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Abstract

The goal of this work is the flaw-free, industrial-scale production of biological additive manufacturing of tissue constructs

(Bio-AM). In pursuit of this goal, the objectives of this work in the context of extrusion-based Bio-AM of bone tissue

constructs are twofold: (1) detect flaw formation using data from in-situ infrared thermocouple sensors; and (2) prevent flaw

formation through preemptive process control. In realizing the first objective, data signatures acquired from in-situ sensors

were analyzed using several machine learning approaches to ascertain critical quality metrics, such as print regime, strand

width, strand height, and strand fusion severity. These quality metrics are intended to capture the process state at the basic

1D strand-level to the 2D layer-level. For this purpose, machine learning models were trained to classify and predict flaw

formation. These models predicted print quality features with accuracy nearing 90%. In connection with the second objective,

the previously trained machine learning models were used to preempt flaw formation by changing the process parameters (print

velocity) during deposition—a form of feedforward control. With the feedforward process control, strand width heterogeneity

was statistically significantly reduced, reducing the strand width difference between strand halves to less than 50 µm. Using

this integrated process monitoring, detection, and control approach, we demonstrate consistent, repeatable production of

Bio-AM constructs.

Keywords 3D printing · Bone tissue · Poly(caprolactone) (PCL)-hydroxyapatite (HAp) composites · In-situ sensing

Introduction

Background

An essential clinical practice for treating damaged, diseased,

or lost tissues is through biological grafts (Samandari et al.,

2021). These grafts fall under two classes: (1) grafts from
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elsewhere in the patient’s own body (autograft), and (2)

grafts from a donor to the patient (allograft) (Mostafavi

et al., 2021a). Autografts are limited in availability and can

treat tissues such as skin, tendon, muscle, and bone. Fur-

ther, autografts can cause donor-site morbidity (Murphy &

O’Brien, 2010). Comparatively, allografts have a broader

scope, including whole organ transplants. However, allo-

grafts are still scarce, prone to rejection by a patient’s immune

system, and can transmit diseases (Murphy & O’Brien,

2010). A new area of research focusing on the direct pro-

duction of tissues and organs for transplantation, known as

tissue engineering, has been developed in response to these

issues.

One emerging platform for tissue engineering, biologi-

cal additive manufacturing (Bio-AM), has garnered atten-

tion to fabricate complex and biomimetic architectures.

Bio-AM comprises five main production techniques: stere-

olithography, inkjet, laser-assisted, melt electro-writing, and

extrusion-based printing (Heinrich et al., 2019; Samuel

Gerdes et al., 2021). These print modalities are described
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Fig. 1 Overview of the

extrusion-based biological

additive manufacturing process.

a Schematic of the material

deposition method in pneumatic

extrusion-based biological

additive manufacturing. b1, b2

Demonstrations of two defect

types in the extrusion-based

process, strand quality and strand

fusion defects

and explored in depth in the Bio-AM literature, detailing

their inherent benefits and drawbacks (Heinrich et al., 2019;

Ramesh et al., 2021). Of these print modalities, extrusion-

based printing (Fig. 1a) is the most widely adopted form

of Bio-AM due to its compatibility with an extensive range

of material viscosities and its simplicity compared to other

printing modalities (Derakhshanfar et al., 2018; Heinrich

et al., 2019; Hölzl et al., 2016; Ribeiro et al., 2017). While

extrusion-based (bio)printing allows the rapid fabrication of

scaffolds with clinically relevant dimensions, it suffers from

limited resolution and print defects. Therefore, in this study,

we focus on the extrusion-based Bio-AM. We note that pneu-

matic extrusion is one of the widely used embodiments of

extrusion Bio-AM, the other two being screw- and piston-

based.

The clinical translation of extrusion-printed Bio-AM

necessitates a defect-free, predictable, reproducible fabrica-

tion process. Several defect types have been discussed in the

literature: undesirable strand diameter, non-homogeneous

strands, strand fusion, and strand collapse (Habib et al., 2018;

Habib & Khoda, 2019; Sam Gerdes et al., 2020; Samuel

Gerdes et al., 2021; Soltan et al., 2019; Webb & Doyle,

2017). As these defects pertain typically to a single layer, it is

imperative to reduce their occurrence. Otherwise, errors will

propagate throughout the scaffold, leading to other defects

(Sam Gerdes et al., 2020). This work focuses explicitly

on undesirable strand width, non-homogenous strands, and

strand fusion flaws created during the extrusion-based Bio-

AM process, as exemplified in Fig. 1b1, b2. Additionally,

strand fusion defects and collapse may also result from inter-

actions between adjoining layers.

Undesirable strand width (Fig. 1b1), as the name entails,

concerns disparity between the design and realized strands

due to an improper coupling of the material flow rate and the

print speed (Sam Gerdes et al., 2020). Print speed is inversely

proportional to the localized deposition, the volume of mate-

rial deposited at a given position for a set flow rate. As a result,

low print speeds yield overly large strands (over-extrusion),

and high print speeds yield small strands (under-extrusion if

strands have discontinuity or a beaded appearance). Within

the under-extrusion regime, non-homogeneous strands may

be formed, as a uniform flow between the print tip and

substrate cannot be maintained. Instead, periodic material

deposition occurs when enough material collects at the tip

and touches the substrate, creating sinusoidal-like strands.

Strand fusion (Fig. 1b2) pertains to coalescing adjacent

strands, often propagating at turnaround sections through

capillary forces or material spread due to gravity (Ribeiro

et al., 2017). Strand fusion is inversely proportional to the

distance between adjacent strands. As a result, over-extrusion
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can increase the chance of strand fusion. We note that dis-

tance between adjacent strands is one of many factors which

impact strand fusion, and it is important to consider the com-

plex interaction of interstrand distance with needle diameter,

substrate temperatures and deposition speed.

Print defects (flaws) not only affect the geometrical accu-

racy of a scaffold but also have the potential to alter the

mechanical performance (Sam Gerdes et al., 2020), as well

as the biological response (Samuel Gerdes et al., 2021). Intu-

itively, changes in scaffold geometry alter the cross-sectional

areas for applied loads, which can alter the mechanical prop-

erties of the scaffold, such as the compressive modulus (Sam

Gerdes et al., 2020). Further, flaws can alter the intentional

pore spaces, impacting the biological response. For exam-

ple, pore size in musculoskeletal tissue engineering and

its effects on cellular response are documented for pores

ranging from 20 to 1500 µm (Haglund et al., 2019; Hul-

bert et al., 1970; Jenkins & Little, 2019; Lee et al., 2004;

Mostafavi et al., 2021b; Nehrer et al., 1997; Williams et al.,

2005). Specifically, small pores (75–135 µm) have increased

cell adhesion and osteochondral differentiation, while large

pores (> 300 µm) are required for vascularization and bone

ingrowth (Chen et al., 2020; Hulbert et al., 1970; Jenkins

& Little, 2019; Klawitter et al., 1976; Kuboki et al., 2001;

Murphy & O’Brien, 2010; Roosa et al., 2010; Tsuruga et al.,

1997). Because of the risk print defects pose to the func-

tionality of printed tissue engineering scaffolds, it is vital to

negate defect occurrence.

Objective, prior work, and novelty

In response to the need for tissue engineering scaffolds,

the goal of this work is to ensure the flaw-free produc-

tion of scaffolds in extrusion-based Bio-AM. Towards this

goal, one objective of this work is to detect flaw formation

in Bio-AM constructs as they develop, using data acquired

from in-situ sensors. To that end, this work implements

IR thermocouple-based sensing to gather in-situ data about

the printing process. Machine learning approaches were

subsequently implemented to analyze the sensor data and

ultimately predict strand quality and the severity of strand

fusion.

