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1. Introduction

This paper is devoted to the study of some global estimates for solutions to a coupled
system of Schrodinger-type equations (see (6), (7) and (8) below) approximating the
evolution of weakly interacting Bosons. For the sake of completeness, we include a brief
overview of the argument motivating these equations.

We refer to [1] for detailed explanations. The problem is to understand the linear
Schrodinger evolution of data equal to (or close to) a tensor product ¢(xp)--- ¢(xn).
The Hamiltonian is

N
1
Hppg = Z Ay — NZ VN (% — xi)
=1 i<

(mean-field negative Hamiltonian, with Vi (x) = N*V(NPx),0 < p < 1). For simplicity,
assume V satisfies the following conditions

V is spherically symmetric and (1)
ov
V>0, VeCy, ——(r)<0.
- © or (r) =

The condition V > 0 is used in two places: it insures that the potential part of the
energy (11) is non-negative; and also, together with the condition V € CJ°, is
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convenient for justifying the 3 dimensional dispersive estimate (22). The condition
%—‘:(r) <0 is used to prove the interaction Morawetz estimate, see Lemma 4.7. Note
that, in the critical case f=1, & Vy(x) ~ ﬁ (at least if |x| ~ &), and ﬁ scales like A,
making this case critical.

The problem is easier to understand in the symmetric Fock space, with Hamiltonian
* 1 k%
H = de{aanx} “oN J dxdy{ Vn(x — y)axayaxax}.

We recall that the Fock space Hamiltonian acts as a PDE Hamiltonian on the nth
entry of Fock space

n
1
Hy, ppE = Z Ay — NZ Vn(xi — x;)
j=1 i<j
(see for instance [1] for the definition of Fock space and the creation and annihilation
operators a* and a). The natural choice for initial conditions is

o~ VNA() ;~Blkn) )

where Q is the Fock space vacuum,
A@) = | d{d ()0, ~ 9l

so that e VNA®) s the Weyl (unitary) operator. The coherent state
e VNAWIQ — (c H¢(xj>...> with ¢, = (e N9l N /)12,
=1

has tensor products in each entry, making it a natural choice for this problem.
We also recall

B(k) := %dedy{k(x,y)axay - k(x,y)a;a;}.

The unitary operator e~5%)

is called the implementation of a Bogoliubov transform-
ation in the Physics literature, and the Segal-Shale-Weil or the metaplectic representa-
tion in the Math literature. The state e 3*)Q is called a squeezed state in the Physics
literature. It provides second-order corrections to coherent states.

In the recent math literature, this set-up first appeared in [2], followed by [3] where

e B®) is formally introduced.
Thus the problem is to find “effective equations” for ¢, k so that the exact evolution
Verae = €N ADI BRI 2)
is approximated, in the Fock space norm, by the approximate evolution
Wapprox = () o= VNA@() ;= Blk(D) ¢y (3)

See (17) below for one such existing estimate.
The equations for ¢, k are easier to understand in terms of ¢ and the auxiliary func-
tions A and I'. See [1].
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We refer to [4] for a result of this type, in a slightly different setting. That work is
not based on the coupled Egs. (6), (7) and (8).

Fock space techniques can also be applied to L?(RY) approximations. See the recent
paper [5] and the references therein. We also mention the related approach of [6] and [7].
The equations we will study are similar in spirit to the Hartree-Fock-Bogoliubov equations
for Fermions. For Bosons, they were derived in [1, 8], and, independently, in [9] and the
recent paper [10]. The first two references treat pure states, as described below, while last
two treat the case of mixed, quasi-free states. The PDEs are the same in both cases. This
ends our overview of the motivation, and we proceed with the analysis of the equations.

The functions described by these PDEs are: the condensate ¢(f,x) and the density
matrices

F(t31,52) = 1 (08) 0 sh(k) (601, 3) + $(tx0) (6, 32) @

Alt,x1, %) = %sh(Zk)(t,xl,xz) + (6 x) Bt %), 5)

The pair excitation function k is an auxiliary function, which does not explicitly
appear in the system.

Let V € C(R?),V >0, and denote Vy(x — y) = N**V(NP(x — y)) be the potential,
with 0 < < 1. We consider the following system:

{%a, - Axl}d)(t,xl) = —J¢(XI)VN(XI -y (y)dy (6)

- J {Vn(a =)0 (TGrx) = d()d(x1)) + V(i = 7)) (Alx1,y) — p(x1)(v)) fdy,

1 1
{;ar —A, — A, + N Vn(x — Xz)}/\(t,xbxz) (7)

== J {Vn(x1 = )T (Ohy) + V(xe — )T (0ny) }A(x1, %2)dy
- J {(Ww(x —p) + V(e = 7)) (A(x1,0)T(122) + T (x1,3)A(y, x2)) Sy

n zj {(Vnlr =) + Vaxa — )00 )d(xr) by,

1 _
{_.at - Axl + sz}r(t)xI)XZ) (8)

1

== [Vt =) = Vil = DA A ey
— [Vt = ) = Vit = G0 Gr22) + ) r132) by

+2 J {(VnGa =) = V(e =)o) p(x1)b (x2) }dy.
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The solutions ¢, A, and I' also depend on N. This has been suppressed to simplify
the notation. However, we will always keep track of dependence on N in our estimates.

In order to motivate our main result (Theorem 1.1 below), we recall the conserved
quantities of the system, which will also be used in the proof of our main theorem.

The first conserved quantity is the total number of particles (normalized by division
by N) and it is

1
{06} = [l () ey + 15 1SRN (6 -5 ) |2 ey = 1 ©)

From here we see that
A -5 )2 (axay) < C (10)

The second conserved quantity is the energy per particle
1 2
E(t) == tr{V, -V, T(t)} +3 dxydx; { Vi (x1 — %) |A(t, x1, %) [*} (11)
1 2
+5 dxldxz{VN(xl — xz)(|F(t,x1,x2)| —+ F(t,xl,xl)r(t,xz,xz))}

_ jdxldxz{vml — )bt x) Pt ).

Of special interest is the kinetic part of the energy,

tr{V,, -V, I'} = de{|de)(t, x)|2} (12)
1 2 2
+W dxydx, { |V, sh(k) (£, x1, %) [* + |V, sh(k) (£ x1, x2)[* }.
If we assume E < C, then we have an H' estimate for A, uniformly in time (and N):
deldx2{|vxlA|2 + VoAt x1, )P} < C (13)
) and also
NJdxldxz|Vxl,xzsh(2k)(t,x1,x2)|2 <C.

Also, T satisfies the H> type estimate
IV IV DO 2 (a4, 4v) < E-

See [1, 8], as well [9] for these conserved quantities.
In addition, we have an interaction Morawetz-type estimate: if the initial conditions
have energy < C then

(82t + 11T (6% )2 grae) < C-

Recalling (5), we see right away that (13) can be improved (in different ways) for the
two summands of A:
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2} s% (14)

1
2y ‘sz f\]sh(Zk)(t, X1,%2)

1
J dx,dx; { ‘Vxl N sh(2k)

(decay in N) and
deldx2|vxld)(t, xl)Vde)(x2)|2 <C
(extra differentiablility).

The goal of this paper is to prove the following improvement to (13):

Theorem 1.1. Let ¢ = ¢y(t,x), A = An(t,x,y) and T =T'n(t,x,y) given by (4), (5) be
solutions of (6), (7), (8) with smooth data (but not necessarily smooth uniformly in N),

satisfying
r{I'(0)} <C
E(0) < C (see (11) for the definition of E(t))
IVl IV, [A€0, x,)l|- < CN

Let V satisfy (1), and denote Vy(x —y) = N**V(NF(x — y)), with 0 < p < 1. Then
there exists € > 0 such that

[IV.19 APty < (15)

uniformly in t and N.

This is significant because in [11] it was shown that, for 0 < f < 1, under suitable
assumptions on V, for every € > 0, there exists Ty > 0 depending only on

| < V> < V> A0, ) || + || < VT < V,>7T(0, )] 2
< V(0,2

such that the system is well-posed (in a certain norm) on [0, Tp], see Theorem 3.3 and
Corollary 3.4 in [11]. Thus, estimate (15) extends the estimates of [11] globally in time.
The results of [11] together with an estimate of the form

jdxdy||vx|%+€|vy|%+%<a o) < ) (16)

(which is similar to (15), except that the bound is allowed to grow sub-linearly in
time) were used in [12] to give a Fock space approximation of the form

W exact — Vapprosl | = ||Te VAW~ BEONQ _ git(t) o= VRA@) - Bk . (17)

CeP®)

= -5
N2

for a polynomial P(f), and 0 < f < 1. (See (2), (3) for the definitions.) It is expected
that the estimates of the current paper will lead to a better Fock space approximation.
This will be done in future work by the first and last author.
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In addition, it is of general interest to know if Soblov norms higher than those given
by energy conservation grow in time. This was first accomplished for the non-linear
Schrodinger equation in [13].

