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1. Introduction

In this paper we are interested in studying the behavior as ¢ — 0 of the solution u® of the following
integro-differential equation:

1 €
00w® = Ih[uf] — SW/ (Z) in (0,400) xR

u®(0,-) = ug() on R

(1.1)

where €, § > 0 are small scale parameters and § = . — 0 as e — 0, W is a periodic potential and we denote
by Z; the so-called fractional Laplacian of order 1, f(fA)%, defined on the Schwartz class S(R) by

—

(—4)2v (€) = [¢] B(©), (1.2)
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where ¥ is the Fourier transform of v. It is well known, see e.g. [46], that Z; may be also represented as

T, [v)(z) = lpv/ Md%
™ r (y—2)?
where PV stands for principal value. See also [45] or [13] for a basic introduction to the fractional Laplace
operator.
We assume that W is a multi-well potential with nondegenerate minima at integer points. More precisely,
we suppose that

W e C?P(R) for some 0 < B <1

W(u+1) =W(u) forany u e R

W=0 on Z (1.3)
W >0 on R\Z

W (0) > 0.

On the function ug we assume

. (1.4)
ug non-decreasing.

{uo e CY(R)

Eq. (1.1) is a rescaled version of the so called Peierls—Nabarro model, which is a phase field model
describing dislocations. Dislocations are line defects in crystals. Their typical length is of the order of 1076 m
and their thickness of order of 1072 m. When the material is submitted to shear stress, these lines can move
in the crystallographic planes (slip planes) and their dynamics is one of the main explanation of the plastic
behavior of metals. We refer the reader to the book [24] for a tour in the theory of dislocations. Dislocations
can be described at several scales by different models:

atomic scale (Frenkel-Kontorova model),
microscopic scale (Peierls—Nabarro model),
mesoscopic scale (Discrete dislocation dynamics),

macroscopic scale (Elasto-visco-plasticity with density of dislocations).

Our goal in this paper is to understand the large scale limit of the Peierls—Nabarro model for a large
number of parallel straight edge dislocation lines in the same slip plane with the same Burgers’ vector, moving
with self-interactions. The number of dislocations is of order 1/e, while the distance between neighboring
dislocations is (at microscopic scale) of order 1/§. Rescaling the Peierls—Nabarro model leads to Eq. (1.1).
The model is explained in further details in Section 1.1.

We show that at macroscopic scale the density of dislocations is governed by the following evolution law:

(1.5)

Opu = codyuZyi[u] in (0,400) x R
u(0,) = ug on R

where ¢ > 0 is defined in the forthcoming (1.15). Under assumption (1.4), there exists a unique

non-decreasing in x viscosity solution @ of (1.5) (see Section 3). Our main result is the following:

Theorem 1.1. Assume (1.3) and (1.4). Let u® be the viscosity solution of (1.1). Then, u converges locally
uniformly in (0,+00) X R to the viscosity solution @ of (1.5), as € — 0.

Remark 1.2. We do not assume any assumption about how ¢ goes to 0 when ¢ — 0.

The limit equation (1.5) represents the plastic flow rule for the macroscopic crystal plasticity with density
of dislocations. The theorem says that in this regime, the plastic strain velocity dyu in (1.5) is proportional to
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the dislocation density u, times the effective stress Z;[u]. This physical law is known as Orowan’s equation,
see e.g. [44] p. 3739. Equation
Opu = coOpuTy[u] (1.6)

is an integrated form of a model studied by Head [23] for the self-dynamics of a dislocation density
represented by u,. Indeed, denoting f = u,, differentiating (1.6), we see that, at least formally, f solves

Of = co0x(fH[f]) (L.7)

where H is Hilbert transform defined in Fourier variables by

—

H[v] (§) = isgn(§) v(&),

for v € S(R). The Hilbert transform has the following representation formula, see e.g. [46],

Hlv](z) = 1P‘//]Rv(y)dy

7r y—x
and if w € C1*(R) and u, € LP(R) with 1 < p < 400, then
i [u] = Hlug). (1.8)

Identity (1.8) can be easily proven by performing an integration by parts or using Fourier variables. The
conservation of mass satisfied by the positive integrable solutions of (1.7) reflects the fact that if f = wu, is
the density of dislocations, no dislocations are created or annihilated.

Eq. (1.7) was also proposed by Constantin et al. [10] as a simplified one dimensional version of the 2-D
quasi-geostrophic model. In [9], Castro and Cordoba show that given an initial datum fo(x) which belongs
to C%(R) N L?(R) and is strictly positive, then there exists a smooth (analytic in x) global (for all times)
solution of (1.7) that at time 0 is equal to fo(z). If fo(z) is non-negative and 0 at some point, the authors
show the existence of a local solution that blows up in finite time. On the other hand, Carrillo, Ferreira and
Precioso [8] apply transportation methods and show that the solution can be obtained as a gradient flow
in the space of probability measures with bounded second moment. Finally, we mention that Eq. (1.7) is a
particular case of the fractional porous medium equation

Ou =V - (u™ IV (= A) ")

recently studied in [5-7]. Indeed, it corresponds to the case s = 1/2 and m = 2 in dimension 1. Self-similar
solutions and decay estimates for Eq. (1.6) have been studied in [2].

From a mathematical point of view, as § and € go to 0 simultaneously, (1.1) is both a homogenization
problem (even though there is no a cell problem and the limit equation is explicit) and a non-local Allen—
Cahn type equation. As for an Allen—Cahn type problem, the solution gets closer and closer to the stable
minima of the potential, that for the rescaled potential W(-/e), by (1.3), are the points of the set €Z, and
converges to a continuous function, the solution of (1.5), when ¢ goes to 0. To prove Theorem 1.1, the idea is
to approximate the dislocation particles with points z;(¢) where the limit function u attains the value ei at
time t. We then provide a discrete approximation formula for the operator Z; with uniform error estimates
over R, which holds true for any C'! function, and we use it to show that

Ou(t, x;(t))

b= it () = BN ai)

The strategy and the heuristic of the proofs are explained in Section 2.
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1.1. The 1-D Peierls—Nabarro

The Peierls—Nabarro model [35,36,42] is a phase field model for dislocation dynamics incorporating atomic
features into continuum framework. In a phase field approach, the dislocations are represented by transition
of a continuous field. We briefly review the model in the case of an edge straight dislocation in a crystal with
simple cubic lattice. In a Cartesian system of coordinates xjxox3, we assume that the straight dislocation is
located in the slip plane 123 (where the dislocation can move) and perpendicular to the axis x;. In the case
of an edge dislocation the Burgers’ vector (i.e. a fixed vector associated to the dislocation) is perpendicular
to the dislocation line, thus in the direction of the axis x1. We write this Burgers’ vector as be; for a real b.
After a section of the three-dimensional crystal with the plane z1xz5, the dislocation line can be identified
with a point on the x; axis. The disregistry of the upper half crystal {z5 > 0} relative to the lower half
{z2 < 0} in the direction of the Burgers’ vector is ¢(x1), where ¢ is a phase parameter between 0 and b.
Then the dislocation point can be for instance localized by the level set ¢ = b/2. In the Peierls—Nabarro
model, the total energy is given by

