

Olivine and glass chemistry record cycles of plumbing system recovery after summit collapse events at Kīlauea Volcano, Hawai‘i

Kendra J. Lynn*, Donald A. Swanson

U.S. Geological Survey
Hawaiian Volcano Observatory
1266 Kamehameha Avenue, Suite A-8
Hilo, HI 96720

*corresponding author: klynn@usgs.gov

Keywords: olivine, caldera collapse, Kīlauea, eruptive cycles, Hawai‘i

Published as:

Lynn, K.J. and Swanson, D.A. (2022) Olivine and glass chemistry record cycles of plumbing system recovery after summit collapse events at Kīlauea Volcano, Hawai‘i. *Journal of Volcanology and Geothermal Research*, 426, 107540
doi:10.1016/j.jvolgeores.2022.107540

28 **Abstract**

29 The eruptive activity of Kīlauea Volcano (Hawai‘i) in the past 2,500 years has alternated
30 between centuries-long periods dominated either by explosive or effusive eruptions. The
31 onset of explosive periods appears to be marked by caldera collapse events at the
32 volcano’s summit accompanied by draining of Kīlauea’s magmatic plumbing system.
33 Here we leverage >1800 olivine forsterite (Fo), >900 glass MgO contents, and estimated
34 magma supply rates from the past six centuries to describe the relationships between
35 summit collapse and the composition of erupted material. On a first order basis, the major
36 element chemistry of the centuries-long eruptive periods largely originates from
37 fundamental differences between fractional crystallization of shallowly stored magmas
38 during high-supply effusive-dominated periods versus little evolution of mafic recharge
39 magmas during low-supply explosive-dominated periods. The modern effusive period
40 (1820s-present) is dominated by relatively evolved olivine forsterite contents (Fo₈₁₋₈₂) for
41 Kīlauea, which is interpreted to reflect a buffered crustal reservoir system in which
42 shallow storage and fractional crystallization control the composition of magmas. In
43 contrast, olivine crystals from the explosive Keanakāko‘i Tephra (1500 - early 1800s
44 C.E.) are dominated by higher olivine forsterite contents (Fo₈₉) which are interpreted to
45 reflect more primitive compositions, are correlated with high-MgO glass compositions
46 extending to high values (e.g., 11.0 wt%), and show signs of magma mixing (zoned
47 olivine, bimodal Fo populations). These signatures reflect a disrupted reservoir system in
48 which high-MgO recharge melts mix with melts left over from draining of the shallow
49 (<5 km) magma plumbing.

50 Superimposed on these explosive-effusive periods are three decades- to centuries
51 long periods of progressively evolving olivine and glass compositions. Eruptions that
52 occur after caldera collapse in ~1500 C.E. and smaller scale crater collapse events in
53 1790 (inferred) and 1924 have heterogeneous olivine populations dominated by \geq Fo₈₈
54 and typically high MgO glasses. These compositions reflect inefficient mixing of stored
55 and primitive recharge magmas after the disruption of the shallow plumbing system.
56 After these collapses, olivine Fo and glass MgO subsequently evolve to <Fo₈₂ and <7.0
57 wt% compositions, reflecting the recovery of the crustal plumbing system to an end-
58 member system state characterized by efficient mixing of recharge and stored magmas

59 that serve to buffer the shallow magma reservoirs. These evolved signatures suggest that
60 a mature and buffered reservoir system may be a key condition for significant disruptions
61 of volcanic plumbing systems. Plumbing system recovery is slower following large-scale
62 caldera collapse (hundreds of years) compared to recovery following smaller caldera or
63 crater collapse (tens of years), which may be modulated by differences in magma supply
64 rates. Following the 2018 crater collapse olivine populations have high-Fo but glasses are
65 low MgO, suggesting that this collapse might have disrupted shallow magma pathways
66 but not strongly impacted the reservoir(s). Ultimately, olivine and glass major element
67 chemistry record the impacts of caldera and smaller but significant summit crater collapse
68 events at Kīlauea and could be used to provide a framework for better characterizing
69 long-term volcano evolution in Hawai‘i and shield volcanoes elsewhere.

70

71 **1. Introduction**

72 Kīlauea is a shield volcano renowned for its frequent eruptions and dominated, since
73 western missionaries arrived in 1823 (Ellis, 1827) by effusive activity, generally within
74 the summit caldera or on rift zones radiating east and southwest from the summit (e.g.,
75 Tilling and Dvorak, 1993). Current understanding of Kīlauea’s recent eruptive history
76 indicates that centuries-long periods of dominantly explosive eruptive activity occur
77 alternating with intervals of dominantly effusive eruptions, such as those that of the
78 modern period (Swanson et al., 2012, 2014; Swanson and Houghton, 2018). The
79 transition from effusive to explosive periods appears to be punctuated by large-scale
80 caldera collapse (km across in scale), which has occurred at least twice in the past 2,500
81 years and is thought to be related to the emptying of the summit reservoir system
82 (Powers, 1948; Holcomb, 1987; Swanson et al., 2012; Figure 1). The most recent large-
83 scale caldera collapse and subsequent explosive period began ~1500 C.E., following the
84 60-yr long ‘Aila‘āu eruption (1410-1470 C.E., Clague et al., 1999; Swanson et al., 2012;
85 Figure 1). Significant but smaller scale summit collapse events (<km in scale) have
86 occurred several times since the formation of the modern summit caldera, the most recent
87 and largest of which was synchronous with the 2018 lower East Rift Zone (LERZ)
88 eruption (Neal et al., 2019).

89 The impact of summit collapse on the volcano's shallow (<5 km) magmatic
90 plumbing system (regions of magma accumulation, or reservoirs, and pathways between
91 them and the surface) should be recorded in the compositions of erupted melts and their
92 crystal cargo (e.g., Gavrilenko et al., 2016). Lavas recording Kīlauea's past six centuries
93 of eruptive activity are thus ideal for studying the effects of caldera and crater collapse
94 events, in part because Hawaiian tholeiites crystallize only spinel and olivine for >100 °C
95 below the liquidus (Wright and Okamura, 1977; Wright and Peck, 1978; Montierth et al.,
96 1995) and the Fe-Mg contents of olivine and glasses typically reflect the degree of
97 magmatic evolution via crustal processes (e.g., fractional crystallization, magma mixing,
98 shallow storage; Wright and Fiske, 1971; Wright et al., 1975; Wright and Tilling, 1980;
99 Helz, 1987; Helz and Wright, 1992; Wright and Helz, 1996). Additionally, samples of
100 most Kīlauea eruptions show Fe-Mg disequilibrium between olivine cores that are too
101 high in Fo to be in Fe-Mg equilibrium with their host melts (e.g., Maaløe et al., 1988;
102 Garcia et al., 2003; Lynn et al., 2017a, 2017b; Garcia et al., 2018; Wieser et al., 2019)
103 indicating that olivine Fo and glass MgO each record critical but different information
104 about magmatic histories. Thus, using both olivine Fo and glass MgO provides a simple
105 but effective means to broadly describe magmatic histories, allowing one to contrast the
106 character of the magma plumbing system before and after collapse events. Many new
107 studies on the Keanakāko‘i Tephra (ca. 1500 - early 1800s C.E.; Swanson et al., 2012),
108 Kīlauea's most recent explosive period, have also more than doubled our knowledge of
109 the volcano's summit eruptive history (e.g., Swanson et al., 2014; Sides et al., 2014;
110 Lynn et al., 2017b, 2018, 2020; Garcia et al., 2018; Swanson and Houghton, 2018, Biass
111 et al., 2018; Isgett et al., 2018). These factors provide an unprecedented opportunity to
112 leverage geochemical, petrological, and geological datasets to deepen our understanding
113 of Kīlauea's long-term evolution.

114 Olivine compositions are particularly valuable for such investigations because the
115 forsterite content ($Fo, Mg/(Mg+Fe) \times 100$) is controlled by Fe-Mg equilibrium with the
116 magma in which it grows (e.g., Roeder and Emslie, 1970). Melt MgO content scales with
117 temperature (e.g., Helz and Thornber, 1987) and, by proxy, broadly scales with depth
118 within Kīlauea's reservoir system so that olivine Fo and melt MgO can be used to
119 fingerprint regions of magma storage and evolution prior to eruption (e.g., Helz et al.,

120 2015). Thus, higher Fo olivine are generally inferred to have grown in higher MgO melts
121 deeper within the volcano and at higher temperatures, reflecting olivine control on the
122 magma's major element composition (Figure 2a). Lower Fo olivine reflects growth
123 and/or re-equilibration in shallower, cooler and more fractionated low MgO magmas
124 (Figure 2b). The presence of both high- and low-Fo olivine in an eruption indicate that
125 rising recharge magmas mixed with shallowly stored magmas prior to eruption (Figure
126 2c). While most Kīlauea eruptions have some range in olivine Fo contents (e.g., Figure
127 2a), the mode of an eruption's olivine population can be used to discern the dominant
128 magmatic processes that affected the magmatic history (e.g., fractionation versus mixing
129 versus olivine control; Figure 2).

130 More than 1,800 olivine Fo and 900 glass MgO contents are examined here to
131 characterize the last 500+ years of plumbing-system evolution. We delineate three
132 decades-to-centuries long geochemical cycles within the past ~500 years in which
133 progressively evolving olivine and glass major element compositions are decoupled from
134 inferred changes in mantle-derived magma supply rates to Kīlauea. Eruptions that occur
135 after large-scale caldera collapse have \geq Fo₈₈ olivine populations that can be bimodal
136 (with a low Fo secondary population) and highly heterogeneous glass MgO contents that
137 range up to 11.2 wt%. Subsequent eruptions progressively change toward evolved and
138 typically unimodal olivine Fo (< 82) populations and glass MgO < 7.0 wt% before the
139 next significant crater collapse. This striking difference in composition suggests that large
140 to moderate summit collapses disrupt the shallow reservoir system and influence the
141 dominant magmatic processes controlling the character of erupted material.

142

143 **2. Methods**

144 **2.1. Literature Compilation**

145 Eruptions examined in this study are restricted to summit and upper East Rift Zone
146 locations unless a rift zone eruption was sustained for several years (e.g., Mauna'au
147 1969-1974, Pu'u'ō'ō 1983-2018). This geographic filter enables the use of olivine and
148 glass chemistry to infer the geometry and processes operating in Kīlauea's summit
149 reservoir(s); otherwise, the olivine and glass chemistry might include the effects of older
150 stored magma in the rift zones that had experienced mixing and fractional crystallization

151 over long periods of time (e.g., 1955 and 1960 LERZ eruptions; Helz and Wright, 1992;
152 Wright and Helz, 1996; Tuohy et al., 2016; and numerous short-lived eruptions in the
153 Nāpau Crater area; Walker et al., 2020). An additional exception is made for the 2018
154 LERZ eruption, which was the most voluminous known eruption at Kīlauea in more than
155 500 years, occurred simultaneously with summit crater collapse, and was sustained by
156 summit-derived magma for more than two months (Neal et al., 2019).

157 Previously published olivine and glass data were examined for analysis quality
158 and oxide totals < 99.0 and > 100.5 were rejected. Studies that reported only
159 representative olivine compositions were not used, and a minimum of 10 olivine
160 compositions in an eruption/sample were required for this dataset (e.g., very few data are
161 available for eruptions between the possible collapse in 1790 and the small collapse and
162 crater enlargement in 1924). We define two broad periods for eruptions included in the
163 study: 1) the Keanakāko‘i Tephra explosive period, which begins with large-scale caldera
164 collapse \sim 1500 C.E. and ends in the early 1800s (Swanson et al., 2012; Swanson and
165 Houghton, 2018) and 2) the modern effusive period, which begins in this compilation
166 with previously published data for the 1840 eruption (Trusdell, 1991) and ends with
167 December 2020 Halema‘uma‘u eruption samples (this study).

168 Changes in olivine Fo content over time are assessed by determining
169 compositional modes for individual eruption populations. Kernel density estimates for
170 each eruption are used to identify primary modes based on the highest probability density
171 in the population (Figure 2). A secondary mode is identified (Figure 2c) for some
172 eruption populations that clearly have more than one peak in the distributions, as is also
173 evident in cumulative distribution plots. The kernel density estimates are calculated using
174 a bandwidth of 0.5 mol% because 0.2 mol% (the typical analytical uncertainty in Fo; e.g.,
175 following Thomson and MacLennan, 2013) undersmooths and oversamples the data, and
176 normal kernel functions in MATLAB oversmooth and undersample the data (see
177 Supplementary Figure S1 for comparisons). This choice of bandwidth is appropriate
178 because our approach relies on the dominant mode(s) in the populations and not on more
179 subtle variations within eruption datasets. Heterogeneity in individual eruption samples is
180 assessed by calculating the 5th and 95th percentile of the populations, a procedure that
181 minimizes extreme or outlier compositions within the full range of data.

182 Changes in glass MgO contents with time are examined using the range of
183 available data for each eruption, rather than the population-based approach just described
184 for the olivine compositions. This is done for three reasons: 1) for many summit
185 eruptions, only a few glass MgO contents are reported in the literature (e.g., eruptions
186 from 1868-1954, Helz et al., 2014; Garcia et al., 2003), so that the same statistical
187 treatment cannot be used for all samples; 2) any glass MgO variability within an eruption
188 generally reflects coeval melt compositions sampled from the thermally stratified summit
189 reservoir system (Helz et al., 2014), so that using a mode to represent those data results in
190 loss of information; 3) the MgO content of Kīlauea glasses is a proxy for temperature
191 (Helz and Thornber, 1987), and variations in erupted glass MgO reflect relative residence
192 time, degree of homogenization, and depth of melts sourced from within the reservoir
193 system (Helz et al., 2014).