The proof of (15) is immediate if we interpolate between (14) and the following

Theorem 1.2. Under the assumptions of Theorem 1.1, there exists p such that
J|\vx||vy|/\(t,x,y)|2dxdy < CN? (18)

uniformly in time.

Remark 1.3. The power p we obtained is not optimal. However, it should be noted
that, even if || V,||V,|A(t,x,y)[> < C at t=0, an estimate of this form (uniform in N) is
not expected to hold at later times because of singularities induced by the potential Vy.

The rest of this paper is devoted to the proof of Theorem 1.2. We regard the equa-
tion for A as a linear equation with non-local “coefficients” given by I' and a forcing
term involving ¢. For I' and ¢, we will only use a priori estimates, given by conserved
quantities and an interaction Morawetz estimate.

In addition, the proof involves new Strichartz estimates in mixed coordinates.

To give an idea of the proof, differentiating (7),

1 1
{; O —Ac— Ay + N Vn(x — y)}VxV},A(t, X, ¥)

= —(VWwxI(t,x,x) + Vy xI(t,3,5)) - ViV, At x, ) (19)
12V, V, (Vi ¢ (£, x)p(t, x)$(t,y)) + other terms.

For the main term (19), we divide the time interval [0, c0) into finitely many intervals
(independent of N) such that |[I'(£,x,%)||;2(44y) is small, and the contributions of this
term can be absorbed in the left hand side. This uses an idea of Bourgain [13] and an
interaction Morawetz argument. Based on the above conserved quantities and the inter-
action Morawetz estimate, it is easy to prove

V9, (Vi % 18P (6 X) (6 X)) L gt oy S OV

In fact, we will show that all the other remaining terms on the right-hand side are in
a dual Strichartz space, with norms possibly growing in N. In order to show that, we
will first have to estimate A and VA in various Strichartz norms.

Then we get the desired result, provided we can prove Strichartz estimates (including
some end-points) for the equation

1 1
{?8, - A — A, +NVN(X —y)}/\(t,x,y) =F.

Proving these Strichartz estimates is the main new technical accomplishment of our
current paper.
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2. Strichartz estimates

From now on we use the notation A <B to mean: there exists C, independent of N,
such that A < CB.

2.1. Set-up

Let (p1, 91)> (P2, q2) be Strichartz admissible pairs in 3 space dimensions (2 —|— 3 %),
with p; > 2, and let pl, g} the dual exponents.

Recall 1 Viy(x) = N*¥~1V(NPx),0 < B < 1. Since the results of this section may be of
general interest, we point out the properties of V that will be used (which are weaker
than (1)).

We only assume V € L3, thus #VN €L uniformly in N > 1 and V(x) is such that
we already know the homogeneous Strichartz estimate

€ SOy (e = Il 2 (20)

uniformly in N, as well as the double end-point 3 + 1 Strichartz inhomogeneous estimate

||J (A ) ( )dSHLPl (dt)L1 (dx) < C||F||L"z (dt qu(dx) (21)

with bounds independent of N.

These assumptions hold for V satisfying (1): If § < 1, just V € L? and N large is suf-
ficient. In that case, ||§VN||L% is small and an easy perturbation argument proves
(20), (21).

If f=1,and V € C*,V > 0, the estimates (20), (21) follow by scaling from the cor-
responding estimates for N=1. In turn, these follow by the Keel-Tao [14] argument
from the dispersive estimate

A 1
e L) -

There is an extensive literature on such estimates, following the breakthrough paper
[15], but we could not find an explicit discussion of the case V & CSO(R3),V > 0.
However, this follows, for instance, from [16], Theorem 1.3' Since —A, + V is a non-
negative operator, it has no negative eigenvalues. It is well-known —A,+ V has no
positive eigenvalues (by Kato’s theorem [17], or the earlier and more elementary result
[18], for instance). It is easy to show that 0 is not a resonance or eigenvalue. The corre-
sponding solution to (—A, + V)u = 0 is harmonic away from the support of V and, if
u satisfies the resonance condition < x>""u € L?* for all y > 1 /2, then, using the mean-
value theorem one gets |u(x)|= |x|"~ i L Vu(x)| =< |x|" : for |x| sufficiently large. Thus
one can integrate by parts and get

"In fact, just part 2 of Lemma 2.2 in [28] suffices to prove the Strichartz estimates (20), (21), by standard Kato
smoothing techniques. This avoids using the harder dispersive estimate.
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J|W|2 VP =0

thus 4 =0 and Theorem 1.3 in [16] can be applied.

2.2. Statement of the Strichartz estimate

The main results of this section refer to the equation

10 1 xX—y _

A(0,x,y) = Ao(x, ).

The natural Strichartz norm for our system of Hartree-Fock-Bogoliubov type
equations are of the form ||A||; s ra(ax)i2(ay)» Where p, q are Strichartz admissible in
3 dimensions. This is motivated by the fact that A(t,x,y) is expected to be a
perturbation of ¢(t,x)p(t,y) where ¢ satisfies a 3 dimensional NLS, and
b (&%)t y) | 1o (a1 2 (ay) = 1Pl 1o aryraan 1@l anr2(ay)- These norms are easy to
work with, and variants of these norms have been used for related problems as least as
early as [19] (see also [20]). Thus, one of the variables is averaged out, and although A
is a function of 6+ 1 variables, the dispersive estimate proved later in this section
(Proposition 2.20) is modeled after a 3 + 1 dispersive estimate.

We define

||A[|gra = max{[|Al |U’(dt)Lq(dx)L2(dy)’ ||A] |U(dt)L‘1(dy)L2(dx)’ 1A |LI’(dt)Lq(d(xfy))LZ(d(xﬁv))}
with the dual Strichartz norm

F !/ al
|| || P> q
Sdual

= min{||F||p an 1o an22(ay) I aryro gy r2an W o @) o (@ emy) 2oy b
and the natural question to ask is whether

[Allsean = [[Aollzz +[[Ell 4.0,

dual

(24) for any admissible pairs (p1, q1), (P2, g2). This amounts to 9 inequalities. We will
show that if not both (p;, q1), (p2, g2) are end-point exponents (p = 2,q = 6), then (24)
is true (all 9 cases hold). In the double end-point case we have to exclude the two cases
where x and y are flipped: we don’t know if

Al 2anyzsian iz ay) = Aol iz + Fl 2 aiors a2 a) (25)

is true.
In order to exclude this, we fix a number py > 2 (in our application, py = %,qo =4
will suffice) and define the “restricted” Strichartz norm
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1A

= sup A () 2a(anyrz (ay)
Po<p<00, p, qadmissible

’Srestrictﬂd

+ sup ||A] |LP(dt)Lq(dy)L2(dx)

Ppo<p<00, p, gqadmissible

+ sup A o a9 x—p)) 12 (A x)) - (26)

2<p<o0, p, qadmissible

Notice that the end-point is included in x — y, x + y coordinates.
In this section, we prove

Theorem 2.3. (non-endpoint result) Let V € L¥*(R®) as above, 0 < < 1 and assume
(20), (21) hold. Let p;, q; (i=1, 2) be Strichartz admissible pairs and assume both p; > 2.
Let p!, q; be the dual exponents. If A satisfies (23), then

[[Allgrra = [[Aoll2 + [ F|

s (27)

dual
We also have a “one end-point result™:

Theorem 2.4. (one endpoint result) Let V € L32,0 < B < 1, and assume (20), (21) hold. Let
P1 q1 be Strichartz admissible pair and assume py > 2 or p, > 2. If A satisfies (23) then

[Allsea =[Aollz2 +[El 4., - (28)

dual

Finally, we have a double end-point result:

Theorem 2.5. Let V € L¥2,0 < < 1 and assume (20), (21) hold.
If A satisfies (23), then

[Alls2s = [[Aoll2 + [1Fll12aeys/saee—y)r2dgey) - (29)

Remark 2.6. The proof of the above theorem could be adapted to show the additional
estimates

A 2 aryrs(an 2y = 1Aollz2 + NFI 2 ey rors () r2(ay)
||A||L2(dt)Lé(d(xfy))LZ(d(xwLy)) = ||FH‘SZZ’12

but, in order to keep the exposition simple, we won’t do it.
Theorem 2.4 and Theorem 2.5 imply the following concise form, which is what we
will use in our applications:

Theorem 2.7. Let V as above, 0 < f <1, and py > 2 defining Srestrictea (see (26)) be
fixed. If A satisfies (23), then, for any admissible Strichartz pair (p, q) (including the end-
point (2, 6)),

A (30)

= |[Aollz +[IF]]

A
Srestricted SZ::;
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Remark 2.8. The above theorems have immediate and obvious generalizations to all
dimensions > 3. Also, the spaces can be localized to any finite or infinite time interval,
and the theorems go through with obvious modifications. For instance,

|| ||Svestrxcted Tl TZ = ||A(T1)||L2 + ||F||SP ‘1 T T]

Remark 2.9. Obviously, Theorem 2.4 implies Theorem 2.3. We list them separately
because the proof of Theorem 2.3 is based on standard techniques, while the proof of
Theorems 2.4 and Theorem 2.5 requires essentially new ideas.

