂ik(2)
+ p̂ik(3)

> 50%, we deem that region i falls
into three modules, k(1), k(2), and k(3); (4) if p̂ik(1)

+ p̂ik(2)
+ p̂ik(3)

≤ 50%, we deem that the
modules of region i are unidentifiable in the population-mean brain network. We consider
each region to be in no more than three different modules (corresponding to three different
specialized functions) for easy scientific interpretation and to detect the most significant mod-
ules for each region. We also found that very few regions can fall into more than two different
modules.

3.2. The choice of hyperparameter. The hyperparameter ξ2
0 can affect modules identified

in each subject’s network. Specifically, if ξ2
0 is too small, the values of A

s,l
ij ’s would be tiny

which will result in small differences between the posterior probabilities of including (γ s
ij =

1) and excluding (γ s
ij = 0) directed connections as well as small differences between the

posterior probabilities of each region being in different modules. On the other hand, if ξ2
0

is too large, A
s,l
ij ’s tend to be large, and indicators, γ s

ij s, tend to be 0 regardless of regions’
module assignments. The probabilities of each region being in different modules are also
similar. Overall, either too large or too small ξ2

0 makes it difficult to identify correct modules
for each region.

Considering that modules identified affect the number of free parameters in the state model
(2), we propose a Bayesian information criterion (BIC) to choose ξ2

0 .
For easy calculation of BIC, we treat all regions in the same module to be pairwisely

connected and regions in different modules are disconnected. Given ξ2
0 , let Cs

i,ξ2
0

be the set of

regions (excluding region i) in the same module as region i in the directed brain network of
subject s. If region i does not fall into any module in the directed brain network of subject s

(i.e., 	̂
ms

i

k(1)
≤ 50%), Cs

i,ξ2
0

= ∅. Given X, let L̂
s,l

i,ξ2
0

denote the maximized value of the likelihood

function of the state model (also a linear regression model), x
s,l
i (t) = ∑

j∈Cs

i,ξ2
0

A
s,l
ij · xs,l

j (t −
1) + η

s,l
i (t) for t = 1, . . . , Tl . Let κξ2

0
be the total number of free parameters in these S · d · L

regression models. Our BIC is

BIC
(
ξ2

0
) = κξ2

0
· log

(
L∑

l=1

S · d · Tl

)
− 2

S∑
s=1

d∑
i=1

L∑
l=1

log
(
L̂

s,l

i,ξ2
0

)
.

We choose the ξ2
0 that leads to the smallest BIC(ξ2

0 ) and more than 90% of regions having
identifiable modules.

Note that the above procedure allows us to analyze the massive fMRI data just once for
each candidate hyperparameter ξ2

0 and thus requires much less computational time to deter-
mine the appropriate number of modules.

3.3. Directed connection identification. We use αs
ij to identify directed connections in

the subject-specific directed network for each subject s and use average posterior probabilities
ᾱij = ∑S

s=1 αs
ij /S, i, j = 1, . . . , d to identify directed connections in the population-mean

directed network.
Because it is hard to know the density of true between-module connections versus within-

module connections, we followed the approach by Power et al. (2011) and selected directed
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connections with top posterior probabilities ranging from top 1% to top 10%. We present
directed connections with the highest possible posterior probabilities for easy visualization
and minimal false selections while ensuring the number of selected between-module directed
connections is no smaller than 1% of the number of selected within-module connections. The
connections selected by this approach are easy to visualize and scientifically interpretable.