194

195 **2.2. Electron Microprobe Analyses (EPMA)**

196 New olivine core compositions (n=133; Lynn, 2022, Supplementary Table S1) from
197 summit (1885, 1921, July 1974, and April 2015 and December 2020) and middle East
198 Rift Zone (ERZ; 2011-2012 Pu‘u‘ō‘ō) eruptions are used in conjunction with previously
199 published olivine from just after caldera collapse around 1500 C.E. to 2018. For new
200 data, measurements were made using a five spectrometer JEOL Hyperprobe JXA-8500F
201 at the University of Hawai‘i using three different methodologies. Summit eruption
202 analyses (except for those from 2020) did not measure Mn and used *Method 1*: a 20 kV
203 accelerating voltage and a 10 μm beam with a 200 nA current, and peak counting times
204 were 60 s for Si, Fe, Mg, Ca, and Ni. Pu‘u‘ō‘ō analyses included Mn and used *Method 2*:
205 a 20 kV voltage and 10 μm beam with a 200 nA current, and peak counting times were
206 100 s for Si, Mg, Ca, and Ni, 60 s for Fe, and 30 s for Mn. Backgrounds for all analyses
207 were measured on both sides of the peak for half the peak counting times. The olivine
208 crystals from the recent 2020 eruption were analyzed using *Method 3*: a 15 kV
209 accelerating voltage and a 1 μm beam with a 50 nA current. Major elements Si, Mg, and
210 Fe were gathered using combined EDS analyses on a Thermo UltraDry detector using a
211 SystemSix analyzer with a dead time of 38% and live acquisition for 60 seconds. Ca, Ni,

212 and Mn were measured by WDS spectrometers, and counting times were 60 s with 20 s
213 on both sides of the peak for backgrounds.

214 For all olivine routines, standards were measured regularly throughout analyses to
215 monitor for instrumental drift. Standards for Methods 1 and 2 were San Carlos olivine
216 (USNM 111312/444; Jarosewich et al., 1980) for Si, Fe and Mg, a synthetic nickel-oxide
217 for Ni, Verma garnet for Mn and Kakanui Augite (USNM 122142; Jarosewich et al.,
218 1980) for Ca. Two-sigma relative precision, based on repeated analyses of San Carlos
219 olivine, are 0.85 wt% for SiO₂, 0.51 wt% for MgO, 0.14 wt% for FeO, 0.019 wt% for
220 NiO, and 0.013 wt% for CaO (Lynn, 2022; Supplementary Table S2). Standards for
221 Method 3 were Springwater olivine (USNM 2566) for Si, Fe, and Mg, a synthetic nickel-
222 oxide for Ni, Verma garnet for Mn and Kakanui Augite (USNM 122142; Jarosewich et
223 al., 1980) for Ca. Two-sigma relative precision, based on repeated analyses of San Carlos
224 olivine, are 0.24 wt% for SiO₂ and MgO, 0.20 wt% for FeO, 0.016 wt% for MnO and
225 NiO, and 0.01 wt% for CaO (Lynn, 2022; Supplementary Table S2).

226 Major and minor element analyses of glass (Lynn, 2022; Supplementary Table
227 S3) from the same 2020 Halema‘uma‘u eruption sample analyzed for olivine were made
228 using the University of Hawai‘i microprobe. Analyses used a 15 kV accelerating voltage
229 and a 10 μ m beam with a 10 nA current. Si, Al, and Fe were collected on the same EDS
230 setup listed above with 10% deadtime and live acquisition of 100 s. Peak counting times
231 on WDS spectrometers were 15 s for Mg and Ca, 20 s for Mn, 30 s for Ti, 40 s for Na
232 and K, 70 s for P, and 75 s for S (backgrounds were measured on both sides of the peak
233 for half the peak counting times). Standards for glass analyses were Synthetic Glass
234 (STG-56) for Si, Lake County Plagioclase (USNM 115900; Jarosewich et al., 1980) for
235 Al, Ca, and Na, VG-2 glass (USNM 111240/52; Jarosewich et al., 1980) for Fe and Mg,
236 Ilmenite (USNM 96189; Jarosewich et al., 1980) for Mn and Ti, K-Anorthoclase for K,
237 Fluorapatite (USNM 104021; Jarosewich et al., 1980) for P, and Troilite for S. Two-
238 sigma relative precision, based on repeated analyses of VG-2 glass, are 0.36 wt% for
239 SiO₂, 0.26 for Al₂O₃, 0.20 for TiO₂, 0.56 wt% for FeO, 0.18 wt% for MnO, 0.08 for
240 MgO, 0.44 wt% for CaO, 0.14 wt% for Na₂O, 0.02 for K₂O, and 0.04 for P₂O₅ and SO₃
241 (Lynn, 2022; Supplementary Table S4).

242 For all glass and olivine routines, X-ray intensities were converted to
243 concentrations using standard ZAF corrections (Armstrong, 1988). Analyses with totals
244 <99.0 wt% or >100.5 wt% were rejected. Olivine core compositions from previously
245 published Keanakāko‘i Tephra (n=413; Lynn et al., 2017a, b) and modern effusive
246 eruptions (n=519, 1968-2010; Lynn et al., 2017a) were measured in the same laboratory
247 using generally the same conditions as Methods 1 and 2.

248

249 **3. Results**

250 Olivine core compositions from the explosive and effusive eruptive periods at Kīlauea are
251 remarkably different. Eruptions during the Keanakāko‘i Tephra explosive period (n=413)
252 have a wide distribution of olivine compositions dominated by high forsterite contents of
253 88-90 (Figure 3a). Core compositions range from Fo₇₇ to Fo₉₀ with a minor secondary
254 peak at Fo₈₃₋₈₄. Olivine cores from the modern effusive period up to the 2018 LERZ
255 eruption (n=1117) also show a wide range (Fo₇₅ to Fo₉₀), but the primary peak of the
256 distribution is Fo₈₁ (Figure 3b) with few olivine cores of Fo₈₈₋₈₉. The exception during
257 this period is the 1959 Kīlauea Iki eruption, which is dominated by high-Fo compositions
258 (86-90; e.g., Helz, 1987; Vinet and Higgins, 2011) and is well documented to be an
259 eruption that disrupted Kīlauea’s typical summit reservoir system (e.g., Helz, 1987;
260 Richter et al., 1970; Stone and Fleet, 1991; Bradshaw et al., 2018; Helz, 2022).

261 The olivine distributions for the 2018 LERZ eruption and 2020 summit eruption
262 (n=336) are both strongly bimodal, with the 2018 eruption having a much larger range of
263 compositions down to <Fo₇₇ (Figure 3c). These very low Fo compositions are largely due
264 to the location of the 2018 eruption on the LERZ, where a significant volume of evolved
265 stored magma was erupted early in the 2018 eruption sequence (Gansecki et al., 2019).
266 Time period distributions are asymmetrical, indicating that the secondary modes are
267 minor components in erupted materials (except for the 2020 eruption, which is strongly
268 bimodal).

269 Olivine Fo populations in individual eruptions range widely throughout Kīlauea’s
270 past six centuries. Eruptions that follow large caldera (turn of the 16th century) or smaller-
271 scale crater collapse events in the 18th, 20th, and 21st centuries have highly heterogeneous
272 olivine Fo contents (Fo₇₉₋₉₀) and are commonly bimodal (Figure 4; see also Lynn, 2022

273 and Supplementary Table S5). The primary compositional mode is \geq Fo₈₈ (filled circles),
274 and the low-Fo mode in some samples is usually Fo₈₃₋₈₄ (open circles) following caldera
275 collapse \sim 1500 C.E. (Swanson et al., 2012) and an inferred collapse in 1790 (Swanson et
276 al., 2012; Swanson et al., 2015). After three decades of little eruptive activity following
277 the 1924 Halema‘uma‘u crater enlargement (Macdonald et al., 1983; Wright and Klein,
278 2014), the olivine primary mode returned to Fo₈₈ in 1959 and Fo₈₉ during the Maunaulu
279 eruption in 1969. This pattern is repeated with the most recent 2020 Halema‘uma‘u
280 eruption in which olivine compositions are bimodal (Fo₈₈ and Fo₈₂; Figure 3).

281 Glass MgO contents after collapse events are also highly heterogeneous within
282 single eruptions, spanning a total range of up to 6.0 wt% in the early 16th, 19th, and mid-
283 20th centuries (Figure 5). Eruptions that follow caldera collapse initiating the
284 Keanakāko‘i Tephra period include some of the highest MgO contents (> 11.0 wt%;
285 Figure 5) measured at Kīlauea (Swanson et al., 2014; Garcia et al., 2018). Eruptions in
286 the 1820s (at the end of the Keanakāko‘i Tephra period) after the inferred crater collapse
287 in 1790 also have high-MgO glass signatures (up to 10.3 wt%). Following the 1924
288 Halema‘uma‘u crater enlargement, the 1934 summit lava has 7.3 wt% MgO glass, and
289 the 1954 lava has low modal olivine (<0.2%) and a bulk rock MgO of 7.0-7.2 wt%
290 (Garcia et al. 2003), suggesting low glass MgO. The first post-1924 high-MgO glass
291 signature is from the 1959 Kīlauea Iki eruption (up to 10.0 wt%), during which magma
292 from a deep source dominated the compositions of erupted material (e.g., Helz, 2022).
293 Notably, the recent 2020 Halema‘uma‘u eruption had glass MgO near \sim 7.0 wt% MgO
294 (Figure 5), similar to the eruptions following the 1924 crater enlargement. This suggests
295 that the magnitude of the 2018 observed collapse may not have been large enough to
296 significantly disrupt the magma reservoir(s) and might have only disrupted shallow
297 magma pathways.

298 In the decades to centuries following collapses, both olivine and glass
299 compositions become less magnesian and are generally accompanied by a reduction in
300 compositional heterogeneity (Figures 3 and 4). During the 17th century, primary olivine
301 compositions decrease slightly from Fo₈₉ to Fo₈₇. Glass MgO decreases significantly to as
302 low as 3.8 wt% in juvenile material (Garcia et al., 2018) after violent explosive eruptions
303 and inferred crater collapse in 1790 C.E. From 1950 to 2015, olivine modes decrease

304 from Fo_{89} to Fo_{80} at the summit and to Fo_{79} for the long-lived Pu‘u‘ō‘ō eruption (Figure
305 4). Glass MgO contents also decrease from a maximum of 10.0 wt% in 1959 to 6.3 wt%
306 in 2015 (Figure 5).

307 Lava erupted before collapse events has olivine and glass compositions that are
308 significantly evolved compared to those of lava erupted after collapse. Glass MgO
309 contents from ‘Ailā‘au flows and Observatory shield flows (Holcomb, 1987; Neal and
310 Lockwood, 2003)) are < 7.0 wt% (Clague et al., 1999; Figure 5). In contrast, most
311 Keanakāko‘i Tephra glasses after caldera collapse are on average higher in MgO with
312 higher ranges (up to 11.0 wt% MgO; Figure 5), and their olivine populations are
313 dominated by Fo_{89} compositions (Figure 4). Other eruptions occurring prior to collapses
314 also produce lava with evolved glass chemistry. Juvenile material in Keanakāko‘i Unit
315 J1, erupted in 1790 (Swanson and Houghton, 2018) near the end of the explosive period,
316 can be very fractionated (down to 3.6 wt% MgO; Garcia et al., 2018), indicating
317 significant evolution of residual stored magma. In the late 19th and early 20th centuries,
318 nearly aphyric lava flows have < Fo_{82} olivine modes and relatively low-MgO glasses
319 (6.0-6.5 wt%; Figures 4 and 5). The decade-long (2008-2018) summit and 35-year-long
320 Pu‘u‘ō‘ō eruption are also dominated by evolved compositions and precede the 2018
321 collapse (e.g., Thornber et al., 2015).

322 Olivine and glass compositions show no systematic variations with inferred or
323 calculated magma supply rates to Kīlauea (Figure 5). The dominantly primitive olivine
324 and high-MgO glasses of the 16th and 17th centuries correlate with low erupted volume
325 and low inferred magma supply rates ($5 \times 10^{-4} \text{ km}^3/\text{yr}$; Swanson et al., 2014; Figure 5).
326 Similar compositions of primitive olivine Fo and glass MgO occur in early 19th century
327 lava, for which much higher magma supply has been inferred ($0.12\text{--}0.32 \text{ km}^3/\text{yr}$, Wright
328 and Klein, 2014). Further contradiction arises between low-supply, primitive 16th and 17th
329 century eruptions and evolved effusive eruptions during another low-supply period from
330 1850 to 1924 (Wright and Klein, 2014). Finally, an 8x increase in magma supply from
331 1950 to 2008 coincides with a dramatic decrease in olivine and glass Mg contents.
332

333 **4. Discussion**

334 The suite of major element data for olivine and glass from ~1500-2020 C.E. are evaluated
335 below to highlight several observations about the evolution of crustal processes at
336 Kīlauea. Important caveats to acknowledge include that the geologic history of Kīlauea's
337 recent centuries is still being revealed (e.g., Hazlett et al., 2019; Orr et al., 2021; though
338 these new findings are consistent with what was previously inferred), there are few data
339 (and samples) available around the turn of the 20th century and for eruptions prior to the
340 formation of the modern caldera about 500 years ago. However, the available data show
341 on a broad scale that 1) explosive and effusive periods record a spectrum of influences
342 but are dominated by very different magmatic processes and 2) changes in olivine Fo and
343 glass MgO record geochemical cycles on the order of decades to centuries that are linked
344 closely with caldera and significant crater collapses at Kīlauea's summit.

