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Abstract
We consider the 3D smectic energy

2 2\ 2
£ (u)= 1 / 1 (Zizu - M) te (afu + 82,u>2dx dydz.
2 Q€ 2 Y

The model contains as a special case the well-known 2D Aviles-Giga model. We prove a
sharp lower bound on &; as ¢ — 0 by introducing 3D analogues of the Jin—Kohn entropies
Jin and Kohn (J Nonlinear Sci 10:355-390, 2000). The sharp bound corresponds to an
equipartition of energy between the bending and compression strains and was previously
demonstrated in the physics literature only when the approximate Gaussian curvature of
each smectic layer vanishes. Also, for ¢, — 0 and an energy-bounded sequence {u,} with
IVunllLe), IVunllp2po < C for some p > 6, we obtain compactness of Vi, in L?
assuming that Ayyu, has constant sign for each n.

Mathematics Subject Classification 49J45 - 35B36 - 35J50 - 49K 10 - 76A15

1 Introduction
In this article, we analyze the energies

1 [1 ( 1 2>2 2}
& () = 7/ ~ (o — = IVLul?) +e(Aiw)?|ax, (1.1)
2 Q| € 2

which represent the free energy of a smectic-A liquid crystal; see Sect. 2.1 for a discussion
of the relevant physics literature regarding smectics. Here 2 C R is a bounded domain with
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Lipschitz boundary, and x = (x, y, z). The subscript “_L" denotes the restriction to the x, y
variables of a differential operator or the projection from R? to R?, so

Viu= (deu,dyu) and Aju=0d7u+oju.
and if m = (my, mp, m3) € R3,
mi =m%+my and m= (my,m3) € R>.

Our main interest is the asymptotic behavior of energies (1.1) as ¢ — 0, which corresponds
to the regime in which the intrinsic length scale ¢, cf. (2.5), is vanishingly small compared
to 2.

We prove the following main results when ¢ — 0:

e alower bound, sharp when Vu € (BVNL>®)(; R3), on & when e — 0 (Theorems 3.6,
4.1), and

e a compactness theorem for the gradients of a sequence with bounded energies (Theo-
rem 5.1) satisfying some additional technical assumptions.

These results generalize the authors’ previous work [47] on the 2D model

2
To () = %/Q [i (Bzu — % (Bxu)z) te (8§u)2:| dx dz, (1.2)

to the 3D energies (1.1). For ¢, — 0 and a sequence {u, } with bounded energies J;, (1),
we proved compactness of Vu, in LY for 1 < g < p under the additional assumption
IVu,llLr < C forsome p > 6. Moreover, we obtained a lower bound on 7, and constructed
a matching upper bound using on a 1D ansatz.

The sharp lower bound for the 3D energies, which was not previously shown in the physics
literature, relies on a calibration argument which briefly works as follows. Letting

2 (Vu) = (X4, 22, Z3) (1.3)
where
1 » | 3
¥ = 0,udyu — Eaxu(ayu) — 6(3xu) ,
1 5 1 3
Yo = —0 udyu + anu(axu) + g(ayu)’,
55 = 2 (0y)? — - (0
3= B i 2 xu)”,
direct calculation shows that for u € H%(),
: _ _ l 2 2. a2
divE(Vu) = 0u 2|Vﬂt| (0yu — 05u). (1.4)

Thus by the arithmetic mean-geometric mean inequality and the divergence theorem, cf.
(2.24), & (u) can be bounded below by

& (u)z/divE(Vu) dx — | Viul?, (1.5)
Q

(%)

@ Springer



Nonlinear approximation of 3D smectic liquid crystals... Page30f29 157

with approximate equality when

1 1 2

2 2
7/ <8zu— ~|V.iul ) we/(AM) ) (1.6)
EJQ 2 Q

By the rotational symmetry in the xy-plane of the energies (1.1), the same calculation holds
for the rotations X¢ , of X (see (3.1)) obtained by replacing {X, $} with another orthonormal
basis {¢, 5} of R2. Thus for a sequence &, — 0 and {u,} converging to a limiting function
u in a suitable space, we may bound liminf &, (u,) from below by taking the supremum
of the divergences of X¢ ; over all {§, n} as in [3, 6] for the Aviles-Giga problem. In fact,
the energy (1.1) contains the 2D Aviles-Giga energy as a special case, which we explain in
Sect. 2.2.If Vu € (BV N L) (§2; R3), this lower bound is given by

Viu—viu?
/ Md?—tz, 1.7
Jou 12IVTu — V=ul

where Jy, is the jump set in the sense of BV. For the matching upper bound when Vu €
(BV NL®)(Q; R, (1.5) implies the lower bound is optimal for &, () if (1.6) holds. When
Q is a cube, we show this is possible by using a 1D ansatz in which Vu varies transverse to
the defect set. The ansatz is chosen so that (1.6) holds. The upper bound for general Q2 can
then be shown by appealing to a result of Poliakovsky [49].

Physically, the 1D ansatz can be interpreted as equating the compression strain (d;u —
% |V, u|*)? with the bending strain £2(A | u)?; see Sect. 2.1 for physical background of model
(1.1). Thus our analysis shows that the frustration coming from the competition between the
compression and bending terms is resolved by an equipartition of energy between the two.
Moreover, unlike many other problems from materials science where microstructure develops
[35], microstructure does not appear in this smectics model. We remark that the same has
been observed in the 2D problem [47].

The compactness of Vu,, in L?is proved under the additional assumptions || Vu, ||Lr(q) <
C for some p > 6 and || Vuy |l 2(5q) < C. We emphasize that these are physically justifiable,
as the model (1.2) is only valid in the small strain regime [10, 55], cf. Sect. 2.1. Our com-
pactness proof relies on a compensated compactness argument based on the work of Tartar
[60—62] and Murat [44, 45]. The main challenge is to find the suitable entropies to apply
Tartar and Murat’s div-curl lemma. Assuming further that A | u, > 0 a.e. in 2, we show that
curl £, and div B,, are compact in H -1(Q), where

Viuy,

1 2 2 1 2

E, = (VLuna E |V iy ) and B, = <_ IVLiun|”, 5 IV Ly ) .
Thus (E,, B,) satisfy the assumptions of the div-curl lemma. Applying the div-curl lemma
to E, - B, yields strong convergence of V| u, in L2, and compactness of Vu, in L? follows
from the fact d,u, — % |VJ_MH|2 — 0in L2

The paper is organized as follows. Section 2 recalls the physical background of our model
(1.1), summarizes the pertinent mathematical literature, and presents the main calculation
behind the lower bound in a simplified setting. Also included in Sect. 2 are some preliminaries
on functions of bounded variation. Section 3 is devoted to the lower bound. In Sect. 4 we
construct a sequence which matches the lower bound from Sect. 3 when ¢ — 0, and in Sect. 5
we prove compactness.
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2 Background and preliminaries
2.1 Physical background: smectic a liquid crystals

Smectic liquid crystals are formed by elongated molecules that are aligned and arranged in
fluid-like layers. They are a remarkable example of a geometrically frustrated, multi-layer,
soft-matter system. Ground states of smectic liquid crystals are characterized by flat, equally
spaced, parallel layers. Due to spontaneously broken translational and rotational symmetry,
singularities form in regions where the smectic order breaks down. When defects are present,
the layers must bend and the resulting curvature is, in general, incompatible with equal
spacing between them. The subtle interplay between the geometry of the layers and equal
spacing imposes theoretical complications, and understanding the layer structure of a smectic
liquid crystal is a challenging task.

