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ABSTRACT Switched systems are capable of modeling processes with underlying dynamics that may
change abruptly over time. To achieve accurate modeling in practice, one may need a large number of modes,
but this may in turn increase the model complexity drastically. Existing work on reducing system complexity
mainly considers state space reduction, whereas reducing the number of modes is less studied. In this work,
we consider Markov jump linear systems (MJSs), a special class of switched systems where the active mode
switches according to a Markov chain, and several issues associated with its mode complexity. Specifically,
inspired by clustering techniques from unsupervised learning, we are able to construct a reduced MJS with
fewer modes that approximates the original MJS well under various metrics. Furthermore, both theoretically
and empirically, we show how one can use the reduced MJS to analyze stability and design controllers with
significant reduction in computational cost while achieving guaranteed accuracy.

INDEX TERMS Clustering, learning for control, Markov jump systems, model/controller reduction.

I. INTRODUCTION
As the control and machine learning communities build tools
to model ever more complex dynamical systems, it will be-
come increasingly important to identify redundant aspects
of a model and remove them using various unsupervised
learning techniques. State dimensionality reduction has long
been common in control systems, using principal component
analysis and similar techniques. In this paper we consider
the setting where switched systems have redundant modes,
and we apply clustering – another fundamental unsupervised
learning technique – to remove redundancies.

Switched systems generalize time-invariant systems by al-
lowing the dynamics to switch over time. They have been
used to model abrupt changes in the environment (e.g. weather
and road surfaces), controlled plants (e.g. functioning statuses
of different components), disturbances, or even control goals
(e.g. cost functions in the optimal control). Switched system
models are used in a variety of applications including con-
trolling a Mars rover exploring an unknown heterogeneous
terrain, solar power generation, investments in financial mar-
kets, and communications with packet losses [1], [2], [3], [4],
[5], [6], [7]. However, these benefits are accompanied by new

complexity challenges: the number of modes that is needed
to model systems accurately and thoroughly may grow un-
desirably large. For example, for controlled plants composed
of multiple components, if we model each combination of
health statuses, e.g. working and faulty, of all components
as a mode, then the number of modes grows exponentially
with the number of components. Given this rate, there can be
an huge amount of modes even with a moderate number of
components. Given a system with this many modes, analysis
can become computationally intractable. For example, in fi-
nite horizon linear quadratic regulator (LQR) problems with
horizon T , the total number of controllers to be computed
is sT where s denotes the number of modes. This lack of
scalability calls for systematic and theoretically guaranteed
ways to reduce the number of modes.

Existing work on (switched) system reduction mainly fo-
cuses on reducing the state dimension [8] or constructing
finite abstractions for the continuous state space [9]. Reducing
the mode complexity, however, is still mainly an uncharted
territory.

In this work, we study how one can perform mode reduction
for Markov jump linear systems (MJS), a class of switched
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systems with individual modes given by state space linear
time-invariant (LTI) models and the mode switching governed
by Markov chains. Our main contributions are the following:! We propose a clustering-based method that takes mode

dynamics as features and use the estimated clusters to
construct a mode-reduced MJS.! The reduced MJS is proved to well approximate the
original MJS under several approximation metrics.! We show the reduced MJS can be used as a surrogate
for the original MJS to analyze stability and design
controllers with guaranteed performance and significant
reduction in computational cost.! Compared to the preliminary conference version [10],
this paper establishes stronger approximation guarantees
(Section V), provides novel stability analysis (Sec-
tion VI), includes all the proofs that were omitted in [10],
and includes a more thorough discussion and survey of
related work, including a table that lays out relationships
among existing work and our work.

Our work adds a new dimension, i.e., reduction of modes,
to the research of switched system reduction. This framework
can be generalized to other problems such as robust and
optimal control, invariance analysis, partially observed sys-
tems, etc. Other than constructing and analyzing the reduced
MJS, the technical tools we develop in this work regarding
perturbations can be applied to cases when there are model
mismatches, e.g. system estimation errors incurred when dy-
namics are learned in identification or data-driven adaptive
control as in [11].

II. RELATED WORK
Depending on the problems of interest and methodologies, the
work on reduction for stochastic (switched) systems can be
roughly divided into three categories: bisimulation, symbolic
abstraction, and order reduction.

Bisimulation: To evaluate the equivalency between two
stochastic switched systems, notions of (approximate) proba-
bilistic bisimulation are proposed in [12], [27], [28]. Approxi-
mation metrics [29] from different perspectives are developed
to compare two systems, e.g. one(multi)-step transition ker-
nels [19] and trajectories [13], [22], [30]. Based on the
approximate bisimulation notion in [14], a technique for re-
ducing the state space of labeled Markov chains through state
aggregation is proposed in [15]. Unlike existing work that
typically defines the notions of (approximate) bisimulation
on the state space, we provide an algorithm that constructs
a reduced system by aggregating the mode space, which prov-
ably approximates the original one. Our work shares the idea
of aggregation of Markov chains with [15], but we also seek
to recover the best aggregation partition which is otherwise
assumed as prior knowledge in [15].

Symbolic Abstraction: Given a system with continuous
state space, abstraction [31] considers discretizing the state
space and then constructing a finite state symbolic model,
which can be used as a surrogate for model verification [32],
[33] or controller synthesis [34]. The work on abstraction for

stochastic hybrid systems starts with the autonomous cases.
Under uniform discretization, [35] and [19] provide approxi-
mation guarantees that depend on the discretization width. An
adaptive partition scheme is proposed in [20], which mitigates
the curse of dimensionality suffered by uniform sampling.
Since the systems under consideration are autonomous, these
work mainly serves verification purposes, but falls short to-
ward controller synthesis goals. [9] addressed this by allowing
inputs in the systems. The idea of partitioning the continuous
state space is similar to our work except that our partition is
performed on the mode space, i.e., the discrete state space
in hybrid systems, which provides a new yet closely related
dimension to the existing abstraction work.

Order Reduction: Another important line of research on
system reduction is order reduction [36], where one seeks
to reduce the dimension of the state space to satisfy certain
criteria. With the help of linear matrix inequalities (LMIs),
various methods have been applied for MJS, includingH∞ re-
duction [8], balanced truncation [25], and H2 reduction [26],
etc. Order reduction is also applied to more complex models
with time-varying transition probabilities [24].

The reduction of Markov chains, a class of simplified yet
fundamental stochastic switched models, has also attracted
the learning and statistics communities. Several notions of
lumpability are proposed in [37], which coincide with the
notion of bisimulation in [27]. Lumpability allows one to
reduce the original Markov chain to a smaller scale yet equiv-
alent Markov chain by lumping the Markovian states. Similar
research focusing on the equivalence metrics and bounding
the difference of transition kernel, can be found in [38], [39],
[40] under the name of coarse graining. Compared with the
bisimulation work for general stochastic systems, which is
mostly conceptual, the restriction to Markov chains allows
for practical “low-rank + clustering” methods [41] to un-
cover the lumpability structure. [16] considers the case when
the Markov matrix is estimated from a trajectory, and the
approximate lumpability case are studied in [17], [18]. Fur-
thermore [17] studies the reduction of Markov chains that are
embedded in switched autoregressive exogenous models, but
the overall dynamical models are not reduced. Based on the
ideas in [17], our work further extends the reduction to the
overall MJS.

A comprehensive comparison of the related work together
with our work is listed in Table 1. The entry “exact bisimu-
lation condition” tells whether ideal case sufficient conditions
are provided under which a system can be reduced without
introducing any model inaccuracy, i.e., they are bisimilar. In
practice, when the reduced system is constructed, these prin-
cipled conditions can help gain more insight into the original
system. In practice, these system reduction methods devel-
oped under different perspectives can be combined to achieve
overall better performance. For example, for the continuous
state space, one can apply order reduction followed by finite
abstraction (the former can help remove the curse of dimen-
sionality for the latter), and meanwhile our work can further
help reduce the discrete mode space.
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TABLE 1. Related Work on Reduction for Stochastic Switched Systems

This work is organized as follows: we present the prelim-
inaries and mode reduction problem setup in Section III-A;
an clustering-based reduction approach is proposed in Sec-
tion IV; in Section V, we discuss how the reduced MJS
approximates the original one under setups; Section VI and
VII respectively show that one can use the reduced MJS as
a surrogate to evaluate stability and design LQR controllers
for the original MJS; simulation experiments are presented in
Section VIII.

III. PRELIMINARIES AND PROBLEM SETUP
For a matrix E, E(i, :) denotes the ith row of E, and E(i, j:k)
denotes the ith row preserving only the jth to kth columns.
For any index set A, E(i, A) denotes the ith row preserv-
ing columns given by A. Let σi(E) (λi(E)) denote its ith
largest singular (eigen) value. For any s ∈ N, we let [s] :=
{1, 2, . . . , s}. We say #1:r := {#1, . . . ,#r} is a r-cluster par-
tition of [s] if

⋃r
i=1 #i = [s], #i

⋂
# j = φ for any i #= j,

and #i #= φ. We let #(i) denote the cluster with ith largest
cardinality. For a sequence of variables X0, X1, . . . , XN , let
X0:N := {Xi}N

i=0. Notation ⊗ denotes the Kronecker product.
Notation In denotes the n-dimensional identity matrix, and 1n
denotes the n-dimensional all-ones vector.

A. PRELIMINARIES
In this work, we consider Markov jump systems (MJSs) with
dynamics given by

%:={xt+1 = Aωt xt + Bωt ut , ωt ∼ MarkovChain(T)} (1)

where xt ∈ Rn and ut ∈ Rp denote the state and input at time
t . There are s modes parameterized by {Ai, Bi}s

i=1 where
Ai ∈ Rn×n and Bi ∈ Rn×p are state and input matrices for
mode i. The active mode at time t is indexed by ωt ∈ [s],
and the mode switching sequence ω0:t follows a Markov
chain with Markov matrix T ∈ Rs×s, i.e., P(ωt+1 = j | ωt =
i) = T(i, j). We assume the Markov chain T is ergodic. By
properties of ergodicity, T has a unique stationary distribution

π ∈ Rs, and we let πmax and πmin denote the largest and
smallest element in π. In the remainder of the paper, we use
% := MJS(A1:s, B1:s, T) to denote the groundtruth MJS in (1)
that we want to study, and similarly use notation MJS(·, ·, ·)
to parameterize any MJS with expressions given in (1). We
introduce the following two special types of Markov chains,
which are closely tied to the main focus of this work.

Definition 1 (Lumpability and Aggregatability [37]):
Markov matrix T ∈ Rs×s is lumpable w.r.t. partition #1:r
on [s] if for any k, l ∈ [r], and i, i′ ∈ #k , we have∑

j∈#l
T(i, j) =

∑
j∈#l

T(i′, j). As a special case, it is fur-
ther aggregatable if T(i, :) = T(i′, :).

Lumpability of a Markov chain coincides with the defini-
tion of probabilistic bisimulation in [28], which describes an
equivalence relation on [s], i.e., two members are equivalent
if they belong to the same cluster. For a Markov chain T that
is lumpable with respect to partition #1:s, we use ζt ∈ [r] to
index the active cluster at time t , i.e., ζt = k if and only if
ωt ∈ #k , and use ζ0:t to denote the active cluster sequence.

B. PROBLEM FORMULATION
With the notions of Markov chain lumpability and aggregata-
bility, in this work, we consider reducing the number of modes
for % under the following two problem settings.

Problem P1 (Lumpable Case): Assume the dynamics of
% = MJS(A1:s, B1:s, T) is known. Suppose there exists a hid-
den partition #1:r on [s] and εA, εB, εT ≥ 0 such that

∑

k∈[r]

∑

i,i′∈#k

‖Ai − Ai′ ‖F ≤ εA,

∑

k∈[r]

∑

i,i′∈#k

‖Bi − Bi′ ‖F ≤ εB, (2)

∑

k,l∈[r]

∑

i,i′∈#k

∣∣∣
∑

j∈#l

T(i, j)−
∑

j∈#l

T(i′, j)
∣∣∣ ≤ εT. (3)

Then, given {Ai, Bi}s
i=1, T and r, we seek to estimate the

partition #1:r by clustering the modes, construct a reduced
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MJS for %, and provide guarantees on the behavior difference
incurred by the reduction.

Throughout this work, we refer to εA, εB, and εT as per-
turbations. When εT = 0, by definition T is lumpable. Thus,
in condition (3), one can view T as approximately lumpable.
One can think of {ωt , xt } ∈ [s]× Rn as a hybrid state [19].
Then, condition (3) guarantees the existence of an approxi-
mate equivalence relation in the discrete domain [s], while
condition (2) guarantees this in the continuous domain Rn.
More discussions for the special case when εA = εB = εT =
0 follow in the next subsection.

For the aggregatable case, we separately formulate a similar
problem in Problem P2.

Problem P2 (Aggregatable Case): In Problem P1, replace
(3) with

∑
k∈[r]

∑
i,i′∈#k

‖T(i, :)T − T(i′, :)T‖1 ≤ εT.

P2 differs from P1 in terms of εT, which quantifies the
violation of lumpability and aggregatability respectively for
the matrix T. Consider a 3-state Markov matrix T with
rows T(1, :) = [0.2, 0.4, 0.4], T(2, :) = [0.7, 0.1, 0.2], and
T(3, :) = [0.7, 0, 0.3]. Then for the partition #1 = {1},#2 =
{2, 3}, we obtain εT = 0 in P1 but εT = 0.4 in P2. In other
words, T is exactly lumpable but non-aggregatable with a vi-
olation level of 0.4. In P2, εT = 0 only when T(i, :) = T(i′, :)
for all i, i′ ∈ #k , i.e. the rows are equal. On the other hand,
in P1, εT = 0 is possible even if no row equalities exist.
Hence, being εT-aggregatable in P2 is a stronger assumption
than being εT-lumpable in P1. As a result, in Section IV, the
clustering guarantee for P2 is stronger and more interpretable
than that of P1.