The second objective toward the goal of flaw-free produc-

tion is to prevent defects before they occur in the scaffold.

Towards this objective, preemptive process control was

deployed to determine aspects of part quality prior to printing

and find corrective print parameter changes to improve print

homogeneity. While the aim to control defect occurrence in

extrusion-based Bio-AM is not novel, this method is a signif-

icantly different approach than those presented in the current

literature, detailed in the remainder of this section.

Two distinct pathways have developed in the literature

to overcome defect occurrence in extrusion-based printing:

process optimization and process monitoring. In the former,

the goal is to improve the understanding of causal pro-

cess parameter-flaw relationships, ultimately leading to an

optimized print parameter arrangement for a material and

processing condition (Armstrong et al., 2021). In the latter,

an effort is taken to capture the essential features indicative

of the print quality in real-time, allowing for the alteration or

cessation of the printing process in response.

Process optimization has been applied to the primary

defect types such as undesirable strand diameter, strand

non-homogeneity, strand fusion, strand collapse, and pore

geometry variability, and descriptions of the various opti-

mization strategies for different defects are presented in our

prior work (Samuel Gerdes et al., 2021). One example is

the mitigation of undesirable strand width. To optimize the

strand width, print parameter tests are conducted across pos-

sible print speeds or pressures, and the resulting strand width

is observed (Cheng et al., 2017; Habib et al., 2018; Habib &

Khoda, 2019; He et al., 2016; Sam Gerdes et al., 2020; Soltan

et al., 2019; Thattaruparambil Raveendran et al., 2019; Webb

& Doyle, 2017; Zehnder et al., 2015).

While process optimization can improve print quality, this

build-and-test approach has significant limitations (Cheng

et al., 2017; Habib et al., 2018; Habib & Khoda, 2019; He

et al., 2016; Sam Gerdes et al., 2020; Soltan et al., 2019; That-

taruparambil Raveendran et al., 2019; Webb & Doyle, 2017;

Zehnder et al., 2015). First, process optimization assumes

that print parameters are prevailing influencers of part quality.

Additional considerations such as the effect of rapid accel-

eration in the bed and nozzle motion or the contribution of

the construct geometry to defect formation are neglected.

Second, process optimization requires thorough testing of

the print parameters and material compositions to achieve an

optimal result. Due to this experimental burden, exhaustive

process optimization testing is not compatible with the scope

of all projects. While this burden could be eased by referring

to the literature for a specific material, print parameters from

one printer may not yield the same results on another printer.

Third, empirical process optimization is not scalable. In

other words, optimizing strand width, strand fusion, strand

collapse, and pore geometry are multi-scale challenges. As

a result, an optimal parameter arrangement in one scale may

not transfer to another. Moreover, process optimization does

not offer a means of actual process control. Under tradi-

tional process optimization, measurements are conducted

post-print, making it only possible to assess print quality

after the print has concluded, potentially wasting time and

resources (Cheng et al., 2017; Habib et al., 2018; Habib &

Khoda, 2019; He et al., 2016; Sam Gerdes et al., 2020; Soltan

et al., 2019; Thattaruparambil Raveendran et al., 2019; Webb

& Doyle, 2017; Zehnder et al., 2015).

Due to the limitations of build-and-test process opti-

mization, growing attention has been placed on process
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monitoring to assess and control flaws during the printing

process. One means of process monitoring is topology mea-

surement after each layer is deposited (Armstrong et al.,

2019, 2020, 2021; Yang et al., 2021). In recent work by

Armstrong et al. (Armstrong et al., 2019, 2020, 2021), topol-

ogy measurement was conducted with 3D laser scanning.

Corrections were made to the print path and print param-

eters to reduce 2D errors in strand placement, width, and

turnaround quality (Armstrong et al., 2019, 2020, 2021).

However, the alterations in the print path and parameters

had to be made iteratively; several print trials were con-

ducted, and alterations were made between each print to lead

to a more optimized print. While this process monitoring

approach improves print quality, it has drawbacks. Primarily,

the approach requires several trials to converge on acceptable

print quality. Secondly, the converged solution is unique to

the material composition, and design architecture, requiring

more tuning should the design be changed later.

In contrast, Yang et al., 2021 have developed a monitor-

ing system based on optical coherence tomography (OCT). In

OCT, light is directed at the scaffold, reflecting light from the

subsurface level, which is then collected, and the optical path

length allows for 3D modeling of the scaffold. In contrast to

laser scanning, which does not penetrate to the internal scaf-

fold structure, OCT can acquire subsurface information. With

OCT, Yang et al. demonstrated the characterization of layer

thickness, strand width, and pore size (Yang et al., 2021).

In addition to topology-based defect detection, there is

an emerging trend in applying machine learning for pro-

cess monitoring in Bio-AM (Yu & Jiang, 2020). The use of

machine learning in other additive manufacturing processes

is documented extensively and can provide new avenues

of advancement for extrusion-based Bio-AM (Yu & Jiang,

2020). For instance, the work of Scime & Beuth, 2019 in laser

powder bed fusion showed the use of unsupervised machine

learning on meltpool images to determine meltpool quality.

In the work of Gaikwad et al., 2020, a hybrid in-situ sens-

ing system for laser powder bed fusion was formed with a

high-speed video camera and a pyrometer. With the use of in-

situ sensing-derived features, Gaikwad et al., 2020 enabled

the assessment of single strand quality with machine learn-

ing. In the recent work of Jin et al., 2021, similar monitoring

principles were implemented in Bio-AM; layer-wise imag-

ing was coupled with deep learning to classify three types of

anomalies in patches of the layer image.

While still a new and developing research path, it is valu-

able to note that process monitoring in Bio-AM is currently

limited to the layer level. With topology scanning and layer

imaging, all process sensing is conducted after a layer is com-

pleted, neglecting the possibility of defect detection during

a layer. As a result, there is a substantial deficit in the sens-

ing of defects during layer printing through the monitoring

of the extrusion and the most critical part of extrusion-based

printing, strand formation. Therefore, this research aims to

develop a monitoring system capable of capturing the qual-

ity of extrusion-based Bio-AM scaffolds as they are printed

instead of after a layer (Fig. 2). In addition, this research

presents a preliminary means of feedforward process control

featuring the adaptation of print speed to combat print defect

occurrence (Fig. 2).

This paper is organized in the following manner.

Sect. "Methodology" details the experimental methodology

of the print materials and sensing setup (Sect. "Experimen-

tal setup"), specific experiments at strand and layer levels

(Sect. "Experimental design"), in-situ measurement proce-

dures for each experiment (Sect. "Feature extraction from

in-situ sensor data"), and the basis for machine learning

for predicting print quality from sensor data (Sect. "Qual-

ity prediction using machine learning"). In Sect. "Results",

the effects of process parameters on strand and fusion qual-

ity, followed by the results of applying machine learning

to predict print quality targets. Sect. "Results" also dives

into feedforward process control of strand homogeneity in

Sect. "Preemptive process control". Finally, Sect. "Conclu-

sions and future work" summarizes the main conclusions

from this work.

Methodology

Experimental setup

All experiments were conducted on an Allevi 3 extrusion-

based 3D printer. The printer was supplemented with a

heterogeneous sensor array to produce in-situ data during

the printing process. As shown in Fig. 3, the in-situ sensing

array consisted of two infrared (IR) thermocouples focused

on the deposition pool (see Fig. 3a, b) and a layer optical

imaging camera (see Fig. 3c). Layer imaging was conducted

using a Blackfly S (BFS-U3-63S4M-C) camera with a tele-

centric lens (0.50X, 1/1.8" SilverTL) from Edmund Optics

(NJ, USA). The IR thermocouples were selected based on our

previous work in extrusion printing with non-biomaterials,

where thermocouples were found to be adept at capturing

nozzle clogs, deposition failures, and surface temperature

(Rao et al., 2015; Roy et al., 2019).

