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Abstract

In this paper we generalize an equation studied by Mossino and Temam
in [7], to the fully nonlinear case. This equation arises in plasma physics
as an approximation to Grad equations, which were introduced by Harold
Grad in [4], to model the behavior of plasma confined in a toroidal ves-
sel. We prove existence of a W

2,p-viscosity solution and regularity up to
C

1,α(Ω) for any α < 1(we improve this regularity near the boundary).
The difficulty of this problem lays on a right hand side which involves the
measure of the superlevel sets, making the problem nonlocal.

Introduction

We will consider W 2,p-viscosity solutions u : Ω ⊂ Rn −→ R for
{
F (D2u(x)) = g

(
|u ≥ u(x)|

)
in Ω

u = ψ on ∂Ω
(1)

where Ω ⊂ Rn is an open, bounded and connected set, with C1,1 boundary. The
operator F : S −→ R, is a convex, uniformly elliptic operator with ellipticity
constants 0 < λ ≤ Λ, where S := {real n×n symmetric matrices}. For simplicity
we will assume F (0) = 0. We will also require that F satisfies the following
structure condition

M−(M −N) ≤ F (M)− F (N) ≤ M+(M −N), (2)

for all M,N ∈ S. Here, M− and M+ are the extremal Pucci operators

M−(M) = λ
∑

ei>0

ei + Λ
∑

ei<0

ei,

and
M+(M) = Λ

∑

ei>0

ei + λ
∑

ei<0

ei,
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where ei = ei(M) are the eigenvalues of M . In the right hand side of (1),
| · | denotes the n-dimensional Lebesgue measure, and g : [0; |Ω|] −→ R is a
continuous function. We will adopt the notation

u ≥ u(x) := {y ∈ Ω : u(y) ≥ u(x)}

for the superlevel sets of u. Finally, we consider a boundary value ψ ∈W 2,p(Ω)
for p > n.

The motivation to study this problem is to generalize Grad equations in
plasma physics, and its approximations, to nonlinear operators. These equa-
tions were introduced by Harold Grad in [4], and appear in the literature as
Queer Differential Equations(QDE), or Grad Equations. They arise in mod-
elling plasma, which is confined under magnetic forces in a toroidal container.
Grad noticed that a simplified version of plasma equations was possible using
u∗, the increasing rearrangement of u:

u∗(t) := inf{s : |u < s| ≥ t}.

Here is where we start building a connection with our approximation problem
(1). Notice that heuristically, u∗ is the inverse of the measure of the sublevel
sets of u. In [4], he demonstrated that there are profile functions µ and ν which
are prescribed by the dynamics of the plasma; consequently his equation reads

∆u = −µ′(u)(u∗′)γ − γµ(u)(u∗′)γ−2u∗′′ −
1

2
(ν2(u))′(u∗′)2 − ν2(u)u∗′′

for some power γ. For clarity we avoided the arguments: u and its derivatives
are evaluated at some point x while the rearrangements and its derivatives are
evaluated at t := |u < u(x)|. Many authors attacked the problem trying to
approximate these equations. The first one was introduced by Roger Temam in
[8], and then improved by Mossino and Temam in [7]. They studied properties
of directional derivatives of the rearrangement function, and proved existence
results for

∆u(x) = g(|u < u(x)|, u(x)) + f(x).

Years later, Laurence and Stredulinsky, in [5] and [6], studied a model equation,
closer to Grad’s formulation. They considered the particular case when γ = 2,
µ ≡ 1/2 and ν ≡ 0 obtaining

∆u(x) = −u∗′′(|u < u(x)|).

Even this simplified case presents many difficulties. The authors introduced
a very interesting approach to the problem: they described an approximation
with solutions to a N−free boundary problem. In order to apply this process
they assumed extra regularity for the level sets of a solution, which is mentioned
later in Section 3.

The idea behind this paper is the following: all of these previous papers
addressed the problem with a variational method for the Laplacian; instead, we
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will use a viscosity approach for a general family of fully nonlinear operators.
A similar equation to the one of Mossino and Temam is studied, and even for

the case with the Laplacian we improve the regularity results.

