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ABSTRACT

We prove that certain Sobolev-type norms, slightly stronger than
those given by energy conservation, stay bounded uniformly in time
and N. This allows one to extend the local existence results of the
second and third author globally in time. The proof is based on
interaction Morawetz-type estimates and Strichartz estimates (includ-
ing some new end-point results) for the equation f1

i
@t � Dx � Dy þ

1
N
VNðx � yÞgKðt, x, yÞ ¼ F in mixed coordinates such as LpðdtÞ

LqðdxÞL2ðdyÞ, LpðdtÞLqðdyÞL2ðdxÞ, LpðdtÞLqðdðx � yÞÞL2 ðdðx þyÞÞ: The
main new technical ingredient is a dispersive estimate in mixed
coordinates, which may be of interest in its own right.
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1. Introduction

This paper is devoted to the study of some global estimates for solutions to a coupled

system of Schr€odinger-type equations (see (6), (7) and (8) below) approximating the

evolution of weakly interacting Bosons. For the sake of completeness, we include a brief

overview of the argument motivating these equations.

We refer to [1] for detailed explanations. The problem is to understand the linear

Schr€odinger evolution of data equal to (or close to) a tensor product /ðx1Þ � � �/ðxNÞ:
The Hamiltonian is

HPDE ¼
XN

j¼1

Dxj �
1

N

X

i<j

VNðxj � xiÞ

(mean-field negative Hamiltonian, with VNðxÞ ¼ N3bVðNbxÞ, 0 � b � 1). For simplicity,

assume V satisfies the following conditions

V is spherically symmetric and (1)

V � 0, V 2 C1
0 ,

@V

@r
ðrÞ � 0:

The condition V � 0 is used in two places: it insures that the potential part of the

energy (11) is non-negative; and also, together with the condition V 2 C1
0 , is
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convenient for justifying the 3 dimensional dispersive estimate (22). The condition
@V
@r ðrÞ � 0 is used to prove the interaction Morawetz estimate, see Lemma 4.7. Note

that, in the critical case b¼ 1, 1
N
VNðxÞ � 1

jxj2 (at least if jxj � 1
N
), and 1

jxj2 scales like D,

making this case critical.

The problem is easier to understand in the symmetric Fock space, with Hamiltonian

H :¼
ð
dx a�xDax
� �

� 1

2N

ð
dxdy VNðx� yÞa�xa�yaxax

n o
:

We recall that the Fock space Hamiltonian acts as a PDE Hamiltonian on the nth

entry of Fock space

Hn,PDE ¼
Xn

j¼1

Dxj �
1

N

X

i<j

VNðxi � xjÞ

(see for instance [1] for the definition of Fock space and the creation and annihilation

operators a� and a). The natural choice for initial conditions is

e�
ffiffiffi
N

p
Að/0Þe�Bðk0ÞX

where X is the Fock space vacuum,

Að/Þ :¼
ð
dx �/ðxÞax � /ðxÞa�x
� �

so that e�
ffiffiffi
N

p
Að/Þ is the Weyl (unitary) operator. The coherent state

e�
ffiffiffi
N

p
Að/Þ

X ¼ :::cn
Yn

j¼1

/ðxjÞ:::
 !

with cn ¼ ðe�Njj/jj2
L2Nn=n!Þ1=2:

has tensor products in each entry, making it a natural choice for this problem.

We also recall

BðkÞ :¼ 1

2

ð
dxdy �kðx, yÞaxay � kðx, yÞa�xa�y

n o
:

The unitary operator e�BðkÞ is called the implementation of a Bogoliubov transform-

ation in the Physics literature, and the Segal-Shale-Weil or the metaplectic representa-

tion in the Math literature. The state e�BðkÞ
X is called a squeezed state in the Physics

literature. It provides second-order corrections to coherent states.

In the recent math literature, this set-up first appeared in [2], followed by [3] where

e�BðkÞ is formally introduced.

Thus the problem is to find “effective equations” for /, k so that the exact evolution

wexact ¼ eitHe�
ffiffiffi
N

p
Að/0Þe�Bðk0ÞX (2)

is approximated, in the Fock space norm, by the approximate evolution

wapprox ¼ eivðtÞe�
ffiffiffi
N

p
Að/ðtÞÞe�BðkðtÞÞ

X: (3)

See (17) below for one such existing estimate.

The equations for /, k are easier to understand in terms of / and the auxiliary func-

tions K and C. See [1].
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We refer to [4] for a result of this type, in a slightly different setting. That work is

not based on the coupled Eqs. (6), (7) and (8).

Fock space techniques can also be applied to L2ðRNÞ approximations. See the recent

paper [5] and the references therein. We also mention the related approach of [6] and [7].

The equations we will study are similar in spirit to the Hartree–Fock–Bogoliubov equations

for Fermions. For Bosons, they were derived in [1, 8], and, independently, in [9] and the

recent paper [10]. The first two references treat pure states, as described below, while last

two treat the case of mixed, quasi-free states. The PDEs are the same in both cases. This

ends our overview of the motivation, and we proceed with the analysis of the equations.

The functions described by these PDEs are: the condensate /ðt, xÞ and the density

matrices

Cðt, x1, x2Þ ¼
1

N
shðkÞ � shðkÞ
� �

ðt, x1, x2Þ þ �/ðt, x1Þ/ðt, x2Þ (4)

Kðt, x1, x2Þ ¼
1

2N
shð2kÞðt, x1, x2Þ þ /ðt, x1Þ/ðt, x2Þ: (5)

The pair excitation function k is an auxiliary function, which does not explicitly

appear in the system.

Let V 2 C1
0 ðR3Þ,V � 0, and denote VNðx � yÞ ¼ N3bVðNbðx� yÞÞ be the potential,

with 0 � b � 1: We consider the following system:

1

i
@t � Dx1

� �
/ðt, x1Þ ¼ �

ð
/ðx1ÞVNðx1 � yÞCðy, yÞdy (6)

�
ð

VNðx1 � yÞ/ðyÞðCðy, x1Þ � �/ðyÞ/ðx1ÞÞ þ VNðx1 � yÞ�/ðyÞðKðx1, yÞ � /ðx1Þ/ðyÞÞ
� �

dy,

1

i
@t � Dx1 � Dx2 þ

1

N
VNðx1 � x2Þ

� �
Kðt, x1, x2Þ (7)

¼ �
ð

VNðx1 � yÞCðy, yÞ þ VNðx2 � yÞCðy, yÞ
� �

Kðx1, x2Þdy

�
ð

ðVNðx1 � yÞ þ VNðx2 � yÞÞðKðx1, yÞCðy, x2Þ þ �Cðx1, yÞKðy, x2ÞÞ
� �

dy

þ 2

ð
ðVNðx1 � yÞ þ VNðx2 � yÞÞj/ðyÞj2/ðx1Þ/ðx2Þ
� �

dy,

1

i
@t � Dx1 þ Dx2

� �
�Cðt, x1, x2Þ (8)

¼ �
ð

ðVNðx1 � yÞ � VNðx2 � yÞÞKðx1, yÞ�Kðy, x2Þ
� �

dy

�
ð

ðVNðx1 � yÞ � VNðx2 � yÞÞð�Cðx1, yÞ�Cðy, x2Þ þ �Cðy, yÞ�Cðx1, x2ÞÞ
� �

dy

þ 2

ð
ðVNðx1 � yÞ � VNðx2 � yÞÞj/ðyÞj2/ðx1Þ�/ðx2Þ
� �

dy:
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The solutions /,K, and C also depend on N. This has been suppressed to simplify

the notation. However, we will always keep track of dependence on N in our estimates.

In order to motivate our main result (Theorem 1.1 below), we recall the conserved

quantities of the system, which will also be used in the proof of our main theorem.

The first conserved quantity is the total number of particles (normalized by division

by N) and it is

tr CðtÞ
� �

¼ jj/ðt, �Þjj2L2ðdxÞ þ
1

N
jjshðkÞðt, � , �Þjj2L2ðdxdyÞ ¼ 1: (9)

From here we see that

jjKðt, � , �ÞjjL2ðdxdyÞ � C: (10)

The second conserved quantity is the energy per particle

EðtÞ :¼ tr rx1 � rx2CðtÞ
� �

þ 1

2

ð
dx1dx2 VNðx1 � x2ÞjKðt, x1, x2Þj2

� �
(11)

þ 1

2

ð
dx1dx2 VNðx1 � x2Þ jCðt, x1, x2Þj2 þ Cðt, x1, x1ÞCðt, x2, x2Þ

	 
� �

�
ð
dx1dx2 VNðx1 � x2Þj/ðt, x1Þj2j/ðt, x2j2

� �
:

Of special interest is the kinetic part of the energy,

tr rx1 � rx2Cf g ¼
ð
dx jrx/ðt, xÞj2
� �

(12)

þ 1

2N

ð
dx1dx2 jrx1shðkÞðt, x1, x2Þj2 þ jrx2shðkÞðt, x1, x2Þj2

� �
:

If we assume E � C, then we have an H1 estimate for K, uniformly in time (and N):
ð
dx1dx2 jrx1Kj2 þ jrx2Kðt, x1, x2Þj2

� �
� C (13)

and also
1

N

ð
dx1dx2jrx1, x2shð2kÞðt, x1, x2Þj2 � C:

Also, C satisfies the H2 type estimate

jjjrx1 jjrx2 jCðtÞjjL2ðdx1dx2Þ � E:

See [1, 8], as well [9] for these conserved quantities.

In addition, we have an interaction Morawetz-type estimate: if the initial conditions

have energy � C then

jj/ðt, xÞjj2L4ðdtdxÞ þ jjCðt, x, xÞjjL2ðdtdxÞ � C:

Recalling (5), we see right away that (13) can be improved (in different ways) for the

two summands of K:
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ð
dx1dx2 rx1

1

2N
shð2kÞ 2 þ

����rx2

1

2N
shð2kÞðt, x1, x2Þ 2

�
� C

N

����
����

����

(
(14)

ðdecay in NÞ andð
dx1dx2jrx1/ðt, x1Þrx2/ðx2Þj2 � C

ðextra differentiablilityÞ:

The goal of this paper is to prove the following improvement to (13):

Theorem 1.1. Let / ¼ /Nðt, xÞ,K ¼ KNðt, x, yÞ and C ¼ CNðt, x, yÞ given by (4), (5) be

solutions of (6), (7), (8) with smooth data (but not necessarily smooth uniformly in N),

satisfying

tr Cð0Þ
� �

� C

Eð0Þ � C ðsee ð11Þ for the definition of EðtÞÞ
jjjrxjjryjKð0, x, yÞjjL2 � CN

Let V satisfy (1), and denote VNðx� yÞ ¼ N3bVðNbðx � yÞÞ, with 0 � b � 1. Then

there exists � > 0 such that
ð
jjrxj

1
2þ�jryj

1
2þ�

Kðt, x, yÞj2dxdy � C (15)

uniformly in t and N.

This is significant because in [11] it was shown that, for 0 < b < 1, under suitable

assumptions on V, for every � > 0, there exists T0 > 0 depending only on

jj < rx>
1
2
þ� < ry>

1
2
þ�
Kð0, �ÞjjL2 þ jj < rx>

1
2
þ� < ry>

1
2
þ�
Cð0, �ÞjjL2

þ jj < rx>
1
2þ�/ð0, �ÞjjL2

such that the system is well-posed (in a certain norm) on ½0,T0	, see Theorem 3.3 and

Corollary 3.4 in [11]. Thus, estimate (15) extends the estimates of [11] globally in time.

The results of [11] together with an estimate of the form
ð
dxdyjjrxj

1
2þ�jryj

1
2þ�

Kðt, x, yÞj2 � CðtÞ (16)

(which is similar to (15), except that the bound is allowed to grow sub-linearly in

time) were used in [12] to give a Fock space approximation of the form

jjwexact � wapproxjjF :¼ jjeitHe�
ffiffiffi
N

p
Að/0Þe�Bðkð0ÞÞ

X� eivðtÞe�
ffiffiffi
N

p
Að/ðtÞÞe�BðkðtÞÞ

XjjF (17)

� CePðtÞ

N
1�b
2

for a polynomial P(t), and 0 < b < 1: (See (2), (3) for the definitions.) It is expected

that the estimates of the current paper will lead to a better Fock space approximation.

This will be done in future work by the first and last author.
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In addition, it is of general interest to know if Soblov norms higher than those given

by energy conservation grow in time. This was first accomplished for the non-linear

Schr€odinger equation in [13].

The proof of (15) is immediate if we interpolate between (14) and the following

Theorem 1.2. Under the assumptions of Theorem 1.1, there exists p such that

ð
j rxjjryjKðt, x, yÞj2dxdy � CNp
�� (18)

uniformly in time.

Remark 1.3. The power p we obtained is not optimal. However, it should be noted

that, even if jjrxjjryjKðt, x, yÞj2 � C at t¼ 0, an estimate of this form (uniform in N) is

not expected to hold at later times because of singularities induced by the potential VN.

The rest of this paper is devoted to the proof of Theorem 1.2. We regard the equa-

tion for K as a linear equation with non-local “coefficients” given by C and a forcing

term involving /: For C and /, we will only use a priori estimates, given by conserved

quantities and an interaction Morawetz estimate.

