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Abstract: We present a detailed analysis of the connection between chaos and the onset of thermaliza-
tion in the spin-boson Dicke model. This system has a well-defined classical limit with two degrees of
freedom, and it presents both regular and chaotic regions. Our studies of the eigenstate expectation
values and the distributions of the off-diagonal elements of the number of photons and the number
of excited atoms validate the diagonal and off-diagonal eigenstate thermalization hypothesis (ETH)
in the chaotic region, thus ensuring thermalization. The validity of the ETH reflects the chaotic
structure of the eigenstates, which we corroborate using the von Neumann entanglement entropy
and the Shannon entropy. Our results for the Shannon entropy also make evident the advantages
of the so-called “efficient basis” over the widespread employed Fock basis when investigating the
unbounded spectrum of the Dicke model. The efficient basis gives us access to a larger number of
converged states than what can be reached with the Fock basis.

Keywords: quantum chaos; eigenstate thermalization hypothesis; quantum entanglement

1. Introduction

The onset of thermalization in isolated quantum systems, which evolve unitarily and
are described by pure states, was discussed in von Neumann'’s 1929 paper on the quantum
ergodic theorem [1—4]. In Pechukas’s 1984 paper “Remarks on Quantum Chaos” [5], one
finds a brief summary of von Neumann’s work and the subsequent developments against
it, particularly by Bocchieri and Loinger [6], which, Pechukas claims, actually make von
Neumann’s results sharper [7]. In Pechukas’s words,

if one selects a state “at random” from an energy shell and determines, as a
function of time, the probability that it lies in a “typical” subspace of the shell,
the time average of this probability is liable to be much closer to the statistical
expectation than is its instantaneous value, the more so the less degenerate the
spectrum of the Hamiltonian.

The ideas in this quotation are connected with the notion of “typicality” [3,4], which
has been one of the directions in studies of thermalization.

In retrospect, one can identify in the 1985 work by Jensen and Shakar [8] the seeds
for what later became known as the eigenstate thermalization hypothesis (ETH) [9,10].
There, the authors study the infinite-time average and the eigenstate expectation value of
the magnetization of a finite spin-1/2 chain for different initial states and different energy
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eigenstates, and show that both exhibit very good agreement with the microcanonical aver-
age when the system is chaotic. They state that in the chaotic system, “the magnetization is
a fairly smooth and monotonic function of energy”, and in this case,

even an initial energy eigenstate will exhibit a constant value for the observable
which is very close to that predicted by the statistical theory,

while for the integrable Hamiltonian, the “deviations from equilibrium tend to be large”.
This means that an observable O should thermalize when its expectation value (E;|O|Ey)

is a smooth function of energy, since in this situation, its infinite-time average, O, will be
very close to the microcanonical average, Onic; that is [11]

1
WE AE

O =Y |cx[*Opx = Omic = Y Okk » (1)
X X

where |Ey) are the eigenstates of the system’s Hamiltonian, Oy = (E¢|O|E;) are the
diagonal elements of the operator O, ¢y = (E¢|¥(0)) are the coefficients of the initial state
|'¥(0)) = Yx ck|Ex), and W af is the number of eigenstates |E;) contained in the energy
window Ej € [E — AE, E + AE] with |E — E¢| < AE. Under the assumption of the smooth
behavior in energy, even a single eigenstate inside the microcanonical window should give
Ok k very close to the microcanonical average; therefore, the term “eigenstate thermalization
hypothesis” (ETH) was coined by Srednicki in his 1994 paper [12]. Notions of quantum
chaos [8], random matrices [13], and Berry’s conjecture [12] have been invoked to justify
the validity of Equation (1). Starting with Rigol et al’s 2008 paper [11], several numerical
studies have confirmed Equation (1) for chaotic systems. Since then, various studies further
elaborated the framework of the ETH to take into account the convergence of O and Oy as
the system size increases [9,14], the analysis of the off-diagonal elements Oy = (E¢|O|Ey),
known as off-diagonal ETH [9,15], the dependence on the energy of the initial state [16,17],
and the structure of the eigenstates in realistic many-body quantum systems [18-20].

The analysis in Ref. [18] was inspired by the 1990s papers from previous members
of the Novosibirsk school, including Casati [21], Flambaum [22,23], Izrailev [24,25], Shep-
elyansky [26], and Zelevinsky [27,28], who focused on the structure of the eigenstates to
define quantum chaos and explain the onset of thermalization [29]. In realistic interacting
many-body quantum systems, the energy eigenstates can be rather complicated, but they
are not random vectors, as the eigenstates of Gaussian random matrices or the random
superpositions of plane waves with random phases and Gaussian random amplitude stated
by the Berry’s conjecture [30]. For such random vectors, Equation (1) is trivially satisfied,
but they are associated with unphysical models. In the above mentioned 1990s papers,
chaotic eigenstates are those that, when written in the mean field basis, exhibit coefficients
that are random variables following a Gaussian distribution around the envelope defined
by the energy shell. They emerge away from the edges of the spectrum of quantum systems
with many strongly interacting particles and ensure the validity of the Fermi-Dirac [24]
and Bose-Einstein [31] distributions. These ideas were employed in Ref. [18] to corroborate
the validity of the ETH for few-body observables when the eigenstates are chaotic.

The present article is dedicated to Professor Giulio Casati on the occasion of his
80th birthday in 2022 and to Professor Felix Izrailev’s 80th birthday in 2021. Not only
their past, but also their recent works [31-38] continue to have an enormous impact in
the developments of quantum chaos and its connections with thermalization, quantum
statistical mechanics, and the quantum-classical correspondence.