C. EQUIVALENCY BETWEEN MJSS
To compare the original and mode-reduced MJSs as men-
tioned in P1, we need a notion of equivalency between two
MJSs with different numbers of modes. This is provided be-
low via a surjection from modes of the larger MJS to the
smaller one, which extends the bijection idea in [8], [22] that
can only compare two MJSs with equal amounts of modes.

Definition 2 (Equivalency between MJSs): Consider two
MJSs %1 and %2 with the same state and input dimensions
n, p, but different number of modes s1 and s2 respec-
tively. WLOG, assume s1 > s2. Let {x(1)

t , u(1)
t ,ω

(1)
t } and

{x(2)
t , u(2)

t ,ω
(2)
t } denote their respective state, input, and mode

index. %1 and %2 are equivalent if there exists a partition #1:s2

on [s1] such that %1 and %2 have the same transition kernels,
i.e. for any time t , any mode k, k′ ∈ [s2], any x, x′ ∈ Rn, and
any u ∈ Rp

P
(
ω

(1)
t+1∈#k′ , x(1)

t+1 = x′ | ω
(1)
t ∈#k, x(1)

t = x, u(1)
t = u

)

= P
(
ω

(2)
t+1 = k′, x(2)

t+1 = x′ | ω
(2)
t = k, x(2)

t = x, u(2)
t = u

)
.

(4)

The trivial perturbation-free case, i.e., εA, εB, εT = 0, pro-
vides a sufficient condition that guarantees that an MJS can be
reduced to a smaller MJS with equivalency between them.

Definition 3 (Mode-reducibility Condition): If in P1,
εA, εB,εT = 0, we say % is mode-reducible with respect to
#1:r .

If this condition holds for %, we can construct a mode-
reduced MJS %̆:=MJS(Ă1:r, B̆1:r, T̆) such that for any k, l ∈
[r], any i ∈ #k , Ăk = Ai, B̆k = Bi, and T̆ ∈ Rr×r with
T̆(k, l ) =

∑
j∈#l

T(i, j), which is illustrated in Fig. 1. Let
{x̆t , ŭt , ω̆t } denote the state, input, and mode index for the
reduced %̆. Then, the following fact shows that %̆ and % are
equivalent according to Definition 2.

Fact 1: Suppose % is mode-reducible and %̆ is constructed
as above. Consider the case when % and %̂ have (i) ini-
tial mode distributions satisfy P(ω0 ∈ #k ) = P(ω̆0 = k) for
all k ∈ [r], (ii) the same initial states (x0 = x̆0), and (iii)
the same input sequences (u0:t−1 = ŭ0:t−1). Then, these two
MJSs have the same mode and state transition kernels, i.e.
P(ωt ∈ #k, xt = x) = P(ω̆t = k, x̆t = x) for all t , all k ∈ [r]
and x ∈ Rn. Particularly, there exists a special type of reduced
%̆ such that the modes are synchronized: for all t , ω̆t = ζt . In
this case, x̆t = xt for all t .

Fact 1 first shows the equivalency between % and %̆ in
terms of the transition kernels, which is then extended to
trajectory realizations if certain synchrony exists between
ζ0:t and ω̆0:t . The condition ω̆t = ζt in Fact 1 essentially
establishes a coupling between the Markov chains ω0:t and
ω̆0:t such that P(ωt ∈ #k, ω̆t = k) = P(ωt ∈ #k ) = P(ω̆t =
k). Establishing coupling between the stochastic systems usu-
ally allows for stronger equivalency and approximation result.
Similar coupling scheme is implicitly used in [8], [22]; an
optimal coupling by minimizing Wasserstein distance is dis-
cussed in [13]; and a weaker coupling using the idea of HMM
is discussed in [24].

In Definition 2 and Fact 1, one can view {ωt , xt } ∈ [s]×
Rn as a hybrid state [19]. T being lumpable guarantees the
existence of an equivalence relation in the discrete domain [s]
as in Definition 1, while state/input matrices being the same
guarantees this in the continuous domain Rn.

IV. CLUSTERING-BASED MODE REDUCTION FOR MJS
In this section, we first propose Algorithm 1 to estimate the
latent partition #1:r and construct the reduced MJS for Prob-
lem P1 and P2, and then provide its theoretical guarantees for
partition estimation in Section IV-A.

We treat the estimation of partition #1:r essentially as a
mode clustering problem with the dynamics matrices Ai, Bi
and transition distribution T(i, :) serving as features for mode
i. In Algorithm 1, we first construct the feature matrix " from
Line 2 to Line 8, with "(i, :) denoting the features of mode
i. For the aggregatable case in Problem P2, we simply stack
the vectorized Ai, Bi and T(i, :), and use αA,αB,αT to denote
their weights respectively. One way to choose these weights is
as a normalization, e.g. αA ∝ 1/ maxi ‖Ai‖, so that these three
features would have the same scales. Though in the aggregat-
able case P2, similarities among the rows of T shed light on
the groundtruth partition #1:r , this is no longer valid in the
lumpable case P1 as two modes belonging to the same cluster
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FIGURE 1. Illustration of reduction under mode-reducibility condition.

Algorithm 1: System Reduction for MJS.
Input: A1:s, B1:s, T,π, r, and non-negative tuning

weights αA,αB,αT that sum to 1
1. Construct feature matrix ": ∀i ∈ [s],
2. case Problem P2 do
3. "(i, :) = [αAvec(Ai )T,αBvec(Bi )T,αTT(i, :)].
4. case Problem P1 do
5. H = diag(π)

1
2 Tdiag(π)-

1
2 do

6. Wr ← top r left singular vectors of H
7. Sr = diag(π)-

1
2 Wr

8. "(i, :) = [αAvec(Ai )T,αBvec(Bi )T,αTSr (i, :)]
9. Ur ← top r left singular vectors of "

10. Solve k-means problem: #̂1:r, ĉ1:r =
arg min#̂1:r ,ĉ1:r

∑
k∈[r]

∑
i∈#̂k
‖Ur (i, :)− ĉk‖2

11. Construct %̂, ∀k, l ∈ [r]
Âk = 1

|#̂k |
∑

i∈#̂k
Ai, B̂k = 1

|#̂k |
∑

i∈#̂k
Bi,

T̂(k, l ) = 1
|#̂k |

∑
i∈#̂k , j∈#̂l

T(i, j)

Output: %̂ : MJS(Â1:r, B̂1:r, T̂)

can still have different transition probabilities T(i, :), even if
εT = 0. According to (3), the groundtruth partition #1:r is
only embodied in the mode-to-cluster transition probabilities∑

j∈#l
T(i, j) constructed using the groundtruth partition it-

self. This leaves us in a “chicken-and-egg” dilemma. To deal
with this, from Line 5 to 8, we compute the first r left singular
vectors Wr of matrix diag(π)

1
2 Tdiag(π)-

1
2 , and then weight

it by diag(π)-
1
2 to obtain matrix Sr ∈ Rs×r , which is used to

construct features in " for the lumpable case P1. We will later
justify using Sr as features by showing row similarities in Sr
reflect the partition under certain assumptions.

With the feature matrix ", to recover the partition, we resort
to k-means: in Line 10, k-means is applied to the first r left
singular vector Ur of ". The typical algorithm for k-means
is Lloyd’s algorithm, where the cluster centers and partition
membership are updated alternately. Based on the solution
#̂1:r obtained via k-means, we construct the reduced %̂ by
averaging modes within the same estimated cluster. A more

subtle averaging scheme is through the weights provided in
the stationary distribution π which describes the frequency
of each mode being active in the long run. %̂ generated by
this scheme (or any weighted averaging) would have the same
performance guarantees as the uniform averaging, which is
provided in Section IV-A.

In practice, if we have no good prior knowledge which
model of Problem P1 and P2 would yield the best system
reduction performance, we can first obtain the partitions for
both cases and then pick the one yields smaller hindsight per-
turbations εA, εB, εT in Problem P1 and P2. When one picks
αA = αB = 0, i.e only the Markov matrix T is used to cluster
the modes, then our clustering scheme under the aggregatable
case P2 is equivalent to [16] which studies clustering for
Markov matrices that is estimated from a single trajectory. The
lumpable case P1, on the other hand, is based on preliminary
analysis in [41].

We note that several aspects of this algorithm we have guar-
antees for do not directly consider the metrics important to this
problem; for example averaging dynamics matrices within
the same cluster may not yield the dynamics that gives an
optimal fit for prediction or controller design. That said, even
for this straightforward approach, Section V provides several
strong approximation guarantees. We are hopeful that future
generalizations will be able to build on this theory and fur-
ther improve the control performance of our mode-reduction
approach.

A. THEORETICAL GUARANTEES FOR CLUSTERING
In this section, we discuss the clustering performance by
comparing the estimated partition #̂1:r and the true #1:r .
As k-means algorithms are known to have local convergence
properties [42], we instead assume for the k-means problem
in Algorithm 1, a (1 + ε) approximate solution can be ob-
tained, i.e.,

∑
k∈[r],i∈#̂k

‖Ur (i, :)− ĉk‖2 ≤ (1 + ε) min#′1:r ,c
′
1:r∑

k∈[r],i∈#′k
‖Ur (i, :)− c′k‖2. Many efficient algorithms have

been developed that can provide (1 + ε) approximate solu-
tions. For ε = 1, a linear time (in terms of r and s) algorithm
is provided in [43]. For smaller ε, [44] proposes a linear time
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algorithm using random sampling; [45] gives a polynomial
time algorithm with computational complexity independent
of s. We later show how ε affects the overall clustering per-
formance.

To evaluate the performance of partition estimation,
we define misclustering rate (MR) as MR(#̂1:r ) =
minh∈H

∑
k∈[r]

|{i:i∈#k ,i/∈#̂h(k)}|
|#k | , where H is the set of all

bijections from [r] to [r] so that the comparison finds the best
cluster label matching. The error metric MR counts the total
misclustered modes normalized by the cluster sizes, which
implies clustering errors occurring in smaller clusters would
yield larger MR.

We define the following averaged feature matrix "̄ based on
the underlying partition #1:r : for all i ∈ [s] (suppose i ∈ #k
for some k ∈ [r]), "̄(i, :) = 1

|#k |
∑

i′∈#k
"(i′, :). By construc-

tion, there are up to r unique rows in "̄, hence rank("̄) ≤ r.
We first present the clustering guarantee for Problem P2, i.e.,
the aggregatable case.

Theorem 1: Consider Problem P2 and Algorithm 1. Sup-
pose #̂1:r is a (1 + ε) k-means solution. Let ε2

Agg :=
α2

Aε2
A + α2

Bε2
B + α2

Tε2
T. Then, if rank("̄) = r and εAgg ≤

σr ("̄)
√

|#(r)|+|#(1)|
8
√

(2+ε)|#(1)|
, we have

MR(#̂1:r ) ≤ 64(2 + ε)σr ("̄)-2ε2
Agg. (5)

Additionally, if εAgg ≤ σr ("̄)
8
√

(2+ε)|#(1)|
, then MR(#̂1:r ) = 0.

The key term εAgg measures how modes within the same
cluster differ from each other, i.e., inner-cluster distance. On
the other hand, the singular value σr ("̄) measures the dif-
ferences of modes from different clusters, i.e., inter-cluster
distance. This is because when modes belonging to different
clusters have similar features, their corresponding rows in
the averaged feature matrix "̄ will also be similar, which
could give small σr ("̄). Particularly, if two different clusters
share the same features, then rank("̄) = r − 1 and σr ("̄) =
0. In the theorem, when the inner-cluster distance is small
compared to the inter-cluster distance, the misclustering rate
can be bounded by their ratio εAgg/σr ("̄). By definition of
misclustering rate, the smallest nonzero value it can take is
given by 1

|#(1)| . Therefore, whenever the upper bound in (5) is

smaller than 1
|#(1)| , one can guarantee MR(#̂1:r ) = 0, which

yields the final claim in Theorem 1.
The clustering guarantee for the lumpable case in Prob-

lem P1 is more involved than the aggregatable case. We first
provide a few more notions and definitions that can help the
exposition. We say a Markov matrix T is reversible if there ex-
ists a distribution π ∈ Rs such that π(i)T(i, j) = π( j)T( j, i)
for all i, j ∈ [s]. This condition translates to diag(π)T =
TTdiag(π) when T is ergodic with stationary distribution π.
For a reversible Markov matrix that is also lumpable, we have
the following property.

Lemma 1 (Appendix A in [41]): For a reversible Markov
matrix T that is also lumpable with respect to partition #1:r , it
is diagonalizable with real eigenvalues. Let S ∈ Rs×s denote

an arbitrary eigenvector matrix of T. Then, there exists an
index set A ⊆ [s] with |A| = r such that for all k ∈ [r], for
all i, i′ ∈ #k , we have S(i,A) = S(i′,A).

We say T in Lemma 1 has informative spectrum if A = [r]
and |λr (T)| > |λr+1(T)|, which implies that the r eigenvec-
tors that carry partition information in Lemma 1 correspond
to the r leading eigenvalues. For lumpable Markov matrices,
we define the εT-neighborhood of T:

L(T,#1:r, εT) :=
{

T0∈Rs×s : T0 is Markovian,

‖T0 − T‖∞ ≤ εT, ‖T0 − T‖F ≤ εT,

∀k, l∈[r],∀i∈#k,
∑

j∈#l

T0(i, j) = 1
|#k|

∑

i′∈#k
j∈#l

T(i′, j)
}
. (6)

Under the approximate lumpability condition in (3), one can
show this neighborhood set is non-empty. Related discus-
sions are provided in Appendix B. To find such a T0 ∈
L(T,#1:r, εT), one only needs to solve a feasibility linear pro-
gramming problem. Then we provide the clustering guarantee
for the lumpable case.

