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1. Introduction

Comparing equal volume shapes, i.e., Lebesgue measurable sets £ and F' in R™ of
equal volume, is a ubiquitous task in numerous applications. From a mathematical
standpoint, by identifying shapes with probability measures via their normalized charac-
teristic functions, optimal transportation theory provides natural choices of metrics, the
p-Wasserstein distances, which metrize the weak convergence of probability measures on
compact spaces [24]. Indeed, length-minimizing Wasserstein geodesics between equal vol-
ume sets, known as displacement interpolants, offer a (length minimizing) path joining
the shapes being compared [21].

In this note we investigate the role of perimeter regularization in variational problems
involving the Wasserstein distance between equal volume sets. As we subsequently dis-
cuss, examples of this type of problem arise in different applications. Our principal goal
in this paper is to show that such perimeter-regularized variational problems, even when
posed on all of space, do not suffer a loss of compactness of minimizing sequences. In
order to focus on the technical essence in the simplest possible setting while capturing
the main difficulties, we consider the following problem:

inf {P(E) + AW, (L"LE, L"LF): E,F CR", |[ENF| =0, |E| = |F| = 1}. (1.1)

Here P(E) denotes the perimeter of E C R", W, denotes the p-Wasserstein distance on
the space of probability measures, and A > 0 is a constant. The parameter p belongs
to the interval [1,00), and A represents the strength of the Wasserstein term relative to
perimeter.

The problem (1.1) was recently analyzed by Buttazzo, Carlier and Laborde in [7],
in addition to more general minimization problems involving the minimal Wasserstein
distance between a measure y and measures singular with respect to u. In the context of
(1.1), the authors in [7] show, for any A > 0, the existence of minimizers when admissible
sets E and F are required to be subsets of a bounded domain €2. In two dimensions, they
prove the existence of minimizers for the problem (1.1) on all of R?, and conjectured that
it should hold in all dimensions. This whole-space result was extended by Xia and Zhou
[27] to higher dimensions but under the additional assumptions that A is sufficiently
small and that p < n/(n — 2). In our result we lift all these restrictions and obtain that
minimizers exist in any dimension and for all values of A > 0 and p € [1,00), thereby
completely answering the conjecture of Buttazzo, Carlier and Laborde. Precisely, we
prove the following theorem:

Theorem 1.1 (Ezistence). For any A > 0 and p € [1,00), there exists a minimizing pair
(E,F) to the problem (1.1).

The proof of Theorem 1.1 is based on tools developed in the context of constrained
geometric variational problems on all of space for which symmetrization principles cannot
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rule out loss of volume at infinity for a minimizing sequence. First, for a minimizing
sequence {E,,, Fy,, }, the nucleation lemma of Almgren [2, VI.13] yields a finite number of
bounded “chunks” which contain most of the volume. Then, classical density arguments
for constrained perimeter minimizers allow one to argue that the minimizing sequence
is essentially confined to finitely many (potentially diverging) balls on which there is no
volume loss, at which point lower-semicontinuity of the energy yields the existence of a
minimizing pair.

Nonlocal isoperimetric problems are well-studied and consist of minimizing the
perimeter functional with some additional nonlocal term that precludes coalescence of
sets. The problem (1.1) has several interesting mathematical features and exhibits both
similarities and differences to other nonlocal isoperimetric models. The behavior of (1.1)
is driven by the competition between the perimeter term and the Wasserstein term. There
is an inherent frustration between the two, due the fact that while there exists sequences
{(Em, Fin)} of admissible sets to (1.1) such that W,(E,,, F,,) — 0, any such sequence
necessarily has perimeters approaching infinity, cf. Lemma 2.8. However, a crucial fea-
ture is that the construction of such a sequence can be achieved within a bounded set.
This is one reason why we are able to prove the existence of minimizers in all parameter
regimes, which does not hold for some other examples of perimeter energies perturbed
by a nonlocal term. As we recall presently, the celebrated liquid drop model of Gamow
displays non-existence phenomena in certain parameter regimes.

A classical example of a nonlocal isoperimetric problem is the liquid drop model of
Gamow (see [14]),

inf P(E)+//|x—y|_adxdy: |E|=M 3,
EE

where the nonlocal term is given by Riesz-type interactions. Here the two terms present
in the energy functional (perimeter and nonlocal interactions) are in direct competition,
as in (1.1). The surface energy is minimized by a ball whereas the repulsive term prefers
to disperse the mass into vanishing components diverging infinitely apart. The parameter
of the problem, that is M, sets a length scale between these competing forces (see [9] for
a review).

There are two major differences between the problem (1.1) and the aforementioned
one:

e The nonlocal isoperimetric problems considered in the literature involve the mini-
mization of functionals over single sets of finite perimeter with a volume constraint.
The energy functional in (1.1), on the other hand, is minimized over a pair of disjoint
sets of finite perimeter of equal volume. A similar phenomenon appears in ternary
systems (involving both interfacial energy and nonlocal pairwise interactions) with
three different phases, where two of which interact via long-range Riesz-type poten-
tials (see [4]).
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e Perhaps the most important distinction between (1.1) and the nonlocal isoperimetric
problems studied in the literature is that in our case a minimizing sequence for the
repulsive nonlocal term (the Wasserstein distance) does not necessarily consist of
vanishing components that are diverging away to infinity (cf. [1,16]). Rather, in
some sense, it prefers oscillations reminiscent of nonexistence of minimizers in shape
optimization problems via nonlocal attractive-repulsive interactions in models of
swarming [6,12].