Here, we investigate the validity of the diagonal and off-diagonal ETH, in connection
with the structure of the eigenstates, for the spin-boson Dicke model [39-41]. This system
has a well-defined classical limit and two-degrees of freedom, so it does not quite fall within
the requirement for thermalization of a large number of coupled degrees of freedom [13].

Depending on the parameters and energy region, the Dicke model may be regular
or chaotic. Since its introduction in the 1950s to explain superradiance in spontaneous
radiation processes [39], it has been employed in a variety of theoretical studies that
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include quantum phase transitions [42—44], classical and quantum chaos [45—49], non-
equilibrium quantum dynamics [41,50-54], the evolution of out-of-time-ordered correlators
(OTOCs) [55-57], quantum scarring [58-62], and quantum localization measures in phase
space [61,63]. Experimentally, the model can be realized with superconducting circuits [64],
cavity assisted Raman transitions [65,60], trapped ions [67,68], and other systems [69]. In
the particular context of the relationship between chaos and thermalization, the Dicke
model was studied in Ref. [70] with emphasis on the behavior of the fidelity OTOC and
the agreement between the long-time average of the collective spin observable and the
microcanonical ensemble. The chaos-thermalization connection was also explored for the
kicked Dicke model in Ref. [71].

We analyze the diagonal and off-diagonal ETH for the number of photons and the
number of excited atoms in the regular and chaotic regions of the Dicke model, and compare
the results with the structure of the eigenstates analyzed with the entanglement entropy
and the Shannon entropy. The latter is a delocalization measure that depends on the basis in
which the eigenstates are written. The Hilbert space of the Dicke model is infinite, because
its number of bosons is unbounded. Our results show that the values of the Shannon
entropy grows rapidly with the eigenvalues when the eigenstates are written in the Fock
basis, but are more restricted when the “efficient basis” is used, which makes evident the
advantages of the latter when one wants to study large systems and high energies.

The paper is organized as follows. We introduce the Dicke model in Section 2 and
briefly review the onset of classical and quantum chaos in Section 3. In Section 4, we
study the diagonal and off-diagonal ETH and analyze the eigenstates in Section 5. Our
conclusions are summarized in Section 6.

2. Dicke Model

The Dicke model [39] describes a system of N two-level atoms coupled with a single
mode of a quantized radiation field. Setting z = 1, the Hamiltonian is given by

HDZHF+HA+H1, (2)
A = wa'a, 3)
HA - wOfZ/ (4)
Fy = jﬁm* +a)(J+ + ), 5)

where Hp defines the field’s energy, Fa the energy of the two-level atoms, and Hj the atom—
field interaction energy. In the equations above, at (a) is the bosonic creation (annihilation)
operator of the single field mode and Ji (J-) is the raising (lowering) collective pseudo-
spin operator, where [+ = [, +if, and Jy,. = (1/2) Zﬁi 1 ﬁa’g,y,z for the Pauli matrices

5'}];,%2 acting on the kth two-level atom. Since the squared total pseudo-spin operator

jz =24 ]3 + ]2 commutes with the Hamiltonian, [H D,jz] = 0, the eigenvalues of jz,

given by j(j 4 1), label the invariant subspaces in the Hilbert space. We work within the
totally symmetric subspace, which includes the collective ground state and is defined by
the maximum pseudo-spin value j = N /2.

The Dicke Hamiltonian Hp commutes with the parity operator

A A~

IT = exp(imA), (6)

where
A=d"a+ T +j1 = 7t + flex, @)
the number of photons is 1 = a*4, and the number of excited atoms is flex = [ + ji. Because
of this symmetry, the eigenstates have one of two different parities, [1|E) = 4|Ey).

The three parameters of the Dicke Hamiltonian, w, wyp, and 7y, determine the energy
scales of the system and the onset of chaos. The radiation frequency of the single-mode
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electromagnetic field (the boson) is given by w, the energy splitting of each two-level
atom is wy, and 7 is the coupling strength modulating the atom-field interaction. In the
thermodynamic limit, " — oo, the light-matter coupling divides the parameter space in
the normal phase, when the strength -y in smaller than the critical value 7. = \/wwy/2, and
the superradiant phase, when > . [42,72-74]. The Dicke model also presents regular
and chaotic regions depending on the parameters and excitation energies [47]. We fix the
coupling strength in the superradiant phase, ¥ = 2. = 1, and the resonant frequencies
at w = wp = 1, so that we ensure that both the classical dynamics and the quantum
eigenspectrum are chaotic at excitation energies € > —0.8 [47], where € = E/j denotes the
energy scaled to the system size j.

The Hilbert space of the Dicke model is infinite. In Appendix A, we provide details
on how to diagonalize the system’s Hamiltonian on an efficient basis. We consider three
system sizes, j = 30, 60, 100, whose associated Hilbert space dimensions in the efficient basis
are given by d5P = 8601,30371,80 601, ensuring the convergence of the set of eigenstates
from the ground-state energy egs = —2.125 until a truncated value er.

3. Chaos in the Dicke Model

The classical Hamiltonian of the Dicke model is presented in Appendix B. The gen-
eration of Poincaré sections and the computation of Lyapunov exponents for trajectories
in phase space [47,75] reveal the onset of chaos for high energies and strong couplings. In
Figure 1a, we show a classical map of the percentage of chaos as a function of excitation
energies and coupling strengths. The percentage of chaos is defined as the ratio of the
number of chaotic initial conditions over the total number of initial conditions used in the
sample and is illustrated with a color gradient, where dark indicates that the majority of
the initial conditions are regular and light indicates that most initial conditions are chaotic.