E=¢g 4 gmis, (1.9)

In (1.9), £ is the elastic energy induced by the dislocation. In the isotropic case and for a straight dislocation

line it takes the form 1

W:§/ _IVUP day da,
RxR

where U : R x Rt — R represents the displacement which is such that U(z1,0) = ¢(x1). £™ is the so
called misfit energy due to the nonlinear atomic interaction across the slip plane,

Wwwzéwwmmmmzéwwm»mh (1.10)

where W(¢) is the interplanar potential. In a general model, one can consider a potential W satisfying
assumptions (1.3). The periodicity of W reflects the periodicity of the crystal, while the minimum property
is consistent with the fact that the perfect crystal is assumed to minimize the energy. The equilibrium
configuration of the edge dislocation is obtained by minimizing the total energy with respect to U, under
the constraint that far from the dislocation core, the function ¢ tends to 0 in one half line and to b in the
other half line. The corresponding Euler-Lagrange equation can be written in terms of the phase transition
¢ as
Ii[¢) = Wl(@-

Assume for simplicity b = 1, if we fix the value of ¢ at the origin to be 1/2, then for z = 7 the 1-D phase
transition is solution to:

T[] = W'(9) in R
>0 in R (1.11)
Jim 6 =0, lm 6(x)=1, 6(0) =

Existence of a unique solution of (1.11) has been proven in [4]. In the classical Peierls—Nabarro model the
potential is given by W(u) = % (1 — cos (2”7“))7 where d is the lattice spacing perpendicular to the slip
plane, and the 1-D phase transition, found by Nabarro [35], is explicit: ¢(z) = & + L arctan (27 ).

In the face cubic structured (FCC) observed in many metals and alloys, dislocations move at low
temperature on the slip plane. The dynamics for a collection of straight dislocations lines with the same
Burgers’ vector and all contained in a single slip plane, moving with self-interactions (no exterior forces) is

then described by the evolutive version of the Peierls—Nabarro model (see for instance [34] and [12]):

Owu =Ty [u(t,")] — W' (v) in R xR. (1.12)
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In this paper we consider Eq. (1.12) when the number of dislocations is of order 1/e and neighboring
dislocations are at distance at microscopic scale of order 1/6. This can be represented by the following
initial condition

Ne
Yi
0=30(e-2).
where ¢ is the solution of (1.11), N. ~ 1/e and
0<@iv1—wi~ L

We want to identify at large (macroscopic) scale the evolution model for the dynamics of a density of
dislocations. We consider the following rescaling

S(t,2) = t oz
vhe =g )

then we see that u® is solution of (1.1) with initial datum

w (0, z) :iw (x;;yi) (1.13)

Here € describes the ratio between the microscopic scale and the macroscopic scale. After the rescaling we see

that the distance between neighboring dislocations is of order € ~ 1/N,.. Every dislocation point is described
by a phase transition e¢ (“=5%¢) whose derivative is of order 1/4.

More in general, we consider an initial datum wgo satisfying (1.4). One can actually prove (see
Proposition 4.12) that any function satisfying (1.4), normalized such that the infimum is 0, can be
approximated by a function of the form (1.13). The monotonicity of ug reflects the fact that the dislocations

have all the same orientation so that no annihilations occur.

1.2. The discrete dislocation dynamics (6 =0)

When ¢ = 1, (1.1) is a non-local Allen-Cahn equation. In [22], Gonzalez and Monneau, show that the
solution converges as § — 0 to the stable minima of the potential W, that is integers. More precisely,
if the initial datum is well prepared, the solution converges to a sum of Heaviside functions of the form
Eﬁvzl H(xz — y;(t)), where the interface points y;(t), ¢ = 1,..., N evolve in time driven by the following
system of ODE’s:

. Co .
Ui = — in (0,400)
us ;yz —Yj (1.14)
¥i(0) = vy
Here the points y?, i=1,...,N, are given in the initial condition and

w=([ <¢'>2)1, (1.15)

with ¢ the solution of (1.11). System (1.14) corresponds to the classical discrete dislocation dynamics in the
particular case of parallel straight edge dislocation lines in the same slip plane with the same Burgers’ vector
and describe the dynamics of dislocation particles at mesoscopic scale.
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1.8. Brief review of the literature

When 6 = 1, (1.1) is a homogenization problem and the convergence of the solution when & — 0 have been
studied by Monneau and the first author in [32] in any dimension. In this case it is proven that u converges
to the solution of an homogenized equation of type dyu = H(Vu,Z;[u]), where the effective Hamiltonian H
is implicitly defined through a cell problem. In [31] it is proven that in dimension 1 H(8p,dL) ~ coé?|p|L
as 0 — 0. See also [39] for fractional operators of any order s € (0,2). The proofs of [31,32] cannot be
adapted here as the errors obtained blow up when ¢ and § converge to 0 simultaneously. For more results
about homogenization of local and nonlocal first order operators with u®/e dependence we refer to [1,25,26].
Collisions of dislocation particles and/or long time behavior for the solution of (1.1) with ¢ = 1 have been
studied in [11,38,40,41]. In [20] and [21], Garroni and Muller study a variational model for dislocations that
is the variational formulation of the stationary Peierls—Nabarro equation in dimension 2, and they derive a
line tension model.

The passage from discrete models of type (1.14) (§ = 0) to continuum models has been studied in
several papers. In [17], Forcadel, Imbert and Monneau prove that the function Ziigl H(x —y;(t)), where y;,
t=1,...,N.solve (1.14), properly rescaled, converges to the continuous viscosity solution of an homogenized
equation, which is (1.6) when the forcing term is 0. In [28], van Meurs and Morandotti present a discrete-
to-continuum limit passage for a system of dislocation particles with a regularized potential, which includes
annihilation. Convergence of evolving interacting particle systems in dimension 2 has been studied in [19].
For further related results we refer the reader to [18,29,30,33,43] and references therein.

1.4. Organization of the paper

The paper is organized as follows. In Section 2 we present the strategy and the heuristic of the proof of
Theorem 1.1. In Section 3 we recall some general auxiliary results that will be used in the rest of the paper.
In Section 4 we prove a discrete approximation formula for the operator Z;. Section 5 is devoted to the proof
of our main result, Theorem 1.1. The main comparison result used in the proof of the theorem is shown in
Section 6. Finally the proofs of some auxiliary lemmas are given in Section 7.