These are presented in the next two subsections.

2.10. Standard techniques

We will use the following well-known identities, which were also used in [21-23].

Proposition 2.11. Let

t X
NF =i | D p s
0

NoF =i te"(tfs)(A”Ay)F(s)ds.
Then the following identities holdo(denoting Vv = Vn (%))
N = No = —N 3 Vo = ~No Vi’ (31)
and thus
N = No = Mo Vo & No Vi 4 Vi (32)

Proof. Look at

1 10 10
— = -——A,—A - —A,—A
oo (2 a e 2) (2 )
=Noy-N
where we have used the fact that ' and N are left and right inverses of the corre-
sponding differential operators. For the second part of (31), reverse the order of N and
No. The formula (32) is obtained by iterating (31). O

In addition, we need the following propositions:
Proposition 2.12. Let Ny be as in Proposition 2.11. Let (p1,q1), (P2 q2) be Strichartz
admissible (including the end-points p; = 2,q; = 6). Then
||N0F||LP1 (dt)L0 (dx)L?(dy) = ||F||Lp!2 (dt)Lq/Z(dx)Lz(dy) (33)
||ezt (As+A,)

AOH 1 1(dx)L2 S||A()|| 2. (34)
Proof. L (dn)Ln (dx)L2 (dy) L

t
INOE(t %) 2(ay) = 1™ J IR S E(s, - )|y
0

_ ||j i(t=s)Ac zsAyF( ")dS”LZ(dy)

and
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I[NV oE(t, x, ')||L2(dy) |01 (dt)La1 (dx)

_ ||J i(t=5)As, ISAyF( )dSHLZ(dy)||Lz71(dt)Lq1(dX)

t
< |H|J0 BB E(s, sl o a2y
< C||||eiiSAyF<S’ ’ -)HD”Z (de)L% (dx)||L2(d}’)

S C| | | |eiiSAyF(S’ > ) ‘ |L2(dy) | |Lp/2 (dt)Lq/Z (dx)
= ClIF|| 12 (ar)15/5 (av)12(ay) -
The proof of (34) is similar. See Lemma 5.3 in [1]. O

We also have the following version which excludes the double end-point, but works
with any choice of coordinate systems:

Proposition 2.13. Let Ny be as in Proposition 2.11. Let p; q; (i=1, 2) be Strichartz
admissible pairs, with at least one p; > 2. Also, let R € O(6). Then

||N0F||LP1 (dt)L91 (dx)L?(dy) ~ HF ° R||LP2 (dt) 1% (dx)L2(dy)

In particular,
[INoF|goroar = [IFI| g, (35)

dual

Proof. Using (34), the TT* argument and the O(6) invariance of A we have

I J (A+A) | F(s,-)ds||;n (dt)La1 (dx)L2(dy)

=|[[EoR|| ()L (dx)L2(dy)"

By the Christ-Kiselev lemma (Lemma 2.4 in [24]), we conclude

||J AIAEAI B (s, -l gty 0 ) 120)

=|[[FoR]|,, ()L (dx) L2 (dy)

provided p; > p5. O
Finally, we have a version which includes the potential, but only works in coordinates
compatible with the potential:

Proposition 2.14. If V(x) is such that we already know (20), (21). Then,

it( A A——V
1€ AR Aoy i sy = ol l2asay) (36)

IV Ellir g ae-yyszcatesn = Pl st gy aeypcageny (37)
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Proof. The proof is similar to that of (33) and (34), but is based on writing A, + A, —
Vn(x—y) = Ai\/! + (A% - VN (%)) and using the fact that these commute. O

2.15. The new estimate

The main step in the end-point cases, which may be of interest in its own right, does
not involve the potential. We will show

Theorem 2.16. Let A = NF be the solution to

10
(7§—Ax—Ay)A_F

A(0,x,y) = 0.
Then the following closely related estimates hold:
AN 2arys(an 2y < CUFI 2 ms @y @) (38)
AN z2arys(ayrzary < CUFI iz ms @y @@y (39)
and also,
A 2ty s de—y)z ey < CHEI 2 mos a2y (40)

AT 2 arys @z @y < ClHFI e anss iy ax) -
Together with the estimates of the previous subsection, Theorem 2.16 implies
Corollary 2.17. For any Strichartz admissible pair p, g (including the end-point)
|INoF | gpa = [|F || 2 ae) /5 (d -y 12(d x9)) (41)

[INOF [ 2 a1 (a(x—y))12ageyy) = [1Fl e - (42)

dual

This complements the estimates of Proposition 2.12, Proposition 2.14, and
Proposition 2.13. And, it will be used in the proof of Theorem 2.5.

The proof of Theorem 2.16 will be given in subsection 2.19. It uses a new dispersive
estimate in mixed coordinates, see Proposition 2.20 below.

Now we can outline the proofs of our main results.

2.18. Proofs of Theorem 2.3, Theorem 2.4 and Theorem 2.5, assuming
Theorem 2.16

Proof. Assume first Ag = 0. We proceed to estimate the terms in (32).
1 1 1
NF:NOF7N0NVNN0F+NONVNNNVNNOF

For the first term, if p; > 2 or p, > 2 use Proposition 2.13:
INoFllsp,,q, = [IFll g1

dual



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 2027

while, for the proof of Theorem 2.5, if we are in the double end-point case, we use
Theorem 2.16:

[N oF ] 526 = IF | 2y 1975 (dx—y)) 12 (d () -

This is the only term where we don’t know if we can flip x and y in the double end-
point case.
For the second term,

||N0 VNNOF”SPI am~ || VNNOFHLz dt) L5 (d(x—y))L2(d(x+))
1 16 i =
(we used Propos1t10n 2.13 if p > 2 and Theorem 2.16 if p; =2)
= Iy VNl g IV oFl 2 anynoqate-y) 22 e
Using Proposition 2.13 if p, > 2 and Theorem 2.16 if p, = 2, we conclude

[INVOFI| 2 a1 (d -y 2 (d ) = ||F||go2 -

dual

For the third term in (32) we proceed along the same lines,
1 1
||N0 = VNN_ VNN OF|| gian

=I5 VNN VNNOFIL L 8 ey 22 )

= ||N < VNN OF| |12 ) 15 ey 12 (dx9)

=I5 VAN a8 sy ey
(here we used Proposition 2.14)

1
= |15 VoIl 3V oFaryo(ae-
=[Ell 4,

dual

YD (d(x+y))

Notice that if either p; = 2 or p, = 2 we have to use Theorem 2.16.

Finally, we show how to reduce the proof of Theorem 2.3, Theorem 2.4 and
Theorem 2.5 to the case Ay =0. Consider the homogeneous version of the above
Theorems (F=0), written in the form

10 xX—y
A, — A JA=— A
(za y> NVN< \/§>
A(ny,J/)_AO;

where we treat 3 Vy (%)A =1 VN( \/-y) H(Actby =V () A, as a forcing term.

From (36) we have, for A = ¢ A=V (3) ) Ay,

it (Ax+Ay— V
le ( o AOHLZ dt)LS (d(x—)) L2 (d(x+y)) ~ = [|Ao|lp2

thus
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-y
|| ~ VN < \/E > A| |L2(dt)L6/5(d(x—y))Lz(d(x+y))
<<

NVN||L3/2‘|A‘|L2(dt)L6(d(x7y)) L(dxty) = Aol

and we use Proposition 2.13 or Theorem 2.16 to conclude

1 x—y
||N0 (N VN( \/E )A>||3Pl»q1

-y
= II_VN< V2 )A||L2<dt>L6/5<d<x—y>>L2<d(x+y>> = [[Aollz-

Finally, from (34) we have

(A F4) A0||L2(dt)L6(dx)L2(dy) = [|Aol[2-

It remains to prove Theorem 2.16.

2.19. Proof of Theorem 2.16

The proof will follow the outline of Keel and Tao. The main step is proving a new dis-
persive estimate.

Proposition 2.20.

_C
(i) < 77 Wl

" (A )
and, similarly,

| |eit(AX+Ay)f

C
Iz (a2 (ay) < n 112 (a2 (et - (43)

Proof. Our proof is inspired, in part, by Lemma 1 in [25] and also Lemma 2.2 in [15].
We will prove (43).
By a density argument, it suffices to take

B y—Xx x+y
o= En( ()
with u; orthogonal (but not normalized), and v, orthonormal. (This is a singular value

decomposition of f composed with a rotation; it will turn out that the orthogonality of
ug will not play a role). Then

) = 3 () (M) ) (F )

Then the LHS of (43) is sup, ||Z(eimuk)<%)(e’mvk)< )||L2 g?)- Look at this
expression with x, fixed.

