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Abstract: Survival probability measures the probability that a system taken out of equilibrium has
not yet transitioned from its initial state. Inspired by the generalized entropies used to analyze
nonergodic states, we introduce a generalized version of the survival probability and discuss how it
can assist in studies of the structure of eigenstates and ergodicity.
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1. Introduction

The square overlap between a given initial state |Ψ(0)〉 and its time-evolved counter-
part |Ψ(t)〉,

SP(t) = |〈Ψ(0)|Ψ(t)〉|2, (1)

indicates the probability of finding the system still in its initial state at time t. This quantity
is known as survival probability, return probability, or simply the fidelity between the
initial and the evolved state. This quantity has been extensively investigated since the early
decades of quantum mechanics, initially in the context of the uncertainty relation between
time and energy [1–3]. As stated by Fock in [3]:

[the time-energy uncertainty relation] may be viewed as a consequence of the
general theorem of Fock and Krylov on the connection between the decay law
and the energy distribution function.

The “connection” stated in the quote above refers to the fact that the survival probabil-
ity (decay law) is the absolute square of the Fourier transform of the energy distribution
of the initial state (energy distribution function). That is, for a state evolving according
to a Hamiltonian H, whose eigenvalues and eigenstates are given by Eα and |α〉, one has
|Ψ(t)〉 = ∑α C(0)

α e−iEαt|α〉, and the survival probability can be written as:

SP(t) =

∣∣∣∣∣∑α

|C(0)
α |2e−iEαt

∣∣∣∣∣
2

=

∣∣∣∣∫ ρ(E)e−iEtdE
∣∣∣∣2, (2)

where C(0)
α = 〈α|Ψ(0)〉, and

ρ(E) = ∑
α

|C(0)
α |2δ(E− Eα) (3)

is the energy distribution of the initial state. This distribution is also known as the local
density of states (LDoS) or strength function, and its mean and variance are [4]:

E(0) = ∑
α

|C(0)
α |2Eα and σ2 = ∑

α

|C(0)
α |2(Eα − E(0))2. (4)
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Both the survival probability and the LDoS are studied in a variety of different fields,
from quantum chaos and nuclear physics to localization and quantum information science.
These quantities received significant attention from previous researchers of the Budker
Institute in Novosibirsk, including those to whom we dedicated the present paper, namely
Professor Giulio Casati on the occasion of his 80th birthday in 2022, Professor Felix Izrailev
on the occasion of his 80th birthday in 2021, and Professor Vladimir Zelevinsky on the
occasion of his 85th birthday in 2022.

Despite the simplicity of Equation (1), the evolution of the survival probability in
many-body quantum systems is quite rich, with different behaviors emerging on different
time scales, which reveal details about the initial state, the spectrum, and the eigenstates of
the considered model. The Taylor expansion of the phase factor in Equation (2) shows that
the survival probability, at very short times, t� 1/σ, presents a quadratic and universal
behavior, SP(t) ≈ 1− σ2t2, where σ is the width of the LDoS (see Equation (4)). Beyond
this point, but still at short times, t . 1/σ, the decay is dictated by the shape of the LDoS.
The shape of ρ(E) was investigated in [5,6] in the context of banded random matrices, while
in realistic models, the transition from a Lorentzian to a Gaussian form with the increase in
the perturbation strength was discussed, as in [7–23]. Depending on the initial state and
the model considered, skewed Gaussians and bimodal distributions can also emerge [24].
Beyond the characteristic time for the initial depletion of the initial state, t ∼ 1/σ, the
survival probability exhibits a power-law decay ∝ t−γ with an exponent γ that depends
on the level of ergodicity of |Ψ(0)〉 and |α〉. When the LDoS is filled ergodically, γ is
determined by the bounds of this energy distribution [25–33]. In contrast, when |Ψ(0)〉 and
|α〉 are non-chaotic states, then γ depends on the level of correlations and multifractality
between the states [34–39]. However, this is not yet the end of the story. In chaotic systems,
where the energy-level statistics are similar to those of random matrices, the survival
probability does not saturate after the algebraic decay. Instead, it reaches a value that is
smaller than its infinite-time average,

SP = ∑
α

|C(0)
α |4, (5)

and then grows in a ramp until it is finally saturated at SP. The infinite time average is the
last term in the equation below, which is obtained from Equation (2),

SP(t) = ∑
α 6=β

|C(0)
α |2|C

(0)
β |

2e−i(Eα−Eβ)t + ∑
α

|C(0)
α |4. (6)

The interval in which SP(t) < SP is known as the correlation hole [39–56], and there have
been different methods proposed with which to measure it experimentally in systems
that are out of equilibrium (see [57] and references therein). The correlation hole is a
dynamic manifestation of spectral correlations and, as such, can be used to detect many-
body quantum chaos in experiments that do not have direct access to the spectrum, such as
experiments with cold atoms and ion traps.

