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Abstract

The goal of this work is the flaw-free, industrial-scale production of biological additive manufacturing of tissue constructs
(Bio-AM). In pursuit of this goal, the objectives of this work in the context of extrusion-based Bio-AM of bone tissue
constructs are twofold: (1) detect flaw formation using data from in-situ infrared thermocouple sensors; and (2) prevent flaw
formation through preemptive process control. In realizing the first objective, data signatures acquired from in-situ sensors
were analyzed using several machine learning approaches to ascertain critical quality metrics, such as print regime, strand
width, strand height, and strand fusion severity. These quality metrics are intended to capture the process state at the basic
1D strand-level to the 2D layer-level. For this purpose, machine learning models were trained to classify and predict flaw
formation. These models predicted print quality features with accuracy nearing 90%. In connection with the second objective,
the previously trained machine learning models were used to preempt flaw formation by changing the process parameters (print
velocity) during deposition—a form of feedforward control. With the feedforward process control, strand width heterogeneity
was statistically significantly reduced, reducing the strand width difference between strand halves to less than 50 pm. Using
this integrated process monitoring, detection, and control approach, we demonstrate consistent, repeatable production of
Bio-AM constructs.

Keywords 3D printing - Bone tissue - Poly(caprolactone) (PCL)-hydroxyapatite (HAp) composites - In-situ sensing

Introduction
Background
An essential clinical practice for treating damaged, diseased,

or lost tissues is through biological grafts (Samandari et al.,
2021). These grafts fall under two classes: (1) grafts from
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elsewhere in the patient’s own body (autograft), and (2)
grafts from a donor to the patient (allograft) (Mostafavi
et al., 2021a). Autografts are limited in availability and can
treat tissues such as skin, tendon, muscle, and bone. Fur-
ther, autografts can cause donor-site morbidity (Murphy &
O’Brien, 2010). Comparatively, allografts have a broader
scope, including whole organ transplants. However, allo-
grafts are still scarce, prone to rejection by a patient’s immune
system, and can transmit diseases (Murphy & O’Brien,
2010). A new area of research focusing on the direct pro-
duction of tissues and organs for transplantation, known as
tissue engineering, has been developed in response to these
issues.

One emerging platform for tissue engineering, biologi-
cal additive manufacturing (Bio-AM), has garnered atten-
tion to fabricate complex and biomimetic architectures.
Bio-AM comprises five main production techniques: stere-
olithography, inkjet, laser-assisted, melt electro-writing, and
extrusion-based printing (Heinrich et al., 2019; Samuel
Gerdes et al., 2021). These print modalities are described
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Fig. 1 Overview of the ( a)
extrusion-based biological
additive manufacturing process.
a Schematic of the material
deposition method in pneumatic
extrusion-based biological
additive manufacturing. b1, b2
Demonstrations of two defect
types in the extrusion-based
process, strand quality and strand
fusion defects
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and explored in depth in the Bio-AM literature, detailing
their inherent benefits and drawbacks (Heinrich et al., 2019;
Ramesh et al., 2021). Of these print modalities, extrusion-
based printing (Fig. 1a) is the most widely adopted form
of Bio-AM due to its compatibility with an extensive range
of material viscosities and its simplicity compared to other
printing modalities (Derakhshanfar et al., 2018; Heinrich
et al., 2019; Holzl et al., 2016; Ribeiro et al., 2017). While
extrusion-based (bio)printing allows the rapid fabrication of
scaffolds with clinically relevant dimensions, it suffers from
limited resolution and print defects. Therefore, in this study,
we focus on the extrusion-based Bio-AM. We note that pneu-
matic extrusion is one of the widely used embodiments of
extrusion Bio-AM, the other two being screw- and piston-
based.

The clinical translation of extrusion-printed Bio-AM
necessitates a defect-free, predictable, reproducible fabrica-
tion process. Several defect types have been discussed in the
literature: undesirable strand diameter, non-homogeneous
strands, strand fusion, and strand collapse (Habib et al., 2018;
Habib & Khoda, 2019; Sam Gerdes et al., 2020; Samuel
Gerdes et al., 2021; Soltan et al., 2019; Webb & Doyle,
2017). As these defects pertain typically to a single layer, it is
imperative to reduce their occurrence. Otherwise, errors will
propagate throughout the scaffold, leading to other defects
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(Sam Gerdes et al., 2020). This work focuses explicitly
on undesirable strand width, non-homogenous strands, and
strand fusion flaws created during the extrusion-based Bio-
AM process, as exemplified in Fig. 1bl, b2. Additionally,
strand fusion defects and collapse may also result from inter-
actions between adjoining layers.

Undesirable strand width (Fig. 1bl), as the name entails,
concerns disparity between the design and realized strands
due to an improper coupling of the material flow rate and the
print speed (Sam Gerdes et al., 2020). Print speed is inversely
proportional to the localized deposition, the volume of mate-
rial deposited at a given position for a set flow rate. As aresult,
low print speeds yield overly large strands (over-extrusion),
and high print speeds yield small strands (under-extrusion if
strands have discontinuity or a beaded appearance). Within
the under-extrusion regime, non-homogeneous strands may
be formed, as a uniform flow between the print tip and
substrate cannot be maintained. Instead, periodic material
deposition occurs when enough material collects at the tip
and touches the substrate, creating sinusoidal-like strands.

Strand fusion (Fig. 1b2) pertains to coalescing adjacent
strands, often propagating at turnaround sections through
capillary forces or material spread due to gravity (Ribeiro
et al., 2017). Strand fusion is inversely proportional to the
distance between adjacent strands. As a result, over-extrusion
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can increase the chance of strand fusion. We note that dis-
tance between adjacent strands is one of many factors which
impact strand fusion, and it is important to consider the com-
plex interaction of interstrand distance with needle diameter,
substrate temperatures and deposition speed.

Print defects (flaws) not only affect the geometrical accu-
racy of a scaffold but also have the potential to alter the
mechanical performance (Sam Gerdes et al., 2020), as well
as the biological response (Samuel Gerdes et al., 2021). Intu-
itively, changes in scaffold geometry alter the cross-sectional
areas for applied loads, which can alter the mechanical prop-
erties of the scaffold, such as the compressive modulus (Sam
Gerdes et al., 2020). Further, flaws can alter the intentional
pore spaces, impacting the biological response. For exam-
ple, pore size in musculoskeletal tissue engineering and
its effects on cellular response are documented for pores
ranging from 20 to 1500 pm (Haglund et al., 2019; Hul-
bert et al., 1970; Jenkins & Little, 2019; Lee et al., 2004,
Mostafavi et al., 2021b; Nehrer et al., 1997; Williams et al.,
2005). Specifically, small pores (75—135 wm) have increased
cell adhesion and osteochondral differentiation, while large
pores (> 300 wm) are required for vascularization and bone
ingrowth (Chen et al., 2020; Hulbert et al., 1970; Jenkins
& Little, 2019; Klawitter et al., 1976; Kuboki et al., 2001;
Murphy & O’Brien, 2010; Roosa et al., 2010; Tsuruga et al.,
1997). Because of the risk print defects pose to the func-
tionality of printed tissue engineering scaffolds, it is vital to
negate defect occurrence.

Objective, prior work, and novelty

In response to the need for tissue engineering scaffolds,
the goal of this work is to ensure the flaw-free produc-
tion of scaffolds in extrusion-based Bio-AM. Towards this
goal, one objective of this work is to detect flaw formation
in Bio-AM constructs as they develop, using data acquired
from in-situ sensors. To that end, this work implements
IR thermocouple-based sensing to gather in-situ data about
the printing process. Machine learning approaches were
subsequently implemented to analyze the sensor data and
ultimately predict strand quality and the severity of strand
fusion.