345

346 ***4.1. Explosive and effusive eruptive periods are dominated by fundamentally different
347 magmatic processes***

348 Olivine crystals from the modern effusive period are dominated by relatively evolved
349 Fo₈₁ compositions (Figure 3) that reflect a buffered crustal reservoir system in which
350 storage and fractional crystallization control the composition of magmas (e.g., Thornber
351 et al., 2015). The magma storage during high magma supply effusive periods (Wright and
352 Klein, 2014) is generally shallow (<5 km; e.g., Poland et al., 2014), as evidenced by the
353 overall lower glass MgO contents that dominate sustained summit and rift eruptions
354 (Figure 5). In contrast, olivine crystals from the same period are dominated by more
355 primitive \geq Fo₈₈ compositions (with a minor secondary population at \sim Fo₈₃; Figure 3) and
356 maximum glass MgO contents higher than typically seen during the modern effusive
357 period (e.g., up to 11.3 wt% MgO versus \sim 10 wt% MgO, respectively; Figure 5).
358 Although evolved compositions are present during the Keanakāko'i explosive period
359 (e.g., glass MgO <6.0 wt%, olivine <Fo₈₀), they do not represent large volumes.
360 Keanakāko'i olivine crystals show clear signs of magma mixing (chemical zoning,
361 bimodal Fo populations; Lynn et al. 2017b) between hotter recharge and residual stored
362 magma bodies shortly prior to eruption during a time when the inferred magma supply
363 rates were much lower (Swanson et al., 2014). Thus, on a first order basis, the major
364 element chemistry of the centuries-long eruptive periods largely originates from

365 fundamental differences between fractional crystallization of shallowly stored magmas
366 during high-supply effusive periods versus little evolution of mafic recharge magmas
367 during low-supply explosive periods.

368

369 ***4.2. Geochemical cycles decades to centuries long track summit collapse***

370 Superimposed on the first order differences between the explosive Keanakāko'i Tephra
371 and modern effusive periods are smaller collapse events that also disrupted the shallow
372 plumbing system (reservoirs, pathways, or both) and the dominant magmatic processes
373 operating within. During pre-collapse eruptions at Kīlauea, lava with evolved olivine and
374 glass compositions repeatedly erupts due to the dominance of fractional crystallization in
375 a mature, stable reservoir system (e.g., Helz et al., 2014a; Thornber et al., 2015).

376 Although magma mixing and/or incorporation of high-Fo mush olivine crystals (e.g.,
377 Wieser et al., 2020) does occur (evidenced by a minor population of higher-Fo olivine,
378 Figure 3b), the mafic recharge component is usually buffered by a larger amount of
379 stored magma (Wright and Fiske, 1971; Garcia et al., 2003), and fractional crystallization
380 controls the geochemistry of erupted material.

381 After caldera collapse, the development of a poorly connected system of dikes or
382 sills (Corbi et al., 2015) results in inefficient mixing of recharge and stored magmas. This
383 evolution has been documented in other volcanic systems, where abrupt changes in the
384 chemistry of erupted material showed a switch from dominantly fractional crystallization
385 to increased magma mixing following collapse events (Gavrilenko et al., 2016). The
386 highly heterogeneous olivine Fo and glass MgO in post-collapse eruptions result from
387 mixing of mafic recharge and minor amounts of stored magmas (e.g., Helz et al., 2015;
388 Lynn et al., 2017b) with more limited influence from fractional crystallization. Thus,
389 timeseries of olivine and glass major element chemistry are strong indicators of the
390 maturity of the magma plumbing system at Kīlauea and elsewhere. Repeated patterns of
391 olivine and glass major element chemistry may also be powerful tools for better forecasts
392 of Kīlauea's eruptive behavior.

393

394 ***4.3. Small collapse events apparently do not impact crustal processes***

395 Small summit collapse events on the order of 100 m of subsidence occurred between
396 1823 and 1924 when most of Kīlauea's eruptive activity was confined within the summit
397 caldera. At that time, a sustained but diminishing lava lake dominated eruptive activity,
398 with three east rift eruptions (1840, 1922, 1923), and three small caldera and Kīlauea Iki
399 eruptions in 1832, 1868, and 1877 (Orr et al, 2021). Unfortunately, few analyses of glass
400 and olivine exist for these eruptions, only the most recent (e.g., 1885, 1894) lava lake
401 overflows are preserved on the caldera floor, and older flows exposed in 2018 fault
402 scarps remain unsampled. However, highly variable Pb isotopic compositions of lavas
403 from 1912-1924 indicate that the magmas were poorly homogenized, and Pietruszka et al.
404 (2019) inferred that a major disruption to Kīlauea's summit reservoir must have occurred
405 prior to 1912.

406 The 1885 and 1894 flows are fractionated; glass contains 6.0-7.5 wt% MgO, few
407 olivine phenocrysts (< 2 vol.%), and are clinopyroxene and plagioclase-rich (Garcia et
408 al., 2003). The new olivine analyses for the 1885 lava have a Fo₇₉ mode (Figure 4),
409 consistent with a shallow long-lived reservoir buffered to evolved compositions. Major
410 and trace element whole-rock data also indicate efficient mixing of recharge and stored
411 magmas in a single summit reservoir (Pietruszka and Garcia 1999; Garcia et al., 2003)
412 that repeatedly experienced draining and subsidence events on the order of 100 m or
413 more during this time (Macdonald et al., 1983; Wright and Klein, 2014). These small
414 collapse events apparently did not significantly disrupt the shallow reservoir system,
415 although data for this time period are perhaps insufficient to assess the impact of any
416 collapse prior to 1924.

417

418 ***4.4. A geochemical indicator for inferring summit collapse in the geologic record?***

419 Using the patterns in olivine and glass major element chemistry outlined here, time series
420 data might be leveraged to identify unobserved or poorly recorded summit collapse
421 events. The observed enlargement of Halema‘uma‘u crater in 1924 and the possible
422 collapse accompanying the 1790 eruption are thought to have significantly disrupted the
423 summit reservoir system and have been associated with major changes at Kīlauea such as
424 a shift in isotopic composition in 1924 that is probably related to changes in mantle
425 melting productivity (Pietruszka and Garcia, 1999). There is no direct evidence or

426 observations of a large crater collapse in 1790, but mapped fissures and lava flows on the
427 lower East Rift Zone have been interpreted to have formed in 1790 (Moore and Trusdell,
428 1991; Trusdell and Moore, 2006). This interpretation would be consistent with draining
429 of reestablished summit reservoir(s) and related collapse.

430 Given these similarities, the additional time series context of olivine and glass
431 major element data further supports a possible collapse in 1790. Beginning with the
432 Keanakāko'i Unit E (~1650 C.E.), primary olivine modes began to decrease (Figure 4)
433 and glass MgO contents continued toward more evolved compositions up to the 1790
434 eruption (Figure 5). While there are as yet no olivine data for eruptions that occurred
435 between the interbedded circumferential lava flow (1670-1700 C.E.; unit 1790f of Neal
436 and Lockwood, 2003) and Unit K1 (early 1800s) the downward trajectory from 1650-
437 1700 in olivine and glass, and evolved glass composition in 1790, suggest the influence
438 of an increasingly well-established shallow reservoir. These lines of evidence suggest that
439 the decreasing olivine Fo established by 1670 C.E. reflects a geochemical cycle that
440 ended with collapse in 1790. Thus, time series of olivine Fo and glass MgO may be used
441 to identify unobserved or poorly recorded summit collapse events at Kīlauea and
442 elsewhere. These evolved signatures suggest that a mature and buffered reservoir system
443 may be a key requirement for disruptions of volcanic plumbing systems that are
444 significant enough to result in collapse events.

445

446 ***4.5. Reservoir system recovery time influenced by magma supply rates?***

447 On a broad scale, Kīlauea's eruptive cycles apparently correlate with order-of-magnitude
448 changes in inferred magma supply rate to the edifice (Swanson et al., 2014). Inferences of
449 explosive-period magma supply are based on erupted volumes of dominantly tephra
450 deposits around Kīlauea's summit caldera, which may not include any intra-caldera
451 deposits and/or lava flows that might have erupted within the existing deep caldera
452 (possibly greater than 600 m deep; Swanson et al., 2014). Variations in magma supply
453 within explosive periods also cannot be determined with available data. Trace element
454 ratios in Keanakāko'i Tephra glasses also cannot resolve high- versus low-supply
455 debates, as low ratios of highly over moderately incompatible elements (e.g., Nb/Y and
456 La/Yb) might be explained by either higher degrees of partial melting (and thus higher

457 rates of magma supply) or melting of a mantle source that has been previously melted
458 (resulting in lower magma supply to the volcano; Garcia et al., 2018).

459 Despite these uncertainties for the Keanakāko'i explosive period, magma supply
460 rates that are well constrained for the modern effusive period do not systematically
461 correlate with olivine Fo or glass MgO compositions on the decadal scale (Figures 4 and
462 5), indicating that the major element composition of olivine and glasses of lava in
463 individual eruptions cannot be predominantly related to changes in magma supply rate.
464 The time series of major element chemistry presented here suggests that magma supply
465 might dictate the rate of magmatic system recovery following disruptive collapse events.

466 The collapse of Kīlauea's summit caldera in about 1500 C.E. significantly
467 disrupted or destroyed the plumbing system present at the time, possibly leaving behind
468 only small, isolated pockets of stored magma (Swanson et al., 2014; Lynn et al., 2017b;
469 Swanson and Houghton, 2018). Plumbing system recovery was slow during the
470 Keanakāko'i period, with high-Fo olivine modes and high MgO glasses occurring for
471 nearly three centuries until the possible small summit collapse in 1790 C.E. Kīlauea's
472 eruptive output during this time was also ~2% that of the modern effusive period, leading
473 to inferences that magma supply to the volcano following caldera collapse was much
474 lower than during the modern effusive period (Swanson et al., 2014).

475 Low supply in the absence of a well-established reservoir system during the
476 Keanakāko'i period allows more primitive material to erupt without prolonged crustal
477 storage, yielding heterogeneous olivine populations (Fo₉₀₋₇₈; Figure 4) and higher-MgO
478 glasses (6.5-11.1 wt%; Figure 5). Toward the middle of the Keanakāko'i period, bimodal
479 olivine populations with decreasing Fo primary modes and persistent Fo₈₃₋₈₄ secondary
480 modes (Figure 4) indicate that a shallow, semi-stable reservoir of stored magma was
481 probably being restored (Lynn et al., 2017b). However, the primary modes remain at Fo₈₉
482 for ~200 years after caldera collapse in ~1500 C.E. before starting to evolve, suggesting
483 that plumbing system recovery and reservoir development was slow.

484 In contrast, the olivine Fo modes evolved rapidly after the 1924 enlargement of
485 Halema‘uma‘u crater, to Fo₈₄ by the end of the Maunaulu eruption 90 years later. Magma
486 supply rates have been calculated to be much higher during the modern effusive period
487 (Figure 5) than during the preceding explosive period, correlating with inferences of a

488 buffered reservoir system (e.g., Thornber et al., 2015), generating low-Fo olivine and
489 low-MgO glasses. Higher supply during the effusive period might explain the faster
490 recovery (e.g., tens of years) of shallow buffering reservoirs compared to the prolonged
491 recovery of the plumbing system in the centuries immediately following caldera collapse.

492 The roughly two centuries of $\geq\text{Fo}_{88}$ modes during the Keanakāko'i period might
493 also reflect more significant disruption of both magma pathways and reservoir(s)
494 compared to the inferred 1790 collapse and 1924 crater enlargement. The recovery cycles
495 following the smaller events in 1790 and 1924 could be much shorter because they
496 disrupted established shallow magma pathways but had little impact on the stability of
497 the shallow reservoir(s). Or the shorter recovery could also be linked to higher supply
498 rates following those events (Wright and Klein, 2014). Thus, it is difficult to confidently
499 link the impact of magma supply to the chemical cycles observed here beyond first order
500 comparisons between explosive and effusive periods.

501

502 ***4.6. Geochemical cycles parallel Holcomb model of Kīlauea's evolution***

503 The olivine and glass major element chemical cycles outlined here roughly parallel cycles
504 of Kīlauea's evolution outlined by Holcomb (1987). Holcomb's caldera-dominated model
505 features shifts in magma storage as successive calderas form, fill, and collapse: "caldera
506 collapse arises from changes in magma plumbing, and collapse in turn causes changes in
507 the plumbing, acting as a feedback mechanism of an oscillatory system... with each
508 perturbation disrupting the plumbing system and followed by evolutionary reintegration
509 of the plumbing system." The evolution from high-Fo olivine and high-MgO glasses to
510 low-Fo olivine and low-MgO glasses three times over the past 500+ years provides
511 evidence of Kīlauea's plumbing system recovery following summit collapse events.
512 Holcomb (1987) also acknowledged that these evolution cycles were "very complicated
513 but possibly predictable harmonic patterns of eruption might ensue," and the chemical
514 cycles outlined here represent additional chemical patterns that track the volcano's
515 evolution via repeating long-term trends.

