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a b s t r a c t

We consider a semi-linear integro-differential equation in dimension one associated
to the half Laplacian whose solution represents the atom dislocation in a crystal.
The equation comprises the evolutive version of the classical PeierlsŰNabarro
model. We show that for a large number of dislocations, the solution, properly
rescaled, converges to the solution of a well known equation called by Head
(1972) "the equation of motion of the dislocation continuum". The limit equation
is a model for the macroscopic crystal plasticity with density of dislocations. In
particular, we recover the so called OrowanŠs law which states that dislocations
move at a velocity proportional to the effective stress.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we are interested in studying the behavior as ε → 0 of the solution uε of the following

integro-differential equation:
∏
⨄
⋃
δ∂tu

ε = I1[uε] −
1

δ
W ′

⎤
uε

ε

⎣
in (0,+∞) × R

uε(0, ·) = u0(·) on R

(1.1)

where ε, δ > 0 are small scale parameters and δ = δε → 0 as ε → 0, W is a periodic potential and we denote

by I1 the so-called fractional Laplacian of order 1, −(−∆)
1
2 , deĄned on the Schwartz class S(R) by

ˆ
(−∆)

1
2 v (ξ) = ♣ξ♣ v̂(ξ), (1.2)
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where v̂ is the Fourier transform of v. It is well known, see e.g. [46], that I1 may be also represented as

I1[v](x) =
1

π
PV

∫

R

v(y) − v(x)

(y − x)2
dy,

where PV stands for principal value. See also [45] or [13] for a basic introduction to the fractional Laplace

operator.

We assume that W is a multi-well potential with nondegenerate minima at integer points. More precisely,

we suppose that ∏
⎪⎪⎪⎪⎪⎪⨄
⎪⎪⎪⎪⎪⎪⋃

W ∈ C2,β(R) for some 0 < β < 1

W (u+ 1) = W (u) for any u ∈ R

W = 0 on Z

W > 0 on R \ Z

W ′′(0) > 0.

(1.3)

On the function u0 we assume ∮
u0 ∈ C1,1(R)

u0 non-decreasing.
(1.4)

Eq. (1.1) is a rescaled version of the so called PeierlsŰNabarro model, which is a phase Ąeld model

describing dislocations. Dislocations are line defects in crystals. Their typical length is of the order of 10−6 m

and their thickness of order of 10−9 m. When the material is submitted to shear stress, these lines can move

in the crystallographic planes (slip planes) and their dynamics is one of the main explanation of the plastic

behavior of metals. We refer the reader to the book [24] for a tour in the theory of dislocations. Dislocations

can be described at several scales by different models:

• atomic scale (FrenkelŰKontorova model),

• microscopic scale (PeierlsŰNabarro model),

• mesoscopic scale (Discrete dislocation dynamics),

• macroscopic scale (Elasto-visco-plasticity with density of dislocations).

Our goal in this paper is to understand the large scale limit of the PeierlsŰNabarro model for a large

number of parallel straight edge dislocation lines in the same slip plane with the same BurgersŠ vector, moving

with self-interactions. The number of dislocations is of order 1/ε, while the distance between neighboring

dislocations is (at microscopic scale) of order 1/δ. Rescaling the PeierlsŰNabarro model leads to Eq. (1.1).

The model is explained in further details in Section 1.1.

We show that at macroscopic scale the density of dislocations is governed by the following evolution law:
∮
∂tu = c0∂xu I1[u] in (0,+∞) × R

u(0, ·) = u0 on R
(1.5)

where c0 > 0 is deĄned in the forthcoming (1.15). Under assumption (1.4), there exists a unique

non-decreasing in x viscosity solution u of (1.5) (see Section 3). Our main result is the following:

Theorem 1.1. Assume (1.3) and (1.4). Let uε be the viscosity solution of (1.1). Then, uε converges locally

uniformly in (0,+∞) × R to the viscosity solution u of (1.5), as ε → 0.

Remark 1.2. We do not assume any assumption about how δ goes to 0 when ε → 0.

The limit equation (1.5) represents the plastic Ćow rule for the macroscopic crystal plasticity with density

of dislocations. The theorem says that in this regime, the plastic strain velocity ∂tu in (1.5) is proportional to
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the dislocation density ux times the effective stress I1[u]. This physical law is known as OrowanŠs equation,

see e.g. [44] p. 3739. Equation

∂tu = c0∂xu I1[u] (1.6)

is an integrated form of a model studied by Head [23] for the self-dynamics of a dislocation density

represented by ux. Indeed, denoting f = ux, differentiating (1.6), we see that, at least formally, f solves

∂tf = c0∂x(fH[f ]) (1.7)

where H is Hilbert transform deĄned in Fourier variables by

Ĥ[v] (ξ) = i sgn(ξ) v̂(ξ),

for v ∈ S(R). The Hilbert transform has the following representation formula, see e.g. [46],

H[v](x) =
1

π
PV

∫

R

v(y)

y − x
dy

and if u ∈ C1,α(R) and ux ∈ Lp(R) with 1 < p < +∞, then

I1[u] = H[ux]. (1.8)

Identity (1.8) can be easily proven by performing an integration by parts or using Fourier variables. The

conservation of mass satisĄed by the positive integrable solutions of (1.7) reĆects the fact that if f = ux is

the density of dislocations, no dislocations are created or annihilated.

Eq. (1.7) was also proposed by Constantin et al. [10] as a simpliĄed one dimensional version of the 2-D

quasi-geostrophic model. In [9], Castro and C‘ordoba show that given an initial datum f0(x) which belongs

to Cα(R) ∩ L2(R) and is strictly positive, then there exists a smooth (analytic in x) global (for all times)

solution of (1.7) that at time 0 is equal to f0(x). If f0(x) is non-negative and 0 at some point, the authors

show the existence of a local solution that blows up in Ąnite time. On the other hand, Carrillo, Ferreira and

Precioso [8] apply transportation methods and show that the solution can be obtained as a gradient Ćow

in the space of probability measures with bounded second moment. Finally, we mention that Eq. (1.7) is a

particular case of the fractional porous medium equation

∂tu = ∇ · (um−1∇(−∆)−su)

recently studied in [5Ű7]. Indeed, it corresponds to the case s = 1/2 and m = 2 in dimension 1. Self-similar

solutions and decay estimates for Eq. (1.6) have been studied in [2].

From a mathematical point of view, as δ and ε go to 0 simultaneously, (1.1) is both a homogenization

problem (even though there is no a cell problem and the limit equation is explicit) and a non-local AllenŰ

Cahn type equation. As for an AllenŰCahn type problem, the solution gets closer and closer to the stable

minima of the potential, that for the rescaled potential W (·/ε), by (1.3), are the points of the set εZ, and

converges to a continuous function, the solution of (1.5), when ε goes to 0. To prove Theorem 1.1, the idea is

to approximate the dislocation particles with points xi(t) where the limit function u attains the value εi at

time t. We then provide a discrete approximation formula for the operator I1 with uniform error estimates

over R, which holds true for any C1,1 function, and we use it to show that

ẋi = −
∂ut(t, xi(t))

∂xu(t, xi(t))
≃ −c0I1[u(t, ·)](xi(t)).

The strategy and the heuristic of the proofs are explained in Section 2.
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1.1. The 1-D PeierlsŰNabarro

The PeierlsŰNabarro model [35,36,42] is a phase Ąeld model for dislocation dynamics incorporating atomic

features into continuum framework. In a phase Ąeld approach, the dislocations are represented by transition

of a continuous Ąeld. We brieĆy review the model in the case of an edge straight dislocation in a crystal with

simple cubic lattice. In a Cartesian system of coordinates x1x2x3, we assume that the straight dislocation is

located in the slip plane x1x3 (where the dislocation can move) and perpendicular to the axis x1. In the case

of an edge dislocation the BurgersŠ vector (i.e. a Ąxed vector associated to the dislocation) is perpendicular

to the dislocation line, thus in the direction of the axis x1. We write this BurgersŠ vector as be1 for a real b.

After a section of the three-dimensional crystal with the plane x1x2, the dislocation line can be identiĄed

with a point on the x1 axis. The disregistry of the upper half crystal ¶x2 > 0♢ relative to the lower half

¶x2 < 0♢ in the direction of the BurgersŠ vector is ϕ(x1), where ϕ is a phase parameter between 0 and b.

Then the dislocation point can be for instance localized by the level set ϕ = b/2. In the PeierlsŰNabarro

model, the total energy is given by

E = Eel + Emis. (1.9)

In (1.9), Eel is the elastic energy induced by the dislocation. In the isotropic case and for a straight dislocation

line it takes the form

Eel =
1

2

∫

R×R+
♣∇U ♣

2
dx1 dx2,

where U : R × R+ → R represents the displacement which is such that U(x1, 0) = ϕ(x1). Emis is the so

called misĄt energy due to the nonlinear atomic interaction across the slip plane,

Emis(ϕ) =

∫

R

W (U(x1, 0)) dx1 =

∫

R

W (ϕ(x1)) dx1, (1.10)

where W (ϕ) is the interplanar potential. In a general model, one can consider a potential W satisfying

assumptions (1.3). The periodicity of W reĆects the periodicity of the crystal, while the minimum property

is consistent with the fact that the perfect crystal is assumed to minimize the energy. The equilibrium

conĄguration of the edge dislocation is obtained by minimizing the total energy with respect to U , under

the constraint that far from the dislocation core, the function ϕ tends to 0 in one half line and to b in the

other half line. The corresponding EulerŰLagrange equation can be written in terms of the phase transition

ϕ as

I1[ϕ] = W ′(ϕ).

Assume for simplicity b = 1, if we Ąx the value of ϕ at the origin to be 1/2, then for x = x1 the 1-D phase

transition is solution to:
∏
⎪⎪⨄
⎪⎪⋃

I1[ϕ] = W ′(ϕ) in R

ϕ′ > 0 in R

lim
x→−∞

ϕ(x) = 0, lim
x→+∞

ϕ(x) = 1, ϕ(0) =
1

2
.

(1.11)

Existence of a unique solution of (1.11) has been proven in [4]. In the classical PeierlsŰNabarro model the

potential is given by W (u) = b2

4π2d

(
1 − cos

(
2πu

b

[[
, where d is the lattice spacing perpendicular to the slip

plane, and the 1-D phase transition, found by Nabarro [35], is explicit: ϕ(x) = b
2 + b

π
arctan

(
2x
d

[
.

In the face cubic structured (FCC) observed in many metals and alloys, dislocations move at low

temperature on the slip plane. The dynamics for a collection of straight dislocations lines with the same

BurgersŠ vector and all contained in a single slip plane, moving with self-interactions (no exterior forces) is

then described by the evolutive version of the PeierlsŰNabarro model (see for instance [34] and [12]):

∂tu = I1[u(t, ·)] −W ′ (u) in R+ × R. (1.12)
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In this paper we consider Eq. (1.12) when the number of dislocations is of order 1/ε and neighboring

dislocations are at distance at microscopic scale of order 1/δ. This can be represented by the following

initial condition

u(0, x) =

Nε∑

i=1

ϕ
(
x−

yi

δ

⎡
,

where ϕ is the solution of (1.11), Nε ∼ 1/ε and

0 ⩽ yi+1 − yi ∼ 1.

We want to identify at large (macroscopic) scale the evolution model for the dynamics of a density of

dislocations. We consider the following rescaling

uε(t, x) = εu

⎤
t

εδ2
,
x

εδ

⎣
,

then we see that uε is solution of (1.1) with initial datum

uε(0, x) =

Nε∑

i=1

εϕ

⎤
x− εyi

εδ

⎣
. (1.13)

Here ε describes the ratio between the microscopic scale and the macroscopic scale. After the rescaling we see

that the distance between neighboring dislocations is of order ε ∼ 1/Nε. Every dislocation point is described

by a phase transition εϕ
(

x−εyi
εδ

[
whose derivative is of order 1/δ.

More in general, we consider an initial datum u0 satisfying (1.4). One can actually prove (see

Proposition 4.12) that any function satisfying (1.4), normalized such that the inĄmum is 0, can be

approximated by a function of the form (1.13). The monotonicity of u0 reĆects the fact that the dislocations

have all the same orientation so that no annihilations occur.

1.2. The discrete dislocation dynamics (δ = 0)

When ε = 1, (1.1) is a non-local AllenŰCahn equation. In [22], González and Monneau, show that the

solution converges as δ → 0 to the stable minima of the potential W , that is integers. More precisely,

if the initial datum is well prepared, the solution converges to a sum of Heaviside functions of the form√N
i=1 H(x − yi(t)), where the interface points yi(t), i = 1, . . . , N evolve in time driven by the following

system of ODEŠs: ∏
⎪⨄
⎪⋃

ẏi =
c0

π

∑

j ̸=i

1

yi − yj

in (0,+∞)

yi(0) = y0
i .

(1.14)

Here the points y0
i , i = 1, . . . , N , are given in the initial condition and

c0 =

⎤∫

R

(ϕ′)2

⎣−1

, (1.15)

with ϕ the solution of (1.11). System (1.14) corresponds to the classical discrete dislocation dynamics in the

particular case of parallel straight edge dislocation lines in the same slip plane with the same BurgersŠ vector

and describe the dynamics of dislocation particles at mesoscopic scale.
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1.3. Brief review of the literature

When δ = 1, (1.1) is a homogenization problem and the convergence of the solution when ε → 0 have been

studied by Monneau and the Ąrst author in [32] in any dimension. In this case it is proven that uε converges

to the solution of an homogenized equation of type ∂tu = H(∇u, I1[u]), where the effective Hamiltonian H

is implicitly deĄned through a cell problem. In [31] it is proven that in dimension 1 H(δp, δL) ≃ c0δ
2♣p♣L

as δ → 0. See also [39] for fractional operators of any order s ∈ (0, 2). The proofs of [31,32] cannot be

adapted here as the errors obtained blow up when ε and δ converge to 0 simultaneously. For more results

about homogenization of local and nonlocal Ąrst order operators with uε/ε dependence we refer to [1,25,26].

Collisions of dislocation particles and/or long time behavior for the solution of (1.1) with ε = 1 have been

studied in [11,38,40,41]. In [20] and [21], Garroni and Muller study a variational model for dislocations that

is the variational formulation of the stationary PeierlsŰNabarro equation in dimension 2, and they derive a

line tension model.

The passage from discrete models of type (1.14) (δ = 0) to continuum models has been studied in

several papers. In [17], Forcadel, Imbert and Monneau prove that the function
√Nε

i=1 H(x− yi(t)), where yi,

i = 1, . . . , Nε solve (1.14), properly rescaled, converges to the continuous viscosity solution of an homogenized

equation, which is (1.6) when the forcing term is 0. In [28], van Meurs and Morandotti present a discrete-

to-continuum limit passage for a system of dislocation particles with a regularized potential, which includes

annihilation. Convergence of evolving interacting particle systems in dimension 2 has been studied in [19].

For further related results we refer the reader to [18,29,30,33,43] and references therein.

1.4. Organization of the paper

The paper is organized as follows. In Section 2 we present the strategy and the heuristic of the proof of

Theorem 1.1. In Section 3 we recall some general auxiliary results that will be used in the rest of the paper.

In Section 4 we prove a discrete approximation formula for the operator I1. Section 5 is devoted to the proof

of our main result, Theorem 1.1. The main comparison result used in the proof of the theorem is shown in

Section 6. Finally the proofs of some auxiliary lemmas are given in Section 7.

1.5. Notations

We denote by Br(x) the ball of radius r centered at x. The cylinder (t− τ, t+ τ) ×Br(x) is denoted by

Qτ,r(t, x). ⌊x⌋ and ⌈x⌉ denote respectively the Ćoor and the ceil integer parts of a real number x.

For r > 0, we denote

I1,r
1 [v](x) =

1

π
PV

∫

♣y−x♣⩽r

v(y) − v(x)

(y − x)2
dy, (1.16)

and

I2,r
1 [v](x) =

1

π

∫

♣y−x♣>r

v(y) − v(x)

(y − x)2
dy. (1.17)

Then we can write

I1[v](x) = I1,r
1 [v](x) + I2,r

1 [v](x).

We denote by USCb((0,+∞)×R) (resp., LSCb((0,+∞)×R)) the set of upper (resp., lower) semicontinuous

functions on (0,+∞) × R which are bounded on (0, T ) × R for any T > 0 and we set Cb((0,+∞) × R) :=

USCb((0,+∞) × R) ∩ LSCb((0,+∞) × R). We denote by C2
b ((0,+∞) × R) the subset of functions of

Cb((0,+∞) × R) with continuous second derivatives. Finally, C1,1(R) is the set of functions with bounded

C1,1 norm over R.
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Given a sequence ¶uε♢ we denote

lim sup
ε→0

∗uε(t, x) = sup
{

lim sup
ε→0

uε(xε) ♣ xε → x
}
,

and

lim inf
ε→0 ∗

uε(t, x) = inf
{

lim inf
ε→0

uε(xε) ♣ xε → x
}
.

Given a quantity E = E(x), we write E = O(A) is there exists a constant C > 0 such that, for all x,

♣E♣ ⩽ CA.

We write E = oε(1) if

lim
ε→0

E = 0,

uniformly in x.

2. Strategy and heuristic of the proofs

In this section we explain the steps that we will follow to prove Theorem 1.1 and the heuristic of the main

proofs.

2.1. Approximation of I1

The Ąrst result is a discrete approximation formula for the fractional Laplace I1 of non-decreasing C1,1

functions (Propositions 4.4 and 4.7, see also Remark 4.9). Let v ∈ C1,1(R). Assume for simplicity that v is

strictly increasing. Let ε > 0 be a small parameter. Let us deĄne the points xi as follows,

v(xi) = εi, i = Mε, . . . , Nε (2.1)

where Mε :=
⌈

infR v+ε

ε

⌉
and Nε =

⌊
supR v−ε

ε

⌋
. By the monotonicity of v the points xi are ordered,

xi < xi+1 for all i.