The second objective toward the goal of flaw-free produc-
tion is to prevent defects before they occur in the scaffold.
Towards this objective, preemptive process control was
deployed to determine aspects of part quality prior to printing
and find corrective print parameter changes to improve print
homogeneity. While the aim to control defect occurrence in
extrusion-based Bio-AM is not novel, this method is a signif-
icantly different approach than those presented in the current
literature, detailed in the remainder of this section.

Two distinct pathways have developed in the literature
to overcome defect occurrence in extrusion-based printing:

process optimization and process monitoring. In the former,
the goal is to improve the understanding of causal pro-
cess parameter-flaw relationships, ultimately leading to an
optimized print parameter arrangement for a material and
processing condition (Armstrong et al., 2021). In the latter,
an effort is taken to capture the essential features indicative
of the print quality in real-time, allowing for the alteration or
cessation of the printing process in response.

Process optimization has been applied to the primary
defect types such as undesirable strand diameter, strand
non-homogeneity, strand fusion, strand collapse, and pore
geometry variability, and descriptions of the various opti-
mization strategies for different defects are presented in our
prior work (Samuel Gerdes et al., 2021). One example is
the mitigation of undesirable strand width. To optimize the
strand width, print parameter tests are conducted across pos-
sible print speeds or pressures, and the resulting strand width
is observed (Cheng et al., 2017; Habib et al., 2018; Habib &
Khoda, 2019; He et al., 2016; Sam Gerdes et al., 2020; Soltan
etal., 2019; Thattaruparambil Raveendran et al., 2019; Webb
& Doyle, 2017; Zehnder et al., 2015).

While process optimization can improve print quality, this
build-and-test approach has significant limitations (Cheng
et al., 2017; Habib et al., 2018; Habib & Khoda, 2019; He
etal.,2016; Sam Gerdes et al., 2020; Soltan et al., 2019; That-
taruparambil Raveendran et al., 2019; Webb & Doyle, 2017;
Zehnder et al., 2015). First, process optimization assumes
that print parameters are prevailing influencers of part quality.
Additional considerations such as the effect of rapid accel-
eration in the bed and nozzle motion or the contribution of
the construct geometry to defect formation are neglected.
Second, process optimization requires thorough testing of
the print parameters and material compositions to achieve an
optimal result. Due to this experimental burden, exhaustive
process optimization testing is not compatible with the scope
of all projects. While this burden could be eased by referring
to the literature for a specific material, print parameters from
one printer may not yield the same results on another printer.

Third, empirical process optimization is not scalable. In
other words, optimizing strand width, strand fusion, strand
collapse, and pore geometry are multi-scale challenges. As
a result, an optimal parameter arrangement in one scale may
not transfer to another. Moreover, process optimization does
not offer a means of actual process control. Under tradi-
tional process optimization, measurements are conducted
post-print, making it only possible to assess print quality
after the print has concluded, potentially wasting time and
resources (Cheng et al., 2017; Habib et al., 2018; Habib &
Khoda, 2019; He et al., 2016; Sam Gerdes et al., 2020; Soltan
etal., 2019; Thattaruparambil Raveendran et al., 2019; Webb
& Doyle, 2017; Zehnder et al., 2015).

Due to the limitations of build-and-test process opti-
mization, growing attention has been placed on process
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monitoring to assess and control flaws during the printing
process. One means of process monitoring is topology mea-
surement after each layer is deposited (Armstrong et al.,
2019, 2020, 2021; Yang et al., 2021). In recent work by
Armstrong et al. (Armstrong et al., 2019, 2020, 2021), topol-
ogy measurement was conducted with 3D laser scanning.
Corrections were made to the print path and print param-
eters to reduce 2D errors in strand placement, width, and
turnaround quality (Armstrong et al., 2019, 2020, 2021).
However, the alterations in the print path and parameters
had to be made iteratively; several print trials were con-
ducted, and alterations were made between each print to lead
to a more optimized print. While this process monitoring
approach improves print quality, it has drawbacks. Primarily,
the approach requires several trials to converge on acceptable
print quality. Secondly, the converged solution is unique to
the material composition, and design architecture, requiring
more tuning should the design be changed later.

In contrast, Yang et al., 2021 have developed a monitor-
ing system based on optical coherence tomography (OCT). In
OCT, light is directed at the scaffold, reflecting light from the
subsurface level, which is then collected, and the optical path
length allows for 3D modeling of the scaffold. In contrast to
laser scanning, which does not penetrate to the internal scaf-
fold structure, OCT can acquire subsurface information. With
OCT, Yang et al. demonstrated the characterization of layer
thickness, strand width, and pore size (Yang et al., 2021).

In addition to topology-based defect detection, there is
an emerging trend in applying machine learning for pro-
cess monitoring in Bio-AM (Yu & Jiang, 2020). The use of
machine learning in other additive manufacturing processes
is documented extensively and can provide new avenues
of advancement for extrusion-based Bio-AM (Yu & Jiang,
2020). For instance, the work of Scime & Beuth, 2019 in laser
powder bed fusion showed the use of unsupervised machine
learning on meltpool images to determine meltpool quality.
In the work of Gaikwad et al., 2020, a hybrid in-situ sens-
ing system for laser powder bed fusion was formed with a
high-speed video camera and a pyrometer. With the use of in-
situ sensing-derived features, Gaikwad et al., 2020 enabled
the assessment of single strand quality with machine learn-
ing. In the recent work of Jin et al., 2021, similar monitoring
principles were implemented in Bio-AM; layer-wise imag-
ing was coupled with deep learning to classify three types of
anomalies in patches of the layer image.

While still a new and developing research path, it is valu-
able to note that process monitoring in Bio-AM is currently
limited to the layer level. With topology scanning and layer
imaging, all process sensing is conducted after a layer is com-
pleted, neglecting the possibility of defect detection during
a layer. As a result, there is a substantial deficit in the sens-
ing of defects during layer printing through the monitoring
of the extrusion and the most critical part of extrusion-based
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printing, strand formation. Therefore, this research aims to
develop a monitoring system capable of capturing the qual-
ity of extrusion-based Bio-AM scaffolds as they are printed
instead of after a layer (Fig. 2). In addition, this research
presents a preliminary means of feedforward process control
featuring the adaptation of print speed to combat print defect
occurrence (Fig. 2).

This paper is organized in the following manner.
Sect. "Methodology" details the experimental methodology
of the print materials and sensing setup (Sect. "Experimen-
tal setup"), specific experiments at strand and layer levels
(Sect. "Experimental design"), in-situ measurement proce-
dures for each experiment (Sect. "Feature extraction from
in-situ sensor data"), and the basis for machine learning
for predicting print quality from sensor data (Sect. "Qual-
ity prediction using machine learning"). In Sect. "Results",
the effects of process parameters on strand and fusion qual-
ity, followed by the results of applying machine learning
to predict print quality targets. Sect. "Results" also dives
into feedforward process control of strand homogeneity in
Sect. "Preemptive process control”. Finally, Sect. "Conclu-
sions and future work" summarizes the main conclusions
from this work.

Methodology
Experimental setup

All experiments were conducted on an Allevi 3 extrusion-
based 3D printer. The printer was supplemented with a
heterogeneous sensor array to produce in-situ data during
the printing process. As shown in Fig. 3, the in-situ sensing
array consisted of two infrared (IR) thermocouples focused
on the deposition pool (see Fig. 3a, b) and a layer optical
imaging camera (see Fig. 3c). Layer imaging was conducted
using a Blackfly S (BFS-U3-63S4M-C) camera with a tele-
centric lens (0.50X, 1/1.8" SilverTL) from Edmund Optics
(NJ, USA). The IR thermocouples were selected based on our
previous work in extrusion printing with non-biomaterials,
where thermocouples were found to be adept at capturing
nozzle clogs, deposition failures, and surface temperature
(Rao et al., 2015; Roy et al., 2019).