% Chaos (7)

 — L —
0 20 40 60 80 100 039 043 046 0.50 0.53

Y/ e /e

Figure 1. Panel (a): Map of the percentage of chaos for the classical trajectories as a function of the
excitation energy € and the coupling strength <. Panel (b): Map of the average values of the ratio
of consecutive energy levels (7) (see Equation (8)) obtained for moving windows of eigenenergies,
which contain approximately 1000 energy levels. The low energy regions contain few energy levels
and were averaged using windows of eigenenergies with the available energy levels. Because of
this, the fluctuations of (¥) are more pronounced in these regions. In both panels (a) and (b), the red
dot represents the critical point for the transition from the normal to the superradiant phase for the
ground state. The system size in panel (b) is j = 100.

Signatures of the onset of chaos in classical systems are found in the quantum domain,
as suggested by Casati et al’s 1980 paper [76] and Bohigas et al’s 1984 work [77], and became
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known as “quantum chaos”. The eigenvalues of a quantum system become correlated
when its classical counterpart is chaotic. The degree of correlations between neighboring
levels can be detected with the level spacing distribution [78] or the ratio of consecutive
energy levels [79,80],

P = min(ry, r ') = :11;2((?;?;_11)) / (8)
where s = Ej,1 — Ei is the nearest-neighbor spacing between energy levels and
tx = Sk/sk—1; while both short- and long-range correlations are measured with quan-
tities such as the level number variance [81] or the spectral form factor [78]. In the case of
the Dicke model, level spacing distributions [75,82,83] and spectral form factors [53,54] in
agreement with random matrix theory (RMT) were verified for the energies and parameters
associated with the onset of chaos in the classical limit.

Other tests of quantum chaos include Peres lattices [84] and the evolution of OTOCs [85-87].
The Peres lattice is a plot of the eigenstate expectation values of an observable as a function of the
eigenvalues. It has been widely employed (not always under this name) in studies of ETH
and provides visual evidence of the loss of integrability [75,88]. As for the OTOC:s, their
exponential growth rates are seen as quantum analogs of the classical Lyapunov exponents.
This was indeed confirmed for the Dicke model in the chaotic region [55], although its
exponential growth happens also in regular regions due to instability [57].

In Figure 1, we compare the onset of classical chaos, investigated in Figure 1a, with
the degree of correlations between neighboring energy levels, as captured by the ratio of
consecutive energies in Figure 1b. To smooth spectral fluctuations, an average is performed
and denoted by (7). In the regular regime, where the eigenvalues are uncorrelated and the
level spacing distribution is Poissonian, (7)p &~ 0.39, while in the chaotic region, where
the eigenvalues are correlated as in RMT and the level spacing distribution follows the
Wigner-Dyson distribution, (F)wp ~ 0.53. Our results in Figure 1 exhibit an evident
classical-quantum correspondence. There is a visible relationship between the classical
map of Figure 1a and the quantum map of Figure 1b, when the percentage of chaos is large
(small) in Figure la; (¥) approaches 0.53 (0.39) in Figure 1b.

4. Thermalization in the Dicke Model

For an isolated quantum system initially in a pure state, the evolution is governed by
the unitary time operator as

¥ () = e THE(0)) = Y cre B |Ey), )
k

where H|E;) = Ei|Ex) and ¢, = (Ex|¥(0)). Thus, the expectation value of a given operator
O under states evolved in time can be calculated as follows

O(t) = (¥(DIO[¥ (1)) = ) ciewe™™* B O + Y e Opi (10)
kZK! k
where Oy = (E¢|O|Ey) are the matrix elements of the operator expressed in the en-

ergy eigenbasis.

The onset of thermalization according to the ETH happens for local observables if two
assumptions are satisfied:

(i) The infinite-time average,

.1t 2
0= Tm dt'o(t') = ;lckl Ok xs (11)
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coincides with the microcanonical average,

Om
mic WE AE

Y Oxx =0, (12)
k

or more precisely, O approaches the thermodynamic average as the system size grows.
This is sometimes referred to as “diagonal ETH”. In the equation above, WE af is the
number of eigenstates |Ey) contained in the energy window Ey € [E — AE, E + AE] with
|E — Ex| < AE.

As explained above, the ETH should be valid when the eigenstates are chaotic (er-
godic), filling the energy shell. In this case, one obtains Gaussian distributions for few-body
observables in many-body quantum systems, which can be understood as follows. Assume
that the few-body observable O has N nonzero eigenvalues O, in O\On> = 0,|0y), where
N is large. We can project the energy eigenstates in the basis |O,) as |Ex) = Y, C’én |On),
and write

N
O = (Ex[O|E) = Y [Ch, [2(0n|0]0n) = O11|CE [P+ ...+ OnnICEH A (13)

n=1

If the eigenstates are fully chaotic (ergodic), then Ckon ’s are independent Gaussian random
numbers. According to the central limit theorem, a large sum of independent random
numbers Oy, , |an | will also follow a Gaussian distribution. Therefore, in the region where
the eigenstates are chaotic, the distribution of Oy x should be Gaussian.

(i) The fluctuations around O, which are determined by the phases e!(Fs—E)t, the
coefficients ¢, and the off-diagonal elements Oy v in Equation (10), decrease with system
size and cancel out on average. This is sometimes referred to as “off-diagonal ETH”".
A Gaussian distribution of Oy - indicates that the eigenstates are strongly chaotic (ergodic),
so condition (ii) should be satisfied if the energy of the initial state (of a system perturbed
far from equilibrium) is in the chaotic region.

