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1. Introduction

Comparing equal volume shapes, i.e., Lebesgue measurable sets E and F in R
n of 

equal volume, is a ubiquitous task in numerous applications. From a mathematical 

standpoint, by identifying shapes with probability measures via their normalized charac-

teristic functions, optimal transportation theory provides natural choices of metrics, the 

p-Wasserstein distances, which metrize the weak convergence of probability measures on 

compact spaces [24]. Indeed, length-minimizing Wasserstein geodesics between equal vol-

ume sets, known as displacement interpolants, offer a (length minimizing) path joining 

the shapes being compared [21].

In this note we investigate the role of perimeter regularization in variational problems 

involving the Wasserstein distance between equal volume sets. As we subsequently dis-

cuss, examples of this type of problem arise in different applications. Our principal goal 

in this paper is to show that such perimeter-regularized variational problems, even when 

posed on all of space, do not suffer a loss of compactness of minimizing sequences. In 

order to focus on the technical essence in the simplest possible setting while capturing 

the main difficulties, we consider the following problem:

inf
{

P (E) + λWp(Ln E, Ln F ) : E, F ⊂ R
n, |E ∩ F | = 0, |E| = |F | = 1

}

. (1.1)

Here P (E) denotes the perimeter of E ⊂ R
n, Wp denotes the p-Wasserstein distance on 

the space of probability measures, and λ > 0 is a constant. The parameter p belongs 

to the interval [1, ∞), and λ represents the strength of the Wasserstein term relative to 

perimeter.

The problem (1.1) was recently analyzed by Buttazzo, Carlier and Laborde in [7], 

in addition to more general minimization problems involving the minimal Wasserstein 

distance between a measure μ and measures singular with respect to μ. In the context of 

(1.1), the authors in [7] show, for any λ > 0, the existence of minimizers when admissible 

sets E and F are required to be subsets of a bounded domain Ω. In two dimensions, they 

prove the existence of minimizers for the problem (1.1) on all of R2, and conjectured that 

it should hold in all dimensions. This whole-space result was extended by Xia and Zhou 

[27] to higher dimensions but under the additional assumptions that λ is sufficiently 

small and that p < n/(n − 2). In our result we lift all these restrictions and obtain that 

minimizers exist in any dimension and for all values of λ > 0 and p ∈ [1, ∞), thereby 

completely answering the conjecture of Buttazzo, Carlier and Laborde. Precisely, we 

prove the following theorem:

Theorem 1.1 (Existence). For any λ > 0 and p ∈ [1, ∞), there exists a minimizing pair 

(E, F ) to the problem (1.1).

The proof of Theorem 1.1 is based on tools developed in the context of constrained 

geometric variational problems on all of space for which symmetrization principles cannot 
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rule out loss of volume at infinity for a minimizing sequence. First, for a minimizing 

sequence {Em, Fm}, the nucleation lemma of Almgren [2, VI.13] yields a finite number of 

bounded “chunks” which contain most of the volume. Then, classical density arguments 

for constrained perimeter minimizers allow one to argue that the minimizing sequence 

is essentially confined to finitely many (potentially diverging) balls on which there is no 

volume loss, at which point lower-semicontinuity of the energy yields the existence of a 

minimizing pair.

Nonlocal isoperimetric problems are well-studied and consist of minimizing the 

perimeter functional with some additional nonlocal term that precludes coalescence of 

sets. The problem (1.1) has several interesting mathematical features and exhibits both 

similarities and differences to other nonlocal isoperimetric models. The behavior of (1.1)

is driven by the competition between the perimeter term and the Wasserstein term. There 

is an inherent frustration between the two, due the fact that while there exists sequences 

{(Em, Fm)} of admissible sets to (1.1) such that Wp(Em, Fm) → 0, any such sequence 

necessarily has perimeters approaching infinity, cf. Lemma 2.8. However, a crucial fea-

ture is that the construction of such a sequence can be achieved within a bounded set. 

This is one reason why we are able to prove the existence of minimizers in all parameter 

regimes, which does not hold for some other examples of perimeter energies perturbed 

by a nonlocal term. As we recall presently, the celebrated liquid drop model of Gamow 

displays non-existence phenomena in certain parameter regimes.

A classical example of a nonlocal isoperimetric problem is the liquid drop model of 

Gamow (see [14]),

inf

⎧

⎨

⎩

P (E) +

∫

E

∫

E

|x − y|−α dxdy : |E| = M

⎫

⎬

⎭

,

where the nonlocal term is given by Riesz-type interactions. Here the two terms present 

in the energy functional (perimeter and nonlocal interactions) are in direct competition, 

as in (1.1). The surface energy is minimized by a ball whereas the repulsive term prefers 

to disperse the mass into vanishing components diverging infinitely apart. The parameter 

of the problem, that is M , sets a length scale between these competing forces (see [9] for 

a review).

There are two major differences between the problem (1.1) and the aforementioned 

one:

• The nonlocal isoperimetric problems considered in the literature involve the mini-

mization of functionals over single sets of finite perimeter with a volume constraint. 

The energy functional in (1.1), on the other hand, is minimized over a pair of disjoint 

sets of finite perimeter of equal volume. A similar phenomenon appears in ternary 

systems (involving both interfacial energy and nonlocal pairwise interactions) with 

three different phases, where two of which interact via long-range Riesz-type poten-

tials (see [4]).
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• Perhaps the most important distinction between (1.1) and the nonlocal isoperimetric 

problems studied in the literature is that in our case a minimizing sequence for the 

repulsive nonlocal term (the Wasserstein distance) does not necessarily consist of 

vanishing components that are diverging away to infinity (cf. [1,16]). Rather, in 

some sense, it prefers oscillations reminiscent of nonexistence of minimizers in shape 

optimization problems via nonlocal attractive-repulsive interactions in models of 

swarming [6,12].

An important manifestation of these differences is that, as shown by Knüpfer and Mura-

tov [15], in Gamow’s model minimizers fail to exist for values of the mass constraint that 

are larger than a critical value of M and for α ∈ (0, 2) (see also [18,10] for the physically 

relevant case of n = 3, α = 1, and [13] for a newer proof in the general case). This is in 

striking contrast with our main result for (1.1).