The paper is organized as follows: In the first section we cite some prelim-
inary definitions. Mainly, we state the basics of W 2,p-viscosity solutions. The
classic viscosity solutions’ theory does not apply to this particular problem be-
cause of our right hand side in (1). Disregarding the regularity of g and u, we
notice that having |u = c| > 0 for some constant c makes the right hand side
of our equation discontinuous. Therefore, we adopt this W 2,p-viscosity notion
defined in [2] by Caffarelli, Crandall, Kocan and Swiech which allows merely
measurable “ingredients”. In their paper they proved existence and interior
W 2,p-estimates for solutions to an equation with a fixed right hand side f(x).
Strongly based on their results, Winter in [9] extended this regularity up to the
boundary proving globalW 2,p-estimates for viscosity solutions and an existence
result for W 2,p-strong solutions. For clarity in the presentation, the results
from the literature that will be used through the paper will be addressed at the
Appendix A.

In section 2 we state and prove the main theorem of existence and global
regularity. The idea of the proof is to

• freeze u in the right hand side

• solve the resulting equation using [2] theory

• build a sequence of right hand sides and solutions

• use a fixed point argument and a convergence theorem to find a solution

In section 3 we prove more regularity under additional hypothesis. As long as
|∇u| is uniformly bounded below, or equivalently, if we have a uniform interior
ball condition for the level sets of u, then we have C0,α regularity for the right
hand side. This estimate turns into C2,α regularity for the solution u. We cannot
ensure regularity for the level sets, but if we start with a regular enough domain,
say ∂Ω with a uniform interior ball condition, then we gain C2,α regularity for
u in a neighborhood of the boundary.

1 Preliminary Definitions

First we are going to present the definitions of viscosity solutions for fully nonlin-
ear equations with measurable ingredients, described in the paper of Caffarelli-
Crandall-Kocan-Swiech [2]. In this setting we work with the problem

{
F (D2u(x)) = f(x) in Ω

u = ψ on ∂Ω
(3)

where our right hand side is a fixed measurable function f .
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Definition 1.1. Let be F a uniformly elliptic operator, f ∈ Lp(Ω) for p >
n/2. Let u : Ω −→ R be a continuous function, we say it is a W 2,p-viscosity

subsolution of (3) in Ω, if u ≤ ψ on ∂Ω and the following holds: for all
ϕ ∈ W 2,p(Ω) such that u− ϕ has a local maximum at x0 ∈ Ω then

ess lim sup
x→x0

F (D2ϕ(x)) − f(x) ≥ 0.

We define supersolutions in the same way; u is aW 2,p-viscosity supersolution

of (3) in Ω, if u ≥ ψ on ∂Ω and the following holds: for all ϕ ∈ W 2,p(Ω) such
that u− ϕ has a local minimum at x0 ∈ Ω then

ess lim inf
x→x0

F (D2ϕ(x)) − f(x) ≤ 0.

Remark 1.2. We can also use this alternative definition for W 2,p-viscosity
subsolutions. For all ϕ ∈W 2,p

loc (Ω), for all ε > 0, and O ⊂ Ω open such that

F (D2ϕ(x)) − f(x) ≤ −ε,

a.e. in O, then u− ϕ cannot have a local maximum in O.

Because we will use Winter’s results, we also add the definition of W 2,p-
strong subsolutions.

Definition 1.3. In the same setting as before, u is aW 2,p-strong subsolution

of (3) in Ω, if u ≤ ψ on ∂Ω and

F (D2u(x)) ≥ f(x)

a.e. in Ω.

2 Main result

In this section we state and prove existence and a first global regularity result.

Theorem 2.1. Our problem (1)

{
F (D2u(x)) = g

(
|u ≥ u(x)|

)
in Ω

u = ψ on ∂Ω

with the setting given in the introduction, has a W 2,p-viscosity solution u. Fur-
thermore, u ∈W 2,p(Ω) and we have the following estimate

‖u‖W 2,p(Ω) ≤ C
[
‖u‖L∞(Ω) + ‖ψ‖W 2,p(Ω) + ‖g(|u ≥ u(x)|)‖Lp(Ω)

]
.

Corollary 2.2. Using Sobolev embedding theorem we get that a solution is in
C1,α(Ω) for any α < 1, provided that ψ ∈W 2,p for every p > n.
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The structure of the proof for Theorem 2.1 is somehow simple; we set an
approximating problem (6), we prove the existence of a solution for it and then
we take the limit to obtain the solution to (1). Before presenting this approx-
imating problem in Lemma 2.3, we give a quick explanation on the reasoning
behind it. Recall that the results from the appendix will be used next: existence
and uniqueness, fixed point, and convergence.