Smectics can be represented by the density modulation Ap o< cos [%”d) (x)], where x =
(x,y,z) € R3, ais the layer spacing, and ¢ is the phase field of the order parameter [11, 20].
The peaks of the density wave where ¢ (X) € aZ correspond to the smectic layers. We are
interested in the smectic A phase, in which the nematic director coincides with the normal
to the smectic layers N = %' In terms of ¢, the free energy of a smectic liquid crystal on
aregion €2 [56] is the sum of the compression and bending energies

1 Vo \2
F==/[ B|=1|Ve)? K(V-—) dx, 2.1
2/9 [( VoD + K1 |V¢|}X @.1)

where B is the compression modulus and K the bend modulus. The constant ¢ = ,/ % is
the penetration length. In the presence of boundaries, there is also the saddle-splay term

FK=1?/ V-[(V-N)N— (N - V)N]dx.
Q

The contribution of this term depends only on the boundary conditions and is often excluded
from the energy. For configurations with topological defects, this term can contribute to the
core energy of a defect.

The global minimizer of (2.1) is the zero-energy state ¢ (x) = n-x+ ¢o withn € S? and
¢o € R. However, rarely do both terms in the free energy vanish. To understand the frustration
of the problem in general, the following example of a smooth surface surface xo = Xo(u, v)
and its parallel surfaces x,, (1, v) := Xo(«, v) +naN(u, v), n € Zisilluminating [33]. Let H,
and K, denote the mean and Gaussian curvatures of X,,. A standard calculation [19,Sec. 3—
5 Exercise 11] yields the formulas

Hy — nakKy Ko
Hy = 22K T 242K
1 —2naHy + n“a“ Ky 1 — 2naHy + n“a“ Ky
Since mean curvature can be expressed in terms of the surface normal by H = —%V -N,

the bending term is proportional to HZ2. Therefore, for evenly spaced layers, the only way
for the bending to vanish (so H,, = 0) for all layers is for the Gaussian curvature Ko of xo
to be zero, which in turn implies K,, = 0, so that the product of the principal curvatures is
zero. On the other hand, H,, = 0 implies that the principal curvatures sum to 0 as well, so
that they both vanish everywhere. Thus unless all the layers are flat, vanishing curvature is
incompatible with the uniform layer spacing. The interaction between the layer spacing, the
Gaussian curvature, and the mean curvature presents a major obstacle to finding minimal

@ Springer



Nonlinear approximation of 3D smectic liquid crystals... Page50f29 157

configurations for the energy (2.1). Throughout the physics literature there are numerous
works on the search for exact or approximate solutions of deformations in smectics [8, 10,
17, 18, 30, 32, 33, 42, 54-57].

In the study of smectic layers, it is typical to consider the deviation u from a fixed ground
state ¢, 50 ¢ = ¢ — u. If we fix ¢ (x) = z, then u(x) = z — ¢ (x). Expressing the compression
strain in powers of Vu = Z — V¢ and setting V| = 0,X + 98,5, A} = 83 + 8}2,, we can
expand the compression as

1
1— |V zazu—§|wu|2+o(u3), 2.2)
and bending strain as
V¢ 3
=~ —=Aju+0(u’). (2.3)
Vo )

Keeping only the linear terms in the expansions (2.2) and (2.3) in the limit of small elastic
strains |Vu| < 1 results in a linear theory [20, 34] of (2.1) which has been widely used in
the study of strain fields and energetics of dislocations in smectics-A. On the other hand, the
well-known example of the dilatative Helfrich-Hurault effect [23, 24], in which the layers

wrinkle upon stretching, indicates that nonlinear effects can be important even for small
IV ul®
d;u

is not negligible when d,u ~ |V Lu|?. The first example of strain field taking into account
the nonlinear effect was constructed by Brener and Marchenko [10]. They considered the
strain field for a single edge dislocation in the regime d,u ~ (9,u)> < 1 and found an exact
solution to the Euler-Lagrange equation for the 2D nonlinear approximation of (2.1)

2
F= E/ |:<Bzu - l(axu)z> +¢? (afu)z} dx dz, (2.4)
2 Ja 2

¢ =+/Ki/B. 2.5

strains. Observe that the linear model is only valid when « 1, and the nonlinear term

where

Their construction deviates markedly from the strain field predicted by linear theory even
away from the defects where the elastic strain and curvature are small. The solution was
verified experimentally in a cholesteric finger texture by Ishikawa and Lavrentovich [30] and
by Smalyukh and Lavrentovich [58] using confocal microscopy.

Brener and Marchenko found their solution by solving the fourth order Euler-Lagrange
equation of (2.4) directly. Later, Santangelo and Kamien [55] approached the problem from
a different perspective and discovered a large class of exact minima for the nonlinear approx-
imations of (2.1). They studied the 3D version of (2.4)

2
F_B/[(au_lw ) e }
= - Lul +&” (ALu)” | dx. (2.6)
2 /o 2

Completing the square in (2.6) yields

1 1 1 2
Ee (1) = 5/ [ <azu - = |vlu|2) +8(AJ_u)2i| dx
ol e 2

171 1 2 1
7/ —(u— = |V u?FeA u dx:l:/ du——|ViulP) A udx. (2.7)
Q€ 2 Q 2

2
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Observe that |
dcud u ="V BuViu) = -9 (IVLul?) (2.8)

and

_ 1
3IViul? Aru = —4Ku+ Vo - (Viu|Viul*) +2V, - (uAluVlu —5uVL IViul),
o 2.9
where K = 3§u8\2,u — (Bxyu)2 is the lowest order approximation of the Gaussian curvature.
By the Bochner formula %A|Vu|2 = Vu - A(Vu) + |V?u|? from flat geometry or by direct
calculation, K can also be expressed as

_ 1 1
K:EVL'<VLMAJ_M—§VJ_|VLM|2>, (2.10)

which is the form found for example in [55]. Substituting (2.8) and (2.9) back into (2.7)
yields

1 /1 1 2 2 [ —
55(u):f/ —(8.u— = |Viul® FeA u dx:l:f/Kudx
2 Q€ 2 3 Q
i/ div E (1) dx, (2.11)
Q
where

1 , 1 1 , 1 5

Eu) = Bzu—glvlul —gMAJ_M VJ_M+6MVJ_|VJ_M| ,—E|VLM| . (2.12)

A direct conclusion from this decomposition is that the free energy of deformations with
K = 0 is always bounded below by the contributions from the boundary integrals involving
E(u) , and the minimum is achieved when

1
dcu — > IViul® = +eA u. (2.13)

The nonlinear differential equation (2.13) is called the BPS equation, with solutions referred
to as BPS solutions. This equation is of reduced order compared to the Euler-Lagrange
equation of the free energy (2.6). As observed in [55], (2.13) has a simple but important
physical interpretation: equating the bending and compression energies so as to minimize
their sum and alleviate the geometric frustration described earlier. This type of technique,
called the BPS decomposition, was introduced by Bogomol’nyi [9], Prasad and Sommerfield
[51] in the study of field configurations of magnetic monopoles and solitions in field theory.
BPS-type decompositions have also been utilized in the analysis of thermal fluctuations in
2D smectics [22] and shape changes in vesicles [7].
When u is a function of z and x only, so that K = 0, the BPS equation simplifies to

. l 2 _ 2
o;u 5 (0xu)” = Eedju. (2.14)
Through the Hopf-Cole transformation S+ = exp[£u(x, +z)/(2¢)], (2.14) becomes the

diffusion equation
9.8+ = €025y (2.15)
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Solving (2.15) with the boundary conditions S+ — 1 as x — —oo and S1+ — ei% as
x — 400, where b is the Burgers vector of the dislocation, yields

S =1+ (ei% - 1) " /M e dr.

o0

After inverting the Hopf-Cole transformation, this solution recovers the edge dislocation
deformation calculated in [10].