516 The progressive change from high-Fo and high-MgO to evolved compositions
517 parallels the proposed eruptive model (Holcomb, 1987), which suggested that rift activity
518 waxed as summit activity waned. Beginning in 1950, a dramatic 8x increase in magma

519 supply over the course of a few decades (Wright and Klein, 2014) led to the development
520 of at least two stable summit magma reservoirs, a larger body at 3-5 km depth and
521 smaller body around 1-2 km depth (Poland et al., 2014; Pietruszka et al., 2015). The
522 decreasing trend of olivine Fo and glass MgO contents in eruptions from 1959 to 2018
523 (Figures 4 and 5) corroborates interpretations that during periods of high magma supply
524 the magmatic system has increasingly stable shallow reservoirs that buffer magma
525 compositions at lower Mg# (Wright and Fiske, 1971; Garcia et al., 2003).

526 Sustained rift zone activity is closely linked to the summit reservoir system,
527 requiring a nearly continuous supply of magma to increasingly distant vents (e.g.,
528 downrift evolution between Maunaulu, Pu‘u‘ō‘ō, and the 2018 LERZ eruption). Efficient
529 mixing in a 3-5 km deep magma reservoir (e.g., Poland et al., 2014; Pietruszka et al.,
530 2015), in which primitive recharge magmas are buffered by large volumes of resident
531 magma at more evolved compositions, promotes continuously evolving olivine Fo
532 contents and increasingly lower glass MgO contents. This interpretation explains why
533 more primitive Fo contents ($> \text{Fo}_{85}$) have only rarely been observed in the past 30 years
534 (with the exception of the 2018 LERZ eruption [Wieser et al., 2020; Lerner et al., 2021]
535 and the recent 2020-2021 Halema‘uma‘u eruption).

536 Although the geochemical cycles presented here generally agree with the
537 Holcomb (1987) model, that model was developed during a time where there were few
538 radiometric ages and little knowledge of the explosive history of Kīlauea. The collapses
539 in the Holcomb model are mostly small compared to caldera forming events that mark a
540 change from an effusive to an explosive period (Swanson et al., 2014). Those much
541 larger collapses impact the magmatic system profoundly, as evidenced by the centuries of
542 reservoir recovery recorded by glass and olivine following the caldera formation in 1500
543 C.E. The ensuing centuries of eruptive activity may be associated with much smaller
544 events (e.g., 1790, 1924, 2018), constituting elements of the Holcomb model.
545 Furthermore, evidence of an effusive eruption low on the East Rift Zone has not been
546 recognized before the 1500 C.E. summit collapse, so the close relation between summit
547 collapse and LERZ eruptions implied by the Holcomb model (Holcomb et al., 1988)
548 remains problematic. Further geochemical study of the transition from the Observatory
549 Shield and subsequent ‘Ailā‘au flows (Holcomb, 1987; Neal and Lockwood, 2003; 1000-

550 1500 C.E.) to the Keanakāko'i Tephra period will yield critical insights into the processes
551 that lead to large caldera forming events. However, the major element geochemical
552 cycles described here help to distinguish between the larger effusive-explosive cycle
553 identified by Swanson et al. (2014) and the smaller Holcomb (1987) cycles.

554

555 ***4.7. The 2018 summit collapse may have had minimal impact on reservoirs***

556 The recent 2018 LERZ eruption and coeval summit collapse (Neal et al., 2019) is an
557 important demonstration of how such events can affect the major element chemistry of
558 subsequent eruptions. A large intrusion into the LERZ that began in May 2018 partially
559 drained the shallow Halema‘uma‘u reservoir (Anderson et al. 2019), leading to the most
560 significant collapse event in the past 200 years (Neal et al., 2019). After a little over 2
561 years of subsequent quiescence, eruptive activity returned to Kīlauea’s summit in
562 Halema‘uma‘u crater in December 2020. The return of eruptive activity in the summit fits
563 with the Holcomb (1987) model, wherein summit collapse might interrupt dikes
564 transporting magma into rift zones (Fiske and Jackson, 1972) and subsequently cause
565 changes in long-term eruption patterns.

566 Prior to the 2018 summit collapse, lava flows from Pu‘u‘ō‘ō had glass MgO
567 contents around 6.3 wt% (Figure 5), similar to the flows in the Observatory Shield and
568 ‘Ailā‘au flow field (Clague et al., 1999) that predate the modern caldera. The recurrence
569 of evolved compositions prior to significant summit collapse events indicates that the
570 development of a semi-stable and volumetrically significant reservoir might be necessary
571 before collapse can occur. The presence of this reservoir is evidenced by the evolved
572 olivine and melt compositions, which are useful indicators of a mature plumbing system
573 that can be applied to the older eruptive record.

574 Following the 2018 collapse, the 2020 summit eruption yielded a bimodal
575 population of olivine compositions with a peak at Fo₈₈, following the patterns defined by
576 the previous ~500 years of activity (Figure 4). Notably, the composition of glass in the
577 2020 tephra did not rebound and instead clusters around ~7.0 wt% MgO, consistent with
578 fractionated magmas (Figure 5). These low-MgO glasses are very different from the high
579 MgO glass compositions that followed caldera collapse in 1500 C.E., yet similar to the
580 few geochemical data for eruptions shortly after the 1924 crater enlargement (7.0-8.0

581 wt% MgO; Figure 5). Thus, the impacts of the 2018 collapse appear to be on a much
582 smaller scale, and potentially caused by different processes, than those resulting from
583 caldera formation in 1500 C.E. Despite the dramatic events of 2018 the collapse may
584 have only disrupted magma pathways and not strongly impacted the reservoir(s),
585 consistent with models showing that only 11-33% of the total magma in the shallow
586 Halema‘uma‘u reservoir was withdrawn by the 2018 eruption (Anderson et al., 2019).
587 Alternatively, high magma supply evidenced by two order of magnitude increases in
588 seismicity underneath the Island of Hawai‘i (beginning in 2015 and ongoing; Burgess and
589 Roman, 2021) may be driving accelerated system recovery after the collapse.

590

591 **5. Conclusions**

592 Major element chemistry in olivine and glass from Kīlauea’s past 500+ years provides
593 simple yet powerful tools for interpreting changes in the crustal reservoir system and the
594 dominant magmatic processes operating within it. The most recent explosive and effusive
595 periods are dominated by fundamentally different crustal processes. The Keanakāko‘i
596 Tephra explosive period is characterized by recharge of mafic magmas with little storage
597 in a disrupted reservoir system during a period of overall lower magma supply. During
598 the modern effusive period mafic recharge magmas are buffered by magma reservoirs
599 that are capable of sustaining long-lived eruptions during periods of higher magma
600 supply. Both periods show that magma mixing is a ubiquitous process at Kīlauea,
601 regardless of explosive versus effusive period distinction.

602 Superimposed on the explosive-effusive periods are three decades- to centuries-
603 long cycles of increasingly evolved olivine Fo and glass MgO in 500+ years of Kīlauea
604 lavas and tephra. Each cycle apparently begins with a caldera or crater collapse event,
605 inferred to disrupt the magmatic system. Prior to caldera and crater collapse, olivine and
606 glass compositions are fractionated, suggesting that a mature and buffered reservoir
607 system may be a key requirement for disruptions of volcanic plumbing systems that are
608 significant enough to result in collapse events. Eruptions that follow collapse events
609 typically reflect mafic compositions, suggesting inefficient mixing of recharge and stored
610 magmas in the absence of a volumetrically significant stable reservoir. The historically
611 unprecedented 2018 summit collapse generally follows these patterns, with evolved

612 olivine and glass compositions at the summit and Pu‘u‘ō‘ō prior to collapse and Fo₈₈
613 olivine in the subsequent 2020 eruption. Thus, significant summit collapse events appear
614 to fundamentally change at least the connectivity of the crustal reservoir system, the
615 dominant magmatic processes operating within it, and ultimately the major element
616 compositions of subsequently erupted material at Kīlauea. The geochemical cycles
617 outlined here are useful for inferring past collapse events that were not observed, and the
618 concepts could be applied broadly to investigate caldera collapse and the long-term
619 evolution of volcanic systems in Hawai‘i and elsewhere.

620

621 **6. Acknowledgements**

622 Early work was supported by National Science Foundation grants OISE-1513668 and
623 EAR-1939964 to K.J. Lynn. This work would not have been possible without Stephen T.
624 Allard and the support of the Volcano Science Center Writing Group. We thank Joseph
625 R. Boro for assistance with microprobe analyses of 2020 eruption tephra, Michael O.
626 Garcia for supplying summit and Pu‘u‘ō‘ō samples for the new analyses in this study,
627 Elisabeth Gallant for discussions about population statistics and kernel density estimates,
628 and Michael O. Garcia, Thomas Shea, Timothy Rose, and Thomas L. Wright for
629 productive discussions during the development of these ideas. An early version of this
630 manuscript benefitted greatly from a detailed review by Thomas L. Wright. We thank Jim
631 Gardner for editorial handling and Silvio Mollo, R. Lopaka Lee, and an anonymous
632 reviewer for comments that improved this manuscript. Any use of trade, firm, or product
633 names is for descriptive purposes only and does not imply endorsement by the U.S.
634 Government.

635

636 **7. References**

637 Anderson, K.R., Johanson, I.A., Patrick, M.R., Gu, M., Segall, P., Poland, M.P.,
638 Montgomery-Brown, E.K., Miklius, A., 2019. Magma reservoir failure and the onset of
639 caldera collapse at Kīlauea Volcano in 2018, *Science*, 366, eaaz1822. doi:
640 10.1126/science.aaz1822

641 Armstrong, T.T., 1988. Quantitative analyses of silicate and oxide materials: Comparison
642 of Monte Carlo, ZAF, and $\phi(pz)$ procedures. In: *Microbeam Analyses*, San Francisco
643 Press, San Francisco, 239-246.

644 Biass, S., Swanson, D.A., Houghton, B.F., 2018. New perspective on the nineteenth-
645 century golden pumice deposit of Kīlauea Volcano. In: Poland, M.P., Garica, M.O.,
646 Camp, V.E., and Grunder, A. (Eds.), *Field Volcanology: A tribute to the distinguished*
647 *career of Don Swanson*. *Geol. S. Am. S.*, 538, 191-202. doi: 10.1130/2018.2538(10)

648 Bradshaw, R.W., Kent, A.J.R., Tepley, F.J., 2018. Chemical fingerprints and residence
649 times of olivine in the 1959 Kīlauea Iki eruption, Hawai‘i: Insights into picrite
650 formation. *Am. Mineral.* 103, 1812-1826. doi: 10.2138/am-2018-6331

651 Burgess, M.K., Roman, D.C., 2021. Ongoing (2015-) magma surge in the upper mantle
652 beneath the island of Hawai‘i. *Geophys. Res. Lett.* 48, e2020GL091096. doi:
653 10.1029/2020GL091096

654 Clague, D.A., Hagstrum, J.T., Champion, D.E., Beeson, M.H., 1999. Kīlauea summit
655 overflows: Their ages and distribution in the Puna District, Hawai‘i. *B. Volcanol.* 61,
656 363-381. doi: 10.1007/s004450050279

657 Corbi, F., Rivalta, E., Pinel, V., Maccaferri, F., Bagnardi, M., Acocella, V., 2015. How
658 caldera collapse shapes the shallow emplacement and transfer of magma in active
659 volcanoes. *Earth Planet Sc. Lett.* 431, 287-293, doi: 10.1016/j.epsl.2015.09.028.

660 Ellis, W., 1827. *Narrative of a tour through Hawaii, or Owhyhee; With observations on*
661 *the natural history of the Sandwich Islands, and remarks on the manners, customs,*
662 *traditions, history, and language of their inhabitants.* H Fisher, Son, and P. Jackson, 2nd
663 ed., 480 p.

664 Fiske, R.S., Jackson, E.D., 1972. Orientation and growth of Hawaiian volcanic rifts: The
665 effect of regional structure and gravitational stresses. *Proc. R. Soc. Lond. A*, 329, 299-
666 326. doi: 10.1098/rspa.1972.0115

667 Gansecki, C., Lee, R. L., Shea, T., Lundblad, S. P., Hon, K., Parcheta, C., 2019. The
668 tangled tale of Kīlauea's 2018 eruption as told by geochemical monitoring. *Science*,
669 366(December), 1–9. doi: 10.1126/science.aaz0147

670 Garcia, M.O., Pietruszka, A.J., Rhodes, J.M., 2003. A petrologic perspective of Kīlauea
671 Volcano's summit magma reservoir. *J. Petrol.* 44, 2313–2339. doi:
672 10.1093/petrology/egg079

673 Garcia, M.O., Mucek, A.E., Lynn, K.J., Swanson, D.A., Norman, M.D., 2018.
674 Geochemical evolution of Keanakāko'i Tephra, Kīlauea Volcano, Hawai'i. In: Poland,
675 M.P., Garica, M.O., Camp, V.E., and Grunder, A. (Eds.), *Field Volcanology: A tribute*
676 to the distinguished career of Don Swanson. *Geol. S.Am. S.*, 538, 203–225. doi:
677 10.1130/2018.2538(09)

678 Gavrilenko, M., Ozerov, A., Kyle, P.R., Carr, M.J., Nikulin, A., Vidito, C.,
679 Danyushevsky, L., 2016. Abrupt transition from fractional crystallization to magma
680 mixing at Gorely volcano (Kamchatka) after caldera collapse. *B. Volcanol.* 78, 1–47.
681 doi: 10.1007/s00445-016-1038-z

682 Hazlett, R.W., Orr, T.R., Lundblad, S.P., 2019. Undocumented late 18th- to early 19th-
683 century volcanic eruptions in the southwest rift zone of Kīlauea Volcano, Hawai'i.
684 USGS Sci. Inv. Rep., 5010, 13 p. doi: 10.3133/sir20195010

685 Helz, R.T., 1987. Diverse olivine types in lava of the 1959 eruption of Kilauea Volcano
686 and their bearing on eruption dynamics, in Decker, R.W., Wright, T.L., Stauffer, P.H.,
687 (Eds.), *Volcanism in Hawaii*. USGS Prof. Pap. 1350, 691–722.