In addition, the proof involves new Strichartz estimates in mixed coordinates.

To give an idea of the proof, differentiating (7),

1

i
@t � Dx � Dy þ

1

N
VNðx� yÞ

� �
rxryKðt, x, yÞ

¼ �ðVN � Cðt, x, xÞ þ VN � Cðt, y, yÞÞ � rxryKðt, x, yÞ (19)

þ2rxry VN � j/j2ðt, xÞ/ðt, xÞ/ðt, yÞ
	 


þ other terms:

For the main term (19), we divide the time interval ½0,1Þ into finitely many intervals

(independent of N) such that jjCðt, x, xÞjjL2ðdtdxÞ is small, and the contributions of this

term can be absorbed in the left hand side. This uses an idea of Bourgain [13] and an

interaction Morawetz argument. Based on the above conserved quantities and the inter-

action Morawetz estimate, it is easy to prove

jjrxry VN � j/j2ðt, xÞ/ðt, xÞ/ðt, yÞ
	 


jj
L2ðdtÞL65ðdxÞL2ðdyÞ � CNpower:

In fact, we will show that all the other remaining terms on the right-hand side are in

a dual Strichartz space, with norms possibly growing in N. In order to show that, we

will first have to estimate K and rK in various Strichartz norms.

Then we get the desired result, provided we can prove Strichartz estimates (including

some end-points) for the equation

1

i
@t � Dx � Dy þ

1

N
VNðx � yÞ

� �
Kðt, x, yÞ ¼ F:

Proving these Strichartz estimates is the main new technical accomplishment of our

current paper.
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2. Strichartz estimates

From now on we use the notation A�B to mean: there exists C, independent of N,

such that A � CB:

2.1. Set-up

Let (p1, q1), (p2, q2) be Strichartz admissible pairs in 3 space dimensions (2
pi
þ 3

qi
¼ 3

2
),

with pi � 2, and let p0i, q
0
i the dual exponents.

Recall 1
N
VNðxÞ ¼ N3b�1VðNbxÞ, 0 � b � 1: Since the results of this section may be of

general interest, we point out the properties of V that will be used (which are weaker

than (1)).

We only assume V 2 L
3
2, thus 1

N
VN 2 L

3
2 uniformly in N � 1 and V(x) is such that

we already know the homogeneous Strichartz estimate

jjeitðDx�1
NVNðxÞÞf jjLp1 ðdtÞLq1 ðdxÞ� jjf jjL2ðdxÞ (20)

uniformly in N, as well as the double end-point 3þ 1 Strichartz inhomogeneous estimate

jj
ðt

0

eiðt�sÞðDx�1
NVNðxÞÞFðsÞdsjjLp1 ðdtÞLq1 ðdxÞ � CjjFjj

L
p0
2 ðdtÞLq

0
2 ðdxÞ (21)

with bounds independent of N.

These assumptions hold for V satisfying (1): If b < 1, just V 2 L
3
2 and N large is suf-

ficient. In that case, jj 1
N
VN jj

L
3
2
is small and an easy perturbation argument proves

(20), (21).

If b¼ 1, and V 2 C1
0 ,V � 0, the estimates (20), (21) follow by scaling from the cor-

responding estimates for N¼ 1. In turn, these follow by the Keel–Tao [14] argument

from the dispersive estimate

jjeitðDx�VÞf jjL1ðR3Þ�
1

t
3
2

jjf jjL1ðR3Þ: (22)

There is an extensive literature on such estimates, following the breakthrough paper

[15], but we could not find an explicit discussion of the case V 2 C1
0 ðR3Þ,V � 0:

However, this follows, for instance, from [16], Theorem 1.31 Since �Dx þ V is a non-

negative operator, it has no negative eigenvalues. It is well-known �Dx þ V has no

positive eigenvalues (by Kato’s theorem [17], or the earlier and more elementary result

[18], for instance). It is easy to show that 0 is not a resonance or eigenvalue. The corre-

sponding solution to ð�Dx þ VÞu ¼ 0 is harmonic away from the support of V and, if

u satisfies the resonance condition < x>�cu 2 L2 for all c > 1=2, then, using the mean-

value theorem one gets juðxÞj� jxjc�3
2, jruðxÞj� jxjc�5

2 for jxj sufficiently large. Thus

one can integrate by parts and get

1In fact, just part 2 of Lemma 2.2 in [28] suffices to prove the Strichartz estimates (20), (21), by standard Kato
smoothing techniques. This avoids using the harder dispersive estimate.
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ð
jruj2 þ Vjuj2 ¼ 0

thus u¼ 0 and Theorem 1.3 in [16] can be applied.

2.2. Statement of the Strichartz estimate

The main results of this section refer to the equation

1

i

@

@t
� Dx � Dy þ

1

N
VN

x� yffiffiffi
2

p
� 
 !

K ¼ F (23)

Kð0, x, yÞ ¼ K0ðx, yÞ:
The natural Strichartz norm for our system of Hartree-Fock-Bogoliubov type

equations are of the form jjKjjLpðdtÞLqðdxÞL2ðdyÞ, where p, q are Strichartz admissible in

3 dimensions. This is motivated by the fact that Kðt, x, yÞ is expected to be a

perturbation of /ðt, xÞ/ðt, yÞ where / satisfies a 3 dimensional NLS, and

jj/ðt, xÞ/ðt, yÞjjLpðdtÞLqðdxÞL2ðdyÞ ¼ jj/jjLpðdtÞLqðdxÞjj/jjL1ðdtÞL2ðdyÞ: These norms are easy to

work with, and variants of these norms have been used for related problems as least as

early as [19] (see also [20]). Thus, one of the variables is averaged out, and although K

is a function of 6þ 1 variables, the dispersive estimate proved later in this section

(Proposition 2.20) is modeled after a 3þ 1 dispersive estimate.

We define

jjKjjSp, q ¼ maxfjjKjjLpðdtÞLqðdxÞL2ðdyÞ, jjKjjLpðdtÞLqðdyÞL2ðdxÞ, jjKjjLpðdtÞLqðdðx�yÞÞL2ðdðxþyÞÞg

with the dual Strichartz norm

jjFjjSp0 , q0
dual

¼ minfjjFjjLp0ðdtÞLq0ðdxÞL2ðdyÞ, jjFjjLp0ðdtÞLq0ðdyÞL2ðdxÞ, jjFjjLp0ðdtÞLq0ðdðx�yÞÞL2ðdðxþyÞÞg

and the natural question to ask is whether

jjKjjSp1, q1 � jjK0jjL2 þ jjFjj
S
p0
2
, q0
2

dual

(24) for any admissible pairs (p1, q1), (p2, q2). This amounts to 9 inequalities. We will

show that if not both (p1, q1), (p2, q2) are end-point exponents (p ¼ 2, q ¼ 6), then (24)

is true (all 9 cases hold). In the double end-point case we have to exclude the two cases

where x and y are flipped: we don’t know if

jjKjjL2ðdtÞL6ðdxÞL2ðdyÞ� jjK0jjL2 þ jjFjjL2ðdtÞL6=5ðdyÞL2ðdxÞ (25)

is true.

In order to exclude this, we fix a number p0 > 2 (in our application, p0 ¼ 8
3
, q0 ¼ 4

will suffice) and define the “restricted” Strichartz norm
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jjKjjSrestricted

¼ sup
p0�p�1, p, qadmissible

jjKjjLpðdtÞLqðdxÞL2ðdyÞ

þ sup
p0�p�1, p, qadmissible

jjKjjLpðdtÞLqðdyÞL2ðdxÞ

þ sup
2�p�1, p, qadmissible

jjKjjLpðdtÞLqðdðx�yÞÞL2ðdðxþyÞÞ: (26)

Notice that the end-point is included in x � y, xþ y coordinates.

In this section, we prove

Theorem 2.3. (non-endpoint result) Let V 2 L3=2ðR3Þ as above, 0 � b � 1 and assume

(20), (21) hold. Let pi, qi (i¼ 1, 2) be Strichartz admissible pairs and assume both pi > 2.

Let p0i, q
0
i be the dual exponents. If K satisfies (23), then

jjKjjSp1, q1 � jjK0jjL2 þ jjFjj
S
p0
2
, q0
2

dual

: (27)

We also have a “one end-point result”:

Theorem 2.4. (one endpoint result) Let V 2 L3=2, 0 � b � 1, and assume (20), (21) hold. Let

p1, q1 be Strichartz admissible pair and assume p1 > 2 or p2 > 2. If K satisfies (23) then

jjKjjSp1, q1 � jjK0jjL2 þ jjFjj
S
p0
2
, q0
2

dual

: (28)

Finally, we have a double end-point result:

Theorem 2.5. Let V 2 L3=2, 0 � b � 1 and assume (20), (21) hold.

If K satisfies (23), then

jjKjjS2, 6 � jjK0jjL2 þ jjFjjL2ðdtÞL6=5ðdðx�yÞÞL2ðdðxþyÞÞ: (29)

Remark 2.6. The proof of the above theorem could be adapted to show the additional

estimates

jjKjjL2ðdtÞL6ðdxÞL2ðdyÞ� jjK0jjL2 þ jjFjjL2ðdtÞL6=5ðdxÞL2ðdyÞ
jjKjjL2ðdtÞL6ðdðx�yÞÞL2ðdðxþyÞÞ� jjFjjS6=5, 2

dual

but, in order to keep the exposition simple, we won’t do it.

Theorem 2.4 and Theorem 2.5 imply the following concise form, which is what we

will use in our applications:

Theorem 2.7. Let V as above, 0 � b � 1, and p0 > 2 defining Srestricted (see (26)) be

fixed. If K satisfies (23), then, for any admissible Strichartz pair (p, q) (including the end-

point (2, 6)),

jjKjjSrestricted
� jjK0jjL2 þ jjFjjSp0, q0

dual

: (30)
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Remark 2.8. The above theorems have immediate and obvious generalizations to all

dimensions � 3: Also, the spaces can be localized to any finite or infinite time interval,

and the theorems go through with obvious modifications. For instance,

jjKjjSrestricted T1,T2½ 	� jjKðT1ÞjjL2 þ jjFjjSp0, q0
dual

T1,T2½ 	:

Remark 2.9. Obviously, Theorem 2.4 implies Theorem 2.3. We list them separately

because the proof of Theorem 2.3 is based on standard techniques, while the proof of

Theorems 2.4 and Theorem 2.5 requires essentially new ideas.

These are presented in the next two subsections.

2.10. Standard techniques

We will use the following well-known identities, which were also used in [21–23].

Proposition 2.11. Let

N F ¼ i

ðt

0

e
iðt�sÞðDxþDy�1

N
VNðx�yffiffi

2
p ÞÞ

FðsÞds

N 0F ¼ i

ðt

0

eiðt�sÞðDxþDyÞFðsÞds:

Then the following identities hold (denoting VN ¼ VN
x�yffiffi

2
p
� �

)

N �N 0 ¼ �N 1

N
VNN 0 ¼ �N 0

1

N
VNN : (31)

and thus

N ¼ N 0 �N 0
1

N
VNN 0 þN 0

1

N
VNN

1

N
VNN 0: (32)

Proof. Look at

N 1

N
VNN 0 ¼ N 1

i

@

@t
� Dx � Dy þ

1

N
VN

� 

� 1

i

@

@t
� Dx � Dy

� 
� 

N 0

¼ N 0 �N
where we have used the fact that N and N 0 are left and right inverses of the corre-

sponding differential operators. For the second part of (31), reverse the order of N and

N 0: The formula (32) is obtained by iterating (31). w

In addition, we need the following propositions:

Proposition 2.12. Let N 0 be as in Proposition 2.11. Let ðp1, q1Þ, (p2, q2) be Strichartz

admissible (including the end-points pi ¼ 2, qi ¼ 6). Then

jjN 0FjjLp1 ðdtÞLq1 ðdxÞL2ðdyÞ� jjFjj
Lp02 ðdtÞLq

0
2 ðdxÞL2ðdyÞ (33)

jjeitðDxþDyÞK0jjLp1 ðdtÞLq1 ðdxÞL2ðdyÞ� jjK0jjL2 : (34)
Proof.

jjN 0Fðt, x, �ÞjjL2ðdyÞ ¼ jjeitDy

ðt

0

eiðt�sÞDxe�isDyFðs, � , �ÞdsjjL2ðdyÞ

¼ jj
ðt

0

eiðt�sÞDxe�isDyFðs, � , �ÞdsjjL2ðdyÞ
and
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jjjjN 0Fðt, x, �ÞjjL2ðdyÞjjLp1 ðdtÞLq1 ðdxÞ

¼ jj
ðt

0

eiðt�sÞDxe�isDyFðs, � , �ÞdsjjL2ðdyÞjjLp1 ðdtÞLq1 ðdxÞ

� jjjj
ðt

0

eiðt�sÞDxe�isDyFðs, � , �ÞdsjjLp1 ðdtÞLq1 ðdxÞjjL2ðdyÞ

� Cjjjje�isDyFðs, � , �Þjj
Lp02 ðdtÞLq

0
2 ðdxÞjjL2ðdyÞ

� Cjjjje�isDyFðs, � , �ÞjjL2ðdyÞjjLp02 ðdtÞLq02 ðdxÞ
¼ CjjFjjL2ðdtÞL6=5ðdxÞL2ðdyÞ:

The proof of (34) is similar. See Lemma 5.3 in [1]. w

We also have the following version which excludes the double end-point, but works

with any choice of coordinate systems:

Proposition 2.13. Let N 0 be as in Proposition 2.11. Let pi, qi (i¼ 1, 2) be Strichartz

admissible pairs, with at least one pi > 2. Also, let R 2 Oð6Þ. Then
jjN 0FjjLp1 ðdtÞLq1 ðdxÞL2ðdyÞ� jjF � Rjj

L
p0
2 ðdtÞLq

0
2 ðdxÞL2ðdyÞ:

In particular,

jjN0FjjSp1, q1 � jjFjj
S
p0
2
, q0
2

dual

: (35)

Proof. Using (34), the TT� argument and the O(6) invariance of D we have

jj
ð1

0

eiðt�sÞðDxþDyÞFðs, �ÞdsjjLp1 ðdtÞLq1 ðdxÞL2ðdyÞ
� jjF � Rjj

L
p0
2 ðdtÞLq

0
2 ðdxÞL2ðdyÞ:

By the Christ-Kiselev lemma (Lemma 2.4 in [24]), we conclude

jj
ðt

0

eiðt�sÞðDxþDyÞFðs, �ÞdsjjLp1 ðdtÞLq1 ðdxÞL2ðdyÞ
� jjF � Rjj

L
p0
2 ðdtÞLq

0
2 ðdxÞL2ðdyÞ

provided p1 > p02: w

Finally, we have a version which includes the potential, but only works in coordinates

compatible with the potential:

Proposition 2.14. If V(x) is such that we already know (20), (21). Then,

jjeit DxþDy�1
NVNðx�yffiffi

2
p Þð Þ

K0jjLp1 ðdtÞLq1 ðdðx�yÞÞL2ðdðxþyÞÞ� jjK0jjL2ðdxdyÞ (36)

jjN FjjLp1 ðdtÞLq1 ðdðx�yÞÞL2ðdðxþyÞÞ� jjFjj
L
p0
2 ðdtÞLq

0
2 ðdðx�yÞÞL2ðdðxþyÞÞ: (37)
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Proof. The proof is similar to that of (33) and (34), but is based on writing Dx þ Dy �
VNðx� yÞ ¼ Dxþyffiffi

2
p þ Dx�yffiffi

2
p � VN

x�yffiffi
2

p
� �� �

and using the fact that these commute. w

2.15. The new estimate

The main step in the end-point cases, which may be of interest in its own right, does

not involve the potential. We will show

Theorem 2.16. Let K ¼ N 0F be the solution to

1

i

@

@t
� Dx � Dy

� 

K ¼ F

Kð0, x, yÞ ¼ 0:

Then the following closely related estimates hold:

jjKjjL2ðdtÞL6ðdxÞL2ðdyÞ � CjjFjjL2ðdtÞL6=5ðdðx�yÞÞL2ðdðxþyÞÞ (38)

jjKjjL2ðdtÞL6ðdyÞL2ðdxÞ � CjjFjjL2ðdtÞL6=5ðdðx�yÞÞL2ðdðxþyÞÞ (39)

and also,

jjKjjL2ðdtÞL6ðdðx�yÞÞL2ðdðxþyÞÞ � CjjFjjL2ðdtÞL6=5ðdxÞÞL2ðdyÞ (40)

jjKjjL2ðdtÞL6ðdðx�yÞÞL2ðdðxþyÞÞ � CjjFjjL2ðdtÞL6=5ðdyÞL2ðdxÞ:

Together with the estimates of the previous subsection, Theorem 2.16 implies

Corollary 2.17. For any Strichartz admissible pair p, q (including the end-point)

jjN0FjjSp, q � jjFjjL2ðdtÞL6=5ðdðx�yÞÞL2ðdðxþyÞÞ (41)

jjN0FjjL2ðdtÞL6ðdðx�yÞÞL2ðdðxþyÞÞ� jjFjjSp0 , q0
dual

: (42)

This complements the estimates of Proposition 2.12, Proposition 2.14, and

Proposition 2.13. And, it will be used in the proof of Theorem 2.5.

The proof of Theorem 2.16 will be given in subsection 2.19. It uses a new dispersive

estimate in mixed coordinates, see Proposition 2.20 below.

Now we can outline the proofs of our main results.

2.18. Proofs of Theorem 2.3, Theorem 2.4 and Theorem 2.5, assuming

Theorem 2.16

Proof. Assume first K0 ¼ 0: We proceed to estimate the terms in (32).

N F ¼ N 0F �N 0
1

N
VNN 0F þN 0

1

N
VNN

1

N
VNN 0F:

For the first term, if p1 > 2 or p2 > 2 use Proposition 2.13:

jjN 0FjjSp1, q1 � jjFjj
S
p0
2
, q0
2

dual
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while, for the proof of Theorem 2.5, if we are in the double end-point case, we use

Theorem 2.16:

jjN 0FjjS2, 6 � jjFjjL2ðdtÞL6=5ðdðx�yÞÞL2ðdðxþyÞÞ:

This is the only term where we don’t know if we can flip x and y in the double end-

point case.

For the second term,

jjN 0
1

N
VNN 0FjjSp1, q1 � jj 1

N
VNN 0Fjj

L2ðdtÞL65ðdðx�yÞÞL2ðdðxþyÞÞ
ðwe used Proposition 2:13 if p1 > 2 and Theorem 2:16 if p1 ¼ 2Þ

� jj 1
N
VN jj

L
3
2
jjN 0FjjL2ðdtÞL6ðdðx�yÞÞL2ðdðxþyÞÞ:

Using Proposition 2.13 if p2 > 2 and Theorem 2.16 if p2 ¼ 2, we conclude

jjN 0FjjL2ðdtÞL6ðdðx�yÞÞL2ðdðxþyÞÞ� jjFjj
S
p0
2
, q0
2

dual

:

For the third term in (32) we proceed along the same lines,

jjN 0
1

N
VNN

1

N
VNN 0FjjSp1, q1

� jj 1
N
VNN

1

N
VNN 0Fjj

L2ðdtÞL65ðdðx�yÞÞL2ðdðxþyÞÞ

� jjN 1

N
VNN 0FjjL2ðdtÞL6ðdðx�yÞÞL2ðdðxþyÞÞ

� jj 1
N
VNN 0Fjj

L2ðdtÞL65ðdðx�yÞÞL2ðdðxþyÞÞ

ðhere we used Proposition 2:14Þ

� jj 1
N
VN jj

L
3
2
jjN 0FjjL2ðdtÞL6ðdðx�yÞÞL2ðdðxþyÞÞ

� jjFjj
S
p0
2
, q0
2

dual

:

Notice that if either p1 ¼ 2 or p2 ¼ 2 we have to use Theorem 2.16.

Finally, we show how to reduce the proof of Theorem 2.3, Theorem 2.4 and

Theorem 2.5 to the case K0 ¼ 0: Consider the homogeneous version of the above

Theorems (F¼ 0), written in the form

1

i

@

@t
� Dx � Dy

� 

K ¼ � 1

N
VN

x� yffiffiffi
2

p
� 


K

Kð0, x, yÞ ¼ K0,

where we treat 1
N
VN

x�yffiffi
2

p
� �

K ¼ 1
N
VN

x�yffiffi
2

p
� �

e
itðDxþDy�1

NVNðx�yffiffi
2

p ÞÞ
K0 as a forcing term.

From (36) we have, for K ¼ e
itðDxþDy�1

NVNðx�yffiffi
2

p ÞÞ
K0,

jjeitðDxþDy�1
NVNðx�yffiffi

2
p ÞÞ

K0jjL2ðdtÞL6ðdðx�yÞÞL2ðdðxþyÞÞ� jjK0jjL2
thus
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jj 1
N
VN

x� yffiffiffi
2

p
� 


KjjL2ðdtÞL6=5ðdðx�yÞÞL2ðdðxþyÞÞ

� jj 1
N
VN jjL3=2 jjKjjL2ðdtÞL6ðdðx�yÞÞL2ðdðxþyÞÞ� jjK0jjL2

and we use Proposition 2.13 or Theorem 2.16 to conclude

jjN 0
1

N
VN

x � yffiffiffi
2

p
� 


K

 !
jjSp1, q1

� jj 1
N
VN

x� yffiffiffi
2

p
� 


KjjL2ðdtÞL6=5ðdðx�yÞÞL2ðdðxþyÞÞ� jjK0jjL2 :

Finally, from (34) we have

jjeitðDxþDyÞK0jjL2ðdtÞL6ðdxÞL2ðdyÞ� jjK0jjL2 :

w

It remains to prove Theorem 2.16.

2.19. Proof of Theorem 2.16

The proof will follow the outline of Keel and Tao. The main step is proving a new dis-

persive estimate.

Proposition 2.20.

jjeit DxþDyð Þf jjL1ðdðx�yÞÞL2ðdðxþyÞÞ �
C

t3=2
jjf jjL1ðdxÞL2ðdyÞ

and, similarly,

jjeit DxþDyð Þf jjL1ðdxÞL2ðdyÞ �
C

t3=2
jjf jjL1ðdðx�yÞÞL2ðdðxþyÞÞ: (43)

Proof. Our proof is inspired, in part, by Lemma 1 in [25] and also Lemma 2.2 in [15].

We will prove (43).

By a density argument, it suffices to take

f ðx, yÞ ¼
X

uk
y� xffiffiffi

2
p

� 

vk

x þ yffiffiffi
2

p
� 


with uk orthogonal (but not normalized), and vk orthonormal. (This is a singular value

decomposition of f composed with a rotation; it will turn out that the orthogonality of

uk will not play a role). Then

eit DxþDyð Þf ðx, yÞ ¼
X

eitDuk
	 
 y � xffiffiffi

2
p

� 

eitDvk
	 
 x þ yffiffiffi

2
p

� 

:

Then the LHS of (43) is supx0 jj
PðeitDukÞ ��x0ffiffi

2
p

� �
ðeitDvkÞ �þx0ffiffi

2
p

� �
jjL2ðR3Þ: Look at this

expression with x0 fixed.

The RHS of (43) is, using Plancherel and the fact that vk are orthonormal, RHS of

(43)¼ C
t3=2

jjðP jukj2Þ
1
2jjL1ðR3Þ: The proof will be complete once we prove the following
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lemma, in which the general orthonormal set ðeitDvkÞ �þx0ffiffi
2

p
� �

is re-labeled vk and the uk
have also been shifted by x0 and re-scaled by 1ffiffi

2
p : w

Lemma 2.21. There exists C> 0 such that, for any uk,

sup
vk orthonormal

jj
X

eitDuk
	 


vkjjL2ðR3Þ �
C

t3=2
jj
X

jukj2
� �1

2jjL1ðR3Þ: (44)

Proof. Since we take supremum over all orthonormal sets vk, and t is fixed, we may

replace vk by e�itDvk, and (44) is equivalent to

sup
vk orthonormal

jj
X

eitDukðxÞeitDvkðxÞjjL2 �
C

t3=2
jj
X

jukj2
� �1

2jjL1 : (45)

For any A 2 SðR3Þ, let e�itDAðxÞeitD ¼ Aðxþ 2tDÞ where D ¼ p ¼ 1
i
@
@x : Using the

well-known formula

e�itDeix�neitDf ðxÞ ¼ eix�neitjnj
2

f ðx þ 2tnÞ
we compute

e�itDAðxÞeitDf ðxÞ ¼ 1

ð2pÞ3
ð
ÂðnÞe�itDeix�neitDf ðxÞdn

¼ 1

ð2pÞ3
ð
ÂðnÞein�xeitjnj2 f ðxþ 2tnÞdn

change variables n ! n� x

2t

� 


¼ 1

ð4ptÞ3
ð
Â

n� x

2t

� 

ei

n�x
2t �xeitj

n�x
2t j

2

f ðnÞdn

¼ 1

ð4ptÞ3
ð
Â

n� x

2t

� 

e�i

jxj2
4t ei

jnj2
4t f ðnÞdn:

Thus the integral kernel corresponding to Aðxþ 2tDÞ is

Ktðx, yÞ ¼
1

ð4ptÞ3
Â

�xþ y

2t

� 

e�i

jxj2
4t ei

jyj2
4t

¼ Bt, xðyÞe�i
jxj2
4t ei

jyj2
4t

where, in order to simplify the notation, for fixed t, x, we defined Bt, xðyÞ ¼
1

ð4ptÞ3 Â
�xþy
2t

� �
: Notice

jjBt, xjjL2ðdyÞ ¼
c

t
3
2

jjAjjL2 :

For a suitable A with jjAjjL2 ¼ 1,

jj
X

eitDukðxÞeitDvkðxÞjjL2 (46)
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¼
ðX

eitDukðxÞAðxÞeitDvkðxÞdx

¼
X

< eitDuk,Ae
itDvk >¼

X
< uk, e

�itDAeitDvk >

¼
X

< uk,Aðx þ 2tDÞvk > : (47)

From now we take any A 2 SðR3Þ with jjAjjL2ðR3Þ ¼ 1:
We have to show

jð47Þj ¼
����
Xð

ei
jxj2
4t ukðxÞBt, xðyÞei

jyj2
4t vkðyÞdx dy

���� �
C

t
3
2

jj
X

jukj2
� �1

2jjL1

for any orthonormal vk and any jjAjjL2ðR3Þ ¼ 1: The exponentials play no role now

(change notation and remove them).