The camera and lens produce an imaging region of approx-

imately 14 mm × 10 mm, and the telecentric lens produces an

image with a uniform scale throughout. The IR thermocou-

ples (CSmicro LT22H) were purchased from Optris Infrared

Sensing (NH, USA), with confocal lenses to focus the mon-

itoring area further. The IR thermocouple sampling rate was

set to 500 Hz for all experiments. Apart from the onboard

sensing array, a 2D laser profiler (LJ-V7200) from Keyence

(IL, USA) was used to measure the strand height post-print

in single strand quality testing.

123



Journal of Intelligent Manufacturing

Fig. 2 Workflow schematics of both approaches presented in this work.

(top row) In-situ sensing was coupled with machine learning for print

quality prediction of the printing process. (bottom row) Feedforward

process control to determine print speed amendments to reduce strand

width heterogeneity

Fig. 3 Additive manufacturing of PCL/HAp using in-situ sensing of

the geometrical outcome. a Side view of infrared thermocouple setup

on the bioprinter. b Underside view of the infrared thermocouple

placement. c Front view of the bioprinter outfitted with an in-situ moni-

toring system comprised of layer imaging and infrared thermal sensing

We note that several other process phenomena influence

the print quality, such as bulk part temperature, heat flux,

instantaneous viscosity, flow rate/behavior, local shear stress

in the material, among others. However, these aspects are

difficult, if not impossible, to measure in extrusion-based

printing due to the limited access to sense these phenomena.

This work takes the first critical step towards assessing the

fidelity of the temperature and imaging measurements for

enhanced process monitoring applications.

In closing this section, we note that, in this work, data from

printing of the first layer is primarily used. Accordingly, there

are potential concerns that the IR thermocouple data would

be confounded by the temperature of the proceeding layers

when used for a complex multi-layer part. However, since the

IR sensors are focused over a narrow 0.6 mm diameter spot

size (in line with our ideal strand width), producing a field-

of-view of − 0.28 mm2 aimed near the extruder needle tip,

the strands in the layer below would have a minimal effect.

Experimental design

Polycaprolactone (PCL, molecular weight =

14,000 Da)/hydroxyapatite (HAp, 2.5 µm powder) print

materials were purchased from Sigma-Aldrich (MO, USA).
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PCL and HAp were combined to form a 70/30 composition

by weight (%PCL/%HAp w/w), and the composition under-

went cryomilling to produce a more homogenous mixture

and powder size. In our previous study, this PCL/HAp

ratio proved compatible with human mesenchymal stem

cells (hMSCs) and promoted bone development (material

osteoconductivity) (Sam Gerdes et al., 2020). While the

80/20 and 70/30 PCL/HAp compositions showed compara-

ble biological results (Sam Gerdes et al., 2020), the 70/30

composition provided a more challenging print material due

to its increased viscosity. As a result, the printability issues

must be addressed with quality assurance measures.

Experiments were divided into two phases: (1) single

strand quality and (2) strand fusion assessment. Before

printing, 70/30 PCL/HAp cryomilled powder was loaded

into a stainless-steel syringe barrel and melted at a process

condition-dependent temperature (130 or 140 °C) and held at

temperature for 45 min prior to printing. The print material

was pneumatically extruded through a 0.6 mm inner diameter

stainless steel needle with straight walls (10 mm in length).

For all experiments, set parameters for print bed temperature

(20 °C), needle tip to substrate distance (0.4 mm), and pre-

and post-flow durations (0 s for each) were used. Following

layer completion, in-situ imaging of the layer was conducted.

Single strand quality

Extrusion-based printing is primarily governed by three inter-

linked process parameters: pressure, temperature, and print

speed. For instance, pressure and temperature directly control

material throughput, with temperature impacting material

viscosity (resistance to flow) and pressure instigating mate-

rial flow. Further, print speed governs the localized deposition

of print material, as shown in Fig. 4.

If print speed is relatively higher than the material flow,

under-extrusion occurs, and variable or discontinuous strands

are observed (Fig. 4a, b). Balancing the print speed with

the material flow produces ideal extrusion and homogenous

strands analogous to the needle diameter (Fig. 4c). Finally,

insufficient print speeds for the material flow yield over-

extrusion, forming larger than desired strands (Fig. 4d). In

summary, improper print parameter combinations lead to

unfavorable strand quality, where strands significantly devi-

ate from the intended design.

To assess print parameter effects on strand quality, exper-

iments were conducted across twenty temperature–pressure-

print speed combinations consisting of two temperatures

(130 and 140 °C), two pressures (1.5 and 2.0 bar), and five

print speeds (6, 8, 10, 12, and 14 mm/s). Six replicate 50 mm

strands were formed and imaged at each processing con-

dition. Upon completion of a strand, a dwell time of 25 s

was used before printing the next strand to better distinguish

between the sensing signatures.

The first 5 mm of each strand was omitted, because with-

out initializing the flow prior to movement (pre-flow), this

region will likely not achieve complete deposition along its

length. Additionally, the final 5 mm of each strand was omit-

ted to avoid considering the rounded strand end in width

determination. While neglecting the starting and stopping

regions prevents the ability to detect flaws pertaining to those

regions, the infrared thermocouple system cannot instanta-

neously detect a temperature change, it takes around a second

of printing before an elevated profile can be seen as the IR

thermocouple starts collecting enough IR radiation to deviate

from its previous baseline. This makes the starting points a

similar reading to the substrate, and the end points congruent

to the latter half of the line.

The remaining 40 mm in a strand was divided into four

segments, each a 10 mm section of a strand, due to the lim-

ited field of view of the optical camera. Binarization was

conducted, wherein the strand and background pixels were

given 1 and 0 values, respectively. Image analysis was per-

formed to measure strand continuity and width at the four

imaged regions (Fig. 5). In practice, this start-and-stop error

can be mitigated by printing a sacrificial sample, or through

a pre-deposition pass.

In addition to strand width measurement, 2D laser pro-

filometry was conducted at four points along each strand

and averaged to estimate strand height for all the process-

ing conditions. During strand height measurement, the four

measured points were spaced to align with the midsection of

each imaged region. Subsequently, the data was processed to

classify the strand visually as follows: under-extrusion (dis-

continuous or having variable strand width), ideal extrusion

(nominal strand quality), and over-extrusion (strands much

larger than the 0.6 mm desired width).

Assessment of strand fusion

In addition to printing high-quality single strands, extrusion-

based printing must accurately print along turns and corners.

One frequent occurrence is right-angle printing, which can

accumulate material in the inner corner due to the overlap-

ping deposition area. Further, the PCL/HAp print material

can spread and fuse before solidification, especially when

two right-angle turns are made without sufficient distance

between the turns. To observe the critical gap between turns,

specialized artifacts were made with a gradient of gap spaces

(Fig. 6a). Lines of 20 mm length were printed in these fusion

test samples, followed by a turnaround with a specific inter-

strand gap, and this sequence was repeated throughout the

artifact. This strand fusion test artifact was motivated from

prior work by other researchers in the literature (Habib &

Khoda, 2019; Habib et al., 2018). A dwell time of 25 s was

used upon completion of an artifact before printing the next

artifact to better distinguish between the sensing signatures.
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Fig. 4 Effect of print speed on single strand morphology. Three print

regimes are formed by coupling extrusion temperature, pressure, and

print speed. a Under-extrusion results from excessively high print speed

for the established flow. b As print speed diminishes, under-extrusion

reduces, and the critical strand breakdown point may be observed, where

highly variable strand widths are formed. c Further reduction in print

speed yields nominal or ideal extrusion, producing favorable strand

width. d Inadequate print speed for the established flow yields over-

extrusion, forming larger than desired strand widths

Fig. 5 Strand width assessment

averaging the width between the

first pixel index (Fi) and last

pixel index (Li) along the strand

length for the segment’s average

strand width

Fusion test artifacts were created at two levels of tem-

perature (130 and 140 °C) and two levels of pressure (1.5

and 2.0 bar) with print speeds that produced the three

print regimes assessed in the single strand quality testing

(over-extrusion, ideal extrusion, and under-extrusion). Each

process condition (print regime) combination was printed

across an interstrand gradient of 0.50, 0.75, 1.00, 1.25, 1.50,

1.75, 2.00, and 2.25 mm (Fig. 6a). Each interstrand gap was

printed twice per artifact, and three artifacts were printed for

six total replicates.