Let us briefly discuss some of the mathematical literature related to (1.1), as it arises 

in various applications. First, geometric variational problems with a Wasserstein term 

are useful in the modelling of bilayer membranes. In [22], Peletier and Röger derived the 

energy

P (E) + ε−2W1(Ln E, Ln F ) for E, F ⊂ R
n, |E ∩ F | = 0, |E| = |F | = ε, (1.2)

as a simplified model for lipid bilayer membranes. Here the sets E and F represent the 

densities of the hydrophobic tails and hydrophilic heads, respectively, of the two part lipid 

molecules. The perimeter term signifies an interfacial energy arising from hydrophobic 

effects, while the Wasserstein term is a weak remainder of the bonding between the 

head and tail particles. The authors in [19,22] considered the asymptotic expansion as 

ε → 0 of the energy in R
2 and R

3 and identified a limiting energy concentrated on 

a codimension one set. The competition described earlier between the two terms in 

the energy drives the system toward partially localized structures that are thin in one 

direction (∼ ε) and extended in the remaining directions. Since (1.2) is equivalent to (1.1)

up to rescaling and choosing the correct λ = λ(ε), our existence theorem applies to (1.2). 

Nonlocal isoperimetric problems (mostly related to models of diblock copolymers) where 

the perimeter functional is perturbed by a nonlocal term involving the 2-Wasserstein 

distance have also appeared elsewhere in the literature (cf. [5,23]).

In a completely different line of research, in the recent article [17], Liu, Pego, and 

Slepčev study incompressible flows between equal volume shapes, as critical points for 

action, given by kinetic energy along transport paths that are constrained to be char-

acteristic function densities. Formally, viewing the space of equal volume shapes as an 

infinite dimensional “manifold”, the critical points for action are geodesics – they verify 

incompressible Euler equations for an inviscid potential flow with zero pressure, and zero 

surface tension along free boundaries. The authors in [17] find that, in particular, locally 

minimizing action exhibits an instability associated with microdroplet formation. They 

show that any two shapes of equal volume can be approximately connected by what 
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they refer to as an “Euler spray”, a countable superposition of ellipsoidal geodesics. Fur-

thermore, associated with the aforementioned instability, the infimum of action, which 

is equal to the squared 2-Wasserstein distance, is not attained.

Unlike [17], we do not focus on paths joining shapes – investigating the role of sur-

face tension in alleviating the microdroplet instability alluded to above is an interesting 

research direction that we hope to pursue elsewhere. For now we simply note that in 

the absence of the perimeter regularization in (1.1), minimizing sequences disintegrate 

into tiny “microdroplets”, driving the minimum energy to zero, a form of microdroplet 

instability (see Lemma 2.8). We believe our technical contributions precluding the loss of 

compactness via microdroplet formation will be useful in studying the effect of including 

surface tension in [17].

Finally, we mention some future directions and questions that remain regarding (1.1). 

While the one-dimensional calculations in [7, Example 4.4] determine the minimizers 

depending on λ explicitly, the characterization of minimizers for any λ > 0 in higher 

dimensions remains an open problem.

Shortly after submission of the present article, Candau-Tilh and Goldman uploaded 

a preprint on arXiv which studies the same minimization problem (see [8]). They ob-

tain the existence of minimizers via an alternative argument. They also characterize 

global minimizers in the small λ regime, partially answering a question left open in our 

paper.

2. Notation and preliminaries

We introduce some notation that we will use throughout the paper. Let B(x, r) denote 

the open ball in Rn centered at x with radius r, and let ωn := |B(0, 1)|. For any Lebesgue 

measurable set E ⊂ R
n, |E| is the Lebesgue measure of E. Finally, we use uppercase Cn, 

Cp, and Cn,p to refer to constants that depend on one or both of the spatial dimension n

and p ∈ [1, ∞). The values of these constants may change from line to line. An exception 

to this convention is Lemma 2.1, so we denote the dimensional constant appearing there 

by the lowercase c(n).

We work within the setting of sets of finite perimeter in Rn (see e.g. [20]). Given a 

Lebesgue measurable set E ⊂ R
n we use the perimeter functional in the sense of De 

Giorgi, defined by

P (E) := sup

⎧

⎨

⎩

∫

E

div V (x) dx : V ∈ C1
c (Rn; R

n), |V | � 1

⎫

⎬

⎭

.

This notion of perimeter possesses properties such as lower-semicontinuity under L1
loc-

convergence, which is immediate from the definition, and compactness.

In the sequel, we will need the following nucleation lemma, due to Almgren [2, VI.13]

and quoted from [20, Lemma 29.10].
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Lemma 2.1 (Nucleation). For every n � 2, there exists a positive constant c(n) with the 

following property. If E is of finite perimeter, 0 < |E| < ∞, and

ε � min

{

|E|,
P (E)

2nc(n)

}

,

then there exists a finite family of points xi ⊂ R
n, 1 � i � I such that

∣

∣

∣

∣

∣

∣

E \
⋃

1�i�I

B(xi, 2)

∣

∣

∣

∣

∣

∣

< ε,

|E ∩ B(xi, 1)| �

(

c(n)
ε

P (E)

)n

. (2.1)

Moreover, |xi − xi′ | > 2 for every i �= i′, and

I < |E|

(

P (E)

c(n)ε

)n

. (2.2)

Remark 2.2 (Nucleation/compactness). We will often employ the nucleation lemma, in 

particular the conclusion (2.1), in conjunction with the compactness theorem for sets 

of finite perimeter (cf. for example [20, Corollary 12.27]) to obtain a positive measure 

subsequential L1
loc-limit of a suitable sequence {Em}. Precisely, if {Em} is a sequence of 

sets of finite perimeter satisfying

0 < ε := inf
m

min

{

|Em|,
P (Em)

2nc(n)

}

, sup
m

P (Em) < ∞,

then, up to extraction of a non-relabeled subsequence, there exists a non-empty set E

and sequence {xm} ⊂ R
n such that (Em − xm) 

loc
→ E and

|E ∩ B(0, 1)| �

(

c(n)
ε

sup P (Em)

)n

> 0. (2.3)

Here the local convergence for sets is the strong L1
loc convergence of the correspond-

ing characteristic functions. We remark that this compactness property has also been 

obtained by Frank and Lieb in [11] using different arguments.