The relationship between the Gaussian distribution of the off-diagonal elements of a
few-body observable and ergodicity can be understood as above, using O|0;,) = 0,|0,,)
and |Ey) = ¥, C§ |Oy) in

N
O = (Ex|O|Ep) = Y (CE,)*CE, (0ulO|0n) = 011(CE,)*CE, + ... + Onn(CH, ) Ch, - (14)

n=1
For chaotic eigenstates, Cén ’s are independent Gaussian random numbers, and the product

of two independent Gaussian random numbers, (C’é}1 )*Cko,n, which appears in each term
of Equation (14), is also an independent random number. According to the central limit
theorem, a large sum of independent random numbers follows a Gaussian distribution,
so in the region where the eigenstates are chaotic, the distribution of Oy should be
Gaussian. This has been confirmed for different chaotic systems with many degrees of
freedom [15,89,90], but not in chaotic systems with one [91] or few particles [92], few
degrees of freedom [93] or in many-body systems when O is not few-body [94].

4.1. Diagonal ETH

To test the validity of the diagonal ETH, we compute the deviation of the eigenstate
expectation values with respect to the microcanonical value [19,20]

_ Y IOk — Omic|

aTor= Y.k Owk 1
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and also use a stronger test that takes into account the normalized extremal fluctuations

and is given by [19]

max(0) — min(O)
Onmic ’

where max(O) and min(O) are taken from the same energy window Ej € [E — AE, E + AE]

used in Equation (12). We consider as observables the number of excited atoms, fiex =

J. + ji, and the number of photons, 71 = ata, of the Dicke model.

In Figure 2, we show the Peres lattices for the expectation values of the number of
photons, ny, = (Eg|t|Ey) (Figure 2a), and of the number of excited atoms, (Mex)kx =
(Ex|fiex|Ex) (Figure 2b), for all eigenstates of the Dicke model with positive parity that
range from the ground state energy, egs = —2.125, up to a maximal converged eigenstate
with eigenenergy et = 1.755. In the regular region of low energies, the Peres lattices present
a clear pattern related with the quasi-conserved quantities. Above € ~ —0.8, where the
system becomes chaotic, the lattices become smoother in energy. It is visible that the spread
of the expectation values in the chaotic region decreases as the system size increases; that
is, for high excitation energies, the fluctuations are larger for j = 30 than for j = 100. It is
also noticeable that the number of excited atoms fluctuate less than the number of photons.

AT€[0] = (16)

(a) .j=30 (b) .j=30
.j =60 A .j =60
=100 o

==

j =100

nyk/J

0.19}
= 0.13
007
0017 p—
-2 -1 0 1
€ €
% Chaos
e |
0 20 40 60 80 100

Figure 2. Panels (a) and (b): Peres lattice of the eigenstate expectation values of the number of
photons 1y  (a) and the number of excited atoms (#1ex )i x (b) scaled to the system size j for eigenstates
|Ex) with positive parity of the Dicke model. Panels (c) and (d): Deviations of the expectation
values of the same observables 1y i () and (1ex ) i (d) with respect to their microcanonical value (see
Equation (15)). The insets in (c) and (d) show the extremal deviations of the respective quantities in
the chaotic energy regime (see Equation (16)). The color scales contained within the panels (c) and (d)
correspond to the values of the percentage of classical chaos shown at the bottom in the numbered
color scale. The system size in all panels (a—d) is indicated with a given color for three values
j = 30,60,100.

The reduction of the fluctuations with the increase of system size, which is a necessary
condition for the validity of the ETH, is better quantified in Figure 2c,d, where we show
A™i€[17] and A™€[104], respectively. To compute these quantities, we used moving windows
of eigenenergies for each system size j = 30, 60,100, which contain 100,350, 900 energy
levels. In the chaotic region, both deviations clearly decrease as j increases, while at low
energies (¢ < —0.8), where chaos and regularity coexist, the fluctuations decrease very
slowly or do not decrease at all.

The insets of Figure 2¢,d contain the results for the normalized extremal fluctuation in
Equation (16). Only the chaotic energy interval defined by € € [—0.5,1.755] is shown. The
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reduction of the extremal fluctuations as j increases is also perceptible in these insets, thus
confirming the validity of the diagonal ETH in the chaotic region of the Dicke model.

In Figure 3, we consider the energy interval € € [0.5, 1], where hard chaos manifests
itself classically, and use only the positive parity sector of eigenstates. In Figure 3a,b, we
show, respectively, the distribution of the diagonal elements of the number of photons and
the number of excited atom, which are presented in a semi-logarithmic scale. The figures
confirm that the distribution shape is Gaussian, as explained in Equation (13).

4.2. Off-Diagonal ETH

We now analyze the off-diagonal elements of the number of photons in Figure 3¢
and the number of excited atoms in Figure 3d. As discussed in Equation (14), a Gaussian
distribution validates the off-diagonal ETH. This is indeed the case of Figure 3c,d.

, 1.00t® S Y (b) ARt W 5.00
g "" R V'.’ ’Q‘!
£0.10 I * s . 0.50
oy -~ :, i b}
001 2 s 0.05
210 —05 00 05 10 202 -01__00 01 02
<7L/j)k‘k - <n/.7)kk (n(\/]>kk - <nox/]‘>k,k
o (c) . (d) -
£ 1.00t o LAY 5.00
E) "' .
D 'l “ d .
= 0.10t ’ . 0.50
2 E Y ! '
0.01} i . | e A , e {005
210 05 00 05 1.0 08 09 10 11 12
(n/3)kw (Nex/ 3 )k

Figure 3. Panels (a) and (b): Statistical distribution (red solid dots) in semi-logarithmic scale of the
diagonal matrix elements of number of photons 7y (a) and excited atoms (#ex ) x (b) scaled to the
system size j for eigenstates |Ej) with positive parity of the Dicke model contained in the chaotic
energy interval €, € (0.5,1.0). The term Oy  represents the average of the expectation value Oy in
the same energy region for each operator 7 and 7iex. The black dashed line depicts a Gaussian fit.
Panels (c) and (d): The same as panels (a) and (b) for the off-diagonal matrix elements of the same
observables 1 s (¢) and (#1ex )k (d). The system size in all panels (a-d) is j = 30.