An important manifestation of these differences is that, as shown by Kniipfer and Mura-
tov [15], in Gamow’s model minimizers fail to exist for values of the mass constraint that
are larger than a critical value of M and for o € (0,2) (see also [18,10] for the physically
relevant case of n = 3, @ = 1, and [13] for a newer proof in the general case). This is in
striking contrast with our main result for (1.1).

Let us briefly discuss some of the mathematical literature related to (1.1), as it arises
in various applications. First, geometric variational problems with a Wasserstein term
are useful in the modelling of bilayer membranes. In [22], Peletier and Roger derived the
energy

P(E)+e W (L"LE,L"LF) for E,F CR" |[ENF|=0,|E|=|F|=¢ (1.2)

as a simplified model for lipid bilayer membranes. Here the sets ' and F represent the
densities of the hydrophobic tails and hydrophilic heads, respectively, of the two part lipid
molecules. The perimeter term signifies an interfacial energy arising from hydrophobic
effects, while the Wasserstein term is a weak remainder of the bonding between the
head and tail particles. The authors in [19,22] considered the asymptotic expansion as
e — 0 of the energy in R? and R? and identified a limiting energy concentrated on
a codimension one set. The competition described earlier between the two terms in
the energy drives the system toward partially localized structures that are thin in one
direction (~ ¢) and extended in the remaining directions. Since (1.2) is equivalent to (1.1)
up to rescaling and choosing the correct A = A(¢), our existence theorem applies to (1.2).
Nonlocal isoperimetric problems (mostly related to models of diblock copolymers) where
the perimeter functional is perturbed by a nonlocal term involving the 2-Wasserstein
distance have also appeared elsewhere in the literature (cf. [5,23]).

In a completely different line of research, in the recent article [17], Liu, Pego, and
Slepcev study incompressible flows between equal volume shapes, as critical points for
action, given by kinetic energy along transport paths that are constrained to be char-
acteristic function densities. Formally, viewing the space of equal volume shapes as an
infinite dimensional “manifold”, the critical points for action are geodesics — they verify
incompressible Euler equations for an inviscid potential flow with zero pressure, and zero
surface tension along free boundaries. The authors in [17] find that, in particular, locally
minimizing action exhibits an instability associated with microdroplet formation. They
show that any two shapes of equal volume can be approximately connected by what
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they refer to as an “Euler spray”, a countable superposition of ellipsoidal geodesics. Fur-
thermore, associated with the aforementioned instability, the infimum of action, which
is equal to the squared 2-Wasserstein distance, is not attained.

Unlike [17], we do not focus on paths joining shapes — investigating the role of sur-
face tension in alleviating the microdroplet instability alluded to above is an interesting
research direction that we hope to pursue elsewhere. For now we simply note that in
the absence of the perimeter regularization in (1.1), minimizing sequences disintegrate
into tiny “microdroplets”, driving the minimum energy to zero, a form of microdroplet
instability (see Lemma 2.8). We believe our technical contributions precluding the loss of
compactness via microdroplet formation will be useful in studying the effect of including
surface tension in [17].

Finally, we mention some future directions and questions that remain regarding (1.1).
While the one-dimensional calculations in [7, Example 4.4] determine the minimizers
depending on A explicitly, the characterization of minimizers for any A > 0 in higher
dimensions remains an open problem.

Shortly after submission of the present article, Candau-Tilh and Goldman uploaded
a preprint on arXiv which studies the same minimization problem (see [8]). They ob-
tain the existence of minimizers via an alternative argument. They also characterize
global minimizers in the small A\ regime, partially answering a question left open in our

paper.
2. Notation and preliminaries

We introduce some notation that we will use throughout the paper. Let B(x,r) denote
the open ball in R™ centered at & with radius r, and let w,, := |B(0, 1)|. For any Lebesgue
measurable set E C R”, |E| is the Lebesgue measure of E. Finally, we use uppercase C,,,
Cp, and C,, ;, to refer to constants that depend on one or both of the spatial dimension n
and p € [1,00). The values of these constants may change from line to line. An exception
to this convention is Lemma 2.1, so we denote the dimensional constant appearing there
by the lowercase c¢(n).

We work within the setting of sets of finite perimeter in R™ (see e.g. [20]). Given a
Lebesgue measurable set £ C R™ we use the perimeter functional in the sense of De
Giorgi, defined by

P(E) := sup /divV(:c) dz:V € CL(R™R"),|V| <1
E

This notion of perimeter possesses properties such as lower-semicontinuity under L{ -
convergence, which is immediate from the definition, and compactness.