The next lemma is an amalgamation of several standard arguments [20, Lemmas 17.21 

and 17.9]. It allows for comparison of the energies of a minimizing sequence against local 

variations which do not necessarily preserve the volume constraint, cf. (3.6), which is 

useful in the derivation of density estimates for example. For convenience we include the 

proof of this lemma in the appendix.
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Lemma 2.3 (Volume-fixing variations along a sequence). Let E be a set of finite perimeter 

and A be an open set such that Hn−1(∂∗E ∩ A) > 0. Suppose also that {Em} satisfy

sup P (Em; A) � M < ∞

and Em
loc
→ E in Rn. Then there exists σ0 = σ0(E, A, M) > 0 and C0 = C0(E, A, M) <

∞ such that for every σ ∈ (−σ0, σ0) and large enough m there exist sets of finite perime-

ter Gm with Gm	Em ⊂⊂ A and

|Gm ∩ A| = |Em ∩ A| + σ, (2.4)

|Gm	Em| � C0|σ|, and |P (Gm; A) − P (Em; A)| � C0|σ|. (2.5)

We turn to recalling notions from optimal transport that we use throughout the paper 

(see [3,24–26] for further details). The family of finite, positive Borel measures on Rn

is denoted by M+(Rn). We work with this class instead of the usual space of Borel 

probability measures since it will sometimes be useful to have a notion of transport 

between measures of equal mass other than 1; this of course entails no significant change 

in the theory. Given μ, ν ∈ M+(Rn) with μ(Rn) = ν(Rn), we let Π(μ, ν) be the set of 

all couplings between μ and ν:

Π(μ, ν) := {γ ∈ M+(Rn × R
n) : (π1)#γ = μ, (π2)#γ = ν} ,

where # is the push-forward operation, and π1, π2 respectively denote projections onto 

the first and second copies of Rn. A transport map from μ to ν is a map T : R
n → R

n

such that T#μ = ν. Any such T induces a coupling γ via the relation γ = (Id × T )#μ. 

When μ = Ln E and ν = Ln F , we will refer to T as transporting E to F .

Kantorovich’s problem with cost c(x, y) for measures μ, ν of equal total mass is

Kc(μ, ν) = inf

⎧

⎨

⎩

∫

Rn×Rn

c(x, y) dγ(x, y) : γ ∈ Π(μ, ν)

⎫

⎬

⎭

.

Since we are interested in the case where μ and ν are the restrictions of Lebesgue measure 

to two subsets of Rn and the cost is

cp(x, y) := |x − y|p,

the existence of a solution to Kantorovich’s problem in this instance is relevant. For 

stronger versions of this theorem and more comprehensive discussions of the vast mathe-

matical literature on optimal transport, we refer the reader to the monographs mentioned 

above and the references therein.
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Theorem 2.4 (Existence of an optimal transport map). Let p ∈ [1, ∞), and suppose E and 

F are Lebesgue measurable sets with |E| = |F | > 0. Then there exists a map Φ: R
n →

R
n, called an optimal transport map, such that Φ#(Ln E) = Ln F and

∫

E

|x − Φ(x)|p dx = Kcp
(Ln E, Ln F ).

Using optimal transport theory, one may define a distance between finite Lebesgue 

measure sets. This notion and more general ones involving mutually singular measures 

were analyzed in [7].

Definition 1. For positive Lebesgue measure sets E and F with equal measure, let

Wp(E, F ) := Kcp
(Ln E, Ln F )

1
p . (2.6)

Also, we set

Wp(E) := inf{Wp(E, F ) : |F | = |E|, |F ∩ E| = 0},

with the convention that Wp(E) = 0 if |E| = 0.

When Ln E, Ln F are in the space of Borel probability measures with finite pth

moments Pp(Rn), the definition (2.6) coincides with the much-studied p-Wasserstein 

distance between two disjoint sets, hence the duplicate notation. The rest of the prelim-

inaries are dedicated to the properties of Wp necessary for our analysis.

Lemma 2.5 (Properties of Wp). Let E ⊂ R
n be Lebesgue measurable.

(i) (Monotonicity) If E ⊂ F , where F is Lebesgue measurable, then Wp(E) � Wp(F ).

(ii) (Positivity) If |E| > 0, then Wp(E) > 0.

(iii) (Scaling) For any r � 0,

Wp(rE) = r1+ n
p Wp(E). (2.7)

(iv) (Lq-bound) There exists Cn such that

Wp(E) � Cn|E|
1
p

+ 1
n ;

(cf. [27, Equation 4.2] for the same statement when E is bounded).

Proof. Items (i) and (iii) follow immediately from the definition of Wp. By (i), it suffices 

to prove (ii) in the case that |E| > 0 and E is bounded.
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Suppose for a contradiction that Fm is such that Kcp
(Ln E, Ln Fm) → 0. In 

this case, E and Fm have finite pth moments, so by the properties of the p-Wasserstein 

distance, Wp(E, Fm) → 0 implies that Ln Fm
∗

⇀ Ln E (see for example [24, Theorem 

5.11]). But this is incompatible with |E ∩ Fm| = 0 and |E| = |Fm| > 0, so we have a 

contradiction.

For (iv), by the scaling (2.7), it is enough to prove the claim when |E| = 1. Divide 

R
n into disjoint cubes Qj of volume 2. For each j, since |Qj| = 2 and |E ∩ Qj | � 1, we 

can find Fj ⊂ Qj such that |Fj | = |Qj ∩ E| and |Fj ∩ E| = 0. Let Tj transport E ∩ Qj

onto Fj , and set F =
⋃

j Fj . Then it is easy to see that the map T defined by

T (x) = Tj(x) for x ∈ E ∩ Qj

transports E onto F and satisfies |x − T (x)| � diam (Qj) for x ∈ E ∩ Qj . Thus

Wp(E) �

⎛

⎝

∫

E

|x − T (x)|p dx

⎞

⎠

1
p

� Cn,

since diam(Qj) =: Cn, independent of j, and |E| = 1. The claim follows. �

Proposition 2.6 (Continuity of Wp with respect to L1-convergence). There exists Cn,p

such that for any |E|, |Ẽ|,

∣

∣Wp
p (Ẽ) − Wp

p (E)
∣

∣ � Cn,p max{|E|
p

n , |Ẽ|
p

n }|E	Ẽ| (2.8)

and

∣

∣Wp(Ẽ) − Wp(E)
∣

∣ � Cn,p max{W1−p
p (E), W1−p

p (Ẽ)} max{|E|
p

n , |Ẽ|
p

n }|E	Ẽ|. (2.9)

Remark 2.7. When E and F are both bounded with unit measure, Proposition 2.6 is 

contained in [7, Lemma 4.5].