The RHS of (43) is, using Plancherel and the fact that v, are orthonormal, RHS of
43)= 512 lue|® ) ||z g2y The proof will be complete once we prove the following
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lemma, in which the general orthonormal set (e"*v;) <%) is re-labeled v; and the uy
have also been shifted by x, and re-scaled by % O

Lemma 2.21. There exists C> 0 such that, for any w,

,. C ;
sup (| (") wil ey < 753 (D Jel ) s oo (44)

vk orthonormal

Proof. Since we take supremum over all orthonormal sets vy, and ¢ is fixed, we may
replace v by e "y and (44) is equivalent to

— C )
sup |3 e ()" i)l < 5 (D0 el )l (45)

Vi orthonormal

For any A € S(R?), let e ™ A(x)e" = A(x + 2tD) where D=p =12 Using the
well-known formula
e—itAeixfeitAf(x) — eix~§eit\é|2f(x + 2t§)
we compute
1
(2n)’
1

_ A ()%l £ (5
s | A e 218y

<change variables ¢ — 52—x>
_ 1 ~(E—x i zt| X2
_(4m)3jA< 2t ) T (e

Thus the integral kernel corresponding to A(x + 2tD) is

1 - (—x+y\ _p2 p2
Kt(x,y) = <4nt)3A < Zt > Y e 4

B2 2

= Bt x(y) 717@ 4

where, in order to simplify the notation, for fixed t, x, we defined B .(y) =

1 5 [—x+ .
T -~ ). Notice

eiitAA(x)eitAf(x) — JA(f)eitAeix-ieitAf(x)dé

Cc
|1Be.xll12ay) = EHAHLZ'

For a suitable A with [|A]|,. =1,
137 e (x)e ) (46)
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- | T At
= Z < ey, Ae™y >= Z < up, e Ay >
= < up A(x+2tD)vi > . (47)

From now we take any A € S(R3) with [[A[[ 2y = 1.
We have to show

i C 3
67) = | X [ B dy| < SIS lf )

for any orthonormal v; and any |[A[|;2z:) = 1. The exponentials play no role now
(change notation and remove them).
Look at

ZJ”" X) <JBt,x(y)vk(y)dy> dx
Juk(x)ck(t,x) dx

(]

where, for fixed ¢ and x,

c(t,x) = jBt,x(y)Vk(y)dy

is a Fourier coefficient of B, . By Plancherel, we have 3~ |cx(t, x)[* < ||B:||}> uniformly
in t, x.
Now we go back to

‘Zjuk(x)ck(t,x) dx| < J (Zh‘k(x)lz)%(z |ck(t,x)|2)%dx
< 1Bl 1 (3 ) T = 1AL )

A second proof of this proposition will be given in section 5. O

We will finish the proof of Theorem 2.16 by adapting the argument of Keel and
Tao, [14].

Let R be the rotation (x,y) — \/% (x — y,x + y). Following [14], define

lo'e}

t
I(F,G) = j J < 7950 E(s), G o R(t) > dsdt
0

—00
with T; the above integral restricted to t — 2" <s <t —2. In this formulation, the
goal 1s |T(F G)| < C||F||L2 dt L5 dx)LZ d}/ || ||L2 dt LS(dx)LZ(dy)

Using the dispersive estimate of Proposmon 2.20, Lemma 4.1 in [14] goes through
word by word, and we have

—q )b
|T;(F,G)| < C277*Y)||F 2 atyro () r2a) |Gl 2 ey 1 a2 (ay)

for all (1, 1) in a neighborhood of (%, 1). Here fi(a,b) =1 — 2 — 2 so that (6,6) = 0.
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As for Lemma 5.1 in [14], their formulation is for C-valued functions in L?, while we
need it for L* valued functions in I? (that is, F € L?(dx)L*(dy)). We have the follow-
ing analog:

Lemma 2.22. Let 1 < p < co. Any F € L?(dx)L*(dy) can be written as

)= atlxy)

(V) 12ay) @5 supported in x in a set of measure

_k
O(2"), || 1ll = (dx) L2 (dy) < C27F and 3= ¢ < Cl|FIIf, 4y 12(ay)-

where each

Proof. Define, for o > 0,
o) = [IF( ) |pzgrey > o}

and
o = inf «
Moy<2t
Ck=21k’ock
and define
1(x.y) = ip(x’y) if o < [[F(0 )|y < o

0 otherwise.

From here, we get right away

1 .
el = 4 g POl 36 o < IFG ey < o
0 otherwise.
Thus
G iz = D el iy

is exactly the atomic decomposition of [14] corresponding to the L? function x —
||F (%, )||r2(4y)- From here we get for free ||x;(x,y)||r2(4)) is supported in x in a set of
measure O( ) HXkHL30 dx)L?(dy) < C2- P and ZCP < CHFHLP dx)L?(dy)" U

To finish the proof, following [14], use the above decomposition to write
F(t,x,y) =Y fi)Fe(t,x,y)  (thus ¢ is called fi, y; is called Fy)
G(t,x,y Z (1) Gk(t,x, )
thus
D IT(E G < Y ITj(feFe 81Go)

and optimizing there exists € > 0 such that

e
1T (i g1G)| = 27 I3 e g
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which can be summed as in [14]:

> ITi(fkFi 1Gr)| =

Jsks1

(Jk—
£l el

=2
( ||Lz) (Z ||gk||Lz>
( mHLz) (anmp)

L5 (dx)L2(dy) || ||L%(dx)L2(dy>'

3. Proof of Theorem 1.2
3.1. A priori bounds and basic estimates
We will use the following estimates:

Proposition 3.2. For any smooth, L, self-adjoint, positive semi-definite kernel T'(x,y) we
have the pointwise estimates

T ) < T0)T (), (48)
and
V.T(x,2)| < Ex(x)F - T(z.2)% (49)
where Ex(t,x) is the kinetic energy density defined as

Ex(x) = Vi - V,I(t,x,p)] (50)

x=y*

Proof. The above two estimates follow from the Cauchy—Schwarz inequality, and writing

T(xy) = Zw (51)

|

Proposition 3.3 (Fixed time estimates based on conserved quantities). Under the
assumptions of Theorem 1.1,

1T (8s 2 2) | e aryr ) = 1705 % %) |3y = 1
[T (5 2 3) | oo (a2 (ax)»
< IV V| iz (avay) + 10626 0 | gy an) S 1

D1y () = L
k|| (a2 (aw) = 1- (52)

Proposition 3.4 (Space-time estimates based on interaction Morawetz). Under the
assumptions of Theorem 1.1,
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N0 =1 (52)
which implies

||¢||L;‘L§ =1L (53)

Proof. A proof of this result has already appeared in the unpublished thesis [26]. For
completeness, we include the proof in section 4. 0

3.5. Estimates for the RHS of (7) in dual Strichartz norms

Denote

1
<S + N Vn(x — y)> A(t,x,y) = Terml + Term2 + Term 3 + Term 4, (54)

where

Term 1= —(Vy *xI'(t,x,x) + Vy *IT'(t,3,9)) - At x, ),
Term 2 = VyAo T+ T o VyA,
Term 3 = Ao VyI' + VyT oA,

and

Term 4 = 2(Vy * | o)) (0)d(x)p(y) + 2(Vy * [¢7) (x)d(x)d(y).

Let 2 < py < % and define the localized, restricted Strichartz norm

| |A| |Srestrited[T1a TZ]

= sup A o7y, 5] (dx) 12 (dy)
Po<p=<00, p, qadmissible

+ sup Ao r, zy)2a(ap)12(av)
Ppo<p<00, p, gadmissible

+ sup A Lo, s ax—y) 12 (@) }-

2<p<00, p, qadmissible
and, for (p, q) an admissible Strichartz pair, define the localized dual norms

| |F‘ |SZ;’£I [Tb Tz]
= min{||F|| 7, 13100 () r2(ay) o, mojerayy 2 (avy 1E N oimy, mojie demy) 2 desy)) -

In preparation for applying Theorem 2.7, we state the following estimates, in a simple
(but not sharp) form which will suffice for our goal. We will use Proposition 3.2,
Proposition 12 and Proposition 3.4 to bound various terms uniformly in N, keeping
track only of ||T'(t,x, x)|12(r, 1,y which will be small (after suitably localizing in time),
and [|Al[g,,...ir, 7,) which will be handled by a bootstrapping argument.
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Theorem 3.6. Under the assumptions of Theorem 1.1, for k=1, 2, 3 we have

1 1
rem Higg . =N g, s 7

3 1
(VTerm kil s = NIDE 00 o, gy At

dual

-|—N5||l“(t,x,x)||L2[T1 Tyl (d) |VAllg
|ViV,Term k|| s

restn ted Tl TZ]

Zu?zl[Tl Tz]

SNEHF(t’x’x)sz [Th, T]L2( dx)||VA|

Syestrited [Tl > TZ]

+ 1Tt % x )”LZ[TI 1)1 (dx) (”V VyAL S g, 11ps gy

+ | |vxv)’A(t’ X,)/) | ‘L%[Tl, TZ]L4(dy)L2(dx)> :

Also,
|[Term 4[] =1,
dual[Tl T

[[VTerm 4|[ ,s <N,
dual[Tl TZ]

||[ViV, Term 4| & <N
dwl[Tl TZ]
Notice that V,V, Term 4 had to be estimated in an end-point dual Strichartz norm.
The proof of this theorem is based on Proposition 3.2, Proposition 12, Proposition
3.4 and Holder’s inequality. It will be given in an appendix.