In the sequel, we will need the following nucleation lemma, due to Almgren [2, VI.13]
and quoted from [20, Lemma 29.10].
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Lemma 2.1 (Nucleation). For every n > 2, there exists a positive constant c¢(n) with the
following property. If E is of finite perimeter, 0 < |E| < 0o, and

ool £}

then there exists a finite family of points x; C R™, 1 < i < I such that

E\ U B(z;,2)| < &,

1<i<T

|E N B(x;,1)| > <c(n)P(€E)> . (2.1)

Moreover, |x; — x| > 2 for every i # 1, and
) J

1<|E| (P(E))n. (2.2)

c(n)e

Remark 2.2 (Nucleation/compactness). We will often employ the nucleation lemma, in
particular the conclusion (2.1), in conjunction with the compactness theorem for sets
of finite perimeter (cf. for example [20, Corollary 12.27]) to obtain a positive measure

subsequential Ll

loc-limit of a suitable sequence {E,,}. Precisely, if {E,,} is a sequence of

sets of finite perimeter satisfying

P(Em)

0 < e:=inf min{|Em|7 Inc(n)
m ne(n

} ’ sup P(Em) < 00,

then, up to extraction of a non-relabeled subsequence, there exists a non-empty set F
and sequence {z,,} C R™ such that (E,, — z,,) ¢ E and

|ENB(0,1)] > <c(n)m> > 0. (2.3)

1

Here the local convergence for sets is the strong L.

convergence of the correspond-
ing characteristic functions. We remark that this compactness property has also been

obtained by Frank and Lieb in [11] using different arguments.

The next lemma is an amalgamation of several standard arguments [20, Lemmas 17.21
and 17.9]. Tt allows for comparison of the energies of a minimizing sequence against local
variations which do not necessarily preserve the volume constraint, cf. (3.6), which is
useful in the derivation of density estimates for example. For convenience we include the
proof of this lemma in the appendix.
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Lemma 2.3 (Volume-fizing variations along a sequence). Let E be a set of finite perimeter
and A be an open set such that H"~1(9*E N A) > 0. Suppose also that {E,,} satisfy

sup P(E,; A) < M < o0

and Ey, 5 E in R™. Then there exists oq = oo(E, A, M) >0 and Cy = Co(E, A, M) <
oo such that for every o € (—og,00) and large enough m there exist sets of finite perime-
ter G, with G,,AFE,, CC A and

|G N Al = |Ep, N A| + o, (2.4)
|G AE,| < Colo|, and |P(Gp;A) — P(E,,; A)| < Colol. (2.5)

We turn to recalling notions from optimal transport that we use throughout the paper
(see [3,24-26] for further details). The family of finite, positive Borel measures on R"
is denoted by M, (R™). We work with this class instead of the usual space of Borel
probability measures since it will sometimes be useful to have a notion of transport
between measures of equal mass other than 1; this of course entails no significant change
in the theory. Given u, v € M4 (R™) with pu(R™) = v(R™), we let II(i, v) be the set of
all couplings between p and v:

(g, v) = {y € My (R™ X R™): (m)yy = p, (m2)py = v},

where # is the push-forward operation, and 7y, 7o respectively denote projections onto
the first and second copies of R™. A transport map from p to v is a map 7: R® — R"”
such that Tp = v. Any such T induces a coupling v via the relation v = (Id x T')xp.
When pp=L" L EF and v = L" L F, we will refer to T as transporting F to F'.
Kantorovich’s problem with cost ¢(x,y) for measures p, v of equal total mass is

K.(u,v) = inf / clx,y)dy(z,y): v € (p,v)
nxR7

Since we are interested in the case where p and v are the restrictions of Lebesgue measure
to two subsets of R™ and the cost is

p(@,y) = |z =yl

the existence of a solution to Kantorovich’s problem in this instance is relevant. For
stronger versions of this theorem and more comprehensive discussions of the vast mathe-
matical literature on optimal transport, we refer the reader to the monographs mentioned
above and the references therein.
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Theorem 2.4 (Ezxistence of an optimal transport map). Let p € [1,00), and suppose E and
F are Lebesgue measurable sets with |E| = |F| > 0. Then there exists a map ®: R" —
R™, called an optimal transport map, such that 4 (L"L E) = L"L F and

/|x— O(x)|Pdr =K., (L"LE,L"LF).
B

Using optimal transport theory, one may define a distance between finite Lebesgue
measure sets. This notion and more general ones involving mutually singular measures
were analyzed in [7].

Definition 1. For positive Lebesgue measure sets E and F' with equal measure, let
W,(E,F) =K, (L"LE,L"L F)¥. (2.6)
Also, we set
Wy (E) = inf{W, (E, F): |F| = |E, |F 1 B = 0},
with the convention that W,(E) = 0 if |E| = 0.

When £" L E, £L* L F are in the space of Borel probability measures with finite pt"
moments P,(R™), the definition (2.6) coincides with the much-studied p-Wasserstein
distance between two disjoint sets, hence the duplicate notation. The rest of the prelim-
inaries are dedicated to the properties of W, necessary for our analysis.

Lemma 2.5 (Properties of W,). Let E C R™ be Lebesgue measurable.
(i) (Monotonicity) If E C F, where F is Lebesgue measurable, then W, (E) < W,(F).
(ii) (Positivity) If |E| > 0, then W,(E) > 0.
(#ii) (Scaling) For any r > 0,
W,(rE) = r' 7o W, (E). (2.7)
(iv) (L%-bound) There exists C,, such that
Wy(E) < Cal |77

(cf. [27, Equation 4.2] for the same statement when E is bounded).

Proof. Items (¢) and (¢i%) follow immediately from the definition of W,. By (i), it suffices
to prove (i7) in the case that |E| > 0 and F is bounded.
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Suppose for a contradiction that F,, is such that K. (£"L E,L" L F,) — 0. In
this case, E and F), have finite p'" moments, so by the properties of the p-Wasserstein
distance, W,(E, F,,,) — 0 implies that £L"F,, = L"LF (see for example [24, Theorem
5.11]). But this is incompatible with |[E N F,,| = 0 and |E| = |F,,,| > 0, so we have a
contradiction.