Proof of Proposition 2.6. First we demonstrate how (2.9) follows from (2.8). By applying 

the mean value theorem to the function t 
→ t1/p, we deduce that

∣

∣Wp(Ẽ) − Wp(E)
∣

∣ �
1

p
max{W1−p

p (E), W1−p
p (Ẽ)}

∣

∣Wp
p (Ẽ) − Wp

p (E)
∣

∣ .

The bound (2.9) follows immediately from this equation and (2.8).

It remains to prove (2.8). Without loss of generality,

Wp
p (Ẽ) � Wp

p (E). (2.10)

We may also assume that
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|Ẽ| = 1; (2.11)

the full case then follows from rescaling. Fix any F with |F | = |E| and |F ∩ E| = 0. If 

we can show that

Wp
p (Ẽ) − W p

p (E, F ) � Cn,p max{|E|
p

n , 1}|E	Ẽ|, (2.12)

then, in light of (2.10), taking the infimum over F disjoint from E gives (2.8) when 

|Ẽ| = 1.

To show (2.12) under the assumptions (2.10) and (2.11), first consider the case that

|E| � 2.

Then since |Ẽ| = 1, we have |E	Ẽ| � 1, so that

max{|E|
p

n , 1}|E	Ẽ| � 2
p

n . (2.13)

In addition,

Wp
p (Ẽ) − W p

p (E, F ) � Wp
p (Ẽ) � Cn,p,

which together with (2.13) gives (2.12) after suitably modifying Cn,p. For the rest of the 

proof of (2.12), we therefore assume that

|E| � 2. (2.14)

Let Φ be an optimal transport map from E to F , which exists by Theorem 2.4. The 

idea is to modify Φ to create a transport map Φ̃ for Ẽ (to a set of the appropriate 

measure), which allows for comparison between Wp
p (Ẽ) and W p

p (E, F ). When x ∈ E ∩ Ẽ

and Φ(x) /∈ Ẽ, we can define Φ̃ simply by using Φ:

Φ̃(x) = Φ(x) if x ∈ Ẽ ∩ E ∩ Φ−1(F ∩ Ẽc). (2.15)

For the rest of the points in Ẽ, we must make a new definition. We partition Rn into 

cubes Qj of volume 4. Since |Qj \ (Ẽ ∪ F )| � 1 and |Ẽ| = 1, there exist measurable sets 

Dj ⊂ Qj such that

Dj ∩ Ẽ = ∅ = Dj ∩ F and |Dj | = |Qj ∩ Ẽ ∩ (Ec ∪ Φ−1(F ∩ Ẽ))| � 1.

We may obtain optimal transport maps Φj from Qj ∩ Ẽ ∩ (Ec ∪ Φ−1(F ∩ Ẽ)) to Dj and 

define

Φ̃(x) = Φj(x) if x ∈ Qj ∩ Ẽ ∩ (Ec ∪ Φ−1(F ∩ Ẽ)).
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Before estimating the energy difference, we note that since Φ is a transport map and 

F ⊂ Ec,

|Ẽ ∩ Φ−1(F ∩ Ẽ)| � |Φ−1(Ẽ ∩ F )| = |Ẽ ∩ F | � |Ẽ ∩ Ec|. (2.16)

Then

Wp
p (Ẽ) − W p

p (E, F ) �

∫

Ẽ

|x − Φ̃(x)|p dx −

∫

E

|x − Φ(x)|p dx

�
∑

j

∫

Qj∩Ẽ∩(Ec∪Φ−1(F ∩Ẽ))

|x − Φj(x)|p dx

�
∑

j

diam (Qj)p(|Qj ∩ Ẽ ∩ Ec| + |Qj ∩ Ẽ ∩ Φ−1(F ∩ Ẽ)|)

= diam (Qj)p(|Ẽ ∩ Ec| + |Ẽ ∩ Φ−1(F ∩ Ẽ)|)

(2.16)

� 2 diam (Qj)p|Ẽ	E|. (2.17)

Since 1 � max{|E|
p

n , 1} � 2
p

n , (2.17) implies (2.12). The proof is complete. �

Lemma 2.8 (Non-existence of minimizers for Wp). There exists a sequence {(Em, Fm)}

such that |Em ∩ Fm| = 0, |Em| = |Fm| = 1, and

Wp(Em, Fm) → 0.

Furthermore, for any sequence satisfying those three properties,

P (Em), P (Fm) → ∞. (2.18)

Proof. We omit a full proof of the construction of such a sequence, which is straightfor-

ward. There are many ansatzes one could use; for example, Em could be a single thin, 

arbitrarily long cylinder, and Fm a suitable tubular neighborhood. Alternatively, Em

and Fm could be suitably many disjoint arbitrarily small balls and corresponding annuli 

around them. The latter example may be viewed as an analogue of the microdroplet 

instability discovered in [17] in our static setting.

To prove (2.18), assume for contradiction that Wp(Em, Fm) → 0 but lim sup P (Em) <

∞. By Remark 2.2, the uniform perimeter bound implies that, up to translations which 

we ignore, there exists a set E with |E ∩ B(0, 1)| > 0 and Em
loc
→ E. Therefore, Em ∩

B(0, 1) → E ∩ B(0, 1), and so by the L1-continuity of Wp,

0 < Wp(E ∩ B(0, 1)) = lim inf
m→∞

Wp(Em ∩ B(0, 1)) � lim inf
m→∞

Wp(Em, Fm) = 0.

We have thus arrived at a contradiction. The proof that P (Fm) diverges is the same. �
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Remark 2.9. In their paper [8], Candau-Tilh and Goldman obtain the following interpo-

lation inequality

Wp(E, F )P (E) � C(n)|E|1+ 1
p . (2.19)

As a consequence of this inequality one can obtain (2.18) in Lemma 2.8. Here we provide 

an alternative proof of this interpolation inequality which effectively quantifies our proof 

of (2.18).