In this work, motivated by generalized quantities such as Rényi entropies [58], the
inverse participation ratio [59–64], and other similar quantities [65] that play a prominent
role in studies of localization and multifractality, we introduce the generalized survival
probability, SPq(t), and its corresponding generalized LDoS, ρ

(0)
q (E) (see the definitions

below in Equations (10) and (12), respectively). We discuss how they can help to improve
our understanding of the structure of the eigenstates.

Using the one-dimensional (1D) disordered spin-1/2 model, which is often employed
in the analysis of many-body localization, we compare the results for the generalized
survival probability in the chaotic regime and far from it, where the duration of the power-
law decay of SPq(t) becomes dependent on the value of q. We also compare the behavior of
SPq(t) using the chaotic spin model with random matrices from the Gaussian orthogonal
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ensemble (GOE) and, in the latter case, provide an analytical expression for the entire
evolution of the generalized survival probability.

2. Models

Here, we study many-body quantum systems described by the Hamiltonian:

H = H0 + V, (7)

where a chosen eigenstate of H0 corresponds to the initial state, and V is a strong per-
turbation that takes the system far from equilibrium. We consider initial states that have
energies E(0) = 〈Ψ(0)|H|Ψ(0)〉 close to the middle of the spectrum. Two Hamiltonians H
are investigated, of which one is a random matrix from the GOE and the other describes a
1D disordered Heisenberg spin-1/2 model.

2.1. Gaussian Orthogonal Ensemble

The GOE is composed of real and symmetric D ×D matrices completely filled with
random entries from a Gaussian distribution, with the mean zero and variance given by:

〈
H2

jk

〉
=

{
1
2 , for j 6= k;
1, for j = k.

(8)

We assume that the unperturbed Hamiltonian H0 is the diagonal part of H and V is
the off-diagonal part. The model is non-physical but allows for analytical derivations that
can serve as a reference for the study of realistic chaotic many-body quantum systems.

2.2. Disordered Spin-1/2 Model

As a physical model, we consider the 1D Heisenberg spin-1/2 model with onsite dis-
order, which has been used in studies of many-body localization [66–69]. The Hamiltonian
is given by:

H =
L

∑
k=1

hkSz
k + J

L

∑
k=1

(
Sx

k Sx
k+1 + Sy

k Sy
k+1 + Sz

kSz
k+1

)
, (9)

where Sx,y,z are the spin-1/2 operators, L is the system size, J = 1 is the coupling strength,
and hk refers to independent and uniformly distributed random variables in [−h, h], with h
being the onsite disorder strength. We assume periodic boundary conditions. The system
conserves the total magnetization in the z-direction, Ŝz

tot = ∑L
k=1 Ŝz

k. Throughout this paper,
we work in the largest subspace, with Ŝz

tot = 0 leading to D = L!/(L/2)!2. For finite sizes,
H shows level statistics comparable to the GOE random matrices when h ∼ 0.5, while the
level repulsion fades away for h > 1. We consider the unperturbed Hamiltonian to consist
of the terms in the z-direction, H0 = ∑L

k=1

(
hkSz

k + JSz
kSz

k+1

)
, and the perturbation to be the

flip-flop term, V = J ∑L
k=1

(
Sx

k Sx
k+1 + Sy

k Sy
k+1

)
.

3. Generalized Survival Probability

We define the generalized survival probability as:

SPq(t) =
1
N 2

q

∣∣∣∣∣ D∑
α=1
|C(0)

α |qe−iEαt

∣∣∣∣∣
2

=

∣∣∣∣∫ ρq(E)e−iEαtdE
∣∣∣∣2, (10)

where Nq is a normalization constant given by:

Nq =
D
∑
α=1
|C(0)

α |q, (11)
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where the parameter q ≥ 0 is a positive real number, and

ρq(E) =
1
Nq

D
∑
α=1
|C(0)

α |qδ(Eα − E) (12)

is the generalized LDoS (gLDoS), with the mean and variance given, respectively, by:

E(0)
q =

1
Nq

D
∑
α=1
|C(0)

α |qEα and σ2
q =

1
Nq

D
∑
α=1
|C(0)

α |q(Eα − E(0)
q )2. (13)

The survival probability, as defined in Equation (2), and the mean and variance given
in Equation (4) are recovered when q = 2. For q = 0, Equation (10) coincides with the
spectral form factor [70], which is a quantity used to study level statistics in the time
domain. Contrary to the (generalized) survival probability, the spectral form factor is not a
dynamical quantity, since it does not depend on the initial state.