Then, we show that

I1[v](xi0) ≃
1

π

∑

i ̸=i0

ε

xi − xi0

, (2.2)

where the error goes to 0 when ε → 0. To show (2.2), we consider a small radius r = rε such that r → 0 as

ε → 0 and we split ∑

i ̸=i0

ε

xi − xi0

=
∑

i̸=i0
♣xi−xi0

♣⩽r

ε

xi − xi0

+
∑

♣xi−xi0
♣>r

ε

xi − xi0

.

Then, we have

1

π

∑

♣xi−xi0
♣>r

ε

xi − xi0

=
1

π

∑

♣xi−xi0
♣>r

v(xi+1) − v(xi)

xi − xi0

≃
1

π

∑

♣xi−xi0
♣>r

vx(xi)(xi+1 − xi)

xi − xi0

≃
1

π

∫

♣x−xi0
♣>r

vx(x)

x− xi0

dx

=
1

π

∫

♣x−xi0
♣>r

v(x) − v(xi0)

(x− xi0)2
dx−

1

π

v(xi0 + r) + v(xi0 − r) − 2v(xi0)

r

≃ I1[v](xi0),
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where we have performed an integration by parts in the fourth equality. We can control the error produced

in the approximation by choosing r not too small (r such that ε/r → 0 as ε → 0).

On the other hand, for i ̸= i0,

ε(i− i0) = v(xi) − v(xi0) ≃ vx(xi0)(xi − xi0)

from which (Lemma 4.6).
∑

i̸=i0
♣xi−xi0

♣⩽r

ε

xi − xi0

≃ vx(xi0)
∑

i̸=i0
♣i−i0♣⩽vx(xi0

) r
ε

1

(i− i0)

≃ vx(xi0)

∏
∐ ∑

i⩽i0−1

1

(i− i0)
+
∑

i⩾i0+1

1

(i− i0)

∫
⎠

= vx(xi0)

∏
∐−

∑

k⩾1

1

k
+
∑

k⩾1

1

k

∫
⎠

= 0.

We can control the error produced by choosing r sufficiently small (r ⩽ ε
1
2 ). Combining the two estimates,

we obtain (2.2).

We actually show that for any x,

I1[v](x) ≃
1

π

∑

♣xi−x♣>r

ε

xi − x

where the error is uniform over R, that is do not depend on the point x, while the sum
∑

i̸=i0
♣xi−x♣⩽r

ε

xi − x

may not be zero but depends on the distance of x from the closest xi.

All our estimates hold true for any non-decreasing (non necessarily strictly increasing) C1,1 function.

2.2. Approximation of v

Let ϕ be the transition layer deĄned by (1.11). It is known (see Lemma 3.1) that if H(x) is the Heaviside

function, then ϕ exhibits the following behavior at inĄnity: for ♣x♣ ≫ 1,

ϕ(x) ≃ H(x) −
1

απx
, (2.3)

where α = W ′′(0). Using estimates (2.3) and (2.2), we show (Proposition 4.12) that if v ∈ C1,1(R) is

non-decreasing and xi are deĄned by (2.1), then

v(x) ≃

Nε∑

i=Mε

εϕ

⎤
x− xi

εδ

⎣
+ εMε. (2.4)

Notice that εMε ≃ infR v. Indeed, assume for simplicity that x = xi0 for some Mε ⩽ i0 ⩽ Nε. Then, for ε

and δ small: (xi0 − xi)/(δε) ≫ 1 if i ⩽ i0 − 1, (xi0 − xi)/(δε) ≪ −1 if i ⩾ i0 + 1. Then, by (2.3) and (2.2),

Nε∑

i=Mε

εϕ

⎤
xi0 − xi

εδ

⎣
+ εMε =

i0−1∑

i=Mε

εϕ

⎤
xi0 − xi

εδ

⎣
+ εϕ(0) +

Nε∑

i=i0+1

εϕ

⎤
xi0 − xi

εδ

⎣
+ εMε

≃

i0−1∑

i=Mε

ε

⎤
1 +

εδ

απ(xi − xi0)

⎣
+
εδ

απ

Nε∑

i=i0+1

ε

xi − xi0

+ εMε
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=
εδ

απ

∑

i ̸=i0

ε

xi − xi0

+ εi0

≃
εδ

α
I1[v](xi0) + εi0

≃ εi0

= v(xi0).

We prove that estimate (2.4) holds true for any non-decreasing C1,1 function v and that the error is

independent of the point x.

2.3. Heuristic of the proof of Theorem 1.1

As for a homogenization problem we Ąx (t0, x0) ∈ (0,+∞)×R and Ąnd an ansatz for uε in a small box QR

of size R centered at the point. Let u be the limit solution (that here we suppose to exist and be smooth).

For R small, all the derivatives of u can be considered constant in QR:

∂tu(t, x) ≃ ∂tu(t0, x0), ∂xu(t, x) ≃ ∂xu(t0, x0)

and

I1[u(t, ·)](x) ≃ I1[u(t0, ·)](x0) =: L0.

By the comparison principle uε and thus u is non-decreasing in x. Assume that

∂xu(t0, x0) > 0.

In particular u is strictly increasing in x in QR. For t close to t0, we deĄne the points xi(t) such that

u(t, xi(t)) = εi. (2.5)

Since u is strictly increasing in x in QR, if (t, xi(t)), (t, xi+1(t)) ∈ QR then 0 < xi+1−xi ≃ ε (see Lemma 4.1).

For i such that (t, xi(t)) ∈ QR, by differentiating (2.5) we get

∂tu(t, xi(t)) + ∂xu(t, xi(t))ẋi(t) = 0,

from which

ẋi(t) = −
∂tu(t, xi(t))

∂xu(t, xi(t))
≃ −

∂tu(t0, x0)

∂xu(t0, x0)
. (2.6)

Next we consider as ansatz for uε the approximation of u given by (2.4) plus a small correction:

Φ
ε(t, x) :=

Nε∑

i=Mε

ε

⎤
ϕ

⎤
x− xi(t)

εδ

⎣
+ δψ

⎤
x− xi(t)

εδ

⎣⎣
+ εMε.

The function ψ is deĄned in the forthcoming equation (3.3) with L = L0. For a detailed heuristic motivation

of this correction, see Section 3.1 of [22]. By (2.4), Φε(t, x) → u(t, x) as ε → 0. Fix (t, x) ∈ QR and let xi0(t)

be the closest point among the xi(t)Šs to x and zi = (x− xi(t))/(εδ). Plugging into (1.1), we get (see proof

of (5.21) in Section 5)

0 = δ∂tΦ
ε(t, x) − I1[Φε(t, ·)](x) +

1

δ
W ′

⎤
Φε(t, x)

ε

⎣

≃ −ϕ′(zi0)(ẋi0(t) + c0L0) + (W ′′(ϕ(zi0)) −W ′′(0))

∏
∐1

δ

∑

i ̸=i0

ϕ̃(zi) −
L0

α

∫
⎠
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where ϕ̃(z) = ϕ(z) −H(z). Suppose for simplicity that x = xi0(t), then by (2.3) and (2.2)

1

δ

∑

i ̸=i0

ϕ̃(zi) −
L0

α
≃

1

απ

∑

i ̸=i0

ε

xi − xi0

−
L0

α
≃ 0.

Since ϕ′ > 0, we must have

ẋi0(t) ≃ −c0L0

that is, by (2.6),

∂tu(t0, x0) ≃ c0∂xu(t0, x0)I1[u(t0, ·)](x0).

Notice that if we deĄne

yi(τ) :=
xi(ετ)

ε
then the yiŠs solve

ẏi(τ) = ẋi(ετ) ≃ −c0L0 ≃
c0

π

∑

j ̸=i

ε

xi − xj

=
c0

π

∑

j ̸=i

1

yi − yj

,

which is the discrete dislocations dynamics given in (1.14).

2.4. Viscosity sub and supersolutions

By using the comparison principle we show that the functions uε are bounded uniformly in ε (see

Section 5). In particular, u+ := lim supε→0
∗uε and u− := lim infε→0∗u

ε are everywhere Ąnite. To formally

prove the convergence result following the idea of Section 2.3, we show that u+ and u− are respectively

viscosity sub and supersolution of (1.5). As in the perturbed test function method by Evans [16] in

homogenization problems, we will proceed by contradiction.

2.5. Comparison with the solution of (1.5)

We prove that u+ and u− are respectively viscosity sub and supersolution of (1.5), when testing with

functions whose derivative in x is different than 0. This is not enough to conclude that by the comparison

principle u+ ⩽ u−. Thus, we consider the approximation Fε(x) of the initial datum u0 provided by (2.4).

Since ϕ′ ∈ Lp(R) for all p ∈ [1,∞] and ϕ′ > 0 (see Lemma 3.1), for Ąxed ε, δ > 0, the derivative of

Fε(x) belongs to Lp(R) for all p ∈ [1,∞] and is strictly positive. By the results of [9] about Eq. (1.7) (see

Theorem 3.9 in Section 3), we can construct a solution wε(t, x) of (1.5) such that wε is smooth, ∂xw
ε > 0,

wε(0, x) ≃ u0(x) and wε ≃ u, with u the viscosity solution of (1.5). We then show that

lim
♣x♣→+∞

u+(t, x) − wε(t, x) ≃ 0, (2.7)

moreover,

u+(0, x) − wε(0, x) ≃ 0. (2.8)

We Ąnally prove that u+(t, x) − wε(t, x) ⩽ o1(ε). Indeed, if not, by (2.7) and (2.8), u+ − wε must attain a

global positive maximum at some point in (0,+∞) × R. Then, using wε (whose derivative in x is strictly

positive) as test function for u+ we get a contradiction. Passing to the limit as ε → 0, this shows that

u+ ⩽ u. Similarly, one can prove that u− ⩾ u. Since the reverse inequality u− ⩽ u+ always holds true, we

conclude that u− = u+ = u.

As a byproduct of our proof we show that the viscosity solution u of (1.5) satisĄes, for all t ⩾ 0,

lim
x→−∞

u(t, x) = inf
R

u0 and lim
x→+∞

u(t, x) = sup
R

u0,

which is equivalent to say that the mass of the non-negative function ∂xu(t, x) is conserved: for all t ⩾ 0,

∥∂xu(t, ·)∥L1(R) = ∥∂xu0∥L1(R).
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3. Preliminary results

In this section we recall some general auxiliary results that will be used in the rest of the paper.

3.1. Short and long range interaction

We start by recalling a basic fact about the operator I1. Given v ∈ C1,1(R) and r > 0 we can split I1[v]

into the short and long range interaction as follows,

I1[v](x) = I1,r
1 [v](x) + I2,r

1 [v](x),

where I1,r
1 [v](x), I2,r

1 [v](x) are deĄned respectively by (1.16) and (1.17). The short range interaction can be

rewritten as

I1,r
1 [v](x) =

1

2π

∫

♣y♣<r

v(x+ y) + v(x− y) − 2v(x)

y2
dy,

Therefore,

♣I1,r
1 [v](x)♣ ⩽

r

π
∥v∥C1,1(R).

The long range interaction can be bounded as follows

♣I2,r
1 [v](x)♣ ⩽

4

rπ
∥v∥∞.

3.2. The functions ϕ and ψ

In what follows we denote by H(x) the Heaviside function. Let α := W ′′(0) > 0.

Lemma 3.1. Assume that (1.3) holds, then there exists a unique solution ϕ of (1.11). Furthermore ϕ ∈

C2,β(R) and there exist constants K0,K1 > 0 such that
\\\\ϕ(x) −H(x) +

1

απx

\\\\ ⩽
K1

x2
, for ♣x♣ ⩾ 1, (3.1)

and for any x ∈ R

0 <
K0

1 + x2
⩽ ϕ′(x) ⩽

K1

1 + x2
. (3.2)

Proof. The existence of a unique solution of (1.11) and estimate (3.2) are proven in [4]. Estimate (3.1) is

proven in [22]. □

Let c0 be deĄned as in (1.15). Let us introduce the function ψ to be the solution of
∮

I1[ψ] = W ′′(ϕ)ψ + L
α

(W ′′(ϕ) −W ′′(0)) + c0Lϕ
′ in R

lim
x→ +

− ∞
ψ(x) = 0.

(3.3)

For later purposes, we recall the following decay estimate on the solution of (3.3):

Lemma 3.2. Assume that (1.3) holds, then there exists a unique solution ψ to (3.3). Furthermore ψ ∈

C1,β(R) and for any L ∈ R there exist constants K2 and K3, with K3 > 0, depending on L such that
\\\\ψ(x) −

K2

x

\\\\ ⩽
K3

x2
, for ♣x♣ ⩾ 1, (3.4)

and for any x ∈ R

−
K3

1 + x2
⩽ ψ′(x) ⩽

K3

1 + x2
. (3.5)
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Proof. The existence of a unique solution of (3.3) is proven in [22]. Estimates (3.4) and (3.5) are shown

in [31]. □

The results of Lemmas 3.1 and 3.2 have been generalized in [3,14,15,37,39] to the case when the fractional

operator is −(−∆)s for any s ∈ (0, 1).

3.3. DeĄnition of viscosity solution

We Ąrst recall the deĄnition of viscosity solution for a general Ąrst order non-local equation

∂tu = F (t, x, u, ∂xu, I1[u]) in (0,+∞) × Ω (3.6)

where Ω is an open subset of R and F (t, x, u, p, L) is continuous and non-decreasing in L.

DeĄnition 3.1. A function u ∈ USCb((0,+∞) × R) (resp., u ∈ LSCb((0,+∞) × R)) is a viscosity

subsolution (resp., supersolution) of (3.6) if for any (t0, x0) ∈ (0,+∞) × Ω , and any test function φ ∈

C2
b ((0,+∞) × R) such that u− φ attains a global maximum (resp., minimum) at the point (t0, x0), then

∂tφ(t0, x0) − F (t0, x0, u(t0, x0), ∂xφ(t0, x0), I1[φ(t0, ·)](x0)) ⩽ 0

(resp., ⩾ 0).

A function u ∈ Cb((0,+∞) × R) is a viscosity solution of (3.7) if it is a viscosity sub and supersolution of

(3.6).

Remark 3.3. It is classical that the maximum (resp., the minimum) in DeĄnition 3.1 can be assumed to

be strict and that

φ(t0, x0) = u(t0, x0).

This will be used later.

Next, let us consider the initial value problem
∮
∂tu = F (t, x, u, ∂xu, I1[u]) in (0,+∞) × R

u(0, x) = u0(x) on R,
(3.7)

where u0 is a continuous function.

DeĄnition 3.2. A function u ∈ USCb((0,+∞) × R) (resp., u ∈ LSCb((0,+∞) × R)) is a viscosity

subsolution (resp., supersolution) of the initial value problem (3.7) if u(0, x) ⩽ (u0)(x) (resp., u(0, x) ⩾

(u0)(x)) and u is viscosity subsolution (resp., supersolution) of the equation

∂tu = F (t, x, u, ∂xu, I1[u]) in (0,+∞) × R.

A function u ∈ Cb((0,+∞) × R) is a viscosity solution of (3.7) if it is a viscosity sub and supersolution of

(3.7).

It is a classical result that smooth solutions are also viscosity solutions.

Proposition 3.4. If u ∈ C1((0,+∞);C1,β
loc (Ω) ∩ L∞(R)) for some 0 < β ⩽ 1, and u satisĄes pointwise

∂tu− F (t, x, u, ∂xu, I1[u]) ⩽ 0 (resp. ⩾ 0) in (0,+∞) × Ω ,

then u is a viscosity subsolution (resp., supersolution) of (3.6).
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3.4. Comparison principle and existence results

In this subsection, we successively give comparison principles and existence results for (1.1) and (1.5).

The following comparison theorem is shown in [27] for more general parabolic integro-PDEs.

Proposition 3.5 (Comparison Principle for (1.1)). Consider u ∈ USCb((0,+∞) × R) subsolution and

v ∈ LSCb((0,+∞) × R) supersolution of (1.1), then u ⩽ v on (0,+∞) × R.

Following [27] it can also be proven the comparison principle for (1.1) in bounded domains. Since we

deal with a non-local equation, we need to compare the sub and the supersolution everywhere outside the

domain.

Proposition 3.6 (Comparison Principle on Bounded Domains for (1.1)). Let Ω be a bounded domain of

(0,+∞) × R and let u ∈ USCb((0,+∞) × R) and v ∈ LSCb((0,+∞) × R) be respectively a sub and a

supersolution of

δ∂tu = I1[u(t, ·)] −
1

δ
W ′
(u
ε

⎡
in Ω .

If u ⩽ v outside Ω , then u ⩽ v in Ω .

Proposition 3.7 (Existence for (1.1)). For ε, δ > 0 there exists uε ∈ Cb([0,+∞) × R) (unique) viscosity

solution of (1.1). Moreover, uε is non-decreasing in x.

Proof. We can construct a solution by PerronŠs method if we construct sub and supersolutions of (1.1)

which are equal to u0(x) at t = 0. Since u0 ∈ C1,1(R), the two functions u±(t, x) := u0(x)± C
δ2 t are

respectively a super and a subsolution of (1.1), if

C ⩾
4δ

π
∥u0∥C1,1(R) + ∥W ′∥∞.

Moreover u+(0, x) = u−(0, x) = u0(x). Since u0 is non-decreasing, the comparison principle implies that uε

is non-decreasing in x. □

We next recall the comparison and the existence results for (1.5), see e.g. [26], Proposition 3.

Proposition 3.8. If u ∈ USCb([0,+∞) × R) and v ∈ LSCb([0,+∞) × R) are respectively a sub and a

supersolution of ∮
∂tu = c0♣∂xu♣ I1[u] in (0,+∞) × R

u(0, ·) = u0 on R,
(3.8)

then u ⩽ v on (0,+∞) × R. Moreover, under assumption (1.4), there exists a (unique) viscosity solution of

(3.8) which is non-decreasing in x and thus is viscosity solution of (1.5).