Proof of (2.19). We first observe that there exists Cn > 0 such that if |E ∩ Br| �

3ωnrn/4, then

Wp(E ∩ Br) � Cnr1+ n
p . (2.20)

This is due to the fact that at least ωnrn/4 of the mass of E ∩ Br is contained in B3r/4

and must be transported outside Br. Let |E| = |F | and |E ∩ F | = 0 and consider any 

Lebesgue point x ∈ E(1). By the continuity of r → |E ∩ Br(x)|, the fact that x ∈ E(1), 

and the intermediate value theorem, there exists

rx �

(

4|E|

3ωn

)
1
n

(2.21)

such that |E ∩ Brx
(x)| = 3ωnrn

x/4. By (2.21), we can apply the Besicovitch covering 

theorem to the family of closed balls F = {Brx
: x ∈ E(1)}, to obtain subfamilies F1, 

. . . , Fξ(n), each of which consists of disjoint balls, such that

E(1) ⊂

ξ(n)
⋃

i=1

⋃

Brx ∈Fi

Brx
.

By the relative isoperimetric inequality, since |E ∩ Brx
| = 3ωnrn

x/4, we have for some cn

P (E; Brx
) � cnrn−1

x ∀x ∈ E(1). (2.22)

Also, with Φ denoting the optimal transport map from E to F , we may use the obser-

vation (2.20) to see that

Wp(E ∩ Brx
, Φ(E ∩ Brx

)) � Wp(E ∩ Brx
(x)) � Cnr1+ n

p . (2.23)

Finally, combining (2.22)-(2.23) with Hölder’s inequality, we may estimate
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Wp(E, F )P (E) � ξ(n)−1− 1
p

⎛

⎜

⎝

ξ(n)
∑

i=1

∑

Brx ∈Fi

∫

E∩Brx

|z − Φ(z)|p dz

⎞

⎟

⎠

1
p

×

⎛

⎝

ξ(n)
∑

i=1

∑

Brx ∈Fi

P (E; Brx
)

⎞

⎠

� ξ(n)−2

⎡

⎢

⎣

⎛

⎝

ξ(n)
∑

i=1

∑

Brx ∈Fi

Cp
nrp+n

x

⎞

⎠

1
p+1
⎛

⎝

ξ(n)
∑

i=1

∑

Brx ∈Fi

cnrn−1
x

⎞

⎠

p

p+1

⎤

⎥

⎦

p+1
p

�
Cncn

ξ(n)2

⎛

⎝

ξ(n)
∑

i=1

∑

Brx ∈Fi

r
p+n

p+1
x r

p(n−1)
p+1

x

⎞

⎠

p+1
p

=
Cncn

ξ(n)2

⎛

⎝

ξ(n)
∑

i=1

∑

Brx ∈Fi

rn
x

⎞

⎠

p+1
p

=
Cncn

ξ(n)2

⎛

⎝

ξ(n)
∑

i=1

∑

Brx ∈Fi

4|E ∩ Brx
(x)|

3ωn

⎞

⎠

p+1
p

� C̃n|E|1+ 1
p ,

where in the last equality we have used the fact that |E ∩ Brx
| = 3ωnrn

x/4. �

The last preliminary result is drawn from [7] and [27].

Theorem 2.10. Let E be a bounded Lebesgue measurable set.

(i) [7, Theorem 3.21] There exists a Lebesgue measurable set F with |F | = |E| and 

|E ∩ F | = 0 and an optimal transport map Φ from E to F such that

Wp(E, F ) = Wp(E).

(ii) [27, Lemma 4.3] There exists Cn such that for Ln-a.e. x ∈ E,

|x − Φ(x)| � Cn|E|
1
n .

Remark 2.11 (Additivity of Wp
p ). Arguing directly from items (i) and (ii) of the above 

theorem, it follows that if E1, . . . , EK are bounded sets such that

dist(Ek, Ek′) � 2Cn max
1�j�K

|Ej |
1
n for k �= k′,
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then the sets Fk minimizing Wp(Ek, Fk) are pairwise disjoint and

W p
p

(

⋃

k

Ek,
⋃

k

Fk

)

= Wp
p

(

K
⋃

k=1

Ek

)

=

K
∑

k=1

Wp
p (Ek) =

K
∑

k=1

W p
p (Ek, Fk).

3. Proof of Theorem 1.1

We write the main functional as

G(E) := P (E) + λWp(E), (3.1)

where Wp is given as in Definition 1.

Proof of Theorem 1.1. We prove this theorem in multiple steps.

Step one: First, we extract a nontrivial set E0 which is the limit of sets Em corresponding 

to a minimizing sequence {Em}m with

P (Em) + λWp(Em) � inf G +
1

m
. (3.2)

From this inequality we have the immediate upper bound

P (Em) � 1 + inf G (3.3)

on the perimeters. Since in addition |Em| = 1 for all m, we may then apply the nucleation 

lemma and compactness as in Remark 2.2. Therefore, up to a subsequence which we do 

not relabel and translations which, without loss of generality, are trivial, there exists a 

set E0 with

0
(2.3)
< |E0| � 1,

Em
loc
→ E0 in R

n.

Step two: Here we identify δ, α > 0 such that if Ẽm is any set with |Em	Ẽm| � δ, then

∣

∣Wp(Em) − Wp(Ẽm)
∣

∣ � Cn,pα1−p|Em	Ẽm|. (3.4)

We first observe that by the uniform perimeter bound and Lemma 2.8 we can consider

α := inf
m

Wp(Em) > 0. (3.5)

Due to the continuity of Wp with respect to L1-convergence from (2.8), we may choose 

0 < δ � 1 small enough so that if |Em	Ẽm| � δ,
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Wp
p (Ẽm) � Wp

p (Em) − Cn,p max{|Em|
p

n , |Ẽm|
p

n }|Em	Ẽm|

� αp − Cn,p(1 + δ)
p

n δ

�
αp

2p
.

Then since Wp(Em) and Wp(Ẽm) are both bounded from below by α/2, (2.9) gives

∣

∣Wp(Ẽm) − Wp(Em)
∣

∣

� Cn,p max{W1−p
p (Em), W1−p

p (Ẽm)} max{|Em|
p

n , |Ẽm|
p

n }|Em	Ẽm|

� Cn,pα1−p2p−1(1 + δ)
p

n |Em	Ẽm|.

Upon recalling that δ � 1 and modifying Cn,p, we have shown (3.4).

Step three: In this step, we utilize (3.4) and Lemma 2.3, the volume-fixing variations 

lemma, to show that there exists r0 and Λ > 0 such that for all m large enough, Em

satisfies the inequality

P (Em) � P (Ẽm) + Λ|Em	Ẽm| +
1

m
if Em	Ẽm ⊂⊂ B(x, r), 0 < r < r0. (3.6)

Fix x and consider Ẽm with Em	Ẽm ⊂ B(x, r), with r < r0 to be determined shortly. 