The camera and lens produce an imaging region of approx-
imately 14 mm x 10 mm, and the telecentric lens produces an
image with a uniform scale throughout. The IR thermocou-
ples (CSmicro LT22H) were purchased from Optris Infrared
Sensing (NH, USA), with confocal lenses to focus the mon-
itoring area further. The IR thermocouple sampling rate was
set to 500 Hz for all experiments. Apart from the onboard
sensing array, a 2D laser profiler (LJ-V7200) from Keyence
(IL, USA) was used to measure the strand height post-print
in single strand quality testing.
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Fig. 2 Workflow schematics of both approaches presented in this work.
(top row) In-situ sensing was coupled with machine learning for print
quality prediction of the printing process. (bottom row) Feedforward
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Fig.3 Additive manufacturing of PCL/HAp using in-situ sensing of
the geometrical outcome. a Side view of infrared thermocouple setup
on the bioprinter. b Underside view of the infrared thermocouple

We note that several other process phenomena influence
the print quality, such as bulk part temperature, heat flux,
instantaneous viscosity, flow rate/behavior, local shear stress
in the material, among others. However, these aspects are
difficult, if not impossible, to measure in extrusion-based
printing due to the limited access to sense these phenomena.
This work takes the first critical step towards assessing the
fidelity of the temperature and imaging measurements for
enhanced process monitoring applications.

In closing this section, we note that, in this work, data from
printing of the first layer is primarily used. Accordingly, there
are potential concerns that the IR thermocouple data would

Amended Print Printing Process

Design
Print Speed

Adjustment

process control to determine print speed amendments to reduce strand
width heterogeneity

Layer Imaging Camera

placement. ¢ Front view of the bioprinter outfitted with an in-situ moni-
toring system comprised of layer imaging and infrared thermal sensing

be confounded by the temperature of the proceeding layers
when used for a complex multi-layer part. However, since the
IR sensors are focused over a narrow 0.6 mm diameter spot
size (in line with our ideal strand width), producing a field-
of-view of — 0.28 mm? aimed near the extruder needle tip,
the strands in the layer below would have a minimal effect.

Experimental design
Polycaprolactone ~ (PCL,  molecular  weight =

14,000 Da)/hydroxyapatite (HAp, 2.5 wm powder) print
materials were purchased from Sigma-Aldrich (MO, USA).
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PCL and HAp were combined to form a 70/30 composition
by weight (%PCL/%HAp w/w), and the composition under-
went cryomilling to produce a more homogenous mixture
and powder size. In our previous study, this PCL/HAp
ratio proved compatible with human mesenchymal stem
cells (hMSCs) and promoted bone development (material
osteoconductivity) (Sam Gerdes et al., 2020). While the
80/20 and 70/30 PCL/HAp compositions showed compara-
ble biological results (Sam Gerdes et al., 2020), the 70/30
composition provided a more challenging print material due
to its increased viscosity. As a result, the printability issues
must be addressed with quality assurance measures.
Experiments were divided into two phases: (1) single
strand quality and (2) strand fusion assessment. Before
printing, 70/30 PCL/HAp cryomilled powder was loaded
into a stainless-steel syringe barrel and melted at a process
condition-dependent temperature (130 or 140 °C) and held at
temperature for 45 min prior to printing. The print material
was pneumatically extruded through a 0.6 mm inner diameter
stainless steel needle with straight walls (10 mm in length).
For all experiments, set parameters for print bed temperature
(20 °C), needle tip to substrate distance (0.4 mm), and pre-
and post-flow durations (0 s for each) were used. Following
layer completion, in-situ imaging of the layer was conducted.

Single strand quality

Extrusion-based printing is primarily governed by three inter-
linked process parameters: pressure, temperature, and print
speed. For instance, pressure and temperature directly control
material throughput, with temperature impacting material
viscosity (resistance to flow) and pressure instigating mate-
rial flow. Further, print speed governs the localized deposition
of print material, as shown in Fig. 4.

If print speed is relatively higher than the material flow,
under-extrusion occurs, and variable or discontinuous strands
are observed (Fig. 4a, b). Balancing the print speed with
the material flow produces ideal extrusion and homogenous
strands analogous to the needle diameter (Fig. 4c). Finally,
insufficient print speeds for the material flow yield over-
extrusion, forming larger than desired strands (Fig. 4d). In
summary, improper print parameter combinations lead to
unfavorable strand quality, where strands significantly devi-
ate from the intended design.

To assess print parameter effects on strand quality, exper-
iments were conducted across twenty temperature—pressure-
print speed combinations consisting of two temperatures
(130 and 140 °C), two pressures (1.5 and 2.0 bar), and five
print speeds (6, 8, 10, 12, and 14 mm/s). Six replicate 50 mm
strands were formed and imaged at each processing con-
dition. Upon completion of a strand, a dwell time of 25 s
was used before printing the next strand to better distinguish
between the sensing signatures.
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The first 5 mm of each strand was omitted, because with-
out initializing the flow prior to movement (pre-flow), this
region will likely not achieve complete deposition along its
length. Additionally, the final 5 mm of each strand was omit-
ted to avoid considering the rounded strand end in width
determination. While neglecting the starting and stopping
regions prevents the ability to detect flaws pertaining to those
regions, the infrared thermocouple system cannot instanta-
neously detect a temperature change, it takes around a second
of printing before an elevated profile can be seen as the IR
thermocouple starts collecting enough IR radiation to deviate
from its previous baseline. This makes the starting points a
similar reading to the substrate, and the end points congruent
to the latter half of the line.

The remaining 40 mm in a strand was divided into four
segments, each a 10 mm section of a strand, due to the lim-
ited field of view of the optical camera. Binarization was
conducted, wherein the strand and background pixels were
given 1 and O values, respectively. Image analysis was per-
formed to measure strand continuity and width at the four
imaged regions (Fig. 5). In practice, this start-and-stop error
can be mitigated by printing a sacrificial sample, or through
a pre-deposition pass.

In addition to strand width measurement, 2D laser pro-
filometry was conducted at four points along each strand
and averaged to estimate strand height for all the process-
ing conditions. During strand height measurement, the four
measured points were spaced to align with the midsection of
each imaged region. Subsequently, the data was processed to
classify the strand visually as follows: under-extrusion (dis-
continuous or having variable strand width), ideal extrusion
(nominal strand quality), and over-extrusion (strands much
larger than the 0.6 mm desired width).

Assessment of strand fusion

In addition to printing high-quality single strands, extrusion-
based printing must accurately print along turns and corners.
One frequent occurrence is right-angle printing, which can
accumulate material in the inner corner due to the overlap-
ping deposition area. Further, the PCL/HAp print material
can spread and fuse before solidification, especially when
two right-angle turns are made without sufficient distance
between the turns. To observe the critical gap between turns,
specialized artifacts were made with a gradient of gap spaces
(Fig. 6a). Lines of 20 mm length were printed in these fusion
test samples, followed by a turnaround with a specific inter-
strand gap, and this sequence was repeated throughout the
artifact. This strand fusion test artifact was motivated from
prior work by other researchers in the literature (Habib &
Khoda, 2019; Habib et al., 2018). A dwell time of 25 s was
used upon completion of an artifact before printing the next
artifact to better distinguish between the sensing signatures.
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Fig. 4 Effect of print speed on single strand morphology. Three print
regimes are formed by coupling extrusion temperature, pressure, and
print speed. a Under-extrusion results from excessively high print speed
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reduces, and the critical strand breakdown point may be observed, where

Fig.5 Strand width assessment
averaging the width between the
first pixel index (F;) and last
pixel index (L;) along the strand
length for the segment’s average
strand width

highly variable strand widths are formed. ¢ Further reduction in print
speed yields nominal or ideal extrusion, producing favorable strand
width. d Inadequate print speed for the established flow yields over-
extrusion, forming larger than desired strand widths

Average Width

Fusion test artifacts were created at two levels of tem-
perature (130 and 140 °C) and two levels of pressure (1.5
and 2.0 bar) with print speeds that produced the three
print regimes assessed in the single strand quality testing
(over-extrusion, ideal extrusion, and under-extrusion). Each
process condition (print regime) combination was printed
across an interstrand gradient of 0.50, 0.75, 1.00, 1.25, 1.50,
1.75, 2.00, and 2.25 mm (Fig. 6a). Each interstrand gap was
printed twice per artifact, and three artifacts were printed for
six total replicates.