Theorem 2: Consider Problem P1 and Algo-
rithm 1. Let γ1:=

∑s
i=2

1
1−λi (T) , γ2:= min{σr (H)−

σr+1(H), 1}, γ3:= 16γ1
√

rπmax‖T‖F
γ2π2

min
, and ε2

Lmp:=α2
Aε2

A +
α2

Bε2
B + α2

Tγ 2
3 ε2

T. Assume there exists an ergodic and
reversible T0 ∈ L(T,#1:r, εT) with informative spectrum.
Suppose #̂1:r is a (1 + ε) k-means solution. Then, if

rank("̄) = r, εT≤πmin
γ1

, εLmp≤
σr("̄)
√

|#(r)|+|#(1)|
8
√

s(2+ε)|#(1)|
, we have

MR(#̂1:r)≤64(2+ε)σr ("̄)-2ε2
Lmp. (7)

Additionally, if εLmp ≤ σr ("̄)
8
√

(2+ε)|#(1)|
, then MR(#̂1:r ) = 0.

Theorem 2 for the lumpable case is similar to Theorem 1
for the aggregatable case with an additional γ3 term. This
is a result of using Sr and T to construct features in Al-
gorithm 1 for these two cases. γ3 describes how much the
lumpability perturbation εT on T affects the row equalities of
its spectrum-related matrix Sr in Lemma 1. The assumption
on the existence of T0 with informative spectrum guarantees
(i) the partition #1:r information is carried by the leading
eigenvectors of T0 as introduced in Lemma 1, and (ii) this
information can still be preserved in Sr as long as T is close
to T0. Because of this, Theorem 2 may not hold for arbitrary
lumpable T, but only those close to Markov matrices with
informative spectra.

V. APPROXIMATION GUARANTEES
With perturbations εA, εB, εT, the reduced %̂ may not be
equivalent to the original % as in Fact 1. In this case, if certain
approximation guarantees can be established, they can be used
in verification tasks such as safety [22] and invariance [20]
evaluations. In this section, we show that the reduced system
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%̂ can be guaranteed to well approximate the original sys-
tem % under metrics such as transition kernels (distributions)
and trajectory realizations. Particularly, these metrics reach
0 when εA, εB, εT = 0, i.e., the mode-reducibility condition
in Definition 3 holds. We have shown in Theorem 1 and 2
that MR(#̂1:r ) = 0 when perturbations εA, εB, εT are small.
Hence, in this section together with Section VI and VII, we
assume #1:r = #̂1:r for simplicity. In these sections, the the-
ory holds for perturbations εA, εB, εT introduced in either P1
or P2.

We study the approximation in a setup where % and %̂ start
with the same initial condition and are driven by the same
input.

Setup S1 (Initialization-Excitation Setup): Systems % and
%̂ have (i) initial mode distributions satisfy P(ω0 ∈ #̂k ) =
P(ω̂0 = k) for all k ∈ [r]; (ii) the same initial states, i.e.,
x0 = x̂0, and (iii) the same inputs ut = ût for all t .

Note that when % and %̂ have fixed and shared initial
conditions and inputs as in setup S1, we can at most evaluate
the difference between xt and x̂t in terms of their distributions
(or, the transition kernels of % and %̂). However, the actual
realizations of xt and x̂t , i.e., when we only generate a single
sample for each, can be very different. This is because xt and
x̂t are driven not only by the input excitation, but also the
mode switching sequences ω0:t−1 and ω̂0:t−1; thus, xt and x̂t
are likely to be far away from each other if the realizations
of ω0:t−1 and ω̂0:t−1 are different. On the other hand, if the
reduced model %̂ is to be used online to predict the future
behavior of %, and if the mode ωt can be observed at run-time,
we can assume the following and derive stronger relations on
the state realization difference ‖xt − x̂t‖.

Setup S2 (Mode Synchrony): Mode ω̂t of %̂ is synchronous
to ωt of %, i.e., for all t , if ωt ∈ #̂k then ω̂t = k.

Mode synchrony setup essentially establishes the strongest
possible coupling between ω0:t and ω̂0:t as discussed in Sec-
tion III-C. When the mode sequence ω̂0:t of %̂ is synchronized
with that of %, this amounts to having %̂ being driven by an
external switching signal ω0:t .

In the following, we provide bounds on how close %̂ is
to % in terms of the following approximation metrics: (i)
under the mean-square stability of %, the difference ‖xt − x̂t‖
in trajectories (Theorem 3); (ii) under uniform stability, the
difference in trajectories (Theorem 4 (T1)) and the difference
of transition kernels (Theorem 4 (T2)).

A. RESULT WITH MEAN-SQUARE STABILITY
Due to the stochasticity of mode switching, the stability for
MJS is typically studied in mean-square sense. We say %

is mean-square stable (MSS), if there exists #∞ such that
limt→∞ E[xt xT

t ] = #∞. Define the augmented state matrix
A ∈ Rsn2×sn2

with its i j-th n2 × n2 block given by [A]i j :=
T( j, i) · A j ⊗ A j , and let ρ(A) denote the spectral radius of
A. Then, for the autonomous case, i.e., ut = 0, % being MSS
is equivalent to ρ(A) < 1. It is known that MSS does not
imply each individual mode is stable, and vice versa [46]. For

any ρ ≥ ρ(A), let us define τ (A, ρ) := supk∈N ‖Ak‖/ρk .
This term compares the convergence of ‖Ak‖ and ρk . In the
remainder of this paper, we use τ as a shorthand notation for
τ (A, ρ), but keep in mind that τ depends on the choice of the
free parameter ρ. It is easy to see (i) τ ≥ 1, (ii) ‖Ak‖ ≤ τρk ,
and (iii) by Gelfand’s formula, τ is finite for any ρ > ρ(A).
When A is diagonalizable with decomposition A = V$V-1,
a generic property of matrices in Rsn2×sn2

, τ is also finite
for ρ = ρ(A). In this case, we have τ ≤ ‖V‖‖V-1‖. We let
Ā := maxi ‖Ai‖, B̄ := maxi ‖Bi‖. The following theorem pro-
vides an upper bound for ‖xt − x̂t‖ under MSS.

Theorem 3: Consider setup S1 and S2 where the
shared initial state x0 and inputs u0:t can be arbitrary
as long as for all t , ut is bounded, i.e., ‖ut‖ ≤ ū.
Assume % is MSS and #̂1:r = #1:r in Algorithm 1.
For any ρ ∈ [ρ(A), 1) and its corresponding τ , let
ρ0 := 1+ρ

2 . For perturbation, assume εA ≤ min{Ā, 1−ρ

6τ Ā‖T‖
}

and εB ≤ B̄. Then, E[‖xt − x̂t‖] ≤ 4
√

n
√

sτεmss
t where

εmss
t := ρ

t−1
2

0

√
t Ā‖T‖εA‖x0‖+

√
B̄ū(

√
ρ0

(1−√ρ0 )2

√
Ā‖T‖εA +

√
2

1−√ρ0

√
εB).

In this theorem, εmss
t is the key element in the upper bound.

In its definition, the first term describes the effect of εA
through initial state x0. Since ρ < 1 due to % being MSS,
we know ρ0 < 1, which implies exponential decay. The rest
of the terms in εmss

t characterize the effects of εA and εB
through the inputs. And if there is no input, the trajectory
difference ‖xt − x̂t‖ converges to 0 exponentially with t . The
condition εA ≤ 1−ρ

6
√

sτ Ā
is used to guarantee perturbation εA is

small such that %̂ is still MSS, as otherwise the difference
will grow exponentially, and no meaningful results can be
established in this case. Conditions εA < Ā and εB ≤ B̄ are
only used to simplify the expressions, and similar bounds can
be established without them.

Fact 1 provides a sanity check for Theorem 3: when εA =
εB = 0, we have xt = x̂t . In the autonomous case, i.e., ut = 0,
as a direct corollary of Theorem 3, we can further obtain a
probabilistic bound on the difference over an entire trajec-
tory using Markov inequality: with probability at least 1− δ,
∑∞

t=0 ‖xt − x̂t‖ ≤
4
√

npτ‖x0‖
√

ĀεA
δ(1−√ρ0 )2 .

B. RESULTS WITH UNIFORM STABILITY
MSS in Section V-A is a weak notion of stability in that it
only requires stability in expectation while still allowing a set
of mode switching sequences that result in explosive xt , even
a set with nonzero probability. In this section, we consider
uniform stability, which guarantees stable xt even with an
arbitrary switching sequence. Uniform stability allows us to
further build approximation results without enforcing mode
synchrony as in S2.

We let ξ (A1:s) denote the joint spectral radius of the set of
state matrices A1:s of %, i.e., ξ (A1:s):= limk→∞maxω1:k∈[s]k

‖Aω1 · · · Aωk‖
1
k . We say % is uniformly (and exponentially)
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stable if ξ (A1:s)<1. For any ξ≥ξ (A1:s), we define κ (A1:s, ξ )
to compare the convergence of ‖Aω1 · · · Aωk‖ and ξ k for
any mode switching sequence ω1:k : κ (A1:s, ξ ) := supk∈N
maxω1:k∈[s]k ‖Aω1 · · · Aωk‖/ξ k . In the remainder of this paper,
we use κ as a shorthand notation for κ (A1:s, ξ ). Note that the
pair {ξ , κ} for uniform stability is just the counterpart of {ρ, τ }
defined earlier for MSS. And similarly, we have (i) κ ≥ 1, (ii)
‖Aω1 · · · Aωk‖ ≤ κξ k , and (iii) κ is finite for any ξ > ξ (A1:s).
Furthermore, we let T̄ := maxi, j T(i, j).

We first formally define the transition kernels for % and
%̂ and their distance. Under fixed initial state x0 and in-
put sequence u0:t−1, we define the reachable set Xt := {xt :
x0:t is a solution to (1) ∀ ω0:t−1 ∈ [s]t }. Then we define the
t-step transition kernel as pt (x) := P(xt = x) for all x ∈ Xt .
Note that both Xt and pt (x) depend on the choice of the initial
state and input sequence as well. We omit this dependency
in the notation not only for simplicity but also because the
approximation results we provide hold for arbitrary initial
state and input sequence. Similarly, for the reduced %̂, we
use X̂t to denote the reachable set at time t , and for x̂ ∈ X̂t ,
we let p̂t (x̂) := P(x̂t = x̂). Then, for 1 ≥ 1 the 1-Wasserstein
distance W1(pt , p̂t ), between distributions pt and p̂t is defined
as the optimal objective value of the following mass trans-
portation problem:

min
f≥0

(∑
x∈Xt ,x̂∈X̂t

f (x, x̂)‖x − x̂‖1
)1/1

s.t.
∑

x∈Xt
f (x, x̂) = p̂t (x̂),∀ x̂

∑
x̂∈X̂t

f (x, x̂) = pt (x),∀ x.

(8)

The constraints describe the transportation of probability mass
distributed according pt to the support of p̂t so that the mass
after transportation distributes the same as p̂t . We can view
f (x, x̂) as the mass that is transported from point x to x̂ and
‖x − x̂‖ as the distance it travels. When 1 = 1, the goal is to
minimize the total weighted travel distance, and the resulting
W1 is also known as the earth mover’s distance. Now we are
ready to present our results for the uniform stability assump-
tion.

Theorem 4: Consider setup S1 where the shared initial state
x0 and inputs u0:t can be arbitrary as long as for all t , ut is
bounded, i.e., ‖ut‖ ≤ ū. Assume % is uniformly stable and
#̂1:r = #1:r in Algorithm 1. For any ξ ∈ [ξ (A1:s), 1) and its
corresponding κ , let ξ0 := 1+ξ

2 . For perturbation, we assume
εA ≤ 1−ξ

2κ and εB ≤ B̄. Then, we have the following results.
T1) Under S2, ‖xt − x̂t‖ ≤ εus

t := tξ t−1
0 κ2‖x0‖εA +

2(1+tξ t
0 )κ2B̄ū

1−ξ0
εA + κ ū

1−ξ εB almost surely.
T2) Consider the autonomous case, i.e., B1:s = 0. (S2 is

not mandatory.) Then, W1(pt , p̂t ) ≤ tξ t−1
0 κ2‖x0‖εA +

2r2tκ‖x0‖rt (κεA+ξ )t (T̄ +εT)(t−2)/1ε
1/1
T .

In Theorem 4, condition εA ≤ 1−ξ
2κ guarantees the reduced

%̂ is uniformly stable with joint spectral radius upper bounded
by ξ0. The condition εB ≤ B̄ simplifies the expression, and
similar results can be obtained when it is relaxed. (T1) upper

bounds the realization difference with the mode synchrony
setup. We can see the similarity between the upper bounds
εus

t and εmss
t of Theorem 3 under MSS assumption. The fact

that uniform stability and MSS upper bound ‖xt − x̂t‖ deter-
ministically and in expectation respectively is a manifestation
of the difference between these two stability notions for MJS.

In (T2), we bound the Wasserstein distance between pt
and p̂t . This bound depends on both perturbations εA and
εT. Let µ and S denote the mean and covariance for xt ; and
similarly define µ̂ and Ŝ for x̂t . From [47, Theorem 4], we
obtain ‖µ− µ̂‖2 + d (S, Ŝ) ≤W2(pt , p̂t )2, where d (S, Ŝ) :=
tr(S + Ŝ− 2(S

1
2 ŜS

1
2 )

1
2 ) is a metric between S and Ŝ. Hence,

by setting 1 = 2 in (T2), we also obtain upper bounds for the
differences between pt and p̂t in terms of their first and second
order moments, i.e., ‖µ− µ̂‖ and d (S, Ŝ). These metrics can
be used to obtain performance bounds in other control prob-
lems such as covariance steering [48], [49], [50] and ensemble
control [51].

