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Abstract
We consider the 3D smectic energy

Eε (u) = 1

2

ˆ
�

1

ε

(
∂zu − (∂xu)2 + (∂yu)2

2

)2
+ ε
(
∂2x u + ∂2y u

)2
dx dy dz.

The model contains as a special case the well-known 2D Aviles-Giga model. We prove a
sharp lower bound on Eε as ε → 0 by introducing 3D analogues of the Jin–Kohn entropies
Jin and Kohn (J Nonlinear Sci 10:355–390, 2000). The sharp bound corresponds to an
equipartition of energy between the bending and compression strains and was previously
demonstrated in the physics literature only when the approximate Gaussian curvature of
each smectic layer vanishes. Also, for εn → 0 and an energy-bounded sequence {un} with
‖∇un‖L p(�), ‖∇un‖L2(∂�) ≤ C for some p > 6, we obtain compactness of ∇un in L2

assuming that �xyun has constant sign for each n.

Mathematics Subject Classification 49J45 · 35B36 · 35J50 · 49K10 · 76A15

1 Introduction

In this article, we analyze the energies

Eε (u) = 1

2

ˆ
�

[
1

ε

(
∂zu − 1

2
|∇⊥u|2

)2
+ ε (�⊥u)2

]
dx, (1.1)

which represent the free energy of a smectic-A liquid crystal; see Sect. 2.1 for a discussion
of the relevant physics literature regarding smectics. Here� ⊂ R

3 is a bounded domain with
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Lipschitz boundary, and x = (x, y, z). The subscript “⊥" denotes the restriction to the x, y
variables of a differential operator or the projection from R

3 to R
2, so

∇⊥u = (∂xu, ∂yu) and �⊥u = ∂2x u + ∂2y u.

and if m = (m1,m2,m3) ∈ R
3,

m⊥ = m1 x̂ + m2 ŷ and m = (m⊥,m3) ∈ R
3.

Our main interest is the asymptotic behavior of energies (1.1) as ε → 0, which corresponds
to the regime in which the intrinsic length scale ε, cf. (2.5), is vanishingly small compared
to �.

We prove the following main results when ε → 0:

• a lower bound, sharp when∇u ∈ (BV ∩L∞)(�; R
3), on Eε when ε → 0 (Theorems 3.6,

4.1), and
• a compactness theorem for the gradients of a sequence with bounded energies (Theo-

rem 5.1) satisfying some additional technical assumptions.

These results generalize the authors’ previous work [47] on the 2D model

Jε (u) = 1

2

ˆ
�

[
1

ε

(
∂zu − 1

2
(∂xu)2
)2

+ ε
(
∂2x u
)2]

dx dz, (1.2)

to the 3D energies (1.1). For εn → 0 and a sequence {un} with bounded energies Jεn (un),
we proved compactness of ∇un in Lq for 1 ≤ q < p under the additional assumption
‖∇un‖L p ≤ C for some p > 6. Moreover, we obtained a lower bound on Jε and constructed
a matching upper bound using on a 1D ansatz.

The sharp lower bound for the 3D energies, whichwas not previously shown in the physics
literature, relies on a calibration argument which briefly works as follows. Letting

�(∇u) = (�1, �2, �3) (1.3)

where

�1 = ∂zu∂xu − 1

2
∂xu(∂yu)2 − 1

6
(∂xu)3,

�2 = −∂xu∂yu + 1

2
∂yu(∂xu)2 + 1

6
(∂yu)3,

�3 = 1

2
(∂yu)2 − 1

2
(∂xu)2,

direct calculation shows that for u ∈ H2(�),

div�(∇u) =
(

∂zu − 1

2
|∇⊥u|2

)
(∂2x u − ∂2y u). (1.4)

Thus by the arithmetic mean-geometric mean inequality and the divergence theorem, cf.
(2.24), Eε (u) can be bounded below by

Eε (u) ≥
ˆ

�

div�(∇u) dx − ε‖∇⊥u‖2H 1/2(∂�)
, (1.5)
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with approximate equality when

1

ε

ˆ
�

(
∂zu − 1

2
|∇⊥u|2

)2
≈ ε

ˆ
�

(�⊥u)2. (1.6)

By the rotational symmetry in the xy-plane of the energies (1.1), the same calculation holds
for the rotations �ξ,η of � (see (3.1)) obtained by replacing {x̂, ŷ} with another orthonormal
basis {ξ, η} of R

2. Thus for a sequence εn → 0 and {un} converging to a limiting function
u in a suitable space, we may bound lim inf Eεn (un) from below by taking the supremum
of the divergences of �ξ,η over all {ξ, η} as in [3, 6] for the Aviles-Giga problem. In fact,
the energy (1.1) contains the 2D Aviles-Giga energy as a special case, which we explain in
Sect. 2.2. If ∇u ∈ (BV ∩ L∞)(�; R

3), this lower bound is given by
ˆ
J∇u

|∇+
⊥u − ∇−

⊥u|4
12|∇+u − ∇−u| dH

2, (1.7)

where J∇u is the jump set in the sense of BV . For the matching upper bound when ∇u ∈
(BV ∩ L∞)(�; R

3), (1.5) implies the lower bound is optimal for Eε (u) if (1.6) holds. When
� is a cube, we show this is possible by using a 1D ansatz in which ∇u varies transverse to
the defect set. The ansatz is chosen so that (1.6) holds. The upper bound for general � can
then be shown by appealing to a result of Poliakovsky [49].

Physically, the 1D ansatz can be interpreted as equating the compression strain (∂zu −
1
2 |∇⊥u|2)2 with the bending strain ε2(�⊥u)2; see Sect. 2.1 for physical background ofmodel
(1.1). Thus our analysis shows that the frustration coming from the competition between the
compression and bending terms is resolved by an equipartition of energy between the two.
Moreover, unlikemany other problems frommaterials sciencewheremicrostructure develops
[35], microstructure does not appear in this smectics model. We remark that the same has
been observed in the 2D problem [47].

The compactness of∇un in L2 is proved under the additional assumptions ‖∇un‖L p(�) ≤
C for some p > 6 and ‖∇un‖L2(∂�) ≤ C . We emphasize that these are physically justifiable,
as the model (1.2) is only valid in the small strain regime [10, 55], cf. Sect. 2.1. Our com-
pactness proof relies on a compensated compactness argument based on the work of Tartar
[60–62] and Murat [44, 45]. The main challenge is to find the suitable entropies to apply
Tartar and Murat’s div-curl lemma. Assuming further that �⊥un ≥ 0 a.e. in �, we show that
curl En and div Bn are compact in H−1 (�) , where

En =
(

∇⊥un,
1

2
|∇⊥un |2

)
and Bn =

(
−∇⊥un

2
|∇⊥un |2 ,

1

2
|∇⊥un |2

)
.

Thus (En, Bn) satisfy the assumptions of the div-curl lemma. Applying the div-curl lemma
to En · Bn yields strong convergence of ∇⊥un in L2, and compactness of ∇un in L2 follows
from the fact ∂zun − 1

2 |∇⊥un |2 → 0 in L2.
The paper is organized as follows. Section 2 recalls the physical background of our model

(1.1), summarizes the pertinent mathematical literature, and presents the main calculation
behind the lower bound in a simplified setting. Also included in Sect. 2 are some preliminaries
on functions of bounded variation. Section 3 is devoted to the lower bound. In Sect. 4 we
construct a sequence whichmatches the lower bound from Sect. 3 when ε → 0, and in Sect. 5
we prove compactness.
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2 Background and preliminaries

2.1 Physical background: smectic a liquid crystals

Smectic liquid crystals are formed by elongated molecules that are aligned and arranged in
fluid-like layers. They are a remarkable example of a geometrically frustrated, multi-layer,
soft-matter system. Ground states of smectic liquid crystals are characterized by flat, equally
spaced, parallel layers. Due to spontaneously broken translational and rotational symmetry,
singularities form in regions where the smectic order breaks down.When defects are present,
the layers must bend and the resulting curvature is, in general, incompatible with equal
spacing between them. The subtle interplay between the geometry of the layers and equal
spacing imposes theoretical complications, and understanding the layer structure of a smectic
liquid crystal is a challenging task.

Smectics can be represented by the density modulation �ρ ∝ cos
[ 2π

a φ (x)
]
, where x =

(x, y, z) ∈ R
3, a is the layer spacing, and φ is the phase field of the order parameter [11, 20].

The peaks of the density wave where φ (x) ∈ aZ correspond to the smectic layers. We are
interested in the smectic A phase, in which the nematic director coincides with the normal
to the smectic layers N = ∇φ

|∇φ| . In terms of φ, the free energy of a smectic liquid crystal on
a region � [56] is the sum of the compression and bending energies

F = 1

2

ˆ
�

B

[
(1 − |∇φ|)2 + K1

(
∇ · ∇φ

|∇φ|
)2]

dx, (2.1)

where B is the compression modulus and K1 the bend modulus. The constant ε =
√

K1
B is

the penetration length. In the presence of boundaries, there is also the saddle-splay term

FK = K̃
ˆ

�

∇ · [(∇ · N)N − (N · ∇)N] dx.