4. Simulation studies. We used SPM software (Penny et al. (2011)) to simulate fMRI
data from the DCM (Friston, Harrison and Penny (2003)) because it is the most popular
model for directed connectivity. The DCM uses many complex ordinary differential equations
(ODEs) in the state model to characterize interactions between neuronal activity in different
regions and uses ODEs in the observation model to link regions’ neuronal activity to their
blood oxygen level dependent signals. We first used the ODEs in the state model of the
DCM to generate state functions, xs,l(t), of d = 264 regions in each of two (l = 1,2) 15-
minute runs for each subject s. The state functions xs,1(t) and xs,2(t) in two different runs
were generated using the same ODEs but different initial values so that xs,1(t) �= xs,2(t)

which is consistent with real data from different fMRI runs of each subject. Then, we used
the ODEs in the observation model of the DCM to generate fMRI data ys,l(t) in which
the observation noise ε

s,l
j (t) of each region j is chosen such that the signal-to-noise ratio

var(xs,l
j (t))/var(εs,l

j (t)) = 1 for j = 1, . . ., d = 264, s = 1, . . ., S = 1000, and l = 1,2. The
chosen signal-to-noise ratio is considered low in the literature (Frässle et al. (2018)). Note
that simulation from the ODE model, DCM, generates continuous data. We kept T = 1200
equally distanced data points with repetition time (TR) of 0.72 s as our simulated data, the
same as the TR of real fMRI data under study.

Figure 1(a) shows simulated network patterns. We used the BrainNet Viewer (Xia, Wang
and He (2013)) to visualize networks. The number of modules and the sizes of modules were
chosen to be close to those of functional systems determined by Power et al. (2011). Network
nodes in the same color are in the same module in all subjects’ networks. Network nodes with
two colors are in one module (in one color) in 50% of subjects’ networks and in the other
module (in the other color) in the other 50% of subjects’ networks. All network nodes in
the same module are pairwise connected. We show only between-module connections in fig-
ures for easy visualization. Edges in dark red indicate between-module directed connections
from an upper module to a lower module. Edges in green indicate between-module connec-
tions from a lower module to an upper module. The between-module connections are chosen
to make easy visualization of the network. The number of between-module connections is
around 5% of that of within-module connections.

Using simulated directed connections (i.e., directed network edges) of all the subjects as
the truth, we calculated the false positive rate (FPRs) and true positive rate (TPRs) of selecting
directed network edges for all the subjects based on different thresholds for αs

ij s. For compar-
ison, we examined the FPRs and TPRs of popular competing methods, including the third-
order MAR with L1 regularization (implemented by the R package BigVAR (Nicholson,
Matteson and Bien (2017))), denoted by MAR(L1), transfer entropy (TE) (Sabesan et al.
(2009), Schreiber (2000), Vicente et al. (2011)), partial directed coherence (PDC) (Baccalá
and Sameshima (2001)), short-time direct directed transfer function (SdDTF) (Korzeniewska
et al. (2014)), and graphical lasso (Glasso) (Friedman, Hastie and Tibshirani (2014), Witten,
Friedman and Simon (2011)). Figure 1(b) shows the ROC curves of TPRs vs. FPRs for these
methods. We also tried the sparse regression DCM (Frässle et al. (2018)), but it is compu-
tationally infeasible for identifying 1000 subjects’ whole-brain directed networks. We also
performed the simulation study 100 times independently and found that the accuracy of di-
rected connection selection is stable across different simulations. The lowest value of the area
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FIG. 1. The simulation study of data generated from the DCM: (a) The simulated network patterns. Nodes in the
same color are in the same module in all subjects’ brain networks. Nodes with two colors are in different modules
in different subjects’ brain networks. Edges in dark red indicate between-module directed connections from an
upper module to a lower module. Edges in green indicate between-module connections from a lower module to
an upper module. (b) ROC curves for directed connections identified by six network methods. (c) The estimated
population-mean directed network. (d) ROC curves for directed connections identified by six network methods
based on data with T = 600 time points.

under the curve (AUC) is 0.82, and the highest one is 0.89. In summary, the proposed vari-
ational Bayesian method with the MMSB prior (BMMSB) outperformed the other methods
by achieving the largest area under the ROC curve.

Figure 1(c) shows the estimated population-mean directed network. Our method success-
fully identified nine modules and the existence of two groups of regions with mixed module
memberships. The TPR and FPR of selecting within-module directed connections are 66.3%
and 0%, respectively. The TPR and FPR of selecting between-module connections are 40.3%
and 2.6%, respectively.