5. Entropies of the Eigenstates of the Dicke Model

In the last section, we verified numerically the validity of the ETH in the chaotic region
of the Dicke model using the matrix elements of the number of photons and the number
of excited atoms. In this section, we use the von Neumann entanglement entropy and
the Shannon entropy to analyze the structure of the eigenstates of the model. The von
Neumann entanglement entropy can be regarded as the limit of higher-order observables
in a replicated Hilbert space, and one may generalize the ETH to include higher-order
statistical moments [95] arising from these replicated spaces, which allows one to explain
the so-called Page correction [96] to the volume law. The von Neumann entanglement
entropy has been linked to the onset of chaos in quantum systems [97-101]. The Shannon
entropy is a basis-dependent quantity. We study this entropy with respect to both the Fock
and an efficient basis.

The Dicke model is a bipartite system, whose Hilbert space is a tensor product of
the atomic H and bosonic Hp sectors, Hp = Ha ® Hp. The bosonic sector is infinite-
dimensional, while the atomic one has dimension dy = 2j + 1. For a pure state expanded
in the Fock basis |n; j, my),
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o
) =Y Y cumlnjm), (17)
n=0 j

My=—

the density matrix is the projector operator § = [¥) (Y|, and the reduced density matrix in
the atomic sector is calculated as,

i j o
pa=Trolol = 3 ) (ZCn,mzc;:,m;>lj,mz><j,m;|. as)

my=—j mgz_j n=0
The von Neumann entanglement entropy is given by

SEn = —Tr[ﬁA ln(ﬁA)] (19)

For numerical convenience, we trace out the infinite bosonic sector first, but from the
Schmidt decomposition [102], the result for Sgy, is the same if we would instead trace out
the atomic sector first. (See Appendix C for a generalization of quantum entanglement to
multipartite systems.)

The standard basis to compute the entanglement entropy is the Fock basis, which
is defined as a decoupled basis between photons and atoms |n;j, m;) = |n) ® |j, m;) (see
Appendix A.1). Nevertheless, alternative bases can be used to calculate this entropy by
selecting the correct partition of the system. In this work, in addition to the Fock basis, we
use an efficient basis (see Appendix A.2 for a full description) that allows us to reach larger
system sizes (j > 30) than we can reach with the Fock basis [103,104]. The efficient basis
is defined as the tensor product |N;j, myx) = |N)m, ® |j, my), where |j, my) are the atomic
pseudo-spin states rotated by an angle —7/2 around the y axis and |N),, are displaced
Fock states, whose displacing depends explicitly on the atomic pseudo-spin eigenvalue 1y.
In the following general notation for a pure state,

o ]

¥) =) zz,cmy

x=0y=—j

X7,Y), (20)

(x,y) = (n,m;) stands for the Fock basis and (x,y) = (N, m,) for the efficient basis.

To select the correct atomic sector starting with the efficient basis, we need to perform
an adequate trace over the modified bosonic sector related with this basis, such that it is
equivalent to the trace over the bosonic sector of the Fock basis. This can be accomplished
by mapping one basis into the other (see Appendix A.3). As the Hilbert space associated
with the atomic pseudo-spin states |j, 1) is the same as the Hilbert space of the rotated
ones |j, my), the atomic sector for both subspaces is the same and the entanglement entropy
can be computed properly. The Shannon entropy of the pure state in Equation (20) is
given by

o ]
Seh=—3_ Y lexyl*In(|cxy[?). (21)

x=0y=—j

5.1. Results for the Entanglement Entropy

We start by comparing the von Neumann entanglement entropy for the Dicke model,
which is nonintegrable, with the results for one of the integrable limits of the model,
namely the Tavis-Cummings model (see Appendix D for the derivation of this model).
This comparison was also made in Ref. [105].

In Figure 4, we plot the Peres lattice of the exponential of the von Neumann entan-
glement entropy in Equation (19) for the integrable Tavis—Cummings model (Figure 4a)
and the nonintegrable Dicke model (Figure 4b). Results for all states from both parity
sectors, from the ground-state of the Tavis—-Cummings model up to a maximal converged
eigenstate with eigenenergies €, € [egs = —2.136,er = 2.5, are shown. As evident in
Figure 4a, the values of the entropy for the integrable case show large fluctuations and
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patterns associated with regularity are visible. The fluctuations indicate that even states
very close in energy may have very different structures, so ETH should not be satisfied.
In contrast, Sg, becomes a smoother function of energy in the chaotic region of the Dicke
model (¢ > —0.8), as seen in Figure 4b, which indicates the states close in energy are very
similar. In the case of the Dicke model, regular patterns are restricted to the low energies,
where the model is not chaotic.

We stress, however, that some isolated eigenstates located in the chaotic regime of
the Dicke model present low entanglement. They should be related with strongly scarred
states, which are known to exist in this model [61,62,106].