The contribution of this term depends only on the boundary conditions and is often excluded
from the energy. For configurations with topological defects, this term can contribute to the
core energy of a defect.

The global minimizer of (2.1) is the zero-energy state φ (x) = n · x+ φ0 with n ∈ S
2 and

φ0 ∈ R. However, rarely do both terms in the free energy vanish. To understand the frustration
of the problem in general, the following example of a smooth surface surface x0 = x0(u, v)

and its parallel surfaces xn(u, v) := x0(u, v)+naN(u, v), n ∈ Z is illuminating [33]. Let Hn

and Kn denote the mean and Gaussian curvatures of xn . A standard calculation [19,Sec. 3–
5 Exercise 11] yields the formulas

Hn = H0 − naK0

1 − 2naH0 + n2a2K0
, Kn = K0

1 − 2naH0 + n2a2K0
.

Since mean curvature can be expressed in terms of the surface normal by H = − 1
2∇ · N,

the bending term is proportional to H2. Therefore, for evenly spaced layers, the only way
for the bending to vanish (so Hn = 0) for all layers is for the Gaussian curvature K0 of x0
to be zero, which in turn implies Kn = 0, so that the product of the principal curvatures is
zero. On the other hand, Hn = 0 implies that the principal curvatures sum to 0 as well, so
that they both vanish everywhere. Thus unless all the layers are flat, vanishing curvature is
incompatible with the uniform layer spacing. The interaction between the layer spacing, the
Gaussian curvature, and the mean curvature presents a major obstacle to finding minimal
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configurations for the energy (2.1). Throughout the physics literature there are numerous
works on the search for exact or approximate solutions of deformations in smectics [8, 10,
17, 18, 30, 32, 33, 42, 54–57].

In the study of smectic layers, it is typical to consider the deviation u from a fixed ground
state φ, so φ = φ −u. If we fix φ(x) = z, then u(x) = z−φ(x). Expressing the compression
strain in powers of ∇u = ẑ − ∇φ and setting ∇⊥ = ∂x x̂ + ∂y ŷ, �⊥ = ∂2x + ∂2y , we can
expand the compression as

1 − |∇φ| ≈ ∂zu − 1

2
|∇⊥u|2 + O (u3) , (2.2)

and bending strain as

∇ · ∇φ

|∇φ| ≈ −�⊥u + O (u3) . (2.3)

Keeping only the linear terms in the expansions (2.2) and (2.3) in the limit of small elastic
strains |∇u| 
 1 results in a linear theory [20, 34] of (2.1) which has been widely used in
the study of strain fields and energetics of dislocations in smectics-A. On the other hand, the
well-known example of the dilatative Helfrich-Hurault effect [23, 24], in which the layers
wrinkle upon stretching, indicates that nonlinear effects can be important even for small

strains. Observe that the linear model is only valid when |∇⊥u|2
∂zu


 1, and the nonlinear term

is not negligible when ∂zu ∼ |∇⊥u|2. The first example of strain field taking into account
the nonlinear effect was constructed by Brener and Marchenko [10]. They considered the
strain field for a single edge dislocation in the regime ∂zu ∼ (∂xu)2 
 1 and found an exact
solution to the Euler-Lagrange equation for the 2D nonlinear approximation of (2.1)

F = B

2

ˆ
�

[(
∂zu − 1

2
(∂xu)2
)2

+ ε2
(
∂2x u
)2]

dx dz, (2.4)

where
ε = √K1/B. (2.5)

Their construction deviates markedly from the strain field predicted by linear theory even
away from the defects where the elastic strain and curvature are small. The solution was
verified experimentally in a cholesteric finger texture by Ishikawa and Lavrentovich [30] and
by Smalyukh and Lavrentovich [58] using confocal microscopy.

Brener and Marchenko found their solution by solving the fourth order Euler-Lagrange
equation of (2.4) directly. Later, Santangelo and Kamien [55] approached the problem from
a different perspective and discovered a large class of exact minima for the nonlinear approx-
imations of (2.1). They studied the 3D version of (2.4)

F = B

2

ˆ
�

[(
∂zu − 1

2
|∇⊥u|2

)2
+ ε2 (�⊥u)2

]
dx. (2.6)

Completing the square in (2.6) yields

Eε (u) = 1

2

ˆ
�

[
1

ε

(
∂zu − 1

2
|∇⊥u|2

)2
+ ε (�⊥u)2

]
dx

= 1

2

ˆ
�

1

ε

(
∂zu − 1

2
|∇⊥u|2 ∓ε�⊥u

)2
dx±

ˆ
�

(
∂zu − 1

2
|∇⊥u|2

)
�⊥u dx. (2.7)
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Observe that

∂zu�⊥u = ∇⊥ · (∂zu∇⊥u) − 1

2
∂z
(|∇⊥u|2) (2.8)

and

3 |∇⊥u|2 �⊥u = −4Ku + ∇⊥ · (∇⊥u |∇⊥u|2)+ 2∇⊥ ·
(
u�⊥u∇⊥u − 1

2
u∇⊥ |∇⊥u|2

)
,

(2.9)
where K = ∂2x u∂2y u − (∂xyu)2 is the lowest order approximation of the Gaussian curvature.

By the Bochner formula 1
2�|∇u|2 = ∇u · �(∇u) + |∇2u|2 from flat geometry or by direct

calculation, K can also be expressed as

K = 1

2
∇⊥ ·
(

∇⊥u�⊥u − 1

2
∇⊥ |∇⊥u|2

)
, (2.10)

which is the form found for example in [55]. Substituting (2.8) and (2.9) back into (2.7)
yields

Eε (u) = 1

2

ˆ
�

1

ε

(
∂zu − 1

2
|∇⊥u|2 ∓ε�⊥u

)2
dx±2

3

ˆ
�

Ku dx

±
ˆ

�

div
(u) dx, (2.11)

where


(u) =
[(

∂zu − 1

6
|∇⊥u|2 − 1

3
u�⊥u
)

∇⊥u + 1

6
u∇⊥ |∇⊥u|2 ,−1

2
|∇⊥u|2

]
. (2.12)

A direct conclusion from this decomposition is that the free energy of deformations with
K = 0 is always bounded below by the contributions from the boundary integrals involving

(u) , and the minimum is achieved when

∂zu − 1

2
|∇⊥u|2 = ±ε�⊥u. (2.13)

The nonlinear differential equation (2.13) is called the BPS equation, with solutions referred
to as BPS solutions. This equation is of reduced order compared to the Euler-Lagrange
equation of the free energy (2.6). As observed in [55], (2.13) has a simple but important
physical interpretation: equating the bending and compression energies so as to minimize
their sum and alleviate the geometric frustration described earlier. This type of technique,
called the BPS decomposition, was introduced by Bogomol’nyi [9], Prasad and Sommerfield
[51] in the study of field configurations of magnetic monopoles and solitions in field theory.
BPS-type decompositions have also been utilized in the analysis of thermal fluctuations in
2D smectics [22] and shape changes in vesicles [7].

When u is a function of z and x only, so that K = 0, the BPS equation simplifies to

∂zu − 1

2
(∂xu)2 = ±ε∂2x u. (2.14)

Through the Hopf-Cole transformation S± = exp[±u(x,±z)/(2ε)], (2.14) becomes the
diffusion equation

∂z S± = ε∂2x S±. (2.15)
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Solving (2.15) with the boundary conditions S± → 1 as x → −∞ and S± → e± b
4ε as

x → +∞, where b is the Burgers vector of the dislocation, yields

S± = 1 +
(
e± b

4ε − 1
)

π−1/2

ˆ x
2
√

εz

−∞
e−t2dt .

After inverting the Hopf-Cole transformation, this solution recovers the edge dislocation
deformation calculated in [10].

When K is small, the BPS solutions are energetically preferable compared to solutions
from the linear theory [55]. Santangelo and Kamien [56] generalized this idea to the full
energy (2.1) and established a specific set of minima of (2.1) when the K = 0. Their
arguments demonstrated that the layer deformation in the partially nonlinear theory [10, 55]
is near the profile from the full energy.

Given the rigidity of the assumption that the Gaussian curvature of the smectic layers is
zero, one might conjecture that BPS solutions are no longer (approximate) minimizers upon
relaxing that assumption. Interestingly however, this is not the case. Indeed, we quote from
[55], where some numerical simulations were done to investigate this issue. “Further study
is needed to understand the precise role of the uK in the failure of the BPS configurations
to minimize the energy. It is often the case that ‘near-BPS’ solutions are remarkably good
approximants and it appears to be true here as well." We utilize techniques drawn from the
mathematical literature for singular perturbation problems to obtain a sharp lower bound for
(2.6) while only assuming that

´
εK is small, providing an explanation for this phenomenon.

Our analysis is inspired by the simple fact that the 3D smectic energy (2.6) is a generalization
of the well-studied 2D Aviles-Giga functional, which, nevertheless, has not been observed
previously in the literature to the best of our knowledge.