1.5. Notations

We denote by B,.(x) the ball of radius r centered at x. The cylinder (t — 7,t 4+ 7) X B,.(z) is denoted by
Q- (t,x). |z] and [x] denote respectively the floor and the ceil integer parts of a real number .
For r > 0, we denote

T [o)(e) = TPV /| . wczy, (1.16)
and
N v(y) - v(a)
Tl = [ (117)

Then we can write
T [v)(z) = T [v) () + Z7 " [o) ().

We denote by USCy((0, +00) X R) (resp., LSCy((0,+00) xR)) the set of upper (resp., lower) semicontinuous
functions on (0, +00) x R which are bounded on (0,7") x R for any 7' > 0 and we set Cp((0,+00) X R) ==
USCy((0,+00) x R) N LSCy((0,+o0) x R). We denote by CZ((0,+00) x R) the subset of functions of
Cp((0,+00) x R) with continuous second derivatives. Finally, C*!(R) is the set of functions with bounded
CY! norm over R.
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Given a sequence {u®} we denote

lim sup*u®(t, x) = sup{lim supu®(xe) | e — x},
e—0 e—0
and

lllan_:nf*u (t,z) = 1nf{h£n_>1(1)1fu (ze) | 2ze — x}

Given a quantity E = E(x), we write E = O(A) is there exists a constant C' > 0 such that, for all z,

|E| < CA.
We write E = o.(1) if

lim £ =0,

e—0

uniformly in .

2. Strategy and heuristic of the proofs

In this section we explain the steps that we will follow to prove Theorem 1.1 and the heuristic of the main

proofs.

2.1. Approximation of Iy

The first result is a discrete approximation formula for the fractional Laplace Z; of non-decreasing C'*-!
functions (Propositions 4.4 and 4.7, see also Remark 4.9). Let v € C11(R). Assume for simplicity that v is
strictly increasing. Let € > 0 be a small parameter. Let us define the points x; as follows,

v(x;) =¢€i, i=M...,N; (2.1)
where M, = [mfﬂ%ﬁ-‘ and N, = L%J. By the monotonicity of v the points x; are ordered,
T; < 2441 for all 4.

Then, we show that )
€
Tifv)(wig) ~ — Z U (2.2)
T i Tig

where the error goes to 0 when ¢ — 0. To show (2.2), we consider a small radius » = r. such that » — 0 as

T — T T — T T — Ty
i ig i i iQ o | > i iQ
i —z4q |<r

e — 0 and we split

Then, we have

Ty — Ty
o=z |>r 0 |z =24 [>r

—_

| —

Z Vg (xi)(xi+1 - wz)

T; — .’I?Z'O

12

| =i |>r

1 / 7%(35) dz
d |I_I'L'0|>T T xiO

_ l U(x) — U(xio) r — lv(xio + T‘) + U(xio — 7“) - 2v(xio)
B /|:rzi0|>7‘ ({,E I

— xi,)? T r

1R

™

~T [U] (.131‘0),
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where we have performed an integration by parts in the fourth equality. We can control the error produced
in the approximation by choosing r not too small (r such that ¢/r — 0 as ¢ — 0).
On the other hand, for i # i,

e(i —io) = v(@;) — v(@iy) ~ va(Tip) (T — i)

from which (Lemma 4.6).

€ 1
Z T — Ty Uz (Tig) Z (i — ig)

i#ig i#ig
;=g |<r li—ig|<va(ziy) &
1 1
~ vy (24) Z — Z
D - ey
1 1
=v(io) (=27 + 2%
k>1 k>1

We can control the error produced by choosing r sufficiently small (r < 5%) Combining the two estimates,
we obtain (2.2).
We actually show that for any z,

I [v)(z) ~

3|

>
Ty — X

|z —x|>r
where the error is uniform over R, that is do not depend on the point x, while the sum

>
Ty — X

i#iQ

|z;—x|<r

may not be zero but depends on the distance of z from the closest x;.
All our estimates hold true for any non-decreasing (non necessarily strictly increasing) C*! function.

2.2. Approximation of v

Let ¢ be the transition layer defined by (1.11). It is known (see Lemma 3.1) that if H(x) is the Heaviside
function, then ¢ exhibits the following behavior at infinity: for |z| > 1,
1
~ H(z) — — 2.3
o) ~ H(z) — —, (2.3)
where o = W”(0). Using estimates (2.3) and (2.2), we show (Proposition 4.12) that if v € CHY(R) is
non-decreasing and x; are defined by (2.1), then

(w) ~ i cé (””” ;5””) +eM.. (2.4)

i=M,

Notice that eM, ~ infr v. Indeed, assume for simplicity that x = z;, for some M. < i9 < N.. Then, for ¢
and 0 small: (z;, —x;)/(0e) > 1if i <ig—1, (x4, — x;)/(de) K —1if i > ig + 1. Then, by (2.3) and (2.2),

Ne o ig—1 o Ne .
3 e (xos(sz) teM.= Y e (“’05536) +ep0)+ Y <o (woé_ax) +eM.

i=Me i=Me i=ig+1
e =) e & £
:ZE<1+CWF((E'—CL"))+OZ’/T Z T — X +eMe
i=Me ¢ ‘0 i=ig+1 7" *0
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ﬂ €

= — + EZ.O
T i#10 Xr; — Iio
ed .

~ —Zl [’U](l’io) + €19
«

~ €’L'0

= v(x4)-

We prove that estimate (2.4) holds true for any non-decreasing C'*!' function v and that the error is
independent of the point x.

2.8. Heuristic of the proof of Theorem 1.1

As for a homogenization problem we fix (tg,z) € (0,400) xR and find an ansatz for «° in a small box Qg
of size R centered at the point. Let u be the limit solution (that here we suppose to exist and be smooth).
For R small, all the derivatives of u can be considered constant in Qg:

Opu(t, x) ~ Opu(to, o), Oyu(t,x) ~ dyu(to, o)
and
Il [u(t, )](l‘) >~ Il [u(to, )}(330) = Lo.
By the comparison principle u® and thus w is non-decreasing in x. Assume that
(%{U,(t(),l'o) > 0.
In particular w is strictly increasing in z in Qg. For ¢ close to tg, we define the points z;(¢) such that

u(t,z;(t)) = ei. (2.5)

Since w is strictly increasing in x in Qg, if (¢, 2;(t)), (¢, zi+1(t)) € Qg then 0 < ;41 —x; ~ £ (see Lemma 4.1).
For i such that (¢,z;(t)) € @r, by differentiating (2.5) we get

Opu(t, zi(t)) + Ozu(t, ;(1))E;(t) = 0,
from which B Brult, z:(1)) o Ayulto, zo)
Opult, (1))~ Opulto,wo)

Next we consider as ansatz for u® the approximation of u given by (2.4) plus a small correction:

D (t, 1) == NZ e <¢> <x_5‘§(t)> 15y (:”_E”(“;(’f)» teM..