3.5. Existence of global solutions of Eq. (1.7)

Theorem 3.9 ([9], Theorem 2.1). Let f0 ∈ L2(R) ∩Cβ(R), for some 0 < β ⩽ 1 and f0 > 0 in R (vanishing

at inĄnity). Then, there exists a global solution v of Eq. (1.7) in C1((0; +∞); analytic) with f(0, x) = f0(x).

Moreover, f is vanishing at inĄnity and H(f(t, ·)) ∈ L∞(R) for all t ⩾ 0. If f0 ∈ L2(R) ∩ C1,β(R), the

solution is unique.
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4. A discrete approximation of the operator I1

Let v ∈ C0,1(R) be non-decreasing and non-constant. For 0 < ε < 1, deĄne the points xi as follows

xi := inf¶x ∈ R ♣ v(x) = εi♢ i = Mε, . . . , Nε, (4.1)

where

Mε :=

⎫
infR v + ε

ε

⌉
and Nε :=

⎥
sup

R
v − ε

ε

⌋
. (4.2)

Since v is continuous,

v(xi) = εi,

and since v is non-decreasing,

xi < xi+1 for all i = Mε, . . . , Nε − 1.

Notice that if v is strictly increasing then

xi = v−1(εi).

In what follows given x ∈ R, we denote by xi0 the closest point among the xiŠs to x.

Lemma 4.1. Let v ∈ C0,1(R) be non-decreasing and non-constant with ∥vx∥∞ ⩽ L, and let xi be deĄned

as in (4.1). Then,

xi+1 − xi ⩾ εL−1 for all i = Mε, . . . , Nε − 1. (4.3)

Moreover, there exists c > 0 independent of v such that for any x ∈ R

Nε∑

i=Mε
i̸=i0

ε2

(xi − x)2
⩽ cL2. (4.4)

If in addition vx ⩾ a > 0 on an interval I, then for all xi+1, xi ∈ I, we have

xi+1 − xi ⩽ εa−1. (4.5)

Proof. We have

ε = v(xi+1) − v(xi) ⩽ L(xi+1 − xi),

from which (4.3) follows.

Next, by (4.3), if xi0 is the closest point to x, then

♣xi − x♣ ⩾
♣i− i0♣ε

2L
for all i.

Therefore,
Nε∑

i=Mε
i̸=i0

ε2

(xi − x)2
⩽ 4L2

Nε∑

i=Mε
i̸=i0

1

(i− i0)2
⩽ 8L2

∞∑

i=1

1

i2
= cL2,

which proves (4.4).

Finally, if vx ⩾ a, then

ε = v(xi+1) − v(xi) ⩾ a(xi+1 − xi)

from which (4.5) follows. □
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Lemma 4.2 (Short Range Interaction).Let v ∈ C1,1(R) be non-decreasing and non-constant and xi deĄned

as in (4.1). Let r = rε be such that r → 0 and ε/r → 0 as ε → 0. Let ρ ⩾ r and x ∈ (xMε + ρ, xNε − ρ), then

1

π

∑

i̸=i0
r⩽♣xi−x♣⩽ρ

ε

xi − x
= I1,ρ

1 [v](x) +
1

π

v(x+ ρ) + v(x− ρ) − 2v(x)

ρ
+ oε(1). (4.6)

Proof. Since v ∈ C1,1(R) and r = oε(1), there exists C > 0 such that

♣I1,r
1 [v](x)♣ ⩽ Cr = oε(1).

Therefore, we have

I1,ρ
1 [v](x) =

1

π

∫ x−r

x−ρ

v(x) − v(x)

(x− x)2
dx+

1

π

∫ x+ρ

x+r

v(x) − v(x)

(x− x)2
dx+ oε(1). (4.7)

Let us estimate from above and below the Ąrst and second term in the right-hand side of (4.7). We split

∫ x−r

x−ρ

v(x) − v(x)

(x− x)2
dx =

∫ x−r

x−ρ

v(x)

(x− x)2
dx−

∫ x−r

x−ρ

v(x)

(x− x)2
dx.

Notice that we can integrate the second term as follows,

∫ x−r

x−ρ

v(x)

(x− x)2
dx = v(x)

∫ x−r

x−ρ

1

(x− x)2
dx =

v(x)

r
−
v(x)

ρ
. (4.8)

Next, we denote by Mρ and Mr respectively the lowest and the biggest integer i such that xi ∈ [x−ρ, x−r],

that is

xMρ−1 < x− ρ ⩽ xMρ ⩽ xMr ⩽ x− r < xMr+1.

Then, we split

∫ x−r

x−ρ

v(x)

(x− x)2
dx =

∫ xMρ

x−ρ

v(x)

(x− x)2
dx+

Mr−1∑

i=Mρ

∫ xi+1

xi

v(x)

(x− x)2
dx+

∫ x−r

xMr

v(x)

(x− x)2
dx. (4.9)

By using the monotonicity of v, we obtain

∫ x−r

x−ρ

v(x)

(x− x)2
dx ⩽

∫ xMρ

x−ρ

v(xMρ)

(x− x)2
dx+

Mr−1∑

i=Mρ

∫ xi+1

xi

v(xi+1)

(x− x)2
dx+

∫ x−r

xMr

v(x− r)

(x− x)2
dx

= −
v(xMρ)

ρ
−

v(xMρ)

xMρ − x
+

Mr−1∑

i=Mρ

⎤
v(xi+1)

xi − x
−

v(xi+1)

xi+1 − x

⎣

+
v(x− r)

xMr − x
+
v(x− r)

r
.

(4.10)

Recalling that v(xi) = εi, we compute

Mr−1∑

i=Mρ

⎤
v(xi+1)

xi − x
−

v(xi+1)

xi+1 − x

⎣
=

Mr−1∑

i=Mρ

⎤
ε(i+ 1)

xi − x
−

ε(i+ 1)

xi+1 − x

⎣

=

Mr−1∑

i=Mρ

ε(i+ 1)

xi − x
−

Mr∑

i=Mρ+1

εi

xi − x
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=

Mr−1∑

i=Mρ+1

ε

xi − x
+
ε(Mρ + 1)

xMρ − x
−

εMr

xMr − x

=

Mr∑

i=Mρ

ε

xi − x
+

εMρ

xMρ − x
−
ε(Mr + 1)

xMr − x

=

Mr∑

i=Mρ

ε

xi − x
+

v(xMρ)

xMρ − x
−

v(xMr )

xMr − x
−

ε

xMr − x

⩽

Mr∑

i=Mρ

ε

xi − x
+

v(xMρ)

xMρ − x
−

v(xMr )

xMr − x
+
ε

r
.

Plugging into (4.10), we obtain

∫ x−r

x−ρ

v(x)

(x− x)2
dx ⩽

Mr∑

i=Mρ

ε

xi − x
+
v(x− r) − v(xMr )

xMr − x
−
v(xMρ)

ρ
+
v(x− r)

r
+
ε

r

⩽

Mr∑

i=Mρ

ε

xi − x
−
v(xMρ)

ρ
+
v(x− r)

r
+
ε

r
,

where in the last inequality we have used that v(x− r) ⩾ v(xMr ) and xMr < x. Combining with (4.8) and

using that v(xMρ) ⩾ v(x− ρ), we obtain

∫ x−r

x−ρ

v(x) − v(x)

(x− x)2
dx ⩽

Mr∑

i=Mρ

ε

xi − x
+
v(x− r) − v(x)

r
−
v(xMρ) − v(x)

ρ
+
ε

r

⩽

Mr∑

i=Mρ

ε

xi − x
+
v(x− r) − v(x)

r
−
v(x− ρ) − v(x)

ρ
+
ε

r
.

(4.11)

Next, we will get a similar estimate for the second term in the right-hand side of (4.7). As before, we split

∫ x+ρ

x+r

v(x) − v(x)

(x− x)2
dx =

∫ x+ρ

x+r

v(x)

(x− x)2
dx−

∫ x+ρ

x+r

v(x)

(x− x)2
dx

=

∫ x+ρ

x+r

v(x)

(x− x)2
dx−

v(x)

r
+
v(x)

ρ
.

(4.12)

Let Nr and Nρ be respectively the lowest and the biggest index i such that xi ∈ [x+ r, x+ ρ], that is

xNr−1 < x+ r ⩽ xNr ⩽ xNρ ⩽ x+ ρ < xNρ+1.

By the monotonicity of v,

0 ⩽ v(x+ ρ) − v(xNρ) ⩽ v(xNρ+1) − v(xNρ) = ε (4.13)

and

0 ⩽ v(xNr ) − v(x+ r) ⩽ v(xNr ) − v(xNr−1) = ε. (4.14)
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By using again the monotonicity of v, we get

∫ x+ρ

x+r

v(x)

(x− x)2
dx =

∫ xNr

x+r

v(x)

(x− x)2
dx+

Nρ−1∑

i=Nr

∫ xi+1

xi

v(x)

(x− x)2
dx+

∫ x+ρ

xNρ

v(x)

(x− x)2
dx

⩽

∫ xNr

x+r

v(xNr )

(x− x)2
dx+

Nρ−1∑

i=Nr

∫ xi+1

xi

v(xi+1)

(x− x)2
dx+

∫ x+ρ

xNρ

v(x+ ρ)

(x− x)2
dx

=
v(xNr )

r
−

v(xNr )

xNr − x
+

Nρ−1∑

i=Nr

⎤
v(xi+1)

xi − x
−

v(xi+1)

xi+1 − x

⎣

+
v(x+ ρ)

xNρ − x
−
v(x+ ρ)

ρ
.

(4.15)

As before, we compute

Nρ−1∑

i=Nr

⎤
v(xi+1)

xi − x
−

v(xi+1)

xi+1 − x

⎣
=

Nρ−1∑

i=Nr

⎤
ε(i+ 1)

xi − x
−

ε(i+ 1)

xi+1 − x

⎣

=

Nρ−1∑

i=Nr

ε(i+ 1)

xi − x
−

Nρ∑

i=Nr+1

εi

xi − x

=

Nρ−1∑

i=Nr+1

ε

xi − x
+
ε(Nr + 1)

xNr − x
−

εNρ

xNρ − x

=

Nρ−1∑

i=Nr

ε

xi − x
+

εNr

xNr − x
−

εNρ

xNρ − x

=

Nρ−1∑

i=Nr

ε

xi − x
+

v(xNr )

xNr − x
−

v(xNρ)

xNρ − x
.

Plugging into (4.15) and using (4.13) and (4.14), we obtain

∫ x+ρ

x+r

v(x)

(x− x)2
dx ⩽

Nρ−1∑

i=Nr

ε

xi − x
+
v(x+ ρ) − v(xNρ)

xNρ − x
+
v(xNr )

r
−
v(x+ ρ)

ρ

⩽

Nρ−1∑

i=Nr

ε

xi − x
+

ε

xNρ − x
+
v(xNr )

r
−
v(x+ ρ)

ρ

=

Nρ∑

i=Nr

ε

xi − x
+
v(xNr )

r
−
v(x+ ρ)

ρ

⩽

Nρ∑

i=Nr

ε

xi − x
+
v(x+ r)

r
−
v(x+ ρ)

ρ
+
ε

r
.

Inserting into (4.12), we get

∫ x+ρ

x+r

v(x) − v(x)

(x− x)2
dx ⩽

Nρ∑

i=Nr

ε

xi − x
+
v(x+ r) − v(x)

r
−
v(x+ ρ) − v(x)

ρ
+
ε

r
. (4.16)
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Combining (4.11) and (4.16), we obtain the upper bound

∫

r⩽♣x−x♣⩽ρ

v(x) − v(x)

(x− x)2
dx ⩽

∑

r⩽♣xi−x♣⩽ρ

ε

xi − x
+
v(x+ r) + v(x− r) − 2v(x)

r

−
v(x+ ρ) + v(x− ρ) − 2v(x)

ρ
+

2ε

r
.

(4.17)

Similarly, one can get the following lower bound estimate
∫

r⩽♣x−x♣⩽ρ

v(x) − v(x)

(x− x)2
dx ⩾

∑

r⩽♣xi−x♣⩽ρ

ε

xi − x
+
v(x+ r) + v(x− r) − 2v(x)

r

−
v(x+ ρ) + v(x− ρ) − 2v(x)

ρ
−

2ε

r
.

(4.18)

Since v ∈ C1,1(R), there exists a constant C > 0 such that
\\\\
v(x+ r) + v(x− r) − 2v(x)

r

\\\\ ⩽ Cr = oε(1).

Therefore, combining (4.17) and (4.18), then dividing both sides by π and using that ε/r = oε(1), we Ąnally

obtain

1

π

∑

r⩽♣xi−x♣⩽ρ

ε

xi − x
=

1

π

∫

r⩽♣x−x♣⩽ρ

v(x) − v(x)

(x− x)2
dx+

1

π

v(x+ ρ) + v(x− ρ) − 2v(x)

ρ
+ oε(1),

which together with (4.7) gives (4.6). □

Lemma 4.3 (Long Range Interaction). Under the assumptions of Lemma 4.2 and for r as in the lemma, for

any ρ ⩾ r and x ∈ (xMε + ρ, xNε − ρ),

1

π

∑

♣xi−x♣>ρ

ε

xi − x
= I2,ρ

1 [v](x) −
1

π

v(x+ ρ) + v(x− ρ) − 2v(x)

ρ
+ oε(1). (4.19)

Proof. We decompose I2,ρ
1 [v](x) as follows

I2,ρ
1 [v](x) =

∫ xMε

−∞

v(x) − v(x)

(x− x)2
dx+

∫ x−ρ

xMε

v(x) − v(x)

(x− x)2
dx+

∫ xNε

x+ρ

v(x) − v(x)

(x− x)2
dx+

∫ +∞

xNε

v(x) − v(x)

(x− x)2
dx.

(4.20)

By the monotonicity of v, we get
∫ xMε

−∞

v(x) − v(x)

(x− x)2
dx ⩽

∫ xMε

−∞

v(xMε) − v(x)

(x− x)2
dx =

v(xMε) − v(x)

x− xMε

, (4.21)

and ∫ +∞

xNε

v(x) − v(x)

(x− x)2
dx ⩽

∫ +∞

xNε

sup
R
v − v(x)

(x− x)2
dx =

sup
R
v − v(x)

xNε − x
. (4.22)

One can similarly obtain a lower bound as follows
∫ xMε

−∞

v(x) − v(x)

(x− x)2
dx ⩾

∫ xMε

−∞

infR v − v(x)

(x− x)2
dx =

infR v − v(x)

x− xMε

, (4.23)

and ∫ +∞

xNε

v(x) − v(x)

(x− x)2
dx ⩾

∫ +∞

xNε

v(xNε) − v(x)

(x− x)2
dx =

v(xNε) − v(x)

xNε − x
. (4.24)
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To get the estimates for the middle two terms in the right-hand side of (4.20), we will proceed as in the

proof of Lemma 4.2. By respectively replacing x − ρ, x − r with xMε and x − ρ in (4.11) and x + r, x + ρ

with x+ ρ and xNε in (4.16) we obtain

∫ x−ρ

xMε

v(x) − v(x)

(x− x)2
dx+

∫ xNε

x+ρ

v(x) − v(x)

(x− x)2
dx ⩽

∑

♣xi−x♣⩾ρ

ε

xi − x
+

2ε

ρ

+
v(x+ ρ) + v(x− ρ) − 2v(x)

ρ
−
v(xMε) − v(x)

x− xMε

−
v(xNε) − v(x)

xNε − x
.

(4.25)

Similarly,
∫ x−ρ

xMε

v(x) − v(x)

(x− x)2
dx+

∫ xNε

x+ρ

v(x) − v(x)

(x− x)2
dx ⩾

∑

♣xi−x♣⩾ρ

ε

xi − x
−

2ε

ρ

+
v(x+ ρ) + v(x− ρ) − 2v(x)

ρ
−
v(xMε) − v(x)

x− xMε

−
v(xNε) − v(x)

xNε − x
.

(4.26)

Combining (4.21), (4.22) and (4.25), we get

∫ x−ρ

−∞

v(x) − v(x)

(x− x)2
dx+

∫ +∞

x+ρ

v(x) − v(x)

(x− x)2
dx ⩽

∑

♣xi−x♣⩾ρ

ε

xi − x

+
v(x+ ρ) + v(x− ρ) − 2v(x)

ρ
+

sup
R
v − εNε

xNε − x
+

2ε

ρ
.

(4.27)

Combining (4.23), (4.24) and (4.26), we get

∫ x−ρ

−∞

v(x) − v(x)

(x− x)2
dx+

∫ +∞

x+ρ

v(x) − v(x)

(x− x)2
dx ⩾

∑

♣xi−x♣⩾ρ

ε

xi − x

+
v(x+ ρ) + v(x− ρ) − 2v(x)

ρ
−
εMε − infR v

x− xMε

−
2ε

ρ
.

(4.28)

Recalling the deĄnition (4.2) of Nε and Mε, we see that 0 ⩽ sup
R
v − εNε ⩽ 2ε and 0 ⩽ εMε − infR v ⩽ 2ε.

Since in addition xNε − x > ρ, x − xMε > ρ, ρ ⩾ r and ε/r = oε(1), from (4.27) and (4.28) we Ąnally get

(4.19). □

The following proposition is an immediate consequence of Lemmas 4.2 and 4.3.

Proposition 4.4. Let v ∈ C1,1(R) be non-decreasing and non-constant and xi deĄned as in (4.1). Let r = rε

be such that r → 0 and ε/r → 0 as ε → 0. Then, for any x ∈ (xMε + r, xNε − r),

1

π

∑

♣xi−x♣⩾r

ε

xi − x
= I1[v](x) + oε(1).