Look at

Xð
ukðxÞ

ð
Bt, xðyÞvkðyÞdy

� 

dx

¼
Xð

ukðxÞckðt, xÞ dx

where, for fixed t and x,

ckðt, xÞ ¼
ð
Bt, xðyÞvkðyÞdy

is a Fourier coefficient of Bt, x: By Plancherel, we have
P jckðt, xÞj2 � jjBt, xjj2L2 uniformly

in t, x.

Now we go back to
����
Xð

ukðxÞckðt, xÞ dx

���� �
ð X

jukðxÞj2
� �1

2
X

jckðt, xÞj2
� �1

2

dx

� jjBt, xjjL2ðdyÞjj
X

jukj2
� �1

2jjL1 ¼
c

t
3
2

jjAjjL2 jj
X

jukj2
� �1

2jjL1 :

A second proof of this proposition will be given in section 5. w

We will finish the proof of Theorem 2.16 by adapting the argument of Keel and

Tao, [14].

Let R be the rotation ðx, yÞ ! 1ffiffi
2

p ðx � y, xþ yÞ: Following [14], define

TðF,GÞ ¼
ð1

�1

ðt

0

< eiðt�sÞDx, yFðsÞ,G � RðtÞ > dsdt

with Tj the above integral restricted to t � 2jþ1 < s < t � 2j: In this formulation, the

goal is jTðF,GÞj � CjjFjj
L2ðdtÞL65ðdxÞL2ðdyÞjjGjjL2ðdtÞL65ðdxÞL2ðdyÞ:

Using the dispersive estimate of Proposition 2.20, Lemma 4.1 in [14] goes through

word by word, and we have

jTjðF,GÞj � C2�jbða, bÞjjFjjL2ðdtÞLa0ðdxÞL2ðdyÞjjGjjL2ðdtÞLb0ðdxÞL2ðdyÞ
for all 1

a
, 1
b

	 

in a neighborhood of 1

6
, 1
6

	 

: Here bða, bÞ ¼ 1

2
� 3

2a
� 3

2b
so that bð6, 6Þ ¼ 0:
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As for Lemma 5.1 in [14], their formulation is for C-valued functions in Lp, while we

need it for L2 valued functions in Lp (that is, F 2 LpðdxÞL2ðdyÞ). We have the follow-

ing analog:

Lemma 2.22. Let 1 < p < 1: Any F 2 LpðdxÞL2ðdyÞ can be written as

Fðx, yÞ ¼
X

ckvkðx, yÞ

where each ck � 0, jjvkðx, yÞjjL2ðdyÞ is supported in x in a set of measure

Oð2kÞ, jjvkjjL1ðdxÞL2ðdyÞ � C2�
k
p and

P
c
p
k � CjjFjjp

LpðdxÞL2ðdyÞ:

Proof. Define, for a > 0,

kðaÞ ¼ jfjjFðx, �ÞjjL2ðR3Þ > agj

and

ak ¼ inf
kðaÞ<2k

a

ck ¼ 2
k
pak

and define

vkðx, yÞ ¼
1

ck
Fðx, yÞ if akþ1 < jjFðx, �ÞjjL2ðdyÞ � ak

0 otherwise:

8
<
:

From here, we get right away

jjvkðx, �ÞjjL2 ¼
1

ck
jjFðx, �ÞjjL2 if akþ1 < jjFðx, �ÞjjL2ðdyÞ � ak

0 otherwise:

8
<
:

Thus

jjFðx, �ÞjjL2ðdyÞ ¼
X

ckjjvkðx, �ÞjjL2ðdyÞ:

is exactly the atomic decomposition of [14] corresponding to the Lp function x !
jjFðx, �ÞjjL2ðdyÞ: From here we get for free jjvkðx, yÞjjL2ðdyÞ is supported in x in a set of

measure Oð2kÞ, jjvkjjL1ðdxÞL2ðdyÞ � C2�
k
p and

P
c
p
k � CjjFjjp

LpðdxÞL2ðdyÞ: w

To finish the proof, following [14], use the above decomposition to write

Fðt, x, yÞ ¼
X

fkðtÞFkðt, x, yÞ ðthus ck is called fk, vk is called FkÞ
Gðt, x, yÞ ¼

X
gkðtÞGkðt, x, yÞ

thus
X

jTjðF,GÞj �
X

jTjðfkFk, glGlÞj

and optimizing there exists � > 0 such that

jTjðfkFk, glGlÞj� 2�� jk�3
2
jjþjl�3

2
jjð ÞjjfkjjL2 jjgljjL2
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which can be summed as in [14]:
X

j, k, l
jTjðfkFk, glGlÞj�

X

k, l
2��0 jk�ljð ÞjjfkjjL2 jjgljjL2

�

X

k

jjfkjj2L2
� 
1

2
X

k

jjgkjj2L2
� 
1

2

�

X

k

jjfkjj
6
5

L2

 !5
6 X

k

jjgkjj
6
5

L2

 !5
6

� jjFjj
L
6
5ðdxÞL2ðdyÞjjGjjL65ðdxÞL2ðdyÞ:

3. Proof of Theorem 1.2

3.1. A priori bounds and basic estimates

We will use the following estimates:

Proposition 3.2. For any smooth, L2, self-adjoint, positive semi-definite kernel Cðx, yÞ we

have the pointwise estimates

jCðx, yÞj2 � Cðx, xÞCðy, yÞ, (48)

and

jrxCðx, zÞj � EkðxÞ
1
2 � Cðz, zÞ12, (49)

where Ekðt, xÞ is the kinetic energy density defined as

EkðxÞ ¼ rx � ryCðt, x, yÞjx¼y: (50)

Proof. The above two estimates follow from the Cauchy-Schwarz inequality, and writing

Cðx, yÞ ¼
X

i

kiwiðxÞwiðyÞ: (51)

w

Proposition 3.3 (Fixed time estimates based on conserved quantities). Under the

assumptions of Theorem 1.1,

jjCðt, x, xÞjjL1ðdtÞL1ðdxÞ ¼ jjCð0, x, xÞjjL1ðdxÞ ¼ 1,

jjCðt, x, xÞjjL1ðdtÞL2ðdxÞ,

� jjrxryCjjL1ðdtÞL2ðdxdyÞ þ jjCðt, x, xÞjjL1ðdtÞL1ðdxÞ� 1,

jj/jjL1ðdtÞH1ðdxÞ� 1,

jjEkjjL1ðdtÞL1ðdxÞ� 1: (52)

Proposition 3.4 (Space-time estimates based on interaction Morawetz). Under the

assumptions of Theorem 1.1,
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jjCðt, x, xÞjjL2t, x � 1 (52)

which implies

jj/jjL4t L4x � 1: (53)

Proof. A proof of this result has already appeared in the unpublished thesis [26]. For

completeness, we include the proof in section 4. w

3.5. Estimates for the RHS of (7) in dual Strichartz norms

Denote

Sþ 1

N
VNðx� yÞ

� 

Kðt, x, yÞ ¼ Term1þ Term2þ Term 3þ Term 4, (54)

where

Term 1 ¼ �ðVN � Cðt, x, xÞ þ VN � Cðt, y, yÞÞ � Kðt, x, yÞ,
Term 2 ¼ VNK � Cþ �C � VNK,

Term 3 ¼ K � VNCþ VN
�C � K,

and

Term 4 ¼ 2ðVN � j/j2ÞðyÞ/ðxÞ/ðyÞ þ 2ðVN � j/j2ÞðxÞ/ðxÞ/ðyÞ:

Let 2 < p0 � 8
3
and define the localized, restricted Strichartz norm

jjKjjSrestrited T1 ,T2½ 	

¼ sup
p0�p�1, p, qadmissible

jjKjjLp T1,T2½ 	LqðdxÞL2ðdyÞ

þ sup
p0�p�1, p, qadmissible

jjKjjLp T1 ,T2½ 	LqðdyÞL2ðdxÞ

þ sup
2�p�1, p, qadmissible

jjKjjLp T1 ,T2½ 	Lqðdðx�yÞÞL2ðdðxþyÞÞg:

and, for (p, q) an admissible Strichartz pair, define the localized dual norms

jjFjjSp0 , q0
dual

T1,T2½ 	

¼ minfjjFjjLp0 T1,T2½ 	Lq0ðdxÞL2ðdyÞ, jjFjjLp0 T1,T2½ 	Lq0ðdyÞL2ðdxÞ, jjFjjLp0 T1 ,T2½ 	Lq0ðdðx�yÞÞL2ðdðxþyÞÞg:

In preparation for applying Theorem 2.7, we state the following estimates, in a simple

(but not sharp) form which will suffice for our goal. We will use Proposition 3.2,

Proposition 12 and Proposition 3.4 to bound various terms uniformly in N, keeping

track only of jjCðt, x, xÞjjL2ð½T1,T2	Þ which will be small (after suitably localizing in time),

and jjKjjSrestrited ½T1,T2	 which will be handled by a bootstrapping argument.
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Theorem 3.6. Under the assumptions of Theorem 1.1, for k¼ 1, 2, 3 we have

jjTerm kjj
S
8
5
, 4
3

dual
T1 ,T2½ 	

�N
1
2jjCðt, x, xÞjj

1
4

L2 T1,T2½ 	L2ðdxÞjjKjjSrestrited T1,T2½ 	,

jjrTerm kjj
S
8
5
, 4
3

dual
T1 ,T2½ 	

�N
3
2jjCðt, x, xÞjj

1
4

L2 T1,T2½ 	L2ðdxÞjjKjjSrestrited T1,T2½ 	

þ N
1
2jjCðt, x, xÞjj

1
4

L2 T1,T2½ 	L2ðdxÞjjrKjjSrestrited T1,T2½ 	,

jjrxryTerm kjj
S
8
5
, 4
3

dual
T1,T2½ 	

�N
3
2jjCðt, x, xÞjj

1
4

L2 T1,T2½ 	L2ðdxÞjjrKjjSrestrited T1,T2½ 	

þ jjCðt, x, xÞjj
1
2

L2 T1,T2½ 	L2ðdxÞ

�
jjrxryKðt, x, yÞjj

L
8
3 T1,T2½ 	L4ðdxÞL2ðdyÞ

þ jjrxryKðt, x, yÞjj
L
8
3 T1 ,T2½ 	L4ðdyÞL2ðdxÞ



:

Also,

jjTerm 4jj
S2, 6

5
dual

T1,T2½ 	
� 1,

jjrTerm 4jj
S2, 6

5
dual

T1 ,T2½ 	
�N,

jjrxry Term 4jj
S2, 6

5
dual

T1 ,T2½ 	
�N:

Notice that rxry Term 4 had to be estimated in an end-point dual Strichartz norm.

The proof of this theorem is based on Proposition 3.2, Proposition 12, Proposition

3.4 and H€older’s inequality. It will be given in an appendix.

3.7. Polynomial in N estimates for the Strichartz norms of K and its derivatives

In this subsection, we finish the proof of Theorem 1.2.

Using the a priori estimates of Theorem 3.6, as well as the Strichartz estimates of

Theorem 2.7, we estimate first jjKjjSrestricted
and then use this to estimate jjrKjjSrestricted

and

then jjrxryKjjSrestricted
:

Theorem 3.8. Under the assumptions of Theorem 1.1, the following holds

jjKjjSrestricted 0,1Þ�N4:½

Proof. Recall

Sþ 1

N
VNðx � yÞ

� 

Kðt, x, yÞ ¼ Term 1þ Term 2þ Term 3þ Term 4: (55)

Adapting the argument of Bourgain [13], we use estimate (52) to break up ½0,1Þ
into about N4 time intervals ½Tj,Tjþ1	 where N1

2jjCðt, x, xÞjj
1
4

L2½Tj ,Tjþ1	L2ðdxÞ � � (with � suffi-

ciently small to be determined later).
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We will show that each jjKjjS½Tj,Tjþ1	 � C where C depends only on the initial condi-

tions of the system at t¼ 0.