The TPR of selecting within-module connections is much higher than that of between-
module connections for several reasons. First, module identification, similar to clustering, is
subjective, so our selection of directed connections does not take into account identified mod-
ules and is purely based on posterior probabilities of directed connections (i.e., αs

ij s). Since
the number of true within-module connections is much larger than that of true between-
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module connections, and the number of candidate between-module connections is much
greater than the total number of true directed connections, within-module connections are
much easier to detect and their posterior probabilities tend to be much higher than those
of between-module connections. Second, since the number of within-module connections is
much larger than between-module connections, connection selection is more toward selecting
within-module connections so that the overall accuracy of connection selection is high. Third,
since the number of void connections is large, a slightly lower threshold for directed connec-
tions can lead to many selections. These selections not only could contain many false selec-
tions but also lead to a network result that is difficult to interpret scientifically. Consequently,
we used a high threshold for αs

ij ’s to avoid many false selections which also rendered only a
few between-module connections selected. Overall, the proposed method outperformed ex-
isting methods by achieving a higher TPR and a low FPR.

We also analyzed the first half of the simulated fMRI data with T = 600 to assess the effect
of the data length on the accuracy of connection selection. Figure 1(d) shows ROC curves of
six competing methods. The proposed variational method has a slightly smaller AUC (0.85
compared to the AUC of 0.88 with T = 1200) in identifying directed connections with fewer
data points and still outperformed other methods.

We performed another simulation study to compare the proposed variational Bayesian
method and a fully Bayesian approach based on simulated fMRI data in d = 62 regions of
a single subject. The ROC curve of the variational method is only slightly lower than that
of the fully Bayesian approach: The AUC of the former method is 0.82, and the AUC of
the latter method is 0.87. This result suggests that the variational method can effectively
approximate the target posterior distribution. More details of this simulation study can be
found in Section 3 of the Supplementary Material (Wang et al. (2023)).

5. An application to an fMRI study. We analyzed resting-state fMRI data of S = 995
healthy subjects in total from the Human Connectome Project (HCP) (Van Essen et al.
(2013)). All subjects went through one-hour (in total) resting-state fMRI scanning at 3T
(Smith et al. (2013)) in two pairs of 15-minute runs on each of two separate days. The data
of each subject per run consist of functional images at T = 1200 time points with a repeti-
tion time (TR) of 0.72 s and a 2-mm isotropic spatial resolution. The resting-state fMRI data
downloaded from the HCP had been preprocessed according to the HCP minimal prepro-
cessing pipeline. More detailed descriptions of the preprocessing steps, including optimized
spatial preprocessing and temporal preprocessing, can be found in the paper by Glasser et al.
(2013), Smith et al. (2013). Following the practice by Power et al. (2011), we extracted fMRI
time series from the 10 mm-diameter sphere of each of 264 regions of interest using the
DPABI toolbox (Yan et al. (2016)). We averaged fMRI time series of all voxels in each re-
gion j from each run l for each subject s and standardized the average time series to have
mean zero and variance one. The ensuing time series was {ys,l

j (1), . . . , y
s,l
j (Tl)} in our anal-

ysis.
We applied the proposed variational method to analyze subjects’ fMRI data in L = 2 runs

collected on separate days. Therefore, we analyzed two sets of fMRI data independently.
The first set contains S = 995 subjects’ resting-state fMRI data in the two runs with phase
encoding in the left-to-right direction, and the second set contains the same subjects’ resting-
state fMRI data in the two runs with phase encoding in the right-to-left direction.