Remark 4.5. Notice that in Lemmas 4.2, 4.3 and Proposition 4.4, the error oε(1) satisĄes

oε(1) = O(r) +O
(ε
r

⎡
. (4.29)

Lemma 4.6. Under the assumptions of Lemma 4.2, let x = xi0 + εγ. Then, there exists r = rε satisfying

ε
5
8 ⩽ r ⩽ cε

1
2 , with c depending on the C1,1 norm of v, such that

1

π

∑

i̸=i0
♣xi−x♣<r

ε

xi − x
= O(ε

1
8 ) +O(γ). (4.30)
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Proof. In what follows we denote by c and C different constants independent of ε and x. Let K > 0 be

such that ∥vxx∥L∞(R) ⩽ K. We divide the proof into three cases.

Case 1: vx(xi0) ⩽ 12K
1
2 ε

1
2 .

By making a Taylor expansion, we get

ε = v(xi0+1) − v(xi0) ⩽ vx(xi0)(xi0+1 − xi0) +
K

2
(xi0+1 − xi0)2

⩽
vx(xi0)2

2(12)2K
+

⎤
122K

2
+
K

2

⎣
(xi0+1 − xi0)2

⩽
ε

2
+

122 + 1

2
K(xi0+1 − xi0)2,

from which

xi0+1 − xi0 ⩾ cε
1
2 .

Similarly, one can prove that

xi0 − xi0−1 ⩾ cε
1
2 .

Since xi0 is the closest point to x, we must have that x− xi0−1 ⩾ cε
1
2 /2 and xi0+1 − x ⩾ cε

1
2 /2. Therefore,

if we choose r = rε = cε
1
2 /4, there is no index i ̸= i0 for which ♣x− xi♣ ⩽ r and thus (4.30) is trivially true.

Next, we show that
1

π

∑

i̸=i0
♣xi−x♣<r

ε

xi − xi0

= O(ε
1
8 ). (4.31)

We consider two more cases.

Case 2: 12K
1
2 ε

1
2 ⩽ vx(xi0) ⩽ ε

1
2 −τ , for some τ ∈ (0, 1/4).

If ♣x− xi0 ♣ ⩾ ε
1
2 /(4K

1
2 ), then we choose r = ε

1
2 /(8K

1
2 ) and as in Case 1, there is no index i ̸= i0 for

which ♣x− xi♣ ⩽ r. Thus (4.30) holds true.

Now, assume ♣x− xi0 ♣ ⩽ ε
1
2 /(4K

1
2 ) and deĄne

r :=
ε

1
2

2K
1
2

⩾ 2♣x− xi0 ♣. (4.32)

Let Mr and Nr be respectively the smallest and the larger index i such that xi ∈ (x− r, x+ r), that is

xMr−1 ⩽ x− r < xMr

xNr < x+ r ⩽ xNr+1.
(4.33)

By the monotonicity of v and (4.33),

−ε = v(xi0) − v(xi0+1) ⩽ v(xi0) − v(x) ⩽ v(xi0) − v(xi0−1) = ε,

−ε = v(xNr ) − v(xNr+1) ⩽ v(xNr ) − v(x+ r) ⩽ 0

0 ⩽ v(xMr ) − v(x− r) ⩽ v(xMr ) − v(xMr−1) = ε.

(4.34)

By making a Taylor expansion, we get, for i = Mr, . . . , Nr

ε(i− i0) = v(xi) − v(xi0) = vx(xi0)(xi − xi0) +O(r2),

where ♣O(r2)♣ ⩽ K(2r)2/2 = ε/2, from which

xi − xi0 =
ε(i− i0) +O(r2)

vx(xi0)
. (4.35)
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Therefore, we can write

∑

i̸=i0
♣xi−x♣<r

ε

xi − xi0

=

Nr∑

i=Mr
i̸=i0

vx(xi0)ε

ε(i− i0) +O(r2)

=

i0−1∑

i=Mr

vx(xi0)ε

ε(i− i0) +O(r2)
+

Nr∑

i=i0+1

vx(xi0)ε

ε(i− i0) +O(r2)
.

(4.36)

Now, suppose without loss of generality that Nr − i0 ⩽ i0 −Mr. Then,

i0−1∑

i=Mr

ε

ε(i− i0) +O(r2)
+

Nr∑

i=i0+1

ε

ε(i− i0) +O(r2)

=

i0−Mr∑

k=1

ε

−εk +O(r2)
+

Nr−i0∑

k=1

ε

εk +O(r2)

=

Nr−i0∑

k=1

ε

⎤
1

−εk +O(r2)
+

1

εk +O(r2)

⎣
+

i0−Mr∑

k=Nr−i0+1

ε

−εk +O(r2)
.

(4.37)

We can bound the Ąrst term of the right hand-side of the last equality as follows

\\\\\

Nr−i0∑

k=1

ε

⎤
1

−εk +O(r2)
+

1

εk +O(r2)

⎣\\\\\ =
2♣O(r2)♣

ε

\\\\\

Nr−i0∑

k=1

1

(−k + O(r2)
ε

)(k + O(r2)
ε

)

\\\\\

⩽

∞∑

k=1

1

k2 − 1
4

= C,

(4.38)

where we used that ♣O(r2)♣/ε ⩽ 1/2. Therefore,

vx(xi0)

\\\\\

Nr−i0∑

k=1

ε

⎤
1

−εk +O(r2)
+

1

εk +O(r2)

⎣\\\\\ ⩽ Cvx(xi0) ⩽ Cε
1
2 −τ . (4.39)

Next, by using that
√m

k=n 1/k ⩽ (m− n+ 1)/n, we get

\\\\\\

i0−Mr∑

k=Nr−i0+1

ε

−εk +O(r2)

\\\\\\
⩽

i0−Mr∑

k=Nr−i0+1

ε

εk − ♣O(r2)♣

⩽
−(εNr + εMr − 2εi0)

ε(Nr + 1) − εi0 − ♣O(r2)♣

=
−(v(xNr ) + v(xMr ) − 2v(xi0))

v(xNr ) − v(xi0) + ε− ♣O(r2)♣

⩽
−(v(xNr ) + v(xMr ) − 2v(xi0))

v(xNr ) − v(xi0)
.

(4.40)

By (4.34) and the regularity of v,

0 ⩽ −(v(xNr ) + v(xMr ) − 2v(xi0)) ⩽ −(v(x+ r) + v(x− r) − 2v(x)) + 3ε ⩽ Kr2 + 3ε ⩽ Cε. (4.41)
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Now, by using that vx(xi0) ⩾ 12K
1
2 ε

1
2 and that ♣x− xi0 ♣ ⩽ r/2, and by (4.34), we get

v(xNr ) − v(xi0) ⩾ v(x+ r) − v(xi0) − ε

⩾ vx(xi0)(r − ♣x− xi0 ♣) −
K

2
(2r)2 − ε

⩾ vx(xi0)
r

2
−

3

2
ε

= vx(xi0)
r

2
− 12K

1
2 ε

1
2
r

4

⩾ vx(xi0)
r

4

= vx(xi0)
ε

1
2

8K
1
2

.

(4.42)

From (4.40), (4.41) and (4.42), we infer that
\\\\\\

Nr−i0∑

i=i0−Mr+1

εvx(xi0)

−εk +O(r2)

\\\\\\
⩽
vx(xi0)Cε8K

1
2

vx(xi0)ε
1
2

⩽ Cε
1
2 . (4.43)

Finally, (4.36), (4.37), (4.39) and (4.43) imply
\\\\\\\\

1

π

∑

i̸=i0
♣xi−x♣<r

ε

xi − xi0

\\\\\\\\
⩽ Cε

1
2 −τ

⩽ Cε
1
4 ,

which gives (4.31).

Case 3: vx(xi0) ⩾ ε
1
2 −τ , for some τ ∈ (0, 1/4).

As in Case 2, we can assume that ♣x− xi0 ♣ ⩽ ε
1+τ

2 . Then, we deĄne

r := 2ε
1+τ

2 ⩾ 2♣x− xi0 ♣. (4.44)

Notice that r ⩾ ε
5
8 . Assume, without loss of generality, that Nr − i0 ⩽ i0 −Mr. Then as before, we write

∑

i̸=i0
♣xi−x♣<r

ε

xi − xi0

=

Nr−i0∑

k=1

εvx(xi0)

⎤
1

−εk +O(r2)
+

1

εk +O(r2)

⎣
+

i0−Mr∑

k=Nr−i0+1

εvx(xi0)

−εk +O(r2)
. (4.45)

By (4.38) and the deĄnition (4.44) of r,
\\\\\

Nr−i0∑

k=1

εvx(xi0)

⎤
1

−εk +O(r2)
+

1

εk +O(r2)

⎣\\\\\ ⩽ Cvx(xi0)
♣O(r2)♣

ε
⩽ Cετ . (4.46)

By (4.40), (4.41) and (4.42), and by using that vx(xi0) ⩾ Cε
1
2 −τ and (4.44), we get

\\\\\\

i0−Mr∑

k=Nr−i0+1

ε

−εk +O(r2)

\\\\\\
⩽

Cε

vx(xi0) r
2 − 3

2ε
⩽ Cε

τ
2 , (4.47)

for ε small enough (independently of x). Estimates (4.45), (4.46) and (4.47) imply
\\\\\\\\

∑

i̸=i0
♣xi−x♣<r

ε

xi − xi0

\\\\\\\\
⩽ Cε

τ
2 ⩽ Cε

1
8 ,

which gives (4.31)
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Finally, to prove (4.30), we estimate

\\\\\\\\

∑

i̸=i0
♣xi−x♣<r

ε

xi − x
−

∑

i̸=i0
♣xi−xi0

♣<r

ε

xi − xi0

\\\\\\\\
=

\\\\\\\\

∑

i̸=i0
♣xi−x♣<r

ε2γ

(xi − x)(xi − xi0)

\\\\\\\\
. (4.48)

Assume, without loss of generality that x = xi0 + εγ, with γ ⩾ 0, that is, x ∈ [xi0 , xi0+1). Then,

♣xi − x♣ ⩾

∏
⎪⨄
⎪⋃

♣xi − xi0 ♣ if i ⩽ i0 − 1
xi0+1−xi0

2 if i = i0 + 1

xi − xi0+1 if i ⩾ i0 + 2.

Moreover, by (4.3), xi0+1 − xi0 ⩾ εL−1. Therefore,

\\\\\\\\

∑

i̸=i0
♣xi−x♣<r

ε2γ

(xi − x)(xi − xi0)

\\\\\\\\
⩽

∑

i⩽i0−1

ε2γ

(xi − xi0)2
+ 2L2γ +

∑

i⩾i0+2

ε2γ

(xi − xi0+1)2
⩽ Cγ, (4.49)

where in the last inequality we used (4.4). By (4.48) and (4.49) we get

\\\\\\\\

∑

i̸=i0
♣xi−x♣<r

ε

xi − x
−

∑

i̸=i0
♣xi−xi0

♣<r

ε

xi − xi0

\\\\\\\\
⩽ Cγ,

which together with (4.31) gives (4.30). □

The following proposition is an immediate consequence of Lemma 4.2, Proposition 4.4 and Lemma 4.6.

Proposition 4.7. Let v ∈ C1,1(R) be non-decreasing and non-constant and xi deĄned as in (4.1). Then,

there exists c > 0 depending on the C1,1 norm of v such that if ρ ⩾ cε
1
2 , and x ∈ (xMε + ρ, xNε − ρ),

x = xi0 + εγ, then

1

π

∑

i̸=i0
♣xi−x♣⩽ρ

ε

xi − x
= I1,ρ

1 [v](x) +O(γ) +
1

π

v(x+ ρ) + v(x− ρ) − 2v(x)

ρ
+ oε(1), (4.50)

and
1

π

∑

i ̸=i0

ε

xi − x
= I1[v](x) + oε(1) +O(γ). (4.51)

Proof. Fix x and let r and c be given by Lemma 4.6. Then ε
5
8 ⩽ r ⩽ cε

1
2 ⩽ ρ. By Lemma 4.2 and recalling

(4.29),
1

π

∑

i̸=i0
r⩽♣xi−x♣⩽ρ

ε

xi − x
= I1,ρ

1 [v](x) +
1

π

v(x+ ρ) + v(x− ρ) − 2v(x)

ρ
+O

(
ε

3
8

⎡
.

Combining this estimate with (4.30) yields (4.50).

Similarly, by Proposition 4.4 and Lemma 4.6, we get (4.51). □
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Remark 4.8. If ε♣γ♣ = ♣x− xi0 ♣ > cε
1
2 ⩾ r, then ♣x− xi♣ > r for all i and

1

π

∑

i̸=i0
♣xi−x♣⩽ρ

ε

xi − x
=

1

π

∑

r<♣xi−x♣⩽ρ

ε

xi − x

= I1,ρ
1 [v](x) +

1

π

v(x+ ρ) + v(x− ρ) − 2v(x)

ρ
+ oε(1).

Remark 4.9. If x = xi0 , then γ = 0 and

1

π

∑

i ̸=i0

ε

xi − xi0

= I1[v](xi0) + oε(1). (4.52)

Lemma 4.10. Let v ∈ C1,1(R) be non-decreasing and non-constant and xi be deĄned as in (4.1). Let ϕ be

deĄned by (1.11). Let Mε ⩽ M < N ⩽ Nε and R ⩾ cε
1
2 , with c > 0 given by Proposition 4.7. Then, for all

x ∈ (xM +R, xN −R) \\\\\

N∑

i=M

εϕ

⎤
x− xi

εδ

⎣
+ εM − v(x)

\\\\\ ⩽ oε(1)

⎤
1 +

δ

R

⎣
,

with oε(1) independent of R and x.

Proof. Fix x ∈ (xM +R, xN −R), and let xi0 be the closest point among the xiŠs to x. Then, xi0−1 < x <

xi0+1 and by the monotonicity of v,

ε(i0 − 1) = v(xi0−1) ⩽ v(x) ⩽ v(xi0+1) = ε(i0 + 1). (4.53)

By using (4.53), estimate (3.1) and that ϕ ⩽ 1, we get

N∑

i=M

εϕ

⎤
x− xi

εδ

⎣
+ εM − v(x)

=

i0−1∑

i=M

εϕ

⎤
x− xi

εδ

⎣
+ εϕ

⎤
x− xi0

εδ

⎣
+

N∑

i=i0+1

εϕ

⎤
x− xi

εδ

⎣
+ εM − v(x)

⩽

i0−1∑

i=M

ε

⎤
1 +

εδ

απ(xi − x)
+

K1ε
2δ2

(xi − x)2

⎣
+ ε

+

N∑

i=i0+1

ε

⎤
εδ

απ(xi − x)
+

K1ε
2δ2

(xi − x)2

⎣
+ εM − ε(i0 − 1)

= εδ

N∑

i=M
i̸=i0

ε

απ(xi − x)
+ εδ2K1

N∑

i=M
i̸=i0

ε2

(xi − x)2
+ 2ε

= εδ
∑

i̸=i0
♣xi−x♣⩽R

ε

απ(xi − x)
+ εδ

N∑

i=M
♣xi−x♣>R

ε

απ(xi − x)
+ εδ2K1

N∑

i=M
i̸=i0

ε2

(xi − x)2
+ 2ε.

We can bound the second term above as follows

εδ

\\\\\\\

N∑

i=M
♣xi−x♣>R

ε

απ(xi − x)

\\\\\\\
⩽ εδ

N∑

i=M
♣xi−x♣>R

ε

απ♣xi − x♣
⩽
εδ(εN − εM + ε)

απR

=
εδ(v(xN ) − v(xM ) + ε)

απR
⩽ ε(2∥v∥∞ + ε)

δ

απR
.



S. Patrizi and T. Sangsawang / Nonlinear Analysis 202 (2021) 112096 25

Therefore, by Proposition 4.7, Remark 4.8 and (4.4), we get

N∑

i=M

εϕ

⎤
x− xi

εδ

⎣
+ εM − v(x) ⩽

εδ

α

(
I1,R

1 [v](x) +O(ε− 1
2 ) + C

⎡

+ ε(2∥v∥∞ + ε)
δ

απR
+ Cεδ2 + 2ε

⩽ oε(1)

⎤
1 +

δ

R

⎣
.

Similarly, one can prove that

N∑

i=M

εϕ

⎤
x− xi

εδ

⎣
+ εM − v(x) ⩾ oε(1)

⎤
1 +

δ

R

⎣

and this concludes the proof of the lemma. □

Lemma 4.11. Under the assumptions of Lemma 4.10, there exists C > 0 independent of ε and R such that

for all x > xN +R, \\\\\

N∑

i=M

εϕ

⎤
x− xi

εδ

⎣
+ εM − v(xN )

\\\\\ ⩽ Cε

⎤
1 +

δ

R

⎣
, (4.54)

and for all x < xM −R, \\\\\

N∑

i=M

εϕ

⎤
x− xi

εδ

⎣\\\\\ ⩽ Cε

⎤
1 +

δ

R

⎣
. (4.55)

Proof. Let x > xN +R, then x− xi > R for all i = M, . . . , N and by using that ϕ ⩽ 1, we get

N∑

i=M

εϕ

⎤
x− xi

εδ

⎣
+ εM ⩽ (N + 1)ε = v(xN ) + ε.

On the other hand, by (3.1) and (4.4),

N∑

i=M

εϕ

⎤
x− xi

εδ

⎣
+ εM ⩾

N∑

i=M

ε

⎤
1 +

εδ

απ(xi − x)
−

K1δ
2ε2

(xi − x)2

⎣
+ εM

⩾ (N + 1)ε−
ε

απ
(εN − εM + ε)

δ

R
− Cεδ2

= v(xN ) + ε−
ε

απ
(v(xN ) − v(xM ) + ε)

δ

R
− Cεδ2

⩾ v(xN ) − Cε

⎤
1 +

δ

R

⎣
.

This proves (4.54).