When K is small, the BPS solutions are energetically preferable compared to solutions
from the linear theory [55]. Santangelo and Kamien [56] generalized this idea to the full
energy (2.1) and established a specific set of minima of (2.1) when the K = 0. Their
arguments demonstrated that the layer deformation in the partially nonlinear theory [10, 55]
is near the profile from the full energy.

Given the rigidity of the assumption that the Gaussian curvature of the smectic layers is
zero, one might conjecture that BPS solutions are no longer (approximate) minimizers upon
relaxing that assumption. Interestingly however, this is not the case. Indeed, we quote from
[55], where some numerical simulations were done to investigate this issue. “Further study
is needed to understand the precise role of the uK in the failure of the BPS configurations
to minimize the energy. It is often the case that ‘near-BPS’ solutions are remarkably good
approximants and it appears to be true here as well." We utilize techniques drawn from the
mathematical literature for singular perturbation problems to obtain a sharp lower bound for
(2.6) while only assuming that f €K is small, providing an explanation for this phenomenon.
Our analysis is inspired by the simple fact that the 3D smectic energy (2.6) is a generalization
of the well-studied 2D Aviles-Giga functional, which, nevertheless, has not been observed
previously in the literature to the best of our knowledge.

2.2 Mathematical background: the Aviles-Giga energy

To illustrate the link between 3D smectics and Aviles-Giga functional, fix Q2 C R? and
consider the smectic energy (2.6) on the three dimensional cylinder €2 x (0, 1) subject to the
constraint d;u = !/2. With the dependence of Vu on z eliminated, the energy (2.6) becomes

§/ B (1= [VLul?)’ + &2 (Aw)z} dx dy. (2.16)
Q

Ignoring the harmless factor of /4 on the first term, this is the 2D instance of the Aviles-Giga
energy, which we now recall.
Aviles and Giga [5] formulated the energy

f6=/ E(|Vu|2—1)2+smu>2]dx, @.17)
Q

known as the Aviles-Giga functional, as a model for smectic liquid crystals. Here 2 C R" is
a bounded domain. When ¢ approaches zero, Aviles and Giga conjectured that the optimal
transition layers are one dimensional and F, converges (in the sense of I'-convergence) to
the limiting energy

Fo= 1/3/ [Vul)? dH" .
JVu

Here the limiting function u satisfies eikonal equation |Vu| = 1 a.e., Jy, is the defect set,
cf. Definition 2.3, and [Vu] is the jump in Vu across Jy,,.

@ Springer
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The Aviles-Giga functional has been extensively studied in the case n = 2. After extracting
a boundary term, (2.17) is equal to

- 1
Fe =/ [—qvm2 - 1>2+s|v2u|2] dxdy. (2.18)
QLE

Jin and Kohn [31] noticed that the divergence of the “Jin-Kohn entropy"

<3xu (1 — (Byu)* — %(axuﬂ) , —dyu (1 — (Byu)? — %(ayu)z» : (2.19)

calculated directly as (1 — |Vu |2)(8§u — Bf,u), bounds F, from below and the lower bound
is asymptotically optimal if

11— |Vuel*| ~ [87u, — jue| and e/ (aﬁugagug - (axyug)z) dxdy ~ 0.
Q

For the unit square and boundary conditions u = 0, % = —1, they proved that the lower
bound can be achieved by the “1D" ansatz u, = ax + f.(y) when the associated defect set of
the limiting map lim,_,( u, is parallel to the x axis, corroborating Aviles-Giga’s conjecture
regarding the one-dimensionality of the transition region. Recently, Ignat and Monteil [29]
proved that any minimizer of (2.18) on an infinite strip is one-dimensional. By considering
the supremum of the divergences of all rotated versions of Xu, Aviles and Giga [6] derived
a limiting functional J : W13(Q) — [0, co) which is lower semicontinuous with respect to
strong topology in W!3(£2) and coincides with F for any u satisfying the eikonal equation

with Vu € BV (£2). Moreover,

J(u) < liminf 7, (uy,)
n—0o0

for any sequence u,, converging strongly to u in W!3(£2). A construction which achieves con-
jectured I'-limit when Vu € BV (2) was provided in [12, 49]. For the I"-convergence theory,
another important question is the compactness of sequences with bounded energy when &
goes to zero. Such compactness results in two dimensions have been proved by two different
groups [3, 16] using different approaches. For the Aviles-Giga functional in dimensions three
or higher, the state of art is less clear. De Lellis [13] constructed a counterexample, showing
that Fy is not the limiting energy for . and 1D ansatz is not optimal. The compactness
and form of the limiting energy, however, are still open. The Aviles-Giga model and related
topics such as the eikonal equation and other line-energy models have continued to be active
areas of research in the past two decades; see [1, 14, 15, 21, 25-28, 36-41, 52, 53] and the
references therein.

2.3 Heuristic proof of the lower bound

The admissible class for (1.1) is H2(£2). We recall some trace properties for this space when
0% is Lipschitz that are useful for the lower bound. First, since u € H 2 it follows that
Vulyo € H'/Z(MZ; ]R3). Furthermore, momentarily replacing 9y, dy, and d; by 91, >, and
d3, the tangential derivative operators

ey = VO —widj : HP0Q) — H™F(0Q) = (H"(3Q)* (2.20)
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are well-defined, linear, and bounded for any 1 < j, k, [ < 3 [43,Proposition 2.1]. In partic-
ular, denoting by <, > the pairing between H~'7(3) and H'(32), the quantities

< O, Btjk (oju) > (2.21)

are well-defined for u € HZ(Q) and 1 < j,k,[,m <3.
We recall the map

Boudeut — ~0uu () — S (Be)?, —deudyu + 20,u(B0)? + ~ (@)%, = (@y10) — = (Beu)?
cudxu — 5 0cu(dyu g @xu)”, —Bxudyu + > 8yu(dxu g @yu)”, 5 (@yu 5 @

from (1.3). We point out that the first two components of X (Vu) are one half times the
Jin-Kohn entropy for the Aviles-Giga energy when d,u = % Direct calculation shows that
foru € H*(Q),

. _ _1 2 2. a2
div¥(Vu) = | d;u 2|VLM| (Ogu 8yu)

1 1 2 P e 2 212
<> <8Zu— 51Vl ) + 5 (07— 05, (2.22)

To handle the fact that the second term differs from (A | )2, werecall K = afu 8}2,u —(Oxy u)?,
so that

/ [(a10? = @ - 9u)* — 4K | dx = / 4(Byyu)? dx > 0.
Q ’ Q
Combining this with (2.22), we arrive at
/ div 2 (Vu) dx + 5/ 2K dx < & (u). (2.23)
Q Q

Notice that K = divL(axuayzu, —dxudyyut), so that

€ / 2K dx = 2¢ / Ay 14dyy, dyu dH? (2.24)
Q Q2

and both terms on the left hand side of (2.23) depend only on boundary values. By the
continuity of the tangential derivative operators from H "2(3Q) to H ™ '2(32), we can estimate

6‘/ 2K dx
Q

The general lower bound as ¢ — 0is then derived by taking supremum over all the rotations of
¥ asin (3.1). We also refer the reader to the end of Sect. 4 for a discussion of the implications
of this analysis on the BPS solutions.

< 260t oy 19e12 Byl 1 oy < CDENV LUl ppey-  (225)

Remark 2.1 There are few 3D examples where an explicit calibration can be found and, to
our knowledge, there is no systematic approach to find such a calibration for an arbitrary
energy. Our choice of the calibration (1.3) uses only Vu while the calibration (2.12) from
BPS decomposition involves second derivatives of u. For u smooth, since

(ALu)® — (37u — dju)* = 4K,

1 2
(Byu — E'V“"z) A u=divE®@) + gKu,

1 2 2 2 .
(Oyu — §|Vj_u| ) - (Oyu — 8},u) =div X (Vu),
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the two calibrations can be linked by the following identity when K = 0:
|div E| = |div 2 (Vu)|.