Since |Ẽm| is not necessarily 1, we proceed using Lemma 2.3. Let y1, y2 ∈ ∂∗(E0) and 

η > 0 be such that

Hn−1(∂∗(E0) ∩ B(yi, η)) > 0

for i = 1, 2 and

B(y1, η) ∩ B(y2, η) = ∅.

We apply the volume-fixing variations lemma with the choice of A = B(yi, η), yielding σ0

and C0 such that for any |σ| < σ0 and i = 1, 2, there exists Gi
m with Gi

m	Em ⊂⊂ B(yi, η)

and

|Gm ∩ B(yi, η)| = |Em ∩ B(yi, η)| + σ,

|Gm	Em| � C0|σ|, and |P (Gm; B(yi, η)) − P (Em; B(yi, η))| � C0|σ|. (3.7)

Up to further decreasing σ0, we may assume that

max{1, C0}σ0 < δ/2. (3.8)

Choose r0 such that
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ωnrn
0 < σ0 (3.9)

and for every z ∈ R
n, B(z, r0) is disjoint from at least one of B(yi, η). Therefore, for at 

least one of i = 1, 2,

B(x, r) ∩ B(yi, η) = ∅;

let us assume without loss of generality that it is y1. We introduce the sets

Em = (Em ∩ B(x, r)c ∩ B(y1, η)c) ∪ ((G1
m ∩ B(y1, η)) ∪ (Ẽm ∩ B(x, r)), (3.10)

where G1
m is chosen according to Lemma 2.3 with

σm := |Em ∩ B(x, r)| − |Ẽm ∩ B(x, r)| ∈ (−ωnrn, ωnrn), (3.11)

so that

|G1
m ∩ B(y1, η)| = |Em ∩ B(y1, η)| + |Em ∩ B(x, r)| − |Ẽm ∩ B(x, r)|.

This ensures that

|Em| = |Em| − |Em ∩ B(x, r)| − |Em ∩ B(y1, η)| + |G1
m ∩ B(y1, η)| + |Ẽm ∩ B(x, r)|

= |Em| − |Em ∩ B(x, r)| − |Em ∩ B(y1, η)| + |Em ∩ B(y1, η)| + |Em ∩ B(x, r)|

− |Ẽm ∩ B(x, r)| + |Ẽm ∩ B(x, r)|

= |Em|

= 1.

By the triangle inequality and the formula σm = |Em ∩ B(x, r)| − |Ẽm ∩ B(x, r)|, the 

bound

|σm| � |Em	Ẽm| (3.12)

holds as well. Furthermore, with the aid of (3.7)–(3.9), we may estimate |Em	Em| by

|Em	Em| = |G1
m	Em| + |Ẽm	Em| (3.13)

� C0|σm| + ωnrn

< δ/2 + δ/2.

The previous inequality implies that (3.4) holds for Em and Em, in which case

∣

∣Wp(Em) − Wm(Em)
∣

∣ � Cn,pα1−p|Em	Em|.
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Combining (3.13) and the fact that |σm| � |Em	Ẽm|, we have

∣

∣Wp(Em) − Wm(Em)
∣

∣ � Cn,pα1−p(C0 + 1)|Ẽm	Em|. (3.14)

The last preliminary estimate before deriving (3.6) is a consequence of (3.7) and (3.11):

|P (Em; B(y1, η)) − P (Em; B(y1, η))| � C0|σm| � C0|Ẽm	Em|. (3.15)

Finally, since |Em| = 1, we may test (3.2) with Em and use (3.10), (3.14), and (3.15) to 

obtain

P (Em) � P (Em) + λWp(Em) − λWp(Em) +
1

m

= P (Ẽm; B(y1, η)c) + P (Em; B(y1, η)) − P (Em; B(y1, η)) + P (Ẽm; B(y1, η))

+ λWp(Em) − λWp(Em) +
1

m

� P (Ẽm) + C0|Ẽm	Em| + λCn,pα1−p(C0 + 1)|Ẽm	Em| +
1

m
.

Taking Λ := C0 + λCn,pα1−p(C0 + 1), we have shown (3.6).

Step four: Here we use (3.6) to prove that there exist Cn, r1 > 0 such that any positive 

measure set E which is the L1
loc-limit of translates Em −ym for a sequence {ym} satisfies:

|E ∩ B(x, r)| � Cnrn ∀x ∈ ∂∗E, r < r1. (3.16)

Since |E| � 1, such a lower density estimate implies that ∂∗E and E are bounded. For 

the proof of (3.16), to simplify the notation, assume that ym = 0 for all m.

We set

um(r) = |Em ∩ B(x, r)|, u(r) = |E ∩ B(x, r)|.

The coarea formula implies that for almost every r,

u′
m(r) = Hn−1(Em ∩ ∂B(x, r)) and u′(r) = Hn−1(E ∩ ∂B(x, r)),

while the L1
loc-convergence of Em to E permits us to extract a subsequence such that

u′
m(r) → u′(r) for almost every r. (3.17)

Furthermore, except for a measure zero set of r values which can be made independent 

of m, we have the identities
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P (Em) = P (Em; B(x, r)) + P (Em; B(x, r)
c
), (3.18)

P (Em ∩ B(x, r)) = P (Em; B(x, r)) + Hn−1(Em ∩ ∂B(x, r)),

P (Em \ B(x, r)) = P (Em; B(x, r)
c
) + Hn−1(Em ∩ ∂B(x, r)),

and similarly for E. Therefore, for almost every r < r1, with r1 ∈ (0, r0) to be fixed 

shortly, testing (3.6) with Ẽm = Em \ B(x, r) yields

P (Em;B(x, r)) + P (Em; B(x, r)
c
)

= P (Em)

� P (Em \ B(x, r)) + Λ|Em ∩ B(x, r)| +
1

m

= P (Em; B(x, r)
c
) + Hn−1(Em ∩ ∂B(x, r)) + Λ|Em ∩ B(x, r)| +

1

m
.

We add Hn−1(Em ∩ ∂B(x, r)) − P (Em; B(x, r)
c
) to both sides, arriving at

P (Em; B(x, r)) + Hn−1(Em ∩ ∂B(x, r))

� 2Hn−1(Em ∩ ∂B(x, r)) + Λ|Em ∩ B(x, r)| +
1

m
.