For (iv), by the scaling (2.7), it is enough to prove the claim when |E| = 1. Divide
R™ into disjoint cubes @), of volume 2. For each j, since |Q;| =2 and |[ENQ,| < 1, we
can find Fj C Q; such that |F}| = |Q; N E| and |F; N E| = 0. Let T} transport £ N Q;
onto I}, and set F' = Uj Fj;. Then it is easy to see that the map 7" defined by

T(x) =Tj(x) forx e ENQ);

transports £ onto F and satisfies |z — T'(x)| < diam (Q;) for € EN Q;. Thus

Wp(E) < / |z —T(x)|Pde | <C,,
E

since diam(Q;) =: C,, independent of j, and |E| = 1. The claim follows. O

Proposition 2.6 (Continuity of W, with respect to L'-convergence). There exists Cy,
such that for any |E|, |E|,

IWE(E) = WE(E)| < Cppmax{|E|", |E|" }| EAE] (2.8)

and
Wy (E) = Wy(E)| < Copmax (W27 (E), WE-P(E)} max{|E| %, |B|F} EAE]  (29)

Remark 2.7. When E and F' are both bounded with unit measure, Proposition 2.6 is
contained in [7, Lemma 4.5].

Proof of Proposition 2.6. First we demonstrate how (2.9) follows from (2.8). By applying
the mean value theorem to the function ¢ — t'/?, we deduce that

W, (E) — W, (E)| < %max{w;*P(E), WIP(B)} WE(E) - We(E)] .

P

The bound (2.9) follows immediately from this equation and (2.8).
It remains to prove (2.8). Without loss of generality,

WE(E) > WE(E). (2.10)

P

We may also assume that
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|E| =1; (2.11)

the full case then follows from rescaling. Fix any F with |F| = |E| and |[F N E| = 0. If
we can show that

WE(E) — WE(E, F) < Cpp max{|E|", 1}|[EAE, (2.12)

then, in light of (2.10), taking the infimum over F' disjoint from E gives (2.8) when
|E| = 1.
To show (2.12) under the assumptions (2.10) and (2.11), first consider the case that

|E| > 2.
Then since |E| = 1, we have |[EAE| > 1, so that

P
n

max{|E|",1}|EAE| > 2n. (2.13)

In addition,
P

WE(E) — WE(E,F) < WE(E) < Crp,

which together with (2.13) gives (2.12) after suitably modifying C,, ,. For the rest of the
proof of (2.12), we therefore assume that

B] < 2. (2.14)

Let ® be an optimal transport map from E to F', which exists by Theorem 2.4. The
idea is to modify ® to create a transport map ® for E (to a set of the appropriate
measure), which allows for comparison between W{,’(E) and WP (E, F). When z € EN E
and ®(z) ¢ F, we can define ® simply by using ®:

®(z) =®(x) ifzc ENEN®YFNE°). (2.15)
For the rest of the points in E, we must make a new definition. We partition R™ into
cubes Q; of volume 4. Since |Q; \ (E U F)| > 1 and |E| = 1, there exist measurable sets
D; C @Q; such that

DiNE=0=D;NF and |D;|=|Q;NEN(E‘U® (FNE))| <L

We may obtain optimal transport maps ®; from Q; N EN (E°U®~(FNE)) to D; and
define

d(x) = 0;(x) ifrecQNEN(E°Ud Y FNE)).
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Before estimating the energy difference, we note that since ® is a transport map and
FCFE°

IEN® Y FNE)<|® Y ENF)=|ENnF|<|ENE". (2.16)

W(E) P(E,F) /|ac— \pdx—/|x— x)|P dx

<y / o= (@) da

J Q,;NEN(E<U®-1(FNE))

Zdlam Q)P(QNENE|+|Q;NEN®  (FNE)|)

= diam (Q;)*(|[ENE°| + |[EN®~Y(F N E)|)
(2.16) -
< 2diam (Q;)P|EAE). (2.17)

2
n

Since 1 < max{|E|=,1} < 2%, (2.17) implies (2.12). The proof is complete. 0O
Lemma 2.8 (Non-existence of minimizers for W, ). There exists a sequence {(Ep, Fin)}
such that |Em N Fp| =0, |Ey| = |Fyn| =1, and

Wy (Em, Frm) — 0.
Furthermore, for any sequence satisfying those three properties,
P(E,,), P(F,) — . (2.18)

Proof. We omit a full proof of the construction of such a sequence, which is straightfor-
ward. There are many ansatzes one could use; for example, F,, could be a single thin,
arbitrarily long cylinder, and F,, a suitable tubular neighborhood. Alternatively, F,
and F;, could be suitably many disjoint arbitrarily small balls and corresponding annuli
around them. The latter example may be viewed as an analogue of the microdroplet
instability discovered in [17] in our static setting.