If one knows the generalized LDoS, we can obtain the generalized survival probability
by performing the Fourier transform in Equation (10). We therefore start our analysis by
examining the shape of ρq(E).

Generalized LDoS

Figure 1 depicts the generalized LDoS for a single random realization of a GOE matrix
and different values of q. We observe that the semicircular shape, typical of random matrices
in the limit of large D, and the length of the distribution are conserved independently of
the value of q. This is because all eigenstates of GOE matrices are random vectors, and so is
the initial state. That is, C(0)

α are random numbers from a Gaussian distribution satisfying
the constraint of normalization. Even though for q > 1, the larger components C(0)

α become
enhanced, leading to the spikes observed in Figure 1c,d, the width of the distribution is
not affected by q. This means that after averages over random realizations, one will not
notice the differences between the panels. One can then state that the robustness of the
generalized LDoS for different values of q is a sign of the ergodicity of the eigenstates of
the system.
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Figure 1. Generalized local density of states for GOE matrices for (a) q = 0.5, (b) q = 1.0, (c) q = 2.0,
and (d) q = 3.0. Shaded areas are numerical results and the solid curves represent the semicircle law
in Equation (14). A single disorder realization and a single initial state are considered. The matrix
size is D = 12,000.

Since the components |C(0)
α |q are uncorrelated random numbers fluctuating smoothly

around the average |C(0)
α |q = Nq/D, one can see that the gLDoS for the GOE matrices
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coincides with the normalized density of states PGOE(E) = D−1 ∑α δ(Eα − E). Therefore,
for GOE random matrices, we observe that:

ρGOE
q (E) = PGOE(E) =

1
πσq

√
1−

(
E

2σq

)2
, (14)

where the standard deviation σq =
√
D/2. In Subfigure (a) in the third figure of this same

Section 3 we plot σq as a function of q and confirm that σq is, indeed, nearly constant for
GOE.

For physical many-body quantum systems with two-body interactions, the density of
states is Gaussian [71,72]. Thus, the expected shape of the LDoS for a system perturbed far
from equilibrium and an initial state in the middle of the spectrum, as considered here, is
also Gaussian, as seen in Figure 2c for q = 2 and h = 0.5.

0

0.1

0.2

0.3

0.4

ρ
qS

p
in

-6 -4 -2 0 2 4 6
E

0

0.1

0.2

0.3

0.4

ρ
qS

p
in

-6 -4 -2 0 2 4 6
E

(a) (b)

(d)(c)

Figure 2. Generalized local density of states for the disordered spin-1/2 model with h = 0.5 for
(a) q = 0.5, (b) q = 1.0, (c) q = 2.0, and (d) q = 3.0. Shaded areas are numerical results and the solid
curves represent the Gaussian expression in Equation (15). A single disorder realization is considered.
The system size is L = 16 with D = 12,870.

Despite the persistence of the Gaussian shape for different values of q,

ρ
Spin
q (E) =

1√
2πσ2

q

exp

− (Eα − E(0)
q )2

2σ2
q

. (15)

Figure 2 makes it clear that, in contrast to the GOE, the width σq depends on q. As q

increases and the participation of the larger |C(0)
α |q becomes amplified, the width of ρ

Spin
q (E)

becomes narrower than the density of states. This indicates that the contributions of the
components at the tails of the initial-state energy distribution, where chaotic states are
nonexistent, are erased.

The dependence of the width of the gLDoS on q reveals the limited degree of ergodicity
of physical systems, even those deep in the chaotic regime. The eigenstates of physical
systems are not random vectors, as in random matrices, and are not random superpositions
of plane waves, as stated by Berry’s conjecture [73]. The question of how to define chaotic
states in realistic systems is discussed in [10,11,74–78]. Our results add to these studies,
providing a way to quantify the level of ergodicity in comparison to random matrices.

In Figure 3, we compare the results for σq normalized by the width of the density of
states (DoS) as a function of q for the GOE model (Figure 3a) and the spin model (Figure 3b).
Each point in Figure 3 is obtained by performing an average over 10 random realizations
and a single initial state. The flat curve in Figure 3a indicates the presence of fully ergodic
states throughout the spectrum, while in Figure 3b, σ

Spin
q /σ

Spin
DOS clearly decays as q increases.