Now, let x < xM −R, then x− xi < −R for all i = M, . . . , N and by (3.1) and (4.4),

N∑

i=M

εϕ

⎤
x− xi

εδ

⎣
⩽

N∑

i=M

ε

⎤
εδ

απ(xi − x)
+

K1δ
2ε2

(x− xi)2

⎣

⩽
ε

απ
(εN − εM + ε)

δ

R
+ Cεδ2

=
ε

απ
(v(xN ) − v(xM ) + ε)

δ

R
+ Cεδ2

⩽ Cε

⎤
1 +

δ

R

⎣
.
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On the other hand
N∑

i=M

εϕ

⎤
x− xi

εδ

⎣
⩾ 0.

This concludes the proof of (4.55) and of the lemma. □

Proposition 4.12. Let v ∈ C1,1(R) be non-decreasing and non-constant and xi be deĄned as in (4.1). Let

ϕ be deĄned by (1.11). Then, for all x ∈ R,
\\\\\

Nε∑

i=Mε

εϕ

⎤
x− xi

εδ

⎣
+ εMε − v(x)

\\\\\ ⩽ oε(1), (4.56)

where oε(1) is independent of x.

Proof. Let R = Rε := max¶δ, cε
1
2 ♢, with c given in Proposition 4.7. If x ∈ (xMε +R, xNε −R), then (4.56)

follows from Lemma 4.10.

Next, let us assume x > xNε +R. Then, by (4.54)
\\\\\

Nε∑

i=Mε

εϕ

⎤
x− xi

εδ

⎣
+ εMε − v(x)

\\\\\ ⩽ ♣v(xNε) − v(x)♣ + Cε.

Now, by the monotonicity of v,

v(xNε) − v(x) ⩽ 0.

On the other hand, by the deĄnition (4.2) of Nε, we have

v(x) − v(xNε) = v(x) − εNε ⩽ sup
R

v − εNε ⩽ 2ε.

This proves (4.56) when x > xNε +R. By using (4.55), one can similarly prove (4.56) when x < xMε −R.

Now, assume xNε −R ⩽ x ⩽ xNε +R. Then by (4.56) applied at xNε −2R and xNε +2R, the monotonicity

of ϕ and the regularity of v, we get

Nε∑

i=Mε

εϕ

⎤
x− xi

εδ

⎣
+ εMε − v(x)

⩽

Nε∑

i=Mε

εϕ

⎤
xNε + 2R− xi

εδ

⎣
+ εMε − v(xNε + 2R) +O(R)

⩽ oε(1),

and

Nε∑

i=Mε

εϕ

⎤
x− xi

εδ

⎣
+ εMε − v(x)

⩾

Nε∑

i=Mε

εϕ

⎤
xNε − 2R− xi

εδ

⎣
+ εMε − v(xNε − 2R) +O(R)

⩾ oε(1).

This proves (4.56) when xNε −R ⩽ x ⩽ xNε +R. Similarly, one can prove (4.56) when xMε −R ⩽ x ⩽ xMε +R

and the proof of the proposition is completed. □

We conclude this section with the following lemma that will be used later on.



S. Patrizi and T. Sangsawang / Nonlinear Analysis 202 (2021) 112096 27

Lemma 4.13. Let v ∈ C1,1(R) be non-decreasing and non-constant and xi be deĄned as in (4.1). Then,

there exists C > 0 such that for all x ∈ R,

\\\\\\

∑

i ̸=i0

ε

xi − x

\\\\\\
⩽ C. (4.57)

Proof. Let us Ąx x ∈ R. In what follows we denote by C several positive constants independent of ε and

x. Let xi0 be the closest point to x among the xiŠs. Then, by (4.3), ♣xi − x♣ ⩾ ε/(2L) for i ̸= i0. Since

v ∈ C1,1(R), there exists C > 0 such that ♣I1[v](x)♣ ⩽ C. Moreover,

I1[v](x) =
1

π

∫ x− ε
2L

−∞

v(x) − v(x)

(x− x)2
dx+

1

π
PV

∫ x+ ε
2L

x− ε
2L

v(x) − v(x)

(x− x)2
dx+

1

π

∫ +∞

x+ ε
2L

v(x) − v(x)

(x− x)2
dx

=
1

π

∫ x− ε
2L

−∞

v(x) − v(x)

(x− x)2
dx+

1

π

∫ +∞

x+ ε
2L

v(x) − v(x)

(x− x)2
dx+O(ε),

(4.58)

where ♣O(ε)♣ ⩽ Cε. If x ∈ (xMε + ε/(2L), xNε − ε/(2L)), then we write

∫ x− ε
2L

−∞

v(x) − v(x)

(x− x)2
dx =

∫ xMε

−∞

v(x) − v(x)

(x− x)2
dx+

i0−2∑

i=Mε

∫ xi+1

xi

v(x) − v(x)

(x− x)2
dx+

∫ x− ε
2L

xi0−1

v(x) − v(x)

(x− x)2
dx,

where we deĄne xi0−1 = xMε if i0 = Mε. By the monotonicity of v,

0 ⩾

∫ xMε

−∞

v(x) − v(x)

(x− x)2
dx ⩾ −

infR v − v(x)

xMε − x
.

As in the proof of Lemma 4.2,

i0−2∑

i=Mε

∫ xi+1

xi

v(x) − v(x)

(x− x)2
dx ⩽

i0−1∑

i=Mε

ε

xi − x
+
εMε − v(x)

xMε − x
−
ε(i0 − 1) − v(x)

xi0−1 − x
+

ε

x− xi0−1

=

i0−1∑

i=Mε

ε

xi − x
+
v(xMε) − v(x)

xMε − x
−
v(xi0−1) − v(x)

xi0−1 − x
+

ε

x− xi0−1
,

and
i0−2∑

i=Mε

∫ xi+1

xi

v(x) − v(x)

(x− x)2
dx ⩾

i0−1∑

i=Mε

ε

xi − x
+
v(xMε) − v(x)

xMε − x
−
v(xi0−1) − v(x)

xi0−1 − x
+

ε

x− xMε

.

Therefore, by the Lipschitz regularity of v and using that x− xi0−1 ⩾ ε/(2L), we get

∫ xMε

−∞

v(x) − v(x)

(x− x)2
dx+

i0−2∑

i=Mε

∫ xi+1

xi

v(x) − v(x)

(x− x)2
dx

⩽

i0−1∑

i=Mε

ε

xi − x
+
v(xMε) − v(x)

xMε − x
−
v(xi0−1) − v(x)

xi0−1 − x
+

ε

x− xi0−1

⩽

i0−1∑

i=Mε

ε

xi − x
+ 4L,
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and

∫ xMε

−∞

v(x) − v(x)

(x− x)2
dx+

i0−2∑

i=Mε

∫ xi+1

xi

v(x) − v(x)

(x− x)2
dx

⩾

i0−1∑

i=Mε

ε

xi − x
+
v(xMε) − infR v

xMε − x
−
v(xi0−1) − v(x)

xi0−1 − x

⩾

i0−1∑

i=Mε

ε

xi − x
− 5L,

where in the last inequality we used that v(xMε) − infR v ⩽ 2ε and xMε − x ⩽ −ε/(2L).

Next, using that v(x) − v(xi0−1) ⩽ v(xi0+1) − v(xi0−1) = 2ε, the monotonicity of v and that x− xi0−1 ⩾

ε/(2L), we have

0 ⩾

∫ x− ε
2L

xi0−1

v(x) − v(x)

(x− x)2
dx ⩾ (v(xi0−1) − v(x))

⎤
2L

ε
−

1

x− xi0−1

⎣
⩾ −C.

We conclude that

∫ x− ε
2L

−∞

v(x) − v(x)

(x− x)2
dx− C ⩽

i0−1∑

i=Mε

ε

xi − x
⩽

∫ x− ε
2L

−∞

v(x) − v(x)

(x− x)2
dx+ C. (4.59)

Similarly,
∫ +∞

x+ ε
2L

v(x) − v(x)

(x− x)2
dx− C ⩽

Nε∑

i=i0+1

ε

xi − x
⩽

∫ +∞

x+ ε
2L

v(x) − v(x)

(x− x)2
dx+ C. (4.60)

From (4.58), (4.59) and (4.60),

∑

i ̸=i0

ε

xi − x
⩽

∫ x− ε
2L

−∞

v(x) − v(x)

(x− x)2
dx+

∫ +∞

x+ ε
2L

v(x) − v(x)

(x− x)2
dx+ C ⩽ I1[v](x) + C ⩽ C,

and
∑

i ̸=i0

ε

xi − x
⩾

∫ x− ε
2L

−∞

v(x) − v(x)

(x− x)2
dx+

∫ +∞

x+ ε
2L

v(x) − v(x)

(x− x)2
dx− C ⩾ I1[v](x) − C ⩾ −C,

which gives (4.57).

If x ⩽ xMε + ε/(2L), then xi0 = xMε and we write

∫ +∞

x+ ε
2L

v(x) − v(x)

(x− x)2
dx =

∫ xMε+1

x+ ε
2L

v(x) − v(x)

(x− x)2
dx+

Nε−1∑

i=Mε+1

∫ xi+1

xi

v(x) − v(x)

(x− x)2
dx+

∫ +∞

xNε

v(x) − v(x)

(x− x)2
dx.

If x ⩾ xNε − ε/(2L), then xi0 = xNε and we write

∫ x− ε
2L

−∞

v(x) − v(x)

(x− x)2
dx =

∫ xMε

−∞

v(x) − v(x)

(x− x)2
dx+

Nε−2∑

i=Mε

∫ xi+1

xi

v(x) − v(x)

(x− x)2
dx+

∫ x− ε
2L

xNε−1

v(x) − v(x)

(x− x)2
dx.

Similar computations as before show (4.57). This concludes the proof of the lemma. □
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5. Proof of Theorem 1.1

We Ąrst show that the functions uε are bounded uniformly in ε. Since W ′(z) = 0 for any z ∈ Z, integers

are stationary solutions to (1.1). Let k1, k2 ∈ Z be such that k1 ⩽ infR u0 ⩽ sup
R
u0 ⩽ k2. Then by the

comparison principle we have that for any ε > 0

k1 ⩽ uε(t, x) ⩽ k2 for all (t, x) ∈ (0,+∞) × R.

In particular, u+ := lim sup∗
ε→0 u

ε is everywhere Ąnite. We will prove that u+ is a viscosity subsolution

of (1.5) when testing with test functions whose derivative in x at the maximum point is different than 0.

Similarly, we can prove that u− := lim inf∗ε→0u
ε is a supersolution of (1.5) when testing with functions

whose derivative in x at the minimum point is different than 0. We will show that this is enough to conclude

that the following comparison principle holds true: if u is the viscosity solution of (1.5), then

u+
⩽ u ⩽ u−. (5.1)

Since the reverse inequality u− ⩽ u+ always holds true, we conclude that the two functions coincide with u

and that uε → u as ε → 0, uniformly on compact sets. We will prove (5.1) in Section 6.

Let η ∈ C2
b ((0,+∞) × R) be such that

u+(t, x) − η(t, x) < u+(t0, x0) − η(t0, x0) = 0 for all (t, x) ̸= (t0, x0), (5.2)

and assume ∂xη(t0, x0) ̸= 0. By the comparison principle, uε is non-decreasing in x, and thus also u+ is

non-decreasing in x. The monotonicity of u+ and (5.2) imply that ∂xη(t0, x0) ⩾ 0. Therefore, we have

∂xη(t0, x0) > 0. (5.3)

The goal is to show that

∂tη(t0, x0) ⩽ c0∂tηx(t0, x0) I1[η(t0, ·)](x0). (5.4)

Assume by contradiction that

∂tη(t0, x0) > c0∂tηx(t0, x0) I1[η(t0, ·)](x0). (5.5)

Denote

L0 := I1[η(t0, ·)](x0).

By (5.3) and (5.5), there exists 0 < ρ < 1 and L1 > 0 such that

∂xη(t, x) ⩾
∂xη(t0, x0)

2
> 0 for all (t, x) ∈ Q2ρ,2ρ(t0, x0), (5.6)

and

∂tη(t, x) ⩾ c0∂xη(t, x)(L0 + L1) for all (t, x) ∈ Q2ρ,2ρ(t0, x0). (5.7)

By (5.6), η is increasing in x over Q2ρ,2ρ(t0, x0). Without loss of generality, we can assume η(t, ·) to be

non-decreasing over R, for ♣t− t0♣ < 2ρ. Indeed, if not, since η > u+ outside Q2ρ,2ρ(t0, x0) and u+(t, ·) is

non-decreasing over R, we can replace η with η̃ such that η = η̃ in Q2ρ,2ρ(t0, x0), η̃(t, ·) is non-decreasing over

R for ♣t− t0♣ < 2ρ, η̃ ∈ C2
b ((t0−2ρ, t0+2ρ)×R), u+ ⩽ η̃ ⩽ η in (t0−2ρ, t0+2ρ)×(−K,K). If we prove (5.4) for

η̃, then, since ∂tη̃(t0, x0) = ∂tη(t0, x0), ∂xη̃(t0, x0) = ∂xη(t0, x0) and I1,K
1 [η̃(t0, ·)](x0) ⩽ I1,K

1 [η(t0, ·)](x0),

by letting K go to +∞, (5.4) holds true for η. Therefore in what follows we assume η non-decreasing with

respect to x over R for ♣t− t0♣ < 2ρ.
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We then deĄne the points

x0
Mε

< · · · < x0
i < x0

i+1 < · · · < x0
Nε

such that

x0
i := inf¶x ♣ η(t0, x) = εi♢ i = Mε, . . . , Nε,

where

Mε :=

⎫
infR η(t0, ·) + ε

ε

⌉
and Nε :=

⎥
sup

R
η(t0, ·) − ε

ε

⌋
.

Next, for 0 < R ≪ ρ to be determined, let Mρ be the biggest integer such that x0
Mρ

is smaller than x0−(ρ+R)

and Nρ is the lowest integer such that x0
Nρ

is bigger than x0 + (ρ+R), that is

x0
Mρ

< x0 − (ρ+R) ⩽ x0
Mρ+1 (5.8)

and

x0
Nρ−1 ⩽ x0 + (ρ+R) < x0

Nρ
. (5.9)

Then, we deĄne the points xi(t) as follows

xi(t) := inf¶x ♣ η(t, x) = εi♢ for i = Mρ, . . . , Nρ. (5.10)

By deĄnition,

η(t, xi(t)) = εi, (5.11)

moreover,

xi(t0) = x0
i . (5.12)

Lemma 5.1. Let B0 := ∂xη(t0, x0)/(2∥∂tη∥∞) and xi(t) be deĄned by (5.10), i = Mρ, . . . , Nρ. Then, there

exists ε0 = ε0(ρ) such that for ε < ε0 and R < ρ/3, xi ∈ C1(t0 −B0R, t0 +B0R) and for ♣t− t0♣ < B0R,

♣ẋi(t)♣ ⩽ B−1
0 , (5.13)

x0 + ρ < xNρ(t) < x0 + ρ+ 3R, (5.14)

x0 − (ρ+ 3R) < xMρ(t) < x0 − ρ. (5.15)

In particular (t, xi(t)) ∈ Q2ρ,2ρ(t0, x0).

We postpone the proof of Lemma 5.1 to Section 7.

Now, since by the lemma the xi(t)Šs are of class C1 and (t, xi(t)) ∈ Q2ρ,2ρ(t0, x0), we can differentiate in

t Eq. (5.11)

∂tη(t, xi(t)) + ∂xη(t, xi(t))ẋi(t) = 0

and use (5.7) to get, for ♣t− t0♣ < B0R,

− ẋi(t) ⩾ c0(L0 + L1), i = Mρ, . . . , Nρ. (5.16)

Next, we are going to construct a supersolution of (1.1) in QB0R,R(t0, x0) for R ≪ ρ < 1.

Since the maximum of u+ − η is strict, there exists γR > 0 such that

u+ − η ⩽ −2γR < 0 in Q2ρ,2ρ(t0, x0) \QB0R,R(t0, x0). (5.17)
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Then, we deĄne

Φ
ε(t, x) :=

∮
hε(t, x) + εMε + εδL1

α
− ε

⌋
γR
ε

⌈
for (t, x) ∈ QB0R,

ρ
2
(t0, x0)

uε(t, x) outside
(5.18)

where

hε(t, x) =

Nρ∑

i=Mρ

ε

⎤
ϕ

⎤
x− xi(t)

εδ

⎣
+ δψ

⎤
x− xi(t)

εδ

⎣⎣

+

Mρ−1∑

i=Mε

εϕ

⎤
x− x0

i

εδ

⎣
+

Nε∑

i=Nρ+1

εϕ

⎤
x− x0

i

εδ

⎣
,

(5.19)

with ϕ solution of (1.11) and ψ solution of (3.3) with L = L0 + L1.

Remark 5.2. We choose xi(t) = x0
i to be constant in time for i = Mε, . . . ,Mρ − 1 and i = Nρ + 1, . . . , Nε,

because we cannot bound the derivative ẋi(t) for all i = Mε, . . . , Nε. This will produce an error O(R) when

comparing Φ
ε with η when ♣t− t0♣ < B0R and ♣x− x0♣ ⩾ ρ−R, see Lemma 5.6.

Lemma 5.3. There exists 0 < R ≪ ρ and ε0 = ε0(R, ρ) > 0 such that for any ε < ε0, the function Φ
ε

deĄned by (5.18) satisĄes

Φ
ε
⩾ uε outside QB0R,R(t0, x0), (5.20)

δ∂tΦ
ε
⩾ I1[Φε] −

1

δ
W ′

⎤
Φε

ε

⎣
in QB0R,R(t0, x0), (5.21)

and

Φ
ε
⩽ η + oε(1) − ε

⌊γR

ε

⌋
in QB0R,R(t0, x0). (5.22)

We are now in position to conclude the proof of Theorem 1.1.