We present four major results of our directed network analysis of the fMRI data. First,
modules identified by our method are accordant with functional brain systems specialized for
various functions. The accordance between the identified modules and functional brain sys-
tems provides validation of module identification by our directed network method. Second,
we revealed directed connections between brain modules with different specialized functions.
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FIG. 2. The Identified Population-Mean Whole-Brain Directed Networks in Axial (a) and Sagittal (b) Views
based on the First fMRI Data Set. The nodes in the same color are identified to be in the same module. The
nodes with more than one color are identified to be in more than one module. Black edges represent directed con-
nections between modules that have distinct functions. The directed connections selected have top 1% posterior
probabilities.

These identified between-module directed connections are consistent with those discovered
in low-dimensional directed network analysis of task-based fMRI data in just a few regions
of interest. Third, we uncovered several regions that can be in different modules in different
subjects’ networks. This result suggests that these regions can be involved in more than one
brain function. Fourth, we evaluated reproducibility by comparing the results of the indepen-
dent analysis of the two fMRI data sets. We found both modules and directed connections
identified are similar across different data sets. We elaborate on these results below.

Identification of modules. Our method identified modules specialized for different func-
tions, though the method did not use spatial information of regions. Figure 2 shows the iden-
tified population-mean whole-brain directed network in axial and sagittal views using the first
fMRI data set. The identified modules are specialized for functions including visual (several
blue colors), hand somatosensory-motor (green), face somatosensory-motor (light green),
cingulo-opercular task control (patriarch), auditory (fuchsia), default mode (dark red, red,
light red, and pink), fronto-parietal task control (yellow), salience (purple), memory retrieval
(gray), ventral attention (blue green), and dorsal attention (navy) functions. These results are
consistent with the functional brain systems reported in the literature (Power et al. (2011)).
Note that the modules with “unknown” labels correspond to several subsystems identified by
Power et al. (2011) to have fewer than four regions. The functional identities of these subsys-
tems are unknown in the literature. Our method not only successfully separated these regions
from other modules but also identified them to share similar functions.

Note that the above modules with different specialized functions are also called networks
in the literature, for example, the default model network, cingulo-opercular task control net-
work, and salience network. To keep terminology consistent in this paper, we use modules
instead of networks.

Our method revealed several smaller modules in large functional brain systems, such as
the visual and the default mode functional systems. These results align with the literature that
the visual system (Zeki et al. (1991)) and the default mode system (Buckner, Andrews-Hanna
and Schacter (2008)) consist of several functionally and anatomically different brain areas.
Moreover, the identified small visual modules overlap with several known subdivisions in the



532 Y. WANG ET AL.

visual system, including medial visual area (visual module A), occipital pole (visual module
B), and lateral visual areas (visual modules C and D) (Ikeda et al. (2022)). Our method is also
able to identify modules of posterior cingulate and retrosplenial cortices (PCC & RSC), ante-
rior cingulate and medial prefrontal cortices (ACC & mPFC), inferior parietal lobe and lateral
temporal cortex (IPL & LTC), and other regions in the default mode system (Davey, Pujol
and Harrison (2016), Raichle (2015)). The correspondence between identified modules with
known functional brain systems and the high overlap between identified small modules in the
large visual and default mode systems with known subdivisions of these two systems all pro-
vide evidence that our method can successfully detect subtle functional differences between
subdivisions in a large functional system and reveal the hierarchical modular organization of
the brain.

Identification of directed connections. Most of the identified directed connections are be-
tween regions in the same module or between modules with similar brain functions (e.g.,
between the four visual modules). These connections are dense, as expected. For easy visual-
ization of directed connections between different functionally specialized modules, we show
only directed connections between modules with different specialized functions in Figure 2.

We discovered that the strongest between-module directed connections are between the
auditory module and somatosensory-motor modules. Although existing studies have already
reported strong functional connectivity between motor and auditory brain areas (De Luca
et al. (2006), He et al. (2009), Mesulam (1998)), our results further suggest directed con-
nections are between the face somatosensory-motor module and the auditory module. We
also observed additional connections between the cingulo-opercular task control module and
the salience module. This result is in accordance with the finding that the salience mod-
ule engages the cingulo-opercular task-control regions (Seeley (2019)). In summary, our
method can reliably detect directed connections between functionally specialized brain mod-
ules based on whole-brain resting-state fMRI data. In contrast, existing studies typically rely
on tasked-based fMRI data to evaluate directed connections between only a few regions of
interest with different specialized functions.