2.2 Mathematical background: the Aviles-Giga energy

To illustrate the link between 3D smectics and Aviles-Giga functional, fix � ⊂ R
2 and

consider the smectic energy (2.6) on the three dimensional cylinder � × (0, 1) subject to the
constraint ∂zu = 1/2. With the dependence of ∇u on z eliminated, the energy (2.6) becomes

B

2

ˆ
�

[
1

4

(
1 − |∇⊥u|2)2 + ε2 (�⊥u)2

]
dx dy. (2.16)

Ignoring the harmless factor of 1/4 on the first term, this is the 2D instance of the Aviles-Giga
energy, which we now recall.

Aviles and Giga [5] formulated the energy

Fε =
ˆ

�

[
1

ε
(|∇u|2 − 1)2 + ε(�u)2

]
dx, (2.17)

known as the Aviles-Giga functional, as a model for smectic liquid crystals. Here � ⊂ R
n is

a bounded domain. When ε approaches zero, Aviles and Giga conjectured that the optimal
transition layers are one dimensional and Fε converges (in the sense of �-convergence) to
the limiting energy

F0 = 1/3
ˆ
J∇u

|[∇u]|3 dHn−1.

Here the limiting function u satisfies eikonal equation |∇u| = 1 a.e., J∇u is the defect set,
cf. Definition 2.3, and [∇u] is the jump in ∇u across J∇u .
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TheAviles-Giga functional has been extensively studied in the case n = 2.After extracting
a boundary term, (2.17) is equal to

F̃ε =
ˆ

�

[
1

ε
(|∇u|2 − 1)2 + ε|∇2u|2

]
dx dy. (2.18)

Jin and Kohn [31] noticed that the divergence of the “Jin-Kohn entropy"

(
∂xu

(
1 − (∂yu)2 − 1

3
(∂xu)2
)

,−∂yu

(
1 − (∂xu)2 − 1

3
(∂yu)2
))

, (2.19)

calculated directly as (1 − |∇u|2)(∂2x u − ∂2y u), bounds F̃ε from below and the lower bound
is asymptotically optimal if

|1 − |∇uε|2| ≈ |∂2x uε − ∂2y uε| and ε

ˆ
�

(
∂2x uε∂

2
y uε − (∂xyuε)

2
)
dx dy ≈ 0.

For the unit square and boundary conditions u = 0, ∂u
∂n = −1, they proved that the lower

bound can be achieved by the “1D" ansatz uε = ax + fε(y)when the associated defect set of
the limiting map limε→0 uε is parallel to the x axis, corroborating Aviles-Giga’s conjecture
regarding the one-dimensionality of the transition region. Recently, Ignat and Monteil [29]
proved that any minimizer of (2.18) on an infinite strip is one-dimensional. By considering
the supremum of the divergences of all rotated versions of �u, Aviles and Giga [6] derived
a limiting functional J : W 1,3(�) → [0,∞) which is lower semicontinuous with respect to
strong topology in W 1,3(�) and coincides with F0 for any u satisfying the eikonal equation
with ∇u ∈ BV (�). Moreover,

J (u) ≤ lim inf
n→∞ F̃εn (un)

for any sequence un converging strongly to u inW 1,3(�). A constructionwhich achieves con-
jectured �-limit when∇u ∈ BV (�)was provided in [12, 49]. For the �-convergence theory,
another important question is the compactness of sequences with bounded energy when ε

goes to zero. Such compactness results in two dimensions have been proved by two different
groups [3, 16] using different approaches. For the Aviles-Giga functional in dimensions three
or higher, the state of art is less clear. De Lellis [13] constructed a counterexample, showing
that F0 is not the limiting energy for Fε and 1D ansatz is not optimal. The compactness
and form of the limiting energy, however, are still open. The Aviles-Giga model and related
topics such as the eikonal equation and other line-energy models have continued to be active
areas of research in the past two decades; see [1, 14, 15, 21, 25–28, 36–41, 52, 53] and the
references therein.

2.3 Heuristic proof of the lower bound

The admissible class for (1.1) is H2(�). We recall some trace properties for this space when
∂� is Lipschitz that are useful for the lower bound. First, since u ∈ H2, it follows that
∇u|∂� ∈ H 1/2(∂�; R

3). Furthermore, momentarily replacing ∂x , ∂y , and ∂z by ∂1, ∂2, and
∂3, the tangential derivative operators

∂τ jk = ν j∂k − νk∂ j : H 1/2(∂�) → H−1/2(∂�) = (H
1/2(∂�))∗ (2.20)
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are well-defined, linear, and bounded for any 1 ≤ j, k, l ≤ 3 [43,Proposition 2.1]. In partic-
ular, denoting by <,> the pairing between H−1/2(∂�) and H 1/2(∂�), the quantities

< ∂mu, ∂τ jk (∂lu) > (2.21)

are well-defined for u ∈ H2(�) and 1 ≤ j, k, l,m ≤ 3.
We recall the map(
∂zu∂x u − 1

2
∂x u(∂yu)2 − 1

6
(∂x u)3,−∂x u∂yu + 1

2
∂yu(∂x u)2 + 1

6
(∂yu)3,

1

2
(∂yu)2 − 1

2
(∂x u)2
)

from (1.3). We point out that the first two components of �(∇u) are one half times the
Jin-Kohn entropy for the Aviles-Giga energy when ∂zu = 1

2 . Direct calculation shows that
for u ∈ H2(�),

div�(∇u) =
(

∂zu − 1

2
|∇⊥u|2

)
(∂2x u − ∂2y u)

≤ 1

2ε

(
∂zu − 1

2
|∇⊥u|2

)2
+ ε

2
(∂2x u − ∂2y u)2. (2.22)

To handle the fact that the second termdiffers from (�⊥u)2, we recall K = ∂2x u∂2y u−(∂xyu)2,
so that ˆ

�

[
(�⊥u)2 − (∂2x u − ∂2y u)2 − 4K

]
dx =

ˆ
�

4(∂xyu)2 dx ≥ 0.

Combining this with (2.22), we arrive atˆ
�

div�(∇u) dx + ε

ˆ
�

2K dx ≤ Eε(u). (2.23)

Notice that K = div⊥(∂xu∂2y u,−∂xu∂xyu), so that

ε

ˆ
�

2K dx = 2ε
ˆ

∂�

∂xu∂τ12∂yu dH2 (2.24)

and both terms on the left hand side of (2.23) depend only on boundary values. By the
continuity of the tangential derivative operators from H 1/2(∂�) to H − 1/2(∂�), we can estimate∣∣∣∣ε

ˆ
�

2K dx

∣∣∣∣ ≤ 2ε‖∂xu‖H 1/2(∂�)‖∂τ12∂yu‖H − 1/2(∂�) ≤ C(�)ε‖∇⊥u‖2H 1/2(∂�)
. (2.25)

The general lower bound as ε → 0 is then derived by taking supremumover all the rotations of
� as in (3.1). We also refer the reader to the end of Sect. 4 for a discussion of the implications
of this analysis on the BPS solutions.

Remark 2.1 There are few 3D examples where an explicit calibration can be found and, to
our knowledge, there is no systematic approach to find such a calibration for an arbitrary
energy. Our choice of the calibration (1.3) uses only ∇u while the calibration (2.12) from
BPS decomposition involves second derivatives of u. For u smooth, since

(�⊥u)2 − (∂2x u − ∂2y u)2 = 4K ,

(∂xu − 1

2
|∇⊥u|2) · �⊥u = div
(u) + 2

3
Ku,

(∂xu − 1

2
|∇⊥u|2) · (∂2x u − ∂2y u) = div�(∇u),
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the two calibrations can be linked by the following identity when K = 0:

|div
| = |div�(∇u)|.

Remark 2.2 Comparing the BPS decomposition to (2.23), we see that the remainder term
ε
´
�
2K in the latter can be handled more easily than the term

´
�
uK . This is the reason that

we are able to obtain a lower bound even in the presence of non-vanishingGaussian curvature.
One might guess that since the BPS decomposition is also predicated on equipartition of
energy between the bending and compression terms, the two arguments give the same lower
bound ˆ

J∇u

|∇+
⊥u − ∇−

⊥u|4
12|∇+u − ∇−u| dH

2

in the limit ε → 0 when K = 0 for each uε and ∇u ∈ BV (�; R
3). This is indeed the case,

although passing to the limit as uε → u in the term
´
�
div
(uε) is non-trivial since 
(uε)

contains second order derivatives of uε. This can be accomplished via a blowup argument
which then allows for a careful analysis of those higher order terms in the simplified setting
of a flat jump set with limiting constant states ∇u± on either side.

2.4 Properties of functions of bounded variation

Our discussion draws from the relevant sections of [4,Chapter 3]. For the sake of generality
and because the dimensions of the ambient/target spaces do not matter for these results, in
this subsection we will consider functions defined on � ⊂ R

N and taking values in R
M .

Definition 2.1 [4,Def. 3.1] An element m ⊂ L1(�; R
M ) belongs to the space BV (�; R

M )

if the distributional derivative Dm = (Djmi
)
of m is a finite R

M×N -valued Radon measure.

Definition 2.2 [4,Def. 3.63] If m ∈ L1(�; R
M ) we say that m has approximate limit z =

ap limy→x m(y) at x ∈ � if

lim
r→0

 
Br (x)

|m(y) − z| dy = 0.

If this property fails to hold at x for every z ∈ R
M , then x belongs to Sm , the approximate

discontinuity set.