By (5.20) and (5.21) and the comparison principle, Proposition 3.6, we have

uε(t, x) ⩽ Φ
ε(t, x) for all (t, x) ∈ QB0R,R(t0, x0).

Passing to the upper limit as ε → 0 and using (5.22) and that u+(t0, x0) = η(t0, x0), we obtain

0 ⩽ −γR,

a contradiction. This concludes the proof of Theorem 1.1.

5.1. Proof of Lemma 5.3

We divide the proof of Lemma 5.3 in several steps. We start with the following lemma.

Lemma 5.4. There exists ε0 = ε0(R, ρ) > 0 such that for any ε < ε0 and for any (t, x) ∈ QB0R,ρ−R(t0, x0),

we have

♣hε(t, x) + εMε − η(t, x)♣ ⩽ oε(1).

We postpone the proof of Lemma 5.4 to Section 7.

Proof of (5.20). Outside QB0R,
ρ
2
(t0, x0), by deĄnition (5.18) of Φε, Φε(t, x) = uε(t, x).
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Next, by Lemma 5.4 and (5.17), for (t, x) ∈ QB0R,
ρ
2
(t0, x0) \QB0R,R(t0, x0),

Φ
ε(t, x) = hε(t, x) + εMε +

εδL1

α
− ε

⌊γR

ε

⌋

⩾ η(t, x) + oε(1) − ε
⌊γR

ε

⌋

⩾ u+(t, x) + oε(1) + 2γR − ε
⌊γR

ε

⌋

⩾ uε(t, x)

for ε small enough, where in the last inequality we have used that u+(t, x) ⩾ uε(t, x) + oε(1) and

2γR − ε
⌋

γR
ε

⌈
→ γR > 0 as ε → 0. This concludes the proof of (5.20).

Proof of (5.22). By Lemma 5.4, for (t, x) ∈ QB0R,R(t0, x0)

Φ
ε(t, x) = hε(t, x) + εMε +

εδL1

α
− ε

⌊γR

ε

⌋
⩽ η(t, x) + oε(1) − ε

⌊γR

ε

⌋
,

which gives (5.22).

Next, we need some preliminary results in order to prove (5.21).

Lemma 5.5. There exists C > 0 independent of ε and ρ such that, for any x ∈ R,

\\\\\\

Nρ∑

i=Mρ

εδψ

⎤
x− xi(t)

εδ

⎣\\\\\\
⩽ Cδ.

Proof. We have,

\\\\\\

Nρ∑

i=Mρ

εδψ

⎤
x− xi(t)

εδ

⎣\\\\\\
⩽ δ∥ψ∥∞ε(Nρ −Mρ + 1)

= δ∥ψ∥∞(η(t, xNρ(t)) − η(t, xMρ(t)) + ε)

⩽ Cδ. □

Lemma 5.6. There exists ε0 = ε0(R, ρ) > 0 such that for any ε < ε0, if ♣t− t0♣ < B0R, and ♣x− x0♣ ⩾ ρ−R,

then

♣hε(t, x) + εMε − η(t, x)♣ ⩽ oε(1) +O(R).

We postpone the proof of Lemma 5.6 to Section 7.

Corollary 5.7. There exists ε0 = ε0(R, ρ) > 0 such that for any ε < ε0, R < ρ/4, and any (t, x) ∈

QB0R,R(t0, x0), we have

I1[Φε(t, ·)](x) ⩽ I1[hε(t, ·)](x) + oε(1) +
oR(1)

ρ
. (5.23)

Proof. We have

I1[Φε(t, ·)](x) = I
1,

ρ
4

1 [Φε(t, ·)](x) +
1

π

∫

ρ
4 <♣y−x♣<ρ

Φ
ε(t, y) − Φ

ε(t, x)

(y − x)2
dy + I2,ρ

1 [Φε(t, ·)](x).
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If (t, x) ∈ QB0R,R(t0, x0) and ♣y − x♣ < ρ/4 then for R < ρ/4, ♣y − x0♣ < ρ/2, that is (t, y) ∈ QB0R,
ρ
2
(t0, x0).

Therefore, by the deĄnition (5.18) of Φε,

I
1,

ρ
4

1 [Φε(t, ·)](x) = I
1,

ρ
4

1 [hε(t, ·)](x). (5.24)

If (t, x) ∈ QB0R,R(t0, x0) and ♣y − x♣ > ρ then ♣y − x0♣ > ρ/2, therefore Φ
ε(t, y) = uε(t, y). Then, by

Lemmas 5.4, 5.6 and using that uε ⩽ u+ + oε(1) ⩽ η + oε(1), we get

I2,ρ
1 [Φε(t, ·)](x) =

1

π

∫

♣y−x♣>ρ

Φ
ε(t, y) − Φ

ε(t, x)

(y − x)2
dy

=
1

π

∫

♣y−x♣>ρ

uε(t, y) − (hε(t, x) + εMε +O(ε) +O(γR))

(y − x)2
dy

⩽
1

π

∫

♣y−x♣>ρ

η(t, y) − (hε(t, x) + εMε)

(y − x)2
dy +

oε(1) +O(γR)

ρ

⩽
1

π

∫

♣y−x♣>ρ

hε(t, y) − hε(t, x)

(y − x)2
dy +

oε(1) +O(γR) +O(R)

ρ
.

Therefore,

I2,ρ
1 [Φε(t, ·)](x) ⩽ I2,ρ

1 [hε(t, ·)](x) +
oε(1) + oR(1)

ρ
. (5.25)

Finally, if ρ/4 < ♣y − x♣ < ρ then either Φ
ε(t, y) = uε(t, y) and by Lemmas 5.4 and 5.6, Φ

ε(t, y) ⩽

hε(t, y) + εMε + oε(1) +O(R) or Φ
ε(t, y) = hε(t, y) + εMε + oε(1) + oR(1). In both cases,

∫

ρ
4 <♣y−x♣<ρ

Φ
ε(t, y) − Φ

ε(t, x)

(y − x)2
dy ⩽

∫

ρ
4 <♣y−x♣<ρ

hε(t, y) − hε(t, x)

(y − x)2
dy +

oε(1) + oR(1)

ρ
. (5.26)

From (5.24), (5.25) and (5.26), inequality (5.23) follows. □

Now, we are ready to prove (5.21).

Proof of (5.21). Denote

Λ := δ∂tΦ
ε − I1[Φε] +

1

δ
W ′

⎤
Φε

ε

⎣
.

We want to show that Λ(t, x) ⩾ 0 for all (t, x) ∈ QB0R,R(t0, x0). Fix (t, x) ∈ QB0R,R(t0, x0). By Corollary 5.7,

I1[Φε(t, ·)](x) ⩽ I1[hε(t, ·)](x) + oε(1) +
oR(1)

ρ

=

Nρ∑

i=Mρ

1

δ
I1[ϕ](zi) +

Mρ−1∑

i=Mε

1

δ
I1[ϕ](z0

i ) +

Nε∑

i=Nρ+1

1

δ
I1[ϕ](z0

i )

+

Nρ∑

i=Mρ

I1[ψ](zi) + oε(1) +
oR(1)

ρ
,

(5.27)

where we denote z0
i = (x− x0

i )/(εδ) and zi = (x− xi(t))/(εδ). Let i0 be such that xi0(t) is the closest point

to x. Since (t, x) ∈ QB0R,R(t0, x0), by Lemma 5.1 we have Mρ < i0 < Nρ. If x = xi0 + εγ, then (4.5) and
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(5.6) imply that ♣γ♣ ⩽ 2/∂xη(t0, x0). Note that zi0 = γ/δ. By (5.27), we have

Λ(t, x) = δ∂tΦ
ε(t, x) − I1[Φε(t, ·)](x) +

1

δ
W ′

⎤
Φε(t, x)

ε

⎣

⩾

Nρ∑

i=Mρ

]
−ẋi(t)ϕ

′(zi) − δẋi(t)ψ
′(zi)

]
+ oε(1) +

oR(1)

ρ

−

Nρ∑

i=Mρ

1

δ
I1[ϕ](zi) −

Mρ−1∑

i=Mε

1

δ
I1[ϕ](z0

i ) −

Nε∑

i=Nρ+1

1

δ
I1[ϕ](z0

i ) −

Nρ∑

i=Mρ

I1[ψ](zi)

+
1

δ
W ′

∏
∐

Nρ∑

i=Mρ

[ϕ(zi) + δψ(zi)] +

Mρ−1∑

i=Mε

ϕ(z0
i ) +

Nε∑

i=Nρ+1

ϕ(z0
i ) +

δL1

α

∫
⎠ ,

where we have used the periodicity of W ′ in the last term. Let us denote

E0 := oε(1) +
oR(1)

ρ
, (5.28)

and

ϕ̃(z) := ϕ(z) −H(z),

where H is the Heaviside function. Then, by (5.16), (1.11), the periodicity of W ′ and making a Taylor

expansion of W ′ around ϕ(zi0), we obtain

Λ(t, x) ⩾ c0(L0 + L1)ϕ′(zi0)

+
1

δ

∏
ˆ̂
∐−W ′(ϕ(zi0)) −

Nρ∑

i=Mρ

i ̸=i0

W ′(ϕ̃(zi)) −

Mρ−1∑

i=Mε

W ′(ϕ̃(z0
i )) −

Nε∑

i=Nρ+1

W ′(ϕ̃(z0
i ))

∫
ˆ̂
⎠

−

Nρ∑

i=Mρ

i ̸=i0

I1[ψ](zi) − I1[ψ](zi0) +
1

δ
W ′(ϕ(zi0))

+
1

δ
W ′′(ϕ̃(zi0))

∏
ˆ̂
∐

Nρ∑

i=Mρ

i ̸=i0

[ϕ̃(zi) + δψ(zi)] + δψ(zi0) +

Mρ−1∑

i=Mε

ϕ̃(z0
i ) +

Nε∑

i=Nρ+1

ϕ̃(z0
i ) +

δL1

α

∫
ˆ̂
⎠

+ E0 + E1 + E2,

where we deĄne E1 as follows

E1 := −

Nρ∑

i=Mρ

i ̸=i0

ẋi(t)ϕ
′(zi) − δ

Nρ∑

i=Mρ

i ̸=i0

ẋi(t)ψ
′(zi) − δẋi0(t)ψ′(zi0),

and E2 as the error from the Taylor expansion,

E2 :=
1

δ
O

∏
ˆ̂
∐

Nρ∑

i=Mρ

i ̸=i0

[ϕ̃(zi) + δψ(zi)] + δψ(zi0) +

Mρ−1∑

i=Mε

ϕ̃(z0
i ) +

Nε∑

i=Nρ+1

ϕ̃(z0
i ) +

δL1

α

∫
ˆ̂
⎠

2

.
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Making a Taylor expansion of W ′ around 0, using that W ′(0) = 0 and rearranging the terms, we obtain

Λ(t, x) ⩾ c0(L0 + L1)ϕ′(zi0) − I1[ψ](zi0) +W ′′(ϕ(zi0))ψ(zi0)

+
1

δ

∏
ˆ̂
∐−W ′′(0)

Nρ∑

i=Mρ

i ̸=i0

ϕ̃(zi) −W ′′(0)

Mρ−1∑

i=Mε

ϕ̃(z0
i ) −W ′′(0)

Nρ∑

i=Nρ+1

ϕ̃(z0
i )

∫
ˆ̂
⎠

−

Nρ∑

i=Mρ

i ̸=i0

I1[ψ](zi)

+
1

δ
W ′′(ϕ̃(zi0))

∏
ˆ̂
∐

Nρ∑

i=Mρ

i ̸=i0

[ϕ̃(zi) + δψ(zi)] +

Mρ−1∑

i=Mε

ϕ̃(z0
i ) +

Nε∑

i=Nρ+1

ϕ̃(z0
i ) +

δL1

α

∫
ˆ̂
⎠

+ E0 + E1 + E2 + E3,

where E3 is deĄned by

E3 :=
1

δ

Nρ∑

i=Mρ

i ̸=i0

O(ϕ̃(zi))
2 +

1

δ

Mρ−1∑

i=Mε

O(ϕ̃(z0
i ))2 +

1

δ

Nε∑

i=Nρ+1

O(ϕ̃(z0
i ))2.

Since ψ solves (3.3) with L = L0 + L1, we have that

c0(L0 + L1)ϕ′(zi0) − I1[ψ](zi0) +W ′′(ϕ(zi0))ψ(zi0) = −
L0 + L1

α
(W ′′(ϕ(zi0)) −W ′′(0)).

Therefore,

Λ(t, x) ⩾ −
L0 + L1

α
(W ′′(ϕ(zi0)) −W ′′(0))

+ (W ′′(ϕ(zi0)) −W ′′(0))

∏
ˆ̂
∐

1

δ

Nρ∑

i=Mρ

i ̸=i0

ϕ̃(zi) +
1

δ

Mρ−1∑

i=Mε

ϕ̃(z0
i ) +

1

δ

Nε∑

i=Nρ+1

ϕ̃(z0
i )

∫
ˆ̂
⎠

+ W ′′(ϕ̃(zi0))
L1

α
+W ′′(ϕ̃(zi0))

Nρ∑

i=Mρ

i ̸=i0

ψ(zi) −

Nρ∑

i=Mρ

i ̸=i0

I1[ψ](zi)

+ E0 + E1 + E2 + E3.

Rearranging the terms and recalling that α = W ′′(0), we Ąnally get

Λ(t, x) ⩾ (W ′′(ϕ(zi0)) −W ′′(0))

∏
ˆ̂
∐

1

δ

Nρ∑

i=Mρ

i ̸=i0

ϕ̃(zi) +
1

δ

Mρ−1∑

i=Mε

ϕ̃(z0
i ) +

1

δ

Nε∑

i=Nρ+1

ϕ̃(z0
i ) −

L0

α

∫
ˆ̂
⎠

+ L1 + E0 + E1 + E2 + E3 + E4,

(5.29)

where E4 is given by

E4 := W ′′(ϕ̃(zi0))

Nρ∑

i=Mρ

i ̸=i0

ψ(zi) −

Nρ∑

i=Mρ

i ̸=i0

I1[ψ](zi). (5.30)
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Next, for Ąxed L1 > 0, we are going to show that all the other terms on the right-hand side of (5.29) are

small. Recall that

L0 = I1[η(t0, ·)](x0) = I1,ρ
1 [η(t0, ·)](x0) + I2,ρ

1 [η(t0, ·)](x0).

Lemma 5.8. We have,

(W ′′(ϕ(zi0)) −W ′′(0))

∏
ˆ̂
∐

1

δ

Nρ∑

i=Mρ

i ̸=i0

ϕ̃(zi) −
1

α
I1,ρ

1 [η(t0, ·)](x0)

∫
ˆ̂
⎠ = oε(1) + oR(1) + oρ(1) +O

⎤
R

ρ

⎣
, (5.31)

and

1

δ

Mρ−1∑

i=Mε

ϕ̃(z0
i ) +

1

δ

Nε∑

i=Nρ+1

ϕ̃(z0
i ) −

1

α
I2,ρ

1 [η(t0, ·)](x0) = oε(1) + oρ(1) +O

⎤
R

ρ

⎣
. (5.32)

Proof. Let us prove (5.31). By (4.3), for i ̸= i0, and ε (thus δ) small enough

♣zi♣ =

\\\\
x− xi(t)

εδ

\\\\ ⩾
L−1

2δ
⩾ 1.

Then, by (3.1), for i ̸= i0, \\\\ϕ̃(zi) +
εδ

απ(x− xi(t))

\\\\ ⩽
K1ε

2δ2

(x− xi(t))2
,

which implies that

Γ1 − Γ2 ⩽

Nρ∑

i=Mρ

i ̸=i0

ϕ̃(zi)

δ
−

1

α
I1,ρ

1 [η(t0, ·)](x0) ⩽ Γ1 + Γ2,

where Γ1 and Γ2 are respectively deĄned by

Γ1 :=
1

α

∏
ˆ̂
∐

1

π

Nρ∑

i=Mρ

i ̸=i0

ε

xi(t) − x
− I1,ρ

1 [η(t0, ·)](x0)

∫
ˆ̂
⎠ and Γ2 := K1

Nρ∑

i=Mρ

i ̸=i0

ε2δ

(xi − x(t))2
.

Since (t, x) ∈ QB0R,R(t0, x0), by Lemma 5.1 we have that xNρ(t) − x > x0 + ρ − x > ρ − R and

x− xMρ(t) > x− x0 + ρ > ρ−R. Then,

Nρ∑

i=Mρ

i ̸=i0

ε

xi(t) − x
=

Nρ∑

i=Mρ
i̸=i0

♣xi(t)−x♣⩽ρ−R

ε

xi(t) − x
+

Nρ∑

i=Mρ

♣xi(t)−x♣>ρ−R

ε

xi(t) − x

=
∑

i̸=i0
♣xi(t)−x♣⩽ρ−R

ε

xi(t) − x
+

Nρ∑

i=Mρ

♣xi(t)−x♣>ρ−R

ε

xi(t) − x
.

Notice that

I1,ρ
1 [η(t, ·)](x) − I1,ρ

1 [η(t0, ·)](x0) = oR(1),

I1,ρ
1 [η(t, ·)](x) − I1,ρ−R

1 [η(t, ·)](x) = oR(1).
(5.33)
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By (5.33) and Proposition 4.7, we have
∑

i̸=i0
♣xi(t)−x♣⩽ρ−R

ε

xi(t) − x
= I1,ρ−R

1 [η(t, ·)](x) + oε(1) + oρ(1) +O(γ)

= I1,ρ
1 [η(t0, ·)](x0) + oR(1) + oε(1) + oρ(1) +O(γ).