Another interesting finding, regarding directed connections between modules, is that the
default mode module has no connection with other modules. This result is consistent with the
abundant literature (Smith et al. (2009)) that the default-mode network tends to be nonactive
when the brain is during the performance of various goal-directed tasks (Gusnard and Raichle
(2001), Raichle et al. (2001)).

Variation of directed brain networks across subjects. We examined the variation of directed
brain networks across subjects. Figure 3 shows the whole-brain directed network of one sub-
ject. Identified modules in subject-specific directed brain networks are generally similar to
those in the population-mean directed networks, although small modules in large functional
brain systems, such as the default mode and somatosensory-motor modules, have moderate
variations across subjects. We also found that regions in auditory, visual, somatosensory-
motor, cingulo-opercular task control, and salience modules can fall into different modules
in different subjects’ networks, as demonstrated by nodes with more than one color in Fig-
ure 2. These results are consistent with the findings in the literature (Bushara, Grafman and
Hallett (2001), Deshpande et al. (2008), Power et al. (2011), Riedl et al. (2016), Seeley et al.
(2007)) that these modules have strong functional connectivity between them. Our results ad-
ditionally suggest that regions in these modules can be involved in different brain functions.

The most considerable variation in directed brain networks across subjects lies in between-
module directed connections. As shown in Figure 3, subject-specific directed brain networks
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FIG. 3. The Identified Whole-Brain Directed Networks of One Subject in Axial (a) and Sagittal (b) Views. The
nodes in the same color are identified to be in the same module. Black edges represent directed connections be-
tween modules that have distinct functions. The directed connections selected have top 1% posterior probabilities.

have more between-module connections than the population-mean directed network. We con-
sider several potential reasons for these results. First, the specialized functions of brain re-
gions tend to be consistent across healthy subjects, while connectivity between regions vary
dramatically across subjects during resting state. Second, fMRI data of each subject have a
weak signal-to-noise ratio, leading to large variances of estimated subject-specific directed
brain networks. Third, estimating directed connectivity between many regions is susceptible
to multicollinearity, while identifying modules, similar to clustering, is much less affected
by multicollinearity. Therefore, identified functionally specialized modules tend to be stable
across subjects, while identified connections between modules have much greater variations
across subjects.

Reproducibility. We applied the variational Bayesian method to the same subjects’ second
resting-state fMRI data set and obtained the second estimated population-mean directed brain
network shown in Figure 4. The network is similar to the first population-mean brain network
(shown in Figure 2) obtained by analyzing the same subjects’ first fMRI data set.

We calculated overlap coefficients of identified modules in the two networks to assess the
reproducibility of our method. The overlap coefficient is defined as

overlap(S1, S2) = |S1 ∩ S2|
min(|S1|, |S2|) ,

where S1 and S2 are two sets, for example, modules of regions. Let S1 and S2 be the col-
lection of all the modules identified in the first and second population-mean directed brain
networks, respectively. For each module S2 ∈ S2, its overlap coefficient with S1 is defined as
maxS1∈S1 overlap(S1, S2). Similarly, we define the overlap coefficient of each module S1 ∈ S1
with S2 as maxS2∈S2 overlap(S1, S2). The mean of the overlap coefficients of modules in S2
with S1 is 80%, and the mean of the overlap coefficients of modules in S1 with S2 is 82%. The
overlap coefficient of identified directed connections in the two population-mean networks is
92%.