688 Helz, R.T., 2022. Proportions, timing, and re-equilibration progress during the 1959
689 summit eruption of Kīlauea: An example of magma mixing processes operating during
690 OIB petrogenesis. *J. Petrol.* egab091. doi: 10.1093/petrology/egab091.

691 Helz, R.T., Thornber, C.R., 1987. Geothermometry of Kilauea Iki lava lake, Hawaii.
692 *Bull. Volcanol.*, 49, 651–668. doi: 10.1007/BF01080357

693 Helz, R.T., Banks, N.G., Heliker, C., Neal, C.A., Wolfe, E.W., 1995. Comparative
694 geothermometry of recent Hawaiian eruptions. *J. Geophys. Res.* 100, 17,637–17,657.
695 doi: 10.1029/95JB01309

696 Helz, R.T., Clague, D.A., Sisson, T.W., and Thornber, C.R., 2014a. Petrologic insights
697 into basaltic volcanism at active Hawaiian volcanoes, in Poland, M.P., Garcia, M.O.,

698 Camp, V.E., Grunder, A., (Eds.), Characteristics of Hawaiian Volcanoes. USGS Prof.
699 Pap. 1801, 237-292. doi: 10.3133/pp18016

700 Helz, R.T., Clague, D.A., Mastin, L.G., and Rose, T.R., 2014b. Electron microprobe
701 analyses of glasses from Kīlauea tephra units, Kīlauea Volcano, Hawai‘i. USGS Open
702 File Rep. 2014-1090, 24 p. doi: 10.3133/ofr20141090

703 Helz, R.T., Clague, D.A., Mastin, L.G., Rose, T.R., 2015. Evidence for large
704 compositional ranges in coeval melts erupted from Kīlauea’s summit reservoir, in
705 Carey, R., Cayol, V., Poland, M., Weis, D., (Eds.), Hawaiian Volcanoes: From Source
706 to Surface. AGU Geophys. Mono. 208. 125-145. doi: 10.1002/9781118872079

707 Helz, R.T., Wright, T.L., 1992. Differentiation and magma mixing on Kilauea’s east rift
708 zone: A further look at the eruptions of 1955 and 1960. Part 1. The late 1955 lavas. B.
709 Volcanol., 54, 361-384. doi: 10.1007/BF00312319

710 Holcomb, R.T., 1987, Eruptive history and long-term behavior of Kilauea Volcano, in
711 Decker, R.W., Wright, T.L., Stauffer, P.H., (Eds.), Volcanism in Hawaii. USGS Prof.
712 Pap. 1350. 261-350.

713 Holcomb, R.T., Moore, J.G., Lipman, P.W., Belderson, R.H., 1988, Voluminous
714 submarine lava flows from Hawaiian volcanoes. Geology, 16, 400-404. doi: 10.1130/
715 0091-7613(1988)016<0400:VSLFFH>2.3.CO;2

716 Isgett, S.J., Houghton, B.F., Swanson, D.A., 2018. Eruption and emplacement dynamics
717 of coarse-grained, wall-rock rich beds in the Keanakāko’i Tephra, Kīlauea, Hawai‘i. In:
718 Poland, M.P., Garica, M.O., Camp, V.E., and Grunder, A., (Eds.), Field Volcanology:
719 A tribute to the distinguished career of Don Swanson. Geol. S. A. S., 538, 191-202. doi:
720 10.1130/2018.2538(08)

721 Jarosewich, E., Nelen, J.A., Norberg, J.A., 1980. Reference samples for electron
722 microprobe analysis. Geos. News. 4, 43-47. doi: 10.1111/j.1751-908X.1980.tb00273.x

723 Lerner, A. H., Wallace, P. J., Shea, T., Mourey, A. J., Kelly, P. J., Nadeau, P. A., Elias,
724 T., Kern, C., Clor, L. E., Gansecki, C., Lee, R. L., Moore, L. R., Werner, C. A. (2021).
725 The petrologic and degassing behavior of sulfur and other magmatic volatiles from the
726 2018 eruption of Kīlauea, Hawai‘i: melt concentrations, magma storage depths, and
727 magma recycling. B. Volcanol., 83(6), 43. doi: 10.1007/s00445-021-01459-y

728 Lynn, K.J., 2022. Olivine and glass analyses for select eruptions of Kīlauea Volcano,
729 Hawai‘i. USGS Data Release, doi: 10.5066/P9HA3PRK

730 Lynn, K. J., Shea, T., Garcia, M. O., 2017a. Nickel variability in Hawaiian olivine:
731 Evaluating the relative contributions from mantle and crustal processes. *Am. Min.*, 102,
732 507–518. doi: 10.2138/am-2017-5763

733 Lynn, K. J., Garcia, M. O., Shea, T., Costa, F., Swanson, D. A., 2017b. Timescales of
734 mixing and storage for Keanakāko‘i Tephra magmas (1500–1820 C.E.), Kīlauea
735 Volcano, Hawai‘i. *Con. Min. Pet.*, 172(9). doi: 10.1007/s00410-017-1395-4

736 Lynn, K.J., Shea, T., Garcia, M.O., Costa, F., Norman, M.D., 2018. Lithium diffusion in
737 olivine records magmatic priming of explosive basaltic eruptions. *Earth Planet. Sci.*
738 *Lett.*, 500, 127-135. doi: 10.1016/j.epsl.2018.08.002

739 Lynn, K.J., Garcia, M.O., Shea, T., 2020. Phosphorus coupling obfuscates lithium
740 geospeedometry in olivine. *Front. Earth Sci.*, 8, 135. doi: 10.3389/feart.2020.00135

741 Maaløe, S., Pederson, R.B., James, D., 1988. Delayed fractionation of basaltic lavas.
742 *Cont. Min. Pet.*, 98, 401-407.

743 Macdonald, G.A., Abbott, A.T., Peterson, F.L., 1983. *Volcanoes in the Sea: The Geology*
744 *of Hawaii*. Univ.Hawaii Press, Honolulu, HI, 517 p.

745 Montierth, C., Johnston, A.D., Cashman, K.V., 1995. An empirical glass-composition-
746 based geothermometer for Mauna Loa lavas, in Rhodes J.M., Lockwood, J.P., (Eds.),
747 *Mauna Loa Revealed: Structure, Composition, History, and Hazards*. AGU Geophys.
748 Mono. 92, 201-217. doi: 10.1029/GM092p0207

749 Moore, R.B., Trusdell, F.A., 1991. Geologic map of the lower east rift zone of Kilauea
750 Volcano, Hawaii. USGS IMAP, 2225. doi: 10.3133/i2225

751 Neal, C.A., et al., 2019. The 2018 rift eruption and summit collapse of Kīlauea Volcano.
752 *Science*, 363, 367-374. doi: 10.1126/science.aav7046

753 Neal, C.A., Lockwood, J.P., 2003. Geologic map of the summit region of Kīlauea
754 Volcano, Hawaii. USGS Geol. Inves. Ser. I, 2759. doi: 10.3133/i2759

755 Orr, T.R., Hazlett, R., DeSmither, L., Kauahikaua, J., Gaddis, B., 2021. Correcting the
756 historical record for Kīlauea Volcano’s 1832, 1868, and 1877 summit eruptions. *J.*
757 *Volcanol. Geotherm. Res.*, 410, 107168. doi: j.jvolgeores.2020.107168

758 Pietruszka, A.J., Garcia, M.O., 1999. A rapid fluctuation in the mantle source and melting
759 history of Kilauea volcano inferred from geochemistry of its historical summit lavas
760 (1790-1982). *J. Petrol.* 40, 1321-1342. doi: 10.1093/petroj/40.8.1321

761 Pietruszka, A.J., Heaton, D.E., Garcia, M.O., Marske, J.P., 2019. Explosive summit
762 collapse of Kīlauea Volcano in 1924 preceded by a decade of crustal contamination and
763 anomalous Pb isotope ratios. *Geochim. Cosmochim. Acta*, 258, 120-137. doi:
764 10.1016/j.gca.2019.05.029

765 Pietruszka, A.J., Heaton, D.E., Marske, J.P., Garcia, M.O., 2015. Two magma bodies
766 beneath the summit of Kilauea volcano unveiled by isotopically distinct melt deliveries
767 from the mantle. *Earth Planet. Sci. Lett.* 413, 90-100. doi: 10.1016/j.epsl.2014.12.040

768 Poland, M.P., Miklius, A., Sutton, A.J., Thornber, C.R., 2012. A mantle-driven surge in
769 magma supply to Kīlauea Volcano during 2003-2007. *Nature Geos.*, 5, 295-300. doi:
770 10.1038/ngeo1426

771 Poland, M.P., Miklius, A., Montgomery-Brown, E.K., 2014. Magma supply, storage, and
772 transport at shield-stage Hawaiian volcanoes, in Poland, M.P., Garcia, M.O., Camp,
773 V.E., Grunder, A., (Eds.), *Characteristics of Hawaiian Volcanoes*. USGS Prof. Pap.
774 1801, 179-234. doi: 10.3133/pp10815

775 Powers, H.A., 1948. A chronology of the explosive eruptions at Kilauea. *Pacific Sci.* 2,
776 278-292.

777 Roeder, P.L., Emslie, R.F., 1970. Olivine-liquid equilibrium, *Cont. Mineral. Petrol.*, 29,
778 275-289. doi: 10.1007/BF00371276

779 Richter, D.H., Eaton, J.P., Murata, K.J., Ault, W.U., Krivoy, H.L., 1970. Chronological
780 narrative of the 1959-1960 eruption of Kilauea Volcano, Hawai‘i. USGS Prof. Pap.
781 537-E, 1-70.

782 Sides, I.R., Edmonds, M., MacLennan, J., Swanson, D.A., Houghton, B.F., 2014. Eruption
783 style at Kīlauea Volcano in Hawai‘i linked to primary melt composition. *Nature Geos.*,
784 7, 464-469. doi: 10.1038/ngeo2140

785 Stone, W.E., Fleet, M.E., 1991. Nickel-copper sulfides from the 1959 eruption of Kilauea
786 volcano, Hawai‘i: Contrasting compositions and phase relations in eruption pumice and
787 Kilauea Iki lava lake. *Am. Mineral.*, 76, 1363-1372.

788 Swanson, D.A., Rose, T.R., Fiske, R.S., McGeehin, J.P., 2012. Keanakāko‘i Tephra
789 produced by 300 years of explosive eruptions following collapse of Kīlauea’s caldera in
790 about 1500 CE. *J. Volc. Geotherm. Res.* 215-216, 8-25, doi:
791 10.1016/j.jvolgeores.2011.11.009.

792 Swanson, D.A., Rose, T.R., Mucek, A.E., Garcia, M.O., Fiske, R.S., Mastin, L.G., 2014,
793 Cycles of explosive and effusive eruptions at Kīlauea Volcano, Hawaii. *Geology* 42,
794 631-634. doi: 10.1130/G35701.1

795 Swanson, D.A., Weaver, S.J., Houghton, B.F., 2015. Reconstructing the deadly eruptive
796 events of 1790 CE at Kīlauea Volcano, Hawai‘i. *Geol. S. Am. Bull.*, 127, 503-515. doi:
797 10.1130/B31116.1

798 Swanson, D.A., and Houghton, B.F., 2018. Products, processes, and implications of
799 Keanakāko‘i volcanism, Kīlauea Volcano, Hawai‘i. In: Poland, M.P., Garica, M.O.,
800 Camp, V.E., and Grunder, A. (Eds.), *Field Volcanology: A tribute to the distinguished*
801 *career of Don Swanson*. *Geol. S. Am.* S., 538, 159-202. doi: 10.1130/2018.2538(07)

802 Thomson, A., MacLennan, J., 2013. The distribution of olivine compositions in Icelandic
803 basalts and picrites. *J Petrol.* 54, 745-768. doi: 10.1093/petrology/egs083

804 Thornber, C.R., Orr, T.R., Heliker, C., Hoblitt, R.P., 2015. Petrologic testament to
805 changes in shallow magma storage and transport during 30+ years of recharge and
806 eruption at Kīlauea Volcano, Hawai‘i, in Carey, R., Cayol, V., Poland, M.P., Weis, D.,
807 (Eds.), *Hawaiian Volcanoes: From Source to Surface*. AGU Geophys. Monog. 208,
808 147-188. doi: 10.1002/9781118872079.ch8

809 Tilling, R.I., Dvorak, J.J., 1993. Anatomy of a basaltic volcano, *Nature*, 363, 125-133.
810 doi: 10.1038/363125a0

811 Trusdell, F.A., 1991. The 1840 eruption of Kīlauea Volcano: Petrologic and volcanologic
812 constraints on rift zone processes. [M.S. thesis]: Honolulu, Univ. Hawai‘i, 109 p.