If in (1) we freeze a function v ∈ Lip(Ω) for the right hand side, i.e. fv(x) :=

g
(
|{y ∈ Ω : v(y) ≥ v(x)}|

)
, we get

{
F (D2u(x)) = fv(x) in Ω

u = ψ on ∂Ω.
(4)

Then the hypothesis of Theorem A.1 are satisfied and there exists a unique
W 2,p-viscosity solution u to (4). The next step would be to apply the fixed
point Theorem A.2 for the application T (v) = u. The problem is that we
cannot ensure continuity for T because of the right hand side of (4). Not even
if we require more regularity for v(not even C∞ works). We will overcome this
inconvenient solving an auxiliary problem with a smoothened right hand side
which allows us to perform the fixed point argument. Given v ∈ Lip(Ω), ε > 0,
consider





F (D2u(x)) = f ε

v (x) := g
(1
ε

´ ε

0
|v ≥ v(x)− h|dh

)
in Ω

u = ψ on ∂Ω.
(5)

Because f ε
v ∈ Lp(Ω), using Theorem A.1 we have existence and uniqueness of a

W 2,p-viscosity solution u ∈W 2,p(Ω) to (5) with the estimate

‖u‖W 2,p(Ω) ≤ C
[
‖u‖L∞(Ω) + ‖ψ‖W 2,p(Ω) + ‖f ε

v‖Lp(Ω)

]
.

Now we can state our approximation lemma.

Lemma 2.3. Given ε > 0, there exists a W 2,p-viscosity solution uε to

{
F (D2u(x)) = f ε

u(x), in Ω.

u = ψ, on ∂Ω.
(6)

Proof. The existence is proved, as we remarked, using the fixed point Theorem
A.2. We define T : Lip(Ω) −→ Lip(Ω) as the application defined by (5) and
the existence and uniqueness theorem, i.e., T (v) = u. In order to prove the
hypothesis required for T , we will make use of the convergence Theorem A.3.

Continuity of T: If we consider vk
Lip
−→ v, then, does uk := T (vk)

Lip
−→ T (v)?

We know that uk ∈W 2,p(Ω) and

‖uk‖W 2,p(Ω) ≤ C
[
‖uk‖L∞(Ω) + ‖ψ‖W 2,p(Ω) + ‖f ε

v‖Lp(Ω)

]
≤ C̃
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with C̃ independent on k. This is achieved using Alexandroff-Bakelman-Pucci
(ABP) estimates

sup
Ω
uk ≤ sup

∂Ω
uk + C‖f ε

v‖Lp(Ω)

and the equivalent for the infΩ uk. This ABP version for measurable ingredients
is stated in Caffarelli-Crandall-Kocan-Swiech(Proposition 3.3 in [2]). We also
have the estimate

‖f ε
v‖Lp(Ω) ≤ |Ω|1/pg

(
|Ω|

)

which makes C̃ even independent on ε. Now consider ukj
any subsequece

of uk. Using Rellich-Kondrachov theorem we can find a subsequence ukji
of

ukj
(for simplicity we will use the notation ui := ukji

) converging to some

uε in the Lipschitz norm, i.e., ui
Lip
−→ uε. If we can prove that uε is the

unique W 2,p-viscosity solution to (5)(T (v) = uε), then we have the convergence

uk = T (vk)
Lip
−→ uε = T (v). Therefore, we obtain the continuity for T .

Every ui ∈ C0(Ω) is the unique W 2,p-viscosity solution to (5) with vi in the
right hand side. We have Ωi = Ω, and Fi = F fixed for every i. The convergence

ui
Lip
−→ uε implies the locally uniformly convergence. So we only need to check

the convergence
‖f ε

v (x) − f ε
vi(x)]‖Lp(Br(x0)) −→ 0

in order to satisfy all the hypothesis in the convergence Theorem A.3. We know

that vi
Lip
−→ v, then δi := ‖vi − v‖L∞ −→ 0. Thus let x and h fixed,

|vi ≥ vi(x)− h| ≤ |v + δi ≥ v(x) − δi − h| ց |v ≥ v(x)− h|

as i −→ ∞ and also

|vi ≥ vi(x) − h| ≥ |v − δi ≥ v(x) + δi − h| ր |v > v(x) − h|.