€k

Figure 4. Panels (a) and (b): Peres lattice of the exponential of the von Neumann entanglement en-
tropy S]]ﬁ:n (see Equation (19)) scaled to the atomic Hilbert-space dimension dp = 2j + 1 for eigenstates
|Ey) from both parity sectors of the integrable Tavis—Cummings model (a) (see Equation (A23)) and
the nonintegrable Dicke model (b) (see Equation (2)). The system size in both panels (a) and (b) is
j=30.

In Figure 5a, we analyze the von Neumann entanglement entropy for the eigenstates of
the Dicke model, ranging from the ground state until a maximal converged eigenstate with
eigenenergies € € [egs = —2.125, e = 1.841], for three values of the system size j = 30, 60,
100. As discussed in Section 4 and in Figure 2, thermalization requires the convergence of
the infinite-time average of a few-body observable towards the microcanonical average in
the thermodynamic limit, so scaling analysis needs to be performed. As seen in Figure 5a,
the patterns at the low energies of the regular region of the Dicke model do not disappear
as the system size increases, but in the chaotic region, the fluctuations clearly shrink as
the system size increases. This behavior is quantified in Figure 5b, where we present the
deviation of the entanglement entropy from the microcanonical average, as computed
in Equation (15) for the three system sizes j = 30,60,100. The fluctuations decay to
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values close to zero for energies above € ~ —1.2, indicating the transition to a region
where the majority of the eigenstates are chaotic. In the inset of Figure 5b, we present the
extremal fluctuations calculated with Equation (16) for the chaotic energy interval only,
€ € [—0.5,1.841]. We avoid the regular region, where the changes in the extremal values
are abrupt. The inset confirms the decrease in fluctuations with the increase in system size.

By comparing Figure 5b with Figure 3c,d, we observe that the deviation from the
microcanonical average of the von Neumann entanglement entropy decreases to zero more
abruptly as compared to the the number of photons and excited atoms. This different
behavior between entropies and expectation values of observables is not well understood
yet and motivates future work.

-2 -1 0 1

€

Figure 5. Panel (a): Peres lattice of the von Neumann entanglement entropy S’én scaled to the atomic
Hilbert-space dimension dp = 2j + 1 for eigenstates |Ey) from both parity sectors of the Dicke model.
Panel (b): Deviations of the von Neumann entanglement entropy with respect to its microcanonical
value, computed with Equation (15). The inset shows the extremal deviations in the chaotic energy
regime computed with Equation (16). The system size in both panels (a) and (b) is indicated with a
given color for three values j = 30, 60, 100.

5.2. Results for the Shannon Entropy

We proceed with the analysis of the structure of the eigenstates of the Dicke model
making use now of the basis-dependent Shannon entropy. In Figure 6a, we plot the Peres
lattice of the Shannon entropy for the eigenstates of the Dicke model in the Fock and efficient
bases. The eigenstates range from the ground state until a maximal converged eigenstate
with eigenenergies €, € [egs = —2.125, et = 2.356]. The inset in Figure 6a contains the
same data, but shows the exponential of the entropy. The values of the Shannon entropy
computed in the Fock basis are larger than in the efficient basis. For the Fock basis, the
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entropy grows unboundedly with energy, while for the efficient basis, Sgj, saturates at high
energies. These features make evident the advantages of using the efficient basis, since
it requires fewer basis states to build a given eigenstate than what is needed by the Fock
basis. While in Figure 6, our system size was restricted to j = 30, when we employ the
efficient basis, the same computational resources allow us to go up to j = 100, as used in
Figures 2, 5 and 7 below.

< . 0.5 1.0 1.5 2.0

S
S
[
<L

_ Eff. Basis
— Fock Basis

=
o
S

-2 -1 0 1 2

Figure 6. Panel (a): Peres lattices of the Shannon entropy Sén (see Equation (21)) scaled to the system-
size dependence of the density of states, v(€) « 2j* (see Appendix B), for eigenstates |Ej) from both
parity sectors of the Dicke model written in the efficient basis (red dots) and the Fock basis (purple
dots). The inset shows the exponential values of the Shannon entropy for both bases. Panel (b):
Deviation of Shannon entropy with respect to its microcanonical value (see Equation (15)). The inset
shows the extremal deviation of the same quantity in the chaotic energy regime (see Equation (16)).
The system size in both panels (a) and (b) is j = 30.

The analysis of the fluctuations of the Shannon entropy in Figure 6b and its inset
shows that, similarly to what we observed for the entanglement entropy in Figure 5, they
approach zero in the chaotic region. The results are comparable for both the Fock and
efficient bases. In what follows, we examine the fluctuations of the Shannon entropy for
different system sizes obtained for eigenstates written in the efficient basis only.

In Figure 7a, we plot the Peres lattice of the Shannon entropy for the eigenstates of the
Dicke model written in the efficient basis. These eigenstates are contained in the energy
interval € € [egs = —2.125, e = 1.841] for the same values of the system size which were
considered previously, j = 30, 60, 100. Similarly to what we observe for the entanglement
entropy in Figure 5a, the regular patterns and large fluctuations are visible at low energies,
where we do not expect the validity of ETH. The fluctuations decrease as we move to high
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energies and as the system size is increased. This behavior is quantified with the deviations
from the microcanonical average shown in Figure 7b and its inset. The decay of A™[Sg, ]
to values close to zero for the entanglement in Figure 5b is more abrupt than what we see
for A™i¢[Sg;,] in Figure 7b, but both cases signal the transition to chaos.