3.7. Polynomial in N estimates for the Strichartz norms of A and its derivatives

In this subsection, we finish the proof of Theorem 1.2.

Using the a priori estimates of Theorem 3.6, as well as the Strichartz estimates of
Theorem 2.7, we estimate first ||A||g and then use this to estimate ||[VA|s  and
then ||V V A

restricted

N restricted *

Theorem 3.8. Under the assumptions of Theorem 1.1, the following holds

[IA]

Srestr[cted [0> 00) < N4,
Proof. Recall

1
(S + N Vn(x — y)> A(t,x,y) = Term 1+ Term 2 + Term 3 + Term 4. (55)

Adapting the argument of Bourgain [13], we use estimate (52) to break up [0, 00)
into about N* time intervals [T}, Tj;1] where N3||T'(t, x, x) < € (with € suffi-

||L2[T Ty 1)L (dx)
ciently small to be determined later).
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We will show that each ||A|] st < C where C depends only on the initial condi-

tions of the system at t=0.
For t € [T}, Tj4,] we have

AGE) = ot (-Bsr i) +IZJ (80 49%) Term k(s)ds

c= (AW A(T)) + ZAk (56)

Using Theorem (2.7), and the conservation (10)

e CAr ST s, 7,1 = ATl < 1.

Also Theorem 2.7 and Theorem 3.6 imply,

restncted T ’I:Hl ]

| |Z k| |Srestvxcted T T:H»l Z| |Ak|

Srestrimd[Tj> Tj+l] + 1

< NP9l 1 A

= 6| |A| |Svestricted [T]’ Tﬂ’l] + L

Putting everything together, using the decomposition (56),

Srestricted [T’ ’I}‘Fl] S Cl + C2€| |A| Sre&tricted[’[}) Tji+l]

where C;, C, depend only on the initial conditions of the system at time t=0. If we

choose Cye < §, we get

| |A| |Srestvicted [T]’ Tj+1] S 2C1 (57)
and, summing over all ~ N* intervals,
[1Als10,00) = .
|

Theorem 3.9. Under the assumptions of Theorem 1.1, the following holds

<=N°.

restricted

IVA]

Proof. The proof uses the estimates of Theorem (3.8), and is similar in structure. It uses

the same ~ N* intervals [T}, Tj;1].
Differentiate the Eq. (55), and estimate the right-hand side in a dual Strichartz space
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Thus

(54 Vatx =) ) VA2

=VTerm1 + VTerm2 + VTerm 3 + VTerm4

- v( Vi (x — y)>A

Call the last term Term5. Following the argument of the previous proof:
VA(t) = ”(*Ax’ﬁ%“@v/\( T;)

t
zZJ (8 ) T Term k(s )ds+J ¢/t (A7) Term 5(s)ds

T

— () GA(T ZAk
Using conservation of energy (see (13)), we have

AN A(T)|

Srestrictcd [T}, T:H»l} | |VA( ) | |L2 -~ ]'

It remains to estimate VTerm1,..., VTerm4 and Term 5 in 8 dual
We have, using Holder’s inequahty

||Term5||L2[Tj,Tjﬂ}Lg(d(xfy))Lz(d(xqty N||A||L2[T T]“] S(d(x—y))L*(d(x+y))

<N (we used (57)),

while, from Theorem 2.7 and Theorem 3.6 and another application of (57),

4
ZHAk

Smsm‘cted [Tp Tj+l]

<Z||VTerm kH T + || VTerm 4|

k=1 dual b 2 dual[ b 2]

1 i
= N2| |F(t’ X x) | |L2[T1, Tz]Lz(dx) | |VA| |Syestrited[T1: TZ]

+ NIT (59 i, 2| i 1 + N
< C)N + C26||VA|

Since € is chosen so that C26<
VA

resm ted Tl TZ]

summing the previous estimates we get
S < N and, summing over all ~ N* intervals,
restricted [ +1]

IVAILs, s SN

restrxcled

Finally,

Theorem 3.10. Under the assumptions of Theorem 1.1, the following holds

V.V, A <N?%.

| | ‘Srestricted
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Proof. We write

1
(S + N Vn(x — y)> ViV, A(t, x,y)

=V,V,Term1 + -+ V,V,Term4

—V( Vi (x — y)>VA v( Vi(x — y)>VA vv< Vi(x — y)>A

with initial conditions ||V,V,A¢||;> =N. Unlike the previous two proofs, we no longer
have a priori bounds on the growth of ||V, V,A(t)||> - in fact this is what we are trying
to prove. Now we split [0,00) differently than before. Now we only require
[1T(¢, x, )||L2 T Tl S 6 with e (independent of N) to be determined later. The
number of 1ntervals only depends on [|I'(t, %, x)|| 20, 0c)12(ax) = 1, and is independent of
N. We apply Theorem 2.7 and Theorem 3.6 directly on [T}, Ti11], using the estimates
for [|Alls,.., and [[VA[|g from the previous two theorems.
For k=1, 2, 3 we have

3 1
||V<V,Term k|| st z[T . <Nz||F(t,x,x)||4LZ[T[’TM]L2(dx)||VA\|3resmd[ThTM]

+ [T (tx,x )IILZ[T 1z (ol Ve VyAlls
< CININ® 4 G| |V, V, A

restrxted T Tx+l ]

Srestrited | Tis Tiv1]?
while

ViV, Term 4| , <N
dual[T Ti]

As for the terms where the derivatives fall on the potential, for example

ViV, ( Vn(x — y)) [t £ 7 T = ||vz VNI A2 r, 1 (ax—y) 2 (ace)

duu

= N[|A|

]sNﬁ.

Srestrired[Tia Ti+l

Thus, with some choice of constants C; depending only on the initial conditions, we
get from Theorem 2.7

IV VyAlls, el T
< GV A(T) ||z + CNT + CelIVeVyAlls,, im 1o
If we pick Cse < 1, and notice ||V, V,A(T))||;2 < [[V.V,Allg Sreea|Ti_1, 7> WE conclude
| |vay/\| Srestrited [ Tis Tiv1]
< 2(CilIVeVyAllg,ir 1) + CNF)

Applying this arguments a finite number of times (independent of N), and summing
the result, we are done. O
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4, Proof of Proposition 3.4

The outline of this section is inspired, in part, by [27, 28] and the similarities between the
HFB system and the GP hierarchy. The main result appeared in the unpublished thesis [26].

4.1. Local conservation laws

Let us start by defining the relevant quantities which will allow us to effectively capture
the conservation laws of the HFB system. We define

Too = p := I'(x;x) (58a)
Tjo = Toj = Pj := ;de’é(x —x) [axgr(x; x') — 0, T(x; x’)} (58b)
Ti = 0jx + poj == de'é(x — x')(050¢ + axkax]{)F(x; x') (58¢)

1
+ 5jk5 (—Ap + deVN(X —)/)E(x’y; x’y)>

1
I = E4[dyVN(x - y){(?yjﬁ(x,y; xy) — 8xj£(x,y; %)} (58d)

Lx,y;x,y) =T x)T(y;y) + T(x ) )T (y;4) (58e)
+ A% y)AX,Y) = 2¢(x)P (1) P(x)D(Y).

In the literature, T}, is often referred to as the pseudo-stress-energy tensor and L is
the two-particle marginal density matrix of our quasifree state. Then the associated local
conservation laws are given by

{Btp—FZV-P:O

OP+V-(a+pl)+1=0" (59)

To derive the local conservation laws, it is convenient to first rewrite the equation for
I'(x;x’) in the following form

10
{;5 A AL }r<x; <) = By (L) (60)
where
By(L) := B (L) — By (L), (61a)
BU(E) i) = | dydy Vi = )60y = )£l y5, ), (61b)
B(£) (i) = | dydy Vo' = 1)3(y — )Gy, (610

Notice (60) has the structure of a BBGKY hierarchy, that is, the evolution of the
lower marginal density matrix depends on the higher marginal density. Unlike, the
standard BBGKY hierarchy, the quasifree structure of our state allows us to decompose
our two-particle marginal density matrix £ into a linear combination of products of
one-particle marginal densities I', A and the condensate wave function ¢.
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Proposition 4.2. Let I' be a smooth solution to (60), then we have the local conservation
of number

ap
ot

Proof. By direct calculation, we see that

dud/
a — l u— M xa
= J (2n)6 g ( )

- [

=3

+2V.-P=0. (62)

x4 — (W (u; o) (63a)

el xBV(E)(u u'). (63b)

For the first term, we have that

(63a) = V, - J‘(l;‘:;‘

)% (y 4D (us ) = =2V, - P.