VI. STABILITY ANALYSIS
In this section, we study whether the stability properties of
% can be deduced from those of %̂. Recall that MSS of %

depends on ρ(A), the spectral radius of its augmented state
matrix A, and its uniform stability depends on ξ (A1:s), the
joint spectral radius of state matrices A1:s. Similarly, for %̂,
we define its augmented state matrix Â ∈ Rrn2×rn2

with its
i j-th n2 × n2 block given by [Â]i j := T̂( j, i) · Â j ⊗ Â j and
let ρ(Â) denote its spectral radius; we let ξ (Â1:r ) denote
the joint spectral radius of state matrices Â1:r . With these
notations, we want to analyze when ρ(Â) (or ξ (Â1:r )) can
be taken as an approximation for ρ(A) (or ξ (A1:s)) since
computing or approximating ρ(Â) and ξ (Â1:r ) may require
much less computation compared with ρ(A) and ξ (A1:s) as
%̂ has much fewer number of modes than %.

To begin with, we first construct an intermediate MJS by ex-
panding the reduced %̂: we let %̄ := MJS(Ā1:s, B̄1:s, T̄) such
that T̄ ∈ L(T, #̂1:r, εT), and for all i ∈ [s] (suppose i ∈ #̂k),
Āi = Âk , B̄i = B̂k . By definition of L(T, #̂1:r, εT), we can
solve for T̄ through a linear programming feasibility prob-
lem with constraints given by the definition of L(·, ·, ·) in
(6). Particularly, if it is the aggregatable case P2, it suffices
to let T̄(i, :) := |#̂k|-1 ∑

i∈#̂k
T(i, :) if i ∈ #̂k . Note that by

construction, %̄ is mode-reducible with respect to #̂1:r and
can be reduced to %̂. According to Fact 1, %̄ has the same
dynamics as %̂. Since %̄ has the same number of modes as
%, we can use %̄ as a bridge to compare % and %̂. We let
ρ(Ā) denote the spectral radius of Ā ∈ Rsn2×sn2

whose i j-th
n2 × n2 block is given by [Ā]i j := T̄( j, i) · Ā j ⊗ Ā j and let
ξ (Ā1:s) denote the joint spectral radius of Ā1:s. The following
preliminary result (proof omitted due to its simplicity) says %̄

and %̂ have the same stability properties.
Lemma 2: For %̂ and %̄, we have ρ(Â) = ρ(Ā) and

ξ (Â1:s) = ξ (Ā1:s).
One implication of Lemma 2 is that if an MJS is mode-

reducible, the reduced MJS has the same MSS and uniform
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stability as the original MJS in terms of (joint) spectral
radius. When % is not exactly mode-reducible, Lemma 2
allows us to compare the stability properties of %̂ and %

via the intermediate expanded %̄ as presented in Theorem
5. For analysis purposes, similar to τ and κ defined for %,
we define τ̄ := supk∈N ‖Āk‖/ρ̂k for any ρ̂ ≥ ρ(Â) and κ̄ :=
supk∈N maxω1:k∈[r]k ‖Āω1 · · · Āωk‖/ξ̂ k for any ξ̂ ≥ ξ (Â1:s)

Theorem 5 (Stability Analysis): Assume #̂1:r = #1:r in Al-
gorithm 1, then % and %̂ have the following relations.

T1) (MSS) For any ρ ≥ ρ(A) and its corresponding τ , any
ρ̂ ≥ ρ(Â) and its corresponding τ̄ , we have

ρ(Â)− ρ(A) ≤ τερ + (ρ − ρ(A))

ρ(A)− ρ(Â) ≤ τ̄ ερ + (ρ̂ − ρ(Â))
(9)

where ερ :=
√

s((2Ā + εA)εA + Ā2εT).
T2) (Uniform stability) For any ξ ≥ ξ (A1:s) and its corre-

sponding κ , any ξ̂ ≥ ξ (Â1:r ) and its corresponding τ̄ ,
we have

ξ (Â1:r )− ξ (A1:s) ≤ κεA + (ξ − ξ (A1:s))

ξ (A1:s)− ξ (Â1:r ) ≤ κ̄εA + (ξ̂ − ξ (Â1:r )).
(10)

Proof: From Lemma 2, it suffices to prove

ρ(Ā) ≤ τερ + ρ, ρ(A) ≤ τ̄ ερ + ρ̂. (11)

ξ (Ā1:s) ≤ κεA + ξ , ξ (A1:s) ≤ κ̄εA + ξ̂ . (12)

Since we assume #̂1:r = #1:r , then for % and
%̄, we have ‖Āi − Ai‖ ≤ εA, ‖B̄i − Bi‖ ≤ εB, and
‖T̄− T‖∞ ≤ εT. Consider matrix Ā and A, we have
[Ā]i j − [A]i j = T̄( j, i)Ā j ⊗ Ā j − T( j, i)A j ⊗ A j =
T̄( j, i)(Ā j ⊗ Ā j − A j ⊗ A j ) + (T̄( j, i)− T( j, i))A j ⊗ A j .

Note that Ā j ⊗ Ā j − A j ⊗ A j = (Ā j − A j )⊗ A j +
A j ⊗ (Ā j − A j ) + (Ā j − A j )⊗ (Ā j − A j ), which
gives ‖Ā j ⊗ Ā j − A j ⊗ A j‖ ≤ (2Ā + εA)εA. Then,
we have ‖[Ā]i j − [A]i j‖ ≤ T̄( j, i)(2Ā + εA)εA +
|T̄( j, i)− T( j, i)|Ā2. To simplify the notation, we
let c1 := (2Ā + εA)εA and c2 := Ā2. By Cauchy-
Schwarz inequality, we have

∑
i ‖[Ā]i j − [A]i j‖2 ≤

(c1‖T̄( j, :)‖+ c2‖T̄( j, :)− T( j, :)‖)2. Thus, ‖Ā−A‖ ≤√
s max j (

∑
i ‖[Ā]i j − [A]i j‖)0.5 ≤

√
s(c1 + c2εT) =: ερ .

With Corollary 2 in the appendix, we have
‖Āk‖ ≤ τ (τερ + ρ)k . By Gelfand’s formula, ρ(Ā) =
lim supk→∞ ‖Āk‖ 1

k≤τερ + ρ, which shows the left
inequality of (11). If we use Corollary 2 the other way,
we have ‖Ak‖ ≤ τ̄ (τ̄ ερ + ρ̂)k , which similarly implies
ρ(A) ≤ τ̄ ερ + ρ̂. With these results, (11) is proved. (12) can
be shown similarly by noticing ‖Āi − Ai‖ ≤ εA and then
using Lemma 10 in the appendix. !

Theorem 5 provides upper bounds on |ρ(Â)− ρ(A)| and
|ξ (Â1:r )− ξ (A1:s)|. By definition, τ decreases when ρ in-
creases, and the same applies to the pairs {τ̄ , ρ̂}, {κ, ξ}, and
{κ̄, ξ̂}. Hence, for fixed ερ and εA, by tuning the free param-
eters ρ, ρ̂, ξ , and ξ̂ , one may obtain tighter upper bounds in
Theorem 5. When ρ = ρ(A), ρ̂ = ρ(Â), the bound in (T1)

becomes tight at ερ = 0 as the upper and lower bounds meet
at 0. Note that these results hold for both stable and unstable
%, and does not require perturbation εA, εB, εT to be small,
which is in contrast to approximation results in Theorem 3
and 4.

Now we briefly compare the complexities for computing
or approximating ρ(A), ρ(Â), ξ (A1:s), and ξ (Â1:r ). Since A
has dimension sn2 × sn2, the complexity to compute its spec-
tral radius ρ(A) is O(s3n6), but it only requires O(r3n6) for
ρ(Â). Computation of the joint spectral radius is in general
undecidable [52]. An iterative approach [53] provides an ap-
proximation for ξ (A1:s) with computational complexity O(s),
whereas it only requires O(r) for ξ (Â1:r ).

VII. CONTROLLER DESIGN WITH CASE STUDY ON LQR
When the mode of an MJS can be measured at run-time,
one can use mode-dependent controllers. A mode-dependent
controller is essentially a collection of individual controllers,
one per mode, and the deployed controller switches with cor-
responding modes. Therefore, if we can reduce the modes,
that would also reduce the number of controllers in a mode-
dependent control. That is, with the reduced %̂, we can design
mode-dependent controller K̂1:r for %̂ and then associate ev-
ery mode i in % with K̂k if i ∈ #̂k . Since %̂ has a smaller
scale than %, the computational cost may be reduced but the
question is how this simplified controller performs on the
original system %. In this section, we show how this idea
can be used for linear quadratic regulator (LQR) for MJS and
provide suboptimality guarantees for the reduced controller.

In the infinite horizon MJS LQR problems, given positive
definite cost matrices Q and R, we define quadratic
cumulative cost JT = E[

∑T−1
t=0 (xT

t Qxt + uT
t Rut ) + xT

T QxT ].
The goal is to design inputs to minimize the infinite time
average cost lim supT→∞

1
T JT under %. To ease the

exposition, we let S+
s := {X1:s : ∀i ∈ [s], Xi ∈ Rn×n, Xi 2

0}. For X1:s ∈ S+
s , for all i ∈ [s], define three oper-

ators ϕi(X1:s):=
∑

j∈[s] T(i, j)X j , Ki(X1:s):=− (R +
BT

i ϕi(X1:s)Bi )−1(BT
i ϕi(X1:s)Ai ), and

Ri(X1:s):=Q + AT
i ϕi(X1:s)Ai − AT

i ϕi(X1:s)TBi

·
(

R + BT
i ϕi(X1:s)Bi

)-1
BT

i ϕi(X1:s)Ai. (13)

Then, the solution to the infinite horizon LQR is the follow-
ing: we first solve for the coupled Riccati equations Pi =
Ri(P1:s),∀i ∈ [s], and then if ωt = i at time t , we let in-
put ut = Kixt where Ki = Ki(P1:s). The solution existence,
uniqueness, and optimality can be guaranteed by the following
assumption according to [46].

Assumption A1: % is mean-square stabilizable. Cost matri-
ces Q 3 0 and R 3 0.

To design controllers with the reduced %̂, we can first com-
pute controller K̂1:r by solving LQR problem with %̂ as the
MJS dynamics. This requires solving r coupled Riccati equa-
tions, each of which is parameterized by Âi, B̂i, T̂(i, :), Q, R.
To apply K̂1:r to the original %, we simply let ut = K̂kxt if
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ωt = k. Since the number of coupled Riccati equations is the
same as the number of modes, the computational cost for %

is O(s) while only O(r) for %̂, thus the saving is prominent
when r 4 s.

Next, we analyze the suboptimality when applying con-
trollers computed with %̂. To begin with, similar to the
notations for %, for %̂ we define ϕ̂1:r, R̂1:r , K̂1:r , P̂1:r , and
K̂1:r . Particularly, P̂1:r denotes the Riccati solution such that
P̂i = R̂i(P̂1:r ), and K̂1:r is computed such that K̂i = K̂i(P̂1:r ).
We will take the expanded and mode-reducible MJS %̄ con-
structed with %̂ and #̂1:r in Section VI as a bridge. For %̄,
we similarly define ϕ̄1:s, R̄1:s, K̄1:s, P̄1:s, and K̄1:s. In terms of
LQR solutions, the relation between %̂ and %̄ is given below.

Lemma 3: Assume the Riccati solution P̄1:s exists and P̄i 3
0 for all i. Then, (i) there exists a unique Riccati solution P̂1:r
in S+

r ; (ii) P̂k = P̄i, K̂k = K̄i for any i ∈ #̂k for any k.
Proof: We consider the Riccati operator iteration defined

as follows: P̄(0)
i = Q, P̄(h+1)

i = R̄i(P̄
(h)
i ) for all i ∈ [s], h ∈ N

and P̂(0)
k = Q, P̂(h+1)

i = R̂i(P̂
(h)
i ) for all k ∈ [r], h ∈ N. Then,

note that by construction, for all i ∈ #̂k and all l ∈ [r], we
have

∑
j∈#̂l

T̄(i, j) = T̂(k, l ). Through induction and alge-
bra, it is easy to show that for all h ∈ N, and for any i, i′ ∈ #̂k

for any k, we have P̄(h)
i = P̄(h)

i′ = P̂(h)
k .

Since P̄i30, by [54, Fact 4], we know P̄1:s is the unique
solution among S+

s , and K̄1:s stabilizes %̄. According to [46,
Proposition A.23], the stabilizability of %̄ and the fact
Q, R30 imply limh→∞ P̄(h)

i = P̄i. Combining this conver-
gence result with the Riccati iteration results we just showed,
we further have, for any i, i′∈#̂k and any k, we have P̄i =
P̄i′ = P̂k . Then, it is easy to show that K̄i = K̄i′ = K̂k . The
uniqueness of P̂1:s can be shown by contradiction. !

With this lemma, we have the following suboptimality guar-
antees in terms of applying controller K̂1:r to %.