We can show that |v > v(x) − h| = |v ≥ v(x) − h| for a.e. h in [0; ε]. This
happens if and only if |v = v(x) − h| = |v−1(v(x) − h)| = 0 for a.e. h ∈ [0; ε].
A corollary of Rademacher theorem, says that if v is a Lipschitz function then
for a.e. y ∈ v−1(α), ∇v(y) = 0. Therefore |v−1(v(x) − h)| = |v−1(v(x) −
h) ∩ {∇v(y) = 0}|. Using a corollary of the Coarea formula we get also that

Hn−1
(
v−1(v(x) − h) ∩ {∇v(y) = 0}

)
= 0. Here Hn−1 stands for the (n − 1)-

dimensional Hausdorff measure. Then for every x ∈ Ω we get the convergence

|vi ≥ vi(x) − h| −→ |v ≥ v(x) − h|

for a.e. h. Applying the dominated convergence theorem first, and the continu-
ity of g we get

g
(1
ε

ˆ ε

0

|vi ≥ vi(x)− h|dh
)
−→ g

(1
ε

ˆ ε

0

|v ≥ v(x) − h|dh
)

(7)

as i −→ ∞. This last result is the pointwise convergence of f ε
vi to f ε

v . Again,
applying the dominated convergence theorem we get the Lp convergence needed.
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So all the hypothesis are satisfied to apply the theorem and therefore T is
continuous.

Compactness of T: Let vk a bounded sequence in Lip(Ω) then uk := T (vk) ∈
W 2,p(Ω) is bounded as before. After Rellich-Kondrachov there exists a conver-
gent subsequence.

Boundedness of the eigenvectors: We have to prove that the set

Γ := {v ∈ Lip(Ω) : ∃γ ∈ [0; 1] such that v = γT (v)}

is bounded. Suppose by contradiction that it is not. First we note that 0 ∈ Γ
with γ = 0, and for every 0 6= v ∈ Γ the γ associated with v is not zero.
Suppose then that there exist a sequence of nonzero elements vk ∈ Γ, and a
respective sequence γk such that vk = γkT (vk) and ‖vk‖Lip(Ω) −→ ∞. Because
vk ∈ Lip(Ω), then vk/γk ∈W 2,p(Ω) and

‖vk‖Lip(Ω) ≤ ‖
vk
γk

‖Lip(Ω) ≤ C‖
vk
γk

‖W 2,p(Ω) ≤ C̃

which is a contradiction. Therefore Γ is bounded.
The hypothesis of Schaefer’s theorem are satisfied, so there exists a Lipschitz

fixed point uε for T , i.e., uε = T (uε). Moreover, by Theorem A.1, uε is a W 2,p-
viscosity solution to (6), which is in W 2,p(Ω).

The purpose of finding such a uε, was to approximate a solution for (1).
Then the following question is if we can take the limit ε −→ ∞.

Proof of Theorem 2.1. For every ε > 0 we have a solution uε ∈ W 2,p(Ω) with
uniformly bounded W 2,p norm(with respect to ε). Then there exists a subse-

quence(that we will also call uε) and a Lipschitz function u such that uε
Lip
−→ u.

So uε −→ u locally uniformly and we will be able to apply again the convergence
Theorem A.3. In this case we have on the right hand sides, the Lp functions

fu(x) := g
(
|u ≥ u(x)|

)

and

f ε
uε
(x) := g

(1
ε

ˆ ε

0

|uε ≥ uε(x)− h|dh
)
.

We are left to prove the convergence

‖fu − f ε
uε
(x)‖Lp(Br(x0)) −→ 0.

By triangle inequality

‖fu − f ε
uε
(x)‖Lp(Ω) ≤ ‖fu − f ε

u(x)‖Lp(Ω) + ‖f ε
u − f ε

uε
(x)‖Lp(Ω).

We have that the second term goes to zero as in previous calculations (7). We
will use a similar argument for bounding the first term.

|u ≥ u(x)| ≤ |u ≥ u(x)− h|

= |u ≥ u(x)|+ |u(x) > u ≥ u(x)− h|

≤ |u ≥ u(x)|+ |u(x) > u ≥ u(x)− ε|.
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Then

1

ε

ˆ ε

0

|u ≥ u(x)− h|dh ≥
1

ε

ˆ ε

0

|u ≥ u(x)|dh

= |u ≥ u(x)|

and

1

ε

ˆ ε

0

|u ≥ u(x)− h|dh ≤
1

ε

ˆ ε

0

|u ≥ u(x)|+ |u(x) > u ≥ u(x)− ε|dh

= |u ≥ u(x)|+ |u(x) > u ≥ u(x)− ε|.

Therefore
1

ε

ˆ ε

0

|u ≥ u(x)− h|dhց |u ≥ u(x)|

as ε −→ ∞. Accordingly we obtained pointwise convergence for fε
u to fu, which

after the dominated convergence theorem implies the convergence on the Lp

norm.
Hypothesis of Theorem A.3 are satisfied and we finally obtain our main

result: u aW 2,p-viscosity solution to (1), inW 2,p(Ω) and with the corresponding
estimates.