For the second term, we have that (63b)= iBy(L£)(x;x) = 0. O

Proposition 4.3. Let (¢, I, A) be a smooth solution to the HFB system, then we have the

continuity equation
OP+V-(6+pI)+1=0. (64)

Proof. Differentiating P with respect to time yields
1 [ dudy i(u—u')-x (u + u/) 2 N2\ T /
OP(x) =~ | ——5e (= (W) ) (w5u)

(2m)° 2
! —_—
Jdudu eZ“”>x<u+u)BV(£)(u;u’)
(2n)° 2
1 dudy/ .
_ i(u—u')x / / o
=—= e u+u)Q (u+u)l (u;u
3V | G ) @ (o))
dudi (u+u) —
) 2 I BU(L) (uy i) =: J1 + Jh.
e ) By () =+
Let us first handle the J; term. Notice we have that
1 dudv' -
— i(u—u')-x 1\ ®2 o
=—-V, e u—u)"T'(u;u
=5V | G ) )
— V- JME” D@ u +u @ u)l (u;u).
(2m)°

Then, completing the Fourier inversion gives us

1 1
hh :EV~V2p(x)—V~a:—V- (—EApI—l-a).
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Next, we deal with the J, term. By the Fourier inversion, we write
Jo = =5 | 4¢00x = ) {T.B(£) () - V(L) )},
Then we observe that
de’é(x — %)V, By (L) (x;x)
= | dx'dyd(x — x)Vi({V(x = y) = Vn (' = )} L% y;2,y))
= | dxX'dyd(x — X' \V(Vn(x — 2))L(x, y; X, y)
+ [ o= ) (Vilx - ) = V(o' = ) VLl yi')

= | dyVi(Vn(x = y)) L(x.y; %, y).

Likewise, we have that
de’é(x — % )VuBy(L)(x; %) = — deVX(VN(x — y))ﬁ(x,y; x9).

Hence it follows
2 = = | &9, (vt = ) £y
=5 | (Tt =) = TVl ) i)
= —%Vx (J dyVn(x — y)L(x.y; x,y)) -1
_ _%vx . <J dyVy(x — y)L(xy: y)I> -l
This completes the argument. 0

4.4. Interaction Morawetz estimate

The main result of this section is the interaction Morawetz-type estimate for the I'
equation. To prove the estimate, we need a two-particle Morawetz identity for the trun-
cated two-particle marginal density matrix

L(x,y;x,y) =T X )T(y;y). (65)
We formally” define the virial interaction potential for L associated to a € C(R?) by

Va(t) == dedya(x — y)L(t,x,y;%,) (66)

2In general, we are not certain whether (66) and (67) are well-defined. However, since we are interested when , it can
be shown that (67) is well-defined. More precisely, since is uniformly bounded, then it follows is uniformly bounded for
all time.
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and its corresponding Morawetz action
M) = 0v°(1) =2 [ dxdyValx — ) - [PWp0) ~ pPG)). (@)

Then we have the following truncated two-particle Morawetz identity.

Proposition 4.5. Let (¢,I', A) be a smooth solution to the HFB system with trI'(t) =
and E(t) < C (see (9), (11)), and let a(x) = |x|. Then we have the identity

31 (1) = 2 [ dxdy(~8a) (x ~ y)p(x)p() (682)
+ J dxdyAa(x — y){p(x) szVN(y —2)L(y,z;9,2)
+p(y) szVN(x —2)L(x,z; x, z)} (68b)

+2 | dxdyVa(x - y) : {a(x)p(y) + p(x)(y)

J

—4P(x) ® P(y)} (68c)

+2 | dxdyVa(x —y) - {p(x)I(y) — I(x)p(y)}. (68d)

Here, : denotes the standard double dot product, that is, for any n x n matrices A and
B, we have that A : B = Zi)j ajjbi;.

Remark 4.6. Let us note that Proposition 4.5 only states that for each fixed N, identity
(68) holds. It does not say that the identity is independent of N. In fact, we are not sure
whether (68d) stays uniformly bounded in N. However, this does not pose any issues
for us since shortly we will see that the term gives a positive contribution which we can
ignore when proving the interaction Morawetz estimate.

Proof. The main issue is to show that any integration by parts is justified by the conser-
vation laws. It is convenient to first note some facts about the pseudo stress-energy ten-
sor. By the conservation laws, we see that p(x) € L!(dx) N L*(dx), the components of
P(x) are in L'(dx) N Li(dx) and the components of o(x) are in L'(dx). However, we
don’t know anything about the decay properties of Ap appearing in Tj

To handle any issues with the integration by parts, we apply a smooth spatial cutoff
function. Let y € Cgo(]Rd) be a radial function whose support is contained in the ball
B(0, 2) and is identically 1 on B(0, 1). For every L >0, define

w30 =2 [y (B ) Vate ) P0ptn o). (69

Taking the time derivative of (69), applying the local conservation laws (59), and

integrating by parts yields

M;(t) = Zdedny <x (@) Va(x —y)>
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A (38001 = 34,000 )1 (703
; (;jdsz — )Lz 2) (70b)
—l—%szVN(x e Loz z))l
Ho()p0) + ) — 19 & P} (700

—|—2dedyy<| Ly|>Vax y) - {p@)ly) — I(x)p(y)} (70d)

Next, we consider the limit as L tends to infinity. It is not hard to see that any
derivative of y is uniformly bounded in L and vanishes near the origin. Let us first han-
dle (70b). By direct calculation, we have that

\ (,c<|xL yl)Va(x y))

:%X,(Ix;ﬂ) <x—|;2§z>y<|»;—y> +X<|x;y|>vza(x_y)

which means

(700)
1 ! |x — )’|
=7 dxdydzy i VN — 2)p(x)L(y, z; ,2) (71a)
+ dedydzx <@> Aa(x — y)Vn(y — 2)p(x)L(y, z; ¥, 2) (71b)
+ similar terms with x and y switched. (71¢)

Note that by the conservatlon of number and energy, we have that

7 0
) < L ey (jdydsz—zm(y,z;y,z)) ~0

as L —o00. Next, by the dominated convergence theorem, we see
that (71b) 4 (71c) — (68b).
The term (70c) is handled in a similar manner. More precisely, we see that

(70c) = %dedy;((lx zy|> (x—y)®(x—y)

e =y
H{o()p(y) + p(x)aly) — 4P(x) © P(y)}
—|—2dedy,{<| Ly>V2 (x—y) (72b)

{o(x)p(y) + p(x)a(y) — 4P(x) © P(y)}.
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For the term (72a), we have the estimate

cll £ Il
[(72)] < =222 (11 p Hlpag | o losgag + 11 P Iiag) =0

as L tends to infinity.
For the term (72b), we first recall that VZa(x) = |x|™’ (I - ’l‘f—lj‘) Then, by
Hardy-Littlewood-Sobolev inequality, it follows that

(726)] < Zjdx{\ai,»(xm e + Jd)’w}

— |x —y|
< Cll @ Huaglll- 1™ # plliag + €Il P I

Hence it suffices to check that (|- | " % p)(x) is uniformly bounded. Note that we

have the estimate
J dy p(y)
lx—y|<1 |X - )’|

Udy p(y) ‘S
<l I*IIILg(BI(O»II P iy 1l o ey <C

+ [ aoiy)

|x — y|

which holds uniformly in x. Then, by dominated convergence theorem, we again see
that (72b) — (68¢).

Next, for each fixed N, we show that (70d) — (68d) follows immediately from the
Lebesgue dominated convergence theorem. More precisely, we see that

|<70d>|scjdxp<x>jdy|z<y>|

<l p s (11 V Hesiall 0 ol # o 11 Vi lagll VA 1)
<CN?.

Lastly, let us handle (70a). It suffices to estimate

[ty (1 (5 720) Vet~ ) Auptpon

L
~ sty (572 o) 73
+ dedyAx;c('x;y |>Aa(x = y)p(x)p(y) (73b)
+2 [axyw.r (72 ate oo (730)

+ [ sy (2721 8ate — ye)ot. (73d)
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By the remark in the beginning of the proof, we see that
C
|(73a) + (736) + (730 <Ll o llisca

which converges to zero as L tends to infinity. Lastly, we have that

7300 = a2 ) ot — ) = 521 v

which is clearly uniformly bounded in L. Hence, by the dominated convergence the-
orem, we have the desired result. O

With this special choice of observable, we have that (—AAa)(x) = 8nd(x) which we
have already used. Also, it is not hard to see that (68a) and (68b) are positive terms
since

szVN(x —2)L(x,z;x,2) >0 (74)

given Vy > 0. To prove the Morawetz estimate, we need to be able to control (68c) and
(68d). In fact, we will show that (68c) > 0 and (68b) + (68d) > 0, then deduce

Sanxp(t, x)* < M (t) (75)
which will lead to the desired estimate.
Lemma 4.7. Assume Vy is a positive radial function, i.e. Vy(x) = N*V(NP|x|) > 0,
with V'(r) <0. Let (¢,I',A) be a smooth solution to the HFB system. Then we have
that (68b) + (68) > 0

Proof. By change of variables and integration by parts, we see that

(68d) = —4 J dxdyp(y) —2 . I(x)

|x =yl
:_4jdxdydzN4/fv'(N/”|x Dply) = - Z| |ﬁ ;E(x,z;x,z) (76a)
—4dedyszN(x— )W. (76b)

Notice that (76b) = —(68b). Finally, exploiting the symmetry £L(x,z;x,2) =
L(z,x;z,x), we can rewrite (76a) as follows

(76a) = —2dedydzN4ﬂV’(Nﬁ|x —z|)p(y)

X{x—z KTy L ETx Z_y}ﬁ(x,z;x,z)>0.
x—z| [x—y[ [z—x] [z—y]
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The last inequality follows from L(x, y;x,y) > 0, V'(r) <0, and the identity

- - 1— cosf
u—v U v-u v (lu| + |v])(1 — cos )20~ 77)
u=v| ful v —ul | |u—v|

|

Lemma 4.8. Let (¢, I,A) be a smooth solution to the HFB system. Then we have
that (68¢) > 0.