=M

ii(t) =

The function v is defined in the forthcoming equation (3.3) with L = L. For a detailed heuristic motivation
of this correction, see Section 3.1 of [22]. By (2.4), 9°(t,z) — u(t,x) as ¢ — 0. Fix (t,2) € Qg and let z;(t)
be the closest point among the z;(¢)’s to x and z; = (z — 2;(t))/(ed). Plugging into (1.1), we get (see proof
of (5.21) in Section 5)

0= 60, (1) ~ T[#°(1, (@) + 51" (@E(?x)>

~ —¢/(2iy)(Eio (1) + coLo) + (W (d(2i5)) — W"(0)) % Z $(z:) — —
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where ¢(z) = ¢(2) — H(z). Suppose for simplicity that @ = x,,(t), then by (2.3) and (2.2)
1 - Lo 1 e Lo
o o =

Since ¢’ > 0, we must have

&y (t) = —coLo

that is, by (2.6),

Oru(to, xo) =~ coOzul(to, o)Z1[u(to, )] (zo)-

Notice that if we define

xi(eT
yi(T) = 1(5 )
then the y;’s solve )
. . Co 3 Co
Ji(r) = diler) = —eoLo = 2 —— e =2 Y o
J#i J JF#i !

which is the discrete dislocations dynamics given in (1.14).

2.4. Viscosity sub and supersolutions

By using the comparison principle we show that the functions u® are bounded uniformly in e (see
Section 5). In particular, u™ = limsup._,,*u® and u~ := liminf._,o,u are everywhere finite. To formally
prove the convergence result following the idea of Section 2.3, we show that u™ and u~ are respectively
viscosity sub and supersolution of (1.5). As in the perturbed test function method by Evans [16] in
homogenization problems, we will proceed by contradiction.

2.5. Comparison with the solution of (1.5)

We prove that u* and u~ are respectively viscosity sub and supersolution of (1.5), when testing with
functions whose derivative in x is different than 0. This is not enough to conclude that by the comparison
principle u* < u™. Thus, we consider the approximation F.(x) of the initial datum wg provided by (2.4).
Since ¢’ € LP(R) for all p € [1,00] and ¢ > 0 (see Lemma 3.1), for fixed €, > 0, the derivative of
F.(z) belongs to LP(R) for all p € [1,00] and is strictly positive. By the results of [9] about Eq. (1.7) (see
Theorem 3.9 in Section 3), we can construct a solution w®(¢,z) of (1.5) such that w® is smooth, dyw® > 0,
w® (0, z) ~ ug(z) and w® ~ @, with @ the viscosity solution of (1.5). We then show that

lim ™ (¢, z) — we(t,z) ~ 0, (2.7)
|z|—=+o0
Imoreover,
ut(0,z) —w(0,7) ~ 0. (2.8)

We finally prove that u™(¢,2) — w®(¢,z) < 01(¢). Indeed, if not, by (2.7) and (2.8), ut — w® must attain a
global positive maximum at some point in (0,4+00) x R. Then, using w® (whose derivative in z is strictly
positive) as test function for u* we get a contradiction. Passing to the limit as ¢ — 0, this shows that
ut < . Similarly, one can prove that u~ > %. Since the reverse inequality u~ < u™ always holds true, we
conclude that v~ = u™ = .

As a byproduct of our proof we show that the viscosity solution @ of (1.5) satisfies, for all ¢ > 0,

lim w(t,z) =infug and  lim (¢, z) = supug,
T—>—00 R r—400 R

which is equivalent to say that the mass of the non-negative function 9,u(t, z) is conserved: for all ¢ > 0,

102(t, )| L1 ) = 10zuoll L1 (w)-
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3. Preliminary results

In this section we recall some general auxiliary results that will be used in the rest of the paper.

3.1. Short and long range interaction

We start by recalling a basic fact about the operator Z;. Given v € CH1(R) and r > 0 we can split Z; [v]
into the short and long range interaction as follows,

il(2) = I " l(2) + 7" ] (),

where Z}""[v](z), Z2"[v](z) are defined respectively by (1.16) and (1.17). The short range interaction can be
rewritten as

Ill,r[v](x) — % /l ; ’U(Z‘ + y) + ’U(;;_ y) - 21}(‘1')dy7

Therefore, ,
121" [v)(2)] < —lvllors @)
The long range interaction can be bounded as follows

4
IQ,T < — -
227 ol@)| < — ol

3.2. The functions ¢ and ¢
In what follows we denote by H(z) the Heaviside function. Let o := W' (0) > 0.

Lemma 3.1. Assume that (1.3) holds, then there exists a unique solution ¢ of (1.11). Furthermore ¢ €
C%P(R) and there exist constants Ky, Ki > 0 such that

1 <K1

_ ) I Quiet > .
Ba) ~ H(x)+ ——| < b, forlal > 1, (31)
and for any x € R
0< B0 )< B (3.2)
1+ 22 14 22

Proof. The existence of a unique solution of (1.11) and estimate (3.2) are proven in [4]. Estimate (3.1) is
proven in [22]. O

Let ¢y be defined as in (1.15). Let us introduce the function v to be the solution of

Tily] = W"(¢)p + ¢ (W' (¢) = W"(0)) + coL¢' in R
lim  +_4(z)=0.

r— " oo

For later purposes, we recall the following decay estimate on the solution of (3.3):

Lemma 3.2. Assume that (1.3) holds, then there exists a unique solution ¢ to (3.3). Furthermore ¢ €
CHB(R) and for any L € R there exist constants Ko and Kz, with K3 > 0, depending on L such that

Ky K3

o0 - 22 < B2, porlal 21, (3.4)
and for any x € R " %
3 / 3

_ < < —. 3.5

1+ 22 Vi@ 1+ a2 (3:5)
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Proof. The existence of a unique solution of (3.3) is proven in [22]. Estimates (3.4) and (3.5) are shown
in [31]. O

The results of Lemmas 3.1 and 3.2 have been generalized in [3,14,15,37,39] to the case when the fractional
operator is —(—A)?® for any s € (0, 1).

3.8. Definition of viscosity solution

We first recall the definition of viscosity solution for a general first order non-local equation
Ou = F(t,z,u,0pu, Ii[u]) in (0,+00) x 2 (3.6)

where 2 is an open subset of R and F (¢, z,u,p, L) is continuous and non-decreasing in L.