Theorem 6 (LQR Suboptimality): Assume A1 holds for %,
and % has additive Gaussian noise N (0, σ 2

wIn) that is inde-
pendent of the mode switching. Let J3 and Ĵ respectively
denote the infinite time average cost incurred by the optimal
controller K1:s and controller K̂1:r (at time t , ut = K̂kxt if
ωt ∈ #̂k). Then, there exists constants ε̄A,B, ε̄T, CA,B, and CT,
such that when max{εA, εB} ≤ ε̄A,B and εT ≤ ε̄T,

Ĵ − J3 ≤ σ 2
w(CA,B max{εA, εB} + CTεT)2 (14)

Let J3
∞ and Ĵ∞ denote the infinite time cumulative cost in-

curred by K1:s and K̂1:r respectively. Then, when σw = 0,
εT ≤ ε̄T, and max{εA, εB} ≤ ε̄A,B,

Ĵ∞ − J3
∞ ≤ (C′A,B max{εA, εB} + C′TεT)‖x0‖2, (15)

for some constants C′A,B and C′T.
Proof: We will use Lemma 3 and %̄ and K̄1:s as a bridge

to compare K̂1:r and K1:s. First, we prove (14). Comparing
%̄ and %, one can see ‖Āi − Ai‖ ≤ εA, ‖B̄i − Bi‖ ≤ εB, and
‖T̄− T‖∞ ≤ εT. Then, from [54, Theorem 6] we know when
max{εA, εB} ≤ ε̄A,B and εT ≤ ε̄T for some constants ε̄A,B and
ε̄T, the Riccati solution P̄1:s uniquely exists among S+

s and
are positive definite, and the cost J̄ when applying K̄1:s to

% has suboptimality J̄ − J3 ≤ σ 2
w(CA,B max{εA, εB} + CTεT)

for some constants CA,B and CT. Using Lemma 3, we know
P̂1:r uniquely exists S+

r , and K̂k = K̄i for any i belonging to
any #̂k , which implies applying K̄1:s is equivalent to applying
K̂1:r as in the theorem statement. Thus J̄ = Ĵ , and Ĵ − J3 =
J̄ − J3 ≤ σ 2

w(CA,B max{εA, εB} + CTεT).
Next, we prove (15). Similar as above, we let J̄∞ denote

the cumulative cost when applying K̄1:s to %, then we
have Ĵ∞ = J̄∞. From the proof of [46, Theorem 4.5],
we have J̄∞ − J3

∞ =
∑∞

t=0 E[‖Mωt (K̄ωt −K3
ωt

)xt‖2]
where Mi = R + BT

i ϕi(P1:s)Bi and xt is driven by
controller K̄1:s. From [54, Theorem 6], we know when
max{εA, εB} ≤ ε̄A,B and εT ≤ ε̄T, then K̄1:s is a stabilizing
controller and ‖K̄1:s −K3

1:s‖ ≤ CK
A,B max{εA, εB} + CK

T εT

for some constants CK
A,B and CK

T . Following [11,
Lemma 10], we know

∑∞
t=0 E[‖xt‖2] ≤ Cx‖x0‖2 for

some constant Cx. Combining these results, we have
Ĵ∞ − J3

∞ ≤ ‖M1:s‖‖K̄1:s −K3
1:s‖

∑∞
t=0 E[‖xt‖2] ≤

‖M1:s‖Cx(CK
A,B max{εA, εB} + CK

T εT)‖x0‖2. !
In Theorem 6, constants ε̄A,B, ε̄T, CA,B, CT, C′A,B, and C′T

only depend on the original MJS % and cost matrices Q and
R, and their exact expressions can be obtained following the
proof and corresponding references. As a sanity check, when
there is no perturbation, i.e., mode-reducible case, then we
have Ĵ = J3 and Ĵ∞ = J3

∞, which can also be implied from
Lemma 3. For the reduced MJS %̂, its Riccati solution P̂1:r and
thus controllers K̂1:r are guaranteed to exist when perturbation
εA, εB, and εT are small enough as required in Theorem 6. The
additive noise in Theorem 6 means the MJS dynamics is given
by xt+1 = Aωt xt + Bωt ut + wt where wt ∼ N (0, σ 2

wIn). In
the noisy case, both Ĵ∞ and J3

∞ are infinite, so the cumulative
suboptimality Ĵ∞ − J3

∞ is only studied for the noise-free case
as in (15). On the other hand, in the noise-free case, we have
not only J3 = Ĵ as implied by (14), but also J3 = Ĵ = 0 as
long as K̂1:r is stabilizing.

VIII. NUMERICAL EXPERIMENTS
In this section, we present synthetic experiments to evaluate
the main results in the paper. We evaluate the clustering per-
formance of Algorithm 1 and the LQR controller designed
with the reduced MJS %̂ as discussed in Section VII. All
the experiments are performed using MATLAB R2020a on
a laptop with Xeon E3-1505M CPU. We use the kmeans()
function from the Statistics and Machine Learning Toolbox
in MATLAB for the k-means problem in Algorithm 1.

A. CLUSTERING EVALUATION
We consider the uniform partition #1:r , i.e. |#i| = s̄:=s/r
for any i. The system % is randomly generated according
to P1 or P2 with desired levels of perturbation εA, εB, εT so
that in (2) each summand ‖Ai − Ai′ ‖ ≤ εA/(rs̄2). The same
applies to B1:s and T. Specifically, we first randomly gener-
ate a small scale MJS %̆ = MJS(Ă1:r, B̆1:r, T̆): we sample
each matrix element in Ăk and B̆k from standard Gaus-
sian distributions and then scale the matrices so that each
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FIGURE 2. MR (median, first and third quartiles) vs number of modes s vs
perturbation level. First row: aggregatable case P2. Second row: lumpable
case P1. First column: εT = 0.5s2, αA∝1/maxi‖Ai‖, αB∝1/maxi‖Bi‖, αT∝
0.01/‖T‖. Second column: εA, εB = 0.5s2, αA∝0.01/maxi‖Ai‖,
αB∝0.01/maxi‖Bi‖, αT∝1/‖T‖.

‖Ăk‖ = 0.5 and ‖B̆k‖ = 1 unless otherwise mentioned; and
each T̆(i, :) is sampled from the flat Dirichlet distribution.
Then, we generate % by augmenting %̆. For every mode
i ∈ #k , we let Ai = Ăk + Ei and Bi = B̆k + Fi where we
sample elements in Ei and Ei from standard Gaussian and
then scale them so that ‖Ei‖F = εA

2rs̄2 and ‖Fi‖F = εB
2rs̄2 . The

generation of T is a bit involved. For the aggregatable case
P2, we first generate a Markov matrix T̄ ∈ Rs×s such that
for every i ∈ #k , T̄(i,#l ) = ak,l T̆(k, l ) where ak,l ∈ R1×|#l |

is sampled from the flat Dirichlet distribution; then we let
T(i, :) = (1− εT

2rs̄2 )T̄(i, :) + εT
2rs̄2 bi where bi ∈ R1×s is again

sampled from the flat Dirichlet distribution. The same steps
are used to generate T for the lumpable case P1 except that
T̄(i,#l ) = ai,l T̆(k, l ). Following these steps, % satisfies the
perturbation conditions in P1 and P2.

To evaluate Algorithm 1, we fix n = 5, p = 3, r = 4 and
record the misclustering rate (MR) defined in Section IV-A
over 100 runs. Fig. 2 presents the clustering performances
under different number of modes s and perturbations εA, εB
and εT. In the plots, we normalized the perturbation on the
x-axis by s2 so that the trends under different s can be better
visualized. This also follows from the experiment setup: each
summand in (2) has ‖Ai − Ai′ ‖ ≤ O(εA/s2). It is clear that
the clustering performance degrades with increasing s and
perturbations. We can also observe that when the perturbation
is small, there are no misclustered modes.

B. LQR CONTROLLER DESIGN
Then, we implement the idea of designing LQR controllers
for the original % through the reduced %̂ as discussed in
Section VII. We let r = 4, n = 10, p = 5, and the system
dynamics is generated the same way as the previous sec-
tion. The process noise variance is σ 2

w = 0.1, and the initial

FIGURE 3. (a) LQR suboptimality (median) vs perturbations; (b) LQR
computation time (median) for the original MJS # and the reduced MJS #̂

with different number of modes and clusters. (We omit the quartiles as
they are very close to the median.)

TABLE 2. Suboptimality vs Computation Time vs Selected Number of
Modes in #̂

state is x0 = 1. Fig. 3(a) shows the suboptimality against
perturbations for s = 100. As one would expect, the subop-
timality increases with the perturbation levels and is 0 when
there is no perturbation. The trend on εT is evident when εA
and εB are small but imperceptible for larger values of εA and
εB. Fig. 3(b) shows the time to compute controllers via Riccati
iterations using % and %̂ as a function of s. The computation
terminates when the controller difference between two con-
secutive iterations falls below 10−12. We see when s is large,
% needs significantly more time than %̂.

Next, we consider a more practical scenario where one has
no knowledge of the true number of cluster r, and replace it in
Algorithm 1 with a hyper-parameter r̂ as the number of modes
in %̂. We fix s = 100 and r = 30, and the rest of the experi-
ment setup is the same as Fig. 3. We record the suboptimality
and computation time under different choices of r̂ in Table 2.
When increases r̂, the suboptimality achieves the minimum
when r̂ = r = 30 and then gradually increases until r̂ = s, i.e.
no reduction is performed at all. This comes as a bit of surprise
as one would expect no worse performance when using more
clusters than needed. Further investigation suggests that when
r̂ > r, misclustering occurs more frequently than the case of
r̂ = r, which is likely to account for the performance degra-
dation. In practice, to find the best r̂, one could try multiple r̂
in Algorithm 1, plug in the resulting partitions into P1 and
P2, and select the one that gives the smallest perturbation
εA, εB, εT.

C. TRAJECTORY APPROXIMATION
In this section, we evaluate the trajectory approximation
results from Section V. Let θ = π/16, Ă1 = [[cos(θ ),
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FIGURE 4. Trajectory difference and the upper bound.

sin(θ )]T, [− sin(θ ), cos(θ )]T]T, Ă2 = [[0.8, 0]T, [0, 0.8]T]T,
and Ă3 = [[1.2, 0]T, [0, 1.2]T]T. Then, we construct an
autonomous MJS % with 6 modes: for k = {1, 2, 3}, A2k−1 =
Ăk + [[0.1, 0]T, [0, 0.1]T]T and A2 k = Ăk − [[0.1, 0]T,
[0, 0.1]T]T. The uniform partition {{1, 2}, {3, 4}, {5, 6}} gives
εA = 0.6

√
2 according to P1. Define T such that for all i,

T(i, j) = 0.2 if j ∈ {1, 2, 3, 4} and T(i, j) = 0.1 if j ∈ {5, 6}.
By relevant definitions in Section V, the constructed % is
MSS but not uniformly stable.

We fix the initial state x0 = [1, 1]T, generate 500 indepen-
dent trajectories for states xt and x̂t , and record the difference
‖xt − x̂t‖. In Fig. 4, each thin solid line represents the dif-
ference, in log-scale, for each trajectory, the yellow dashed
line shows their average, and the blue dashed line depicts
the upper bound in Theorem 3. Throughout the time horizon,
though not very tight, the theoretical upper bound stays above
the averaged difference. Note that, for a given δ, by Markov
inequality, shifting the upper bound in the plot upward by
log(δ) would give a bound on the individual error trajecto-
ries with probability 1− δ. As seen in the figure, even the
non-shifted version serves a good bound for individual error
trajectories.

IX. CONCLUSION AND FUTURE WORK
In this work, we propose a clustering-based method to reduce
the number of modes in an MJS. The reduced MJS provably
well approximates the original MJS in terms of trajectory,
transition kernels, stability, and controller optimality. One
future direction could be the generalization of the offline
controller design scheme in Section VII to settings where
controllers need to be computed in the runtime, such as model
predictive control and adaptive control. In these problems, the
savings of computation time would be even more prominent.
Another potential future direction could be the extension of
the fully observed MJS in this work to partially observed
MJS, i.e., the state xt is observed through yt = Cωt xt for
some mode-dependent output matrices C1:s. As a side note,
the similarity between MJS and Markov decision processes
(MDP) hints that the framework and principles developed for
MJS in this work may also help the complexity reduction of
MDP and reinforcement learning problems.

APPENDIX A
AGGREGATABLE CLUSTERING — PROOF FOR THEOREM 1
We first provide several supporting lemmas. The first one is
regarding the perturbation of the left singular vector space.

Lemma 4 (Singular Vectors Perturbation Bound): Consider
two arbitrary matrices "̄," ∈ Rs×r . Let Ū, U ∈ Rs×r respec-
tively denote the top-r left singular vectors of "̄ and " with
ŪTŪ = UTU = Ir . Then

min
O∈O(r)

‖ŪO− U‖F ≤
2
√

2‖"̄−"‖F
σr ("̄)− σr+1("̄)

, (16)

where O(r) denotes the set of all r × r orthonormal matrices.
This result can be seen simply by combining Lemma 10

and Lemma 11 in [17], where Lemma 10 requires a trivial
generalization from spectral norm to the Frobenius norm. The
next result says if a matrix has certain rows being identical, its
singular vectors share the same identity pattern.

Lemma 5 (Lemma 12 in [17]): Consider a matrix "̄ ∈ Rs×r

and a partition #1:r on [s] such that for any i, i′ ∈ #k , "̄
(i, :) = "̄(i′, :). Assume rank("̄) = r. Let Ū ∈ Rs×r denote
the top-r left singular vectors of "̄ with ŪTŪ = Ir . Then for
any i ∈ #k and j ∈ #l , ‖Ū(i, :)− Ū( j, :)‖ = ( 1

|#k | + 1
|#l | )

0.5

if k #= l and 0 if k = l .
The next lemma provides a preliminary result on the per-

formance of k-means when it is applied to a data matrix with
feature dimension same as the number of clusters.

Lemma 6 (Lemma 5.3 in [55]): Consider two arbitrary
matrices Ū, U ∈ Rs×r with 5U := ‖Ū− U‖F. Suppose there
exists a partition #1:r on [s] such that for any i, i′ ∈ #k ,
Ū(i, :) = Ū(i′, :). Define the inter-cluster distance for clus-
ter k as δk := minl∈[r]\k mini∈#k , j∈#l ‖Ū(i, :)− Ū( j, :)‖. Let
{#̂1:r, ĉ1:r} be a (1 + ε) solution to the k-means problem on
the rows of U. Then, when 5U ≤ mink

√
|#k |δk√

8(2+ε)
, we have

min
h∈H

∑

k∈[r]

|{i : i ∈ #k, i /∈ #̂h(k)}| · δ2
k ≤ 8(2 + ε)52

U, (17)

where H is the set of all bijections from [r] to [r].
By combining Lemma 4, 5, and 6, we obtain guarantee

on the performance of k-means when it is applied to the left
singular vectors of the data matrix, which is the key lemma
we will use to show Theorem 1 and Theorem 2.