The Euclidean isoperimetric inequality and (3.18) imply that for almost every r < r1,

nω
1
n
n um(r)

n−1
n = nω

1
n
n |Em ∩ B(x, r)|

n−1
n

� P (Em ∩ B(x, r))

= P (Em; B(x, r)) + Hn−1(Em ∩ ∂B(x, r))

� 2Hn−1(Em ∩ ∂B(x, r)) + Λ|Em ∩ B(x, r)| +
1

m

= 2u′
m(r) + Λum +

1

m
. (3.19)

With the goal of absorbing Λum into the left hand side, we note that

Λum �
nω

1
n
n um(r)

n−1
n

2
⇐⇒ um �

(

nω
1/n
n

2Λ

)n

.

Therefore, choosing r1 ∈ (0, r0) small enough so that

um � ωnrn
1 �

(

nω
1/n
n

2Λ

)n

,

we have for almost every r < r1
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Λum �
nω

1
n
n um(r)

n−1
n

2
.

Plugging this into the differential inequality (3.19) and passing to the limit m → ∞

using (3.17), we may write

nω
1
n
n u(r)

n−1
n

2
= lim

m→∞

nω
1
n
n um(r)

n−1
n

2

� lim
m→∞

2u′
m(r) +

1

m

= 2u′(r)

for almost every r < r1. The lower density estimate (3.16) is achieved by dividing by 

u
n−1

n integrating this inequality.

Step five: In this step, we obtain finitely many, bounded, limiting sets Ek and sequences 

{xk
m} such that Ek are L1

loc-limits of translates Em − xk
m and satisfy

∑

k

|Ek| = 1. (3.20)

To this end, apply the nucleation lemma again to Em with

ε0 = min

{

1,
1 + inf G

2nc(n)
, Cnrn

1

}

,

where Cn is the dimensional constant from the previous step, to locate points xi
m, 1 �

i � I(m) satisfying the conclusions of Lemma 2.1. Here we include Cnrn
1 in the definition 

of the constant ε0 as we would like to control the size of what is not contained in the 

balls obtained from the nucleation lemma. If the remainder is non-empty, its smallness 

will then lead to a contradiction with the lower density estimates.

The uniform bound (2.2) on I(m) in terms of P (Em), |Em|, and ε0 implies that by 

restricting to a further subsequence, we can find I ∈ N such that I(m) = I for each m. 

After passing to a further subsequence, we may safely assume that

lim
m→∞

|xi
m − xj

m| =: dij

exists for each pair (i, j) ∈ I × I, with infinity as a possible limit, too. Next, we define 

equivalence classes of {1, . . . , I} based on the relation

i ≡ j ⇐⇒ dij < ∞.

Let K � I be the number of these equivalence classes, which partition {1, . . . , I}. For 

each 1 � k � K and m ∈ N, let xk
m := x

i(k,m)
m be a point from the family of points 
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corresponding to Em such that i(k, m) is a representative of the k-th equivalence class. 

Recall that due to (2.1) and (3.3), Em − xk
m satisfies

|(Em − xk
m) ∩ B(0, 1)| �

(

c(n)
ε0

P (Em)

)n

�

(

c(n)
ε0

1 + inf G

)n

.

We can therefore find non-trivial sets of finite perimeter Ek such that

Em − xk
m

loc
→ Ek. (3.21)

Since the previous step implies that each Ek is bounded, there exists R0 such that

Ek ⊂⊂ B(0, R0) (3.22)

for each 1 � k � K. We may also take R0 to be large enough that

⋃

i∈{1,...,I} : i≡k

B(xi
m, 2) ⊂ B(xk

m, R0) (3.23)

for all m; in other words B(xk
m, R0) contains all the balls at the m-th stage with indices 

in the same equivalence class as k.

It remains to show that

K
∑

k=1

|Ek| = 1.

We first show that 
∑K

k=1 |Ek| � 1. If this were not the case, then

K
∑

k=1

|Ek ∩ B(0, R0)| > 1. (3.24)

Now for large m, the sets

Em ∩ B(xk
m, R0)

are pairwise disjoint since |xk
m − xk′

m| → ∞ if k �= k′. By (3.21) and (3.24), it follows that

K
∑

k=1

|Em ∩ B(xk
m, R0)| >

1

2

(

1 +
K
∑

k=1

|Ek ∩ B(0, R0)|

)

for large m, which is impossible since |Em| = 1. So

K
∑

k=1

|Ek| � 1.
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Assume now for a contradiction that

K
∑

k=1

|Ek| = 1 − δ

for some δ > 0. Since Ek ⊂⊂ B(0, R0 + 2) and Em ∩ B(xk
m, R0 + 2) are disjoint for large 

enough m, it must then be the case that

∣

∣

∣

∣

∣

Em \

(

⋃

k

B(xk
m, R0 + 2)

)∣

∣

∣

∣

∣

�
δ

2

for large enough m. At the same time, the nucleation lemma at the beginning of this 

step with ε0 � Cnrn
1 gave

∣

∣

∣

∣

∣

∣

Em \
⋃

1�i�I

B(xi
m, 2)

∣

∣

∣

∣

∣

∣

< ε0 � Cnrn
1 .

Together with the assumption (3.23) that 
⋃

i B(xi
m, 2) ⊂

⋃

k B(xk
m, R0), this yields

δ

2
�

∣

∣

∣

∣

∣

Em \

(

⋃

k

B(xk
m, R0 + 2)

)∣

∣

∣

∣

∣

< Cnrn
1 . (3.25)

Applying the nucleation lemma a final time to the sets Em \
(
⋃

k B(xk
m, R0 + 2)

)

, we 

obtain finitely many points yj
m fulfilling the conclusions of Lemma 2.1. We claim that it 

must be the case that

|yj
m − xk

m| → ∞. (3.26)

If lim supm→∞ |yj
m − xk

m| < ∞, then the uniform bound from below on |B(yj
m, 1) ∩ Em|

and the fact that yj
m /∈ B(xk

m, R0 + 1) would imply that Ek ∩ B(0, R0)c �= ∅. However, 

this contradicts (3.22). Next, by the compactness for sets of finite perimeter and the 

fourth step, we may find a measurable set E and R1 > 0 such that E ⊂⊂ B(0, R1), 

Em − y1
m

loc
→ E, and

|E| � Cnrn
1 . (3.27)

Since E is compactly supported, |Em ∩ B(y1
m, R1)| → |E|. But (3.26) implies that 

B(y1
m, R1) ⊂

(
⋃

k B(xk
m, R0 + 2)

)c
for large m, and hence

|E| = lim
m→∞

|Em ∩ B(y1
m, R1)|

� lim sup
m→∞

∣

∣

∣

∣

∣

Em \

(

⋃

k

B(xk
m, R0 + 2)

)∣

∣

∣

∣

∣
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(3.25)
< Cnrn

1 .