813 Trusdell, F.A., Moore, R.B., 2006. Geologic map of the middle east rift geothermal
814 subzone, Kīlauea Volcano, Hawai‘i. USGS IMAP, 2614. doi: 10.3133/i2614

815 Tuohy, R.M., Wallace, P.J., Loewen, M.W., Swanson, D.A., Kent, A.J.R., 2016. Magma
816 transport and olivine crystallization depths in Kīlauea’s east rift zone inferred from
817 experimentally rehomogenized melt inclusions. *Geochim. Cosmochim. Acta*, 185, 232-
818 250. doi: 10.1016/j.gca.2016.04.020

819 Vinet, N., Higgins, M.D., 2010. Magma solidification processes beneath Kilauea
820 Volcano, Hawaii: A quantitative texture and geochemical study of the 1969-1974
821 Mauna Ulu lavas. *J. Petrol.* 51, 1297-1332. doi: 10.1093/petrology/egq020

822 Vinet, N., Higgins, M.D., 2011. What can crystal size distributions and olivine
823 compositions tell us about magma solidification processes inside Kilauea Iki lava lake,
824 Hawaii? *J. Volcanol. Geotherm. Res.* 208, 136-162. doi:
825 10.1016/j.volgeores.2011.09.006

826 Walker, B.H., Garcia, M.O., Orr, T.R., 2020. Petrologic insights into rift zone magmatic
827 interactions from the 2011 eruption of Kīlauea Volcano, Hawai‘i. *J. Petrol.*, 60, 2051-
828 2076. doi: 10.1093/petrology/egz064

829 Wieser, P. E., Lamadrid, H., Maclennan, J., Edmonds, M., Matthews, S., Iacovino, K.,
830 Jenner, F. E., Gansecki, C., Trusdell, F., Lee, R. L., Ilyinskaya, E., 2021.
831 Reconstructing Magma Storage Depths for the 2018 Kīlauean Eruption from Melt
832 Inclusion CO₂ Contents: The Importance of Vapor Bubbles. *Geochem. Geophys.*
833 *Geosys.*, 22, 1–30. doi: 10.1029/2020GC009364

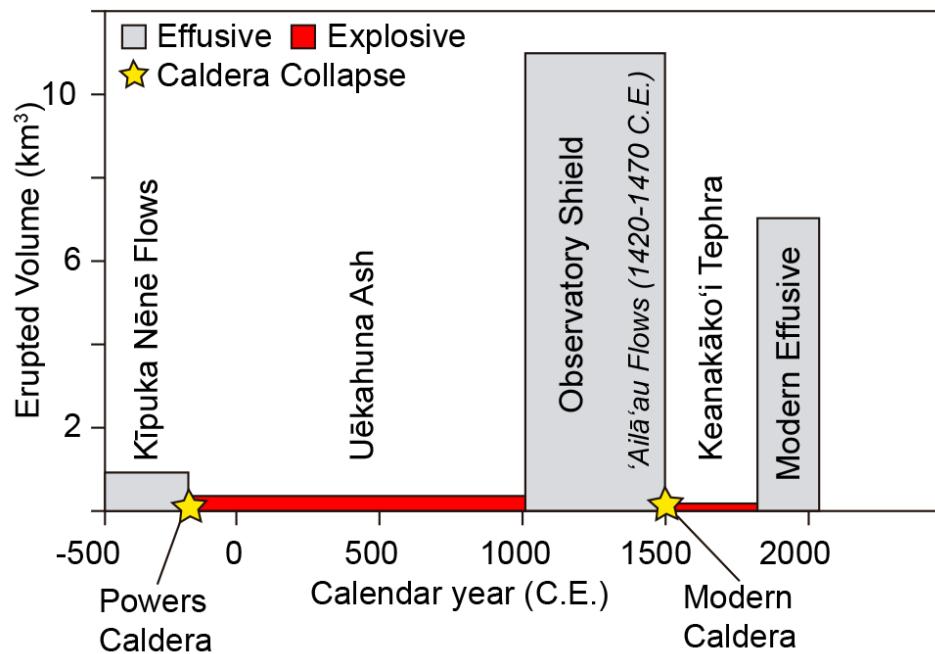
834 Wieser, P. E., Edmonds, M., Maclennan, J., Wheeler, J., 2020. Microstructural
835 constraints on magmatic mushes under Kīlauea Volcano, Hawai‘i. *Nat. Comm.*, 11:14.
836 doi: 10.1038/s41467-019-13635-y

837 Wieser, P.E., Edmonds, M., Maclennan, J., Jenner, F.E., Kunz, B.E., 2019. Crystal
838 scavenging from mush piles recorded by melt inclusions. *Nat. Comm.* 10, 5797. doi:
839 10.1038/s41467-019-13518-2

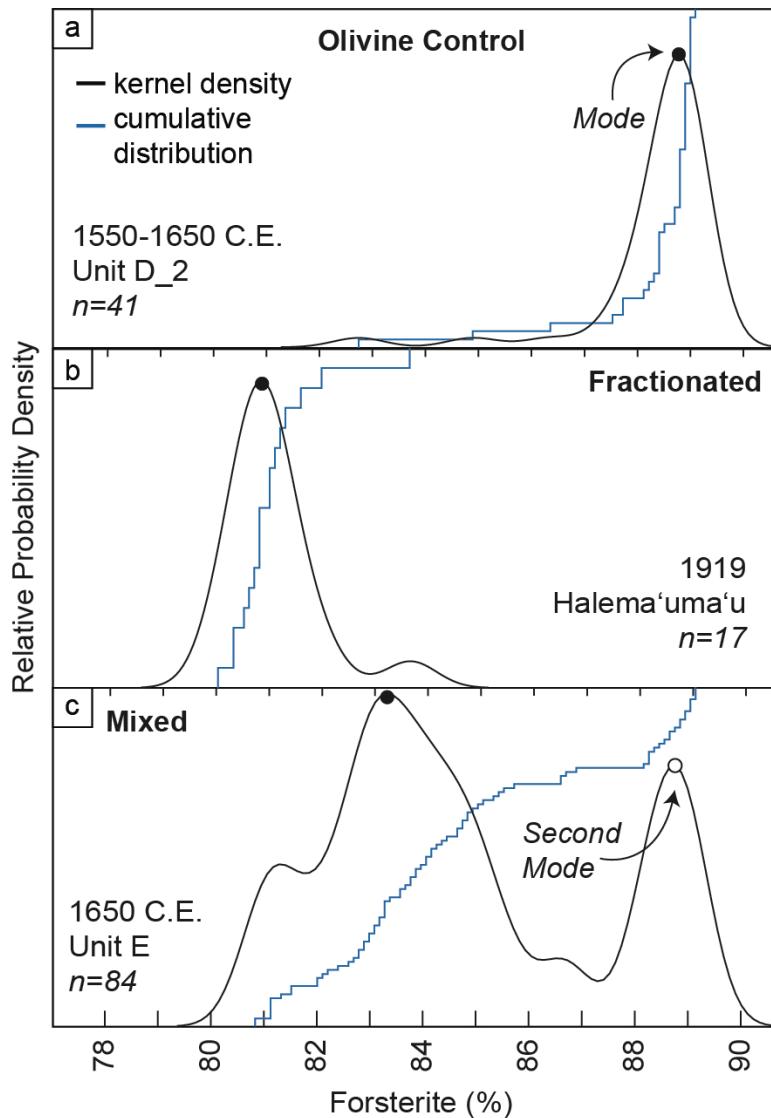
840 Wright, T.L., Fiske, R.S., 1971. Origin of the differentiated and hybrid lavas of Kilauea
841 Volcano, Hawaii. *J. Petrol.* 12, 1-65. doi: 10.1093/petrology/12.1.1

842 Wright, T.L., Swanson, D.A., Duffield, W.A., 1975. Chemical compositions of Kilauea
843 east-rift lava, 1968-1971. *J. Petrol.*, 16, 110-133. doi: 10.1093/petrology/16.1.110

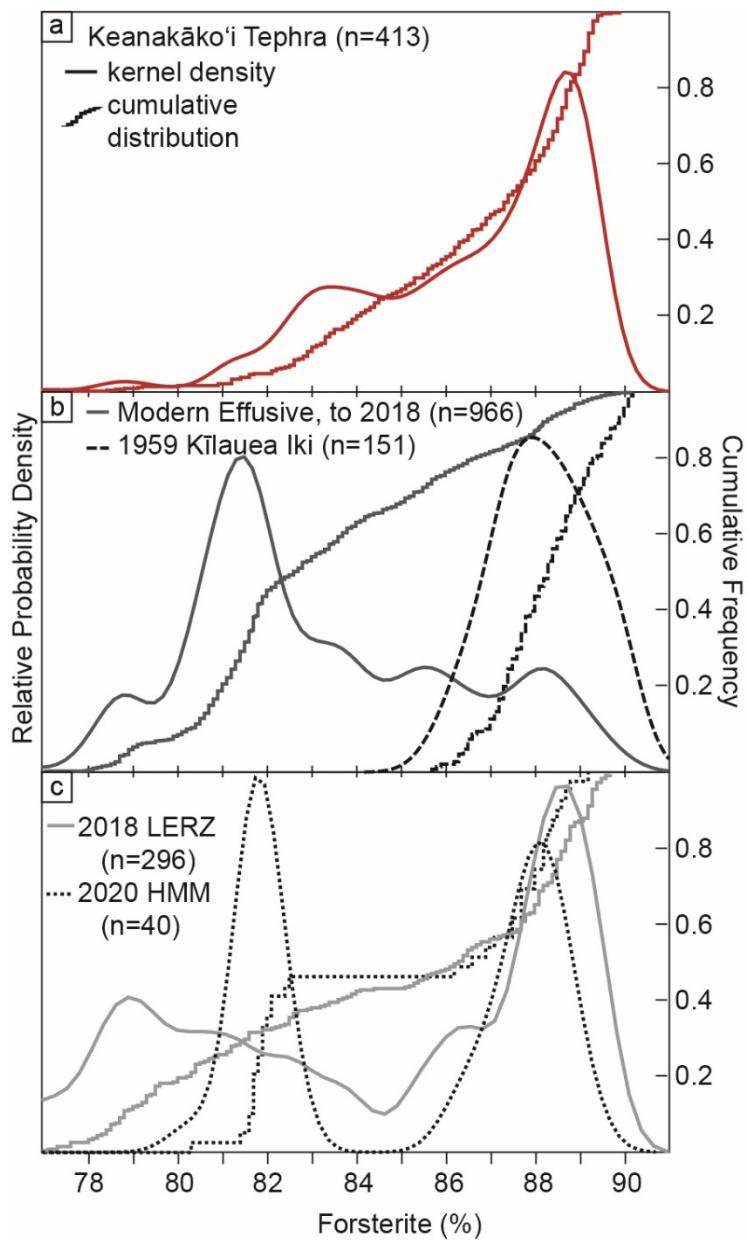
844 Wright, T.L., Okamura, R.T., 1977. Cooling and crystallization of tholeiitic basalt, 1965
845 Makaopuhi Lava Lake, Hawaii. *USGS Prof. Pap.*, 1004, 1-78. doi: 10.3133/pp1004

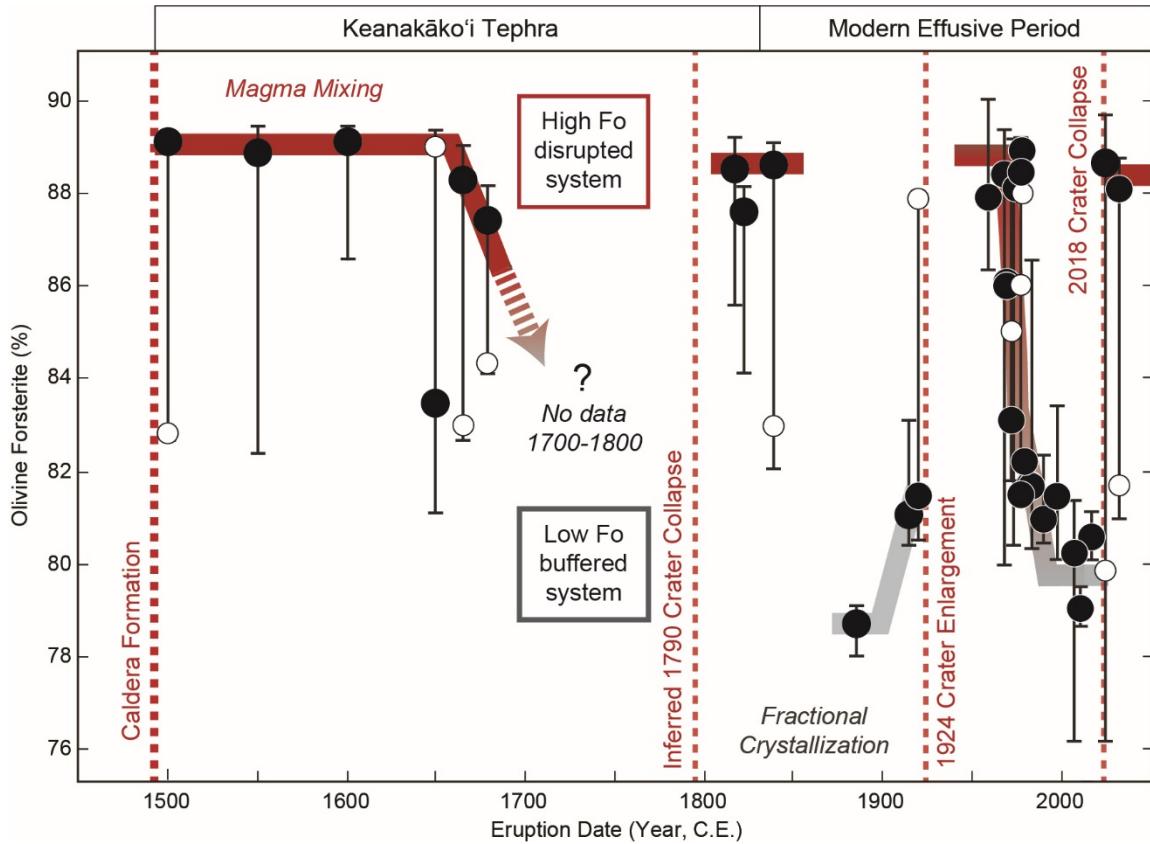

846 Wright, T.L., Peck, D.L., 1978. Crystallization and differentiation of the Alae magma,
847 Alae lava lake, Hawaii. *USGS Prof. Pap.* 935, 1-19. doi: 10.3133/pp935C

848 Wright, T.L., Helz, R.T., 1996. Differentiation and magma mixing on Kīlauea's east rift
849 zone: A further look at the eruptions of 1955 and 1960. Part II. The 1960 lavas. Bull.
850 Volcanol. 57, 602-630.