In Fig. 6b, images of artifacts deposited at constant tem-
perature and pressure visually show the effect of print speed
on strand fusion. Following printing, the artifact turnarounds
were imaged and characterized. Once imaged, an average
fusion length was constructed at each turnaround with a
100-point average starting at the turnaround center and pro-
gressing towards the turnaround’s edge (see Fig. 7).

The rationale behind the 100-point average was that the
imaging resolution was 204 pixels/mm, and a 100-point/pixel

average amounts to a measurement region of 0.5 mm. If the
fusion length were determined with a larger number of points,
the measurement region for the 0.5 mm interstrand gaps
would include a portion of the adjacent strands, leading to an
incorrect average fusion length value. The turnarounds were
assumed symmetric, such that the measurement region’s
direction from the turnaround center is inconsequential.

Fusion length was determined as the distance between the
artifact’s exterior edge to the opposite edge of the fusion
region at a turnaround section. As shown in Fig. 7, the fusion
lengths within the measurement region were the distances
between the first pixel index (F;) and last pixel index (L;) of
the largest interconnected region at a point. The fusion ratio
(Fr) was then characterized as the ratio between the fusion
length (Fp) and design width (Wp) of 0.6 mm. Importantly,
using the design width in the fusion ratio calculation stan-
dardized the quality metric across the different interstrand
spacings and fusion severities, providing a benchmark met-
ric to compare results.
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Fig.6 Strand fusion analysis of
print parameter combinations.

a Theoretical fusion test with
interstrand gaps ranging from 0.5 (a)
to 2.25 mm, with each interstrand
gap printed twice per artifact.

b Effect of print speed on strand
fusion. Insufficient print speed
for the developed flow yields
significant fusion (left) than
when print speed more closely
matches the flow, yielding
nominal fusion (right)

Fig.7 Fusion length
quantification process in a
turnaround’s measurement region
through a pixel-wise, 100-point
average of local fusion length
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Fig.8 Sensor feature extraction process from the raw in-situ sensor
signals for single strand quality testing

Feature extraction from in-situ sensor data

In Sect. "Experimental design", each experimental phase was
detailed regarding the target classes or metrics constructed
from the experimental performance. In this section, fea-
ture extraction from in-situ IR thermocouples is elucidated.
Machine learning used these features as inputs for quality
classification and prediction. The in-situ IR thermocouples
collected data at a 500 Hz sampling rate. However, the ther-
mocouples were not calibrated to produce true temperature
approximations for the print material, as the emissivity of
the material is not compensated. As a result, only the relative
trends in the sensing data are considered.

We note that the thermocouples are factory calibrated
against a blackbody source. However, the difficulty in mea-
suring exact temperature of the deposited material using
non-contact, IR-based instruments due to changes in emis-
sivity remains an open challenge not only in extrusion-based
printing but the larger realm of additive manufacturing (Lane
& Whitenton, 2016).

Single strand quality

Individual strand signatures were isolated from the raw
signal, and the signature was divided into two halves.
Using signal halves considers the difference in performance
between the first half and second half of a strand into account
by allocating the feature values from corresponding regions
in the signal. Figure 8 illustrates the difference in the strand
halves and the associated signals, where the first half’s
smaller strand width is coupled with a shorter signal pro-
file. While quartering the signal was also conducted to assign
corresponding features to each imaging location, this did not

significantly change the results. As a result, dividing the sig-
nal into two halves for a strand was chosen as the feature
extraction methodology.

Each sensor signature half was assessed to produce the
average reading, standard deviation, and area under the curve
(Fig. 8). As the infrared thermocouples receive radiated heat
from the area they are focused on, the more high-temperature
material in that area, the higher the reading (until the entire
area is full of the high-temperature material). As shown in
Fig. 8, the average reading indicates the degree of extru-
sion, with high temperature and pressure cases leading to
high average readings and low temperature—pressure combi-
nations leading to low average readings. In under-extrusion,
strands can be variable in width or discontinuous, leading to
an increased signal standard deviation.

The area under the curve was determined through trape-
zoidal integration, with a step size of 2 ms. The higher the
signal profile (as with high-temperature, high-pressure print-
ing), the larger the area under the curve. Because each print
speed takes a different amount of time to complete the 50 mm
strand, the area under the curve was divided by strand com-
pletion time to standardize to an average area. Six features
were formed following the measurement phase, three fea-
tures from each thermocouple (average reading, standard
deviation, and area under the curve), and the values were
assigned to the appropriate strand half.

Strand fusion assessment

Each artifact signature was isolated from the raw signal and
divided into eight segments, with each segment correspond-
ing to a specific interstrand gap. For a specific interstrand gap,
this signature region contained the data starting from the cen-
ter of a strand, progressed through the two turnarounds, then
ended at the center of a strand. Under this method, only sec-
tions pertaining to the specific turnarounds and interstrand
spaces were observed. The turnaround segments were then
assessed to produce the average reading, standard deviation,
and the area under the signal curve (Fig. 9). In this test-
ing phase, distinct cycling was observed, where the peaks
in the signature corresponding to the printing of the gap
turnarounds. In each signal, 18 peaks were observed, where
the first 16 were from the printing of the fusion sample, and
the final two were the movements to the following sample
location. As a result of the cycling, the signal region of a set
interstrand gap and its replicate could be isolated (see Fig. 9)
and assessed to produce the sensing features (average read-
ing, standard deviation, and the area under the signal curve).
The area under the curve was determined through trapezoidal
integration, with a step size of 2 ms. Six features were formed
following the measurement phase, three features from each
thermocouple (average reading, standard deviation, and area

@ Springer



Journal of Intelligent Manufacturing

-
w
o

70/30 PCL/HAp printed at 140C, 29 psi, 14 mm/s

-

N

o
T

70/30 PCL/HAp printed at 140C, 29 psi, 14 mm/s

-
w
o

-

nN

o
T

PN

- -
o -
o o

T

©
o
T

80 I
70 f
60 | ‘ ~,

50 - A\

Reported Sensor Temperature [Celsius]

40+

30 . . .
20 30 35 40
Elapsed Print Time [seconds]

25 45

Reported Sensor Temperature [Celsius]

-

=

o
T

-

o

o
T

©
o
T

o]
o

70
60 -
50

407 Area Under the Curve

30 . . L
36.5 37 375 38

Elapsed Print Time [seconds]

385
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under the curve), and the values were assigned to the appro-
priate interstrand gap.

Quality prediction using machine learning

Six supervised machine learning models were optimized and
deployed to classify or predict performance for each exper-
iment (single strand and strand fusion) based on in-situ IR
thermocouple sensing features. Simple baseline models were
run for comparison purposes to avoid overfitting.

The machine learning applications presented in this work
are divided into four distinct tasks, as shown in Fig. 10. These
tasks are as follows: Task 1—print regime classification,
Task 2—strand width prediction, Task 3—strand height pre-
diction, and Task 4—strand fusion severity prediction. The
coupling of the extrusion flow and print speed is assessed
in the first task, print regime classification. Specifically, the
in-situ sensing features were used to classify a strand into the
over-extruded (larger than desired), under-extruded (smaller
than desired or demonstrating variable deposition), or ideal
extrusion print regime.