Remark 2.2 Comparing the BPS decomposition to (2.23), we see that the remainder term
¢ [ 2K in the latter can be handled more easily than the term [, u K . This is the reason that
we are able to obtain a lower bound even in the presence of non-vanishing Gaussian curvature.
One might guess that since the BPS decomposition is also predicated on equipartition of
energy between the bending and compression terms, the two arguments give the same lower

bound N .
\% - V7
/ |Viu LUl dH?
Jou 12|V u — V=ul

in the limit ¢ — 0 when K = O for each u, and Vu € BV (Q; R?). This is indeed the case,
although passing to the limit as u, — u in the term fQ div E (u,) is non-trivial since E (ug)
contains second order derivatives of u.. This can be accomplished via a blowup argument
which then allows for a careful analysis of those higher order terms in the simplified setting
of a flat jump set with limiting constant states Vu™ on either side.

2.4 Properties of functions of bounded variation

Our discussion draws from the relevant sections of [4,Chapter 3]. For the sake of generality
and because the dimensions of the ambient/target spaces do not matter for these results, in
this subsection we will consider functions defined on R¥ and taking values in R¥

Definition 2.1 [4,Def. 3.1] An element m C L!(Q; RM) belongs to the space BV (2; RM)
if the distributional derivative Dm = (D jm,') of m is a finite RM*¥ _yalued Radon measure.

Definition 2.2 [4,Def. 3.63] If m € L'($2; RM) we say that m has approximate limit z =
aplimy_,, m(y) atx € Qif

lim |m(y) —z|dy = 0.
r—0 By (x)

If this property fails to hold at x for every z € RM, then x belongs to S),, the approximate
discontinuity set.

To refer to solid half-balls in €2, we define
Bf(x,v):={yeB(x):(y—x)-v>0},B (x,v):={y € B,(x): (y —x)-v <0}.

Definition 2.3 [4,Def. 3.67] Form € BV (2; RM™), we say that x € Q belongs to J,,, the set
of approximate jump points, if there exist m™(x) # m™(x) € RM and v, (x) € SV~ such
that

lim][ Im(y) —mt(x)|dy = 0 and lim][ Im(y) —m~ (x)|dy = 0.
=0 BF (x vm) =0/ B (x.vm)

The vectors m™, m~, and v,, are uniquely determined up to permuting m™, m ™~ and exchang-
ing v, (x) for —v,, (x). Also, J, is countably H" ~!-rectifiable.
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Definition 2.4 [4,Cor. 3.80] The precise representative of m € BV (; RM) is the function

ap limy—)x m(y) ifx & Spm,
mx) == mt(x) + m~(x)

> ifx € Jy.

Theorem 2.3 [4,Thm. 3.78] Ifm € BV (%; RM), then S,, is countably HN_I-rectiﬁable and
HY (S \ Jm) = 0.

Next, we recall the BV Structure Theorem.

Theorem 2.4 [4,Section 3.9] For m € BV (Q; RM), the Radon measure Dm can be decom-
posed into three mutually singular measures

Dm = D%mn + D'm + D m. (2.26)

The first component is absolutely continuous with respect to the Lebesgue measure and is
given by
Dm = VLV,

where Vm is the matrix of approximate partial derivatives defined L"-a.e. The component of
Dm that is singular with respect to LN is Dm. It can be written as D’m = D/m 4+ Dm,
where

Dim=m"—m ) Qu,H 'L J, (2.27)

and Dm is the Cantor part of Dm, which vanishes on sets that are HN ™! o -finite.

Remark 2.5 Since D®m and D¢m both vanish on sets that are H" ! o-finite, they vanish on
Sin. Therefore, aplim,_, . m(y), which is defined off of S,,, exists and is equal to 7 except
on a set of | D?m|- and | D°m|-measure zero.

Lemma 2.6 Ifm € BV (2; RN) is equal to Vu for some u € WLL(Q), then
Vut — Vu~ [/vva. (2.28)

Proof Since the Radon measure Drm is equal to V2u, it is symmetric and can be decomposed
into three mutually singular measures, cf. (2.26). Thus the jump part (Vu™ — Vu™) ®
vv,ﬂ-[2 L Jy, is symmetric as well. But (Vu™ — Vu™) ® vy, is symmetric if and only if
Vu™ — Vu~ //vy,, which is (2.28). O

We state the BV Chain Rule [2, 63].

Theorem 2.7 [4,Thm 3.96] Let m € BV (2 RM) and F : RM — R? be C! with bounded
gradient and F(0) =0 ifLN(Q) = 00. Then F om € BV (Q; RY) and

D(Fom) = VF(m)VmLY + VF () D m+(F(m™) — F(m™)) @ v HY 'L J,. (229)
When M = P, taking the trace on both sides of (2.29) yields

div (Fom) = tr (VF(m)Vm)L? +tr (VF()Dm) + (F(m™) — F(m™)) - v HYN 'L .
(2.30)

Remark 2.8 As a consequence of Theorem 2.7, if F does not have bounded gradient, one
must assume that m instead is bounded in order to apply the chain rule above.
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3 The 3D Aviles-Giga space and the lower bound

In this section we prove the lower bound. Due to the connect ion between the 3D model
(2.6) and 2D Aviles-Giga, many of the arguments leading to the lower bound are the natural
3D analogues of results from [3, 6]. The proof is centered around the 3D version of the 2D
Aviles-Giga space considered in [6] and explicitly defined in [3]. Although alternate proofs
are available when Vu € BV (2; R3), for example via blowup or covering arguments, we
follow the structure of [3] which gives the most general version of the lower bound without
this assumption on Vu.

Let {&, n} be an orthonormal basis of R2. For any vector m = (m_,m3) withm € R2,
denote

mg=my -§ my=my-n

and set

2 3 2 3 2 2
mem?  m mymz  m mg m?\
ey (m) = (m3mg— T —;>§+(—m3mﬂ+ 5 +”>n+<—2‘5+”)z.

2 2 6 2
3.1

3
Note that for m : Q@ — R3, ¢, (m) € L] (R if my € L} (Q) and m3 € L} ().

loc
This and the fundamental equation (2.23) motivate the following definition.

3
Definition3.1 Let u € W’ () be such that Viu € L3 (:R?). We say that u €

AG3P(Q) if div Zg,(Vu) is a finite Radon measure in € for all orthonormal bases {&, n} of
R2.

Definition 3.2 If u € AG3P(Q) and d,u = 1|V u|?, we say u € AG3P ().

Let {e], e2} be the standard basis of RZ, and let {g], &2} be given by

1 1 1 1
e1=\—7=.—f42), a2a=|—-——F7.—14]. (3.2)
(ﬁ V2 ) ( V2 V2 )
A routine calculation, yields a formula for X¢,, in terms of X, ., and ¥ ,. The R2-valued

version of this formula for the Jin-Kohn entropies was first derived in [3], and we do not
include the proof.