For t 2 ½Tj,Tjþ1	 we have

KðtÞ ¼ eit �Dx, yþ1
NVNð ÞKðTjÞ þ i

X4

k¼1

ðt

Tj

eiðt�sÞ �Dx, yþ1
NVNð ÞTerm kðsÞds

:¼ eit �Dx, yþ1
N
VNð ÞKðTjÞ þ

X4

k¼1

Kk: (56)

Using Theorem (2.7), and the conservation (10)

jjeit �Dx, yþ1
NVNð ÞKðTjÞjjS Tj ,Tjþ1½ 	� jjKðTjÞjjL2 � 1:

Also Theorem 2.7 and Theorem 3.6 imply,

jj
X4

k¼1

KkjjSrestricted Tj,Tjþ1½ 	 �
X4

k¼1

jjKkjjSrestricted Tj,Tjþ1½ 	

�N
1
2jjCðt, x, xÞjj

1
4

L2 Tj ,Tjþ1½ 	L2ðdxÞjjKjjSrestrited Tj,Tjþ1½ 	 þ 1

� �jjKjjSrestricted Tj,Tjþ1½ 	 þ 1:

Putting everything together, using the decomposition (56),

jjKjjSrestricted Tj ,Tjþ1½ 	 � C1 þ C2�jjKjjSrestricted Tj,Tjþ1½ 	

where C1, C2 depend only on the initial conditions of the system at time t¼ 0. If we

choose C2� <
1
2
, we get

jjKjjSrestricted Tj,Tjþ1½ 	 � 2C1 (57)

and, summing over all � N4 intervals,

jjKjjS 0,1Þ�N4:½

w

Theorem 3.9. Under the assumptions of Theorem 1.1, the following holds

jjrKjjSrestricted
�N5:

Proof. The proof uses the estimates of Theorem (3.8), and is similar in structure. It uses

the same � N4 intervals ½Tj,Tjþ1	:
Differentiate the Eq. (55), and estimate the right-hand side in a dual Strichartz space.
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Thus

Sþ 1

N
VNðx � yÞ

� 

rKðt, x, yÞ

¼ rTerm1þrTerm2þrTerm3þrTerm4

�r 1

N
VNðx � yÞ

� 

K:

Call the last term Term5: Following the argument of the previous proof:

rKðtÞ ¼ eit �Dx, yþ1
NVNð ÞrKðTjÞ

þ i
X4

k¼1

ðt

Tj

eiðt�sÞ �Dx, yþ1
N
VNð ÞrTerm kðsÞdsþ

ðt

Tj

eiðt�sÞ �Dx, yþ1
N
VNð ÞTerm5ðsÞds

:¼ eit �Dx, yþ1
NVNð ÞrKðTjÞ þ

X5

k¼1

Kk:

Using conservation of energy (see (13)), we have

jjeit �Dx, yþ1
NVNð ÞrKðTjÞjjSrestricted Tj ,Tjþ1½ 	� jjrKðTjÞjjL2 � 1:

It remains to estimate rTerm1, :::,rTerm4 and Term 5 in Sp0 , q0

dual :
We have, using H€older’s inequality

jjTerm5jj
L2 Tj,Tjþ1½ 	L65ðdðx�yÞÞL2ðdðxþyÞÞ�NjjKjjL2 Tj ,Tjþ1½ 	L6ðdðx�yÞÞL2ðdðxþyÞÞ

�N ðwe used ð57ÞÞ,
while, from Theorem 2.7 and Theorem 3.6 and another application of (57),

X4

k¼1

jjKkjjSrestricted Tj,Tjþ1½ 	

�

X3

k¼1

jjrTerm kjj
S
8
5
, 4
3

dual
T1,T2½ 	

þ jjrTerm 4jj
S2, 6

5
dual

T1,T2½ 	

�N
1
2jjCðt, x, xÞjj

1
4

L2 T1 ,T2½ 	L2ðdxÞjjrKjjSrestrited T1,T2½ 	

þ N
3
2jjCðt, x, xÞjj

1
4

L2 T1 ,T2½ 	L2ðdxÞjjKjjSrestrited T1,T2½ 	 þ N

� C1N þ C2�jjrKjjSrestrited T1 ,T2½ 	:

Since � is chosen so that C2� <
1
2
, summing the previous estimates we get

jjrKjjSrestricted½Tj ,Tjþ1	�N and, summing over all � N4 intervals,
jjrKjjSrestricted

�N5:

w

Finally,

Theorem 3.10. Under the assumptions of Theorem 1.1, the following holds

jjrxryKjjSrestricted
�N

13
2 :
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Proof. We write

Sþ 1

N
VNðx� yÞ

� 

rxryKðt, x, yÞ

¼ rxryTerm1þ � � � þ rxryTerm4

�rx
1

N
VNðx � yÞ

� 

ryK�ry

1

N
VNðx� yÞ

� 

rxK�rxrx

1

N
VNðx� yÞ

� 

K

with initial conditions jjrxryK0jjL2 �N: Unlike the previous two proofs, we no longer

have a priori bounds on the growth of jjrxryKðtÞjjL2 - in fact this is what we are trying

to prove. Now we split ½0,1Þ differently than before. Now we only require

jjCðt, x, xÞjj
1
2

L2½Tj ,Tjþ1	L2ðdxÞ � �, with � (independent of N) to be determined later. The

number of intervals only depends on jjCðt, x, xÞjjL2½0,1ÞL2ðdxÞ� 1, and is independent of

N. We apply Theorem 2.7 and Theorem 3.6 directly on ½Ti,Tiþ1	, using the estimates

for jjKjjSrestricted
and jjrKjjSrestricted

from the previous two theorems.

For k¼ 1, 2, 3 we have

jjrxryTerm kjj
S
8
5
, 4
3

dual
Ti,Tiþ1½ 	

�N
3
2jjCðt, x, xÞjj

1
4

L2 Ti,Tiþ1½ 	L2ðdxÞjjrKjjSrestrited Ti,Tiþ1½ 	

þ jjCðt, x, xÞjj
1
2

L2 Ti,Tiþ1½ 	L2ðdxÞjjrxryKjjSrestrited Ti,Tiþ1½ 	

� C1N
3
2N5 þ C2�jjrxryKjjSrestrited Ti,Tiþ1½ 	,

while

jjrxry Term 4jj
S2, 6

5
dual

Ti,Tiþ1½ 	
�N:

As for the terms where the derivatives fall on the potential, for example

jjrxrx
1

N
VNðx � yÞ

� 

Kjj

S2, 6
5

dual
Ti,Tiþ1½ 	

� jjr2 1

N
VN jj

L
3
2
jjKjjL2 Ti,Tiþ1½ 	L6ðdðx�yÞÞL2ðdðxþyÞÞ

�N2jjKjjSrestrited Ti,Tiþ1½ 	�N6:

Thus, with some choice of constants Ci depending only on the initial conditions, we

get from Theorem 2.7

jjrxryKjjSrestrited Ti,Tiþ1½ 	

� C1jjrxryKðTiÞjjL2 þ C2N
13
2 þ C3�jjrxryKjjSrestrited Ti,Tiþ1½ 	:

If we pick C3� <
1
2
, and notice jjrxryKðTiÞjjL2 � jjrxryKjjSrestrited½Ti�1,Ti	, we conclude

jjrxryKjjSrestrited Ti,Tiþ1½ 	

� 2 C1jjrxryKjjSrestrited Ti�1 ,Ti½ 	 þ C2N
13
2

� �
:

Applying this arguments a finite number of times (independent of N), and summing

the result, we are done. w
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4. Proof of Proposition 3.4

The outline of this section is inspired, in part, by [27, 28] and the similarities between the

HFB system and the GP hierarchy. The main result appeared in the unpublished thesis [26].

4.1. Local conservation laws

Let us start by defining the relevant quantities which will allow us to effectively capture

the conservation laws of the HFB system. We define

T00 ¼ q :¼ Cðx; xÞ (58a)

Tj0 ¼ T0j ¼ Pj :¼
1

2i

ð
dx0dðx� x0Þ @x0

j
Cðx; x0Þ � @xjCðx; x0Þ

h i
(58b)

Tjk ¼ rjk þ pdjk :¼
ð
dx0dðx� x0Þð@xj@x0k þ @xk@x0jÞCðx; x

0Þ (58c)

þ djk
1

2
�Dqþ

ð
dyVNðx� yÞLðx, y; x, yÞ

� 


lj ¼
1

2

ð
dyVNðx� yÞf@yjLðx, y; x, yÞ � @xjLðx, y; x, yÞg (58d)

Lðx, y; x0, y0Þ :¼ Cðx; x0ÞCðy; y0Þ þ Cðx; y0ÞCðy; x0Þ (58e)

þ �Kðx, yÞKðx0, y0Þ � 2�/ðxÞ�/ðyÞ/ðx0Þ/ðy0Þ:
In the literature, Tl� is often referred to as the pseudo-stress-energy tensor and L is

the two-particle marginal density matrix of our quasifree state. Then the associated local

conservation laws are given by

@tqþ 2r � P ¼ 0
@tP þr � ðrþ pIÞ þ l ¼ 0

:

�
(59)

To derive the local conservation laws, it is convenient to first rewrite the equation for

Cðx; x0Þ in the following form

1

i

@

@t
þ Dx � Dx0

� �
Cðx; x0Þ ¼ BVðLÞ (60)

where

BVðLÞ :¼ Bþ
V ðLÞ � B�

V ðLÞ, (61a)

Bþ
VðLÞðx; x0Þ :¼

ð
dydy0VNðx� yÞdðy� y0ÞLðx, y; x0, y0Þ, (61b)

B�
VðLÞðx; x0Þ :¼

ð
dydy0VNðx0 � yÞdðy� y0ÞLðx, y; x0, y0Þ: (61c)

Notice (60) has the structure of a BBGKY hierarchy, that is, the evolution of the

lower marginal density matrix depends on the higher marginal density. Unlike, the

standard BBGKY hierarchy, the quasifree structure of our state allows us to decompose

our two-particle marginal density matrix L into a linear combination of products of

one-particle marginal densities C,K and the condensate wave function /:
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Proposition 4.2. Let C be a smooth solution to (60), then we have the local conservation

of number
@q

@t
þ 2r � P ¼ 0: (62)

Proof. By direct calculation, we see that

@tq ¼
ð
dudu0

ð2pÞ6
eiðu�u0Þ�x@tĈðu; u0Þ

¼ i

ð
dudu0

ð2pÞ6
eiðu�u0Þ�xðu2 � ðu0Þ2ÞĈðu; u0Þ (63a)

þi

ð
dudu0

ð2pÞ6
eiðu�u0Þ�x dBVðLÞðu; u0Þ: (63b)

For the first term, we have that

ð63aÞ ¼ rx �
ð
dudu0

ð2pÞ6
eiðu�u0Þ�xðuþ u0ÞĈðu; u0Þ ¼ �2rx � P:

For the second term, we have that (63b)¼ iBVðLÞðx; xÞ ¼ 0: w

Proposition 4.3. Let ð/,C,KÞ be a smooth solution to the HFB system, then we have the

continuity equation
@tP þr � ðrþ pIÞ þ l ¼ 0: (64)

Proof. Differentiating P with respect to time yields

@tPðxÞ ¼
1

i

ð
dudu0

ð2pÞ6
eiðu�u0Þ�x ðuþ u0Þ

2
ðu2 � ðu0Þ2ÞĈðu; u0Þ

þ 1

i

ð
dudu0

ð2pÞ6
eiðu�u0Þ�x ðuþ u0Þ

2
dBVðLÞðu; u0Þ

¼ � 1

2
rx �

ð
dudu0

ð2pÞ6
eiðu�u0Þ�xðuþ u0Þ 
 ðuþ u0ÞĈðu; u0Þ

þ 1

i

ð
dudu0

ð2pÞ6
eiðu�u0Þ�x ðuþ u0Þ

2
dBVðLÞðu; u0Þ ¼: J1 þ J2:

Let us first handle the J1 term. Notice we have that

J1 ¼ � 1

2
rx �

ð
dudu0

ð2pÞ6
eiðu�u0Þ�xðu� u0Þ
2

Ĉðu; u0Þ

� rx �
ð
dudu0

ð2pÞ6
eiðu�u0Þ�xðu
 u0 þ u0 
 uÞĈðu; u0Þ:

Then, completing the Fourier inversion gives us

J1 ¼
1

2
r � r2qðxÞ � r � r ¼ �r � � 1

2
DqIþ r

� 

:
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Next, we deal with the J2 term. By the Fourier inversion, we write

J2 ¼ � 1

2

ð
dx0dðx � x0Þ rxBVðLÞðx; x0Þ � rx0BVðLÞðx; x0Þ

� �
:

Then we observe that
ð
dx0dðx� x0ÞrxBVðLÞðx; x0Þ

¼
ð
dx0dydðx � x0Þrx fVNðx� yÞ � VNðx0 � yÞgLðx, y; x0, yÞ

	 


¼
ð
dx0dydðx � x0Þrx VNðx� zÞð ÞLðx, y; x0, yÞ

þ
ð
dx0dydðx� x0ÞfVNðx � yÞ � VNðx0 � yÞgrxLðx, y; x0, yÞ

¼
ð
dyrx VNðx� yÞ

	 

Lðx, y; x, yÞ:

Likewise, we have thatð
dx0dðx� x0Þrx0BVðLÞðx; x0Þ ¼ �

ð
dyrx VNðx� yÞ

	 

Lðx, y; x, yÞ:

Hence it follows

J2 ¼ �
ð
dyrx VNðx� yÞ

	 

Lðx, y; x, yÞ

¼ 1

2

ð
dyfryVNðx � yÞ � rxVNðx � yÞgLðx, y; x, yÞ

¼ � 1

2
rx

ð
dyVNðx � yÞLðx, y; x, yÞ

� 

� l

¼ � 1

2
rx �

ð
dyVNðx� yÞLðx, y; x, yÞI

� 

� l:

This completes the argument. w

4.4. Interaction Morawetz estimate

The main result of this section is the interaction Morawetz-type estimate for the C

equation. To prove the estimate, we need a two-particle Morawetz identity for the trun-

cated two-particle marginal density matrix

Lðx, y; x0, y0Þ ¼ Cðx; x0ÞCðy; y0Þ: (65)

We formally2 define the virial interaction potential for L associated to a 2 CðR3Þ by

VaðtÞ :¼
ð
dxdyaðx� yÞLðt, x, y; x, yÞ (66)

2In general, we are not certain whether (66) and (67) are well-defined. However, since we are interested when , it can
be shown that (67) is well-defined. More precisely, since is uniformly bounded, then it follows is uniformly bounded for
all time.
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and its corresponding Morawetz action

MaðtÞ :¼ @tV
aðtÞ ¼ 2

ð
dxdyraðx � yÞ � PðxÞqðyÞ � qðxÞPðyÞ

� �
: (67)

Then we have the following truncated two-particle Morawetz identity.