In Fig. 6b, images of artifacts deposited at constant tem-

perature and pressure visually show the effect of print speed

on strand fusion. Following printing, the artifact turnarounds

were imaged and characterized. Once imaged, an average

fusion length was constructed at each turnaround with a

100-point average starting at the turnaround center and pro-

gressing towards the turnaround’s edge (see Fig. 7).

The rationale behind the 100-point average was that the

imaging resolution was 204 pixels/mm, and a 100-point/pixel

average amounts to a measurement region of 0.5 mm. If the

fusion length were determined with a larger number of points,

the measurement region for the 0.5 mm interstrand gaps

would include a portion of the adjacent strands, leading to an

incorrect average fusion length value. The turnarounds were

assumed symmetric, such that the measurement region’s

direction from the turnaround center is inconsequential.

Fusion length was determined as the distance between the

artifact’s exterior edge to the opposite edge of the fusion

region at a turnaround section. As shown in Fig. 7, the fusion

lengths within the measurement region were the distances

between the first pixel index (Fi) and last pixel index (Li) of

the largest interconnected region at a point. The fusion ratio

(FR) was then characterized as the ratio between the fusion

length (FL) and design width (WD) of 0.6 mm. Importantly,

using the design width in the fusion ratio calculation stan-

dardized the quality metric across the different interstrand

spacings and fusion severities, providing a benchmark met-

ric to compare results.

123



Journal of Intelligent Manufacturing

Fig. 6 Strand fusion analysis of

print parameter combinations.

a Theoretical fusion test with

interstrand gaps ranging from 0.5

to 2.25 mm, with each interstrand

gap printed twice per artifact.

b Effect of print speed on strand

fusion. Insufficient print speed

for the developed flow yields

significant fusion (left) than

when print speed more closely

matches the flow, yielding

nominal fusion (right)

Fig. 7 Fusion length

quantification process in a

turnaround’s measurement region

through a pixel-wise, 100-point

average of local fusion length
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Fig. 8 Sensor feature extraction process from the raw in-situ sensor

signals for single strand quality testing

Feature extraction from in-situ sensor data

In Sect. "Experimental design", each experimental phase was

detailed regarding the target classes or metrics constructed

from the experimental performance. In this section, fea-

ture extraction from in-situ IR thermocouples is elucidated.

Machine learning used these features as inputs for quality

classification and prediction. The in-situ IR thermocouples

collected data at a 500 Hz sampling rate. However, the ther-

mocouples were not calibrated to produce true temperature

approximations for the print material, as the emissivity of

the material is not compensated. As a result, only the relative

trends in the sensing data are considered.

We note that the thermocouples are factory calibrated

against a blackbody source. However, the difficulty in mea-

suring exact temperature of the deposited material using

non-contact, IR-based instruments due to changes in emis-

sivity remains an open challenge not only in extrusion-based

printing but the larger realm of additive manufacturing (Lane

& Whitenton, 2016).

Single strand quality

Individual strand signatures were isolated from the raw

signal, and the signature was divided into two halves.

Using signal halves considers the difference in performance

between the first half and second half of a strand into account

by allocating the feature values from corresponding regions

in the signal. Figure 8 illustrates the difference in the strand

halves and the associated signals, where the first half’s

smaller strand width is coupled with a shorter signal pro-

file. While quartering the signal was also conducted to assign

corresponding features to each imaging location, this did not

significantly change the results. As a result, dividing the sig-

nal into two halves for a strand was chosen as the feature

extraction methodology.

Each sensor signature half was assessed to produce the

average reading, standard deviation, and area under the curve

(Fig. 8). As the infrared thermocouples receive radiated heat

from the area they are focused on, the more high-temperature

material in that area, the higher the reading (until the entire

area is full of the high-temperature material). As shown in

Fig. 8, the average reading indicates the degree of extru-

sion, with high temperature and pressure cases leading to

high average readings and low temperature–pressure combi-

nations leading to low average readings. In under-extrusion,

strands can be variable in width or discontinuous, leading to

an increased signal standard deviation.

The area under the curve was determined through trape-

zoidal integration, with a step size of 2 ms. The higher the

signal profile (as with high-temperature, high-pressure print-

ing), the larger the area under the curve. Because each print

speed takes a different amount of time to complete the 50 mm

strand, the area under the curve was divided by strand com-

pletion time to standardize to an average area. Six features

were formed following the measurement phase, three fea-

tures from each thermocouple (average reading, standard

deviation, and area under the curve), and the values were

assigned to the appropriate strand half.

Strand fusion assessment

Each artifact signature was isolated from the raw signal and

divided into eight segments, with each segment correspond-

ing to a specific interstrand gap. For a specific interstrand gap,

this signature region contained the data starting from the cen-

ter of a strand, progressed through the two turnarounds, then

ended at the center of a strand. Under this method, only sec-

tions pertaining to the specific turnarounds and interstrand

spaces were observed. The turnaround segments were then

assessed to produce the average reading, standard deviation,

and the area under the signal curve (Fig. 9). In this test-

ing phase, distinct cycling was observed, where the peaks

in the signature corresponding to the printing of the gap

turnarounds. In each signal, 18 peaks were observed, where

the first 16 were from the printing of the fusion sample, and

the final two were the movements to the following sample

location. As a result of the cycling, the signal region of a set

interstrand gap and its replicate could be isolated (see Fig. 9)

and assessed to produce the sensing features (average read-

ing, standard deviation, and the area under the signal curve).

The area under the curve was determined through trapezoidal

integration, with a step size of 2 ms. Six features were formed

following the measurement phase, three features from each

thermocouple (average reading, standard deviation, and area
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Fig. 9 Sensor feature extraction process from the raw in-situ sensor signals for strand fusion testing. (Left) Raw signal from a fusion test print.

(Right) An isolated signal region of the two replicates of a set interstrand space is used for the feature extraction

under the curve), and the values were assigned to the appro-

priate interstrand gap.

Quality prediction usingmachine learning

Six supervised machine learning models were optimized and

deployed to classify or predict performance for each exper-

iment (single strand and strand fusion) based on in-situ IR

thermocouple sensing features. Simple baseline models were

run for comparison purposes to avoid overfitting.

The machine learning applications presented in this work

are divided into four distinct tasks, as shown in Fig. 10. These

tasks are as follows: Task 1—print regime classification,

Task 2—strand width prediction, Task 3—strand height pre-

diction, and Task 4—strand fusion severity prediction. The

coupling of the extrusion flow and print speed is assessed

in the first task, print regime classification. Specifically, the

in-situ sensing features were used to classify a strand into the

over-extruded (larger than desired), under-extruded (smaller

than desired or demonstrating variable deposition), or ideal

extrusion print regime.