Definition 3.1. A function u € USCy((0,+00) x R) (resp., u € LSCy((0,+00) x R)) is a viscosity
subsolution (resp., supersolution) of (3.6) if for any (to,z¢) € (0,+00) x {2, and any test function ¢ €
CZ((0,400) x R) such that u — ¢ attains a global maximum (resp., minimum) at the point (¢, o), then

dep(to, mo) — F(to, zo, u(to, o), Oxp(to, 20), Ta[p(to, )] (z0)) < O
(resp., = 0).
A function u € Cp((0,+00) X R) is a viscosity solution of (3.7) if it is a viscosity sub and supersolution of

(3.6).

Remark 3.3. It is classical that the maximum (resp., the minimum) in Definition 3.1 can be assumed to
be strict and that

(p(to, .130) = ’U,(to7 .’1?0).
This will be used later.

Next, let us consider the initial value problem

{@u = F(t,x,u,0pu,Z1[u]) in (0,400) xR (3.7)

u(0,2) = up(x) on R,

where ug is a continuous function.

Definition 3.2. A function u € USCy((0,+00) x R) (resp., u € LSCy((0,+00) x R)) is a viscosity
subsolution (resp., supersolution) of the initial value problem (3.7) if w(0,z) < (uo)(z) (resp., u(0,z) >
(up)(x)) and u is viscosity subsolution (resp., supersolution) of the equation

Opu = F(t,z,u,0yu,Zi[u]) in (0,+00) x R.

A function u € Cp((0, +00) x R) is a viscosity solution of (3.7) if it is a viscosity sub and supersolution of
(3.7).

It is a classical result that smooth solutions are also viscosity solutions.

Proposition 3.4. Ifu € C*((0,+00); C’llo’f(ﬂ) N L>®(R)) for some 0 < B < 1, and u satisfies pointwise

Opu — F(t, x,u,0pu, I1[u]) <0 (resp. 20) in  (0,400) x §2,

then w is a viscosity subsolution (resp., supersolution) of (3.6).
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3.4. Comparison principle and existence results

In this subsection, we successively give comparison principles and existence results for (1.1) and (1.5).
The following comparison theorem is shown in [27] for more general parabolic integro-PDEs.

Proposition 3.5 (Comparison Principle for (1.1)). Consider u € USCy((0,+00) X R) subsolution and
v € LSCy((0,4+00) x R) supersolution of (1.1), then u < v on (0,400) x R.

Following [27] it can also be proven the comparison principle for (1.1) in bounded domains. Since we
deal with a non-local equation, we need to compare the sub and the supersolution everywhere outside the
domain.

Proposition 3.6 (Comparison Principle on Bounded Domains for (1.1)). Let 2 be a bounded domain of
(0,400) x R and let u € USCy((0,400) x R) and v € LSCy((0,400) x R) be respectively a sub and a

supersolution of

80yu = Th[u(t, )] — %W’ (5) in 0.

If u < v outside 2, then u < v in §2.

Proposition 3.7 (Ezxistence for (1.1)). For e, 6 > 0 there exists u® € Cy([0,+00) x R) (unique) viscosity
solution of (1.1). Moreover, u® is non-decreasing in x.

Proof. We can construct a solution by Perron’s method if we construct sub and supersolutions of (1.1)
which are equal to ug(z) at t = 0. Since ug € CU'(R), the two functions u*(¢,z) = uo(x)ia%t are
respectively a super and a subsolution of (1.1), if

46
C > —lluollcri@ + W oo

Moreover ut(0,z) = u~ (0, z) = ug(x). Since ug is non-decreasing, the comparison principle implies that u®
is non-decreasing in z. [

We next recall the comparison and the existence results for (1.5), see e.g. [26], Proposition 3.

Proposition 3.8. Ifu € USCy(]0,+00) x R) and v € LSCy([0, +00) x R) are respectively a sub and a
supersolution of

(3.8)

Opu = ¢o|Ozu| Zy[u]  in (0,400) X R
u(0, ) = ug on R,

then u < v on (0,400) x R. Moreover, under assumption (1.4), there exists a (unique) viscosity solution of
(3.8) which is non-decreasing in x and thus is viscosity solution of (1.5).

3.5. Existence of global solutions of Fq. (1.7)

Theorem 3.9 (/9], Theorem 2.1). Let fo € L>(R) N C#(R), for some 0 < B < 1 and fo > 0 in R (vanishing
at infinity). Then, there exists a global solution v of Eq. (1.7) in C1((0; +00); analytic) with f(0,z) = fo(x).
Moreover, f is vanishing at infinity and H(f(t,-)) € L=(R) for allt > 0. If fo € L*(R) N C+#(R), the
solution is unique.
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4. A discrete approximation of the operator Z;

Let v € C%!(R) be non-decreasing and non-constant. For 0 < £ < 1, define the points x; as follows

z; = inf{r e R | v(z) =i} i=M.,...,Ng,

where

M. — {nf@ﬁwﬂ and N, — {SHPRHJ .
&

Since v is continuous,

and since v is non-decreasing,
T < Tijyq foralli=M,.,...,N. — 1.

Notice that if v is strictly increasing then

x; = v (gi).

In what follows given T € R, we denote by x;, the closest point among the x;’s to .

Lemma 4.1. Let v € C%Y(R) be non-decreasing and non-constant with ||v,||e < L, and let x; be defined

as in (4.1). Then,
Tig1 —x; =eL™r  foralli=M.,...,N. — 1.
Moreover, there ezists ¢ > 0 independent of v such that for any T € R

Ne¢ 2

€
¥ e
i=Mg (zi —7)
i#ig
If in addition v, > a > 0 on an interval I, then for all x;11, x; € I, we have

Ti+1 — T4 < Eail.

Proof. We have

E = U(l‘H_l) — U(J?l) S L(xi-&-l — l‘i),

from which (4.3) follows.
Next, by (4.3), if a;, is the closest point to T, then

|lx; — | > % for all i.
Therefore,
Ne Ne
3 e 3 ;<8L2§:l—0L2
— ~ . . ~ . - )
i=Me (i — T)? i=Me (i —io)? i=1 i
i1 i#£i(

which proves (4.4).
Finally, if v, > a, then

e=v(wir1) —v(xy) = alxirr — x;)

from which (4.5) follows. O

(4.3)

(4.4)
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Lemma 4.2 (Short Range Interaction).Let v € CHY(R) be non-decreasing and non-constant and x; defined

as in (4.1). Let r = re be such thatr — 0 ande/r — 0 ase — 0. Let p > r and T € (xp. + p, TN,

1 Z € :IILP[U]@)+lv(§+p)—|—v(f—p) — 20(T) +o(1).

™

xr; — T s
iig g p

r<|z; —T|<p
Proof. Since v € CH1(R) and r = o.(1), there exists C' > 0 such that
121" [0](@)] < Cr = o:(1).