To prove (2.18), assume for contradiction that Wy,(E,,, Fy,) — 0 but limsup P(E,,) <
oo. By Remark 2.2, the uniform perimeter bound implies that, up to translations which
we ignore, there exists a set E with |[E N B(0,1)] > 0 and E,, ¢ E. Therefore, E,, N
B(0,1) - EnN B(0,1), and so by the L!-continuity of W),

0 < W,(ENB(0,1)) = liminf W, (E,, N B(0,1)) < linLianp(Em, F,)=0.

m—r o0

We have thus arrived at a contradiction. The proof that P(F,,) diverges is the same. O
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Remark 2.9. In their paper [8], Candau-Tilh and Goldman obtain the following interpo-
lation inequality

W,(E,F)P(E) > C(n)|E|"*v. (2.19)

As a consequence of this inequality one can obtain (2.18) in Lemma 2.8. Here we provide
an alternative proof of this interpolation inequality which effectively quantifies our proof
of (2.18).

Proof of (2.19). We first observe that there exists C,, > 0 such that if |[E N B,| >
3wnr™ /4, then

Wo(ENB,) > Cpr e, (2.20)

This is due to the fact that at least w, 7" /4 of the mass of £'N B, is contained in B, /4
and must be transported outside B,. Let |E| = |F| and |[E N F| = 0 and consider any
Lebesgue point 2 € EM). By the continuity of » — |E N B,(z)|, the fact that 2 € EM),
and the intermediate value theorem, there exists

r < (4_E|> : (2.21)

3wy,

such that |E N B, (z)| = 3w,r?/4. By (2.21), we can apply the Besicovitch covering
theorem to the family of closed balls F = {B,, : x € EM}, to obtain subfamilies F7,
-+ +s Fe(n), each of which consists of disjoint balls, such that

&(n)
el | B
=18, €F;

By the relative isoperimetric inequality, since |E'N B, | = 3w, 7% /4, we have for some ¢,
P(E;B,,) > c¢,r?™ ! Yz e EW. (2.22)

Also, with ® denoting the optimal transport map from E to F', we may use the obser-
vation (2.20) to see that

W,(ENB,, ,(ENB,,)) >W,(ENB,, () > C,rr. (2.23)

Finally, combining (2.22)-(2.23) with Holder’s inequality, we may estimate
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=

) &§(n)
WEF)PE) > €7 |3 S [ ke

=B, €Fipnp,,

o
—~
3
=
]
AR
o
—~
3
N2
]
|

where in the last equality we have used the fact that |E N B, | = 3w,r?/4. O
The last preliminary result is drawn from [7] and [27].

Theorem 2.10. Let E be a bounded Lebesgue measurable set.

s

—

13

(i) [7, Theorem 3.21] There exists a Lebesque measurable set F with |F| = |E| and

|[ENF| =0 and an optimal transport map ® from E to F such that
Wy(E, F) =W,(E).
(it) [27, Lemma 4.3] There exists Cy, such that for L"-a.e. x € E,

|z — ®(2)| < Cu|E|".

Remark 2.11 (Additivity of W} ). Arguing directly from items (i) and (ii) of the above

theorem, it follows that if E1,..., Ex are bounded sets such that

1
i ) = i|n !
dist(Ey, By ) = 2C, ija%XK |E;] for k £ k',
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then the sets Fj, minimizing W), (Ej, F}) are pairwise disjoint and

K K
W (UEk,UFk>W5<UEk> ZWP (Ex) =Y _ WE(Eg, Fr).
k k k=1

k=1

3. Proof of Theorem 1.1

We write the main functional as

where W, is given as in Definition 1.

Proof of Theorem 1.1. We prove this theorem in multiple steps.

Step one: First, we extract a nontrivial set E° which is the limit of sets E,, corresponding
to a minimizing sequence {E,, },, with

1
P(E,,) + \W,(E,,) <infG + o (3.2)
From this inequality we have the immediate upper bound
P(E,) <1+infg (3.3)

on the perimeters. Since in addition | E,,| = 1 for all m, we may then apply the nucleation
lemma and compactness as in Remark 2.2. Therefore, up to a subsequence which we do
not relabel and translations which, without loss of generality, are trivial, there exists a
set B0 with

01 <1,
En'S E° inR™
Step two: Here we identify 8, o > 0 such that if E,, is any set with |EmAEm| 0, then
|Wp(Em) - Wp(Em)| < Cn,pa17p|EmAEm|- (3.4)
We first observe that by the uniform perimeter bound and Lemma 2.8 we can consider

a = inf W,(E,,) > 0. (3.5)

Due to the continuity of W, with respect to L'-convergence from (2.8), we may choose
0 < <1 small enough so that if |EmAEm| <4
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W;I))(Em) 2 Wg(Em) —Chp maX{\Em\%, |EM|%}|EmAEm|
> af — Cn,p(l + 5)%6
aP
> —.
op

Then since W, (E,,) and W, (E,,) are both bounded from below by a/2, (2.9) gives

Wp(Em) = Wp(En)|
g Cnvp maX{Wéfp(Em)a ngp(Em)} maX{|Em| %7 ‘Em‘% }|EmAEm|
< Cppa TPPTH1 4 6) 7 | By AE).

Upon recalling that § < 1 and modifying C,, ;,, we have shown (3.4).