In the second and third tasks, strand width and height pre-

diction, respectively, the in-situ sensing features were used

to predict the average width and height of the printed strand.

Finally, in the fourth task, strand fusion prediction, the in-situ

sensing features were used to determine the severity of strand

fusion at the turnaround regions in a artifact. The severity of

strand fusion was assessed as the ratio between the fused

length and the design length of 0.6 mm.

In classification tasks, nonlinear multinomial statistical

logistic regression served as the baseline model for com-

parison, while prediction tasks utilized Ridge regression for

the baseline model. In addition to the baseline statistical

model for a machine learning task, the following models were

used; K-nearest neighbors (KNN), support vector machine

(SVM), Random Forest, and shallow artificial neural net-

work (ANN) with a maximum of three hidden layers. These

models are selected owing to their ease of interpretability,

popularity, and relative simplicity of online implementation

through readily available modules in various programming

languages. In addition, these models can accommodate rel-

atively smaller data sets. Notably, the SVM, KNN, and RF

models do not incorporate as active of a learning aspect as an

ANN. A central hypothesis of this work is that physically

interpretable features in simple machine learning models

would provide sufficient flaw detection fidelity, as opposed

to complex black-box approaches, such as deep learning.

Hyperparameter tuning was conducted with tenfold cross-

validation to determine the optimal settings for each model,

Table 1 describes the hyperparameters for each model. Train-

ing and testing of each machine learning model followed an

80–20 scheme, wherein 80% of the dataset was used for train-

ing, and the trained model was tested on the remaining 20%

of the data. The total amount of data and the datapoint count

allocated to training and testing is shown in Table 2.

In tenfold cross-validation, the training data is divided into

ten approximately equal-sized parcels, then nine parcels are

used for training, while the last is used for validation. Once

the train-validate process is completed, a fold is complete,

and the process repeats until each parcel has been held out

for validation. Validation results were averaged over the ten

folds, and the hyperparameter combinations which yielded

the highest performance were chosen for the final machine

learning models.

Model training was conducted on a laptop computer with

the following specifications: AMD Ryzen 9 5900HX and 2

× 8 GB 3200 MHz DDR4 memory. All machine learning

was conducted using Python software with the Scikit-learn
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Fig. 10 Machine learning tasks for each testing phase: single strand quality and strand fusion assessment

Table 1 Hyperparameters per machine learning model optimized with

tenfold cross-validation

Machine learning approach Tuned hyperparameters

Nonlinear multinomial logistic

regression

No tuning was

conducted

Ridge regression No tuning was

conducted

K-nearest neighbors Number of neighbors,

Distance metric,

Weighting

Support vector machine Regularization, Kernel

type

Random forest Number of estimators,

Maximum tree depth,

Maximum samples

Artificial neural network Activation function,

Regularization term,

Hidden layer sizes

package (Pedregosa et al., 2011). The performance of the

classification machine learning models was the testing F1

score, false positive rate (FPR, Type I error), and false neg-

ative rate (FNR, Type II error). The regression machine

learning models were assessed using the coefficient of deter-

mination (R2) and the root mean squared error (RMSE).

Preemptive feedforward quality control

The machine learning setup described in Sect. "Quality pre-

diction using machine learning" was also applied for preemp-

tive process control. This section assessed process parameter

combinations and the resulting print quality to create more

uniform, high-quality print designs. In Sect. "Process param-

eter-based quality prediction", the machine learning applica-

tion and quality criterion will be discussed, and the chosen

parameter arrangements and experiments will be detailed in

Sect. "Print quality assessment".

The key idea is to use the a priori trained machine learn-

ing model in a feedforward manner—the machine learning

model recommends how much the print speed must be

changed during the process to obtain a uniform strand. This

analysis was done before printing is started. In other words,

instead of printing a strand under fixed conditions, the process

parameter (print speed) is changed dynamically to accommo-

date for strand width variation. Existing empirical models

are static in nature, and are not capable of incorporating such

dynamic process changes.

Process parameter-based quality prediction

Machine learning was applied to three tasks, as shown

in Fig. 11; regime classification, width prediction, and

Table 2 Number of data points in

each experimental task and the

allocations for training and

testing the machine learning

models

Total datapoints Training datapoints Testing datapoints

Task 1 Regime classification 360 288 72

Task 2 Width prediction 360 288 72

Task 3 Height prediction 360 288 72

Task 4 Fusion ratio prediction 270 216 54
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Fig. 11 Machine learning tasks for process parameter-based strand quality predictions

height prediction. As opposed to the features developed

in Sect. "Feature extraction from in-situ sensor data",

machine learning was conducted on the process parameters

directly, namely, material temperature, extrusion pressure,

print speed, and the location in the strand. Significantly, the

location in the strand pertains to the imaging location along

the print direction to determine strand homogeneity along its

length.

Each location represents a 10 mm portion of the strand, and

the first and last 5 mm of each 50 mm strand were omitted

from imaging. As a result, location 1 refers to the section

between 5 and 15 mm printed. At each location in the strand,

the machine learning approach was used to classify the print

regime and predict the strand width and height.

Machine learning performance was optimized as

described in Sect. "Quality prediction using machine learn-

ing" with the hyperparameters and data allocations noted in

Tables 1 and 2, respectively. Once trained and tested, the

best-performing model was selected to provide quality pre-

dictions for preemptive quality control experiments. Print

parameter arrangements were created by pairing an input

print speed (the print speed for the first 25 mm of a strand)

and an amended print speed (used after printing 25 mm).

Input print speeds of 4, 5, 6, 7, 8, and 9 mm/s were fed into

the machine learning systems with constant 130 °C and 2 bar,

and strand quality metrics (regime, width, and height) were

predicted for locations related to the first half of the strand.

Next, a print speed sweep from 4 to 15 mm/s (with 1 mm/s

step size) was conducted to predict the strand quality in the

second strand half. The difference between the strand width

of each half was calculated from the predictions. Print speed

pairs were then constructed such that the strand widths of

each strand half differed by less than 50 µm.

Table 3 Print speed arrangements producing comparable strand widths

in each strand half

Printing at 130 °C and 2 bar

Initial print

speed (mm/s)

Initial width

(mm)

Amended

print speed

(mm/s)

Amended

width (mm)

4 0.59 11 0.6

5 0.58 11 0.6

6 0.53 13 0.5

7 0.53 13 0.5

8 0.53 13 0.5

9 0.46 15 0.5

Print quality assessment

Each initial print speed (4, 5, 6, 7, 8, and 9 mm/s) was paired

with an amended print speed as discussed in Sect. "Process

parameter-based quality prediction". Each pairing shown in

Table 3 was then used to print six replicate 50 mm strands,

imaged, and measured according to Sect. "Single strand qual-

ity". Notably, the first 25 mm of each strand was printed with

the initial print speed before transitioning to the amended

print speed for the remainder of the strand. In addition to the

amended print speed experiments, constant print speed exper-

iments were performed at print speeds of 4, 6, and 8 mm/s.

In addition to single strand testing, the parameter pairings

in Table 3 were extended into fusion testing. As detailed in

Sect. "Assessment of strand fusion" and Fig. 6, six replicates

were printed for each interstrand space (0.5, 0.75, 1.00, 1.25,

1.50, 1.75, 2.00, and 2.25 mm). Further, fusion tests were
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Fig. 12 Example strands at various print speeds and two pressure levels

printed for comparison at constant print speeds of 4, 6, and

8 mm/s.

Results

The following section details the application of machine

learning models for the assessment of various print quality

metrics. Model performance assessment metrics are dis-

cussed in Sect. "Quality prediction using machine learning".

The presented machine learning models were trained with in-

situ sensing features, as detailed in Sect. "Feature extraction

from in-situ sensor data".