We also examined the similarity between two estimated whole-brain directed networks for
each subject. The average overlap coefficient of identified modules in subject-specific brain
networks is 81%, and the average overlap coefficient of identified directed connections is
76%. Again, directed connections have more variations than modules across runs for reasons
given above.
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FIG. 4. The Identified Population-Mean Whole-Brain Directed Networks in Axial (a) and Sagittal (b) Views
based on the second fMRI data set. The nodes in the same color are identified to be in the same module. The
nodes with more than one color are identified to be in more than one module. Black edges represent directed con-
nections between modules that have distinct functions. The directed connections selected have top 1% posterior
probabilities.

6. Discussion. We propose a new high-dimensional directed network method for ana-
lyzing resting-state fMRI data of many subjects. The advantages of our new method lie in
three aspects. First, our model building exploits the principles of the brain’s functional orga-
nization by characterizing both modules and directed connections in brain networks. Second,
the new Bayesian model accommodates the variation of brain networks across subjects while
enabling integration of many subjects’ data to estimate whole-brain directed networks. Third,
the developed new variational Bayesian method can simultaneously identify modules and di-
rected connections with both computational efficiency and estimation accuracy.

Setting the lower bound, l0, for prior probabilities of within-module connections at a high
value of 0.9 is necessary for several reasons. First, it is documented in the literature that re-
gions in the same subnetwork (called modules in our analysis) are coactive (Cole, Smith and
Beckmann (2010)). This coactivation leads to very strong correlations (at values of almost 1)
between these regions’ fMRI data. Second, fMRI preprocessing steps can increase correla-
tions of fMRI data in different regions (Gargouri et al. (2018)). Third, the large number of
regions’ fMRI data under study brings the multicollinearity issue when using a model to iden-
tify connections. Then, setting a high value for l0 can enable us to reduce the false selections
due to the high correlations caused by the second and third issues and identify truly strongly
connected regions. Fourth, we found that using a smaller value of l0 can render regions spe-
cialized for different functions incorrectly merged together because of the second and third
issues. Fifth, our choice of l0 has been implemented in the literature (Li et al. (2021)).

We used the first-order MARSS, instead of higher-order ones, to identify directed connec-
tions for several reasons. First, the purpose of this study is to identify directed connections by
detecting the existence of temporal dependence between regions’ temporal activities rather
than explaining fMRI data variation, fitting the data perfectly, or examining the extent of
temporal dependence between regional activity. The first-order MARSS is efficient in captur-
ing the presence of temporal dependence. Second, though a high-order MARSS may fit the
data better, it contains many more free parameters. Estimating these more parameters brings
significantly more variances and uncertainty in identifying directed connections. Third, sim-
ulations performed by Li et al. (2021) have demonstrated that the first-order MARSS can
detect directed connections with high accuracy for data generated from high-order MARSS.
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We did similar simulations and obtained the same results. However, since the DCM is more
distinct from the MARSS and, arguably, a generative model for fMRI, we presented simula-
tion results based on the DCM. On the other hand, since our method is focused on detecting
temporal dependence using a parsimonious model, the method does not differentiate between
negative inhibitory relationships and positive excitatory relationships between regions. This
analysis requires using more detailed models.

Evaluation of directed connections between functionally distinct areas is mainly through
low-dimensional directed network analysis of task-based fMRI data in only a few regions of
interest. Thus, these directed connectivity results are restricted to fMRI studies with specifi-
cally designed tasks. In contrast, our method can reliably detect directed connections between
modules with different functions based on whole-brain resting-state fMRI data. Our network
results enhance our understanding of the brain’s functional organization.

In future research we will extend our method to model dynamic connectivity by allow-
ing indicators for directed connectivity to vary over time or assuming transition probabilities
for directed connectivity. We will also develop the model for task-based fMRI data, com-
pare resting-state and task-based whole-brain directed networks, and further investigate the
variation of directed brain networks across different tasks and conditions.
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supplementary file explains the optimization steps for implementing the proposed variational
Bayesian algorithm.

Codes for variational Bayesian algorithm (DOI: 10.1214/22-AOAS1640SUPPB; .zip).
This supplementary file contains MATLAB codes and the manual for using our toolbox to
implement the proposed variational Bayesian algorithm.
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