To refer to solid half-balls in �, we define

B+
r (x, ν) := {y ∈ Br (x) : (y − x) · ν > 0} , B−

r (x, ν) := {y ∈ Br (x) : (y − x) · ν < 0} .

Definition 2.3 [4,Def. 3.67] For m ∈ BV (�; R
M ), we say that x ∈ � belongs to Jm , the set

of approximate jump points, if there exist m+(x) �= m−(x) ∈ R
M and νm(x) ∈ S

N−1 such
that

lim
r→0

 
B+
r (x,νm )

|m(y) − m+(x)| dy = 0 and lim
r→0

 
B−
r (x,νm )

|m(y) − m−(x)| dy = 0.

The vectorsm+,m−, and νm are uniquely determined up to permutingm+,m− and exchang-
ing νm(x) for −νm(x). Also, Jm is countably HN−1-rectifiable.
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Definition 2.4 [4,Cor. 3.80] The precise representative of m ∈ BV (�; R
M ) is the function

m̃(x) :=
⎧⎨
⎩
ap limy→x m(y) if x /∈ Sm,

m+(x) + m−(x)

2
if x ∈ Jm .

Theorem 2.3 [4,Thm. 3.78] If m ∈ BV (�; R
M ), then Sm is countablyHN−1-rectifiable and

HN−1(Sm \ Jm) = 0.

Next, we recall the BV Structure Theorem.

Theorem 2.4 [4,Section 3.9] For m ∈ BV (�; R
M ), the Radon measure Dm can be decom-

posed into three mutually singular measures

Dm = Dam + D jm + Dcm. (2.26)

The first component is absolutely continuous with respect to the Lebesgue measure and is
given by

Dam = ∇mLN ,

where ∇m is the matrix of approximate partial derivatives defined Ln-a.e. The component of
Dm that is singular with respect to LN is Dsm. It can be written as Dsm = D jm + Dcm,
where

D jm = (m+ − m−) ⊗ νmHN−1 Jm (2.27)

and Dcm is the Cantor part of Dm, which vanishes on sets that are HN−1 σ -finite.

Remark 2.5 Since Dam and Dcm both vanish on sets that areHN−1 σ -finite, they vanish on
Sm . Therefore, ap limy→x m(y), which is defined off of Sm , exists and is equal to m̃ except
on a set of |Dam|- and |Dcm|-measure zero.

Lemma 2.6 If m ∈ BV (�; R
N ) is equal to ∇u for some u ∈ W 1,1(�), then

∇u+ − ∇u−//ν∇u . (2.28)

Proof Since the Radon measure Dm is equal to∇2u, it is symmetric and can be decomposed
into three mutually singular measures, cf. (2.26). Thus the jump part (∇u+ − ∇u−) ⊗
ν∇uH2 J∇u is symmetric as well. But (∇u+ − ∇u−) ⊗ ν∇u is symmetric if and only if
∇u+ − ∇u−//ν∇u , which is (2.28). ��

We state the BV Chain Rule [2, 63].

Theorem 2.7 [4,Thm 3.96] Let m ∈ BV (�; R
M ) and F : R

M → R
P be C1 with bounded

gradient and F(0) = 0 if LN (�) = ∞. Then F ◦ m ∈ BV (�; R
P ) and

D(F ◦m) = ∇F(m)∇mLN +∇F(m̃)Dcm+(F(m+) − F(m−)
)⊗νmHN−1 Jm . (2.29)

When M = P , taking the trace on both sides of (2.29) yields

div (F ◦m) = tr (∇F(m)∇m)L2 + tr (∇F(m̃)Dcm) + (F(m+) − F(m−)) · νmHN−1 Jm .

(2.30)

Remark 2.8 As a consequence of Theorem 2.7, if F does not have bounded gradient, one
must assume that m instead is bounded in order to apply the chain rule above.
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3 The 3D Aviles-Giga space and the lower bound

In this section we prove the lower bound. Due to the connect ion between the 3D model
(2.6) and 2D Aviles-Giga, many of the arguments leading to the lower bound are the natural
3D analogues of results from [3, 6]. The proof is centered around the 3D version of the 2D
Aviles-Giga space considered in [6] and explicitly defined in [3]. Although alternate proofs
are available when ∇u ∈ BV (�; R

3), for example via blowup or covering arguments, we
follow the structure of [3] which gives the most general version of the lower bound without
this assumption on ∇u.

Let {ξ, η} be an orthonormal basis of R
2. For any vector m = (m⊥,m3) with m⊥ ∈ R

2,
denote

mξ = m⊥ · ξ, mη = m⊥ · η

and set

�ξη(m) =
(
m3mξ − mξm

2
η

2
−

m3
ξ

6

)
ξ +
(

−m3mη +
mηm2

ξ

2
+ m3

η

6

)
η +
(

−
m2

ξ

2
+ m2

η

2

)
ẑ.

(3.1)

Note that for m : � → R
3, �ξη(m) ∈ L1

loc(�; R
3) if m⊥ ∈ L3

loc(�) and m3 ∈ L
3
2
loc(�).

This and the fundamental equation (2.23) motivate the following definition.

Definition 3.1 Let u ∈ W
1, 32
loc (�) be such that ∇⊥u ∈ L3

loc(�; R
2). We say that u ∈

AG3D(�) if div�ξη(∇u) is a finite Radon measure in � for all orthonormal bases {ξ, η} of
R
2.

Definition 3.2 If u ∈ AG3D(�) and ∂zu = 1
2 |∇⊥u|2, we say u ∈ AG3D

0 (�).

Let {e1, e2} be the standard basis of R
2, and let {ε1, ε2} be given by

ε1 =
(

1√
2
,

1√
2

)
, ε2 =

(
− 1√

2
,

1√
2

)
. (3.2)

A routine calculation, yields a formula for �ξη in terms of �e1e2 and �ε1ε2 . The R
2-valued

version of this formula for the Jin-Kohn entropies was first derived in [3], and we do not
include the proof.

Lemma 3.1 For any m ∈ L
3
2
loc(�; R

3) such that m⊥ ∈ L3
loc(�; R

2), if ξ = (cos θ, sin θ) and
η = (− sin θ, cos θ), then

�ξη(m) = cos 2θ �e1e2(m) + sin 2θ �ε1ε2(m). (3.3)

Definition 3.3 For any u ∈ AG3D(�), let I u be the finite vector-valued Radon measure

I u = (div�e1e2(∇u), div�ε1ε2(∇u)). (3.4)

By (3.3), u ∈ AG3D(�) if and only if div�e1e2(∇u), div�ε1ε2(∇u) are finite Radon
measures. Let B+ denote the sets of all orthonormal bases of R

2 with the same orientation
as {e1, e2}. We decompose the domain and on each piece we consider the rotated mea-
sure div�ξη(∇u). The following result shows that |I u| is the supremum of the measures
|div�ξη(∇u)| over {ξ, η} ∈ B+.
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Theorem 3.2 (i) For any u ∈ AG3D(�) and Borel subset B of �,

|I u|(B) =
⎛
⎝ ∨

{ξ,η}∈B+

∣∣div�ξη(∇u)
∣∣
⎞
⎠ (B)

= sup

⎧⎨
⎩

J∑
j=1

∣∣div�ξ jη j (∇u)
∣∣ (Bj ) : J ∈ N, {Bj }Jj=1

is a Borel partition ofB, {ξ j , η j } ∈ B+
}

(3.5)

(ii) For an open set A,

|I u|(A) = sup

⎧⎨
⎩

J∑
j=1

∣∣div�ξ jη j (∇u)
∣∣ (A j ) : J ∈ N, A j

are open, disjoint, A j ⊂⊂ A, {ξ j , η j } ∈ B+
}
. (3.6)

(iii) If {un} ⊂ AG3D(�) are such that

∇⊥un →
L3

∇⊥u, ∂zun →
L3/2

∂zu,

and
|I un |(�) ≤ C < ∞ for all n, (3.7)

then u ∈ AG3D(�) and

Iun
∗
⇀I u.

Thus for every open set A ⊂ �,

|I u|(A) ≤ lim inf
n→∞ |I un |(A). (3.8)

Proof By Riesz’s Theorem and (3.3), we have the equality of measures

div�ξη(∇u) = (cos 2θ, sin 2θ) · I u = (cos 2θ, sin 2θ) · g|I u|
for some g which is unit-valued |I u|-a.e. One then has for any Borel set B and Borel partition
{Bj }Jj=1

J∑
j=1

∣∣div�ξ jη j (∇u)
∣∣ (Bj ) =

J∑
j=1

ˆ
Bj

∣∣(cos 2θ j , sin 2θ j ) · g∣∣ d|I u| ≤
J∑

j=1

|I u|(Bj ). (3.9)

Approximating g by functions that take finitely many values in S
1 yields (3.5). The repre-

sentation (3.6) when A is open is a consequence of the usual approximation theorems for
Radon measures. To see this, note that for any partition {Bj }Jj=1 of A, we can approximate

Bj from inside by disjoint compact sets {K j }Jj=1 and then K j by the desired open sets.
For (i i i), by Hölder’s inequality and the convergence of ∇un to ∇u, we have

�e1e2(∇un) → �e1e2(∇u), �ε1ε2(∇un) → �ε1ε2(∇u) in L1(�; R
3),

so that the divergences converge in the sense of distributions. Thus (3.7) implies that I u is

Radon and I un
∗
⇀I u, and (3.8) is a consequence of the weak-∗ convergence. ��
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Proposition 3.3 If u ∈ W 2,9/5(�), then

div�ξη(∇u) =
(

∂zu − 1

2
|∇u|2
)

(∂2ξ u − ∂2ηu) (3.10)

and

|I u| =
∣∣∣∣∂zu − 1

2
|∇⊥u|2

∣∣∣∣ |λ1 − λ2|L3 � (3.11)

where λ1, λ2 are the eigenvalues of ∇2⊥u.