3
Lemma3.1 Foranym € L} (S R?) suchthatm | € L} (Q;R?), ifé = (cos6, sin6) and
n = (—sin@, cos b)), then

Xgy(m) = 0820 e e, (m) + 5in 20 Xg ¢, (m). 3.3)

Definition 3.3 Forany u € AG3P (), let Tu be the finite vector-valued Radon measure

Tu = (div T, 0, (V). div Zg, o, (Vir)). (3.4)

By (3.3), u € AG3P(Q) if and only if div 3, ,¢, (Vu), div X¢,¢, (Vu) are finite Radon
measures. Let B denote the sets of all orthonormal bases of R? with the same orientation
as {e1, e2}. We decompose the domain and on each piece we consider the rotated mea-
sure div 3¢, (Vu). The following result shows that [/u| is the supremum of the measures
|div Xg, (Vu)| over {§, n} € By.
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Theorem 3.2 (i) For any u € AG3P () and Borel subset B of ,

(TulB)=| \/ |divZeg,(Vu)| | (B)
{&.meBy

J
=sup {4 > " |div Zg;,, (V)| (B)) : J € N, (Bj}]_,
j=1

is a Borel partition of B, {§;, n;} € B+} 3.9
(i) For an open set A,
J
[Tul(A) = sup { Y " |div B¢, (Vu)| (A)) : ] €N, A;
j=1
are open, disjoint, A; CC A, {§;,7n;} € B+} . 3.6)
@ii) If {un} C AG3P(Q) are such that
Viu, - Viu, 0u, — ou,
L3 13/2
and
[Tu,|(2) < C < oo foralln, (3.7
then u € AG3P () and
Iun—*\lu.
Thus for every open set A C <2,
[Tu|(A) < liminf [Tu,|(A). (3.8)
n—oo

Proof By Riesz’s Theorem and (3.3), we have the equality of measures
div g, (Vu) = (cos 20, sin 20) - [u = (cos 20, sin 20) - g|lu|

for some g which is unit-valued |/u|-a.e. One then has for any Borel set B and Borel partition
{Bj}_,
]_

J J

J
Z|div2§jnj(Vu)|(Bj):Z/B |(cos20;,5in26;) - g| d|Tu| <> |Iul(B)). (3.9)
j=1"Pi

j=1 j=1

Approximating g by functions that take finitely many values in S' yields (3.5). The repre-
sentation (3.6) when A is open is a consequence of the usual approximation theorems for
Radon measures. To see this, note that for any partition {B;} f:l of A, we can approximate

B from inside by disjoint compact sets {K ; }f:l and then K ; by the desired open sets.
For (iii), by Holder’s inequality and the convergence of Vu, to Vu, we have

Beres (Vitn) = Beyer (Vit),  Teyer (Vity) — ey, (Va) in L1(Q; RY),

so that the divergences converge in the sense of distributions. Thus (3.7) implies that [u is

Radon and 7 un—*\ Tu, and (3.8) is a consequence of the weak-* convergence. O
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Proposition 3.3 Ifu € W2'/(Q), then
div Z¢, (Vu) = _ Loup) o — 22
en(Vu) = | ou > |Vu| (3514 3,114) (3.10)

and
[u| =

1
azu—§|vw|2‘|xl—12|z:3|_sz (3.11)

where L1, Ay are the eigenvalues of Viu.

Proof If u is smooth, we can calculate

div Ze,) (Vu) = 3¢ (e (Vu) - &) + 3y (Zey (V) - 1) + 0; (e (V) - 2)
Ozu(dpu)? - (0g1)?02u
2 2
Ogu(dgu)? N (Opu)*9u
2 2

= ¢ 0.udeu + D-udFu — dpudyudg dyu —

— 0y d.udyu — d.udju + dpudyudydeu +
— 0:u0;0su + 0yud;dyu
Vil
- <8Zu -5 ) (02u—o}u). (3.12)

If u € W2'A5(Q), then by the Sobolev embedding, Vu € L’7(2). For u, smooth and
converging to u in W2°5(Q) , Holder’s inequality yields for any test function ¢ € C3°(£2),

/—Zg,,(Vu)-Vgodx: lim /—Egn(Vu”)-V(pdx
Q n—oo o

v 2
= lim (Bzun — | l;"' ) (Bgu” — Bgun> @ dx
Q

n—oo

|VLM|2 2 2
/Q <8Zu - =5 ) (02u—0}u) g ax.
so that (3.10) is proved.

For (3.11), if v = v(x) and w = w(x) are the orthonormal eigenvectors of ij_u(x) with
corresponding eigenvalues A(x) = 85u(x) and A (X) = Biu(x), then direct calculation
gives

(02 — 02| = [02u — 2u[ [(6 - v)* = (0 )] = [02u = B3u] (6 - w)? = (7~ w)?]..
From this we may conclude that
sup ‘agu - agu’ = A1 —2al,
{En)eBy
and thus
A — Ll Q.

1 2
[{u| = |0;u — E'Vi’”

[}

Remark 3.4 The condition that u € WZ’%(Q) is stronger than merely requiring that u €
AG3P(Q). However, by Holder’s inequality and the Sobolev embedding, 9/5 is the opti-
mal exponent for which the measure div X (Vu)is absolutely continuous with respect to
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the Lebesgue measure and is thus represented by the integration of an L'-function; cf.
[3.Proposition 3.4] for the corresponding result in two dimensions.

The next proposition gives a formula for |/u| under certain regularity conditions on u €
AGSD (£2) necessary to apply the BV Chain rule, cf. Theorem 2.7 and Remark 2.8.

Proposition 3.5 Ifu € AG3P () N W1*°(Q) and Vu € BV (2 R?), then

\Vout =Viu=|* )
Iu| = —————=—H "L Jv,.
) = A VT — v vu
Proof For any {&, n}, first notice that due to the BV Chain rule,
|div Ze, (Vi) | L Iy = [(Zen(Vu) = Zgy (V) - vwu| H2 L Jva.
We compute the right hand side and then optimize over choices of {£, n}e B, at each point

in Jy,. To simplify the notation in the calculation, set Vu = m. Now since u € AGSD (2),
m™t and m™ satisfy

1
my = 5 (n)? + (m)?)

on Jy,, which can be directly verified from Definition 2.3. This gives

+. 0 +\2 +\3 +(,,1)2 +43
zsﬂmin:(m}im;—m“ﬁ“ - )k (b4 PG )

(3.13)

6 2 6
m)*  (mE)
-3 ° 3

(3.14)
Using (3.14) to rewrite Eg,,(mi) and then (3.13) and m* — m™ //v,, to replace v, cf.
Eq. (2.28), we have

|(Zén(m+) - Eén(m_)) V|

mi?  (mg)? mH (my)?
Y A U

. (_(m;ﬂ L me? <mn>2> )

2 2 2 2
1 mH?* (mg)? _(mD ) _
= | ( o g KGRt il W bt g KGRl
mH*  m* mH? m)P\ [1mTE mT)
* <_ » T2 T T 2 2 ‘

Expanding out the right hand side of the previous equation and combining like terms gives

(mf —m)* — (mf —m;)*
|(E$n(m+)—zén(m_))'vm|=‘g : Fomi

+ —14
|ml _mﬂ
12lm* —m—|

~ R2lmt —m—|
(3.15)

Equality is achieved for {&, n} such that (m* — m™) ) //& or (m* — m ™), //n. Taking the
supremum over {&, n}e B, we find that

[Vut — Vu7|*
[TulL Jy, = mﬁﬂ_m. (3.16)
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To complete the proof of the proposition, we must show that
ul(2\ Jvu) = 0.

Recalling the BV Chain rule, Theorem 2.7, notice that away from Jy,, div ¥¢,(Vu) can be
computed using the usual chain rule formula by substituting D (Vu) and D(Vu) for the
classical second derivatives of u. Therefore, by the same manipulations as in (3.12), we have

div Zg, (V) L (2 \ Jvu)

~ Vi : :
= (a = —— | [£" D (VW + €7 D (Vwé — " D (Vuyy — 0" D (Vuyn].
Since 5;4 — M = 0 for x where the approximate limit Vu exists, it is zero | D*(Vu)|-

and |D(Vu)|-a.e. by Remark 2.5. Thus |Tu|L (22 \ Jy,) vanishes as well.