Lemma 7 (Approximate k-means error bound): Consider
two arbitrary matrices "̄," ∈ Rs×r with 5" := ‖"̄−"‖F.
Suppose there exists a partition #1:r on [s] such that for
any i, i′ ∈ #k , "̄(i, :) = "̄(i′, :). Assume rank("̄) = r. Let
U ∈ Rs×r denote the top-r left singular vectors of " with
UTU = Ir . Let {#̂1:r, ĉ1:r} be a (1 + ε) solution to the k-
means problem on clustering the rows of U. Then, when
5" ≤

σr ("̄)
√

|#(r) |+|#(1) |
8
√

(2+ε)|#(1) |
, we have MR(#̂1:r ) ≤ 64(2+ε)

σr ("̄)2 52
".

Proof: Let Ū∈Rs×r denote the top-r left singular
vectors of "̄ with ŪTŪ = Ir . Then, Lemma 4 implies
that exists O3∈O(r) such that ‖ŪO3 − U‖F≤ 2

√
256

σr ("̄) . Note

that ‖[ŪO3](i, :)−[ŪO3]( j, :)‖ = ‖(Ū(i, :)−Ū( j, :))O3‖ =
‖Ū(i, :)−Ū( j, :)‖. By Lemma 5, we know for any i∈#k ,
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j∈#l , ‖[ŪO3](i, :)−[ŪO3]( j, :)‖ =
√

1
|#k |+

1
|#l | if k #=l and 0

if k = l . Then, for any k∈[r], let δk := minl∈[r]\k mini∈#k , j∈#l

‖[ŪO3](i, :)− [ŪO3]( j, :)‖, we see δk ≥
√

1
|#k | + 1

|#(1)| .

Note that when 5"≤
σr ("̄)
√

|#(r)|+|#(1)|
8
√

(2+ε)|#(1)|
, one can

check ‖ŪO3 − U‖F ≤ mink
√

|#k |δk√
8(2+ε)

. Then, by Lemma

6, we have MR(#̂1:r ) = minh∈H
∑r

k=1 |{i : i ∈ #k, i /∈
#̂h(k)}| 1

|#k | ≤ minh∈H
∑r

k=1 |{i : i ∈ #k, i /∈ #̂h(k)}|δ2
k ≤

64(2 + ε)σr ("̄)-252
". !

Main Proof for Theorem 1: Consider " in Al-
gorithm 1 Line 3 and its averaged version "̄
defined in Section IV-A. Then, by definition, we
have ‖"̄−"‖2F =

∑
k∈[r]

∑
i∈#k
‖"̄(i, :)−"(i, :)‖2F =

α2
T ·

∑
k∈[r]

∑
i∈#k
‖T(i, :)− |#k|-1 ·

∑
i′∈#k

T(i′, :)‖2
+α2

A ·
∑

k∈[r]
∑

i∈#k
‖Ai − |#k|-1 ·

∑
i′∈#k

Ai′ ‖2F+α2
B ·∑

k∈[r]
∑

i∈#k
‖Bi − |#k|-1 ∑

i′∈#k
Bi′ ‖2F. By the definitions

of εA, εB, εT in Problem P2, triangle inequality, and
Cauchy-Schwarz inequality, we have ‖"̄−"‖F ≤ εAgg

where εAgg :=
√

α2
Aε2

A + α2
Bε2

B + α2
Tε2

T. By construction,

in matrix "̄, rows that belong to the same cluster
are identical, thus we can apply Lemma 7 to {"̄,"}
and obtain that when εAgg ≤

σr ("̄)
√

|#(r) |+|#(1) |
8
√

(2+ε)|#(1) |
, we have

MR(#̂1:r ) ≤ 64(2 + ε)σr ("̄)-2ε2
Agg. !

APPENDIX B
LUMPABLE CLUSTERING — PROOF FOR THEOREM 2
We first provide a supporting result regarding the perturbation
of stationary distribution of Markov chains.

Lemma 8 (Section 3.6 in [56]): For two Markov matrices
T, T0∈Rs×s and their stationary distributions π,π0∈Rs, we
have ‖π−π0‖1≤γ1‖T−T0‖∞, where γ1:=

∑s
i=2

1
1−λi (T) .

When the difference ‖T− T0‖ is small, we can further have
the following corollary.

Corollary 1: In Lemma 8, let πmin := mini π(i),πmax :=
maxi π(i). Suppose ‖T− T0‖∞ ≤ πmin

γ1
, then we have

max
i

|π(i)− π0(i)| ≤ πmin

2
, (18)

min
i

π0(i) ≥ πmin

2
, max

i
π0(i) ≤ πmax + πmin

2
(19)

max
i

|π(i)−
1
2−π0(i)−

1
2 | ≤ (

√
2−1)γ1π

− 3
2

min ‖T−T0‖∞ (20)

max
i

|π(i)
1
2−π0(i)

1
2 | ≤ (1−

√
2

2
)γ1π

-1
2

min‖T−T0‖∞. (21)

Proof: Since 1Tπ = 1Tπ0 = 1, we have maxi |π(i)−
π0(i)| ≤ 1

2‖π − π0‖1 ≤ γ1
2 ‖T− T0‖∞ ≤ πmin

2 . Then using
triangle inequality, we can show (18) and (19). Note that the
LHS of (20) is equivalent to maxi

|π0(i)−π(i)|√
π(i)π0(i)(

√
π(i)+

√
π0(i))

, then
plugging in (19) gives (20). And (21) follows similarly. !

When the lumpability perturbation εT #= 0, matrix Sr in
Algorithm 1 Line 7 no longer has the row identity pattern as
discussed in Lemma 1. The next result measures this effect.

Lemma 9: Consider an ergodic Markov matrix T ∈ Rs×s

with stationary distribution π and a partition #1:r such that
it is approximately lumpable as in (3) with perturbation εT.
Consider the neighborhood of T given by L(T,#1:r, εT)
defined in (6). Assume there exists an ergodic and re-
versible T0 ∈ L(T,#1:r, εT) that has informative spectrum.
Construct Sr ∈ Rs×r with T and π as in Algorithm 1 Line
7. Construct S̄r ∈ Rs×r such that for any i ∈ [s] (suppose i ∈
#k), S̄r (i, :) = 1

|#k |
∑

i′∈#k
Sr (i′, :). Let πmin := maxi π(i),

πmax := mini π(i), γ1 :=
∑s

i=2
1

1−λi (T) , γ2 := min{σr (H)−
σr+1(H), 1}, and γ3 := 16γ1

√
rπmax‖T‖F

γ2π2
min

where H is defined in

Algorithm 1. Then, when perturbation εT ≤ πmin
γ1

, we have
‖Sr − S̄r‖F ≤ γ3εT.

Proof: We will start with analyzing T0 and use it as
a bridge to prove the claim. Let π0 ∈ Rs denote the
stationary distribution of T0. Since T0 is ergodic, we
know π0 is strictly positive. By definition of reversibility,
we know diag(π0)T0 = TT

0diag(π0), and this further

gives diag(π0)
1
2 T0diag(π0)-

1
2 = diag(π0)-

1
2 TT

0diag(π0)
1
2 .

Let H0 := diag(π0)
1
2 T0diag(π0)-

1
2 , then we see H0 is

symmetric. Let W0,r ∈ Rs×r denote the top r left singular
vectors of H0, by spectral theorem, we know the columns
of W0,r also serve as the top r eigenvectors of H0. Let
S0,r := diag(π0)-

1
2 W0,r , by definition of H0, it is easy to

see that the columns of S0,r are also the top r eigenvectors
of T0. Then, by Lemma 1 and the definition of informative
spectrum, for any i, i′ ∈ #k , we have S0,r (i, :) = S0,r (i′, :).

Recall in Algorithm 1, Wr denotes the top r left sin-
gular vectors of H := diag(π)

1
2 Tdiag(π)-

1
2 and let Sr =

diag(π)-
1
2 Wr . Let O3 := minO∈O(r) ‖W0,rO−Wr‖F, where

O(r) is the set of all r × r orthonormal matrices. Then, for
any i, i′ ∈ #k , we have [S0,rO3](i, :) = [S0,rO3](i′, :). Using
this, for any i ∈ [s] (suppose i ∈ #k), we have

Sr (i, :)− S̄r (i, :)

= |#k|− 1
|#k|

Sr (i, :)− 1
|#k|

∑

i′:i′∈#k ,i′ #=i

Sr (i′, :)

≤ |#k|− 1
|#k|

(Sr (i, :)− [S0,rO3](i, :))

+ 1
|#k|

∑

i′:i′∈#k ,i′ #=i

(
[S0,rO3](i′, :)− Sr (i′, :)

)
. (22)

WLOG, assume {1, . . . , |#1|} = #1, {|#1| + 1, . . . , |#1| +
|#2|} = #2, · · · and define block diagonal matrices D, P ∈
Rs×s both with r diagonal blocks such that their k-th diagonal
blocks [D]k, [P]k ∈ R|#k |×|#k | are given by

[D]k = |#k|−1
|#k|

I|#k |, [P]k = 1
|#k|

(1|#k |1
T
|#k |−I|#k |). (23)
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Then, stacking (22) for all i, one can verify that
Sr − S̄r = D(Sr − S0,rO3) + P(S0,rO3 − Sr ). Note that
for an arbitrary matrix E ∈ Rs×s, we have ‖PE‖2F =
tr(PTPEET) ≤ tr(DTDEET) = ‖DE‖2F where the inequality
holds since for each diagonal block we have [P]Tk[P]k 5
[D]Tk[D]k . Therefore, ‖Sr−S̄r‖F ≤ 2‖D(Sr−S0,rO3)‖F ≤
2 maxk

|#k |−1
|#k | ‖Sr−S0,rO3|F ≤ 2‖Sr − S0,rO3‖F. To

complete the proof, it suffices to study ‖Sr − S0,rO3‖F.

‖Sr − S0,rO3‖F

= ‖diag(π)-
1
2 (Wr −W0,rO3)

+ (diag(π)-
1
2 − diag(π0)-

1
2 )W0,rO3‖F

≤ π-0.5
min ‖Wr−W0,rO3‖F+

√
r max

i
|π(i)-

1
2−π0(i)-

1
2 |. (24)

According to Lemma 4, we know ‖Wr −W0,rO3‖F ≤
2
√

2
σr (H)−σr+1(H)‖H−H0‖F. This together with the upper bound

for maxi |π(i)-
1
2 − π0(i)-

1
2 | in (20) gives

‖Sr − S0,rO3‖F ≤
2
√

2

(σr (H)− σr+1(H))π0.5
min

‖H−H0‖F

+ (
√

2− 1)γ1
√

r

π1.5
min

εT. (25)

By the definitions of H and H0, we have
‖H−H0‖F ≤‖(diag(π)

1
2−diag(π0)

1
2 ) · T · diag(π)-

1
2 ‖F +

‖diag(π0)
1
2 ·T · (diag(π)-

1
2−diag(π0)−

1
2 )‖F + ‖diag(π0)

1
2 ·

(T−T0)·diag(π0)-
1
2 ‖F. Applying Corollary 1 gives

‖H−H0‖F ≤ 2.56γ1π
0.5
maxπ

−1.5
min ‖T‖FεT. Plugging this into

(25), we have ‖Sr − S0,rO3‖F ≤ 8γ1
√

r
√

πmax‖T‖F
γ2π2

min
εT, where

γ2 := min{σr (H)− σr+1(H), 1}. This concludes the proof as
we showed that ‖Sr − S̄r‖F ≤ 2‖Sr − S0,rO3‖F. !

Main Proof for Theorem 2: Consider " in Algorithm
1 Line 3 and its averaged version "̄ defined in Sec-
tion IV-A. Then, by definition, we have ‖"̄−"‖2F =
α2

T · ‖Sr−S̄r‖2F+α2
A ·

∑
k∈[r]

∑
i∈#k
‖Ai − |#k|-1 ·∑

i′∈#k
Ai′ ‖2F+α2

B ·
∑

k∈[r]
∑

i∈#k
‖Bi − |#k|-1 ∑

i′∈#k
Bi′ ‖2F.

where S̄r is defined in Lemma 9. By Lemma 9 and the defini-
tions of εA and εB in Problem P1, we have ‖"̄−"‖F ≤ εLmp

where εLmp :=
√

α2
Aε2

A + α2
Bε2

B + α2
Tγ 2

3 ε2
T. By construction,

in "̄, rows that belong to the same cluster have the
same rows, thus we can apply Lemma 7 to {"̄,"}
and obtain that when εLmp≤

σr ("̄)
√

|#(r)|+|#(1)|
8
√

(2+ε)|#(1)|
, we have

MR(#̂1:r )≤64(2 + ε)σr ("̄)-2ε2
Lmp. !

A NON-EMPTINESS OF L(T,'1:r, εT)
Note that both Lemma 9 and Theorem 2 require the set
L(T,#1:r, εT), a neighborhood of T. Now, we show it is
non-empty under the approximate lumpability condition (3).

Let T0 := T + ( for ( ∈ D where

D :=
{
(∈Rs×s : ∀k, l∈[r],∀i∈#k,

− T(i, j) ≤ ((i, j) ≤ 1− T(i, j) ∀ j ∈ [s], (26)
∑

j∈#l

((i, j) = −
∑

j∈#l

T(i, j) + |#k|-1
∑

i′∈#k
j∈#l

T(i′, j),

‖(‖F ≤ εT, ‖(‖∞ ≤ εT.

}
(27)

Then, we see to show there exists T0 ∈ L(T,#1:r, εT), i.e.
L(T,#1:r, εT) is non-empty, it is equivalent to show there
exists ( ∈ D.