Step three: In this step, we utilize (3.4) and Lemma 2.3, the volume-fixing variations
lemma, to show that there exists g and A > 0 such that for all m large enough, E,,
satisfies the inequality

~ ~ 1 ~
P(Ew) < P(E) + M EnDEy| + — i EnAE, CC B(a,r), 0<r <rp.  (3.6)

Fix z and consider E,, with E,,AE,, C B(x,r), with r < rg to be determined shortly.
Since |E,,| is not necessarily 1, we proceed using Lemma 2.3. Let y1, yo € 0*(E°) and
1n > 0 be such that

H" (0" (E%) N B(yi,n) > 0
for i = 1,2 and
B(y1,m) N B(yz2,m) = 0.
We apply the volume-fixing variations lemma with the choice of A = B(y;, ), yielding oq
and Cj such that for any |o| < 0g and i = 1,2, there exists G?, with G¢, AE,, CC B(y;,n)

and

|G 0 B(yisn)| = |Em N B(yi,n)| + o,
|GMAE’!)’L| g CO|U|7 and |P(GmaB(yzan)) - P(EmyB(yzan))| g C(O|O-|' (37)

Up to further decreasing og, we may assume that
max{l, Co}O'O < 5/2 (38)

Choose rg such that
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wyry < 00 (3.9)

and for every z € R™, B(z,ro) is disjoint from at least one of B(y;,n). Therefore, for at
least one of i = 1,2,

B(z,7) N B(yi,n) = 0;

let us assume without loss of generality that it is y;. We introduce the sets

Em = (En 0 B(z,7)° N By, n)°) U (G}, N Byr,m)) U (Em N B(x,7)),  (3.10)
where G}, is chosen according to Lemma 2.3 with

Om = |Ep N B(x,1)| = |Em 0 Bla,7)| € (—wnr™, war™), (3.11)
so that
|Gy, N B(y1, )| = |Em 0 B(y1,m)| + |Em 0 B(w,7)| — |En 0 Bla, 7).

This ensures that

|Em| = |Bn| = |Em 0 Ba,r)| = |Em 0 B(y1,m)| + |Gr, 0 By, n)| + | Em N B(z,7)]
= |Em| = |Em N B(@,7)| — [Em 0 B(y1,n)| + |Em 0 B(y1,n)| + |Em N B(z,7)|
~|Em N B(z,7)| + |Ep N B, r)|
= |Eml
=1

By the triangle inequality and the formula o,, = |E,, N B(z,7)| — |E,, N B(z,r)|, the
bound

|om| < |EmAEy,| (3.12)
holds as well. Furthermore, with the aid of (3.7)-(3.9), we may estimate |E,, AE,,| by

< Golom| +wnr™

<6/2+46/2.
The previous inequality implies that (3.4) holds for E,, and E,,, in which case

Wp(Em) = Win(Em)| < Cppo' P|En AE ]
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Combining (3.13) and the fact that |o,,,| < |EmAE,,|, we have
Wp(Em) = Win(Em)| < Crpa P (Co + 1) | Ey AEy,|. (3.14)

The last preliminary estimate before deriving (3.6) is a consequence of (3.7) and (3.11):

|P(Em; B(y1,n)) = P(Em; B(y1,m))| < Colom| < Co|EnAEm|. (3.15)

Finally, since |E,,| = 1, we may test (3.2) with E,, and use (3.10), (3.14), and (3.15) to
obtain

P(Ey) < P(Bp) + MWy(Fpn) = Wy(E) +

_ 1
+ W, (Em) — W (E) + .

~ . . 1
< P(Ey) + ColEn AE,,| + ACp a7 P(Co + 1)| By AE,,| + —.

Taking A := Cy + AC,, ,a'7P(Cp + 1), we have shown (3.6).

Step four: Here we use (3.6) to prove that there exist C,,, r1 > 0 such that any positive

measure set £ which is the L{ -limit of translates E,,, —y,, for a sequence {y,,} satisfies:

loc
|[ENB(x,r)| = Cpr® VYr € 0"E,r <ry. (3.16)

Since |E| < 1, such a lower density estimate implies that 9*F and E are bounded. For
the proof of (3.16), to simplify the notation, assume that y,, = 0 for all m.
We set

Um(r) = |Em N B(x,r)|, u(r)=|EnNB(z,r).
The coarea formula implies that for almost every r,

u () =H""YEnNdB(z,r) and o/ (r)=H""YENIB(z, 1)),

m

while the L], -convergence of E,, to E permits us to extract a subsequence such that

ul,(r) —u'(r) for almost every r. (3.17)

Furthermore, except for a measure zero set of r values which can be made independent
of m, we have the identities
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!

P(Eyn) = P(Ep; B(z, 7)) + P(Ep; B(z, 1)), (3.18)
P(E,,NB(x,7)) = P(Ep; B(x,r)) + H" Y E,, N 0B(x,r)),

P(Ep \ B(x,7)) = P(Ep; B(z,7) ) + H" (B N OB(z, 7)),

and similarly for E. Therefore, for almost every r < ri, with r1 € (0,79) to be fixed
shortly, testing (3.6) with E,,, = E,, \ B(z,r) yields

——<¢C

P(E,.;B(z,r))+ P(E,; B(z,r))
= P(Em>
< P(En \ B(z,7)) + A By 0 B(z, )| + %

—F—C

1
= P(E,.; B(z,7) ) + H" Y (E,, N0B(x,7)) + A|E,, N B(z,7)| + —

—F < C

We add H" Y(E,, N0B(z,r)) — P(E,n; B(z,7) ) to both sides, arriving at

P(Ep; B(z, 7)) + H" Y(E,, N 0B(x,r))

< 2H" (B N OB(w,7)) + A| By 0 Bla,7)| + %

The Euclidean isoperimetric inequality and (3.18) imply that for almost every r < rq,

1 1 1 n—

nwy U (r) " = nwy |Em 0 B(x,7)
< P(Ep, N B(z,1))
= P(Ey; B(z, 7)) + H" Y (Em N OB(x,7))

n

1
< 2Hn_1(Em n aB(.’IJ,T’)) + A|Em N B(l’,TN + =
m
1
= 2u/ A, + —. 3.19
(1) + At + — (3.19)

With the goal of absorbing Au,, into the left hand side, we note that

1 n—1

W U (1) 7 A
Ay < —0 2 =y, < - .