Next, let n be the number of points xi(t), i = Mρ, . . . , Nρ, such that ♣xi(t) − x♣ > ρ−R. Since ♣x− x0♣ < R

and by Lemma 5.1 xi(t) ∈ (x0 − (ρ + 3R), x0 + ρ + 3R), such points must belong to the set ¶ρ − 2R <

♣x− x0♣ < ρ+ 3R♢ whose length is 10R. Therefore, by (4.3), n ⩽ CR/ε. Then,
\\\\\\\\\

Nρ∑

i=Mρ

♣xi(t)−x♣>ρ−R

ε

xi(t) − x

\\\\\\\\\
⩽

Nρ∑

i=Mρ

♣xi(t)−x♣>ρ−R

ε

ρ−R
=

ε

ρ−R
n ⩽

ε

ρ−R
·
CR

ε
= O

⎤
R

ρ

⎣
.

We conclude that

Γ1 = oε(1) + oR(1) + oρ(1) +O(γ) +O

⎤
R

ρ

⎣
.

Since in addition, by (4.4), Γ2 = O(δ), we have proven that

Nρ∑

i=Mρ

i ̸=i0

ϕ̃(zi)

δ
−

1

α
I1,ρ

1 [η(t0, ·)](x0) = oε(1) + oR(1) + oρ(1) +O(γ) +O

⎤
R

ρ

⎣
. (5.34)

Notice that O(γ) is not necessarily small. Next, we consider two cases.

Case 1: ♣γ♣ < δ. Then, O(γ) = oε(1) and

♣W ′′(ϕ̃(zi0)) −W ′′(0)♣

∏
ˆ̂
∐

Nρ∑

i=Mρ

i ̸=i0

ϕ̃(zi)

δ
−

1

α
I1,ρ

1 [η(t0, ·)](x0)

∫
ˆ̂
⎠

⩽ 2∥W ′′∥∞

⎤
oε(1) + oR(1) + oρ(1) +O

⎤
R

ρ

⎣⎣
,

and (5.31) is proven.

Case 2: ♣γ♣ ⩾ δ. By (3.1), and using the fact that zi0 = γ/δ, we have
\\\\ϕ̃(zi0) +

δ

απγ

\\\\ ⩽ K1
δ2

γ2
,

which implies that

♣W ′′(ϕ̃(zi0)) −W ′′(0)♣ ⩽ ♣W ′′′(0)♣ ♣ϕ̃(zi0)♣ +O(ϕ̃(zi0))2
⩽ C

⎤
δ

♣γ♣
+
δ2

γ2

⎣
⩽ C

δ

♣γ♣
.

Hence, it follows that

♣W ′′(ϕ̃(zi0)) −W ′′(0)♣

∏
ˆ̂
∐

Nρ∑

i=Mρ

i ̸=i0

ϕ̃(zi)

δ
−

1

α
I1,ρ

1 [η(t0, ·)](x0)

∫
ˆ̂
⎠

⩽ C
δ

♣γ♣

⎤
oε(1) + oR(1) + oρ(1) +O(γ) +O

⎤
R

ρ

⎣⎣

⩽ oε(1) + oR(1) + oρ(1) +O

⎤
R

ρ

⎣
.

This completes the proof of (5.31).
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Let us now turn to the proof of (5.32). As before, by (3.1), for i = Mε, . . . ,Mρ −1 and i = Nρ +1, . . . , Nε,

\\\\ϕ̃(z0
i ) +

εδ

απ(x− x0
i )

\\\\ ⩽
K1ε

2δ2

(x− x0
i )2

.

Hence, we obtain

1

δ

Mρ−1∑

i=Mε

ϕ̃(z0
i ) +

1

δ

Nε∑

i=Nρ+1

ϕ̃(z0
i ) ⩽

1

απ

Mρ−1∑

i=Mε

ε

x0
i − x

+K1

Mρ−1∑

i=Mε

ε2δ

(x0
i − x)2

+
1

απ

Nε∑

i=Nρ+1

ε

x0
i − x

+K1

Nε∑

i=Nρ+1

ε2δ

(x0
i − x)2

,

(5.35)

and

1

δ

Mρ−1∑

i=Mε

ϕ̃(z0
i ) +

1

δ

Nε∑

i=Nρ+1

ϕ̃(z0
i ) ⩾

1

απ

Mρ−1∑

i=Mε

ε

x0
i − x

−K1

Mρ−1∑

i=Mε

ε2δ

(x0
i − x)2

+
1

απ

Nε∑

i=Nρ+1

ε

x0
i − x

−K1

Nε∑

i=Nρ+1

ε2δ

(x0
i − x)2

.

(5.36)

By (4.4), we have

K1

Mρ−1∑

i=Mε

ε2δ

(x0
i − x)2

+K1

Nε∑

i=Nρ+1

ε2δ

(x0
i − x)2

= O(δ). (5.37)

Moreover, since ♣x− x0♣ < R and ♣x0
i − x0♣ > ρ + R, for i = Mε, . . . ,Mρ − 1 and i = Nρ + 1, . . . , Nε, it

follows that ♣x0
i − x♣ > ρ, thus,

1

π

Mρ−1∑

i=Mε

ε

x0
i − x

+
1

π

Nε∑

i=Nρ+1

ε

x0
i − x

=
1

π

Nε∑

i=Mε

♣x0
i

−x♣>ρ

ε

x0
i − x

−
1

π

Nρ∑

i=Mρ

♣x0
i

−x♣⩾ρ

ε

x0
i − x

.

By Lemma 4.3,

1

π

Nε∑

i=Mε

♣x0
i

−x♣>ρ

ε

x0
i − x

= I2,ρ
1 [η(t0, ·)](x0) + oε(1) + oρ(1),

and as before, \\\\\\\\\

1

π

Nρ∑

i=Mρ

♣x0
i

−x♣⩾ρ

ε

x0
i − x

\\\\\\\\\
⩽ C

R

ρ
.

Therefore,

1

π

Mρ−1∑

i=Mε

ε

x0
i − x

+
1

π

Nε∑

i=Nρ+1

ε

x0
i − x

= I2,ρ
1 [η(t0, ·)](x0) + oε(1) + oρ(1) +O

⎤
R

ρ

⎣
. (5.38)

Combining (5.35), (5.36), (5.37) and (5.38), yields (5.32). This concludes the proof of the lemma. □

Next, we have a control over the remaining errors.
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Lemma 5.9. For i ⩾ 1, the error Ei satisĄes

Ei = O(δ).

We postpone the proof of Lemma 5.9 to Section 7.

Let us Ąnally complete the proof of (5.21). By (5.29), Lemmas 5.8, 5.9 and recalling the deĄnition (5.28)

of E0, we obtain

Λ(t, x) ⩾ L1 + oε(1) + oR(1) + oρ(1) +
oR(1)

ρ
.

We choose R ≪ ρ ≪ 1 and ε0 so small that for any ε < ε0,
\\\\oε(1) + oR(1) + oρ(1) +

oR(1)

ρ

\\\\ <
L1

2
.

Then,

Λ(t, x) >
L1

2
> 0.

This completes the proof of (5.21).

6. Comparison between u
+ and u

−: proof of (5.1)

Let us consider the approximation of the initial datum u0 ∈ C1,1(R), given by Proposition 4.12:

Nε∑

i=Mε

εϕ

⎤
x− x0,i

εδ

⎣
+ εMε, (6.1)

where

x0,i := inf¶x ∈ R ♣ u0(x) = εi♢ i = Mε, . . . , Nε,

Mε :=

⎫
infR u0 + ε

ε

⌉
and Nε :=

⎥
sup

R
u0 − ε

ε

⌋
.

(6.2)

Then, for all x ∈ R, \\\\\

Nε∑

i=Mε

εϕ

⎤
x− x0,i

εδ

⎣
+ εMε − u0(x)

\\\\\ ⩽ oε(1). (6.3)

Let us Ąrst show the following asymptotic behavior of u+ and u−.

Lemma 6.1. For all t > 0,

lim
x→−∞

u−(t, x) = lim
x→−∞

u+(t, x) = inf
R

u0, (6.4)

and

lim
x→+∞

u−(t, x) = lim
x→+∞

u+(t, x) = sup
R

u0. (6.5)

Moreover, for all x ∈ R,

u+(0, x) = u−(0, x) = u0(x). (6.6)

Proof. To prove the asymptotic behavior at inĄnity of u+ and u−, we will construct sub and supersolutions

of (1.1). Let xi(t), i = Mε, . . . , Nε be the solutions of
∮
ẋi(t) = −c0L, t > 0

xi(0) = x0,i,
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with L > 0 to be chosen and x0,i, Mε, Nε deĄned by (6.2), that is xi(t) = x0,i − c0Lt. Consider the function

hε
0(t, x) :=

Nε∑

i=Mε

ε

⎤
ϕ

⎤
x− xi(t)

εδ

⎣
+ δψ

⎤
x− xi(t)

εδ

⎣⎣
+
εδL

α
+ εMε + ε

⎫
oε(1)

ε

⌉
,

where ϕ and ψ are respectively solution of (1.11) and (3.3). By the fact that

Nε∑

i=Mε

\\\\εδψ
⎤
x− xi(t)

εδ

⎣\\\\ ⩽ ε(Nε −Mε + 1)δ∥ψ∥∞ ⩽ (sup
R

u0 − inf
R

u0 + ε)δ∥ψ∥∞, (6.7)

and (6.3), we can choose oε(1) such that

u0(x) ⩽ hε
0(0, x). (6.8)

We are going to show that for L > 0 large enough, hε is supersolution of (1.1). Fix (t, x) ∈ (0,+∞) ×R. Let

xi0(t̄) be the closest point to x and let us denote zi := (x− xi(t))/(εδ). As in the proof of Lemma 5.3, we

compute

Λ(t, x) := δ∂th
ε
0(t, x) − I1[hε

0(t, ·)](x) +
1

δ
W ′

⎤
hε

0(t, x)

ε

⎣

=

Nε∑

i=Mε

[c0Lϕ
′(zi) + δc0Lψ

′(zi)] −

Nε∑

i=Mε

1

δ
I1[ϕ](zi) −

Nε∑

i=Mε

I1[ψ](zi)

+
1

δ
W ′

(
Nε∑

i=Mε

[ϕ(zi) + δψ(zi)] +
δL

α

)
.

By (1.11) and making a Taylor expansion of W ′ around ϕ(zi0), we get

Λ(t, x) = c0Lϕ
′(zi0) − I1[ψ](zi0) +W ′′(ϕ̃(zi0))ψ(zi0)

−
1

δ
W ′(ϕ(zi0)) −

1

δ

Nε∑

i=Mε
i ̸=i0

W ′(ϕ̃(zi)) −

Nε∑

i=Mε
i ̸=i0

I1[ψ](zi)

+
1

δ
W ′(ϕ(zi0)) +

1

δ
W ′′(ϕ(zi0))

∏
ˆ̂
∐

Nε∑

i=Mε
i ̸=i0

[ϕ̃(zi) + δψ(zi)] +
δL

α

∫
ˆ̂
⎠

+
1

δ
O

∏
ˆ̂
∐

Nε∑

i=Mε
i ̸=i0

[ϕ̃(zi) + δψ(zi)] +
δL

α

∫
ˆ̂
⎠

2

+ c0L

Nε∑

i=Mε
i ̸=i0

[ϕ′(zi) + δψ′(zi)] + δψ′(zi0),

where ϕ̃(z) = ϕ(z) − H(z) with H the Heaviside function. By (3.3) and making a Taylor expansion of W ′

around 0, we obtain

Λ(t, x) = −
L

α
(W ′′(ϕ(zi0)) −W ′′(0))

+ (W ′′(ϕ(zi0)) −W ′′(0))

Nε∑

i=Mε
i ̸=i0

ϕ̃(zi)

δ
+W ′(ϕ(zi0))

L

α

+
1

δ
O

∏
ˆ̂
∐

Nε∑

i=Mε
i ̸=i0

[ϕ̃(zi) + δψ(zi)] +
δL

α

∫
ˆ̂
⎠

2

+
1

δ

Nε∑

i=Mε
i ̸=i0

O(ϕ̃(zi))
2
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+ W ′′(ϕ(zi0))

Nε∑

i=Mε
i ̸=i0

ψ(zi) −

Nε∑

i=Mε
i ̸=i0

I1[ψ](zi)

+ c0L

Nε∑

i=Mε
i ̸=i0

[ϕ′(zi) + δψ′(zi)] + δψ′(zi0).

Thus, recalling that α = W ′′(0),

Λ(t, x) = (W ′′(ϕ(zi0)) −W ′′(0))

Nε∑

i=Mε
i ̸=i0

ϕ̃(zi)

δ
+ L

+
1

δ
O

∏
ˆ̂
∐

Nε∑

i=Mε
i ̸=i0

[ϕ̃(zi) + δψ(zi)] +
δL

α

∫
ˆ̂
⎠

2

+
1

δ

Nε∑

i=Mε
i ̸=i0

O(ϕ̃(zi))
2

+ W ′′(ϕ(zi0))

Nε∑

i=Mε
i ̸=i0

ψ(zi) −

Nε∑

i=Mε
i ̸=i0

I1[ψ](zi)

+ c0L

Nε∑

i=Mε
i ̸=i0

[ϕ′(zi) + δψ′(zi)] + δψ′(zi0).

Notice that if xi0(t) is the closest point to x, then x0,i0 is the closest point to x + c0Lt and x − xi(t) =

(x+ c0Lt) − x0,i. Then, by (3.1), Lemma 4.13 applied to u0 ∈ C1,1(R), and (4.4),
\\\\\\\\

Nε∑

i=Mε
i ̸=i0

ϕ̃(zi)

δ

\\\\\\\\
⩽

1

απ

\\\\\\\\

Nε∑

i=Mε
i ̸=i0

ε

x0,i − (x+ c0Lt)

\\\\\\\\
+K1

Nε∑

i=Mε
i ̸=i0

ε2

(x0,i − (x+ c0Lt))2
⩽ C.

Moreover, as in the proof of Lemma 5.3,

1

δ
O

∏
ˆ̂
∐

Nε∑

i=Mε
i ̸=i0

[ϕ̃(zi) + δψ(zi)] +
δL

α

∫
ˆ̂
⎠

2

+
1

δ

Nε∑

i=Mε
i ̸=i0

O(ϕ̃(zi))
2

W ′′(ϕ(zi0))

Nε∑

i=Mε
i ̸=i0

ψ(zi) −

Nε∑

i=Mε
i ̸=i0

I1[ψ](zi)

+ c0L

Nε∑

i=Mε
i ̸=i0

[ϕ′(zi) + δψ′(zi)] + δψ′(zi0)

= O(δ).

We conclude that

Λ(t, x) ⩾ −C + L ⩾ 0,

choosing L > 0 large enough (but independent of ε and (t, x)). Since in addition (6.8) holds true, by the

comparison principle, for all (t, x) ∈ (0,+∞) × R,

uε(t, x) ⩽ hε
0(t, x). (6.9)
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We will show that the previous inequality implies that for any τ > 0 there exists K̃ = K̃(τ, T ) such that for

all (t, x) ∈ [0, T ] × R with x < K̃,

uε(t, x) ⩽ inf
R

u0 + τ + oε(1). (6.10)

Fix τ > 0. Since limx→−∞ u0(x) = infR u0, there exists K ∈ R such that for all x < K,

u0(x) ⩽ inf
R

u0 + τ.

Given T > 0, let K̃ := K − c0LT . Then, by (6.9), (6.3) and (6.7), for all (t, x) ∈ [0, T ] ×R such that x < K̃,

uε(t, x) ⩽ hε
0(t, x)

=

Nε∑

i=Mε

εϕ

⎤
x+ c0Lt− xi,0

εδ

⎣
+ εMε + oε(1)

⩽ u0(x+ c0Lt) + oε(1)

⩽ inf
R

u0 + τ + oε(1),

which proves (6.10). On the other hand, by the comparison principle, uε ⩾ ε⌊infR u0/ε⌋. Thus, (6.4) follows.

Similarly one can prove that the limits (6.5) hold true.

Finally, to prove (6.6), take a sequence (tε, xε) → (0, x) as ε → 0. Then by (6.9), (6.3) and (6.7),

uε(tε, xε) ⩽ u0(xε + c0Ltε) + o1(ε)

which implies that u+(0, x) ⩽ u0(x). On the other hand, u+(0, x) ⩾ lim supε→0 u
ε(0, x) = u0(x). We

infer that u+(0, x) = u0(x). Similarly, u−(0, x) = u0(x). This proves (6.6) and concludes the proof of the

lemma. □

Now, let fε be the smooth and positive global solution of Eq. (1.7) with initial datum

fε
0 (x) =

1

δ

Nε∑

i=Mε

ϕ′

⎤
x− x0,i

εδ

⎣
> 0

provided by Theorem 3.9. Notice that by (3.2),

fε
0 ∈ Lp(R) for all p ∈ [1,∞].

Integrating equation (1.7) from a to b yields

∂t

∫ b

a

fε(t, y) dy = c0f
ε(t, b) H[fε(t, ·)](b) − c0f

ε(t, a) H[fε(t, ·)](a). (6.11)

Sending a → −∞ and b → +∞ and using that fε > 0 is vanishing at inĄnity and H[fε(t, ·)] ∈ L∞(R), we

see that fε(t, ·) ∈ L1(R) for all t ⩾ 0 and

∥fε(t, ·)∥L1(R) = ∥fε
0 ∥L1(R).

Following [2], one can actually show that for all p ∈ [1,∞),

∥fε(t, ·)∥Lp(R) ⩽ ∥fε
0 ∥Lp(R), ∥fε(t, ·)∥Lp(R) ⩽ Cp∥fε

0 ∥
p+1
2p

L1(R)
t−

p−1
2p .

By taking b = x and a = −∞ in (6.11), we see that the function

F ε(t, x) =

∫ x

−∞

fε(t, y) dy,
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is a solution of (1.5) with initial datum

Nε∑

i=Mε

εϕ

⎤
x− x0,i

εδ

⎣
.