Proof If u is smooth, we can calculate

div�ξη(∇u) = ∂ξ

(
�ξη(∇u) · ξ

)+ ∂η

(
�ξη(∇u) · η

)+ ∂z
(
�ξη(∇u) · ẑ)

= ∂ξ ∂zu∂ξu + ∂zu∂2ξ u − ∂ξu∂ηu∂ξ ∂ηu − ∂2ξ u(∂ηu)2

2
− (∂ξu)2∂2ξ u

2

− ∂η∂zu∂ηu − ∂zu∂2ηu + ∂ξu∂ηu∂η∂ξu + ∂2ηu(∂ξu)2

2
+ (∂ηu)2∂2ηu

2
− ∂ξu∂z∂ξu + ∂ηu∂z∂ηu

=
(

∂zu − |∇⊥u|2
2

)(
∂2ξ u − ∂2ηu

)
. (3.12)

If u ∈ W 2,9/5(�), then by the Sobolev embedding, ∇u ∈ L
9/2(�). For un smooth and

converging to u in W 2,9/5(�) , Hölder’s inequality yields for any test function ϕ ∈ C∞
0 (�),ˆ

�

−�ξη(∇u) · ∇ϕ dx = lim
n→∞

ˆ
�

−�ξη(∇un) · ∇ϕ dx

= lim
n→∞

ˆ
�

(
∂zun − |∇⊥un |2

2

)(
∂2ξ un − ∂2ηun

)
ϕ dx

=
ˆ

�

(
∂zu − |∇⊥u|2

2

)(
∂2ξ u − ∂2ηu

)
ϕ dx,

so that (3.10) is proved.
For (3.11), if v = v(x) and w = w(x) are the orthonormal eigenvectors of ∇2⊥u(x) with

corresponding eigenvalues λ1(x) = ∂2vu(x) and λ2(x) = ∂2wu(x), then direct calculation
gives∣∣∣∂2ξ u − ∂2ηu

∣∣∣ = ∣∣∂2vu − ∂2wu
∣∣ ∣∣(ξ · v)2 − (η · v)2

∣∣ = ∣∣∂2vu − ∂2wu
∣∣ ∣∣(ξ · w)2 − (η · w)2

∣∣ .
From this we may conclude that

sup
{ξ,η}∈B+

∣∣∣∂2ξ u − ∂2ηu
∣∣∣ = |λ1 − λ2|,

and thus

|I u| =
∣∣∣∣∂zu − 1

2
|∇⊥u|2

∣∣∣∣ |λ1 − λ2|L3 �.

��
Remark 3.4 The condition that u ∈ W 2, 95 (�) is stronger than merely requiring that u ∈
AG3D(�). However, by Hölder’s inequality and the Sobolev embedding, 9/5 is the opti-
mal exponent for which the measure div�(∇u)is absolutely continuous with respect to
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the Lebesgue measure and is thus represented by the integration of an L1-function; cf.
[3,Proposition 3.4] for the corresponding result in two dimensions.

The next proposition gives a formula for |I u| under certain regularity conditions on u ∈
AG3D

0 (�) necessary to apply the BV Chain rule, cf. Theorem 2.7 and Remark 2.8.

Proposition 3.5 If u ∈ AG3D
0 (�) ∩ W 1,∞(�) and ∇u ∈ BV (�; R

3), then

|I u| = |∇⊥u+ − ∇⊥u−|4
12|∇u+ − ∇u−| H2 J∇u .

Proof For any {ξ, η}, first notice that due to the BV Chain rule,

|div�ξη(∇u)| J∇u = ∣∣(�ξη(∇u+) − �ξη(∇u−)
) · ν∇u
∣∣H2 J∇u .

We compute the right hand side and then optimize over choices of {ξ, η}∈ B+ at each point
in J∇u . To simplify the notation in the calculation, set ∇u = m. Now since u ∈ AG3D

0 (�),
m+ and m− satisfy

m±
3 = 1

2
((m±

ξ )2 + (m±
η )2) (3.13)

on Jm , which can be directly verified from Definition 2.3. This gives

�ξη(m
±)⊥ =

(
m±

3 m
±
ξ − m±

ξ (m±
η )2

2
− (m±

ξ )3

6

)
ξ +
(

−m±
3 m

±
η + m±

η (m±
ξ )2

2
+ (m±

η )3

6

)
η

= (m±
ξ )3

3
ξ − (m±

η )3

3
η. (3.14)

Using (3.14) to rewrite �ξη(m±) and then (3.13) and m+ − m−//νm to replace νm , cf.
Eq. (2.28), we have

|(�ξη(m
+) − �ξη(m

−)) · νm |

=
∣∣∣∣∣
(

(m+
ξ )3

3
− (m−

ξ )3

3

)
νξ −
(

(m+
η )3

3
− (m−

η )3

3

)
νη

+
(

− (m+
ξ )2

2
+ (m−

ξ )2

2
+ (m+

η )2

2
− (m−

η )2

2

)
νz

∣∣∣∣∣
= 1

|m+ − m−|
∣∣∣∣
(

(m+
ξ )3

3
− (m−

ξ )3

3

)
(m+

ξ − m−
ξ ) −
(

(m+
η )3

3
− (m−

η )3

3

)
(m+

η − m−
η )

+
(

− (m+
ξ )2

2
+ (m−

ξ )2

2
+ (m+

η )2

2
− (m−

η )2

2

)(
|m+

⊥|2
2

− |m−
⊥|2
2

) ∣∣∣∣.
Expanding out the right hand side of the previous equation and combining like terms gives

|(�ξη(m
+) − �ξη(m

−)) · νm | =
∣∣∣(m+

ξ − m−
ξ )4 − (m+

η − m−
η )4
∣∣∣

12|m+ − m−| ≤ |m+
⊥ − m−

⊥|4
12|m+ − m−| .

(3.15)

Equality is achieved for {ξ, η} such that (m+ − m−)⊥//ξ or (m+ − m−)⊥//η. Taking the
supremum over {ξ, η}∈ B+, we find that

|I u| J∇u = |∇u+
⊥ − ∇u−

⊥|4
12|∇u+ − ∇u−|H

2 J∇u . (3.16)
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To complete the proof of the proposition, we must show that

|I u|(� \ J∇u) = 0.

Recalling the BV Chain rule, Theorem 2.7, notice that away from J∇u , div�ξη(∇u) can be
computed using the usual chain rule formula by substituting Da(∇u) and Dc(∇u) for the
classical second derivatives of u. Therefore, by the same manipulations as in (3.12), we have

div�ξη(∇u) (� \ J∇u)

=
(

∂̃zu − |∇̃⊥u|2
2

) [
ξ T Da(∇u)ξ + ξ T Dc(∇u)ξ − ηT Da(∇u)η − ηT Dc(∇u)η

]
.

Since ∂̃zu − |˜∇⊥u|2
2 = 0 for x where the approximate limit ∇̃u exists, it is zero |Da(∇u)|-

and |Dc(∇u)|-a.e. by Remark 2.5. Thus |I u| (� \ J∇u) vanishes as well.

We are ready to prove the lower bound. The theorem is stated under the assumption that
ε2n
´
Kn → 0, which can be enforced by mild control on the boundary data as in (2.25).

Theorem 3.6 Let � ⊂ R
3 be an open set. Consider εn ↘ 0 and {un} ⊂ H2(�) such that

∇⊥un →
L3

∇⊥u, ∂zun →
L3/2

∂zu (3.17)

for some u ∈ W 1, 32 (�) with ∇⊥u ∈ L3(�; R
2). If lim infn→∞ Eεn (un) is finite and

lim
n→∞ ε2n

ˆ
�

Kn dx = 0, (3.18)

then u ∈ AG3D
0 (�) and

lim inf
n→∞ Eεn (un) ≥ |I u|(�). (3.19)

When u ∈ AG3D
0 (�) ∩W 1,∞(�) and ∇u ∈ BV (�; R

3), then by Proposition 3.5, the lower
bound is given by

|I u| = |∇⊥u+ − ∇⊥u−|4
12|∇u+ − ∇u−| H2 J∇u .

Proof For each un ∈ H2(�), the representation (3.11) of |I un | gives

|I un | =
∣∣∣∣∂zun − 1

2
|∇⊥un |2

∣∣∣∣ |λ1,n − λ2,n |L3 �

≤
[

1

2εn

(
∂zun − |∇⊥un |2

2

)2
+ εn

2

(
λ1,n − λ2,n

)2]L3 �. (3.20)
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Next, fix an open set A ⊂⊂ � and a test function ϕ ∈ C∞
c (�; [0, 1]) such that ϕ = 1 on A.