We are ready to prove the lower bound. The theorem is stated under the assumption that
8,2, f K, — 0, which can be enforced by mild control on the boundary data as in (2.25).

Theorem 3.6 Ler 2 C R3 be an open set. Consider €, \, 0 and {u,} C H*(Q) such that

Viu, - Viu, du, — ou (3.17)
L3 1L3/2

for some u € Wl'% () with Viu € L3(S; R?). Iflim inf,,_ o &, (uy) is finite and

lim &2 / K,dx =0, (3.18)
n—o0 Q
thenu € AG{P(Q) and
liminf &, (un) > [Tul(). (3.19)
n—oo

When u € AGSD(Q) N WL®(Q) and Vu € BV (Q; R3), then by Proposition 3.5, the lower

bound is given by
Viut —viu*
Q'Hz L -IVu-

lTu|l =
) = A VT — v

Proof For each u,, € H?(), the representation (3.11) of |7u,| gives

1
[Tuy| = |0;uy, — 2|Vlun|2‘ [A1n — )¥2,n|['3 LQ

< | 2L (o — T2 2Jrg—"(x —an) | L (3.20)
= 28" zUn ) D) 1,n 2.n . .
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Next, fix an open set A CC €2 and a test function ¢ € C2°(£2; [0, 1]) such that ¢ = 1 on A.
We estimate

&n

= / (A%, 423, + 2h1nhon]| @ dx
Q

£
3" /Q (ALup)? dx > 5

- %" [Oetn = Aa)? + 4det(V3un)] ¢ dx
Q

€
= ?" / (Ain = dan) @ dx — 2‘9'1/ axu"(a§”"8X¢ ~ Quyltndye) dx
o Q

&n 2 2
E ()\l,n - )\Z,n) dx —2en Vol Lo IV Lun | 21V un 2.

=2/,
(3.21)

Now since V| u, are bounded in L3, the square of the remainder in (3.21) can be estimated
by

enlViun 721V unll7s = 7| Viunls / (A1, + 23, + 201 nhon — 2h1nhon] dx
Q

2/?ndx
Q

— 0. (3.22)

< Cg? / (Ayup)?dx + Ce?
Q

Combining (3.20)—(3.22), we conclude that

1 1 1 2 2
Ee, (un) > */ — | dgun — = |Vlun|2 + é&n ()\l,n - )L2,n) dx
2 Al €n 2

— 26, IVollLoe IV Lunll 2119 F w2
= [up|(A) = o(D). (323)

Since the limit inferior of the energies is finite, we can appeal to Theorem 3.2.(iii) to find
thatu € AG3P(A) and

liminf &, (u,) > liminf [{u,|(A) > [Tu|(A).
n—o0 n—oo
An exhaustion argument givesu € A G3P () and (3.19). The fact thatu € A GSD (2) follows

from 5
\v/ 2
/ <8zu,, - L;”l ) dX < £, (y) — 0. (3.24)
Q

[m}

4 The upper bound

In this section we show that the lower bound Theorem 3.6 is sharp when u € AG%D (R2) and
Vu € (BV N L*)(R2) by means of a construction, so that we have matching upper and lower
bounds. Combined with the lower bound, this allows us to conclude that under reasonable
assumptions, equipartition of energy in (2.6) is optimal.
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Theorem4.1 Let u € AGiP(Q) N W1(Q) and Vu € BV (S R). Then there exists a
sequence {up} C C 2(Q) such that

ug — uin WhP(Q) forall1 < p < oo 4.1)

and
IViut —Viu

£ — = aH>. 4.2
E(ME)H/JW 2V —va| @2

The proof of Theorem 4.1 consists of two steps. In Proposition 4.2, we show that on a
cube with jump set parallel to one of the faces, the sequence of one-dimensional competitors
with constant gradient in the direction parallel to the jump set is asymptotically minimizing.
Second, the cube construction can be leveraged to obtain the full upper bound Theorem 4.1
by using the results of [50].

To formulate the problem on a cube, let us fix an orthonormal basis {1, {2, v} of R3 and
the set

C={xeR:|x-v| <1 |x-&| <'pfori=1,2}

Next, we choose boundary data that will be compatible with a limiting jump set {x € C :
x-v = 0}. Let m™ # m™ be such that

my = %ImTIZ and v//(m* —m"), (4.3)
and consider the class
Ac :={u € H*> : Vu = m* when x - v = £1/> and Vu is 1-periodic in the ¢{, ¢ directions}.
Note that since m™* # m ™, the first equation in (4.3) enforces
vy #0,

so that we can define the planar unit vectors

E= 5 and n=(—£&.6.0).
vl

The smaller set of 1D competitors is defined by
AICD ={ueAc:Vu-i=mT -=m" - fori =1,2)}.

We remark that due to the boundary conditions imposed on the class .A¢ and the identity
K =detViu = Vi (0,ud?u, —d,udsyu),

/(AJ_u)zdx—/ V2 u| dx
C C

= 2/ 7udu — (dyu)* dx
c

Cn{ix-gil="/2}
=0. 4.4

2
= 2/ deude, , (Byu) dH? +2 Z/ xttde, 5 (dyu) dH>
ACN{|x-v|=1/2} 0

We set

re =inf& and rlP = inf &.
Ac 'AICD
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Proposition 4.2 For any ¢ > 0,

ImT —m7[* lmT —m7[* _
—L L < <P L L emen (4.5)
12|m* —m—| 12lmt —m—|

The constants ¢\ and ¢, depend only on m™* and m™.
Proof The inequality r, < r!” is immediate, since AL” C Ac. Also, the inequality
+_ 4
|ml mL| =g
12lmt —m—|
follows from (3.12), (3.15), and the boundary conditions for u € Ac. Indeed, since
vi//mT —m7) /8,

we have
|mi—ml|4 / + 2 / - 2
2Ll e, (mt) - vdH? — Sen(m”) - vdH
12|m+—m_|(3.15) CN{x-v=1/} &n CN{x-v=—15} &n
= /divEgn(Vu)dx
C

1 Vou2\? 2
< / — <8Zu — Viu] ) + ¢ <8§u — 8$u> dx
(3.12) Jc 2¢ 2 2

2
1 |Viul? € (.2 2 2 2\2
= [ (=T 5 (@302 2 0000° + 002) ax

—¢ 2ud’u — (9,9:u)%) dx
[ (#2udu— @e?)

1 /1 Viul?\
:7/ Do, — Y4 +8|Viu|2dx—s/det(viu)dx
2 c € 2 C

(E;) Ee(u).

Finally, showing that
A1D m} —my|*
£ T R2Imt —m|

entails constructing a sequence {Vu,} such that each Vu, is a function of x - v and

+ cre” % (4.6)

+ —4
|m —m7|

Ee(Ug) < —=——=— + cre” 2%,
ltte) = 12|m* —m~|

Since the steps of such a construction are standard in the calculus of variations, we outline
the procedure and refer to [47,Proposition 5.2], which contains a full proof in the 2D case,
for some of the estimates.