In the second and third tasks, strand width and height pre-
diction, respectively, the in-situ sensing features were used
to predict the average width and height of the printed strand.
Finally, in the fourth task, strand fusion prediction, the in-situ
sensing features were used to determine the severity of strand
fusion at the turnaround regions in a artifact. The severity of
strand fusion was assessed as the ratio between the fused
length and the design length of 0.6 mm.

In classification tasks, nonlinear multinomial statistical
logistic regression served as the baseline model for com-
parison, while prediction tasks utilized Ridge regression for
the baseline model. In addition to the baseline statistical
model for amachine learning task, the following models were
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used; K-nearest neighbors (KNN), support vector machine
(SVM), Random Forest, and shallow artificial neural net-
work (ANN) with a maximum of three hidden layers. These
models are selected owing to their ease of interpretability,
popularity, and relative simplicity of online implementation
through readily available modules in various programming
languages. In addition, these models can accommodate rel-
atively smaller data sets. Notably, the SVM, KNN, and RF
models do not incorporate as active of a learning aspect as an
ANN. A central hypothesis of this work is that physically
interpretable features in simple machine learning models
would provide sufficient flaw detection fidelity, as opposed
to complex black-box approaches, such as deep learning.

Hyperparameter tuning was conducted with tenfold cross-
validation to determine the optimal settings for each model,
Table 1 describes the hyperparameters for each model. Train-
ing and testing of each machine learning model followed an
80—-20 scheme, wherein 80% of the dataset was used for train-
ing, and the trained model was tested on the remaining 20%
of the data. The total amount of data and the datapoint count
allocated to training and testing is shown in Table 2.

In tenfold cross-validation, the training data is divided into
ten approximately equal-sized parcels, then nine parcels are
used for training, while the last is used for validation. Once
the train-validate process is completed, a fold is complete,
and the process repeats until each parcel has been held out
for validation. Validation results were averaged over the ten
folds, and the hyperparameter combinations which yielded
the highest performance were chosen for the final machine
learning models.

Model training was conducted on a laptop computer with
the following specifications: AMD Ryzen 9 S900HX and 2
x 8 GB 3200 MHz DDR4 memory. All machine learning
was conducted using Python software with the Scikit-learn
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Table 1 Hyperparameters per machine learning model optimized with
tenfold cross-validation

Machine learning approach Tuned hyperparameters

Nonlinear multinomial logistic
regression

No tuning was
conducted

Ridge regression No tuning was

conducted

K-nearest neighbors Number of neighbors,
Distance metric,
Weighting

Support vector machine Regularization, Kernel

type

Number of estimators,
Maximum tree depth,
Maximum samples

Random forest

Artificial neural network Activation function,
Regularization term,

Hidden layer sizes

package (Pedregosa et al., 2011). The performance of the
classification machine learning models was the testing F1
score, false positive rate (FPR, Type I error), and false neg-
ative rate (FNR, Type II error). The regression machine
learning models were assessed using the coefficient of deter-
mination (R?) and the root mean squared error (RMSE).

Preemptive feedforward quality control

The machine learning setup described in Sect. "Quality pre-
diction using machine learning" was also applied for preemp-
tive process control. This section assessed process parameter
combinations and the resulting print quality to create more
uniform, high-quality print designs. In Sect. "Process param-
eter-based quality prediction", the machine learning applica-
tion and quality criterion will be discussed, and the chosen
parameter arrangements and experiments will be detailed in
Sect. "Print quality assessment".

The key idea is to use the a priori trained machine learn-
ing model in a feedforward manner—the machine learning
model recommends how much the print speed must be
changed during the process to obtain a uniform strand. This
analysis was done before printing is started. In other words,
instead of printing a strand under fixed conditions, the process
parameter (print speed) is changed dynamically to accommo-
date for strand width variation. Existing empirical models
are static in nature, and are not capable of incorporating such
dynamic process changes.

Process parameter-based quality prediction

Machine learning was applied to three tasks, as shown
in Fig. 11; regime classification, width prediction, and

Table 2 Number of data points in
each experimental task and the

Total datapoints Training datapoints Testing datapoints

allocations for training and

testing the machine learning Task 1 Regime classification
models Task2  Width prediction
Task 3 Height prediction
Task 4 Fusion ratio prediction

360 288 72
360 288 72
360 288 72
270 216 54

@ Springer



Journal of Intelligent Manufacturing

* Temperature * Pressure

Process Parameter Features

« Print Speed » Location in the Strand

Machine Learning

!

Task 1: Regime Classification

Under-Extrusion
I N — |

‘»Itdéal‘Ekt_ru‘sio_n - %

“Over-Extrusion - ..

Task 2: Width Prediction

wAverage Width

}

Task 3: Height Prediction

Fig. 11 Machine learning tasks for process parameter-based strand quality predictions

height prediction. As opposed to the features developed
in Sect. "Feature extraction from in-situ sensor data",
machine learning was conducted on the process parameters
directly, namely, material temperature, extrusion pressure,
print speed, and the location in the strand. Significantly, the
location in the strand pertains to the imaging location along
the print direction to determine strand homogeneity along its
length.

Eachlocation represents a 10 mm portion of the strand, and
the first and last 5 mm of each 50 mm strand were omitted
from imaging. As a result, location 1 refers to the section
between 5 and 15 mm printed. At each location in the strand,
the machine learning approach was used to classify the print
regime and predict the strand width and height.

Machine learning performance was optimized as
described in Sect. "Quality prediction using machine learn-
ing" with the hyperparameters and data allocations noted in
Tables 1 and 2, respectively. Once trained and tested, the
best-performing model was selected to provide quality pre-
dictions for preemptive quality control experiments. Print
parameter arrangements were created by pairing an input
print speed (the print speed for the first 25 mm of a strand)
and an amended print speed (used after printing 25 mm).
Input print speeds of 4, 5, 6, 7, 8, and 9 mm/s were fed into
the machine learning systems with constant 130 °C and 2 bar,
and strand quality metrics (regime, width, and height) were
predicted for locations related to the first half of the strand.
Next, a print speed sweep from 4 to 15 mm/s (with 1 mm/s
step size) was conducted to predict the strand quality in the
second strand half. The difference between the strand width
of each half was calculated from the predictions. Print speed
pairs were then constructed such that the strand widths of
each strand half differed by less than 50 pm.
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Table 3 Print speed arrangements producing comparable strand widths
in each strand half

Printing at 130 °C and 2 bar

Initial print Initial width Amended Amended
speed (mm/s) (mm) print speed width (mm)
(mm/s)

4 0.59 11 0.6

5 0.58 11 0.6

6 0.53 13 0.5

7 0.53 13 0.5

8 0.53 13 0.5

9 0.46 15 0.5

Print quality assessment

Each initial print speed (4, 5, 6, 7, 8, and 9 mm/s) was paired
with an amended print speed as discussed in Sect. "Process
parameter-based quality prediction". Each pairing shown in
Table 3 was then used to print six replicate 50 mm strands,
imaged, and measured according to Sect. "Single strand qual-
ity". Notably, the first 25 mm of each strand was printed with
the initial print speed before transitioning to the amended
print speed for the remainder of the strand. In addition to the
amended print speed experiments, constant print speed exper-
iments were performed at print speeds of 4, 6, and 8 mm/s.
In addition to single strand testing, the parameter pairings
in Table 3 were extended into fusion testing. As detailed in
Sect. "Assessment of strand fusion" and Fig. 6, six replicates
were printed for each interstrand space (0.5, 0.75, 1.00, 1.25,
1.50, 1.75, 2.00, and 2.25 mm). Further, fusion tests were
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Fig. 12 Example strands at various print speeds and two pressure levels

printed for comparison at constant print speeds of 4, 6, and
8 mm/s.

Results

The following section details the application of machine
learning models for the assessment of various print quality
metrics. Model performance assessment metrics are dis-
cussed in Sect. "Quality prediction using machine learning".
The presented machine learning models were trained with in-
situ sensing features, as detailed in Sect. "Feature extraction
from in-situ sensor data".