This upper bound is at odds with the lower bound (3.27), so we have derived a contra-

diction. Thus 
∑K

k=1 |Ek| = 1.

Step six: At last we can prove Theorem 1.1. Let us choose any K points z1, . . . , zK ∈ R
n

such that B(zk, R0 + Cn) are pairwise disjoint, where Cn is the dimensional constant 

from Theorem 2.10(ii). We claim that

K
⋃

k=1

Ek + zk

is a minimizer. The choice of radius R0 + Cn and Remark 2.11 ensure that the sets F k

defined by

Wp(Ek + zk) = Wp(Ek + zk, F k)

are pairwise disjoint and

Wp
p

(

K
⋃

k=1

Ek + zk

)

=

K
∑

k=1

Wp
p (Ek).

Appealing to the continuity result Proposition 2.6 gives

λWp
p

(

K
⋃

k=1

Ek + zk

)

= λ
K
∑

k=1

Wp
p (Ek)

= λ lim
m→∞

K
∑

k=1

Wp
p ((Em − xk

m) ∩ B(0, R0 + Cn))

� λ lim inf
m→∞

Wp
p (Em), (3.28)

where the last inequality depends on Remark 2.11, the additivity of Wp
p (which applies 

since the distance between the xk
m’s goes to infinity as m → ∞). Next, the inequality

K
∑

k=1

P (Ek + zk) =
K
∑

k=1

P (Ek; B(0, R0))

� lim inf
m→∞

K
∑

k=1

P (Em − xk
m; B(0, R0))

� lim inf
m→∞

P (Em) (3.29)
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is immediate from the lower-semicontinuity of perimeter under L1-convergence and the 

pairwise disjointness again. Summing (3.28) and (3.29) finishes the proof, since Em is a 

minimizing sequence and 
∣

∣

∣

⋃K
k=1 Ek + zk

∣

∣

∣
= 1. �

As a byproduct of our existence proof we obtain that the set E in a minimizing pair 

(E, F ) is a quasiminimizer of the perimeter in the following sense; hence, enjoys some 

regularity properties.

Corollary 3.1. For any minimizing pair (E, F ) to (1.1), the set E is a (Λ, r0)-perimeter 

minimizer in Rn. That is, there exists 0 � Λ < ∞ and r0 > 0 such that

P (E) � P (Ẽ) + Λ|E	Ẽ| if E	Ẽ ⊂⊂ B(x, r), 0 < r < r0.

Proof. The analogous inequality for the elements of the minimizing sequence {Em} was 

derived in (3.6) with an added factor of 1/m, and the same proof applies to the minimizer 

E. �

Remark 3.2 (Regularity of minimizers). The classical theory of (Λ, r0)-perimeter min-

imality implies that ∂∗E ∈ C1,γ for any γ ∈ (0, 1/2) and the Hausdorff dimension of 

∂E \∂∗E is at most n −8 (see e.g. [20, Theorem 26.3]). This regularity was also observed 

in [7, Theorem 4.6]. Also, by [7, Theorem 3.13], F is a set of finite perimeter.

Remark 3.3. Alternatively, one could attempt to demonstrate the existence of minimizers 

using the framework developed in [11]. This would require proving that the binding 

inequality

e(M) < e(M ′) + e(M − M ′)

holds for all 0 < M ′ < M , where e(M) = inf
{

P (E) + Wp(E) : |E| = M
}

.
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Appendix A. Proof of Lemma 2.3

The argument is a straightforward modification of the case where there is one set E

[20, Lemma 17.21], as opposed to a sequence.

Proof of Lemma 2.3. Since Hn−1(∂∗E ∩ A) > 0, we can find T ∈ C∞
c (A; Rn) with

γ :=

∫

E

div T dx =

∫

∂∗E

T · νE dHn−1 > 0.

By the L1
loc-convergence of Em to E, for m large enough, we have

γ

2
<

∫

Em

div T dx =

∫

∂∗Em

T · νEm
dHn−1 < 2γ. (A.1)

Let ϕt(x) : R
n × (−δ, δ) → R

n be a one parameter family of diffeomorphisms with initial 

velocity T . By the first variation formulae for perimeter and volume (see e.g. [20, Chapter 

17]), there exists δ0 > 0 such that for all |t| � δ0,

|P (ϕt(Em); A) − P (Em; A)| � 2|t|P (Em; A)‖∇T‖L∞ , (A.2)

|ϕt(Em) ∩ A| = |Em ∩ A| + t

∫

∂∗Em

T · νEm
dHn−1 + O(t2), (A.3)

where the decay rate in t in the second equality depends on T and is thus uniform in m. 

Also, by (A.1) and (A.3), |ϕt(Em) ∩ A| is strictly increasing on [−δ0, δ0] with

∣

∣ |ϕt(Em) ∩ A| − |ϕt′(Em) ∩ A|
∣

∣ �
γ

4
|t − t′| (A.4)

(after decreasing δ0 if necessary). Therefore, we have the inclusion

(

−
δ0γ

4
,

δ0γ

4

)

⊂
{

|ϕt(Em) ∩ A| − |Em ∩ A| : |t| � δ0

}

.

So for all |σ| < σ0 := δ0γ/4, there exists tm = tm(σ) ∈ (−δ0, δ0) such that

|ϕt(Em) ∩ A| = |Em ∩ A| + σ. (A.5)

By (A.4), it must be the case that

|tm| <
4σ

γ
. (A.6)

Then defining Gm = ϕtm
(Em), it follows from (A.5) and (A.2), (A.6) that
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|Gm ∩ A| = |Em ∩ A| + σ, |P (Gm; A) − P (Em; A)| � C0|σ|,

where C0 depends on M = sup P (Em; A), A, and E. The estimate

|Gm	Em| � C0|σ|

can be found in [20, Lemma 17.9] in the form

|ϕtm
(Em)	Em| � C(T ) |tm| P (Em; A).

Hence, the result is established. �
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