This occurs in the case of the chaotic model, with h = 0.5 (circles), where non-chaotic states
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are concentrated at the edges of the spectrum, and more abruptly in the case of h = 2
(squares), where non-chaotic states are also likely to be found away from the edges of the
spectrum.

0 0.5 1 1.5 2 2.5 3 3.5
q

0.4

0.6

0.8
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0 0.5 1 1.5 2 2.5 3 3.5
q

0.4

0.6

0.8

1

σ
qS

p
in

~

(a) (b)

Figure 3. Width of the generalized LDoS normalized by the DoS for (a) GOE matrices, σ̃GOE
q =

σGOE
q /σGOE

DOS , and (b) the spin model, σ̃
Spin
q = σ

Spin
q /σ

Spin
DOS, with h = 0.5 (circles) and h = 2 (squares)

as a function of q. Each point is an average over 10 disorder realizations and a single initial state. The
dotted lines are guides for the eyes. D = 12,000 for GOE and D = 12,870 (L = 16) for the spin model.

The reason for the abrupt decay of σ
Spin
q with q for h = 2 becomes evident in Figure 4,

where we plot ρq(E) for different values of q. When q ≤ 1 (Figure 4a,b), the shape of the
LDoS is fragmented, while for q > 1 (Figure 4c,d), this structure is nearly erased, and ρq(E)
indicates a high degree of localization.
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Figure 4. Generalized local density of states for the disordered spin-1/2 model with h = 2.0 for
(a) q = 0.5, (b) q = 1.0, (c) q = 2.0, and (d) q = 3.0. Shaded areas are numerical results and solid
curves represent the Gaussian expression in Equation (15). A single disorder realization and a single
initial state are considered. The system size is L = 16 with D = 12,870.

For finite-size systems, several numerical studies have supported the notion that the
eigenstates of the disordered spin model should become multifractal in its transition to
the many-body localized phase [37,64,79–82], although this has not been confirmed in the
thermodynamic limit [83]. The patterns observed in Figure 4a,b also suggest fractality.

4. Evolution of the Generalized Survival Probability under the GOE Model:
Analytical Expression

According to Equation (10), the survival probability averaged over an ensemble of
initial states and random realization is written as:

〈
SPq(t)

〉
=

〈
1
N 2

q
∑

α 6=β

|C(0)
α |q|C

(0)
β |

qe−i(Eα−Eβ)t

〉
+

〈
1
N 2

q
∑
α

|C(0)
α |2q

〉
, (16)
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where 〈. . . 〉 denotes the average. The second term on the right-hand side corresponds to
the infinite time average, SPq, of the generalized survival probability. For GOE random

matrices, where C(0)
α are random numbers from a Gaussian distribution,

SPq =
1
N 2

q
∑
α

|C(0)
α |2q =

√
πΓ
(

q + 1
2

)
DΓ
(

q+1
2

)2 . (17)

Since, for random matrices, the eigenvalues and the eigenstates are statistically in-
dependent, they can be factorized (see details in [84] and the appendix of [53]). Thus,
using 〈

e−i(Eα−Eβ)t
〉
=

1
D − 1

[
D
J 2

1 (2σt)
(σt)2 − b2

(
σt
2D

)]
, (18)

we observe that
1
N 2

q
∑

α 6=β

|C(0)
α |q|C

(0)
β |

q = 1− SPq, (19)

and due to the requirement that SPq(t = 0) = 1, we arrive at the analytical expression:

〈
SPq(t)

〉
=

1−
〈
SPq

〉
D − 1

[
D
J 2

1 (2σt)
(σt)2 − b2

(
σt
2D

)]
+
〈
SPq

〉
. (20)

Above, we write σq = σ, because σq is constant for the GOE. The Fourier transform
of the semicircular gLDoS provides the first term on the right-hand side of Equation (20),
which involves the Bessel function of the first kind, J1. This first term describes the initial
decay of

〈
SPq(t)

〉
, as seen in Figure 5. It presents oscillations with the nth-zeros occurring

when the initial state dynamically identifies an orthogonal state at tn ∼ (πn +
√

2/2)/2σ
with n = 1, 2, . . . . The envelope of the oscillations decays as t−3. The second term on the
right-hand side of Equation (20), b2(t) = {t ln[(2t + 1)/(2t− 1)]− 1}Θ(t− 1) + [t ln(2t +
1)− 2t + 1]Θ(1− t), is the so-called two-level form factor that takes

〈
SPq(t)

〉
on a ramp to

the saturation value
〈
SPq

〉
.