Single strand quality
Effects of process parameters on single strand quality

Strands are the fundamental unit upon which all artifact
components depend. Therefore, strand quality prediction is
imperative to address quality issues appropriately to avoid
defective prints. For strand quality assessment, it is necessary
to align with the desired strand width and height to avoid
the accumulation of defects in subsequent layers. Notably,
strand defects are correlated to the degree of localized
deposition, and print speed adjustments result in localized

deposition changes (see Fig. 12). When using excessive print
speeds, localized deposition decreases significantly and can
cause strand breakdown. Conversely, inadequate print speeds
increase localized deposition, producing larger strands. Fur-
ther, if the extrusion itself is changed, as with increased
pressure (increasing extrusion), the compatible print speed
window is shifted following a change in extrusion (see
Fig. 12).

The trends evident in Fig. 12 are further supported by the
experimental strand measurements presented in Fig. 13. In
addition, Fig. 13 illustrates that both the width and height
linearly increase along a strand. This trend is due to the flow
reestablishing and material cooling in the print tip during the
25 s dwell time between strands. Due to the cooling effect,
the material viscosity increases, and less material is extruded
than the material at the desired print temperature. Once the
cooler material is purged from the print tip, the strand steadily
widens until reaching stable extrusion of the print material.
Further, there is an inherent linkage between strand width
and height. As the two qualities grow together, if either qual-
ity is undesirable, the remaining quality is likely undesirable.
For example, an over-extruded strand not only would have a
larger width than the design, but the strand height has the
potential to supersede the design layer height, leading to
defect accumulation in the subsequent layers.
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Fig. 13 Effect of pressure on strand width (a, b). At constant temperature and print speed, increasing pressure produces larger strand widths. Effect
of pressure on strand height (bottom). Increasing pressure causes taller strands to develop at constant temperature and print speed

Once the strand measurements and the process parameter
effects were visualized, the IR sensing features were analyzed
for print regime classification. For comparison, example
strands from the major print regimes were chosen, and their
raw IR signals were plotted in Fig. 14. From Fig. 14, there
are distinguished signal profiles, with over-extrusion yield-
ing an elevated signal profile and under-extrusion yielding
the smallest profile. Further, the under-extrusion case yielded
beaded deposition as material delivery through the print tip
was insufficient to consistently bridge the gap between the
needle and substrate. During this under-extrusion, a droplet
would form at the end of the print tip and grow until it touched
the substrate. As a result of the droplet forming on the end
of the print tip, the material was within the field of view of
the thermocouple, but was cooling before deposition, poten-
tially leading to the overall lower thermal profile in Fig. 14.
Notably, each signal displays similar behavior early on, but
the growth rate of the profile is inversely proportional to the
print speed.

@ Springer

To avoid the complex analysis of the raw time-series data,
strand signals were simplified into the average reading, stan-
dard deviation, and area under the curve for the first and
second strand halves. As shown in Fig. 15, the signatures
from a single thermocouple show a significant overlap in the
features of the three print regimes. The overlap of features
between print regimes in Fig. 15 makes it challenging to
determine the print regime solely from the sensing features
alone. This overlap is due to the difference in deposition
between print speeds and the difference in strand width and
height along the strand’s length (see Fig. 13). Specifically,
the first half of a strand had lower feature values (clustered
in the bottom left of Fig. 15). The latter half had higher fea-
ture values (clustered in the top right of Fig. 15), making
it difficult to split up the print regimes solely on the in-situ
sensing feature values.

In addition, the correlations of the in-situ sensing features
to the print regime are weak (Fig. 16). As a result, the sub-
tle trends and differences in the sensing features must be
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captured through machine learning to distinguish between
regimes. Further, prediction tasks to determine strand width
and height are also dependent on encompassing the trends
in the dataset with machine learning. While the correlations
of the in-situ sensing features to the strand width and height
targets (Fig. 16) are relatively larger than the print regime
correlations, the machine learning results should benefit from
the increased correlations. Notably, having high correlations
implies that a feature and output have predictive capacity
towards one another, which can aid the machine learning
results.

Single strand quality prediction results

Intuitively, strands can be either too small/discontinuous
(under-extruded), ideally extruded, or excessively large
(over-extruded). Assuming that stable extrusion is retained,
strand height is proportional to the strand width, making
regimes other than the ideal regime unfavorable for strand
width and height. Therefore, if the print regime can aptly be
classified in-situ, it allows for the determination of whether
the print should be continued. Machine learning was applied
to classify print regime from in-situ sensing features, result-
ing in high performance of both the baseline model (~ 86%
F1 score) and the best performing machine learning models
(~ 91%), as shown in Table 4. In addition to the high F1
scores for regime classification, all models display a higher
FNR than FPR. In application, a lower FPR than FNR leads
to fewer instances of incorrectly halted processes at the cost
of potentially failing to detect an issue. Coupling the trends
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Fig. 15 3D plots of print regime versus the IR sensing features from
one thermocouple. In-situ feature values and the associated print regime
highlight the lack of clear boundaries in the print regime clusters

in the F1 scores and the FPR/FNR, misclassifications are rare
and are unlikely to falsely determine that the quality requires
the print to be halted.

While the print regime can provide an intuitive view of the
printing process, the prediction of the strand width and height
provide information about the severity of a divergence from
the design specifications. For the prediction of strand width,
favorable R? (~ 85%) was achieved for several models (KNN
and Random Forest) along with low RMSE (~ 0.13 mm), as
shown in Table 5. Similarly, the prediction of strand height
produced R? (> 90%) with low RMSE (~ 0.13 mm) in the
KNN model (see Table 5). In both tasks, the baseline model
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Fig. 16 Correlation matrix on the connection between print quality
response variables (mean width, print regime, and strand height) and the
IR sensing features (AUC area under the curve, AVG average reading,
and STDDEYV reading standard deviation). Higher correlations (values
approaching 1 or — 1) indicate a relationship between two variables.
AUC and AVG hold the highest correlations to print regime, mean width,
and strand height, indicating that these features are more influential for
the machine learning tasks

performed significantly worse than the other models, demon-
strating the need for a different approach to the problem.
Importantly, differences in the performance across machine
learning models indicate how well the model assumptions fit
the data.

While the input features for single-strand quality assess-
ments are the same, the output targets are different (print
regime, strand width, and strand height), making the distinc-
tion between the models a result of how well each model’s
assumptions fit the target data. Further, each machine learn-
ing model has limitations. For instance, Artificial Neural
Networks generally need large datasets and more time to
fit the data. However, the leading models perform nearly on

Table 4 Machine learning model performance for single strand quality
classification. Each performance metric per column is the average from
repeating the training and testing procedure 50 times, and one standard
deviation is provided to contextualize F; Score performance

Machine learning approach Task 1: regime classification

F1 score FPR,
FNR
Multinomial logistic regression ~ 86.3 £ 0.0% 6.3%,
12.4%
K-nearest neighbors (KNN) 91.8 £ 3.3% 4.1%,
8.1%
Support vector machine (SVM)  76.6 & 3.8% 11.6%,
23.1%
Random forest (RF) 90.7 £ 4.6% 4.6%,
9.2%
Artificial neural network 79.7 £ 4.7% 10.1%,
(ANN) 19.9%

The bolded text highlights the best performing machine learning model
for a task

par across the three tasks, demonstrating that a KNN or Ran-
dom Forest could be applied to all tasks reliably. Given these
results, the strand characteristics can be aptly predicted, as
the best models can account for most of the variation in the
dataset. Considering the regime, width, and height determi-
nation results, there is significant promise in incorporating
in-situ sensing and machine learning into a process control
strategy.