Single strand quality

Effects of process parameters on single strand quality

Strands are the fundamental unit upon which all artifact

components depend. Therefore, strand quality prediction is

imperative to address quality issues appropriately to avoid

defective prints. For strand quality assessment, it is necessary

to align with the desired strand width and height to avoid

the accumulation of defects in subsequent layers. Notably,

strand defects are correlated to the degree of localized

deposition, and print speed adjustments result in localized

deposition changes (see Fig. 12). When using excessive print

speeds, localized deposition decreases significantly and can

cause strand breakdown. Conversely, inadequate print speeds

increase localized deposition, producing larger strands. Fur-

ther, if the extrusion itself is changed, as with increased

pressure (increasing extrusion), the compatible print speed

window is shifted following a change in extrusion (see

Fig. 12).

The trends evident in Fig. 12 are further supported by the

experimental strand measurements presented in Fig. 13. In

addition, Fig. 13 illustrates that both the width and height

linearly increase along a strand. This trend is due to the flow

reestablishing and material cooling in the print tip during the

25 s dwell time between strands. Due to the cooling effect,

the material viscosity increases, and less material is extruded

than the material at the desired print temperature. Once the

cooler material is purged from the print tip, the strand steadily

widens until reaching stable extrusion of the print material.

Further, there is an inherent linkage between strand width

and height. As the two qualities grow together, if either qual-

ity is undesirable, the remaining quality is likely undesirable.

For example, an over-extruded strand not only would have a

larger width than the design, but the strand height has the

potential to supersede the design layer height, leading to

defect accumulation in the subsequent layers.

123



Journal of Intelligent Manufacturing

Fig. 13 Effect of pressure on strand width (a, b). At constant temperature and print speed, increasing pressure produces larger strand widths. Effect

of pressure on strand height (bottom). Increasing pressure causes taller strands to develop at constant temperature and print speed

Once the strand measurements and the process parameter

effects were visualized, the IR sensing features were analyzed

for print regime classification. For comparison, example

strands from the major print regimes were chosen, and their

raw IR signals were plotted in Fig. 14. From Fig. 14, there

are distinguished signal profiles, with over-extrusion yield-

ing an elevated signal profile and under-extrusion yielding

the smallest profile. Further, the under-extrusion case yielded

beaded deposition as material delivery through the print tip

was insufficient to consistently bridge the gap between the

needle and substrate. During this under-extrusion, a droplet

would form at the end of the print tip and grow until it touched

the substrate. As a result of the droplet forming on the end

of the print tip, the material was within the field of view of

the thermocouple, but was cooling before deposition, poten-

tially leading to the overall lower thermal profile in Fig. 14.

Notably, each signal displays similar behavior early on, but

the growth rate of the profile is inversely proportional to the

print speed.

To avoid the complex analysis of the raw time-series data,

strand signals were simplified into the average reading, stan-

dard deviation, and area under the curve for the first and

second strand halves. As shown in Fig. 15, the signatures

from a single thermocouple show a significant overlap in the

features of the three print regimes. The overlap of features

between print regimes in Fig. 15 makes it challenging to

determine the print regime solely from the sensing features

alone. This overlap is due to the difference in deposition

between print speeds and the difference in strand width and

height along the strand’s length (see Fig. 13). Specifically,

the first half of a strand had lower feature values (clustered

in the bottom left of Fig. 15). The latter half had higher fea-

ture values (clustered in the top right of Fig. 15), making

it difficult to split up the print regimes solely on the in-situ

sensing feature values.

In addition, the correlations of the in-situ sensing features

to the print regime are weak (Fig. 16). As a result, the sub-

tle trends and differences in the sensing features must be
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Fig. 14 Comparison of printed strands to the raw IR signal. (left)

Strands demonstrating the four distinct behaviors: over-extrusion, ideal

extrusion, under-extrusion, and the transition between ideal and under-

extrusion. (right) The resulting raw IR signal from each strand shown

to the left. As print speed increases, the strands become smaller, and

there is a progressively diminished raw IR signal

captured through machine learning to distinguish between

regimes. Further, prediction tasks to determine strand width

and height are also dependent on encompassing the trends

in the dataset with machine learning. While the correlations

of the in-situ sensing features to the strand width and height

targets (Fig. 16) are relatively larger than the print regime

correlations, the machine learning results should benefit from

the increased correlations. Notably, having high correlations

implies that a feature and output have predictive capacity

towards one another, which can aid the machine learning

results.

Single strand quality prediction results

Intuitively, strands can be either too small/discontinuous

(under-extruded), ideally extruded, or excessively large

(over-extruded). Assuming that stable extrusion is retained,

strand height is proportional to the strand width, making

regimes other than the ideal regime unfavorable for strand

width and height. Therefore, if the print regime can aptly be

classified in-situ, it allows for the determination of whether

the print should be continued. Machine learning was applied

to classify print regime from in-situ sensing features, result-

ing in high performance of both the baseline model (~ 86%

F1 score) and the best performing machine learning models

(~ 91%), as shown in Table 4. In addition to the high F1

scores for regime classification, all models display a higher

FNR than FPR. In application, a lower FPR than FNR leads

to fewer instances of incorrectly halted processes at the cost

of potentially failing to detect an issue. Coupling the trends

Fig. 15 3D plots of print regime versus the IR sensing features from

one thermocouple. In-situ feature values and the associated print regime

highlight the lack of clear boundaries in the print regime clusters

in the F1 scores and the FPR/FNR, misclassifications are rare

and are unlikely to falsely determine that the quality requires

the print to be halted.

While the print regime can provide an intuitive view of the

printing process, the prediction of the strand width and height

provide information about the severity of a divergence from

the design specifications. For the prediction of strand width,

favorable R2 (~ 85%) was achieved for several models (KNN

and Random Forest) along with low RMSE (~ 0.13 mm), as

shown in Table 5. Similarly, the prediction of strand height

produced R2 (> 90%) with low RMSE (~ 0.13 mm) in the

KNN model (see Table 5). In both tasks, the baseline model
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Fig. 16 Correlation matrix on the connection between print quality

response variables (mean width, print regime, and strand height) and the

IR sensing features (AUC area under the curve, AVG average reading,

and STDDEV reading standard deviation). Higher correlations (values

approaching 1 or − 1) indicate a relationship between two variables.

AUC and AVG hold the highest correlations to print regime, mean width,

and strand height, indicating that these features are more influential for

the machine learning tasks

performed significantly worse than the other models, demon-

strating the need for a different approach to the problem.

Importantly, differences in the performance across machine

learning models indicate how well the model assumptions fit

the data.

While the input features for single-strand quality assess-

ments are the same, the output targets are different (print

regime, strand width, and strand height), making the distinc-

tion between the models a result of how well each model’s

assumptions fit the target data. Further, each machine learn-

ing model has limitations. For instance, Artificial Neural

Networks generally need large datasets and more time to

fit the data. However, the leading models perform nearly on

Table 4 Machine learning model performance for single strand quality

classification. Each performance metric per column is the average from

repeating the training and testing procedure 50 times, and one standard

deviation is provided to contextualize F1 Score performance

Machine learning approach Task 1: regime classification

F1 score FPR,

FNR

Multinomial logistic regression 86.3 ± 0.0% 6.3%,

12.4%

K-nearest neighbors (KNN) 91.8 ± 3.3% 4.1%,

8.1%

Support vector machine (SVM) 76.6 ± 3.8% 11.6%,

23.1%

Random forest (RF) 90.7 ± 4.6% 4.6%,

9.2%

Artificial neural network

(ANN)

79.7 ± 4.7% 10.1%,

19.9%

The bolded text highlights the best performing machine learning model

for a task

par across the three tasks, demonstrating that a KNN or Ran-

dom Forest could be applied to all tasks reliably. Given these

results, the strand characteristics can be aptly predicted, as

the best models can account for most of the variation in the

dataset. Considering the regime, width, and height determi-

nation results, there is significant promise in incorporating

in-situ sensing and machine learning into a process control

strategy.