Figure 7. Panel (a): Peres lattice of Shannon entropy Sgh scaled to the system-size dependence of the
density of states v(€) « 2> for eigenstates | Ej) from both parity sectors of the Dicke model. The Shan-
non entropy for these eigenstates was built in the efficient basis (see Appendix A.2). Panel (b): Devia-
tions of the Shannon entropy with respect to its microcanonical value, computed with Equation (15).
The inset shows the extremal deviations in the chaotic energy regime computed with Equation (16).
The system size in both panels (a) and (b) is indicated with a given color for three values j = 30, 60, 100.

We close this section mentioning that the regular patterns seen at low energies in
Figures 2 and 5-7 reflect the existence of families of periodic orbits, which were studied in
previous works [61,62,106]. We also note that for high energies, the behavior of the Shannon
entropy computed in the efficient basis and of the von Neumann entanglement entropy are
similar in the sense that both measures nearly saturate. In contrast, the Shannon entropy in
the Fock basis grows rapidly with energy, because of the infinite bosonic Hilbert subspace
of the Dicke model. The modified bosonic sector of the efficient basis is responsible for the
smaller values of the Shannon entropy when compared to the values for the Fock basis.

6. Conclusions

In this work, we confirmed the validity of the ETH in the chaotic region of the Dicke
model. This was done by analyzing the diagonal and off-diagonal elements of the number
of photons and the number of excited atoms for different system sizes. We corroborated
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that the validity of the ETH stems from the presence of chaotic eigenstates, which we
showed by analyzing their components and measures of entanglement and delocalization.

The Shannon entropy, used to quantify the level of delocalization of the eigenstates
in a given basis, made evident the advantages of using the efficient basis over the Fock
basis. For high energies, the first leads to a slower growth of the entropy than the Fock
basis, allowing us to reach converged states for larger system sizes than accessible with the
Fock basis.
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Appendix A. Diagonalization Bases
Appendix A.1. Fock Basis

The Fock basis is the natural choice to diagonalize the Dicke Hamiltonian, since it is
composed by the tensor product between bosonic Fock states |#) and atomic pseudo-spin
states |j, mz), |n;j, m;) = |n) @ |j, mz). On the one hand, the eigenvaluesn = 0,1,2,... of
the number operator 71 = 474 (with eigenvalue equation i|n) = n|n)) provide an infinite
bosonic Hilbert subspace. On the other hand, the eigenvalues m, = —j,—j+1,...,j —1,j
of the pseudo-spin operator J, (with eigenvalue equation J,|j, m.) = m.|j, m.)) provide
a finite atomic Hilbert subspace with dimension di? = 2j + 1. In order to diagonalize
the Dicke Hamiltonian a truncation value nmax of the bosonic Hilbert subspace has to be
chosen, which allows to define a finite bosonic dimension dF B — jax + 1. In this way, the
global Hilbert-space dimension of the Dicke model is given by the product diP = 5P x dEB.

Appendix A.2. Efficient Basis

The truncation required by the Fock basis for the convergence of the high-energy
eigenstates rapidly increases with the system size j. This can be circumvented by using
the so-called efficient basis, which was originally obtained by studying the integrable limit
wy — 0 [107 108]. This basis can be written in terms of a displaced bosonic annihilation
operator A=0+GJ,withG = 27/(w\/>) and the eigenstates |j, my) of J (]x\], My) =
my|j, my)). The efficient basis states are defined by

(ADN

A
VNI

IN;j,my) = |om, ) @ |j, mx), (A1)
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where |y, ) = D(am,)|0) is a coherent state centered at ay, = &, = —Gmy, and D(ay, ) =
exp (e, at — ay, @) is the displacement operator. By commuting At with the displacement
operator and using that Gfy|j, my) = —a,|j, my), one may further write
it N
‘ at—a .
M) = e ) @ ]

= D(an,)IN) ® [f, m) (A2)

= [N)m, ® 1], mx)
where |N),,, = D(am,)|N) are displaced Fock states, also called generalized coher-
ent states.

The eigenvalues N = 0,1,2,... of the displaced number operator N = ATA (with
eigenvalue equation N|N),,, = N|N),) label a modified bosonic Hilbert subspace. The
eigenvalues my = —j,—j+1,...,j — 1,j of the pseudo-spin operator J; label the same
finite atomic Hilbert sector with dimension d5® = 2j 4+ 1. As for the Fock basis, the
modified bosonic sector must be truncated to some Npax for diagonalization. This yields a
finite modified bosonic dimension d5® = Nmax + 1 and a global Hilbert-space dimension
dEB dEB dEB

In contrast to the Fock basis, where convergence of high-energy eigenstates is infeasible
for large system sizes (usually j > 30), the efficient basis allows to get thousands of
converged eigenstates in high-energy regimes, even beyond j = 100 [103,104].

Appendix A.3. Mapping from Efficient Basis to Fock Basis

To compute the entanglement entropies shown in Figures 6 and 7, we perform a partial
trace over the usual atomic sector of the Fock basis, but we diagonalize in the efficient basis.
Thus, we need to map the wave function of the eigenstates from the efficient basis to the
Fock basis. This is done as follows.