Note that (26) gives that for all i ∈ #k, l ∈ [r],
−

∑
j∈#l

T(i, j) ≤
∑

j∈#l
((i, j) ≤ |#l |−

∑
j∈#l

T(i, j).
This together with (26) and (27) imply that there exists (
satisfying both (26) and (27) such that among its elements
{((i, j)} j∈#l , the nonzero ones have the same signs as
the RHS of (27). Then, for all i ∈ #k, l ∈ [r], we have∑

j∈#l
|((i, j)| = |

∑
j∈#l

((i, j)| = |RHS of (27)| ≤
|#k|-1 ∑

i′∈#k
|
∑

j∈#l
T(i, j)−

∑
j∈#l

T(i′, j)|. This
further gives ‖(‖F ≤

∑
k,l∈[r]

∑
i∈#k , j∈#l

|((i, j)| ≤
|#k|-1 ∑

k,l∈[r]
∑

i,i′∈#k
|
∑

j∈#l
T(i, j)−

∑
j∈#l

T(i′, j)|
≤ |#k|-1εT, where the last inequality follows from (3). These
steps also show ‖(‖∞ ≤ εT. We have shown ( ∈ D, i.e. D
is non-empty, and so is L(T,#1:r, εT).

APPENDIX C
APPROXIMATION WITH MSS — PROOF FOR THEOREM 3
We first provide several supporting results regarding the per-
turbation of matrix product.

Lemma 10: Consider two sets of matrices A1, . . . , As
and Â1, . . . , Âs with ‖Ai − Âi‖ ≤ εA for all i ∈ [s]. As-
sume there exists a pair {ξ , κ} such that for all t ∈ N,
maxσ1:t∈[s]t ‖Aσ1 · · · Aσt ‖

1
t ≤ κ · ξ t . Then, for all t and any

sequence σ1:t ∈ [s]t , we have (i) ‖
∏t

h=1 Âσh‖ ≤ κ (κεA + ξ )t ;
(ii) ‖

∏t
h=1 Âσh −

∏t
h=1 Aσh‖ ≤ κ2t (κεA + ξ )t−1εA.

Proof: Let Ei:=Âi − Ai, then we see ‖Ei‖≤εA and∏t
h=1 Âσh =

∏t
h=1(Aσh + Eσh ). In the expansion of∏t

h=1(Aσh + Eσh ), for each i = 0, 1, . . . , t , there are
(t

i

)

terms, each of which is a product where Eσh has degree i
and Aσh has degree t − i. We let Fi, j with i = 0, 1, . . . , t
and j ∈ [

(t
i

)
] to index these expansion terms. Note that

‖Fi, j‖ ≤ κ i+1ξ t−iεi
A. Then, we have ‖

∏t
h=1 Âσh‖ ≤∑t

i=0
∑

j∈[(t
i)] ‖Fi, j‖ ≤

∑t
i=0

(t
i

)
κ i+1ξ t−iεi

A ≤ κ (κεA + ξ )t .

Similarly, ‖
∏t

h=1 Âσh−
∏t

h=1 Aσh‖ = ‖
∑t

i=1
∑

j∈[(t
i)]

Fi, j‖ ≤
∑t

i=0
∑

j∈[(t
i)] ‖Fi, j‖ − ‖F0,1‖ ≤ κ (κεA + ξ )t −

κξ t ≤ κ2t (κεA + ξ )t−1εA, where the last line follows
from the fact that for function f (x):=xt and x, a≥0,
f (x)≥ f (x + a)− a · f ′(x + a). !

Based on Lemma 10, we have the following corollaries,
which will be used in different settings in later derivations.
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Corollary 2: Consider two matrices A and Ā with
‖A− Ā‖ ≤ εA. Suppose there exists a pair {ρ, τ } such that
for all k ∈ N, ‖Ak‖ ≤ τρk . Then, we have ‖Āt‖ ≤ τ (τεA +
ρ)t and ‖Āt −At‖ ≤ τ 2t (τεA + ρ)t−1εA.

Corollary 3: Consider two sets of scalars a1, . . . , as and
â1, . . . , âs with |ai−âi|<εa and |ai|<ā for all i∈[s]. Then, for
all t and any sequence σ1:t∈[s]t , we have |

∏t
h=1 âσh | ≤ (εa +

ā)t and |
∏t

h=1 âσh −
∏t

h=1 aσh | ≤ t (εa + ā)t−1εa.

The next result considers the evolution of state xt in the
mean-square sense for autonomous MJSs.

Lemma 11 (Lemma 9 in [11]): Consider MJS(A1:s, 0, T)
and define matrix A∈Rsn2×sn2

with its i j-th n2×n2 block
given by [A]i j :=T( j, i)·A j⊗A j . Let #(i)

t :=E[xt xT
t 1{ωt =i}]

and st :=[vec(#(1)
t )T, . . . , vec(#(s)

t )T]T. Then, st = At s0.

Recall in Section V, for %, i.e., MJS(A1:s, B1:s, T), we
define the augmented state matrix A ∈ Rsn2×sn2

with its i j-th
n2 × n2 block given by [A]i j := T( j, i) · A j ⊗ A j ; and for
any ρ ≥ ρ(A) and all k ∈ N, we have ‖Ak‖ ≤ τρk . The next
lemma is regarding the augmentation of two MJS with the
same A matrix.

Lemma 12: Construct matrix Ǎ ∈ R4sn2×4sn2
with its i j-

th 4n2 × 4n2 block given by [Ǎ]i j := T( j, i) ·
[

A j

A j

]
⊗

[
A j

A j

]
. Then, for all k ∈ N, ‖Ǎk‖ ≤ τρk .

To see this result, first notice that there exists a permutation
matrix P such that PǍPT = I4 ⊗A, where I4 denotes the 4×
4 identity matrix. This gives ‖Ǎk‖ = ‖Ak‖ and shows the
claim.

To prove the result in Theorem 3, we first consider the sim-
plified autonomous case but with potentially different initial
states x0 and x̂0.

Proposition 1: Consider the setup in Theorem 3 except
that ut = 0 for all t , and x0 and x̂0 can be different
such that ‖x0 − x̂0‖ ≤ ε0 for some ε0 ≥ 0. For perturba-
tion, assume εA ≤ min{Ā, 1−ρ

6τ Ā‖T‖
}. Then, E[‖xt − x̂t‖] ≤

4
√

n
√

sτρ
t−1

2
0 (‖x0‖

√
t Ā‖T‖εA +

√
(‖x0‖+ ε0)ε0 ).

Proof: First, we construct two autonomous switched sys-
tems:

7̌ :=
{

x̌t+1 = Ǎω̌t x̌t
ω̌t = ωt ,

, 7̄ :=
{

x̄t+1 = Āω̄t x̄t
ω̄t = ωt ,

(28)

where for i∈[s] (suppose i∈#k), Ǎi :=
[

Ai

Ai

]
, Āi :=

[
Ai

Âk

]
. Since ωt of % follows Markov chain T, systems 7̌

and 7̄ can be viewed as MJS(Ǎ1:s, 0, Ť) and MJS(Ā1:s, 0, T̄)
respectively with Ť = T̄ = T. We then define observations for
7̌ and 7̄: y̌t = Čx̌t and ȳt = C̄x̄t where Č = C̄ = [In,−In].
We set their initial states as x̌0 = [xT

0, xT
0]T, x̄0 = [xT

0, x̂T
0]T

where x0 and x̂0 are the initial states of % and %̂ respectively.
By construction, we have, for all t, x̌t = [xT

t , xT
t ]T

and x̄t = [xT
t , x̂T

t ]T, thus y̌t = 0 and ȳt = xt−x̂t . De-
fine #̌t := E[x̌t x̌T

t ] and #̄t := E[x̄t x̄T
t ], then we have

E[‖xt − x̂t‖2] =E[ȳt ȳT
t ] = E[ȳt ȳT

t ]−E[y̌t y̌T
t ] = tr(C̄TC̄#̄t )

−tr(ČTČ#̌t ) =tr(C̄TC̄(#̄t − #̌t )). Since C̄TC̄ 2 0, we

further have

E[‖xt−x̂t‖2] ≤ tr(C̄TC̄)‖#̄t−#̌t‖ = 2n‖#̄t−#̌t‖. (29)

Let #̌
(i)
t := E[x̌t x̌T

t 1{ω̌t =i}], #̄
(i)
t := E[x̄t x̄T

t 1{ω̄t =i}], št :=
[vec(#̌

(1)
t )T, . . . , vec(#̌

(s)
t )T]T and s̄t := [vec(#̄(1)

t )T, . . .
, vec(#̄(s)

t )T]T. Note that vec(#̌t ) = [I4n2 , . . . , I4n2 ]št and
vec(#̄t ) = [I4n2 , . . . , I4n2 ]s̄t , thus we have ‖#̌t − #̄t‖ ≤
‖#̌t − #̄t‖F = ‖vec(#̌t − #̄t )‖ ≤

√
s‖št − s̄t‖. Plugging this

into (29), we have

E[‖xt − x̂t‖2] ≤ 2n
√

s‖št − s̄t‖. (30)

By Lemma 11, we have št = Ǎt š0 and s̄t = Āt s̄0, where
Ǎ∈R4sn2×4sn2

is constructed such that its i j-th 4n2 × 4n2

block given by [Ǎ]i j = Ť( j, i)Ǎ j ⊗ Ǎ j , and Ā is constructed
similarly. By triangle inequality, we further have

E[‖xt−x̂t‖2]≤2n
√

s(‖Ǎt−Āt‖‖š0‖+‖Āt‖‖š0−s̄0‖) (31)

To bound E[‖xt−x̂t‖2], we seek to bound the terms on
the RHS individually. Since š0 = [vec(x̌0x̌T

0)T · P(ωt =
1), . . . , vec(x̌0x̌T

0)T · P(ωt = s)]T, we have ‖š0‖ =
‖x̌0x̌T

0‖F · (
∑

i∈[s] P(ωt = i)2)
1
2 ≤ ‖x̌0x̌T

0‖F = 2‖x0‖2.
Similarly, we have ‖š0 − s̄0‖ ≤ ‖x̄0x̄T

0 − x̌0x̌T
0‖F ≤

‖x̄0(x̄0 − x̌0)T‖F + ‖(x̄0 − x̌0)x̌T
0‖F ≤

√
2(
√

3‖x0‖+ ε0)ε0.
To bound ‖Āt‖ and ‖Ǎt−Āt‖, we first evaluate ‖Ǎ− Ā‖.

Define (i := Ǎi ⊗ Ǎi − Āi ⊗ Āi for all i, and block diag-
onal matrix ( ∈ Rsn2×sn2

such that the ith n2×n2 block is
given by (i. Then one can verify that Ǎ− Ā = (T⊗ In2 )(,
which gives ‖Ǎ− Ā‖ ≤ ‖T‖maxi ‖(i‖. For ‖(i‖, we have
‖(i‖ ≤ ‖Ǎi‖‖Ǎi − Āi‖+ ‖Ǎi − Āi‖‖Āi‖. It is easy to see
‖Ǎi‖ ≤ Ā, ‖Ǎi − Āi‖ ≤ εA, and ‖Āi‖ ≤ Ā + εA ≤ 2Ā. These
give ‖Ǎ− Ā‖ ≤ 3Ā‖T‖εA. From Lemma 12, we know for
all k ∈ N, ‖Ǎk‖ ≤ τρk . Then, according to Corollary 2, we
have ‖Āt‖ ≤ τ (3τ Ā‖T‖εA + ρ)t ≤ τρt

0 and ‖Ǎt − Āt‖ ≤
3t (3τ Ā‖T‖εA + ρ)t−1τ 2Ā‖T‖εA ≤ 3tρt−1

0 τ 2Ā‖T‖εA, where
the premise εA≤ 1−ρ

6τ Ā‖T‖ and notation ρ0:= 1+ρ
2 are used.

Finally, plugging in the bounds we just derived for each
term on the RHS of (31) back, we have E[‖xt − x̂t‖] ≤√
E[‖xt − x̂t‖2] ≤ 4

√
n
√

sτρ
t−1

2
0 (‖x0‖

√
t Ā‖T‖εA +√

(‖x0‖+ ε0)ε0 ), which concludes the proof. !
Main Proof for Theorem 3: We first decompose xt

in terms of the contribution from x0, u0:t−1: define
x(0′ )

t :=(
∏t−1

h=0 Aωh )x0, for l = 0, . . . , t − 2, define
x(l )

t :=(
∏t−1

h=l+1 Aω̂h )Bωl ul , and x(t−1)
t :=Bωt−1 ut−1. Then it is

easy to see xt = x(0′ )
t +

∑t−1
l=0 x(l )

t . Similarly, we define x̂(0′ )
t

and x̂(l )
t for x̂t such that x̂t = x̂(0′ )

t +
∑t−1

l=0 x̂(l )
t . According to

Proposition 1, we have

E[‖x(0′ )
t −x̂(0′ )

t ‖]≤4
√

n
√

sτρ
t−1

2
0

√
t Ā‖T‖εA‖x0‖. (32)

Note that x(l )
t and x̂(l )

t can be viewed as the states at time t − l
with respective initial states Bωl ul and B̂ωl ul and zero inputs.
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Therefore, applying Proposition 1 again, we have

E[‖x(l )
t − x̂(l )

t ‖] ≤ 4
√

n
√

sτρ
t−l−1

2
0

√
B̄ū

·
(√

(t − l − 1)Ā‖T‖εA +
√

2εB

)
, (33)

where the premise εB≤B̄ is applied. With (32) and
(33), we have E[‖xt − x̂t‖] ≤ E[‖x(0′ )

t − x̂(0′ )
t ‖] +

∑t−1
l=0E[‖x(l )

t −x̂(l )
t ‖]≤4

√
n
√

sτρ
t−1

2
0

√
t Ā‖T‖εA‖x0‖+

4
√

n
√

sB̄τ ū(
√

ρ0
(1−√ρ0 )2

√
Ā‖T‖εA +

√
2

1−√ρ0

√
εB), which

concludes the proof. !