Therefore, we have

T o(z) — (T T u(z) — (T
Ill’p[v](f) = l/ Mdm + l/ L(z)da: + 0.(1).

T J (x — )2 T Jzpr (x2—7)

T—p

—p), then

(4.6)

(4.7)

Let us estimate from above and below the first and second term in the right-hand side of (4.7). We split

jii;*vtzjjiggﬂdxzztlf;r(I?§252dm-j£ilr<x?§i$2dx'

Notice that we can integrate the second term as follows,

@ T L @) @
LP Y M e

—p

(4.8)

Next, we denote by M, and M, respectively the lowest and the biggest integer i such that z; € [T —p, T —7r],

that is

TM,~1 <T—p<TM, STM, ST—T < TM,41-
Then, we split
T—T TN Ti41 xT—T
T—p (.f - l‘) T—p (.T - 'T) i=M, z; ('T - .Z‘) M, (J) - J?)
By using the monotonicity of v, we obtain

/w: mdx < /:M" mcix + Y /%M mczx v /x: mdm

-pP i=M, Z

_vlea,) v, +Mil(v(ml) - v(xiﬂ))

P Tm, =T T — T Tiy1 — T

n v(T —T) +'U(f—7’)'

Recalling that v(x;) = ei, we compute

M’il <um(:c_+;) (@) > _ Mil <s:£z—_kglc) - €(i+1)>

Py Tiy1 —T Tip1 — T
=Mp

My

_ Ze(i+1)_ Z el

(4.10)
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€ e(M,+1 eM,
S +(p )

Xr; — T prfT Ty, — T

Z e eM, e(M, +1)

=M, T; — & :CMpf"E TM, — M, — T
M-
€ v(z,) v(zp,) €
< P T _|_7
< E — — .
T, —%T TM,—T ITM.—T T

Plugging into (4.10), we obtain

/M D4y < Af: o wE =)~ low,) _ o) | oE ) :

— = + -
S T, T p r
M, _
£ V(T M vl —r 5
<y (2ar,) | v@=r) e
) T, — T p r r
=My

where in the last inequality we have used that v(Z — ) > v(zp,.) and xp,. < T. Combining with (4.8) and

using that v(zas,) > v(T — p), we obtain

— M,

T (z) — v(T) € v(@—r)—v@) v(zm,)—v(T) €

/x_p (x — )2 dxéi:ZM xi—f—i_ r P +7’
u (4.11)

< ZT: 57+v(ffr)fv(f)_v(f—p)—v(i) €

S, T r p r

Next, we will get a similar estimate for the second term in the right-hand side of (4.7). As before, we split

L e L, ot | w
[ M) gy @) o)

z+r (‘T - f)2 r p

(4.12)

Let N, and N, be respectively the lowest and the biggest index i such that x; € [T+ r, T + p|, that is

IN—1 <THT<SEN. STN, ST+ P <TN,41-

P

By the monotonicity of v,
0<v(T+p) —v(zn,) Sv(zn,4+1) —v(zN,) =€ (4.13)

and

0<v(zn,)—v@+7r) <vizyn,) —v(ry,—1) =€ (4.14)
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By using again the monotonicity of v, we get
T+p Z N, Tit1 T+p
vlxr v\x
/ %dxz/ d+§ / d:c+/ o) gy
z+r (:ZJ - l’) z+r (gj - :ZJ TN, (gj - :ZJ)

Ny U.Z‘ it+1 xz E+Pvf+
<[ 3 [T “d+/ e

e (2 —

Np (4.15)
v(z v(x X v(x;
— ( Nr) _ Nr + Z ( +1 _ ( Jrl))
r - =N, Ti+1 — T
N v(@+p) v(§+p)
Ty, =T p
As before, we compute
N,—1 Ny,—1 3 .
i v(zip1)  v(wien) | _x~ (elit1)  e(i+1)
=N, €T — T Tit1 — T =N, T, — T Tit+1 — T
Ny— N,
=N, Vi -T =Ny 1 U -T
Np—1
_ i e . (N, +1) eN,
_FN“xi_f TN, — T TN, =T
Ny—1
o pz € + eN, &N,
7i:N T, —2T XN, —T QL‘NP—E
N,—1
_% e vew)  vlew)
_HV ;,—T 1IN, —T TN, —T
Plugging into (4.15) and using (4.13) and (4.14), we obtain
ey (x) R (T +p) —v(zn,) v(zy,) V(@ +p)
/ jdl’ < Z — + ——~ 4 s —
ir (T —T7) SR i T TN, — 7 r p
Np—1
< Z € € v(zn,) @+ p)
Ly wi—T  anN, - T r p
N
NS RTCRY)
Payvi T T r P
\" (@+r) _v(@+p)
3 (T +r T
<2 o
R T p T
Inserting into (4.12), we get
ZT+p — Np — — _ -
/ U(a:)—v(x)dm<z € +U(a:+7“)—v(m)_v(sc+p)—v(a:)+§ (4.16)
e o TS 2T , 7 - |
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Combining (4.11) and (4.16), we obtain the upper bound

v(x) —v(T) dr < € (T +71)+o(@T —r)— 20(T)
/r<|mm<p > i

<z, — T r
r<|z; —T|<p (4.17)
(@ +p) (@ —p) —20(T) N 2¢

p r

(x —7)?

Similarly, one can get the following lower bound estimate

v(z) —v(T) de > Z £ V(@ +7r)+u(T —r)—20(7T)
/T<|HU<P (@ =) r<oi—zl<p 0L " (4.18)
_v(@4p)+uE@—p) —20E@) 2£
p r

Since v € C11(R), there exists a constant C' > 0 such that

(T +7r)+0(@T—r)—20(T)

< Cr =o.(1).