A general pure quantum state |¥) can be expanded in the efficient basis and the
rotated Fock basis (|1; j, my)), respectively

Xmax
=) Z Cam,|x3,mx), (A3)
x=0 my=—j

where x = N defines the efficient basis and x = n the Fock basis. Moreover, Cy;, =
(x;j, my|'¥) are the coefficients of the arbitrary state in each basis, which must satisfy the
normalization condition ¥ ;. [Com, [> = 1.
Note that
Cn,mx = <7’l}j/ mx|1F>

N max j

=Y. Y Cuwg (mf,ma|N;j,ml)

N=0ml=—j
Npax (A4)

= Z Z it (1IN, @ (il ) v

N=0ml=—j
NmElX A
= ) Cnm (nD(am,)|N),
N=0

using that (j, my|j,my) =6, .. The term (n|D(a,)|N) for n > N is given by [109-111]

N N! 2 _
(n|D(am,)|N) =1/ Fw?ane o F/2L0N (g, 2), (A5)



Entropy 2023, 25, 8

16 of 21

where L3} (x) is an associated Laguerre polynomial given by the Rodrigues formula

x MeX gho

Eﬁé(x): ng!  dx™o

(e~ xotm), (A6)

We numerically found that, in order to ensure a correct convergence of the coefficients
Ch,m, given by Equation (A4), the truncation value must be chosen as f1max ~ 3Nmax. The
associated Laguerre polynomials can be efficiently calculated to arbitrary precision with a
package included in the Wolfram Mathematica software [112].

Appendix B. Classical Limit of the Dicke Model

The classical limit of the Dicke model can be obtained taking the expectation value
of the quantum Hamiltonian Hp under the tensor product of Glauber and Bloch coherent
states |x) = |q, p) ® |Q, P), and dividing it by the system size j [47,54,58,75,82,113,114]

hD(X) = <XP§D|X> = hF(X) + hA(X) + hI(X), (A7)
hp(x) = %(qz +7), (A8)
ha(x) = 2 (Q*+ P?) — w, (A9)

() = 2yqQy1- £, (A10)

where hp(x) and ha (x) represent the Hamiltonians of two classical harmonic oscillators,
and h(x) the coupling between them. The bosonic Glauber and the atomic Bloch coherent
states, represented by the canonical variables (g, p) and (Q, P) respectively, are given
explicitly by

10, p) = /(@) [VIT2arin)]at g (A11)
2 27 . ?
0,7 = (1= T )l (a12)

where |0) is the photon vacuum and |j, —j) is the state with all the atoms in the ground state.
The classical Dicke Hamiltonian hip(x), obtained with the latter method, has an infinite
four-dimensional phase space M in the canonical variables x = (g, p; Q, P), where the
atomic variables are bounded (Q? + P? < 4). A useful property of this phase space is that
it can be partitioned into a family of classical energy shells with finite volume V(e) < oo,

given by
M(e) ={xe M | hp(x) =€}, (A13)

where € = E/j is the classical energy of the shell scaled to the system size j, which defines
an effective Planck constant 7i.¢ = 1/ [115]. The finite volume V(€) of the classical energy
shells M (e) is obtained with a semiclassical approximation to the quantum density of
states v(€), using the Gutzwiller trace formula [114,116,117]. The explicit expression is
given by

Vi(e) = /M dxd(hp(x) — €) = (27theg) v (e), (Al4)

where the density of states is proportional to the system size v(€) « 2j2, and can be derived
explicitly following Ref. [114].
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Appendix C. Quantum Entanglement

An arbitrary pure state |¥) of a multipartite system composed of S subsystems, whose
Hilbert space is given by the tensor product H = H; ® H, ® ... ® Hg, can be expanded
due to the superposition principle in a tensor-product basis {\1/;,11> ® |1,b,%2> ®...® |1,L7;fs )} as

dydo,...ds
V)= Y ks V) O W) @ @ [PE), (A15)
kiko,. ks

where dy,d,...,ds are the dimensions of each subspace and the coefficients ¢y, x, . ks
satisfy the normalization condition

dy dydg
Yo Iek ksl =1 (A16)
ki,ko,... ks

Thus, the state |¥) is called separable (entangled) if it can (cannot) be written as a
tensor product of states corresponding to each subspace

[¥) = [¥1) @ [¥2) ®@...® [¥s). (A17)

For a mixed state p the definition of entanglement is no longer equivalent to that of a
pure state. In this way, the mixed state p is called separable (entangled) if it can (cannot)
be written as a convex combination of tensor-product states [102,118], corresponding to
each subspace

dy,d,...dg . ) s
0= Y Prikkshi, @0, © .. QP (A18)
ky,ko,... ks

where dy,dy, ..., ds are the dimensions of each subspace and the probabilities py, k,,. ks
satisfy the normalization condition

Ao,

Pky ko, ks = 1. (A19)
ki ko, ks

When multipartite systems are studied, a useful tool to work with is the reduced
density matrix corresponding to a given subspace, which is obtained by taking the partial
trace of the whole density matrix p. For example, the reduced density matrix of the i-th
subspace is given by

d; )
i =Trp,.s)2il0] = ) Preb (A20)
ki=1

where ZZ?ZI P, = i and
(dl /d2/“'/ds)7édi
by, = Y. Pk ko, kst (A21)
(kl,kz,...,k&‘)#k,’

Appendix D. Integrable Dicke Model: Tavis—Cummings Model

The integrable limit of the Dicke model is known as the Tavis—-Cummings model [119],
and can be obtained by applying the rotating wave approximation (RWA) to the Dicke
Hamiltonian (2). The RWA consists of ignoring the interacting terms in Hj (see Equation (5))
that oscillates very fast, that is, a*f, and 4f_. The last results in a modified interacting
Hamiltonian given by

ARWA = @t 14l (A22)
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such that, the complete Tavis-Cummings Hamiltonian is given by
HArc = A + Ay + ARVA, (A23)

where the Hamiltonians Hy and Hj are the same terms given in Equations (3) and (4). The
particularity of the Tavis—Cummings Hamiltonian is that it commutes with the operator
A (see Equation (7)), which is a conserved quantity that defines the number of excitations.
The last feature allows to diagonalize the Tavis-Cummings Hamiltonian in finite subspaces
of such operator [119].
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