The last remark of this section is that we obtain an explicit formula for the
0 Dirichlet problem in a ball.

Example 2.4. When Ω = Br(x0), F = ∆, g(t) = −t and ψ = 0 we have the
solution:

ũ(x) =
ωn

2n(n+ 2)

[
rn+2 − |x− x0|

n+2
]

where ωn is the measure of the n-dimensional unit ball. In a similar way we can
prove that 1

Λ ũ is a solution when F = M−(respectively 1
λ ũ for F = M+). We

will use this example in the next section to build subsolutions that can be used
as barriers to prove gradient bounds.

3 Further Regularity

In order to gain more regularity for our solution u we probably need to get some
regularity for the right hand side fu. So far, in the case when u has flat regions,
fu is not even continuous. In principle, this discontinuity does not depend on the
regularity of u but on its flat regions. We can prove that under the negativity
of g, u is not allowed to have these flat regions with positive measure.

Remark 3.1. Let be u a solution for (1) with right hand side g < 0 in (0; |Ω|],
then

|u = a| = 0

for every constant a ∈ R.
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Proof. Suppose that there exists an a ∈ R such that A := {u = a} satisfies that
|A| > 0. Then, by a classic result from Stampacchia we obtain that

∇u(x) = 0 for a.e. x ∈ A.

Now we can define A′ := A ∩ {∇u = 0}, and apply Stampacchia’s result again

D2u(x) = 0 for a.e. x ∈ A′. (8)

We are left with the set A′′ := A′ ∩ {D2u = 0} with the same measure |A′′| =
|A′| = |A| > 0. By the definition of u being a W 2,p-strong supersolution of (1),
we have that for a.e x in Ω

F (D2u(x))− g
(
|u ≥ u(x)|

)
≤ 0.

Moreover, for x0 ∈ A′′, the argument inside g is strictly positive; |u ≥ u(x0)| ≥
|A′′| > 0. So in the particular case when g < 0 in (0; |Ω|] we get the contradiction

F (D2u(x0))− g
(
|u ≥ u(x0)|

)
> 0.

Then, for this specific case we obtain continuity for fu. But we need at
least C0,α regularity on fu in order to apply Schauder type estimates to obtain
u ∈ C2,α. We will have this regularity in two particular cases listed in the next
two theorems. The first one is an adaptation(simplification) to Laurence and
Stredulinsky’s theorem and requires an additional lower bound for the gradient.

Theorem 3.2 (Theorem 3.1 in [6]). Let u ∈ W 2,p
0 (Ω) with a uniform lower

bound |∇u| > c0 > 0 in the set Ωt0 := {y ∈ Ω : u(y) < t0}, where t0 < ‖u‖L∞

and c0 = c0(t0). Then fu ∈ C1(Ωt0).

In other words, the theorem asserts that if we have an uniform lower bound
for the gradient(away from the maximum of u), then we get: regularity for the
level sets of u and we discard a possible “flatness” which ruins the smoothness
of fu. The proof presented in [6] includes an approximation argument by C∞

0

functions and coarea formula.
This last theorem translates into regularity for our problem. We state this

in the following corollary.

Corollary 3.3. If we have a solution u to our problem (1), with 0 boundary
condition and a gradient lower bound as in Theorem 3.2, then fu ∈ C1(Ωt0),
and therefore u ∈ C2,α(Ωt0).

Proof. In order to get C2,α estimates we just need to apply the classical theory
of viscosity solutions for fully nonlinear equations as in Chapter 8 from [1].
Recall that at this point we have a right hand side in C1(Ωt0) which allows us
to use classical viscosity solutions instead of W 2,p-viscosity solutions.
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The second theorem states that, under certain conditions, a barrier argument
implies lower bounds as in Theorem 3.2.

Theorem 3.4. If Ω has a uniform inner ball condition (i.e., for any point y in
∂Ω, there exists a ball Bε ⊂ Ω with ε > ε0 > 0 and y ∈ ∂Bε), then |∇u| > c0 > 0
in a neighborhood of ∂Ω, where c0 = c0(‖u‖C1,α(Ω)). We consider the case where

g(t) = −t and u = 0 on ∂Ω.