Therefore, combining (4.17) and (4.18), then dividing both sides by 7 and using that e/r = o.(1), we finally
obtain

(x —7)? ™ p

Ty — X s

Loy = 1/ V(@) =v(@ | 1@+ +vE=p) =@ | g
r<|z; ~T|<p r<|z—z|<p

which together with (4.7) gives (4.6). O

Lemma 4.3 (Long Range Interaction). Under the assumptions of Lemma 4.2 and for r as in the lemma, for

any p =1 andT € (xp, + p, TN, — p),
1 € _ lv(@+p)+v(@—p) — 207
- Z _ :If’p[v](x) _ - ( P) ( P) () + o(1). (4.19)
i — T, — X m P
lz;—Z|>p

Proof. We decompose Z:*[v](Z) as follows

Me y(z) —v(T TP y(x) —v(T Ne y(x) —v(T T u(z) — (@
ety - [ St [T [ M) [ ),
) ) (4.20)
By the monotonicity of v, we get

[, ¢ [ el oD, o)l o)

oo (z—T)? oo (x—T)? T -,
e @) (@) [ @) @)
v(z) —v(T supgp v — v(T supgp v — (T
LTNe TN, Ne
One can similarly obtain a lower bound as follows
/zM€ v(z) — v(Z) s /ﬂ?Ms infg v — v(T) d — infg v — v(T) (4.23)
oo (x—T)2 ) (x — )2 T—xn, '
and oo B too _ B
[ Ry g AT PR AR w1
z (-2 7 (z —7)? TN =T '

Ne Ne
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To get the estimates for the middle two terms in the right-hand side of (4.20), we will proceed as in the
proof of Lemma 4.2. By respectively replacing T — p, T — r with xp;, and T — pin (4.11) and T+ 7, T+ p
with T + p and zy, in (4.16) we obtain

= TN = RV

2e
we (@3 T jwizlzp T F P (4.25)
L@ ) +uE@—p) —20(@)  vles) —v@) _ vlzy) —v(@)
p T — TN, —T
Similarly,
T—p — (T TNe —u(T
/ v(x) f(f)dx +/ v(x) f(;:) T P — 2
o (@7T) = (@7 jwizze T (4.26)
LT ) T = p) = 20(E) _ vlea) @) _ole,) — (@)
p T — N, TN, —T
Combining (4.21), (4.22) and (4.25), we get
T—p (7 400 R
/ v((ﬂ;) ;)(f) d+ / v((ﬂ;) ;)(Zfe) i< Y : e
—o0 - z+p - _— T
|z; =% [>p (4.27)
V(T + p) +v(T —p) —20(T) supgv—eN. 2
+ + — =
p TN, — T P
Combining (4.23), (4.24) and (4.26), we get
T—p e +oo e
/ v(z) f(f)dx +/ v(z) f(f)dm > ¥ e _
o (#-7) o (277) jwialzp (4.28)
+v(f—l— p) +v(@—p)—2v(x) eM.—infrpv 2¢
p T—zm, P

Recalling the definition (4.2) of N, and M., we see that 0 < supg v —eN, < 2¢ and 0 < eM, — infgrv < 2¢.
Since in addition zn, —T > p, T —xp. > p, p 2 7 and €/r = o.(1), from (4.27) and (4.28) we finally get
(4.19). O

The following proposition is an immediate consequence of Lemmas 4.2 and 4.3.

Proposition 4.4. Letv € CYY(R) be non-decreasing and non-constant and z; defined as in (4.1). Letr = r.
be such thatr — 0 and e/r — 0 ase — 0. Then, for any T € (xp, + 12N, —T),

% > = = Tl@ +ou()

|z;—Z|>r

Remark 4.5. Notice that in Lemmas 4.2, 4.3 and Proposition 4.4, the error o.(1) satisfies

0.(1) = O(r) + O (5) . (4.29)

r

Lemma 4.6. Under the assumptions of Lemma 4.2, let T = x;, + €. Then, there exists r = r. satisfying
% <r< ca%, with ¢ depending on the CY' norm of v, such that

% Z . c == O(eé) + O0(). (4.30)
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Proof. In what follows we denote by ¢ and C different constants independent of € and Z. Let K > 0 be
such that [|vze|| Lo @) < K. We divide the proof into three cases.

Case 1: vy (x4,) < 12K5e3

By making a Taylor expansion, we get

K
& = 0(ig+1) = v(Tig) < Valig)(Tig+1 = Tip) + o (Tig+1 — i)

va(ziy)®  (12°K K )
S 2(12)2K ( 5t ) Wior =)
122 41
2

€
S5 K(2ig4+1 — I¢0)2,

from which
1
Tig+1 — Tig > ce2.
Similarly, one can prove that

1
Tig — Tijp—1 = CE2.

Since x;, is the closest point to Z, we must have that T — x;,_; > ca%/Q and z;,41 — T > ce%/Z. Therefore,
if we choose r =1, = 05%/4, there is no index ¢ # i¢ for which |Z — z;| < r and thus (4.30) is trivially true.
Next, we show that
3 ﬁ = O(eh). (4.31)
i#ig v ‘o
|o;—7|<r
We consider two more cases.
Case 2: 12K%e% < Uz (i) < e3—T, for some T € (0,1/4).
If |7 — x| > 5%/(41(%), then we choose r = 5%/(81(%) and as in Case 1, there is no index i # iy for
which |Z — x;| < r. Thus (4.30) holds true.
Now, assume [T — z;,| < 5%/(4K%) and define

Nl

€
= > 2|7 — x4, 4.32
= oy (1.32)

Let M, and N, be respectively the smallest and the larger index ¢ such that z; € (T — r,T + r), that is

TM,—1 <zT—1r< T M,
(4.33)
TN, <T+71 < TN +41-
By the monotonicity of v and (4.33),
—& = v(wig) = v(Tig11) S v(@ig) = v(T) < v(wip) = v(Tip-1) = €,
—e=v(zn,) —v(zN,4+1) <v(zy,) —v(@T+71) <0 (4.34)

<
< U(xMr) - ’U(mMrfl) =&

0<v(xp,) —v(@T —1)
By making a Taylor expansion, we get, for ¢ = M,.,..., N,
(i — i0) = vlas) — vlwiy) = V() (@ — i) + O(r2),
where |O(r?)| < K(2r)?/2 = /2, from which

e(i —ip) + O(rz).

vz (i)

Z; —Iio =

(4.35)
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Therefore, we can write

Ny

Va xm
|z —z|<r 7& . (436)
Z Vg xm n ZT vz (@i, )E
i (i —ig) + O(r?) ) e(i —ig) + O(r?)
Now, suppose without loss of generality that N, — iy < ig — M,.. Then,
ig—1 c N, -
— + —
i;; e(i — o) + O(r?) ,;:izo;rl e(i —1g) + O(r?)
19— Mp c Ny—ig c
= — _ (4.37)
2. Zrvorn T 2 Frord
k=1 k=1
NT—iO iO_MT‘
1 1 €
= Z E( 2 + p) ) + Z T Ay
— —ek 4+ 0O(r2)  ek+ O(r?) N1 —ek + O(r?)