Strand fusion assessment
Process parameter effects on strand fusion

The interaction between strands at turnaround regions is a
pertinent indicator of the quality of a single layer. If the inter-
strand gap or print speed is insufficient, strands interact at the
turnarounds, propagating the fusion of the adjacent strands
(see Fig. 17). In extreme cases, strand fusion can occur along

Table 5 Machine learning model
performance for single strand
quality prediction

Machine learning approach

Task 2: width prediction Task 3: height prediction

R2 value RMSE R2 value RMSE
Ridge regression 66.1 £ 6.5% 0.20 £ 0.02 540 £72% 0.10 £ 0.01
K-nearest neighbors (knn) 83.9 £ 2.8% 0.14 £ 0.01 90.5+4.1% 0.04 £ 0.01
Support vector machine (SVM) 79.6 £3.8% 0.15 £ 0.01 69.3 +£5.4% 0.08 £ 0.00
Random forest (RF) 84.0 + 4.8% 0.13 £ 0.01 86.1 £5.9% 0.05 £ 0.01
Artificial neural network (ANN) 68.3 £ 7.6% 0.19 £ 0.02 55.2 £ 16.0% 0.10 £ 0.02

The bolded text highlights the best performing machine learning model for a task
Each performance metric per column is the average from repeating the training and testing procedure 50
times, and one standard deviation is provided to contextualize R* and RMSE performance
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Fig. 19 Correlation matrix on the connection between print fusion ratio
(column 1) and the IR sensing features (AUC area under the curve, AVG
average reading, and STDDEYV reading standard deviation). Higher cor-
relations (values approaching 1 or — 1) indicate a relationship between
two variables. AUC and AVG hold the highest correlations to print
regime, mean width, and strand height, indicating that these features
are more influential for the machine learning tasks

the entire strand length. Occasionally, the occlusion of inten-
tional gaps for nutrient exchange can occur, diminishing the
biological functionality of the artifact. As a result, strand
fusion mitigation is vital to minimize the risk of fabricating
an undesirable artifact. The experimental data (see Fig. 18)
showed definite trends in the fusion ratio across pressures,
print speeds, and resulting print regimes. As previously dis-
cussed, inadequate print speeds in the over-extrusion regime
led to higher fusion ratios across the tested interstrand gaps.
Further, print speeds yielding ideal and under-extrusion led
to relatively lower fusion ratios. Therefore, increasing print
speed can minimize the fusion ratio, but print speeds resulting
in the under-extrusion regime should be avoided to prevent
strand quality defects.

In the analysis of correlations between in-situ sensing fea-
tures and strand fusion ratio (Fig. 19), strong correlations
were seen in the AUC and mean reading features (>0.8). Hav-
ing high correlations implies that a feature and output have
predictive capacity towards one another, which can aid the
machine learning results. Because of these high correlations,
it is vital to explore baseline models like Ridge regression
using linear approaches to determine if moving to nonlinear
approaches is truly necessary.

Strand fusion prediction results

Machine learning models were used to predict the fusion
ratio at various interstrand gaps using features extracted from

@ Springer

Table 6 Machine learning model performance for strand fusion predic-
tion

Machine learning approach Fusion ratio prediction

R? value RMSE
Ridge regression 82.5£3.7% 2.02 +£0.24
K-nearest neighbors (KNN) 86.0 £ 3.6% 1.80 £0.21
Support vector machine (SVM) 88.6 £ 2.2% 1.75 £ 0.17
Random forest (RF) 88.1 £2.3% 1.67 £ 0.20
Artificial neural network (ANN) 88.0 £2.9% 1.69 + 0.23

Each performance metric per column is the average from repeating the
training and testing procedure 50 times, and one standard deviation is
provided to contextualize R* and RMSE performance

the IR thermocouple. The final machine learning results are
shown in Table 6. During testing, severe fusion levels were
present at the small interstrand gaps, so the interstrand gap
range used for machine learning was limited to between 1.25
and 2.25 mm. Significantly, all the tested machine learning
models tested similarly at an R? higher than 85%. In addition,
each machine learning model demonstrated a reduction in the
RMSE compared to the baseline Ridge Regression model.
Given these results, strand fusion can be aptly predicted, as
the best models can account for > 85% of the variation in the
dataset.

We note that in the case of strand fusion, the performance
of the ridge regression classifier is comparable to other tech-
niques, indicating the relative simplicity of strand fusion
prediction compared to the previous three tasks. Due to this
simplicity, models such as ANN that displayed poor perfor-
mance in previous tasks due to the sparse nature of the data,
perform at par with the preferred KNN and SVM models.

Preemptive process control
Strand quality control

In Sect. "Effects of process parameters on single strand qual-
ity", a strand widening effect was shown in Fig. 12 and
quantified in Fig. 13, where strands grew broader and taller
along the build direction. To overcome the drift in deposit
characteristics, machine learning-based preemptive process
control (feedforward control) was explored to correct the lack
of strand homogeneity. The key idea was to alter the print
speed by deploying machine learning on the dataset produced
in the strand quality experiments described in Sect. "Sin-
gle strand quality". In other words, the print speed change
was determined before the strand was printed based on rec-
ommendations from the machine learning model. The print
speed was selected as the control variable due to its short
response time for adjustment compared to extrusion pressure,
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130°C and 2 bar

Strand Half 1

~ “Initial Speed: 8:mm/s -

: Constanf'Spgedf 8 mm/s

Strand Half 2

Adapted Speed: 13 mm/s

Fig.20 Printing of strands at constant (top two rows) and amended print
speeds (bottom two rows). In the top two rows, the strand is deposited
at a constant speed of 8 mm/s. In amended speed samples, the initial

which is adjusted pneumatically and is prone to activation
delay-related errors due to an inherent lag.

Unlike the previous machine learning applications, only
the process parameters were used to assess the process effects
on strand quality at two locations in the strand, and in-situ
sensor data was not used. In this phase, the machine learning
models predicted the deposition regime, strand width, and
height with statistical fidelity exceeding 90%.

An example of applying the print speed adjustments is
shown in Fig. 20. In the top two rows of Fig. 20, single
strands were printed at a constant 8§ mm/sec speed. In the
bottom two rows of Fig. 20, the strand speed was increased to
13 mm/sec after 25 mm of deposition based on insights from
a trained machine learning model. This preemptive strategy
of increasing the deposition speed significantly mitigated the
widening effect. The transition region of print speed amended
strands displayed a node due to the contrast between the
widening initial strand half and the adjusted strand width
following the transition. This sharp transition region is due
to the abrupt change from the initial speed to the adapted
speed and could be smoothed with a more gradual print speed
change.

Continuing with this analysis, the approach was tested
for various levels of constant print speed, namely, 4, 6, and
8 mm/s, i.e., the initial speeds in the print speed correc-
tion case. Homogeneity was assessed in the printed strands
as the average width difference between the strand halves.
As shown in Fig. 21, each constant print speed condition
resulted in a statistically significant difference in the strand
homogeneity. For example, when the print speed is main-
tained constant at 4 mm/s, the difference in width between
the two strand halves exceeds 0.40 mm. The feedforward
control strategy reduces the difference in strand width to less
than 0.05 mm.

print speed was changed to 13 mm/sec once 25 mm had been printed.
This change in strand speed significantly mitigated the widening effect

Width Difference in Strand Halves at 130C, 29 psi
m Speed Change
Constant Speed

0.50

0.45 z

0.40 x

0.35

0.30

0.25 [

0.20

0.15

Average Width Difference [mm]

0.10

4 mm/s 6 mm/s 8 mm/s

Print Speed Group

Fig.21 Average strand width differences (£ 1 standard deviation)
between strand halves for strands printed with constant print speed
and printed with a speed change to amend strand widening. Statisti-
cal analysis was conducted at a 95% confidence level, and significant
differences are distinguished with an asterisk

Further, the consistency of the amendment quality was
tested with the print speed amendments to the 4, 5, 6, 7, 8, and
9 mm/s initial speeds, as shown in Fig. 22. Print speed amend-
ments were initially chosen to produce strand halves with a
width difference of less than 50 wm. Figure 22 demonstrates
the fulfillment of this < 50 wm width difference criterion at
each initial print speed subject to the preemptive quality con-
trol scheme. Therefore, preemptive process control has the
potential to improve strand quality significantly.