Proposition 4.5. Let ð/,C,KÞ be a smooth solution to the HFB system with trCðtÞ ¼ 1

and EðtÞ � C (see (9), (11)), and let aðxÞ ¼ jxj. Then we have the identity

_M
aðtÞ ¼ 2

ð
dxdyð�DDaÞðx� yÞqðxÞqðyÞ (68a)

þ
ð
dxdyDaðx � yÞ

�
qðxÞ

ð
dzVNðy� zÞLðy, z; y, zÞ

þqðyÞ
ð
dzVNðx � zÞLðx, z; x, zÞ

�
(68b)

þ2

ð
dxdyr2aðx � yÞ : frðxÞqðyÞ þ qðxÞrðyÞ

�4PðxÞ 
 PðyÞg (68c)

þ2

ð
dxdyraðx � yÞ � qðxÞlðyÞ � lðxÞqðyÞ

� �
: (68d)

Here, : denotes the standard double dot product, that is, for any n� n matrices A and

B, we have that A : B ¼Pi, j aijbij:

Remark 4.6. Let us note that Proposition 4.5 only states that for each fixed N, identity

(68) holds. It does not say that the identity is independent of N. In fact, we are not sure

whether (68d) stays uniformly bounded in N. However, this does not pose any issues

for us since shortly we will see that the term gives a positive contribution which we can

ignore when proving the interaction Morawetz estimate.

Proof. The main issue is to show that any integration by parts is justified by the conser-

vation laws. It is convenient to first note some facts about the pseudo stress-energy ten-

sor. By the conservation laws, we see that qðxÞ 2 L1ðdxÞ \ L3ðdxÞ, the components of

P(x) are in L1ðdxÞ \ L
3
2ðdxÞ and the components of rðxÞ are in L1ðdxÞ: However, we

don’t know anything about the decay properties of Dq appearing in Tjk.

To handle any issues with the integration by parts, we apply a smooth spatial cutoff

function. Let v 2 C1
0 ðRdÞ be a radial function whose support is contained in the ball

B(0, 2) and is identically 1 on B(0, 1). For every L> 0, define

Ma
LðtÞ :¼ 2

ð
dxdyv

jx � yj
L

� 

raðx � yÞ � PðxÞqðyÞ � qðxÞPðyÞ

� �
: (69)

Taking the time derivative of (69), applying the local conservation laws (59), and

integrating by parts yields

_M
a

LðtÞ ¼ 2

ð
dxdyrx v

jx � yj
L

� 

raðx � yÞ

� 
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: � 1

2
DxqðxÞqðyÞ � qðxÞ 1

2
DyqðyÞ

� 

I

�
(70a)

þ
�
1

2

ð
dzVNðy� zÞqðxÞLðy, z; y, zÞ (70b)

þ 1

2

ð
dzVNðx� zÞqðyÞLðx, z; x, zÞ



I

þfrðxÞqðyÞ þ qðxÞrðyÞ � 4PðxÞ 
 PðyÞg
�

(70c)

þ2

ð
dxdyv

jx� yj
L

� 

raðx� yÞ � qðxÞlðyÞ � lðxÞqðyÞ

� �
: (70d)

Next, we consider the limit as L tends to infinity. It is not hard to see that any

derivative of v is uniformly bounded in L and vanishes near the origin. Let us first han-

dle (70b). By direct calculation, we have that

rx v
jx� yj

L

� 

raðx� yÞ

� 


¼ 1

L
v0

jx� yj
L

� 

ðx� yÞ 
 ðx� yÞ

jx � yj2
þ v

jx � yj
L

� 

r2aðx � yÞ

which means
ð70bÞ

¼ 1

L

ð
dxdydzv0

jx� yj
L

� 

VNðy� zÞqðxÞLðy, z; y, zÞ (71a)

þ
ð
dxdydzv

jx � yj
L

� 

Daðx� yÞVNðy � zÞqðxÞLðy, z; y, zÞ (71b)

þ similar terms with x and y switched: (71c)

Note that by the conservation of number and energy, we have that

jð71aÞj � jj v0 jj1
L

jj q jjL1ðdxÞ
ð
dydzVNðy� zÞLðy, z; y, zÞ

� 

! 0

as L ! 1: Next, by the dominated convergence theorem, we see

that ð71bÞ þ ð71cÞ ! ð68bÞ:
The term (70c) is handled in a similar manner. More precisely, we see that

ð70cÞ ¼ 2

L

ð
dxdyv0

jx � yj
L

� 

ðx � yÞ 
 ðx� yÞ

jx� yj2

: frðxÞqðyÞ þ qðxÞrðyÞ � 4PðxÞ 
 PðyÞg

þ2

ð
dxdyv

jx � yj
L

� 

r2aðx � yÞ (72b)

: frðxÞqðyÞ þ qðxÞrðyÞ � 4PðxÞ 
 PðyÞg:
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For the term (72a), we have the estimate

jð72aÞj � Cjj v0 jj1
L

jj q jjL1ðdxÞjj r jjL1ðdxÞ þ jj P jj2L1ðdxÞ
� �

! 0

as L tends to infinity.

For the term (72b), we first recall that r2aðxÞ ¼ jxj�1
I� x
x

jxj2
� �

: Then, by

Hardy–Littlewood–Sobolev inequality, it follows that

jð72bÞj �
X

i, j

ð
dx jrijðxÞjðj � j�1 � qÞðxÞ þ

ð
dy

jPiðxÞjjPjðyÞj
jx � yj

( )

� Cjj r jjL1ðdxÞjjj � j�1 � qjjL1ðdxÞ þ Cjj P jj2
L
6
5ðdxÞ:

Hence it suffices to check that ðj � j�1 � qÞðxÞ is uniformly bounded. Note that we

have the estimate

ð
dy

qðyÞ
jx � yj

����
���� �

ð

jx�yj<1

dy
qðyÞ
jx � yj

�����

�����þ
ð
dyqðyÞ

� jjj � j�1jj
L
3
2ðB1ð0ÞÞ

jj q jjL3ðdyÞ þ jj q jjL1ðdyÞ � C

which holds uniformly in x. Then, by dominated convergence theorem, we again see

that ð72bÞ ! ð68cÞ:
Next, for each fixed N, we show that ð70dÞ ! ð68dÞ follows immediately from the

Lebesgue dominated convergence theorem. More precisely, we see that

jð70dÞj�C

ð
dxqðxÞ

ð
dyjlðyÞj

�Cjj q jjL1ðdxÞ jj V jjL1ðdxÞjj rq jjL3=2ðdxÞjj q jjL3ðdxÞþjj VN jjL3ðdxÞjj rK jj2L2ðdxdyÞ
� �

�CN2b:

Lastly, let us handle (70a). It suffices to estimate
ð
dxdyrx v

jx� yj
L

� 

raðx� yÞ

� 

: DxqðxÞqðyÞI

¼ 1

L

ð
dxdyDxv

0 jx� yj
L

� 

qðxÞqðyÞ (73a)

þ
ð
dxdyDxv

jx � yj
L

� 

Daðx� yÞqðxÞqðyÞ (73b)

þ 2

ð
dxdyrxv

jx � yj
L

� 

rxDaðx� yÞqðxÞqðyÞ (73c)

þ
ð
dxdyv

jx� yj
L

� 

DDaðx� yÞqðxÞqðyÞ: (73d)
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By the remark in the beginning of the proof, we see that

jð73aÞ þ ð73bÞ þ ð73cÞj � C

L
jj q jj2L1ðdxÞ

which converges to zero as L tends to infinity. Lastly, we have that

jð73dÞj ¼ 8p

ð
dxdyv

jx� yj
L

� 

dðx � yÞqðxÞqðyÞ ¼ 8pjj q jj2L1ðdxÞ

which is clearly uniformly bounded in L. Hence, by the dominated convergence the-

orem, we have the desired result. w

With this special choice of observable, we have that ð�DDaÞðxÞ ¼ 8pdðxÞ which we

have already used. Also, it is not hard to see that (68a) and (68b) are positive terms

since
ð
dzVNðx� zÞLðx, z; x, zÞ � 0 (74)

given VN � 0: To prove the Morawetz estimate, we need to be able to control (68c) and

(68d). In fact, we will show that (68c) � 0 and ð68bÞ þ ð68dÞ � 0, then deduce

8p

ð
dxqðt, xÞ2 � @tM

aðtÞ (75)

which will lead to the desired estimate.

Lemma 4.7. Assume VN is a positive radial function, i.e. VNðxÞ ¼ N3bVðNbjxjÞ � 0,

with V 0ðrÞ � 0. Let ð/,C,KÞ be a smooth solution to the HFB system. Then we have

that ð68bÞ þ ð68dÞ � 0:

Proof. By change of variables and integration by parts, we see that

ð68dÞ ¼ �4

ð
dxdyqðyÞ x� y

jx� yj � lðxÞ

¼ �4

ð
dxdydzN4bV 0ðNbjx � zjÞqðyÞ x� z

jx� zj �
x � y

jx � yj Lðx, z; x, zÞ (76a)

�4

ð
dxdydzVNðx � zÞ qðyÞLðx, z; x, zÞjx� yj : (76b)

Notice that ð76bÞ ¼ �ð68bÞ: Finally, exploiting the symmetry Lðx, z; x, zÞ ¼
Lðz, x; z, xÞ, we can rewrite (76a) as follows

ð76aÞ ¼ �2

ð
dxdydzN4bV 0ðNbjx � zjÞqðyÞ

� x� z

jx� zj �
x � y

jx � yj þ
z � x

jz � xj �
z � y

jz � yj

� �
Lðx, z; x, zÞ � 0:
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The last inequality follows from Lðx, y; x, yÞ � 0,V 0ðrÞ � 0, and the identity

u� v

ju� vj �
u

juj þ
v� u

jv� uj �
v

jvj ¼
ðjuj þ jvjÞð1� cos hÞ

ju� vj � 0: (77)

w

Lemma 4.8. Let ð/,C,KÞ be a smooth solution to the HFB system. Then we have

that ð68cÞ � 0:

Proof. Since Aðx, yÞ :¼ r2aðx � yÞ is symmetric (in fact, it is positive semi-definite), we

can rewrite (68v) by swapping some indices as follows

1

2
ð68cÞ ¼

ð
dxdydx0dy0dðx � x0Þdðy � y0Þ

X

jk

@jkaðx � yÞ

� fð@xj@x0k þ @xk@x0jÞ þ ð@yj@y0k þ @yk@y0jÞ
þ ð@xj � @x0

j
Þð@yk � @y0

k
ÞgLðx, y; x0, y0Þ

¼
ð
dxdydx0dy0dðx � x0Þdðy � y0Þ

X

jk

@jkaðx � yÞ

� fð@yj � @xjÞð@y0k � @x0
k
Þ þ ð@xj þ @y0

j
Þð@x0

k
þ @ykÞgLðx, y; x0, y0Þ:

Writing in matrix notation (with A ¼ Aðx, yÞ, and r a column vector)

1

2
ð68cÞ ¼

ð
dxdydx0dy0dðx� x0Þdðy� y0Þ

�A : fðrx �ryÞðrx0 �ry0ÞTLðx, y; x0, y0Þ (78a)

þðrxrT
x0 þryrT

y0ÞLðx, y; x0, y0Þ (78b)

þðrxrT
y þrx0rT

y0ÞLðx, y; x0, y0Þg: (78c)

Since L is a positive operator, then it has a unique positive square root
ffiffiffi
L

p
such that

L ¼
ffiffiffi
L

p
�
ffiffiffi
L

p
: In particular, we can now write

ð78aÞ ¼
ð
dxdydx2dy2dx

0dy0dx02dy
0
2dðx � x0Þdðy� y0Þdðx2 � x02Þdðy2 � y02Þ

� A : ðrx �ryÞ
ffiffiffi
L

p
ðx, y; x02, y02Þðrx0ry0ÞT

ffiffiffi
L

p
ðx0, y0; x2, y2Þ

n o

¼
ð
dxdydx2dy2dx

0dy0dx02dy
0
2dðx � x0Þdðy� y0Þdðx2 � x02Þdðy2 � y02Þ

� ðrx0ry0ÞT
ffiffiffi
L

p
ðx0, y0; x2, y2ÞAðrx �ryÞ

ffiffiffi
L

p
ðx, y; x02, y02Þ

¼ jjA1
2ðry �rxÞ

ffiffiffi
L

p
jj2HS � 0:

The same argument holds for (78b), that is

ð78bÞ ¼ jjA1
2rx

ffiffiffi
L

p
jj2HS þ jjA1

2ry

ffiffiffi
L

p
jj2HS:
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For the final term, we need the observation
ffiffiffi
L

p
ðx, y; x0, y0Þ ¼

ffiffiffiffi
C

p
ðx; x0Þ

ffiffiffiffi
C

p
ðy; y0Þ:

Then it follows that

ð78cÞ ¼
ð
dxdydx2dy2dx

0dy0dx02dy
0
2dðx� x0Þdðy� y0Þdðx2 � x02Þdðy2 � y02Þ

� A : frx

ffiffiffiffi
C

p
ðx; x02ÞrT

y

ffiffiffiffi
C

p
ðy; y02Þ

ffiffiffiffi
C

p
ðx2; x0Þ

ffiffiffiffi
C

p
ðy2; y0Þ

þ
ffiffiffiffi
C

p
ðx; x02Þ

ffiffiffiffi
C

p
ðy; y02Þrx0

ffiffiffiffi
C

p
ðx2; x0ÞrT

y0
ffiffiffiffi
C

p
ðy2; y0Þg

¼
ð
dxdydx2dy2dx

0dy0dx02dy
0
2dðx� x0Þdðy� y0Þdðx2 � x02Þdðy2 � y02Þ

� f rx

ffiffiffi
L

p
ðx, y2; x02, y0Þ

� �T
Ary

ffiffiffi
L

p
ðx2, y; x0, y02Þ

þ ry0
ffiffiffi
L

p
ðx02, y0; x, y2Þ

T

Arx0
ffiffiffi
L

p
ðx0, y02; x2, yÞg:

Finally, by Cauchy–Schwarz inequality, we have that

jð78cÞj � �2jjA1
2rx

ffiffiffi
L

p
jjHSjjA

1
2ry

ffiffiffi
L

p
jjHS:

Hence the desired result follows. w

Proposition 4.9. Let CðtÞ be a smooth global solution to (60) with trCðtÞ ¼ 1 and EðtÞ �
C (see (9), (11)). Then the following estimate

ð
dtdxjCðt, x, xÞj2� 1 (79)

holds uniformly in N and depends only on the initial data. Moreover, we also have the

estimate

jj / jjL4ðdtdxÞ� 1: (80)

Proof. By the above lemmas, it immediately follows that

8p

ðT

�T

dt

ð
dxqðt, xÞ2 � MaðTÞ �Mað�TÞ: (81)

To complete the argument, let us recall that Cðx; x0Þ ¼ �/ðxÞ/ðx0Þ þ N�1ðshðkÞðkÞ �
shðkÞðkÞÞðx; x0Þ, then we see that

MaðtÞ ¼
ð
dxdyqðyÞ x � y

jx � yj � I
�/ðxÞr/ðxÞ
	 


(82a)

þ 1

N

ð
dxdyqðyÞ x � y

jx � yj � I shðkÞðkÞ � rshðkÞðxÞ
� �

: (82b)

Finally, by a standard momentum-type estimate (see Lemma A.10 in [24], we see that

jMðtÞj � C

ð
dyqðt, yÞ jjjrj1=2/ðtÞjj2L2 þ

1

N
jjjrxj1=2shðkÞðktÞjj2L2

� �
:

Finally, by the conservation of numbers and energy, we have the desired estimate. w
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5. Second proof of Proposition 2.20

Since this proposition is the main new technical ingredient of our paper, we give a

second proof which is not based on the kernel of the operator Aðxþ 2tDÞ (Weyl calcu-

lus), but rather on the Green’s function.

We would like to show the following estimate,

sup
x1

jjeitðDx1
þDx2

Þf ðx1, x2ÞjjL2ðdx2Þ �
C

t
3
2

jjf jjL1ðdx1�2ÞL2ðdx1þ2Þ

where (for convenience) we set

x1þ2 :¼
x1 þ x2ffiffiffi

2
p , x1�2 :¼

x1 � x2ffiffiffi
2

p :

As in the first proof, we take the singular value decomposition of f ðx1, x2Þ in the

rotated ðx1�2, x1þ2Þ variables and write

f ðx1, x2Þ ¼
X

k

uk
x1 � x2ffiffiffi

2
p

� 

vk

x1 þ x2ffiffiffi
2

p
� 


where fvkg are orthonormal and fukg are orthogonal. The evolution equation can be

written with the help of the Green’s functions as follows,

eitðDx1
þDx2

Þf ðx1, x2Þ

¼ 1

ð4ptÞ3
ð

R
3�R

3

dy1dy2
X

k

ukðy1Þvkðy2Þ exp i
jx1�2 � y1j2

4t
þ i

jx1þ2 � y2j2
4t

� 
� �

The phase in the exponential can be expanded,

jx1�2 � y1j2
4t

þ jx1þ2 � y2j2
4t

¼ jx1j2 þ jx2j2 þ jy1j2 þ jy2j2
4t

� x1 � y1þ2

2t
� x2 � y2�1

2t

and in view of the above we redefine,

ukðt, y1, x1Þ :¼ ukðy1Þ exp i
jy1j2 �

ffiffiffi
2

p
x1 � y1

4t

� 


vkðt, y2, x1Þ :¼ vkðy2Þ exp i
jy2j2 �

ffiffiffi
2

p
x1 � y2

4t

� 

:

Notice that

fvkðt, � , x1Þgk is orthonormal:
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Next we pick some function Aðx2Þ 2 L2ðR3Þ and employ duality,
ð

R
3
dx2 eitðDx1

þDx2
Þf ðx1, x2ÞAðx2Þ

n o

¼ ei
jx1 j2
4t

ð4ptÞ3
ð

R
3�R

3

dy1dy2
X

k

ukðt, y1, x1Þvkðt, y2, x1Þ
ð

R
3

dx2 e�i
x2 �y2�1

2t ei
jx2 j2
4t Aðx2Þ

n o8
<
:

9
=
;

¼ ei
jx1 j2
4t

ð4ptÞ3
ð

R
3�R

3

dy1dy2
X

k

ukðt, y1, x1Þvkðt, y2, x1ÞÂ t,
y2�1

2t

� 
� �

where we set,

Aðt, x2Þ :¼ ei
jx2 j2
4t Aðx2Þ

Âðt, nÞ ¼
ð

R
3
dx2 e�ix2�nAðt, x2Þ
� �

:

Let us now define

ckðt, x1, y1Þ :¼
ð

R
3

dy2 vkðt, y2, x1ÞÂðt,
y2 � y1

2
ffiffiffi
2

p
t

� �

and the orthonormality of the set fvkðt, � , x1Þg imply

X

k

jckðt, x1, y1Þj2 � C

ð
dy2 jÂ t,

y2 � y1

2
ffiffiffi
2

p
t

� 

j2

� �
¼ Ct3jjAjj2L2ðR3Þ:

Finally we have using Cauchy–Schwartz,

sup
x12R3

ð

R
3

dx2 eiðDx1
þDx2

Þf ðx1, x2ÞAðx2Þ
n o����

����

� C

t3

ð

R
3

dy1
X

k

jukðy1Þj2
� 
1

2
X

j

jcjðt, x1, y1Þj2
� 
1

2

( )

� C

t
3
2

ð

R
3

dy1
X

k

jukðy1Þj2
� 
1

2 � jjAjjL2ðR3Þ:

The fact that fvkg are orthonormal imply that

jjf ðx1, x2ÞjjL1ðdx1�2ÞL2ðdx1þ2Þ ¼
����
����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

k

jukðy1Þj2
r ����

����
L1ðdy1Þ

:

6. Appendix: Proof of Theorem 3.6

The detailed estimates for Term 1, Term 2 and Term 3 are slightly different (and irrele-

vant). They are
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jjTerm1jj
S
8
5
, 4
3

dual
T1,T2½ 	

� jjCðt, x, xÞjjL4 T1 ,T2½ 	L2ðdxÞjjKjjSrestrited T1,T2½ 	

jjrTerm1jj
S
8
5
, 4
3

dual
T1 ,T2½ 	

�NjjCðt, x, xÞjjL4 T1 ,T2½ 	L2ðdxÞjjKjjSrestrited T1,T2½ 	

þ jjCðt, x, xÞjjL4 T1,T2½ 	L2ðdxÞjjrKjjSrestrited T1 ,T2½ 	

jjrxryTerm1jj
S
8
5
, 4
3

dual
T1,T2½ 	

�NjjCðt, x, xÞjjL4 T1,T2½ 	L2ðdxÞjjrKjjSrestrited T1,T2½ 	

þ jjCðt, x, xÞjj
1
2

L2 T1,T2½ 	L2ðdxÞ

� jjrxryKðt, x, yÞjj
L
8
3 T1,T2½ 	L4ðdxÞL2ðdyÞ þ jjrxryKðt, x, yÞjj

L
8
3 T1 ,T2½ 	L4ðdyÞL2ðdxÞ

� �
:

jjTerm2jj
S
8
5
, 4
3

dual
T1,T2½ 	

�N
1
2jjCðt, x, xÞjj

1
2

L4 T1,T2½ 	L2ðdxÞjjKjjSrestrited T1,T2½ 	

jjrTerm2jj
S
8
5
, 4
3

dual
T1 ,T2½ 	

�N
3
2jjCðt, x, xÞjj

1
2

L4 T1,T2½ 	L2ðdxÞjjKjjSrestrited T1,T2½ 	

þ N
1
2jjCðt, x, xÞjj

1
2

L4 T1,T2½ 	L2ðdxÞjjrKjjSrestrited T1,T2½ 	

jjrxryTerm2jj
S
8
5
, 4
3

dual
T1,T2½ 	

�N
3
2jjCðt, x, xÞjjL4 T1,T2½ 	L2ðdxÞjjrKjjSrestrited T1 ,T2½ 	:

jjTerm3jj
S
8
5
, 4
3

dual
T1,T2½ 	

� jjCðt, x, xÞjjL4 T1 ,T2½ 	L2ðdxÞjjKjjSrestrited T1,T2½ 	

jjrTerm3jj
S
8
5
, 4
3

dual
T1 ,T2½ 	

�NjjCðt, x, xÞjjL4 T1,T2½ 	L2ðdxÞjjKjjSrestrited T1,T2½ 	

þ jjCðt, x, xÞjjL4 T1,T2½ 	L2ðdxÞjjrKjjSrestrited T1 ,T2½ 	

þ N
3
4jjCðt, x, xÞjj

1
2

L2 T1,T2½ 	L2ðdxÞjjKjjSrestrited T1 ,T2½ 	

jjrxry Term3jj
S
8
5
, 4
3

dual
T1 ,T2½ 	

�NjjCðt, x, xÞjjL4 T1,T2½ 	L2ðdxÞjjrKjjSrestrited T1,T2½ 	:

To go from here to Theorem 3.6, we estimate

jjCðt, x, xÞjjL4 T1,T2½ 	L2ðdxÞ � jjCðt, x, xÞjj
1
2

L2 T1 ,T2½ 	L2ðdxÞjjCðt, x, xÞjj
1
2

L1 T1,T2½ 	L2ðdxÞ

� jjCðt, x, xÞjj
1
2

L2 T1,T2½ 	L2ðdxÞ:

We present the detailed proofs, split into several propositions.

The estimate for Term1 is an immediate consequence of H€older’s inequality, the

Leibniz rule and VNðxÞ ¼ N3bVðNbxÞ with b � 1:

Proposition 6.1. For any time interval ½T1,T2	
jj VN � Cðt, x, xÞð ÞKðt, x, yÞjj

L
8
5 T1,T2½ 	L43ðdxÞL2ðdyÞ

þ jj VN � Cðt, y, yÞ
	 


Kðt, x, yÞjj
L
8
5 T1,T2½ 	L43ðdyÞL2ðdxÞ

� jjCðt, x, xÞjjL4 T1 ,T2½ 	L2ðdxÞ

� jjKðt, x, yÞjj
L
8
3 T1,T2½ 	L4ðdxÞL2ðdyÞ þ jjKðt, x, yÞjj

L
8
3 T1,T2½ 	L4ðdyÞL2ðdxÞ

� �
:

while
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jjrx, yðVN � Cðt, x, xÞKðt, x, yÞÞjj
L
8
5 T1,T2½ 	L43ðdxÞL2ðdyÞ

þ jjrx, yðVN � Cðt, y, yÞKðt, x, yÞÞjj
L
8
5 T1,T2½ 	L43ðdyÞL2ðdxÞ

�NjjCðt, x, xÞjjL4 T1,T2½ 	L2ðdxÞ

� jjKðt, x, yÞjj
L
8
3 T1 ,T2½ 	L4ðdxÞL2ðdyÞ þ jjKðt, x, yÞjj

L
8
3 T1,T2½ 	L4ðdyÞL2ðdxÞ

� �

þ jjCðt, x, xÞjjL4 T1,T2½ 	L2ðdxÞ

� jjrx, yKðt, x, yÞjj
L
8
3 T1,T2½ 	L4ðdxÞL2ðdyÞ þ jjrx, yKðt, x, yÞjj

L
8
3 T1,T2½ 	L4ðdyÞL2ðdxÞ

� �

and

jjrxryðVN � Cðt, x, xÞKðt, x, yÞÞjj
L
8
5 T1,T2½ 	L43ðdxÞL2ðdyÞ

þ jjrxryðVN � Cðt, y, yÞKðt, x, yÞÞjj
L
8
5 T1,T2½ 	L43ðdyÞL2ðdxÞ

�NjjCðt, x, xÞjjL4 T1,T2½ 	L2ðdxÞ

� jjrx, yKðt, x, yÞjj
L
8
3 T1 ,T2½ 	L4ðdxÞL2ðdyÞ þ jjrx, yKðt, x, yÞjj

L
8
3 T1,T2½ 	L4ðdyÞL2ðdxÞ

� �

þ jjCðt, x, xÞjjL4 T1,T2½ 	L2ðdxÞ

� jjrxryKðt, x, yÞjj
L
8
3 T1,T2½ 	L4ðdxÞL2ðdyÞ þ jjrxryKðt, x, yÞjj

L
8
3 T1 ,T2½ 	L4ðdyÞL2ðdxÞ

� �
:

The propositions that follow are slightly more involved variants of the above argument.