APPENDIX D
APPROXIMATION WITH UNIF. STABILITY — PROOF FOR
THEOREM 4
Proof for Theorem 4 (T1): xt and x̂t can be decomposed
as: xt = (

∏t−1
h=0 Aωh )x0+

∑t−2
t ′=0(

∏t−1
h=t ′+1 Aωh )Bωt ′ut ′+Bωt−1

ut−1,x̂t = (
∏t−1

h=0Âω̂h )x̂0 +
∑t−2

t ′=0(
∏t−1

h=t ′+1 Âω̂h )B̂ω̂t ′ ût ′ +
B̂ω̂t−1 ût−1. Since in Algorithm 1 we let Âk =
|#̂k|-1 ∑

i∈#̂k
Ai, and the premise gives #̂1:r = #1:r , we

have ‖Âk − Ai‖≤εA for all i ∈ #k . Based on the mode
synchrony Setup S2, i.e., ωt ∈ #ω̂t , we further have
‖Âω̂t−Aωt ‖ ≤ εA. Similarly, we obtain ‖B̂ω̂t−Bωt ‖ ≤ εB.
Then, by Lemma 10 : (i) ‖

∏t−1
h=t ′+1 Âω̂h‖≤κ (κεA + ξ )t−t ′−1

and (ii) ‖
∏t−1

h=t ′+1 Aωh−
∏t−1

h=t ′+1 Âω̂h‖≤κ2(t−t ′−1)(κεA +
ξ )t−t ′−2εA.

With (i) and (ii), and the fact that
∏t−1

h=t ′+1 Aωh Bωt ′

−
∏t−1

h=t ′+1 Âω̂h B̂ω̂t ′ = (
∏t−1

h=t ′+1 Aωh−
∏t−1

h=t ′+1 Âω̂h )B̂ω̂t ′ −
(
∏t−1

h=t ′+1 Aωh ) (B̂ω̂t ′ − Bωt ′ ), we have

‖
∏t−1

h=t ′+1 Aωh Bωt ′ −
∏t−1

h=t ′+1 Âω̂h B̂ω̂t ′ ‖ ≤ κξ t−t ′−1εB

+ κ2(t − t ′ − 1)(κεA + ξ )t−t ′−2(B̄ + εB)εA. (34)

According to Setup S1, % and %̂ have the same initial states
and inputs. Then, applying triangle inequality to the difference
‖xt − x̂t‖, we have

‖xt − x̂t‖ ≤ κ2t (κεA + ξ )t−1‖x0‖εA

+ κ2 1 + t (κεA + ξ )t

1− κεA − ξ
(B̄ + εB)ūεA + κ

1− ξ
ūεB, (35)

where the following facts are implicitly used: (i) κ ≥ 1 by
definition; (ii) κεA + ξ < 1 according to the premise. Finally,
note that we assume perturbation εA ≤ 1−ξ

2κ and εB ≤ B̄, we

have ‖xt − x̂t‖ ≤ tξ t−1
0 κ2‖x0‖εA + 2(1+tξ t

0 )κ2B̄ū
1−ξ0

εA + κ ū
1−ξ εB,

which concludes the proof. !

A. PROOF FOR THEOREM 4 (T2)
To ease the proof exposition, we first define a few notations
and concepts. For the original system %, fixing the initial state
x0 and input sequence u0:t−1, there can be at most st possible
xt , each of which correspond to one possible mode switching
sequence ω0:t−1 ∈ [s]t . We use g ∈ [st ] to index these states

and mode sequences, i.e., mode sequence ω
(g)
0:t−1 generates

state x(g)
t . Then, the reachable set Xt defined in Section V sat-

isfies Xt =
⋃

g∈[st ]{x
(g)
t }. Define probability measure qt (g) :=

P(ω0:t−1 = ω
(g)
0:t−1), then we see pt (x) defined in Section V

satisfies pt (x) =
∑

g:x(g)
t =x qt (g). For the reduced %̂ and for

all ĝ ∈ [rt ], we similarly define notations ω̂
(ĝ)
0:t−1 for the mode

sequence, x̂(ĝ)
t for the state, and q̂t (ĝ) := P(ω̂0:t−1 = ω̂

(ĝ)
0:t−1)

for the measure. Then, the following holds: X̂t =
⋃

ĝ∈[rt ]{x̂
(ĝ)
t }

and p̂t (x̂) =
∑

ĝ:x̂(ĝ)
t =x̂ q̂(ĝ). Next, we introduce the following

relation regarding mode sequences between % and %̂.
Definition 4 (Mode Sequence Synchrony): For any g ∈

[st ], ĝ ∈ [rt ], we say ω
(g)
0:t−1 is synchronous to ω̂

(ĝ)
0:t−1 (denoted

by g"ĝ) if ωh ∈ #h for all h = 0, 1, . . . , t − 1.
Note that the synchrony definition here coincides with the

mode synchrony in Setup S2. With this synchrony relation, we
first present a preliminary result.

Lemma 13: For any ĝ ∈ [r]t , we have
∣∣q̂t (ĝ)−∑

g:g!ĝ qt (g)
∣∣ ≤ (t − 1)(T̄ + εT)t−2εT.

Proof: Recall ζt indexes the active cluster of %

at time t , i.e., ζt = k if and only if ωt∈#k . First
observe that

∑
g:g!ĝ′ qt (g) =

∑
g:g!ĝ P(ω0:t−1 = ω

(g)
0:t−1) =

P(ωt−1∈#ω̂
(ĝ)
t−1

, . . . ,ω0∈#ω̂
(ĝ)
0

) =P(ζ0:t−1 = ω̂
(ĝ)
0:t−1). Also

note that q̂t (ĝ) = P(ω̂0:t−1 = ω̂
(ĝ)
0:t−1). So, to show the claim,

it suffices to show for any σ0:t∈[r]t ,

|P(ω̂0:t = σ0:t )− P(ζ0:t = σ0:t )| ≤ t (T̄ + εT)t−1εT. (36)

For the LHS of (36), we have

P(ω̂0:t = σ0:t ) = P(ω̂0 = σ0) ·
∏t

h=1T̂(σh−1, σh) (37)

P(ζ0:t = σ0:t ) = P(ω0 ∈ #σ0 ) ·
∏t

h=1T̃h (38)

where T̃h := P(ωh ∈ #σh | ωh−1 ∈ #σh−1 , . . . , ω0 ∈ #σ0 ).
Note that ζ0:t may not be a Markov process when εT #= 0, so
we cannot drop the past conditional events in (38).

Let αi := P(ωh−1 = i | ωh−2∈#σh−2 , . . . ,ω0∈#σ0 ), then
T̃h =

∑
i∈#σh−1

[P(ωh∈#σh | ωh−1 = i) · P(ωh−1 = i | ωh−2

∈#σh−2 , . . . ,ω0∈#σ0 )] =
∑

i∈#σh−1
[(

∑
j∈#σh

T(i, j))αi].

Let βi := |#σh−1 |-1. For T̂(σh−1, σh), by definition in
Algorithm 1 and the assumption #̂1:r = #1:r , we know
T̂(σh−1, σh) = |#σh−1 |−1 ·

∑
i∈#σh−1

(
∑

j∈#σh
T(i, j)) =

∑
i∈#σh−1

[(
∑

j∈#σh
T(i, j))βi].

Then, it follows that the difference |T̃h −
T̂(σh−1, σh)|=

∣∣ ∑
i,i′∈#σh−1

[(
∑

j∈#σh
T(i, j))αiβi′ ]−∑

i,i′∈#σh−1
[(

∑
j∈#σh

T(i′, j))αiβi′ ]
∣∣ ≤

∑
i,i′∈#σh−1

[
∣∣∑

j∈#σh

T(i, j)−
∑

j∈#σh
T(i′, j)

∣∣αiβi′ ] ≤ εT, where the first
inequality follows from triangle inequality on the
absolute values; the second inequality holds since the
definition of perturbation εT in either Problem P1 or P2
gives |

∑
j∈#σh

T(i, j)−
∑

j∈#σh
T(i′, j)| ≤ εT for any

i, i′ ∈ #σh−1 .
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We have established upper bounds for the differences
between each multiplier in (37) and (38), by Corol-
lary 3, we obtain |P(ω̂0:t = σ0:t )− P(ζ0:t = σ0:t )| ≤ t (T̄ +
εT)t−1εT which shows (36) and concludes the proof. !

Main Proof for Theorem 4 (T2): To lower bound the
Wasserstein distance W1(pt , p̂t ) defined in the mass trans-
portation problem (8), we consider the objective value given
by a constrained mass transportation scheme. Recall with
measures qt and q̂t , we have pt (x) =

∑
g:x(g)

t =x qt (g) and

p̂t (x̂) =
∑

ĝ:x̂(ĝ)
t =x̂ q̂t (ĝ). With these relations, we consider the

following transportation scheme in terms of qt and q̂t : for
all the mass qt (g) with mode sequence ω

(g)
t synchronous to

mode sequence ω̂
(ĝ)
t , it is prioritized to be moved to location

ĝ; if there is surplus, i.e.,
∑

g:g!ĝ qt (g) > q̂t (ĝ), we move the
surplus portion

∑
g:g!ĝ qt (g)− q̂t (ĝ) elsewhere.

Under this moving scheme, let W̄1(qt , q̂t ) denote the op-
timal objective value of the mass transportation problem
(8). Let Ĝ1 = {ĝ : ĝ∈[rt ],

∑
g:g!ĝ qt (g)≤q̂t (ĝ)}, Ĝ2 = [rt ]\Ĝ1.

Then, W̄1(qt , q̂t ) can be viewed as the optimal objective of the
following problem:

min
f≥0

(∑
g∈[st ],ĝ∈[rt ] f (g, ĝ)‖x(g)

t − x̂(ĝ)
t ‖1

)1/1
(39)

s.t.
∑

g∈[st ] f (g, ĝ) = q̂t (ĝ),∀ ĝ
∑

ĝ∈[rt ] f (g, ĝ) = qt (g),∀ g.

f (g, ĝ) = qt (g), ∀ g"ĝ,∀ ĝ ∈ Ĝ1 (40)
∑

g!ĝ f (g, ĝ) = q̂t (ĝ), ∀ ĝ ∈ Ĝ2 (41)

where constraints (40) and (41) characterize the moving
scheme outlined above. Without them, the problem reduces
to (8), thus W1(pt , p̂t ) ≤ W̄1(qt , q̂t ). To prove the main claim,
it suffices to show

W̄1(qt , q̂t ) ≤ tξ t−1
0 κ2‖x0‖εA

+ 2r2tκ‖x0‖rt (κεA + ξ )t (T̄ + εT)
t−2
1 ε

1
1
T . (42)

For all ĝ∈[rt ], define its synchrony set S (ĝ):={g :
g∈[st ],g"ĝ} and the asynchrony set Sc(ĝ):=[st ]\S (ĝ).
For the synchrony flow, define total flow
Fs:=

∑
ĝ∈[rt ],g∈S (ĝ) f (g, ĝ) and maximum travel distance

Ds:= maxĝ∈[rt ],g∈S (ĝ) ‖x
(g)
t −x̂(ĝ)

t ‖. For the asynchrony
flow, similarly define Fa :=

∑
ĝ∈[rt ],g∈Sc (ĝ) f (g, ĝ) and

Da := maxĝ∈[rt ],g∈Sc (ĝ)‖x(g)
t −x̂(ĝ)

t ‖. Then, we have

W̄1(qt , q̂t )≤(FsD1
s + FaD1

a)
1
1 ≤ F

1
1

s Ds + F
1
1

a Da. We next
bound Fs, Ds, Fa, Da separately.

For the synchrony maximum travel distance Ds, since g"ĝ,
by Theorem 4 (T1), we know Ds≤tξ t−1

0 κ2‖x0‖εA. For the
synchrony total flow Fs, we simply bound it with Fs≤1.

Now we consider the asynchrony maximum travel
distance Da. First note that for any g and ĝ, we have
‖x(g)

t −x̂(ĝ)
t ‖ =‖

∏t−1
h=0 A

ω
(g)
h

x0−
∏t−1

h=0 Â
ω̂

(ĝ)
h

x̂0‖≤‖
∏t−1

h=0 A
ω

(g)
h

x0‖+‖
∏t−1

h=0 Â
ω̂

(ĝ)
h

x̂0‖ ≤ 2κ (κεA+ξ )t‖x0‖, where the second

inequality follows from Lemma 10. Then, it follows that
Da≤2κ (κεA + ξ )t‖x0‖.

For the asynchrony total flow Fa, define
Fa,ĝ:=

∑
g∈Sc (ĝ) f (g, ĝ), then Fa =

∑
ĝ∈[rt ] Fa,ĝ. By

constraints (40) and (41), Fa,ĝ =
∑

g∈Sc (ĝ) f (g, ĝ) =
q̂t (ĝ)−

∑
g:g∈S (ĝ) f (g, ĝ)= q̂t (ĝ)−

∑
g:g!ĝ f (g, ĝ). Thus,

if ĝ ∈ Ĝ2, Fa,ĝ = 0; and if ĝ ∈ Ĝ1, Fa,ĝ = q̂t (ĝ)−∑
g:g!ĝ qt (g) > 0. For the latter case, according to

Lemma 13, we have Fa,ĝ = |q̂t (ĝ)−
∑

g:g!ĝ qt (g)| ≤
(t − 1)(T̄ + εT)t−2εT, which further implies that
Fa =

∑
ĝ∈[rt ] Fa,ĝ ≤ r2t (r(T̄ + εT))t−2εT.

Finally, (42) can be shown by plugging the upper bounds

for Fs, Ds, Fa, Da into the relation that W̄1(qt , q̂t )≤F
1
1

s Ds +
F

1
1

a Da, which concludes the proof. !
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