Proof. Since A(x,y) := V?a(x — y) is symmetric (in fact, it is positive semi-definite), we
can rewrite (68v) by swapping some indices as follows

%(68c) = dedydx’dy’é(x —x)o(y — ) Z Oa(x —y)
ik

X {(ij(?x;( + 3xk8xj{) + (avjay;( + 8yk6)/j)
+ (axj - 89(;)(8)% - ay;)}L(x’)@ x/’)/)

= dedydx'dy’é(x —x)o(y — ) Z Oa(x —y)
ik

X {(9y, = 0)(0y, = Oy) + (0 + 9y) (O, + 0y ) (%, ;%Y.

Writing in matrix notation (with A = A(x,y), and V a column vector)

% (68¢) = dedydx’dy’é(x —xNo(y —y)

XA {(Vi = V,)(Ve — V) Lix,y; ¥.,y) (78a)
+(V. VL + VyV§)L(x,y; x,y) (78b)
+(VxV; + Vx/V;)L(x,y; X, )} (78¢)

Since L is a positive operator, then it has a unique positive square root /L such that
L= \/f o \/f In particular, we can now write

(78a) = | dxdydx,dy,dx'dy' dx,dy,6(x — X' )6(y — y')d(x2 — x5)0(y2 — ¥5)

XA {(Vx — V)VL(xy; x’z,y’z)(VNy/)Tﬁ(xﬂy’;Xz,yz)}

= | dxdydx,dy,dx'dy' dx,dy,6(x — x')6(y — ¥')d(x2 — x5)0(y2 — ¥)

X (Ve Vy) VL, y5x2,72) A(Vx = V,)VL(x, 355, 5))
= |43V, = V) V] > 0.
The same argument holds for (78b), that is
(78) = [| AV VL[5 + || A2V, VI [
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For the final term, we need the observation /L(x,y;x,y") = VT (x;xX)VT(y;y).
Then it follows that

(78¢) = Jdxdydxzdyzdx’dy/dx;dy’zé(x —x)o(y — y)d(x2 — x5)(y2 — ¥5)

x A {VVT(x:2,) VIV (y; ) VT (325 8 ) VT (32 )
+ VT (x) V(3 ) Ve VI (25 X ) VEVT (723 5)}

= Jdxdydxzdyzdx’dy’dx/zdy’zé(x —x)o(y — y)(x2 — x5)0(y2 — ¥5)

T
x {(Vxﬁ(x,yz;x’z,y’)) AV, VL (2,312, 3)

T
+ VyVL(x).y';%.y2) AVeVL(X, Y55 %2,9)}.
Finally, by Cauchy-Schwarz inequality, we have that
(780)] > —2| AV VL[5 | A2V, VL5

Hence the desired result follows. 0

Proposition 4.9. Let I'(t) be a smooth global solution to (60) with trI'(t) = 1 and E(t) <
C (see (9), (11)). Then the following estimate

Jdtdx|T(t, xx) =<1 (79)

holds uniformly in N and depends only on the initial data. Moreover, we also have the
estimate

I Mpsaran) = 1- (80)

Proof. By the above lemmas, it immediately follows that

T
SnJ dtdep(t,x)z < MY(T) — M*(—T), (81)
-7
To complete the argument, let us recall that T'(x;x') = ¢(x)¢p(x') + N~ (sh(k)(k) o
sh(k)(k))(x;x’), then we see that

we(0) = [ dsdyoly) =2 39 )V (2) (822)
+%dedyp(y) li :; : 3 (SRR o Vsh(k)(x))- (82b)

Finally, by a standard momentum-type estimate (see Lemma A.10 in [24], we see that
1
(0] < € [t { V16O + 3 190w

Finally, by the conservation of numbers and energy, we have the desired estimate. [
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5. Second proof of Proposition 2.20

Since this proposition is the main new technical ingredient of our paper, we give a
second proof which is not based on the kernel of the operator A(x + 2tD) (Weyl calcu-
lus), but rather on the Green’s function.

We would like to show the following estimate,

; C
sup [[¢* +Ax2)f(x1’x2)||L2(dx2) < A Iz (v, )12 )

where (for convenience) we set

s X1+ % X X1 — X2
142 '= T) 1-2 ' = —F=—
2 V2

As in the first proof, we take the singular value decomposition of f(x;,x;) in the
rotated (x;_,,x1.,) variables and write

X1 — X2 X1+ %
) = S (M (7
R A
where {vx} are orthonormal and {uy} are orthogonal. The evolution equation can be
written with the help of the Green’s functions as follows,

e'™ +A’(z)f (x1,%2)

. T =yl e _y2|2>}
(4nt)® J V1672 zk: {”k()’l)"k()’z) exp (z i 4 —
R xR?

The phase in the exponential can be expanded,
%12 = 3’ n X102 = ol _ a + 1l + i+ 1yl
4t 4t 4t

. X1 Y142 o X2 * Y2—1

2t 2t

and in view of the above we redefine,

2 f2x -
ug(t, y1,x1) = ug(y1) exp <l|)’1|4—t1)’1)

2_ /2%, -
vi(t, y2, x1) == vi(y2) exp (1‘}’2'4—t1y2>

Notice that

{w(t. -.x1)}; is orthonormal.
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Next we pick some function A(x,) € L*(R?) and employ duality,

JR3 dxz{ H(Ag Ay )f(xl, x2)A(x,) }

e a 2921 \Xz\
= J d)/ld)’2z uk(t,yl,xl)vk(t,yz,xl)dez{ — (xz)}

(4nt)’ k
R*xR? R?
ei\xi\
- (47‘”‘)3 J d)’ld}’2 Z {Uk(t,)’l, xl)Vk(tJ/z; xl)A <t’ %) }
k
R’xR?

where we set,
Altxy) = & Axy)
A(t, é) = J dX2{€7ix2'éA(t,X2)}.
R3

Let us now define

ck(t, x1, 1) :J d}’z{vk(tyz’xl) g 2\/_);1}

and the orthonormality of the set {vi(¢, -,x;)} imply
Z jex(txp)[* < de)’z{|A< 2\/_y1>|2} = CP||Al[f2(ge)-

Finally we have using Cauchy-Schwartz,

JR3dx2{ei(Axl+sz)f<xl’xz)A<x2>}'

sup
x €R?

<l (o) ()
<% (3 |uk<yl>|2>f < Al

The fact that {v;} are orthonormal imply that

Z|uk()’1

Hf(xbe)HLl (dx1_2)L2(dxry2) ’

L'(dyr)

6. Appendix: Proof of Theorem 3.6

The detailed estimates for Term 1, Term 2 and Term 3 are slightly different (and irrele-
vant). They are
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|[Term1|| Z4I[T . < (T 260 | pary, 1y)22(a) AL (71, 1]

||VTerm1|| 54 f = N||['(t, x, x)||L4[T1,T2]L2(dx) [|A] Syestrited|T1> T

dual T TZ]

+ IT(t % )| | g, TZ]LZ(dx)HvM Srestrteal T1> T
Vv Term1|| [T T, SN||F(t’x’x)||L4[T1,T2]L2(dx)||VA||S,ES”,<,E,;[T1,T2]

duul

+ [|T(t,x, x>||2Lz Ty, T5)L2(dx)

'WWVM@%NEUEMMH@+“VVA“*”@mmwmww)

[Term2|| s = NHIT(6x) [

5 3 [Ty, T»)L?(dx) | |A| Srestrited[T1> T2
Sou[T1> T2]
ual

||VTerm2|| & = N3||(t, %, %)||

| |L4[T1 Tz]LZ (dx) | |A| Srestrited[Tlx TZ]

m )
- NHIT (% g, 2 VA s
||V,V,Term2|| s S < N3||[(t, x, x) |psizy, (i) | VAl sl 1)
|| Term3|| s Sy < (|1T( 260 | pary, 122 (a) AL iy, )
||VTerm3|| s mm -

= NIt %) a7y, 1220 1A
+ 1T % ) |, (a0 [ VA

Srestrited [T] > TZ]

Srestrired [Tl > TZ]
3
+ N4| |r<t’ X, X ) Srestrited Tl Tz]
V<V, Term3|| Ty = NIt % %) a7y, 15102020 IV Al s, el 73)-

dual 2]

[—

To go from here to Theorem 3.6, we estimate

||F(t’x’x)||L4[T1,T2]L2(dx) < ||F(t,x,x)||§Lz[T1)T2]LZ(dx)||F(t,x,x)||5LDO[T1)T2]L2MX)

= ||F(t, X, x)“iz[T],Tz]Lz(dx)'

We present the detailed proofs, split into several propositions.
The estimate for Terml is an immediate consequence of Holder’s inequality, the
Leibniz rule and Vy(x) = N>V (Nfx) with p < 1.