We estimate

εn

2

ˆ
�

(�⊥un)2 dx ≥ εn

2

ˆ
�

[
λ21,n + λ22,n + 2λ1,nλ2,n

]
ϕ dx

= εn

2

ˆ
�

[
(λ1,n − λ2,n)

2 + 4 det(∇2⊥un)
]
ϕ dx

= εn

2

ˆ
�

(λ1,n − λ2,n)
2ϕ dx − 2εn

ˆ
�

∂xun(∂
2
y un∂xϕ − ∂xyun∂yϕ) dx

≥ εn

2

ˆ
A

(
λ1,n − λ2,n

)2
dx − 2εn‖∇ϕ‖L∞‖∇⊥un‖L2‖∇2⊥un‖L2 .

(3.21)

Now since ∇⊥un are bounded in L3, the square of the remainder in (3.21) can be estimated
by

ε2n‖∇⊥un‖2L2‖∇2⊥un‖2L2 = ε2n‖∇⊥un‖2L2

ˆ
�

[
λ21,n + λ22,n + 2λ1,nλ2,n − 2λ1,nλ2,n

]
dx

≤ Cε2n

ˆ
�

(�⊥un)2 dx + Cε2n

∣∣∣∣2
ˆ

�

Kn dx

∣∣∣∣
→ 0. (3.22)

Combining (3.20)–(3.22), we conclude that

Eεn (un) ≥ 1

2

ˆ
A

[
1

εn

(
∂zun − 1

2
|∇⊥un |2

)2
+ εn
(
λ1,n − λ2,n

)2]
dx

− 2εn‖∇ϕ‖L∞‖∇⊥un‖L2‖∇2⊥un‖L2

≥ |I un |(A) − o(1). (3.23)

Since the limit inferior of the energies is finite, we can appeal to Theorem 3.2.(iii) to find
that u ∈ AG3D(A) and

lim inf
n→∞ Eεn (un) ≥ lim inf

n→∞ |I un |(A) ≥ |I u|(A).

An exhaustion argument gives u ∈ AG3D(�) and (3.19). The fact that u ∈ AG3D
0 (�) follows

from ˆ
�

(
∂zun − |∇⊥un |2

2

)2
dx ≤ εnEεn (un) → 0. (3.24)

��

4 The upper bound

In this section we show that the lower bound Theorem 3.6 is sharp when u ∈ AG3D
0 (�) and

∇u ∈ (BV ∩ L∞)(�) by means of a construction, so that we have matching upper and lower
bounds. Combined with the lower bound, this allows us to conclude that under reasonable
assumptions, equipartition of energy in (2.6) is optimal.
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Theorem 4.1 Let u ∈ AG3D
0 (�) ∩ W 1,∞(�) and ∇u ∈ BV (�; R

3). Then there exists a
sequence {uε} ⊂ C2(�) such that

uε → u in W 1,p(�) for all 1 ≤ p < ∞ (4.1)

and

Eε(uε) →
ˆ
J∇u

|∇⊥u+ − ∇⊥u−|4
12|∇u+ − ∇u−| dH2. (4.2)

The proof of Theorem 4.1 consists of two steps. In Proposition 4.2, we show that on a
cube with jump set parallel to one of the faces, the sequence of one-dimensional competitors
with constant gradient in the direction parallel to the jump set is asymptotically minimizing.
Second, the cube construction can be leveraged to obtain the full upper bound Theorem 4.1
by using the results of [50].

To formulate the problem on a cube, let us fix an orthonormal basis {ζ1, ζ2, ν} of R
3 and

the set
C = {x ∈ R

3 : |x · ν| ≤ 1/2, |x · ζi | ≤ 1/2 for i = 1, 2}.
Next, we choose boundary data that will be compatible with a limiting jump set {x ∈ C :
x · ν = 0}. Let m+ �= m− be such that

m±
3 = 1

2
|m±

⊥|2 and ν//(m+ − m−), (4.3)

and consider the class

AC := {u ∈ H2 : ∇u = m± when x · ν = ±1/2 and ∇u is 1-periodic in the ζ1, ζ2 directions}.
Note that since m+ �= m−, the first equation in (4.3) enforces

ν⊥ �= 0,

so that we can define the planar unit vectors

ξ = ν⊥
|ν⊥| and η = (−ξ2, ξ1, 0).

The smaller set of 1D competitors is defined by

A1D
C := {u ∈ AC : ∇u · ζi = m+ · ζi = m− · ζi for i = 1, 2}.

We remark that due to the boundary conditions imposed on the class AC and the identity
K = det∇2⊥u = ∇⊥(∂xu∂2y u,−∂xu∂xyu),

ˆ
C
(�⊥u)2 dx −

ˆ
C

|∇2⊥u| dx

= 2
ˆ
C

∂2x u∂2y u − (∂xyu)2 dx

= 2
ˆ

∂C∩{|x·ν|=1/2}
∂xu∂τ1,2(∂yu) dH2 + 2

2∑
i=1

ˆ
∂C∩{|x·ζi |=1/2}

∂xu∂τ1,2(∂yu) dH2

= 0. (4.4)

We set

rε = inf
AC

Eε and r1Dε = inf
A1D

C

Eε.
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Proposition 4.2 For any ε > 0,

|m+
⊥ − m−

⊥|4
12|m+ − m−| ≤ rε ≤ r1Dε ≤ |m+

⊥ − m−
⊥|4

12|m+ − m−| + c1e
−c2ε. (4.5)

The constants c1 and c2 depend only on m+ and m−.

Proof The inequality rε ≤ r1Dε is immediate, since A1D
C ⊂ AC . Also, the inequality

|m+
⊥ − m−

⊥|4
12|m+ − m−| ≤ rε

follows from (3.12), (3.15), and the boundary conditions for u ∈ AC . Indeed, since

ν⊥//(m+ − m−)⊥//ξ,

we have

|m+
⊥ − m−

⊥|4
12|m+ − m−| =

(3.15)

∣∣∣∣
ˆ
C∩{x·ν=1/2}

�ξη(m
+) · ν dH2 −

ˆ
C∩{x·ν=−1/2}

�ξη(m
−) · ν dH2

∣∣∣∣
=
∣∣∣∣
ˆ
C
div�ξη(∇u) dx

∣∣∣∣
≤

(3.12)

ˆ
C

1

2ε

(
∂zu − |∇⊥u|2

2

)2
+ ε

2

(
∂2ξ u − ∂2ηu

)2
dx

≤
ˆ
C

1

2ε

(
∂zu − |∇⊥u|2

2

)2
+ ε

2

(
(∂2ξ u)2 + 2

(
∂η∂ξu
)2 + (∂2ηu)2

)
dx

− ε

ˆ
C

(
∂2ξ u∂2ηu − (∂η∂ξu)2

)
dx

= 1

2

ˆ
C

1

ε

(
∂zu − |∇⊥u|2

2

)2
+ ε|∇2⊥u|2 dx − ε

ˆ
C
det(∇2⊥u) dx

=
(4.4)

Eε(u).

Finally, showing that

r1Dε ≤ |m+
⊥ − m−

⊥|4
12|m+ − m−| + c1e

−c2ε (4.6)

entails constructing a sequence {∇uε} such that each ∇uε is a function of x · ν and

Eε(uε) ≤ |m+
⊥ − m−

⊥|4
12|m+ − m−| + c1e

−c2ε.

Since the steps of such a construction are standard in the calculus of variations, we outline
the procedure and refer to [47,Proposition 5.2], which contains a full proof in the 2D case,
for some of the estimates.

Let

p = m+ − m−

and g be the solution to the initial value problem⎧⎨
⎩
g′(t) = |gp3 + m−

3 − (gp1 + m−
1 )2/2 − (gp2 + m−

2 )2/2|
|p⊥ · ν⊥| ,

g(0) = 1/2.