In order to estimate Term2, we will use

Proposition 6.2. For any time interval ½T1,T2	,
jj VNKð Þ � Cjj

L
8
5ð T1,T2½ 	ÞL43ðdxÞL2ðdyÞ

� jjVN jj
1
2

L
3
2
jjKjjL2 T1,T2½ 	L6ðdðx�yÞÞL2ðdðxþyÞÞjjVN jj

1
2

L1 jjCðt, x, xÞjj
1
2

L4 T1 ,T2½ 	L2 jjCðt, x, xÞjj
1
2

L1L1

�N
1
2jjCðt, x, xÞjj

1
2

L4 T1,T2½ 	L2 jjKjjL2 T1 ,T2½ 	L6ðdðx�yÞÞL2ðdðxþyÞÞ

an also

jj�C � VNKð Þjj
L
8
5ð T1,T2½ 	ÞL43ðdyÞL2ðdxÞ

�N
1
2jjCðt, x, xÞjj

1
2

L4 T1,T2½ 	L2 jjKjjL2 T1 ,T2½ 	L6ðdðx�yÞÞL2ðdðxþyÞÞ:

Proof. We have the pointwise estimate

j VNK � Cð Þðt, x, yÞj ¼
����
ð
VNðx� zÞKðt, x, zÞCðt, z, yÞdz

����

�
ð
VNðx� zÞjKðt, x, zÞj2dz

� 
1
2
ð
VNðx� zÞjCðt, z, yÞj2dz

� 
1
2

(83)

:¼ Aðt, xÞBðt, x, yÞ:
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Thus

jj VNKð Þ � Cjj
L
8
5ð T1,T2½ 	ÞL43ðdxÞL2ðdyÞ � jjAjjL2 T1,T2½ 	L2 jjBjjL8L4L2

and

jjAjjL2 T1,T2½ 	L2 � jjVN jj
1
2

L
3
2
jjKjjL2 T1,T2½ 	L6ðdðx�yÞÞL2ðdðxþyÞÞ:

Also, using (48),
����
����
ð
VNðx � zÞjCðt, z, yÞj2dz

� 
1
2
����
����
L8 T1,T2½ 	L4ðdxÞL2ðdyÞ

�
����
����
ð
VNðx� zÞjCðt, z, zÞjdzjCðt, y, yÞj

� 
1
2
����
����
L8 T1,T2½ 	L4ðdxÞL2ðdyÞ

� jjVN jj
1
2

L1 jjCðt, x, xÞjj
1
2

L4 T1 ,T2½ 	L2 jjCðt, x, xÞjj
1
2

L1L1 :

The proof of the second estimate is similar. w

Next, we need the above estimate with derivatives.

Proposition 6.3. For any time interval ½T1,T2	,
jj VNKð Þ � ryCjj

L
8
5ð T1,T2½ 	ÞL43ðdxÞL2ðdyÞ

� jjVN jj
1
2

L
3
2
jjKjjL2 T1,T2½ 	L6ðdðx�yÞÞL2ðdðxþyÞÞjjVN jj

1
2

L1 jjCðt, x, xÞjj
1
2

L4 T1,T2½ 	L2 jjEkjj
1
2

L1L1

�N
1
2jjCðt, x, xÞjj

1
2

L4 T1,T2½ 	L2 jjKjjL2 T1 ,T2½ 	L6ðdðx�yÞÞL2ðdðxþyÞÞ

(we used Proposition 12). Thus, using the Leibniz rule,

jjrx, y VNKð Þ � Cð Þjj
L
8
5ð T1,T2½ 	ÞL43ðdxÞL2ðdyÞ

�N
3
2jjCðt, x, xÞjj

1
2

L4 T1 ,T2½ 	L2 jjKjjL2 T1,T2½ 	L6ðdðx�yÞÞL2ðdðxþyÞÞ

þ N
1
2jjCðt, x, xÞjj

1
2

L4 T1 ,T2½ 	L2 jjrx, yKjjL2 T1 ,T2½ 	L6ðdðx�yÞÞL2ðdðxþyÞÞ

and

jjrxry VNKð Þ � Cð Þjj
L
8
5ð T1,T2½ 	ÞL43ðdxÞL2ðdyÞ

�N
3
2jjCðt, x, xÞjj

1
2

L4 T1,T2½ 	L2 jjrx, yKjjL2 T1,T2½ 	L6ðdðx�yÞÞL2ðdðxþyÞÞ:

A similar estimate holds for

jjrx, y
�C � VNKð Þ
	 


jj
L
8
5ð T1,T2½ 	ÞL43ðdyÞL2ðdxÞ:

Proof. The argument is similar to the previous proof, with minor modifications. We

have the pointwise estimate
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j VNK � ryC
	 
ðt, x, yÞj ¼

����
ð
VNðx � zÞKðt, x, zÞryCðt, z, yÞdz

����

�
ð
VNðx � zÞjKðt, x, zÞj2dz

� 
1
2
ð
VNðx � zÞjryCðt, z, yÞj2dz

� 
1
2

(84)

:¼ Aðt, xÞCðt, x, yÞ
and

jj VNKð Þ � ryCjj
L
8
5ð T1,T2½ 	ÞL43ðdxÞL2ðdyÞ � jjAjjL2 T1 ,T2½ 	L2 jjCjjL8L4L2 :

For A, we have already noticed

jjAjjL2 T1,T2½ 	L2 � jjVN jj
1
2

L
3
2
jjKjjL2 T1,T2½ 	L6ðdðx�yÞÞL2ðdðxþyÞÞ:

For C, we use (49):
����
����
ð
VNðx � zÞjryCðt, z, yÞj2dz

� 
1
2
����
����
L8 T1,T2½ 	L4ðdxÞL2ðdyÞ

�
����
����
ð
VNðx� zÞjCðt, z, zÞjdzEkðt, yÞ

� 
1
2
����
����
L8 T1,T2½ 	L4ðdxÞL2ðdyÞ

� jjVN jj
1
2

L1 jjCðt, x, xÞjj
1
2

L4 T1 ,T2½ 	L2 jjEkjj
1
2

L1L1 :

w
Next, we discuss Term3:

Proposition 6.4. For any time interval ½T1,T2	����
����
ð
ðVNðx� zÞ�CÞðx, zÞKðz, yÞdz

����
����
L
8
5 T1,T2½ 	L43ðdxÞL2ðdyÞ

� jjCðt, x, xÞjjL4 T1,T2½ 	L2ðdxÞjjKjjL83 T1,T2½ 	L4ðdxÞL2ðdyÞ:

and also
����
����
ð
Kðx, zÞðVNðz � yÞCÞðz, yÞdz

����
����
L
8
5 T1,T2½ 	L43ðdxÞL2ðdyÞ

� jjCðt, y, yÞjjL4 T1,T2½ 	L2ðdyÞjjKjjL83 T1 ,T2½ 	L4ðdyÞL2ðdxÞ:

Proof. Using 48 together with H€older’s inequality and Young’s inequality, we have

jj
ð
ðVN

�CÞðx, zÞwðzÞdzjj
L
4
3
x

� jjCðx, xÞjjL2 jjwjjL4 : (85)

Thus, at fixed time, using wðxÞ ¼ jjKðx, �ÞjjL2ðdyÞ,

jj
ð
ðVNCÞðx, zÞKðz, yÞdzjj

L
4
3ðdxÞL2ðdyÞ� jjCðx, xÞjjL2 jjKjjL4L2 : (86)

The proof is finished by using H€older’s inequality. The argument for the second esti-

mate is similar. w
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Next, we introduce derivatives:

Proposition 6.5.

jj
ð
ðVNðx � zÞrx

�CÞðx, zÞKðz, yÞdzjj
L
8
5 T1 ,T2½ 	L43ðdxÞL2ðdyÞ

� jjVN jj
L
4
3
jjCðt, x, xÞjj

1
2

L2 T1,T2½ 	L2ðdxÞjjEkjj
1
2

L1ðdtÞL1ðdxÞjjKjjL83 T1,T2½ 	L4ðdxÞL2ðdyÞ

�N
3
4jjCðt, x, xÞjj

1
2

L2 T1 ,T2½ 	L2ðdxÞjjKjjL83 T1,T2½ 	L4ðdxÞL2ðdyÞ:

where Ek is the kinetic energy density, see (50) and the estimate of Proposition 12. Thus

jjrx, y

ð
VNðx� zÞ�Cðx, zÞKðz, yÞdzjj

L
8
5 T1,T2½ 	L43ðdxÞL2ðdyÞ

�NjjCðt, x, xÞjjL4 T1,T2½ 	L2ðdxÞjjKjjL83 T1 ,T2½ 	L4ðdxÞL2ðdyÞ

þ jjCðt, x, xÞjjL4 T1,T2½ 	L2ðdxÞjjryKjj
L
8
3 T1,T2½ 	L4ðdxÞL2ðdyÞ

þ N
3
4jjCðt, x, xÞjj

1
2

L2 T1 ,T2½ 	L2ðdxÞjjKjjL83 T1,T2½ 	L4ðdxÞL2ðdyÞ:

and

jjrxry

ð
VNðx � zÞ�Cðx, zÞKðz, yÞdzjj

L
8
5 T1,T2½ 	L43ðdxÞL2ðdyÞ

�NjjCðt, x, xÞjjL4 T1,T2½ 	L2ðdxÞjjryKjj
L
8
3 T1,T2½ 	L4ðdxÞL2ðdyÞ

þ N
3
4jjCðt, x, xÞjj

1
2

L2 T1 ,T2½ 	L2ðdxÞjjryKjj
L
8
3 T1,T2½ 	L4ðdxÞL2ðdyÞ:

Similar estimates hold for
Ð
Kðx, zÞðVNðz � yÞCðz, yÞÞdz:

Proof. Using (49) and arguing as in the previous proof, with wðxÞ ¼ jjKðx, �ÞjjL2ðdyÞ, we

have,

jj
ð
ðVNrx

�CÞðx, zÞwðzÞdzjj
L
4
3
� jjE

1
2

kVN � Cðz, zÞ12wðzÞ
� �

jj
L
4
3

� jjE
1
2

kjjL2 jjVN � Cðz, zÞ12wðzÞ
� �

jjL4

� jjE
1
2

kjjL2 jjVN jj
L
4
3
jjðCðz, zÞ12wðzÞÞjjL2

� jjVN jj
L
4
3
jjCðx, xÞ12jjL4ðdxÞjjEkjj

1
2

L1ðdxÞjjKjjL4ðdxÞL2ðdyÞ:

Now the result follows using H€older’s inequality in time. The proof of the second

estimate is similar. w

Finally, we need estimates for ðVN � j/j2ÞðxÞ/ðxÞ/ðyÞ:
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Proposition 6.6.

jjðVN � j/j2ÞðxÞ/ðxÞ/ðyÞjj
L2ðdtÞL65ðdxÞL2ðdyÞ þ jjðVN � j/j2ÞðyÞ/ðxÞ/ðyÞjj

L2ðdtÞL65ðdyÞL2ðdxÞ

� jjðVN � j/j2ÞðxÞjjL2ðdtÞL2ðdxÞjj/jjL1ðdtÞL3ðdxÞjj/jjL1ðdtÞL2ðdyÞ

� 1

jjrx, y ðVN � j/j2ÞðxÞ/ðxÞ/ðyÞ
	 


jj
L2ðdtÞL65ðdxÞL2ðdyÞ

þ jjrx, y ðVN � j/j2ÞðyÞ/ðxÞ/ðyÞ
	 


jj
L2ðdtÞL65ðdyÞL2ðdxÞ

�N

jjrxry ðVN � j/j2ÞðxÞ/ðxÞ/ðyÞ
	 


jj
L2ðdtÞL65ðdxÞL2ðdyÞ

þ jjrxry ðVN � j/j2ÞðyÞ/ðxÞ/ðyÞ
	 


j
L2ðdtÞL65ðdyÞL2ðdxÞ�N:
���

Proof. All the above can be proved using (9), (11) and (53).

Since jjrxryKjjL1ðdtÞL2ðdxdyÞ� jjrxryKjjSrestricted
, the proof of Theorem 1.2 is complete. w
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