Let

p= mt —m™
and g be the solution to the initial value problem

lgps +m3 — (gp1 +m7)?/2 — (gp2 +m5)?/2]
|pL-vi ’ 4.7)

HOES
g(0) = 1/x.
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Note that the denominator |p; - v | # 0 since m3i = %Imﬂz, mt # m~ imply that

mi # m | . One can check that g exists for all time and approaches 1 and 0 exponentially as
t — +oo (see for example [59,Equation (1.21)]). Consider the family of functions

g(xg%v)p-i-m —V[8|p|G( )—l—m -x] =: Vwg(x),

where G is an antiderivative of g, on the infinite strip {|x - 7;| < !/ :i = 1, 2}. Let £ be the
unit vector v /|v] |. By direct calculation, we have for any ¢ > 0

E(Vwe)

1 1 % 2
= — | O;we — =V Lwe] +e(Ajwe)” dx
(xti|<!fzi=1,2) € 2
. ‘ —\2 ¢ 2\ 2
L( (1 _ @G pitmy) (g(F) p2tmy)
= =8| )p3+my; — -
o | € & 2 2

2 2
t .
+8g/ <7> (PJ_ ZUJ_) i|dt
&€ &

Ix <g (£) e - ) +m)(e(5)p +m2>2>

- 2 2
t .
g/ <7> (pL-v1) di
& &
\v4 2
— ‘/ (EJZws = ﬂ) 03w, dx
(x5 | <V/i=1,2) 2 '
v 2
‘/ (a we — ﬂ) (Fwe — 02w,) dx
(x5 | <V/mi=1,2) 2

/ div 3¢, (Vw,) dx
{Ix-7;|<':i=1,2}
= [(Sey(m™) — Zgy(m7)) - vl

In (3.16) in the lower bound, we saw that this was equal to

@.7

G12)

ImI —m]_l4 @.8)
12lmt —m—| '

The sequence {Vu,} is constructed by suitably truncating Vw, so that it is in the class AICD .
The estimate (4.6) follows from the exponential approach of g to 0 and 1 combined with
(4.8); see [47,Proposition 5.2] for full details. ]

To prove Theorem 4.1, we appeal to a general theorem from [49]. The version applicable
to this problem reads as follows.

Theorem 4.3 [49,Theorem 1.2] Let @ C R? be a bounded C*-domain and let
F(a,b):R¥3 xR* > R

bea C! function satisfying F > 0. Let u € W1(Q) be such that Vu € BV (2 R?) and
F(0, Vu(x)) = 0 a.e. in Q2. Then there exists a family of functions {ug} C C%(R3) satisfying

ug — uin WHP(Q) for1 < p < o0
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and

1
lim f/ F(eVZug, Vug)dx dz
e—=0¢€ Jq

:/ inf {/OO F(=r'(Ov(x,2) @ v(x, 2), rt)v(x, 2) + Vu~ (x,2)) dt}de.
Jvu

r€Ry(x,0.0 |/ ~o00
Here x(x, 7) is given by
X, Dv(x,2) = Vul(x,2) = Vu~ (x, 2),
and
Ry(x,0,0 :=1{r() € CI(R) :3AL > 0s.t.r(t) = x(x,2) fort < —L,r(t) =0fort > L}.

Proof of Theorem 4.1 If we set

2
1 Ik 1
F(a,b):i(ln— ) 52 ai

then

1
f/ F(eViug, Vug) dx = Es(uy).
& JQ

To evaluate the infimum in Theorem 4.3, we can rescale and use Proposition 4.2 to see that
itis

|Vul —Vu |

12|Vut —Vu—|

This finishes the proof. O

Remark 4.4 A recovery sequence with specified boundary data for # and Vu could be con-
structed as in [12,Section 6] or [48,Theorem 1.1].

Finally, let us rephrase the theorems of the last two sections in terms of the original problem
involving smectics: roughly speaking, equipartition of energy is optimal when the Gaussian
curvature induced by the boundary conditions is not prohibitively large. More precisely,
denoting by A; the eigenvalues of ij_u, we have

€(u)—l e(h1 4 22)? Yow-Liv 22d
) =3 1+2A2)° + L u 2| Lu X
Q &
1 1 1 2
= 7/ |:8(A1—)»2)2+<8Zu—|vlu|2> } dx+28/ Ao dx
2 Q & 2 Q

1 1 1 2 _
= |1M|(Q)+*/ (8/z|)»1 - M| == ) dX+26‘/ K dx.
2 Q 8/2 Q
4.9)

d — *l |C |2
U u
z ) 1

If ¢ jg K dx is small compared to the energy & (u), which by (2.24) can be enforced by
choosing boundary conditions such that ||V Lu||?_1. Q) is small, then contribution of the
curvature term is negligible. Thus the energy & is minimized by minimizing |/u| among

competitors saturating the perfect square. The matching upper bound demonstrates that this
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procedure is optimal in a reasonable range of situations. Furthermore, saturation of the perfect

square entails
2 1 1 2 ?
/8(A1 —A2) dX%/ - <8Zu — —=|V_iu| > dx. (4.10)
Q Q€ 2

Since (A | u)2 ande(A —Az)z differ by 4¢K ,the assumption that the integral of the curvature
is small and (4.10) imply that

2 1 1 2 g
e(Aju)y dx ~ — | 0;u — =|V_Lu| dx, “4.11)
Q Q¢ 2

which is precisely the BPS equation squared and integrated over 2.

Remark 4.5 Our 1D ansatz satisfies BPS equation (2.13). Also, the condition that & fgf
must be small for equipartition to be optimal coincides with the observation from [55] that
BPS solutions are not competitive when the curvature is very large, so that the result is
qualitatively sharp in some sense.

Remark 4.6 Both the arguments for the lower and upper bound hold for the sequence of

energies
. 1 1 1 5\? )
€£(u):§ e 3zM—E|VLM| +e|Viul~| dx

with trivial modifications. For lower bound, we only need to assume lim inf ggn (uy) is finite.

5 Compactness

The main result in this section is the compactness theorem.

Theorem 5.1 Let @ C R3 be a bounded domain with C! boundary, &, — 0, and {u,}
C H?(Q) be a sequence of functions with uniformly bounded energies &, (uy) such that
IVunllpr@y < C for some p > 6 and |Vuyll12q) < C. Assume also that Aju, > 0 or
Aju, <0a.e in Q. Then Vuy, is precompact in L1 () forany 1 < g < p.

Theorem 5.1 is a direct corollary of the following stronger proposition.

Proposition 5.2 Let Q@ C R3 be a bounded domain with C' boundary and {u,} C H* (Q)
be a sequence of functions satisfying

IVunllpr) < C, for some p > 6, (5.1
||Vun||L2(8Q) <C, (5.2)
1
Octtn = > |V Lun|? — 0 strongly in L* (), (5.3)
and .
dettn = 5 IV Lun?| |ALun| is bounded in L' (Q) . (5.4)
If in addition
Ajuy, >0ae inQorAju, <0a.e. in <, (5.5)

then (V1 uy) is precompact in L1 (Q) for 1 < g < p.
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We first prove a lemma used in the proof of Proposition 5.2.

Lemma 5.3 Under the assumptions (5.1)—(5.5), div B, is relatively compact in H -1 (),

where v |
u
B, = <— 5 LV iual?, 5 Munﬁ).

Proof We prove the Lemma when u,, is smooth and general case follows by approximating.
By (5.3),

1
0z (Oxutp) — Ox (5 |Vlun|2) (5.6)
1
= 0y (azu,, —3 |VJ_MH|2> — 0 strongly in H! (2), and
1 2
3z (Oyun) — 9y 5 [Vl
1
=9, (azu,, -5 |vw,,|2) — 0 strongly in H~' (). (5.7)

Multiplying (5.6) by dyu, and (5.7) by dyu, then summing, we have

1 O U ovu
9 (5 mmz) - ax< "2 z mmz) - ay( yz" |VLun|2>

1 1
=3, (8Xu,, (azun -3 munﬁ)) + dy ((%,M,, <8zu,, -5 |VM,1|2>>

1 2 1 2
— |\ Ozun — E IViug|” | Aruy — E IViug|” ALuy,

=I1+11+111. (5.8)

Here

1 1
I =0, <8xun <8zun - 5 |Vlun|2)) + 9y (ay“n (azun - 5 |VLun|2)> -0

2
inw™ " 2 (£2) up to a subsequence,
1 2
Il =—\0u, — 3 IViug|“ ) Aluy,

is bounded in L (), and
1
HI=—3 IV iunl> ALy

If 111 is bounded in M (£2), the space of measures, then the right hand side of (5.8) is the sum

of a term relatively compact in W_l‘l’% (€2) and a term bounded in M (£2), so that by the
embedding theorem, the right hand side of (5.8) is relatively compact in W1 () for some
1 < r < 2.On the other hand, assumption (5.1) implies the left hand side of (5.8) is bounded
in w15 (€2). Relative compactness of div B,, in H —1(Q) follows from interpolation.