2 2A

Therefore, choosing 1 € (0,7¢) small enough so that

1/n\ "
n nwp
Um < WnTq < 2A )

we have for almost every r < rq
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1 n—1
Auty, < 20T u,,;(r) :

Plugging this into the differential inequality (3.19) and passing to the limit m — oo
using (3.17), we may write

1 — 1
nwry u(r) =

2 m— oo 2

for almost every r < r1. The lower density estimate (3.16) is achieved by dividing by
u integrating this inequality.

Step five: In this step, we obtain finitely many, bounded, limiting sets E* and sequences
{a*} such that E* are L{ -limits of translates E,, — ¥, and satisfy

> OIEF =1 (3.20)
k
To this end, apply the nucleation lemma again to F,, with
. { 1+infG n}
€9 =min< 1, ,

2ne(n) ' Cnr

where C,, is the dimensional constant from the previous step, to locate points z¢,, 1 <
i < I(m) satistying the conclusions of Lemma 2.1. Here we include Cy, 7} in the definition
of the constant g as we would like to control the size of what is not contained in the
balls obtained from the nucleation lemma. If the remainder is non-empty, its smallness
will then lead to a contradiction with the lower density estimates.

The uniform bound (2.2) on I(m) in terms of P(E,,), |En|, and ¢ implies that by
restricting to a further subsequence, we can find I € N such that I(m) = I for each m.
After passing to a further subsequence, we may safely assume that

im |z, — [ = dy

exists for each pair (¢,7) € I x I, with infinity as a possible limit, too. Next, we define
equivalence classes of {1,...,I} based on the relation

=] = dij<OO.

Let K < I be the number of these equivalence classes, which partition {1,...,I}. For
each 1 < k < K and m € N, let 2k, := xrgk’m) be a point from the family of points



20 M. Nowvack et al. / Journal of Functional Analysis 284 (2023) 109732

corresponding to E,, such that i(k,m) is a representative of the k-th equivalence class.
Recall that due to (2.1) and (3.3), E,, — =¥, satisfies

(B — %) N B(0,1)] > (c(”)p(igm)>n > <c(n)1+€#fg>n.

We can therefore find non-trivial sets of finite perimeter E* such that

B — a¥ % BF. (3.21)

m

Since the previous step implies that each E* is bounded, there exists Ry such that
E* cc B(0, Ry) (3.22)
for each 1 < k < K. We may also take Ry to be large enough that

U B(z%,,2) € B(z¥, Ry) (3.23)
ie{l,...,I}: i=k

for all m; in other words B(z¥,, Ro) contains all the balls at the m-th stage with indices
in the same equivalence class as k.
It remains to show that

K
S OIEF =1
k=1

We first show that Zszl |E*| < 1. If this were not the case, then

K
> |E¥ N B(0, Ry)| > 1. (3.24)
k=1

Now for large m, the sets
E,, N B(z%, Ry)

are pairwise disjoint since |[2F, — 2% | = oo if k # k. By (3.21) and (3.24), it follows that

K K
1
> B N By, Ro)| > 5 (1 +> B mB<o,Ro>|>

k=1 k=1

for large m, which is impossible since |E,,| = 1. So
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Assume now for a contradiction that
K
E |EF|=1-¢
k=1

for some § > 0. Since E* CC B(0, Ry + 2) and E,,, N B(x¥,, Ry + 2) are disjoint for large
enough m, it must then be the case that

Em\ (U B(zk Ry + 2))

k

=

N

for large enough m. At the same time, the nucleation lemma at the beginning of this
step with g < C,r] gave

En\ |J B(2},,2)| <0 < Curf.

Together with the assumption (3.23) that |J, B(z¢,,2) C U, B(zk,, Ro), this yields

g < < Cprl. (3.25)

En\ <U B(zF, R + 2))
k

Applying the nucleation lemma a final time to the sets E,, \ (U, B(z¥,, Ro +2)), we
obtain finitely many points g/, fulfilling the conclusions of Lemma 2.1. We claim that it
must be the case that

|yﬁn - xfn| — 0. (3.26)

If lim sup,,_, . |y, — 2¥,| < oo, then the uniform bound from below on |B(yJ,, 1) N E,,|
and the fact that y/, ¢ B(xF , Ry + 1) would imply that E¥ N B(0, Ry)¢ # (). However,
this contradicts (3.22). Next, by the compactness for sets of finite perimeter and the
fourth step, we may find a measurable set E and Ry > 0 such that E cC B(0, Ry),

En —yl tog FE, and
|E| > Cyri. (3.27)

Since E is compactly supported, |E,, N B(y.,, R1)| — |E|. But (3.26) implies that
B(yl,,R1) C (U, B(a*,, Ry + 2))C for large m, and hence

(Bl = lm_|E,, 0 Blyh. By)|

Em \ (UB@;,RO +2)>‘

k

< lim sup
m—r0o0
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(3.25)
< Cpri.