10
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10
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10
0

〈S
P q

〉

Figure 5. Generalized survival probability evolving under the GOE model for different values of
q. Red curves are numerical results and the black lines correspond to the analytical expression in
Equation (20). From bottom to top, q = 0.5, 1.0, 2.0, and 3.0. Matrix size is D = 12,000. Averages over
104 samples.

In Figure 5, we compare the numerical results for
〈
SPq(t)

〉
with the analytical expres-

sion in Equation (20). The agreement is excellent. The fact that σq for the GOE model is
independent of q (see Figures 1 and 3) becomes evident, once again, in Figure 5, where the
curves for the different values of q coincide at short times, capturing the oscillations of the
Bessel function up to the minimum value of

〈
SPq(t)

〉
.
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To derive the time scale, tGOE
Th , where

〈
SPq(t)

〉
reaches the minimum of the correlation

hole, we must identify the point where the first and second terms in the square brackets of
Equation (20) cross. Following [53], we obtain the long-term expansion of the first term in
Equation (20) and expand the two-level form factor for the short times. Combining the two
in the derivative of

〈
SPq(t)

〉
, we obtain:

tGOE
Th =

(
3
π

)1/4√D
σ

=

(
3
π

)1/4
. (21)

To obtain the minimum value of
〈
SPq(t)

〉
in the correlation hole, we evaluate Equation (20)

at tGOE
Th , which results in:

〈
SPq(t)

〉∣∣
t=tGOE

Th
≈

1−
〈
SPq

〉
D − 1

[
D

π(σtGOE
Th )3

−
(

1− σ

D tGOE
Th

)]
+
〈
SPq

〉
≈

1−
〈
SPq

〉
D − 1

(−1) +
〈
SPq

〉
.

(22)

Finally, using Equation (17) for
〈
SPq

〉
, we arrive at:

〈
SPq(t)

〉∣∣
t=tGOE

Th
≈

√
πΓ
(

q + 1
2

)
− Γ

(
q+1

2

)2

DΓ
(

q+1
2

)2 . (23)

For the particular case of q = 2, Equation (23) leads to the value 2/D previously obtained
in [53].

5. Evolution of the Generalized Survival Probability under the Spin Model

In Figure 6, we compare the evolution of
〈
SPq(t)

〉
under the spin model for different

values of q. In both panels, Figure 6a for h = 0.5 and Figure 6b for h = 2, the initial decay
is determined by the envelope of the gLDoS, as seen in Equation (10). Since, according to
Figures 2 and 4, the shape of the distribution is Gaussian, one observes in Figure 6 that〈

SPq(t)
〉
= exp(−σ2

q t2) (24)

for t . σq. The dependence of σq on q is noticeable in Figure 6a and evident in Figure 6b.
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Figure 6. Generalized survival probability evolving under the disordered spin-1/2 model with
(a) h = 0.5 and (b) h = 2 for different values of q. From bottom to top, q = 0.5, 1.0, 1.5, 2.0, and 3.0.
The system size is L = 16. Averages over 3× 104 samples.

Beyond the Gaussian behavior, a power-law decay emerges:〈
SPq(t)

〉
∝ t−γq . (25)
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In Figure 6a, where the system is chaotic, the power-law exponent should depend
on the bounds of the gLDoS. Since the gLDoS for the chaotic model in Figure 2 presents
Gaussian tails for any q, we expect the same power-law exponent for all the curves in
Figure 6a, which is, indeed, what the nearly parallel lines in the algebraic behavior suggest.
In contrast, in Figure 6b, it is clear that γq decreases as q increases, and the minimum of
the correlation hole takes longer to reach. In this case, the power-law behavior reflects the
correlations between the components of the initial state, which become enhanced for larger
values of q.

6. Discussion

We introduced the concepts of generalized survival probability, SPq(t), and the gen-
eralized local density of states, ρq(E). We showed that the width of the generalized local
density of states, σq, depends on q, even when the many-body quantum system is deep
in the chaotic regime, which stands in contrast with random matrices, where the width
is constant and equal to the width of the density of states. Therefore, σq may serve as a
tool that can be employed to analyze and quantify the level of ergodicity of the states of
physical systems with respect to random matrices.

We also showed that the power-law behavior that follows the Gaussian decay of the
generalized survival probability is strongly dependent on q when the system is away from
the chaotic regime. For a fixed value of the disorder strength, the power-law decay becomes
stretched as q increases and the power-law exponent γq decreases. This dependence of γq
on q indicates correlations between the eigenstates. In a future work, we plan to investigate
how σq and γq may be used to study multifractality.
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