Strand fusion control

Following strand quality control testing, fusion testing sam-
ples underwent the same print speed amendments (Table 3).
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Width Difference in Strand Halves at 130C, 29 psi

ﬁlah

5 mm/s 6 mm/s 7 mm/s 8 mm/s 9 mm/s
Initial Print Speed Group
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0.000
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Fig.22 Average strand width difference (+ 1 standard deviation) across
all initial print speed groups subject to print speed amendments

As previously discussed, strand fusion occurs if the inter-
strand gap or print speed is insufficient, causing strands to
interact at the turnarounds, and propagating the fusion of the
adjacent strands. Further, at constant temperature and pres-
sure, localized deposition decreases if print speed increases,
subsequently decreasing strand fusion in response. The con-
stant print speed examples from Fig. 23 illustrate the effect
of print speed on strand fusion, with the 8 mm/s interstrand
gaps (Fig. 23c) demonstrating lower strand fusion ratios than
the 4 mm/s case (Fig. 23a).

In the preemptive control experiments, a print speed
amendment was administered after 25 mm were printed to
maintain a more uniform strand width. Significantly, the
amendments were not aimed at directly diminishing strand
fusion but were purely to improve strand width homogeneity.

In the 4 mm/s trials shown in Fig. 23a, print speed was
adjusted to maintain the width of the 4 mm/s strands, which
had evident over-extrusion. As a result, the adapted print

(@) f:

o o o
N A O
—

Average Fusion Ratio
=]

o N A~ O ©

Constant 4 mm/s

m Adapted 4 mm/s

*

1.25 1.5

1
| i i

1.75

Interstrand Spacing [mm]

b 20
( ) * Constant 6 mm/s
18 - *
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16
iel
T 14
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510 I
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:'3’ 8 =
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1.25 15 2 2.25

. 1.75
Interstrand Spacing [mm]

Fig. 23 Average fusion ratio measurement per interstrand spacing fol-
lowing printing with constant print speed versus adapted print speed.
a Printing at a constant 4 mm/s and 4 mm/s adapted to 11 mm/s after
25 mm of printing. b Printing at a constant 6 mm/s and 6 mm/s adapted
to 13 mm/s after 25 mm of printing. ¢ Printing at a constant 8 mm/s and
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8 mm/s adapted to 13 mm/s after 25 mm of printing. Results are shown
as an average £ 1 standard deviation. Statistical analysis was conducted
at a 95% confidence level, and significant differences are distinguished
with an asterisk
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Fig. 24 Average fusion ratio measurement per inter-strand spacing fol-
lowing printing with an initial print speed followed by an adapted print
speed after 25 mm were printed at 130 °C and 2 bar. Each test is
shown in an initial print speed-adapted print speed format. For exam-
ple, 4-11 mm/s indicates an initial print speed of 4 mm/s adapted to
11 mm/s after the transition point. Results are shown as an average +
1 standard deviation

speed also featured over-extrusion, leading to large fusion
ratios when printing small interstrand gaps. However, the
adapted 4 mm/s print speed case yielded a statistically sig-
nificant difference in fusion ratio at the largest interstrand
gap of 2.25 mm.

The 6 mm/s trials (Fig. 23b) displayed ideal extrusion
prior to the strand widening effect. Importantly, amending
the print speed for a strand in the ideal extrusion regime
yielded statistically significant decreases in the fusion ratio
of interstrand gaps greater than 1.25 mm. Conversely, as the
initial print speed was further increased to 8 mm/s (Fig. 23c¢),
the strand width narrowed and became closer to the under-
extrusion regime, reducing strand fusion both in the constant
and amended print speed conditions. While the 8 mm/s speed
yielded smaller strands and lesser strand fusion, the adapted
print speed condition still reduced strand fusion in interstrand
gaps measuring and surpassing 1.75 mm.

Additional testing was conducted to determine the reliabil-
ity of the print speed amendment for strand fusion reduction.
To improve the strand homogeneity, print speed amendments
were made across the initial print speeds of 4, 5, 6, 7, 8, and
9 mm/s. The results of this testing are reported in Fig. 24,
where the strand fusion ratio decreases with higher adapted
print speeds. Further, the strand fusion ratios achieved at
larger interstrand gaps (> 1.75 mm) are more consistent,
as evident by the lower standard deviations.

The results of both Figs. 23 and 24 signify that strand
fusion can be reduced by controlling strand homogeneity.
Further, this result remains true across a range of initial print
speeds, including speeds that were not present in the initial

training dataset (namely 4, 5, 7, and 9 mm/s). Therefore, this
preemptive quality control method demonstrates a promising
capability to improve part quality in both strand width at the
1D level and strand fusion at the 2D layer-level.

Conclusion and future work

This work investigated in-situ sensing and feedforward
process control for quality assurance in extrusion-based bio-
logical additive manufacturing (Bio-AM). The relationships
between printing process parameters, in-situ sensing fea-
tures, and the resulting print quality were assessed. Critically,
machine learning was deployed on the sensing features to
determine four print quality indicators: print regime, strand
width, strand height, and fusion ratio. By using solely in-situ
sensing features, favorable performance (F; and R2 scores >
85%) was achieved from the best performing machine learn-
ing models.

Notably, the implemented defect detection machine learn-
ing models were agnostic to the input print parameters
and were not reliant on an in-situ imaging system. This
approach has two main advantages: (1) monitoring without
process parameters is more focused on the developed extru-
sion degree, and (2) the lack of in-situ imaging removes the
time-consuming imaging process between layers.

This project focused solely on one material composi-
tion and print tip diameter, but through additional testing,
these models could be established for a wide range of
print setups. Using machine learning, the required dataset
for generalizing across a range of possibilities is smaller
than the approach of purely applying process optimization
approaches, as machine learning can approximate the per-
formance of combinations in between known training data.
In addition to sensing-based defect detection, a preliminary
form of preemptive process control was displayed to correct
the strand widening effect seen during testing.

Specific conclusions from this work were as follows:

o In-situ sensing was displayed with sufficient capacity for
print quality monitoring during the printing process.

e Trained simple machine learning models for quality detec-
tion had F -score and R? approaching 85% in classification
and regression problem performance.

e Machine learning was demonstrated as a feedforward
process control of strand width homogeneity, leading to
a statistically significant improvement in strand width
homogeneity, to < 50 pm difference between the first and
second half of a strand.

In closure, we acknowledge the need for additional

biomedical studies to validate the effect of minor variation in
strand width and resolution amounting to tens of microns on
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functional properties, such as stiffness, media diffusion and
cell proliferation in Bio-AM scaffolds. However, in addition
to the biological functionality, it is imperative that printed
scaffolds have sufficient geometric accuracy to avoid prob-
lems with a scaffold-transplant site dimensionality mismatch,
or improper mechanical properties for the application. In our
previous work, we provided insights into the effect of scaffold
flaws on mechanical properties, but the relationship to bio-
logical functionality remains to be investigated (Sam Gerdes
et al., 2020).

We also note the relative fledgling stage of process mon-
itoring and control in Bio-AM relative to metal additive
manufacturing, where process prognosis has matured to
large-scale practical parts implemented in the aerospace and
defense industries. This study takes the crucial first step
towards scaling process monitoring and control in the Bio-
AM arena through rudimentary test artifacts.

In our future work we will endeavor to assess the fidelity of
the proposed sensing modalities with regard to complex 3D
structures, as well as devising enhanced non-contact sensing
modalities, such as active ultrasound and acoustic emission.
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