(4.7)
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Note that the denominator |p⊥ · ν⊥| �= 0 since m±
3 = 1

2 |m±
⊥|2, m+ �= m− imply that

m+
⊥ �= m−

⊥. One can check that g exists for all time and approaches 1 and 0 exponentially as
t → ±∞ (see for example [59,Equation (1.21)]). Consider the family of functions

g
(x · ν

ε

)
p + m− = ∇

[
ε|p|G
(x · ν

ε

)
+ m− · x

]
=: ∇wε(x),

where G is an antiderivative of g, on the infinite strip {|x · τi | ≤ 1/2 : i = 1, 2}. Let ξ be the
unit vector ν⊥/|ν⊥|. By direct calculation, we have for any ε > 0

Eε(∇wε)

=
ˆ

{|x·τi |≤1/2:i=1,2}
1

ε

(
∂zwε − 1

2
|∇⊥wε|2

)2
+ ε (�⊥wε)

2 dx

=
ˆ ∞

−∞

⎡
⎣1

ε

(
g

(
t

ε

)
p3 + m−

3 −
(
g
( t

ε

)
p1 + m−

1

)2
2

−
(
g
( t

ε

)
p2 + m−

2

)2
2

)2

+εg′
(
t

ε

)2
(p⊥ · ν⊥)2

ε2

]
dt

=
(4.7)

∣∣∣∣∣
ˆ ∞

−∞

(
g

(
t

ε

)
p3 + m−

3 −
(
g
( t

ε

)
p1 + m−

1

)2
2

−
(
g
( t

ε

)
p2 + m−

2

)2
2

)

g′
(
t

ε

)
(p⊥ · ν⊥)

ε
dt

∣∣∣∣
=
∣∣∣∣
ˆ

{|x·τi |≤1/2:i=1,2}

(
∂zwε − |∇⊥wε|2

2

)
∂2ξ wε dx

∣∣∣∣
=
∣∣∣∣
ˆ

{|x·τi |≤1/2:i=1,2}

(
∂zwε − |∇⊥wε|2

2

)
(∂2ξ wε − ∂2ηwε) dx

∣∣∣∣
=

(3.12)

∣∣∣∣
ˆ

{|x·τi |≤1/2:i=1,2}
div�ξη(∇wε) dx

∣∣∣∣
= |(�ξη(m

+) − �ξη(m
−)) · ν|

In (3.16) in the lower bound, we saw that this was equal to

|m+
⊥ − m−

⊥|4
12|m+ − m−| . (4.8)

The sequence {∇uε} is constructed by suitably truncating ∇wε so that it is in the class A1D
C .

The estimate (4.6) follows from the exponential approach of g to 0 and 1 combined with
(4.8); see [47,Proposition 5.2] for full details. ��

To prove Theorem 4.1, we appeal to a general theorem from [49]. The version applicable
to this problem reads as follows.

Theorem 4.3 [49,Theorem 1.2] Let � ⊂ R
3 be a bounded C2-domain and let

F(a, b) : R
3×3 × R

3 → R

be a C1 function satisfying F ≥ 0. Let u ∈ W 1,∞(�) be such that ∇u ∈ BV (�; R
3) and

F(0,∇u(x)) = 0 a.e. in �. Then there exists a family of functions {uε} ⊂ C2(R3) satisfying

uε → u in W 1,p(�) for 1 ≤ p < ∞
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and

lim
ε→0

1

ε

ˆ
�

F(ε∇2uε,∇uε) dx dz

=
ˆ
J∇u

inf
r∈Rχ(x,z),0

{ˆ ∞

−∞
F
(−r ′(t)ν(x, z) ⊗ ν(x, z), r(t)ν(x, z) + ∇u−(x, z)

)
dt

}
dH2.

Here χ(x, z) is given by

χ(x, z)ν(x, z) = ∇u+(x, z) − ∇u−(x, z),

and

Rχ(x,z),0 := {r(t) ∈ C1(R) : ∃L > 0 s.t. r(t) = χ(x, z) for t ≤ −L, r(t) = 0 for t ≥ L}.
Proof of Theorem 4.1 If we set

F(a, b) = 1

2

(
b3 − |b⊥|2

2

)2
+ 1

2

2∑
i=1

a2i i ,

then
1

ε

ˆ
�

F(ε∇2uε,∇uε) dx = Eε(uε).

To evaluate the infimum in Theorem 4.3, we can rescale and use Proposition 4.2 to see that
it is

|∇u+
⊥ − ∇u−

⊥|4
12|∇u+ − ∇u−| .

This finishes the proof. ��
Remark 4.4 A recovery sequence with specified boundary data for u and ∇u could be con-
structed as in [12,Section 6] or [48,Theorem 1.1].

Finally, let us rephrase the theorems of the last two sections in terms of the original problem
involving smectics: roughly speaking, equipartition of energy is optimal when the Gaussian
curvature induced by the boundary conditions is not prohibitively large. More precisely,
denoting by λi the eigenvalues of ∇2⊥u, we have

Eε(u) = 1

2

ˆ
�

[
ε(λ1 + λ2)

2 + 1

ε

(
∂zu − 1

2
|∇⊥u|2

)2]
dx

= 1

2

ˆ
�

[
ε(λ1 − λ2)

2 + 1

ε

(
∂zu − 1

2
|∇⊥u|2

)2]
dx + 2ε

ˆ
�

λ1λ2 dx

= |I u|(�) + 1

2

ˆ
�

(
ε

1/2|λ1 − λ2| − 1

ε
1/2

∣∣∣∣∂zu − 1

2
|∇⊥u|2

∣∣∣∣
)2

dx + 2ε
ˆ

�

K dx.

(4.9)

If ε
´
�
K dx is small compared to the energy Eε(u), which by (2.24) can be enforced by

choosing boundary conditions such that ε‖∇⊥u‖2
H 1/2(∂�)

is small, then contribution of the
curvature term is negligible. Thus the energy Eε is minimized by minimizing |I u| among
competitors saturating the perfect square. The matching upper bound demonstrates that this
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procedure is optimal in a reasonable range of situations. Furthermore, saturation of the perfect
square entails ˆ

�

ε(λ1 − λ2)
2 dx ≈

ˆ
�

1

ε

(
∂zu − 1

2
|∇⊥u|2

)2
dx. (4.10)

Since ε(�⊥u)2 and ε(λ1−λ2)
2 differ by 4εK , the assumption that the integral of the curvature

is small and (4.10) imply that
ˆ

�

ε(�⊥u)2 dx ≈
ˆ

�

1

ε

(
∂zu − 1

2
|∇⊥u|2

)2
dx, (4.11)

which is precisely the BPS equation squared and integrated over �.

Remark 4.5 Our 1D ansatz satisfies BPS equation (2.13). Also, the condition that ε
´
�
K

must be small for equipartition to be optimal coincides with the observation from [55] that
BPS solutions are not competitive when the curvature is very large, so that the result is
qualitatively sharp in some sense.

Remark 4.6 Both the arguments for the lower and upper bound hold for the sequence of
energies

Ẽε(u) = 1

2

ˆ
�

[
1

ε

(
∂zu − 1

2
|∇⊥u|2

)2
+ ε|∇2⊥u|2

]
dx

with trivial modifications. For lower bound, we only need to assume lim inf Ẽεn (un) is finite.

5 Compactness

The main result in this section is the compactness theorem.

Theorem 5.1 Let � ⊂ R
3 be a bounded domain with C1 boundary, εn → 0, and {un}

⊂ H2 (�) be a sequence of functions with uniformly bounded energies Eεn (un) such that
‖∇un‖L p(�) ≤ C for some p > 6 and ‖∇un‖L2(∂�) ≤ C. Assume also that �⊥un ≥ 0 or
�⊥un ≤ 0 a.e. in �. Then ∇un is precompact in Lq (�) for any 1 ≤ q < p.

Theorem 5.1 is a direct corollary of the following stronger proposition.

Proposition 5.2 Let � ⊂ R
3 be a bounded domain with C1 boundary and {un} ⊂ H2 (�)

be a sequence of functions satisfying

‖∇un‖L p(�) ≤ C, for some p > 6, (5.1)

‖∇un‖L2(∂�) ≤ C, (5.2)

∂zun − 1

2
|∇⊥un |2 → 0 strongly in L2 (�) , (5.3)

and ∣∣∣∣∂zun − 1

2
|∇⊥un |2

∣∣∣∣ |�⊥un | is bounded in L1 (�) . (5.4)

If in addition
�⊥un ≥ 0 a.e. in � or �⊥un ≤ 0 a.e. in �, (5.5)

then (∇⊥un) is precompact in Lq (�) for 1 ≤ q < p.
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We first prove a lemma used in the proof of Proposition 5.2.

Lemma 5.3 Under the assumptions (5.1)–(5.5), div Bn is relatively compact in H−1 (�) ,

where

Bn =
(

−∇⊥un
2

|∇⊥un |2 ,
1

2
|∇⊥un |2

)
.

Proof We prove the Lemma when un is smooth and general case follows by approximating.
By (5.3),

∂z (∂xun) − ∂x

(
1

2
|∇⊥un |2

)
(5.6)

= ∂x

(
∂zun − 1

2
|∇⊥un |2

)
→ 0 strongly in H−1 (�) , and

∂z
(
∂yun
)− ∂y

(
1

2
|∇⊥un |2

)

= ∂y

(
∂zun − 1

2
|∇⊥un |2

)
→ 0 strongly in H−1 (�) . (5.7)

Multiplying (5.6) by ∂xun and (5.7) by ∂yun then summing, we have

∂z

(
1

2
|∇⊥un |2

)
− ∂x

(
∂xun
2

|∇⊥un |2
)

− ∂y

(
∂yun
2

|∇⊥un |2
)

= ∂x

(
∂xun

(
∂zun − 1

2
|∇⊥un |2

))
+ ∂y

(
∂yun

(
∂zun − 1

2
|∇⊥un |2

))

−
(

∂zun − 1

2
|∇⊥un |2

)
�⊥un − 1

2
|∇⊥un |2 �⊥un

= I + I I + I I I . (5.8)

Here

I = ∂x

(
∂xun

(
∂zun − 1

2
|∇⊥un |2

))
+ ∂y

(
∂yun

(
∂zun − 1

2
|∇⊥un |2

))
→ 0

in W−1, 2p
p+2 (�) up to a subsequence,

I I = −
(

∂zun − 1

2
|∇⊥un |2

)
�⊥un

is bounded in L1(�), and

I I I = −1

2
|∇⊥un |2 �⊥un .