To finish the proof, we show /71 is bounded in M (£2) under the additional assumption
(5.5). Rewrite (5.8) as

9z ( (up)) — div L (F (un)) + G (un) = fin, (5.9
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where

1
N () = 5 Viunl®, F (un) = (Outtndttn, dyttndzttn)
1 2
G (up) = | Ozun — 5 [Viugl” ) ALuy,

1 2
MUn = _5 [Viug|” Aluy,.

Let Q" ={x € Q: u,(x) <0} and QT = {x € Q : u,(x) > 0}. Since (5.5) holds, then
Q=Q orQ=Q7". Assume Q = Q" (the other case can be proved similarly). Integrating
(5.9) over €2 and using the divergence theorem on the first two terms yields

/—undxdydz=/ —ﬁ(un)vsdH2+/ F(un)-ude—/G(un)dX
Q 0Q 0Q Q

< IVLullFa 50 + 1820l 200) I VLl L2000y + Es, (n)

<C
for some constant C depending on the energy bound and || Vuy, || 12 (5 Therefore —u,, £LQ
is bounded in M (2). O

Remark 5.4 e A special case satisfying (5.1) is ||Vu,||L~ @) < C.
e In the proof of Lemma 5.3, the convergence result in (5.6) and (5.7) has not been used,;
however, it is used below in the proof of Proposition 5.2.

Proof of Proposition 5.2 Set

1 Viu 1
E, = <VJ_un7 5 |VLun|2) and B, = <_ ) : |VJ_”n|2 , E |VJ_un|2> .

Lemma 5.3 together with (5.6) and (5.7) implies
curl £, and div B,, are relatively compact in H -1 (2).

If E,—Eso, By— Boo in L2 (£2), then Tartar-Murat’s div-curl Lemma applied to E,, and B,
yields
E, B,—Ex By inD (Q). (5.10)

We introduce the following notations for the weak limits in L" (2) forr > 1:
4 3
(Oxun)* = Us, (dyun)” — Vi, @xttn)® = Us, (dyun)” — V3,
2 2
(Bxun)* dytn—Un1, dxtty (dyun)” —Utz, (dxun)> —Us, (dyutn)” — Vs,

and
2
(axun)z (ayun) —Up, Oxuydyun—Ury, 0xuy—Uy, dyup—Vi.

Here r depends on p and the term in question but is greater than 1 for each. Under these
notations, (5.10) can be written as

1|V 1+ Uy, Vi 1(U + W) 1U 1U 1U 1V 1(U + W)
—_—— u —_ , = . —_—— _— = , — =T _—— , = .
g | Vitn LV 5 (02 2 S U3 T 52, 5V V3, 5 (B 2

From this it follows that

1 1 1 1 1 1
— S (Us+2Up 4 V) = —=U U3 — ~U Uy — =V Uz — =Vi V3 + — (Us + V2)?,
4(4+ 2+ Va) FUUs = SU U2 = Vil 2134-4(2—1- 2)
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or, equivalently,
0=Us+2Ux+ Vy —2U,Us —2U U1y — 2V U1 — 2V V3 + (U + Vz)2 . (5.11)

Next, we consider

) 2
(@) = B0 Ur + (dy00)” = By V1)
2 2
= (axun)z (Oxuy — U1)2 + 28x“nayun (Oyu, — Up) (ayun - Vl) + (3yun) (ayun - V])
—Uy —2U U3 + UoUE +2 Uz — Us1 Vi — UrUnz + UnUp Vi) + Vi — 2V V3 + Vo Vi

(5=ll) — (U + V2)2 + U2Ul2 + V2V]2 +2U1U V.

Observe that
(Bxun Uy + dyun Vi — Uy — V)’
2
= (U2 + V2)2 -2 (axunUl + ayun Vl) U2+ V) + (axunUl + a_vunvl)
Uz + V2)2 =2 Uz + Vo) (U + VE) + DoUE + VaVE + 201UV,
< Uz + Vo)? = UL — VaVE =201 Ui Vi, (5.12)

where the last inequality follows from
U>VE + VaUE = 201Uy,
which is a direct conclusion from weak limit
(Beun Vi — dyu,Uy)> ~UsVE + VaUE — 201 UL V.
Thus

2
((axun)z — dyunUy + (8yun)2 - ayunvl) -~ = U2+ V2)2 + U2U12 + V2V12 +201U1Vi < 0.
(5.12)

From this we conclude that
(ttn)? — ety Uy + (3y0)° = dyun Vi — 0,
so that passing to the limit on the left side, we have
Uy— U + Vo —VE=0.

Since F(s) = 52 is a convex function, by Lemma 2 in [60], we have U, > U12, Vy > Vlz.
Thus it must be the case that
Uy =U2 Vo =V

in other words, lim,, oo ||V Uy || 2 = || lim, V1 u,l|;2, together with the weak convergence
of V] u,, the strong convergence of V u, in L? follows. ]

Proof of Theorem 5.1 Boundedness of &, (u,) implies (5.3) and (5.4). By Proposition 5.2,
V1 u, is precompact in L%(2), and hence in LI () for 1 < q < p by the uniform L? bound.
Compactness of 9;u, follows from uniform boundedness of ||V L u, || 1» () for p > 6 and the
fact d,u, — % |Viuy* — 0in L2, O
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Remark 5.5 The additional assumptions (5.1), (5.2), (5.5) in Theorem 5.1 and Proposition 5.2
are used in the proof of relative compactness of div B, in Lemma 5.3. We comment that
the assumption (5.1) is physically justifiable since the model is only valid in the limit of
small strains [55]. Assumption (5.2) is less restrictive than g, fQ K — 0. We would like to
remove the technical assumption (5.5) in future work. An alternative approach to handling
compactness is to rewrite the problem in terms of the geometric formulation of Tartar’s
conjecture [61]. Recall that the general question regarding upgrading weak convergence to
strong convergence can be stated as follows: given a weakly convergent sequence of functions
zf : R™ — RN subject to linear differential constraints of the form

—1
Z Ajdjzf =¢°, Ajas x N constant matrix, (5.13)
=0

and nonlinear algebraic constraints
[ZF ()} cM forae yeR", (5.14)

where M C RY is a subset, usually a manifold, what kind of structure on A; and M would
suppress oscillations in {z¢}, so that {z®} contains a strongly convergent subsequence? Tartar’s
conjecture can be expressed in terms of a geometric condition. We introduce the oscillation
variety
m—1
V=0EN:Y &A;=0E#08 CR" xRV,
j=0

and the wave cone, which is the projection of V to RV:
A = PyV ={A:3& #0, suchthat (§,1) € V}.

Given any a, let
Ag=a+A={a+ i, AeA}

be the translated cone. Tartar conjectured:

Conjecture 1 [f the translated wave cone is separated from M in the sense that
AN M ={a}

for all a, then the Young measure vy is a Dirac mass for almost every x, which implies the
relative compactness in LP

For a sequence with bounded energy (1.1), one may form a wave cone from (5.6), (5.7),
and curl V; u = 0 and construct a constitutive manifold from suitable entropy conditions.
Our initial observation [46] shows the translated wave cone constructed this way is separated
from the constitutive manifold. The final conclusion regarding compactness is still under
investigation.
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