851 Wright, T.L., Tilling, B.I., 1980. Chemical variations in Kilauea eruptions 1971-1974.
852 Am. J. Sci., 280-A, 777-793.

853 Wright, T.L., Helz, R.T., 1996. Differentiation and magma mixing on Kilauea's east rift
854 zone: a further look at the eruptions of 1955 and 1960 Part II. The 1960 lavas. B.
855 Volcanol. 57, 602-630. doi: 10.1007/s004450050115


856 Wright, T.L., Klein, F.W., 2014. Two hundred years of magma transport and storage at
857 Kīlauea Volcano, Hawaii, 1790-2008. USGS Prof. Pap. 1806, 1-240. doi:
858 10.3133/pp1806


Figure 1: Erupted volume (km^3) for effusive (grey bins) and explosive periods (red bins) in the past 2,500 years at Kīlauea. Yellow stars indicate large caldera collapse events (Powers, 1948; Holcomb, 1987; Swanson et al., 2012). Modified after Swanson et al. (2014). Note that Uēkahuna = Uwēkahuna; name updated in 2012, U.S. Board on Geographic Names.

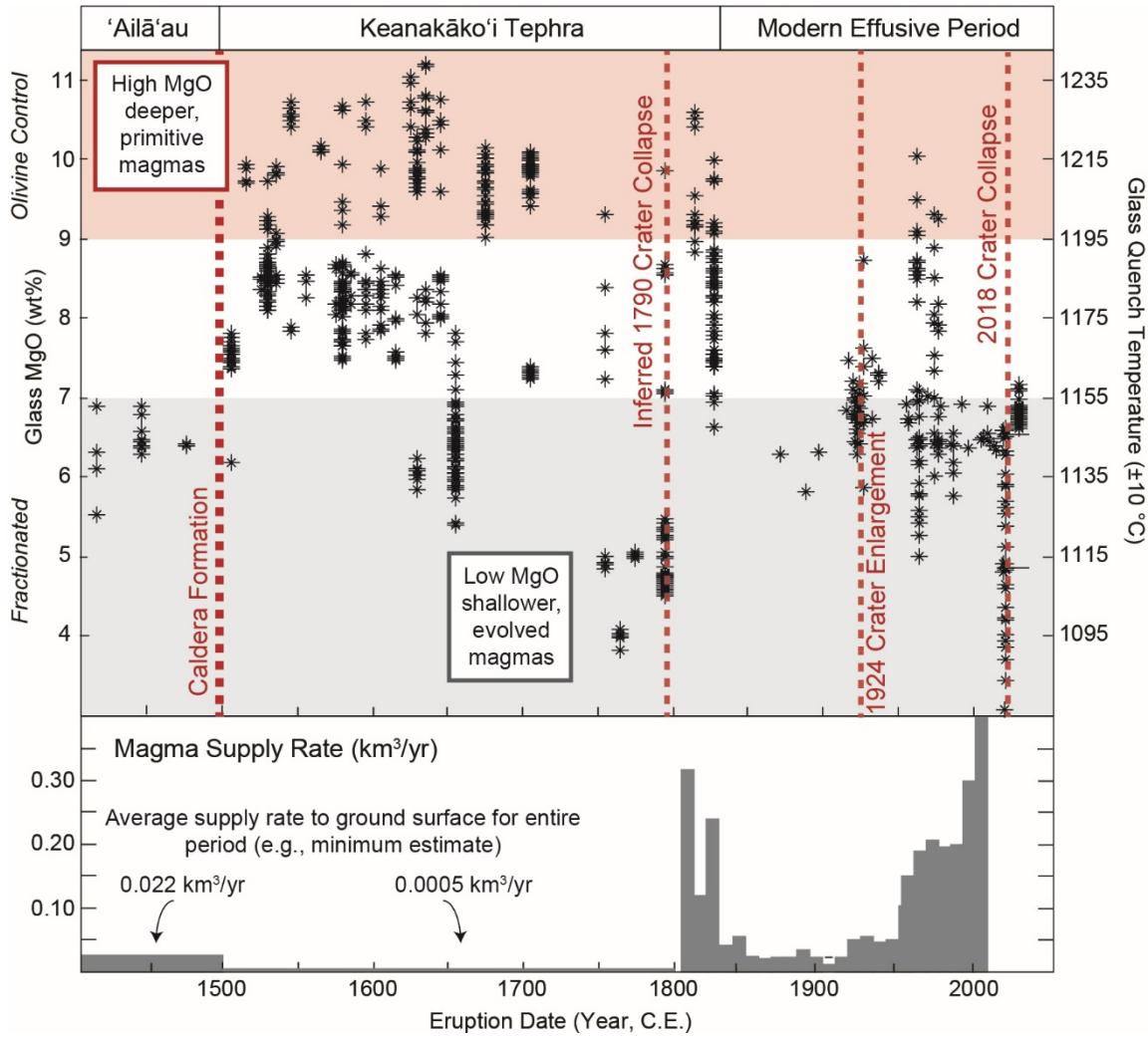
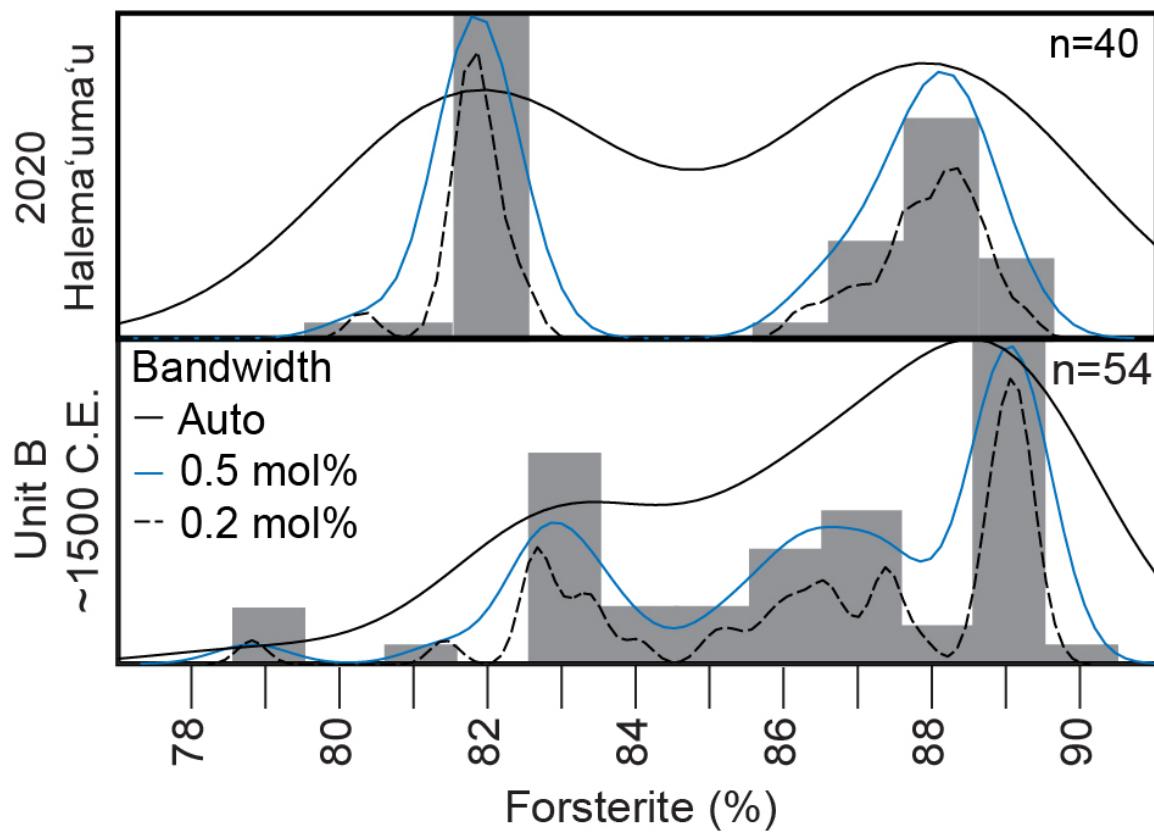

Figure 2. Examples of olivine population types used to infer magmatic processes and derive Fo modes presented in Figures 3 and 4. **(a)** Olivine-controlled eruptions like the Keanakāko'i Tephra Unit D (Lynn et al. 2017a, 2017b) typically have unimodal high-Fo populations but can exhibit a range of compositions that are present in low abundances. The mode, marked by a filled circle, is used in Figure 4 to examine long term changes in population characteristics. **(b)** Fractionated populations, like that found in the 1919 lava flow from Halema'uma'u, have unimodal distributions dominated by low Fo with few higher Fo compositions. **(c)** Eruptions that reflect mixing of olivine-controlled and fractionated magmas, such as the Keanakāko'i Tephra Unit E (Lynn et al., 2017a, 2017b), have two modes with both high-Fo and low-Fo compositions

Figure 3. Olivine core compositions from ~1500 C.E. – 2020, shown as relative kernel densities and cumulative distribution functions. Data are divided into **(a)** the explosive Keanakāko'i Tephra period from ~1500 - early 1800s C.E., **(b)** the modern effusive period from ~1820s to present, excluding **(c)** the recent 2018 lower East Rift Zone (LERZ) and 2020 Halema‘uma‘u (HMM) eruptions.