This upper bound is at odds with the lower bound (3.27), so we have derived a contra-
diction. Thus Zszl |EF| = 1.

Step siz: At last we can prove Theorem 1.1. Let us choose any K points z1,...,zx € R"
such that B(zg, Ryp + C,,) are pairwise disjoint, where C,, is the dimensional constant
from Theorem 2.10(ii). We claim that

K
UE'k—i-Zk

k=1

is a minimizer. The choice of radius Ry + C,, and Remark 2.11 ensure that the sets F*
defined by

Wy(E* + z1,) = W, (E* + 2, FF)
are pairwise disjoint and

K K
WE (U EF +zk> =3 WE(E").
k=1

k=1

Appealing to the continuity result Proposition 2.6 gives

k=1 k=1
K
- Aégnoo;w;’((Em — 2k )N B(0,Ry + C,))
=1
< Aliminf WP(E,,), (3.28)
m—roo

where the last inequality depends on Remark 2.11, the additivity of W2 (which applies
since the distance between the ¥ ’s goes to infinity as m — o). Next, the inequality

K K
> P(E* +2,) = P(E*; B(0, Ro))
k=1 k=1

K
< 1ﬂi£fZP(Em —zF . B(0, Ry))

< liminf P(E,,) (3.29)

m—0o0
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is immediate from the lower-semicontinuity of perimeter under L!'-convergence and the
pairwise disjointness again. Summing (3.28) and (3.29) finishes the proof, since E,, is a

e K
minimizing sequence and || J,_, EF+z =1 O

As a byproduct of our existence proof we obtain that the set E in a minimizing pair
(E, F) is a quasiminimizer of the perimeter in the following sense; hence, enjoys some
regularity properties.

Corollary 3.1. For any minimizing pair (E, F) to (1.1), the set E is a (A, ro)-perimeter
minimizer in R™. That is, there exists 0 < A < oo and ro > 0 such that

P(E) < P(E)+A|[EAE|  if EAE cC B(x,7), 0 <r < 1o.

Proof. The analogous inequality for the elements of the minimizing sequence {E,,} was
derived in (3.6) with an added factor of 1/m, and the same proof applies to the minimizer
E. O

Remark 3.2 (Regularity of minimizers). The classical theory of (A,rg)-perimeter min-
imality implies that 9*E € O for any v € (0,1/2) and the Hausdorff dimension of
OFE\ 0*F is at most n—8 (see e.g. [20, Theorem 26.3]). This regularity was also observed
in [7, Theorem 4.6]. Also, by [7, Theorem 3.13], F is a set of finite perimeter.
Remark 3.3. Alternatively, one could attempt to demonstrate the existence of minimizers
using the framework developed in [11]. This would require proving that the binding
inequality
e(M) < e(M')+e(M — M)

holds for all 0 < M’ < M, where e(M) = inf { P(E) + W, (E): |E| = M }.
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Appendix A. Proof of Lemma 2.3

The argument is a straightforward modification of the case where there is one set F
[20, Lemma 17.21], as opposed to a sequence.

Proof of Lemma 2.3. Since H" 1(0*E N A) > 0, we can find T € C°(A; R") with

yzz/didex: /T-VEd’H”_1>O.
E OB

By the L{ .-convergence of E,, to E, for m large enough, we have

ro |2

< / divldx = / T-vg, dH" ! < 2. (A1)

E.n 0*Em

Let ¢:(z): R™ x (=d,d) — R™ be a one parameter family of diffeomorphisms with initial
velocity T'. By the first variation formulae for perimeter and volume (see e.g. [20, Chapter
17]), there exists dg > 0 such that for all |¢| < do,

[P(ot(Em); A) — P(Em; A)| < 2| P(Ep; A)[[ VT e, (A2)
lot(Ep) NA| = |Epy NA| +t / T -vg, dH" ' 4+ O(t?), (A.3)
0* B,

where the decay rate in ¢ in the second equality depends on T" and is thus uniform in m.
Also, by (A.1) and (A.3), |p:(E,,) N A] is strictly increasing on [—dg, dg] with

| le(Em) N Al = [t (Br) N Al | > Flt — ¥ (A.4)

(after decreasing d¢ if necessary). Therefore, we have the inclusion

oy O
(=27, 57)  {lor(Bw) 1 41 - B 0 4: e < 6o}

So for all |o| < o := do7y/4, there exists t,, = t;(0) € (—dp,dp) such that
e(Em) N Al = |Ep N Al + 0. (A.5)
By (A.4), it must be the case that
tm| < —. A6
[t S (A.6)

Then defining G,,, = ¢¢,, (Em), it follows from (A.5) and (A.2), (A.6) that
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G N Al = [EnNA[+0, [P(Gn;A) = P(Em; A)| < Colo],
where Cy depends on M = sup P(E,,; A), A, and E. The estimate
|G AER| < Colo|
can be found in [20, Lemma 17.9] in the form
(0t (B ) AEm| < C(T) [tm| P(Em; A).
Hence, the result is established. O
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