Proposition 6.1. For any time interval [Ty, T,]
10V T DA S 3t
IV T A2t 1 s
= |[T(t % )| pary, )12 (av)

' (HA(t’x) )||L3[T T]L4(dx)LZ dy + ||A(t x’ >||L§[T1,T2]L4(d}/)L2(dX>>.

while
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V(i * D625 A0 D, 1108
+ |V y (Vi D(t, 3, )AL, X, )

| |L%[T1, T3)L53(dy) L2 (dx)
=< NI|[T(t % %) a17,, 1512 ()

(||A(t x’y)||L3 Ty, T, L4(dx)L2 d)/ + ||A(t ‘x’ )||L%[T1,T2]L4(dy)L2(dx))
T2 2) g, 1020

: (||Vx,yA(t,x, )||L3[T TZ]L“(dx)LZ + ||VX }’A(t x’ )HL%[TI,Tz]L“(dy)LZ(dx))
and

929, (Vi * P62 0Ab 2 L b
+ V2V (Vi T(t, 5 y) At %, y)
=< NT(t % %) 4(7,, 15 )12(ax)

' <||vWA(t’ Y )”U[T L dx2(dy) 1V y AL x’y)||L§[T1,T2]L4(dy)L2(dx))
+ 0G| o7, 7,12 ()

: <||va}’A(t’ x’y)||L§[T1,T2]L4(dx)L2(dy) + ||vayA(t’ X,y)”

) | ‘L%[Tl) Tz]L%(d)/)Lz(dx)

[, TZ]L“(dy)LZ(dx)) ‘

The propositions that follow are slightly more involved variants of the above argument
In order to estimate Term2, we will use

Proposition 6.2. For any time interval [Ty, T,]
ICVNAY O Tlls i, ropidianyza(ay

= |IVNIIZL%IIAI\Lzm,Tz]Ls(d(xfy))Lzu(Hy))IIVNIIELI T8 2, )7y, 702 | T (6 2 )1

= N7|[[(t,x, )| |5L4[T1, oA, e ey 2de)
an also

1T 0 (VN8 07, 20822

1
= N2|[L( % )| L e A2 7y, 1)1 (e 2 (d ey
Proof. We have the pointwise estimate

[(VnA e T)(tx,y)| =

J Vn(x — 2)A(t, x,2)[(t, 2, y)dz

1

< <J Vn(x — 2)|A(t x, z)|2dz>% <J Vn(x —2)|T(t z,y)|2dz>E (83)
= A(t,x)B(t, x, 7).
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Thus
||(VNA) ° r'|L§([T1»T2])L%(dx)L2(d)’> < ||A||L2[T1:T2]L2||BHL8L4LZ

and
A 27, e < ||VN|E%l|A||L2[T1,Tz]Lﬁ(d(x—y))LZ(d(x+y))'

Also, using (48),

1

H <J Vil - ZNF(tz;y)sz)z

I3[y, To)LA(dx) L2 (dy)

: H <J Ve = Z)IF(t,z,z)ldz|r(t,y,y>|>i

L8[Ty, To]L*(dx)L2(dy)
L 1 1
< VNI T 26 ) g, 72 1T (6 26 ) [ -
The proof of the second estimate is similar. O

Next, we need the above estimate with derivatives.

Proposition 6.3. For any time interval [Ty, T,),

| |(VNA) o vyr| |L§([T1’ Tz])L%(dx)p(dy)

1 1 1 1
= ||VN||2L%||A||L2[T1,TZ]L5(d(x—y))L2(d(x+y))||VN||ZLI||F(t’ %) Lagr,, g2 1Bkl e

= N2{|T (6 2) L, g | A2, 13082 ey
(we used Proposition 12). Thus, using the Leibniz rule,

IV (VNA) @ Dl it i,

= N2[|[°(¢, x, x)| |§L4[T1, e AN L2 gy, )08 (@) 12 (dxt9)
+ N2 |T(t % 2) Ly, 1y | Vey Al 2y, 1@y 2 de9))

and

IVaVy((VaA) o F)HL%([TI, To])L3 (dx) L2 (dy)

= N[t ) g, e N Vay Al iy, s (a2 (dey) -

A similar estimate holds for

1V (T 0 VAl 1, 1ty

Proof. The argument is similar to the previous proof, with minor modifications. We
have the pointwise estimate
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[(VaA o V,T)(t,x,y)| = ' J Vn(x —2)A(t,x,2)V,I'(t, 2, y)dz

2

< (J Vn(x —2)|A(t x, z)|2dz> (J Vn(x = 2)|V,I(t, z,y)|2dz> (84)
= A(t,x)C(t,x, )
and
||(VNA) ° Vyr||L%([T1,T2])L%(dx)Lz(dy) < ||AHL2[T1,T2]L2||C||L8L4L2'
For A, we have already noticed
Al 27y, 7y < ||VN||i%||A||L2[T1,Tz]Lé(d(x—y))Lz(d(x—&-y))'

For C, we use (49):

H (J Ve = Z)IVyr(t)z,ydeZ)%

L8[Ty, Ty L*(dx)L* (dy)

SH(JWMx—@HUJJWh&UJO%

L3[Ty, T ]L*(dx) L (dy)

1 1 1
< VNI 2 ), 7ogze |l e

Next, we discuss Term3. =
Proposition 6.4. For any time interval [Ty, T,]
‘ﬁm@-@ﬂ@@A@ﬁ& o
L5[Ty, T,]L3(dx)L?(dy)
= | |F(t’ X5 X) | |L4[T1, T>|L2(dx) | |A| |L%[T1, Ty)L* (dx) L2 (dy)”
and also
|[awaone-nnena|
L5[Ty, T,)L3(dx)L?(dy)
= | |F(t,y,y) | |L4[T1, T,)L2(dy) | |A| |L%[T1, Ty)L* (dy)L2(dx)”
Proof. Using 48 together with Holder’s inequality and Young’s inequality, we have
| J(VNF)(% 2 (2)dz|| 4 = ||T (6 x)||pa W] - (85)
Thus, at fixed time, using Y/(x) = [[A(x, *)|[12(4)>
I D)0 DM@ g ) = TGl A (36)

The proof is finished by using Holder’s inequality. The argument for the second esti-
mate is similar. O
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Next, we introduce derivatives:

Proposition 6.5.

It = D9.F) 0 2D s
< VAT %) g, s Bl et 1A |81, T2y

; %

= Ni|[T(ex, x)||LZ[T1,Tz]Lz(dx>||A||L§[T1,T2]L4(dx)L2(dy)‘

where Ey is the kinetic energy density, see (50) and the estimate of Proposition 12. Thus
[V J Vn(x — 2)T(x,2)A(z, y)dz]| s
= NI 2 %) g, 7,02 (0 1Al
+ (2 ) pary, z02(a [ VA

3 1
+M'|r(t’x’x)||22[T1)T2]L2(dx)||A‘|L%[T1,T2]L4(dx)L2(dy)'

31, TZ]LS(dx)LZ(d)’)
L8[y, T5)L4 (dx) L2(dy)

| 3T, To)L4 (dx) L2 (dy)

and

9.9, | V= AP (2Dt

<N||F(t x’x)HL“ [Ty, T»)L?(dx) ||v A”L3 Ty, To)L* (dx) L2 (dy)

+N3||1"(t,x, )HLZ[Tl T]L? (dx) 1V, A||L3[T1 T, L4 (dx) L2 (dy)”

Similar estimates hold for [A(x,z)(Vn(z — y)I'(z,y))dz.

Proof. Using (49) and arguing as in the previous proof, with (x) = [[A(x, )] 124> We
have,

I v 2baldzls = NIEVa + (P2 ()
< B : vy * (T2 2% (@) .0

< B 1Vl g (T 22 ()]l

< IVl TG0 g e s o A

Now the result follows using Holder’s inequality in time. The proof of the second
estimate is similar. O

Finally, we need estimates for (Vy * |¢|*)(x)(x) ().
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Proposition 6.6.

1V # 1) DD g8 agiziay N * DD DIDE D 1800120
= |[(Vy * |¢|2)(x)||L2(dt>L2(dx)||¢||Loo(dt)L3(dx)||¢|\Loc(dt)L2(dy)

=1
V0 (Vo 5 ) DS S0N  a

1T (V1P B0N s i
=N
V.9, (VR SISO s g8 g

IV (Vi < 16PY D0 i =N

Proof. All the above can be proved using (9), (11) and (53).

Since || Vi VyAll a2 (axay) = V2 VyA|

the proof of Theorem 1.2 is complete.
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