Strand fusion assessment

Process parameter effects on strand fusion

The interaction between strands at turnaround regions is a

pertinent indicator of the quality of a single layer. If the inter-

strand gap or print speed is insufficient, strands interact at the

turnarounds, propagating the fusion of the adjacent strands

(see Fig. 17). In extreme cases, strand fusion can occur along

Table 5 Machine learning model

performance for single strand

quality prediction

Machine learning approach Task 2: width prediction Task 3: height prediction

R2 value RMSE R2 value RMSE

Ridge regression 66.1 ± 6.5% 0.20 ± 0.02 54.0 ± 7.2% 0.10 ± 0.01

K-nearest neighbors (knn) 83.9 ± 2.8% 0.14 ± 0.01 90.5 ± 4.1% 0.04 ± 0.01

Support vector machine (SVM) 79.6 ± 3.8% 0.15 ± 0.01 69.3 ± 5.4% 0.08 ± 0.00

Random forest (RF) 84.0 ± 4.8% 0.13 ± 0.01 86.1 ± 5.9% 0.05 ± 0.01

Artificial neural network (ANN) 68.3 ± 7.6% 0.19 ± 0.02 55.2 ± 16.0% 0.10 ± 0.02

The bolded text highlights the best performing machine learning model for a task

Each performance metric per column is the average from repeating the training and testing procedure 50

times, and one standard deviation is provided to contextualize R2 and RMSE performance
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Fig. 17 Example fusion at various print speeds and two pressure levels

Fig. 18 Effect of print parameters on fusion ratio. Print speeds yielding over-extrusion led to severe fusion across all turnaround interstrand gap

sizes. Increasing print speed resulted in the reduction of strand fusion
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Fig. 19 Correlation matrix on the connection between print fusion ratio

(column 1) and the IR sensing features (AUC area under the curve, AVG

average reading, and STDDEV reading standard deviation). Higher cor-

relations (values approaching 1 or − 1) indicate a relationship between

two variables. AUC and AVG hold the highest correlations to print

regime, mean width, and strand height, indicating that these features

are more influential for the machine learning tasks

the entire strand length. Occasionally, the occlusion of inten-

tional gaps for nutrient exchange can occur, diminishing the

biological functionality of the artifact. As a result, strand

fusion mitigation is vital to minimize the risk of fabricating

an undesirable artifact. The experimental data (see Fig. 18)

showed definite trends in the fusion ratio across pressures,

print speeds, and resulting print regimes. As previously dis-

cussed, inadequate print speeds in the over-extrusion regime

led to higher fusion ratios across the tested interstrand gaps.

Further, print speeds yielding ideal and under-extrusion led

to relatively lower fusion ratios. Therefore, increasing print

speed can minimize the fusion ratio, but print speeds resulting

in the under-extrusion regime should be avoided to prevent

strand quality defects.

In the analysis of correlations between in-situ sensing fea-

tures and strand fusion ratio (Fig. 19), strong correlations

were seen in the AUC and mean reading features (> 0.8). Hav-

ing high correlations implies that a feature and output have

predictive capacity towards one another, which can aid the

machine learning results. Because of these high correlations,

it is vital to explore baseline models like Ridge regression

using linear approaches to determine if moving to nonlinear

approaches is truly necessary.

Strand fusion prediction results

Machine learning models were used to predict the fusion

ratio at various interstrand gaps using features extracted from

Table 6 Machine learning model performance for strand fusion predic-

tion

Machine learning approach Fusion ratio prediction

R2 value RMSE

Ridge regression 82.5 ± 3.7% 2.02 ± 0.24

K-nearest neighbors (KNN) 86.0 ± 3.6% 1.80 ± 0.21

Support vector machine (SVM) 88.6 ± 2.2% 1.75 ± 0.17

Random forest (RF) 88.1 ± 2.3% 1.67 ± 0.20

Artificial neural network (ANN) 88.0 ± 2.9% 1.69 ± 0.23

Each performance metric per column is the average from repeating the

training and testing procedure 50 times, and one standard deviation is

provided to contextualize R2 and RMSE performance

the IR thermocouple. The final machine learning results are

shown in Table 6. During testing, severe fusion levels were

present at the small interstrand gaps, so the interstrand gap

range used for machine learning was limited to between 1.25

and 2.25 mm. Significantly, all the tested machine learning

models tested similarly at an R2 higher than 85%. In addition,

each machine learning model demonstrated a reduction in the

RMSE compared to the baseline Ridge Regression model.

Given these results, strand fusion can be aptly predicted, as

the best models can account for > 85% of the variation in the

dataset.

We note that in the case of strand fusion, the performance

of the ridge regression classifier is comparable to other tech-

niques, indicating the relative simplicity of strand fusion

prediction compared to the previous three tasks. Due to this

simplicity, models such as ANN that displayed poor perfor-

mance in previous tasks due to the sparse nature of the data,

perform at par with the preferred KNN and SVM models.

Preemptive process control

Strand quality control

In Sect. "Effects of process parameters on single strand qual-

ity", a strand widening effect was shown in Fig. 12 and

quantified in Fig. 13, where strands grew broader and taller

along the build direction. To overcome the drift in deposit

characteristics, machine learning-based preemptive process

control (feedforward control) was explored to correct the lack

of strand homogeneity. The key idea was to alter the print

speed by deploying machine learning on the dataset produced

in the strand quality experiments described in Sect. "Sin-

gle strand quality". In other words, the print speed change

was determined before the strand was printed based on rec-

ommendations from the machine learning model. The print

speed was selected as the control variable due to its short

response time for adjustment compared to extrusion pressure,
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Fig. 20 Printing of strands at constant (top two rows) and amended print

speeds (bottom two rows). In the top two rows, the strand is deposited

at a constant speed of 8 mm/s. In amended speed samples, the initial

print speed was changed to 13 mm/sec once 25 mm had been printed.

This change in strand speed significantly mitigated the widening effect

which is adjusted pneumatically and is prone to activation

delay-related errors due to an inherent lag.

Unlike the previous machine learning applications, only

the process parameters were used to assess the process effects

on strand quality at two locations in the strand, and in-situ

sensor data was not used. In this phase, the machine learning

models predicted the deposition regime, strand width, and

height with statistical fidelity exceeding 90%.

An example of applying the print speed adjustments is

shown in Fig. 20. In the top two rows of Fig. 20, single

strands were printed at a constant 8 mm/sec speed. In the

bottom two rows of Fig. 20, the strand speed was increased to

13 mm/sec after 25 mm of deposition based on insights from

a trained machine learning model. This preemptive strategy

of increasing the deposition speed significantly mitigated the

widening effect. The transition region of print speed amended

strands displayed a node due to the contrast between the

widening initial strand half and the adjusted strand width

following the transition. This sharp transition region is due

to the abrupt change from the initial speed to the adapted

speed and could be smoothed with a more gradual print speed

change.

Continuing with this analysis, the approach was tested

for various levels of constant print speed, namely, 4, 6, and

8 mm/s, i.e., the initial speeds in the print speed correc-

tion case. Homogeneity was assessed in the printed strands

as the average width difference between the strand halves.

As shown in Fig. 21, each constant print speed condition

resulted in a statistically significant difference in the strand

homogeneity. For example, when the print speed is main-

tained constant at 4 mm/s, the difference in width between

the two strand halves exceeds 0.40 mm. The feedforward

control strategy reduces the difference in strand width to less

than 0.05 mm.