If I I I is bounded inM (�), the space ofmeasures, then the right hand side of (5.8) is the sum

of a term relatively compact in W−1, 2p
p+2 (�) and a term bounded in M (�), so that by the

embedding theorem, the right hand side of (5.8) is relatively compact inW−1,r (�) for some
1 ≤ r < 2. On the other hand, assumption (5.1) implies the left hand side of (5.8) is bounded
in W−1, p

3 (�). Relative compactness of div Bn in H−1(�) follows from interpolation.
To finish the proof, we show I I I is bounded in M (�) under the additional assumption

(5.5). Rewrite (5.8) as

∂z (η (un)) − div⊥ (F (un)) + G (un) = μn, (5.9)
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where

η (un) = 1

2
|∇⊥un |2 , F (un) = (∂xun∂zun, ∂yun∂zun) ,

G (un) =
(

∂zun − 1

2
|∇⊥un |2

)
�⊥un,

μn = −1

2
|∇⊥un |2 �⊥un .

Let �− = {x ∈ � : μn(x) ≤ 0} and �+ = {x ∈ � : μn(x) ≥ 0}. Since (5.5) holds, then
� = �− or � = �+. Assume � = �− (the other case can be proved similarly). Integrating
(5.9) over � and using the divergence theorem on the first two terms yieldsˆ

�

−μndx dy dz =
ˆ

∂�

−η (un) ν3 dH2 +
ˆ

∂�

F (un) · ν⊥ dH2 −
ˆ

�

G (un) dx

≤ ‖∇⊥u‖2L2(∂�)
+ ‖∂zu‖L2(∂�)‖∇⊥u‖L2(∂�) + Eεn (un)

≤ C

for some constantC depending on the energy bound and ‖∇un‖L2(∂�). Therefore−μnL3 �

is bounded in M (�). ��
Remark 5.4 • A special case satisfying (5.1) is ‖∇un‖L∞(�) ≤ C .
• In the proof of Lemma 5.3, the convergence result in (5.6) and (5.7) has not been used;

however, it is used below in the proof of Proposition 5.2.

Proof of Proposition 5.2 Set

En =
(

∇⊥un,
1

2
|∇⊥un |2

)
and Bn =

(
−∇⊥un

2
|∇⊥un |2 ,

1

2
|∇⊥un |2

)
.

Lemma 5.3 together with (5.6) and (5.7) implies

curl En and div Bn are relatively compact in H−1 (�) .

If En⇀E∞, Bn⇀B∞ in L2 (�), then Tartar-Murat’s div-curl Lemma applied to En and Bn

yields
En · Bn⇀E∞ · B∞ in D′ (�) . (5.10)

We introduce the following notations for the weak limits in Lr (�) for r > 1 :
(∂xun)

4 ⇀U4,
(
∂yun
)4

⇀V4, (∂xun)
3 ⇀U3,

(
∂yun
)3

⇀V3,

(∂xun)
2 ∂yun⇀U21, ∂xun

(
∂yun
)2

⇀U12, (∂xun)
2 ⇀U2,

(
∂yun
)2

⇀V2,

and
(∂xun)

2 (∂yun)2 ⇀U22, ∂xun∂yun⇀U11, ∂xun⇀U1, ∂yun⇀V1.

Here r depends on p and the term in question but is greater than 1 for each. Under these
notations, (5.10) can be written as

−1

4
|∇⊥un |4 ⇀

(
U1,V1,

1

2
(U2 + V2)

)
·
(

−1

2
U3 − 1

2
U12,−1

2
U21 − 1

2
V3,

1

2
(U2 + V2)

)
.

From this it follows that

−1

4
(U4 + 2U22 + V4) = −1

2
U1U3 − 1

2
U1U12 − 1

2
V1U21 − 1

2
V1V3 + 1

4
(U2 + V2)

2 ,
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or, equivalently,

0 = U4 + 2U22 + V4 − 2U1U3 − 2U1U12 − 2V1U21 − 2V1V3 + (U2 + V2)
2 . (5.11)

Next, we consider
(
(∂xun)

2 − ∂xunU1 + (∂yun)2 − ∂yunV1
)2

= (∂xun)
2 (∂xun −U1)

2 + 2∂xun∂yun (∂xun −U1)
(
∂yun − V1

)+ (∂yun)2 (∂yun − V1
)2

⇀U4 − 2U1U3 +U2U
2
1 + 2 (U22 −U21V1 −U1U12 +U11U1V1) + V4 − 2V1V3 + V2V

2
1

=
(5.11)

− (U2 + V2)
2 +U2U

2
1 + V2V

2
1 + 2U11U1V1.

Observe that
(
∂xunU1 + ∂yunV1 −U2 − V2

)2
= (U2 + V2)

2 − 2
(
∂xunU1 + ∂yunV1

)
(U2 + V2) + (∂xunU1 + ∂yunV1

)2
⇀(U2 + V2)

2 − 2 (U2 + V2)
(
U 2
1 + V 2

1

)+U2U
2
1 + V2V

2
1 + 2U11U1V1

≤ (U2 + V2)
2 −U2U

2
1 − V2V

2
1 − 2U11U1V1, (5.12)

where the last inequality follows from

U2V
2
1 + V2U

2
1 ≥ 2U11U1V1,

which is a direct conclusion from weak limit
(
∂xunV1 − ∂yunU1

)2
⇀U2V

2
1 + V2U

2
1 − 2U11U1V1.

Thus
(
(∂x un)

2 − ∂x unU1 + (∂yun)2 − ∂yunV1
)2

⇀ − (U2 + V2)
2 +U2U

2
1 + V2V

2
1 + 2U11U1V1 ≤

(5.12)
0.

From this we conclude that

(∂xun)
2 − ∂xunU1 + (∂yun)2 − ∂yunV1 → 0,

so that passing to the limit on the left side, we have

U2 −U 2
1 + V2 − V 2

1 = 0.

Since F(s) = s2 is a convex function, by Lemma 2 in [60], we have U2 ≥ U 2
1 , V2 ≥ V 2

1 .
Thus it must be the case that

U2 = U 2
1 , V2 = V 2

1 ;
in other words, limn→∞ ||∇⊥un ||L2 = || limn ∇⊥un ||L2 , together with the weak convergence
of ∇⊥un , the strong convergence of ∇⊥un in L2 follows. ��

Proof of Theorem 5.1 Boundedness of Eεn (un) implies (5.3) and (5.4). By Proposition 5.2,
∇⊥un is precompact in L2(�), and hence in Lq(�) for 1 ≤ q < p by the uniform L p bound.
Compactness of ∂zun follows from uniform boundedness of ‖∇⊥un‖L p(�) for p > 6 and the
fact ∂zun − 1

2 |∇⊥un |2 → 0 in L2. ��
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Remark 5.5 The additional assumptions (5.1), (5.2), (5.5) in Theorem 5.1 and Proposition 5.2
are used in the proof of relative compactness of div Bn in Lemma 5.3. We comment that
the assumption (5.1) is physically justifiable since the model is only valid in the limit of
small strains [55]. Assumption (5.2) is less restrictive than εn

´
�
K̄ → 0. We would like to

remove the technical assumption (5.5) in future work. An alternative approach to handling
compactness is to rewrite the problem in terms of the geometric formulation of Tartar’s
conjecture [61]. Recall that the general question regarding upgrading weak convergence to
strong convergence can be stated as follows: given aweakly convergent sequence of functions
zε : R

m → R
N subject to linear differential constraints of the form

m−1∑
j=0

A j∂ j z
ε = ϕε, A j a s × N constant matrix, (5.13)

and nonlinear algebraic constraints{
zε (y)
} ⊂ M for a.e. y ∈ R

m, (5.14)

where M ⊂ R
N is a subset, usually a manifold, what kind of structure on A j and M would

suppress oscillations in {zε}, so that {zε} contains a strongly convergent subsequence? Tartar’s
conjecture can be expressed in terms of a geometric condition. We introduce the oscillation
variety

V =
⎧⎨
⎩(ξ, λ) :

m−1∑
j=0

ξ j A j = 0, ξ �= 0

⎫⎬
⎭ ⊂ R

m × R
N ,

and the wave cone, which is the projection of V to R
N :

� = PNV = {λ : ∃ξ �= 0, such that (ξ, λ) ∈ V } .

Given any a, let
�a = a + � = {a + λ, λ ∈ �}

be the translated cone. Tartar conjectured:

Conjecture 1 If the translated wave cone is separated from M in the sense that

�a ∩ M = {a}
for all a, then the Young measure νx is a Dirac mass for almost every x, which implies the
relative compactness in L p

For a sequence with bounded energy (1.1), one may form a wave cone from (5.6), (5.7),
and curl∇⊥u = 0 and construct a constitutive manifold from suitable entropy conditions.
Our initial observation [46] shows the translated wave cone constructed this way is separated
from the constitutive manifold. The final conclusion regarding compactness is still under
investigation.
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