Note that for all t > 0,

lim
x→−∞

F ε(t, x) = 0, (6.12)

and by using that limx→+∞ ϕ(x) = 1 and limx→−∞ ϕ(x) = 0,

lim
x→+∞

F ε(t, x) = ∥fε(t, ·)∥L1(R) = ∥fε
0 ∥L1(R) =

Nε∑

i=Mε

ε = ε(Nε −Mε + 1). (6.13)

Finally, wε(t, x) = F ε(t, x)+εMε is the unique (and smooth) viscosity solution of (1.5) with initial datum

(6.1). Moreover ∂xw
ε(t, x) = fε(t, x) > 0 for all (t, x) ∈ (0,+∞) × R. By (6.12) and (6.13), we see that

lim
x→−∞

wε(t, x) = εMε and lim
x→+∞

wε(t, x) = ε(Nε + 1).

In particular, by Lemma 6.1 and the fact that 0 ⩽ εMε − infR u0 ⩽ 2ε and 0 ⩽ sup
R
u0 − εNε ⩽ 2ε, we have

that

lim
x→−∞

(u+(t, x) − wε(t, x)) ⩽ 0 and lim
x→+∞

(u+(t, x) − wε(t, x)) ⩽ ε. (6.14)

Moreover, by (6.3) and (6.6),

u+(0, x) − wε(0, x) = u0(x) −

Nε∑

i=Mε

εϕ

⎤
x− x0,i

εδ

⎣
− εMε ⩽ o1(ε). (6.15)

We next show that

u+(t, x) − wε(t, x) ⩽ oε(1) for all (t, x) ∈ (0,+∞) × R, (6.16)

for oε(1) ⩾ ε for which such that (6.15) holds true.

Suppose by contradiction that for some T > 0,

sup
(t,x)∈(0,T )×R

u+(t, x) − wε(t, x) > oε(1). (6.17)

Then, for ϑ > 0 small enough the supremum of the function

u+(t, x) − wε(t, x) −
ϑ

T − t
− oε(1)

is positive and by (6.14) and (6.15) attended at some point (t, x) ∈ (0, T ) × R. Then, η(t, x) = wε(t, x) +
ϑ

T −t
+ oε(1) is a test function for u+ as subsolution with ∂xη(t, x) = ∂xw

ε(t, x) > 0, and by (5.4),

∂tw
ε(t, x) <

ϑ

(T − t)2
+ ∂tw

ε(t, x) ⩽ c0∂xw
ε(t, x)I1[wε(t, ·)](x).

On the other hand, since wε is a smooth solution of (1.5) we have

∂tw
ε(t, x) = c0∂xw

ε(t, x)I1[wε(t, ·)](x).

We have reached a contradiction. This proves (6.16). Moreover, by (6.3) and the comparison principle,

♣wε − u♣ ⩽ oε(1). Therefore, passing to the limit as ε → 0, we Ąnally obtain u+ ⩽ u. Similarly we can

prove that u ⩽ u−. This completes the proof of (5.1).

Remark 6.2. Notice that the viscosity solution u = u+ = u− of (1.5) satisĄes

lim
x→−∞

u(t, x) = inf
R

u0 and lim
x→+∞

u(t, x) = sup
R

u0.
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7. Proofs of Lemmas 5.1, 5.4, 5.6 and 5.9

7.1. Proof of Lemma 5.1

Recall that by (5.9)

x0
Nρ

− x0 > ρ+R, (7.1)

and by (5.9), (5.6) and (4.5),

x0
Nρ

− x0 = (x0
Nρ

− x0
Nρ−1) + (x0

Nρ−1 − x0) ⩽ Cε+ ρ+R ⩽ ρ+ 2R < 2ρ, (7.2)

for ε small enough. Similarly,

−(ρ+ 2R) < x0
Mρ

− x0 < −(ρ+R).

In particular, for all i = Mρ, . . . , Nρ, (t0, x
0
i ) ∈ Q2ρ,2ρ(t0, x0). Then by the regularity of η and (5.6), the

ODE

ẏi(t) = −
∂tη(t, yi(t))

∂xη(t, yi(t))
(7.3)

has a unique local solution yi(t) such that yi(t0) = x0
i which is of class C1 as long as (t, yi(t)) ∈ Q2ρ,2ρ(t0, x0).

Since in addition η(t, yi(t)) = εi and η is strictly increasing in Q2ρ,2ρ(t0, x0), we must have yi = xi. Moreover,

as long as (t, xi(t)) ∈ Q2ρ,2ρ(t0, x0), by (5.6),

♣ẋi(t)♣ ⩽
2∥∂tη∥∞

∂xη(t0, x0)
= B−1

0 . (7.4)

Next, let −∞ ⩽ t∗ ⩽ +∞ be the Ąrst time such that

♣xNρ(t∗) − x0
Nρ

♣ = R,

and

τ := min¶2ρ, ♣t∗ − t0♣♢.

Then, for t such that ♣t− t0♣ < τ ,

♣xNρ(t) − x0
Nρ

♣ < R (7.5)

and by (7.2),

xNρ(t) − x0 ⩽ ♣xNρ(t) − x0
Nρ

♣ + x0
Nρ

− x0 ⩽ ρ+ 3R, (7.6)

In particular, (t, xNρ(t)) ∈ Q2ρ,2ρ(t0, x0) and (7.4) holds true. Therefore, if ♣t∗ − t0♣ < 2ρ,

R = ♣xNρ(t∗) − xNρ(t0)♣ =

\\\\\

∫ t∗

t0

ẋNρ(t)dt

\\\\\ ⩽
♣t∗ − t0♣

B0
,

which implies that ♣t∗ − t0♣ ⩾ B0R. Hence, for t such that ♣t− t0♣ < B0R, (7.6) holds true which proves the

upper bound in (5.14). For the lower bound, for t such that ♣t− t0♣ < B0R, by (7.5) and (7.1), we have

xNρ(t) − x0 ⩾ x0
Nρ

− x0 − ♣xNρ(t) − x0
Nρ

♣ > ρ+R−R = ρ.

This completes the proof of (5.14). Similarly, one can prove (5.15). By the monotonicity of η, for i =

Mρ, . . . , Nρ, xMρ(t) < xi(t) < xNρ(t) and by (5.14) and (5.15), for ♣t− t0♣ < B0R, ♣xi(t) − x0♣ ⩽ ρ+3R ⩽ 2ρ.

Therefore, xi ∈ C1(t0 −B0R, t0 +B0R) and (7.4) holds true. This proves (5.13) and concludes the proof of

the lemma.
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7.2. Proof of Lemma 5.4

We divide the proof of the lemma into three claims.

Claim 1.
\\\
√Nρ

i=Mρ
εϕ
(

x−xi(t)
εδ

⎡
+ εMρ − η(t, x)

\\\ ⩽ oε(1)
(
1 + δ

R

[
.

Proof of Claim 1. By Lemma 5.1, if (t, x) ∈ QB0R,ρ−R(t0, x0), then x ∈ (xMρ(t)+R, xNρ(t)−R). Therefore,

Claim 1 immediately follows from Lemma 4.10.

Claim 2.

\\\\
√Mρ−1

i=Mε
εϕ

⎤
x−x0

i
εδ

⎣
+ εMε − εMρ

\\\\ ⩽ Cε
(
1 + δ

R

[
.

Proof of Claim 2. By (5.8), if (t, x) ∈ QB0R,ρ−R(t0, x0), then x > x0
Mρ−1 + R. Claim 2 then follows from

(4.54) and the fact that εMρ = η(t0, x
0
Mρ−1) + ε.

Claim 3. 0 ⩽
√Nε

i=Nρ+1 εϕ

⎤
x−x0

i
εδ

⎣
⩽ Cε

(
1 + δ

R

[

Proof of Claim 3. By (5.9), if (t, x) ∈ QB0R,ρ−R(t0, x0), then x < x0
Nρ+1 − R. Claim 3 then immediately

follows from (4.55).

Finally, the lemma is a consequence of Claims 1Ű3 and Lemma 5.5, by choosing ε so small that δ/R ⩽ 1.

7.3. Proof of Lemma 5.6

We Ąrst consider the case

♣x− x0♣ > ρ+ 4R.

Let us assume x > x0 + ρ+ 4R. Similarly one can prove the lemma for x < x0 − (ρ+ 4R).

We divide the proof into three claims.

Claim 1.
\\\
√Nρ

i=Mρ
εϕ
(

x−xi(t)
εδ

⎡
+ εMρ − εNρ

\\\ ⩽ Cε
(
1 + δ

R

[
.

Proof of Claim 1. By Lemma 5.1, if ♣t− t0♣ < B0R and x > x0 + ρ+ 4R, then x > xNρ(t) +R. Therefore,

Claim 1 immediately follows from (4.54) and the fact that εNρ = η(t, xNρ(t)).

Claim 2.

\\\\
√Mρ−1

i=Mε
εϕ

⎤
x−x0

i
εδ

⎣
+ εMε − εMρ

\\\\ ⩽ Cε
(
1 + δ

R

[
.

Proof of Claim 2. By (5.8), if x > x0 + ρ+ 4R, then x > x0
Mρ

+R. Claim 2 then follows from (4.54) and

the fact that εMρ = η(t0, x
0
Mρ−1) + ε.

Claim 3.

\\\\
√Nε

i=Nρ+1 εϕ

⎤
x−x0

i
εδ

⎣
+ εNε − η(t, x)

\\\\ ⩽ oε(1)
(
1 + δ

R

[
+O(R).
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Proof of Claim 3. By (5.9), if x > x0 + ρ+ 4R and in addition x < x0
Nε

−R, then x ∈ (x0
Nρ

+R, x0
Nε

−R).

Therefore by Lemma 4.10 and the fact that ♣t− t0♣ < B0R,
\\\\\\

Nε∑

i=Nρ+1

εϕ

⎤
x− x0

i

εδ

⎣
+ εNε − η(t, x)

\\\\\\
=

\\\\\\

Nε∑

i=Nρ

εϕ

⎤
x− x0

i

εδ

⎣
+ εNε − η(t, x)

\\\\\\
+ oε(1)

⩽

\\\\\\

Nε∑

i=Nρ

εϕ

⎤
x− x0

i

εδ

⎣
+ εNε − η(t0, x)

\\\\\\
+ ♣η(t0, x) − η(t, x)♣ + oε(1)

⩽ oε(1)

⎤
1 +

δ

R

⎣
+O(R),

and the claim is proven for x0 + ρ+ 4R < x < x0
Nε

−R.

Next, if x > x0
Nε

+R, then by (4.55),

\\\\\\

Nε∑

i=Nρ+1

εϕ

⎤
x− x0

i

εδ

⎣\\\\\\
⩽ Cε

⎤
1 +

δ

R

⎣
. (7.7)

Moreover, since εNε → sup
R
η(t0, ·) as ε → 0, ♣t− t0♣ < B0R and η is non-decreasing,

η(t, x) = η(t0, x) +O(R) ⩽ sup
R

η(t0, ·) +O(R) = εNε + oε(1) +O(R),

η(t, x) ⩾ η(t, x0
Nε

+R) = η(t0, x
0
Nε

) +O(R) = εNε +O(R).
(7.8)

Estimates (7.7) and (7.8) imply Claim 3 for x > x0
Nε

+R.

Finally, let us assume x0
Nε

−R ⩽ x ⩽ x0
Nε

+R. Then, by using the monotonicity of ϕ and that the claim

holds true for x = x0
Nε

− 2R and x = x0
Nε

+ 2R, we get

Nε∑

i=Nρ+1

εϕ

⎤
x− x0

i

εδ

⎣
+ εNε − η(t, x)

⩽

Nε∑

i=Nρ+1

εϕ

⎤
x0

Nε
+ 2R− x0

i

εδ

⎣
+ εNε − η(t, x0

Nε
+ 2R) +O(R)

⩽ oε(1)

⎤
1 +

δ

R

⎣
+O(R),

and

Nε∑

i=Nρ+1

εϕ

⎤
x− x0

i

εδ

⎣
+ εNε − η(t, x)

⩾

Nε∑

i=Nρ+1

εϕ

⎤
x0

Nε
− 2R− x0

i

εδ

⎣
+ εNε − η(t, x0

Nε
− 2R) +O(R)

⩾ oε(1)

⎤
1 +

δ

R

⎣
+O(R).

This concludes the proof of Claim 3.

The lemma for ♣x− x0♣ > ρ+ 4R is then a consequence of Claims 1Ű3 and Lemma 5.5, by choosing ε so

small that δ/R ⩽ 1.
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Next, let us consider the case

ρ−R ⩽ ♣x− x0♣ ⩽ ρ+ 4R.

Assume without loss of generality that ρ−R ⩽ x− x0 ⩽ ρ+ 4R. Then, by using Lemma 5.4 at the point

x0 + ρ− 2R, Lemma 5.5 and the monotonicity of ϕ, we get

hε(t, x) + εMε ⩾

Nρ∑

i=Mρ

εϕ

⎤
x− xi(t)

εδ

⎣
+

Mρ−1∑

i=Mε

εϕ

⎤
x− x0

i

εδ

⎣
+

Nε∑

i=Nρ+1

εϕ

⎤
x− x0

i

εδ

⎣
− Cδ

⩾

Nρ∑

i=Mρ

εϕ

⎤
x0 + ρ− 2R− xi(t)

εδ

⎣
+

Mρ−1∑

i=Mε

εϕ

⎤
x0 + ρ− 2R− x0

i

εδ

⎣

+

Nε∑

i=Nρ+1

εϕ

⎤
x0 + ρ− 2R− x0

i

εδ

⎣
− Cδ

⩾ η(t, x0 + ρ− 2R) + oε(1)

⩾ η(t, x) + oε(1) +O(R).

Moreover, by using that the lemma holds true at the point x0 + ρ + 5R, Lemma 5.5 and the monotonicity

of ϕ, we get

hε(t, x) + εMε ⩽

Nρ∑

i=Mρ

εϕ

⎤
x− xi(t)

εδ

⎣
+

Mρ−1∑

i=Mε

εϕ

⎤
x− x0

i

εδ

⎣
+

Nε∑

i=Nρ+1

εϕ

⎤
x− x0

i

εδ

⎣
+ Cδ

⩽

Nρ∑

i=Mρ

εϕ

⎤
x0 + ρ+ 5R− xi(t)

εδ

⎣
+

Mρ−1∑

i=Mε

εϕ

⎤
x0 + ρ+ 5R− x0

i

εδ

⎣

+

Nε∑

i=Nρ+1

εϕ

⎤
x0 + ρ+ 5R− x0

i

εδ

⎣
+ Cδ

⩽ η(t, x0 + ρ+ 5R) + oε(1) +O(R)

⩽ η(t, x) + oε(1) +O(R).

This concludes the proof of the lemma.

7.4. Proof of Lemma 5.9

By (5.13), (3.2), (3.5) and (4.4), we have

♣E1♣ ⩽ B−1
0

∏
ˆ̂
∐

Nρ∑

i=Mρ

i ̸=i0

ϕ′(zi) + δ

Nρ∑

i=Mρ

i ̸=i0

♣ψ′(zi)♣ + δ♣ψ′(zi0)♣

∫
ˆ̂
⎠

⩽ B−1
0

∏
ˆ̂
∐(K1 + δK3)δ2

Nρ∑

i=Mρ

i ̸=i0

ε2

(xi − x)2
+ δ∥ψ′∥∞

∫
ˆ̂
⎠

⩽ Cδ,

which gives E1 = O(δ).
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Now, for E2, using (3.1), (3.4), and (4.4) we get

♣E2♣ ⩽
C

δ

∏
ˆ̂
∐

Nρ∑

i=Mρ

i ̸=i0

ϕ̃(zi)
2 + δ2

Nρ∑

i=Mρ

i ̸=i0

ψ(zi)
2 + δ2ψ(zi0)2 +

Mρ−1∑

i=Mε

ϕ̃(z0
i )2 +

Nε∑

i=Nρ+1

ϕ̃(z0
i )2 +

δ2L2
1

α2

∫
ˆ̂
⎠

⩽
C

δ

∏
ˆ̂
∐

Nε∑

i=Mε
i ̸=i0

ε2δ2

(xi − x)2
+
δ2L2

1

α2
+ δ2∥ψ∥2

∞

∫
ˆ̂
⎠

⩽ Cδ,

that is, E2 = O(δ).

Similarly, (3.1) and (4.4) imply that E3 = O(δ).

Finally, consider E4 deĄned by (5.30). From (3.4), (4.4), Proposition 4.7 and the fact that ♣γ♣ ⩽

2/∂xη(t0, x0),

\\\\\\\\
W ′′(ϕ̃(zi0))

Nρ∑

i=Mρ

i ̸=i0

ψ(zi)

\\\\\\\\
⩽ Cδ

\\\\\\\\

Nρ∑

i=Mρ

i ̸=i0

ε

xi − x

\\\\\\\\
+ Cδ2

\\\\\\\\

Nρ∑

i=Mρ

i ̸=i0

ε2

(xi − x)2

\\\\\\\\
⩽ Cδ.

Now, using (3.3) and a Taylor expansion, we get

I1[ψ](zi) = W ′′(ϕ̃(zi))ψ(zi) +
L0 + L1

α
(W ′′(ϕ̃(zi)) −W ′′(0)) + c0(L0 + L1)ϕ′(zi)

= W ′′(0)ψ(zi) +
L0 + L1

α
W ′′′(0)ϕ̃(zi) +O(ϕ̃(zi))ψ(zi) +O(ϕ̃)2

+ c0(L0 + L1)ϕ′(zi).

Hence, again from (3.1), (3.2), (3.4), (4.4) and Proposition 4.7, we obtain

Nρ∑

i=Mρ

i ̸=i0

I1[ψ](zi) = O(δ).

We infer that E4 = O(δ). This completes the proof of the lemma.
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