Proof. If we pick any point y ∈ ∂Ω we can touch it with a ball Bε0 ⊂ Ω. As in
Example 2.4 we can build a an explicit solution ũ in Bε0 for F = M−. Now we
apply comparison between u and ũ in order to get gradient estimates. Without
loss of generality we can take ε0 small enough, such that

|u ≥ u(x)| ≥
1

2
|Ω| ≥ |Bε0 |

for every x ∈ Bε0 . This is possible because of the continuity of u and of the
right hand side, i.e.,

|u ≥ t| −−−→
t−→0

|Ω|.

If this is the case then

M−(D2ũ(x)) = −|{ũ ≥ ũ(x)} ∩Bε0 |

≥ −
1

2
|Ω|

≥ −|u ≥ u(x)|

= F (D2u(x))

≥ M−(D2u(x))

in Bε0 . In addition, we have that 0 = ũ ≤ u at ∂Bε0 . So comparison applies
and forces ũ ≤ u in Bε0 . Therefore we also have a lower bound for the gradient
at the boundary, with the estimate

|∇u| ≥ ũ−ν =
ωn

2nΛ
ε0

n+1 = c0 > 0

where −ν is the inner normal to ∂Ω. Finally we can extend a lower bound(say
c0/2) to a neighborhood of the boundary of Ω which will depend on the C1,α(Ω)
norm of u.

Remark 3.5. We can repeat this argument as long we have uniform inner ball
conditions for the level sets {u = t}, and so, C2,α regularity for the solution in
that annulus.

Remark 3.6. We expect this condition to be satisfied for convex domains,
where we deduce the solutions will have convex level sets. On the other hand,
for nonconvex domains, in particular for dumbbell shaped domains, we expect
to have a singular critical point where the superlevel sets separate into two
components.
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A Appendix

In this appendix section we gather the results from the literature that will
be used in the proof of the main Theorem 2.1. First we have an existence and
uniqueness result when the right hand side is fixed. We refer to Winter’s version
because it includes additional W 2,p bounds for the unique solution.

Theorem A.1 (Winter 4.6 in [9]). Let F be a convex operator satisfying the
structure condition (2) and F (0) = 0, f ∈ Lp(Ω) for p > n, ψ ∈ W 2,p(Ω) and
∂Ω ∈ C1,1. Then, there exists a unique W 2,p-viscosity solution to

{
F (D2u(x)) = f(x), in Ω.

u = ψ, on ∂Ω.

Moreover, u ∈W 2,p(Ω) and

‖u‖W 2,p(Ω) ≤ C
[
‖u‖L∞(Ω) + ‖ψ‖W 2,p(Ω) + ‖f‖Lp(Ω)

]

for C = C(n, λ,Λ, p,Ω).

Second, we introduce a classic fixed point theorem that will be crucial to
extract a solution to our problem, out of a family of approximations.

Theorem A.2 (Schaefer Fixed Point Theorem). Let T : V −→ V a continuous
and compact mapping, with V a Banach space, such that the set

{v ∈ V : ∃γ ∈ [0; 1] such that v = γT (v)}

is bounded. Then T has a fixed point.

Third, we will need the next powerful convergence result that will be used
for proving continuity in the fixed point argument. And later for proving con-
vergence of the solutions to auxiliary problems.

Theorem A.3 (Caffarelli-Crandall-Kocan-Swiech 3.8 in [2]). Let Ωk ⊂ Ωk+1

a sequence of subdomains of Ω converging to Ω. Let F and Fk be uniformly
elliptic operators with the same ellipticity constants and satisfying the structure
condition (2). Let f ∈ Lp(Ω) and fk ∈ Lp(Ωk) for p > n. Let uk ∈ C0(Ωk) be
W 2,p-viscosity subsolutions(supersolutions) of

Fk(D
2u(x)) = fk(x)

in Ωk+1, with uk converging locally uniformly to u in Ω. Finally assume that
for every Br(x0) ⊂ Ω, and for every ϕ ∈W 2,p(Br(x0)) we have

‖[Fk(D
2ϕ(x)) − fk(x) − F (D2ϕ(x)) + f(x)]+‖Lp(Br(x0)) −→ 0

(
‖[Fk(D

2ϕ(x)) − fk(x) − F (D2ϕ(x)) + f(x)]−‖Lp(Br(x0)) −→ 0
)
,

Then u is a W 2,p-viscosity subsolution(supersolution) of

F (D2u(x)) = f(x)

in Ω.
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Finally, we note that

Remark A.4. Due to a result by Escauriaza in [3], we can extend p to the case
where p > n− ε0 for some universal ε0 in Theorems A.1 and A.3.
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