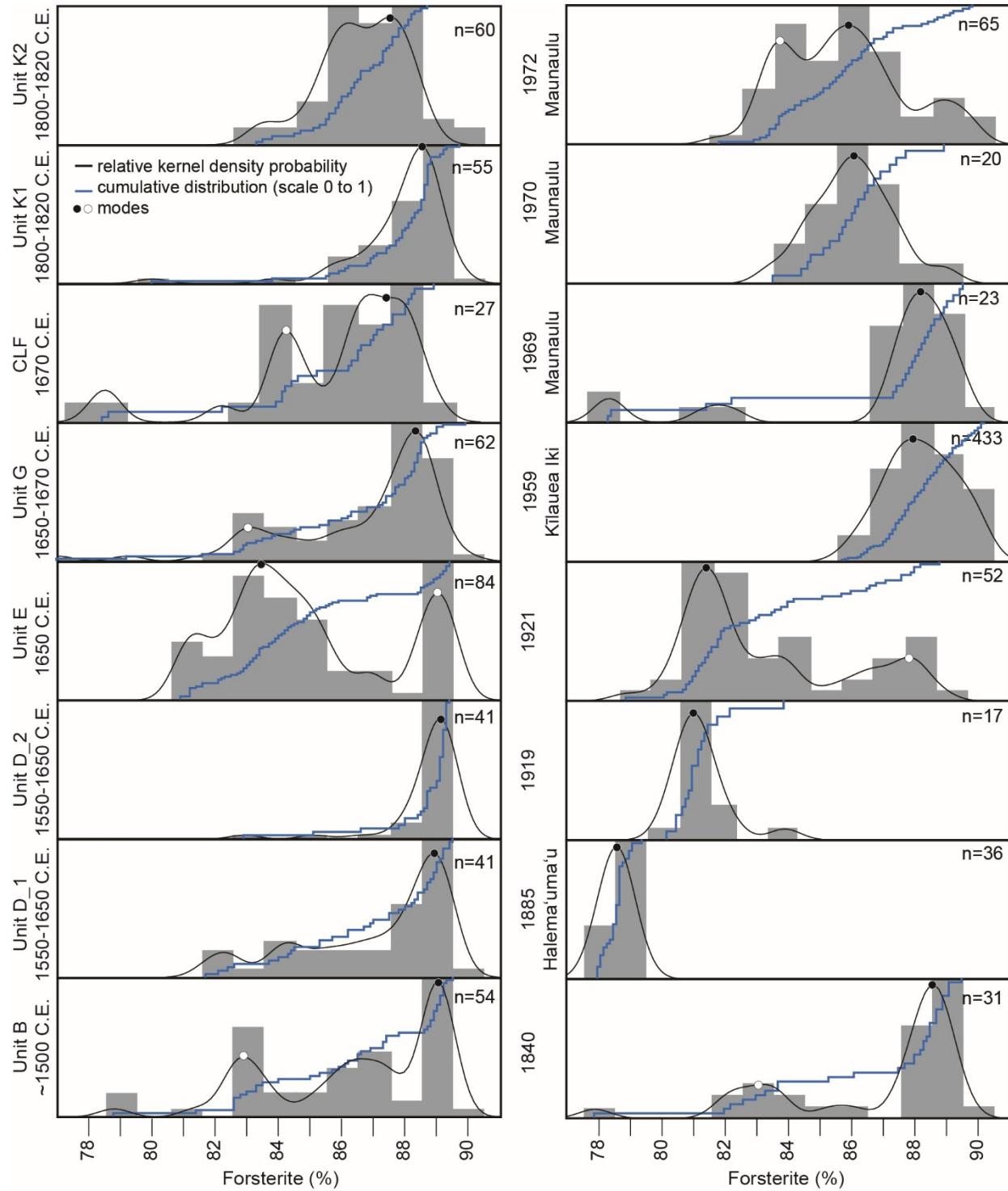
Figure 4. Olivine forsterite content variations through time. Thick dashed lines mark known or interpreted collapse events that are inferred to have disrupted the summit reservoir system. Sustained eruptions are divided into smaller time periods (e.g., Maunaulu, Pu‘u‘ō‘ō). Data points reflect highest probability density values (see Figure 2) of olivine populations ($n=17-433$; see Supplementary Figures S1 and S2 for all kernel density plots and Table S3 for summary). Range bars show population data at 5th and 95th percentiles (Table S3). Data are from the following sources: 1500 - early 1800s C.E. Keanakāko‘i Tephra (Lynn et al., 2017a, 2017b), 1840 upper ERZ (Trusdell, 1991), 1885 Halema‘uma‘u (Garcia et al. 2003; this study), 1919 (Garcia et al. 2003), 1921 (Garcia et al., 2003; this study), 1959 Kīlauea Iki (Vinet and Higgins, 2011), 1969-1974 Maunaulu (Vinet and Higgins, 2010), July 1974 (Wieser et al., 2020; this study), December 1974 (Vinet and Higgins, 2010; Wieser et al., 2020), ERZ 1983-2018 (Thornber et al., 2015; Lynn et al. 2017a; Gansecki et al., 2019; Wieser et al., 2021; Lerner et al., 2021), Halema‘uma‘u 2015-2018 (Gansecki et al., 2019; this study), and Halema‘uma‘u 2020 (this study).

Figure 5. Glass MgO (wt%) and magma supply rate variations through time. Each glass composition is a single analysis (unlike olivine modes, above). High-MgO glasses reflect olivine control (red region; see also Figure 2) whereas low-MgO glasses are evolved due to fractional crystallization (grey region). Inferred magma supply rates for 1400-1823 are based on the volume of erupted material (Swanson et al., 2014) and calculated magma supply rates for 1823-2008 are from Wright and Klein (2014). Rates for 2003-2008 are estimated by Poland et al. (2012), and Wright and Klein (2014) noted that the use of summit CO₂ may overestimate these values. Glass data are from the following sources: 'Ailā'au 1410-1470 C.E. (Clague et al., 1999), 1500 – early 1800s C.E. Keanakāko'i Tephra (Helz et al., 2014a, 2014b; Lynn et al., 2017b, Garcia et al., 2018), 1868-1982 summit (Helz, 1987; Helz et al., 1995, 2014a, 2014b; Wright and Helz, 1996; Garcia et al., 2003; Wieser et al., 2020), ERZ 1983-2018 (Helz et al., 1995; Thornber et al., 2015; Lynn et al., 2017a; Gansecki et al., 2019), and 2020 Halema'uma'u (this study).

Supplemental Material for:


Olivine and glass chemistry record cycles of plumbing system recovery after summit collapse events at Kīlauea Volcano, Hawai‘i

Kendra J. Lynn*, Donald A. Swanson


U.S. Geological Survey
Hawaiian Volcano Observatory
1266 Kamehameha Avenue, Suite A-8
Hilo, HI 96720

*corresponding author: klynn@usgs.gov

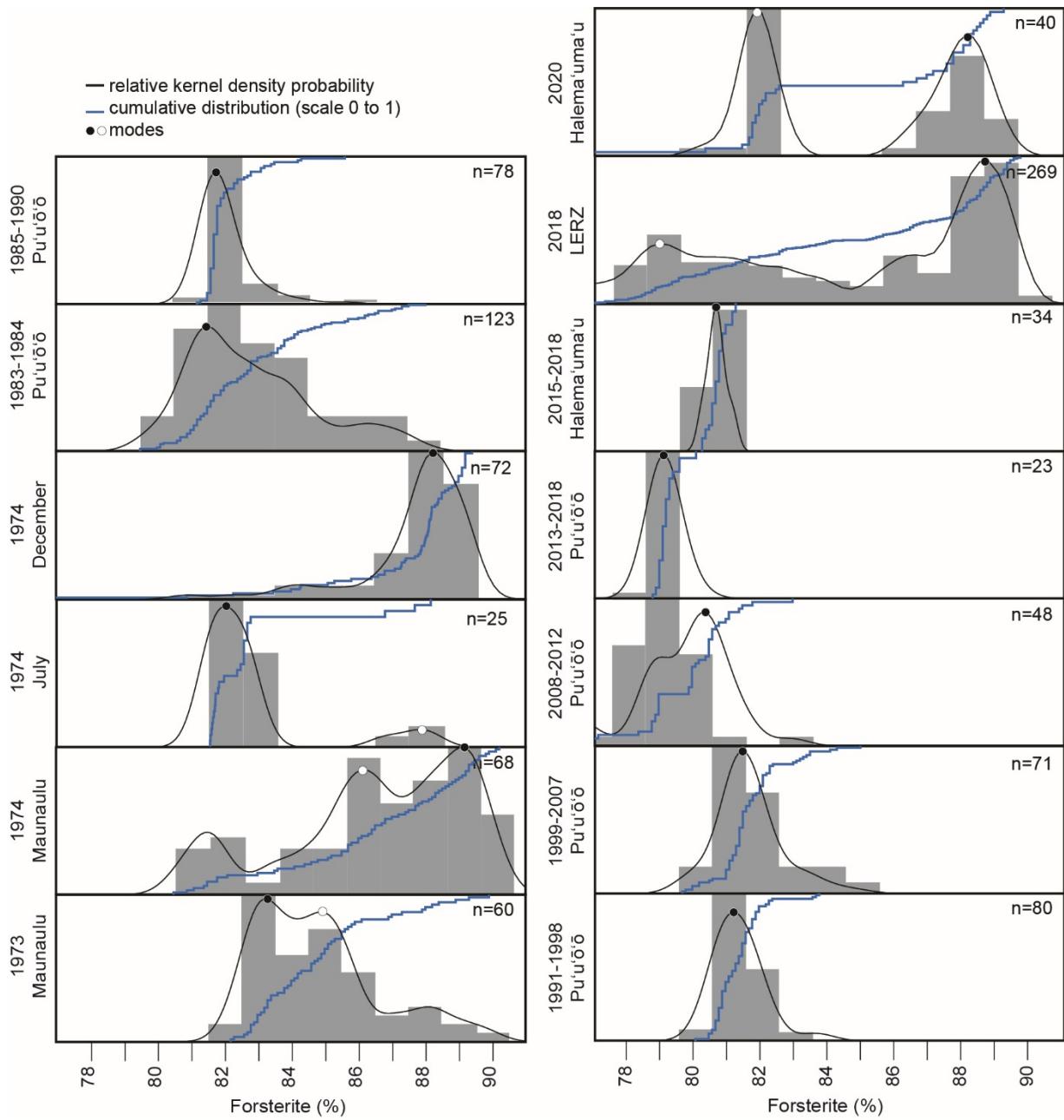

Keywords: olivine, caldera collapse, Kīlauea, eruptive cycles, Hawai‘i

Figure S1: Comparison of kernel density estimates using different bandwidths. The bandwidth automatically selected by MATLAB (solid black line; Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government) oversmooths the data, whereas the 0.2 mol% bandwidth (dashed black line; akin to typical analytical error) undersmooths the data. Thus, we use the 0.5 mol% bandwidth (blue line) throughout the study.

Figure S2. Olivine core Fo histograms, kernel density plots and cumulative distribution functions for each eruption in Figure 4, 1500-1972. Data are from the following sources: 1500-early 1800s C.E. Keanakāko‘i Tephra (Lynn et al., 2017b), 1840 upper ERZ (Trusdell, 1991), 1885 Halema‘uma‘u (Garcia et al., 2003; this study), 1919 (Garcia et al., 2003), 1921 (Garcia et al., 2003; this study), 1959 Kīlauea Iki (Vinet and Higgins, 2011), 1969-1972 Maunaulu (Vinet and Higgins, 2010).

Figure S3. Olivine core Fo histograms, kernel density plots and cumulative distribution functions for each eruption in Figure 4, 1973-2020. Data are from the following sources: 1973-1974 Maunaulu (Vinet and Huggins, 2010), July 1974 (Wieser et al., 2020; this study), December 1974 (Vinet and Huggins, 2010; Wieser et al., 2020), ERZ 1983-2018 (Thornber et al., 2015; Lynn et al., 2017a; Wieser et al., 2021; Lerner et al., 2021; Gansecki et al., 2019), Halema'uma'u 2015-2018 (Gansecki et al., 2019, this study), and Halema'uma'u 2020 (this study).

References

Gansecki, C., Lee, R. L., Shea, T., Lundblad, S. P., Hon, K., Parcheta, C., 2019. The tangled tale of Kīlauea's 2018 eruption as told by geochemical monitoring. *Science*, 366, 1–9. doi: 10.1126/science.aaz0147

Garcia, M.O., Pietruszka, A.J., Rhodes, J.M., 2003. A petrologic perspective of Kīlauea Volcano's summit magma reservoir. *J. Petrol.* 44, 2313–2339.

Lerner, A.H., Wallace, P.J., Shea, T., Mourey, A.J., Kelly, P.J., Nadeau, P.A., Elias, T., Kern, C., Clor, L.E., Gansecki, C., Lee, R.L., Moore, L.R., Werner, C.A., 2021. The petrologic and degassing behavior of sulfur and other magmatic volatiles from the 2018 eruption of Kīlauea, Hawai‘i: melt concentrations, magma storage depths, and magma recycling. *Bull. Volcanol.*, 83, 43. doi: 10.1007/s00445-021-01459-y

Lynn, K.J., Shea, T., Garcia, M.O., 2017a. Nickel variability in Hawaiian olivine: Evaluating the relative contributions from mantle and crustal processes. *Am. Mineral.*, 102, 507–518. doi: 10.2138/am-2017-5763

Lynn, K.J., Garcia, M.O., Shea, T., Costa, F., Swanson, D.A., 2017b. Timescales of mixing and storage for Keanakāko‘i Tephra magmas (1500–1820 C.E.), Kīlauea Volcano, Hawai‘i. *Cont. Mineral. Petrol.*, 172, 76. doi: 10.1007/s00410-017-1395-4

Thornber, C.R., Orr, T.R., Heliker, C., Hoblitt, R.P., 2015. Petrologic testament to changes in shallow magma storage and transport during 30+ years of recharge and eruption at Kīlauea Volcano, Hawai‘i, in Carey, R., Cayol, V., Poland, M., Weis, D., (Eds.), Hawaiian Volcanoes: From Source to Surface. AGU Geophys. Mono. 208. 147-188. doi: 10.1002/9781118872079.ch8

Trusdell, F.A., 1991, The 1840 eruption of Kilauea Volcano: Petrologic and volcanologic constraints on rift zone processes. [M.S. thesis]: Honolulu, University of Hawai‘i, 109 p.

Vinet, N., Higgins, M.D., 2010. Magma solidification processes beneath Kilauea Volcano, Hawaii: A quantitative texture and geochemical study of the 1969-1974 Mauna Ulu lavas. *J. Petrol.* 51, 1297-1332. doi: 10.1093/petrology/egq020

Vinet, N., Higgins, M.D., 2011. What can crystal size distributions and olivine compositions tell us about magma solidification processes inside Kilauea Iki lava lake, Hawaii? *J. Volcanol. Geotherm. Res.* 208, 136-162. doi: 10.1016/j.volgeores.2011.09.006

Wieser, P. E., Lamadrid, H., Maclennan, J., Edmonds, M., Matthews, S., Iacovino, K., Jenner, F. E., Gansecki, C., Trusdell, F., Lee, R. L., Ilyinskaya, E., 2021. Reconstructing Magma Storage Depths for the 2018 Kīlauean Eruption from Melt Inclusion CO₂ Contents: The Importance of Vapor Bubbles. *Geochem. Geophys. Geosys.*, 22, 1–30. doi: 10.1029/2020GC009364

Wieser, P. E., Edmonds, M., Maclennan, J., Wheeler, J., 2020. Microstructural constraints on magmatic mushes under Kīlauea Volcano, Hawai‘i. *Nat. Comm.*, 11:14. doi: 10.1038/s41467-019-13635-y