Fig. 21 Average strand width differences (± 1 standard deviation)

between strand halves for strands printed with constant print speed

and printed with a speed change to amend strand widening. Statisti-

cal analysis was conducted at a 95% confidence level, and significant

differences are distinguished with an asterisk

Further, the consistency of the amendment quality was

tested with the print speed amendments to the 4, 5, 6, 7, 8, and

9 mm/s initial speeds, as shown in Fig. 22. Print speed amend-

ments were initially chosen to produce strand halves with a

width difference of less than 50 µm. Figure 22 demonstrates

the fulfillment of this < 50 µm width difference criterion at

each initial print speed subject to the preemptive quality con-

trol scheme. Therefore, preemptive process control has the

potential to improve strand quality significantly.

Strand fusion control

Following strand quality control testing, fusion testing sam-

ples underwent the same print speed amendments (Table 3).
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Fig. 22 Average strand width difference (± 1 standard deviation) across

all initial print speed groups subject to print speed amendments

As previously discussed, strand fusion occurs if the inter-

strand gap or print speed is insufficient, causing strands to

interact at the turnarounds, and propagating the fusion of the

adjacent strands. Further, at constant temperature and pres-

sure, localized deposition decreases if print speed increases,

subsequently decreasing strand fusion in response. The con-

stant print speed examples from Fig. 23 illustrate the effect

of print speed on strand fusion, with the 8 mm/s interstrand

gaps (Fig. 23c) demonstrating lower strand fusion ratios than

the 4 mm/s case (Fig. 23a).

In the preemptive control experiments, a print speed

amendment was administered after 25 mm were printed to

maintain a more uniform strand width. Significantly, the

amendments were not aimed at directly diminishing strand

fusion but were purely to improve strand width homogeneity.

In the 4 mm/s trials shown in Fig. 23a, print speed was

adjusted to maintain the width of the 4 mm/s strands, which

had evident over-extrusion. As a result, the adapted print

Fig. 23 Average fusion ratio measurement per interstrand spacing fol-

lowing printing with constant print speed versus adapted print speed.

a Printing at a constant 4 mm/s and 4 mm/s adapted to 11 mm/s after

25 mm of printing. b Printing at a constant 6 mm/s and 6 mm/s adapted

to 13 mm/s after 25 mm of printing. c Printing at a constant 8 mm/s and

8 mm/s adapted to 13 mm/s after 25 mm of printing. Results are shown

as an average ± 1 standard deviation. Statistical analysis was conducted

at a 95% confidence level, and significant differences are distinguished

with an asterisk
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Fig. 24 Average fusion ratio measurement per inter-strand spacing fol-

lowing printing with an initial print speed followed by an adapted print

speed after 25 mm were printed at 130 °C and 2 bar. Each test is

shown in an initial print speed-adapted print speed format. For exam-

ple, 4–11 mm/s indicates an initial print speed of 4 mm/s adapted to

11 mm/s after the transition point. Results are shown as an average ±

1 standard deviation

speed also featured over-extrusion, leading to large fusion

ratios when printing small interstrand gaps. However, the

adapted 4 mm/s print speed case yielded a statistically sig-

nificant difference in fusion ratio at the largest interstrand

gap of 2.25 mm.

The 6 mm/s trials (Fig. 23b) displayed ideal extrusion

prior to the strand widening effect. Importantly, amending

the print speed for a strand in the ideal extrusion regime

yielded statistically significant decreases in the fusion ratio

of interstrand gaps greater than 1.25 mm. Conversely, as the

initial print speed was further increased to 8 mm/s (Fig. 23c),

the strand width narrowed and became closer to the under-

extrusion regime, reducing strand fusion both in the constant

and amended print speed conditions. While the 8 mm/s speed

yielded smaller strands and lesser strand fusion, the adapted

print speed condition still reduced strand fusion in interstrand

gaps measuring and surpassing 1.75 mm.

Additional testing was conducted to determine the reliabil-

ity of the print speed amendment for strand fusion reduction.

To improve the strand homogeneity, print speed amendments

were made across the initial print speeds of 4, 5, 6, 7, 8, and

9 mm/s. The results of this testing are reported in Fig. 24,

where the strand fusion ratio decreases with higher adapted

print speeds. Further, the strand fusion ratios achieved at

larger interstrand gaps (≥ 1.75 mm) are more consistent,

as evident by the lower standard deviations.

The results of both Figs. 23 and 24 signify that strand

fusion can be reduced by controlling strand homogeneity.

Further, this result remains true across a range of initial print

speeds, including speeds that were not present in the initial

training dataset (namely 4, 5, 7, and 9 mm/s). Therefore, this

preemptive quality control method demonstrates a promising

capability to improve part quality in both strand width at the

1D level and strand fusion at the 2D layer-level.

Conclusion and future work

This work investigated in-situ sensing and feedforward

process control for quality assurance in extrusion-based bio-

logical additive manufacturing (Bio-AM). The relationships

between printing process parameters, in-situ sensing fea-

tures, and the resulting print quality were assessed. Critically,

machine learning was deployed on the sensing features to

determine four print quality indicators: print regime, strand

width, strand height, and fusion ratio. By using solely in-situ

sensing features, favorable performance (F1 and R2 scores ≥

85%) was achieved from the best performing machine learn-

ing models.

Notably, the implemented defect detection machine learn-

ing models were agnostic to the input print parameters

and were not reliant on an in-situ imaging system. This

approach has two main advantages: (1) monitoring without

process parameters is more focused on the developed extru-

sion degree, and (2) the lack of in-situ imaging removes the

time-consuming imaging process between layers.

This project focused solely on one material composi-

tion and print tip diameter, but through additional testing,

these models could be established for a wide range of

print setups. Using machine learning, the required dataset

for generalizing across a range of possibilities is smaller

than the approach of purely applying process optimization

approaches, as machine learning can approximate the per-

formance of combinations in between known training data.

In addition to sensing-based defect detection, a preliminary

form of preemptive process control was displayed to correct

the strand widening effect seen during testing.

Specific conclusions from this work were as follows:

• In-situ sensing was displayed with sufficient capacity for

print quality monitoring during the printing process.

• Trained simple machine learning models for quality detec-

tion had F1-score and R2 approaching 85% in classification

and regression problem performance.

• Machine learning was demonstrated as a feedforward

process control of strand width homogeneity, leading to

a statistically significant improvement in strand width

homogeneity, to < 50 µm difference between the first and

second half of a strand.

In closure, we acknowledge the need for additional

biomedical studies to validate the effect of minor variation in

strand width and resolution amounting to tens of microns on
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functional properties, such as stiffness, media diffusion and

cell proliferation in Bio-AM scaffolds. However, in addition

to the biological functionality, it is imperative that printed

scaffolds have sufficient geometric accuracy to avoid prob-

lems with a scaffold-transplant site dimensionality mismatch,

or improper mechanical properties for the application. In our

previous work, we provided insights into the effect of scaffold

flaws on mechanical properties, but the relationship to bio-

logical functionality remains to be investigated (Sam Gerdes

et al., 2020).

We also note the relative fledgling stage of process mon-

itoring and control in Bio-AM relative to metal additive

manufacturing, where process prognosis has matured to

large-scale practical parts implemented in the aerospace and

defense industries. This study takes the crucial first step

towards scaling process monitoring and control in the Bio-

AM arena through rudimentary test artifacts.

In our future work we will endeavor to assess the fidelity of

the proposed sensing modalities with regard to complex 3D

structures, as well as devising enhanced non-contact sensing

modalities, such as active ultrasound and acoustic emission.
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