We can bound the first term of the right hand-side of the last equality as follows

N’iog ( 1 1 )‘ 2(0(r2)| Nf‘) 1
2 72
Pt —ek 4+ O(r?) 5k+0(r2) € (k4 O(E D) (k + O(E )
> (4.38)
< Z k21
k=1 4
=C,
where we used that |O(r?)|/e < 1/2. Therefore,
e 1 1 \
i < Cug(zy) < Ce27 7. 4.39
v ) ;::1 ) (—5k+0(r2) " €k+O(T2)) Cueliy) < Ce® (439)
Next, by using that > ;" 1/k < (m —n+1)/n, we get
io—M; A io—My A
- g -
kr—NrZioﬂ —ek+0(r) k—NrZioJrl ek —0(r?)]
. —(eN, + M, — 2¢ig)
(N, + 1) —eig — |O(r?)] (4.40)
_ —(w(zn,) +o(@m,) = 20(2i))
v(en,) —v(zi,) +& —10(r?)]
< —n) +olen,) - 2v(@s))
v(xn,) = v(wi)
By (4.34) and the regularity of v,
20(74,)) < —(vV(F +7) + 0T —7) — 20(T)) + 3¢ < Kr? + 3¢ < Ce. (4.41)

0 < —(v(an,) +o(n,) -
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Now, by using that v, (z;,) > 12K%e% and that |T — x;,| < r/2, and by (4.34), we get

v(zn,) —v(zi,) 2@ 4+ 1) —v(z) —€
> vy (24,) (r — |7 — x4|) — = (2r)% — &
r 3
P Uac(zzo)§ - 56
= fuz(zio)g - 12K%s%£ (4.42)
T
> vz(wio)z
4
= ’l}z(xio)@.
From (4.40), (4.41) and (4.42), we infer that
Nr—ig 1
Z EZz(ﬂfozo) . vm(a:zo)C€81K2 < Ceh. (4.43)
imig—My+1  C +0(r?) U (Tig)e?
Finally, (4.36), (4.37), (4.39) and (4.43) imply
1 Z < <05%‘T<Cs%,
— Ti — Ty
i 0
|z; —z|<r
which gives (4.31).
Case 3: vy (x4,) = g3 T, for some T € (0,1/4).
As in Case 2, we can assume that [T — z;,| < e Then, we define
=2 > 9T — | (4.44)

Notice that r > %, Assume, without loss of generality, that N, —ig < ig — M,.. Then as before, we write

NT‘_iO io—MT

€ 1 1 Vg (T4,)
- = V5 (T4g) ( + ) + — 0
i;:o T — Ty, 1; 0P\ —ek+0(r?)  ek+0(r?) k=N§O+1 —ek + O(r?) (4.45)
|z; —Z|<r
By (4.38) and the definition (4.44) of r,
Ny —ig
1 1 0(2)]

z (T4 < Cg(; < Ce™. 4.46
1; v (mo)(—£k+0(r2) +sk+0(r2)) vz (%io) £ c (4.46)

By (4.40), (4.41) and (4.42), and by using that v, (x;,) > Ce2~" and (4.44), we get

io—Mr
€ Ce z
< ~ < Ce?, (4.47)
k—NTZz'OH —ek+0(r?)| = vp(wi)s — 3¢

for € small enough (independently of 7). Estimates (4.45), (4.46) and (4.47) imply

ool=

9 T
Y |cosh<ced,
iig xl_xlo

|z, —T| <7

which gives (4.31)
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Finally, to prove (4.30), we estimate

€ € g2y
> w2 Tl X el (4.48)
i#ig Li— % i#ig T — Tig %30 (z; —T)(w; — Tig)

|z, —T|<r |xi—aci0 |<r |z, —Z|<r
Assume, without loss of generality that T = x;, + e, with v > 0, that is, T € [z;,,%i,+1). Then,

|$i—$i0| ifi<i0—1
Tig+1—Ti e
—=—=L ifi=ip+1

Ty — IL’1‘0+1 if ¢ 2 io + 2.

|$i —f‘ >

Moreover, by (4.3), z;,41 — x;, = L ™. Therefore,

g2y g2y g2y
_ < ——— 2Ly + —————5 < (v, (4.49)
;) (zi = T) (i — i) Z (Ti — 245)? @%;2 (i — ig41)?

|z, —T|<r

i<ig—1

where in the last inequality we used (4.4). By (4.48) and (4.49) we get

€ €
> o= X | <Oy
i£ig v i#ig v 0

|z, —z| <7 |zifa:i0|<r
which together with (4.31) gives (4.30). O
The following proposition is an immediate consequence of Lemma 4.2, Proposition 4.4 and Lemma 4.6.

Proposition 4.7. Let v € CV1(R) be non-decreasing and non-constant and x; defined as in (4.1). Then,
there exists ¢ > 0 depending on the CY'' norm of v such that if p > ce%, and T € (xp. + pyTN. — P),
T = x4, + €7, then

% > x,E_I=111”’[v](x)+0(7)+;”(Hp)ﬂ(z_p)_%@) +o:(1), (4.50)
i#ig v
|z; —T|<p
and X
p ) xzif = L[v](F) + 0:(1) + O(7). (4.51)

iig

Proof. Fix 7 and let r and ¢ be given by Lemma 4.6. Then €8 <r < ce? < p. By Lemma 4.2 and recalling
(4.29),

1 1v(z T —p)—20(T
=D DR _ Tl (z) 4 L UE LA HUE ) ”($)+o(a%).
™ A= T — 0 0
i
r<|z;—7|<p
Combining this estimate with (4.30) yields (4.50).
Similarly, by Proposition 4.4 and Lemma 4.6, we get (4.51). O
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Remark 4.8. If e|ly| = [T — 24| > ce2 > r, then |z — ;| > r for all ¢ and
1 € 1 €
; Z xi—xig 27 xr;, — T
i#£1Q r<l|z; —x|<p
|2y~ |<p
lov(x+p)+v(™—p) — 20T

™ P

Remark 4.9. If T = z;,, then v = 0 and

p Z oo~ D) 4 oc(D). (4.52)

i;éi Tio

Lemma 4.10. Let v € CYY(R) be non-decreasing and non-constant and x; be defined as in (4.1). Let ¢ be
defined by (1.11). Let M. < M < N < N. and R > CE%, with ¢ > 0 given by Proposition 4.7. Then, for all

€ (xym + R,on — R)
N
Y eo (“ < o:(1) <1+;>,

i=M
with o.(1) independent of R and x.

_5%) +eM —o(z)

Proof. Fix z € (xap + R,zn — R), and let z;, be the closest point among the x;’s to x. Then, z;,_1 <z <
Ziy+1 and by the monotonicity of v,

e(io — 1) = v(wig—1) < () < v(@ig41) = e(io + 1) (4.53)

By using (4.53), estimate (3.1) and that ¢ < 1, we get

> oo

_;") FeM — o(x)

=M
i0—1 ) N L
—Z€¢( >+€¢<x—86x20>+ Z 6¢(z56%>+6M—v(z)
=M i=ig+1

<i0_ls 1+ ed N K252 e
= am(z; —z)  (z; — )2

arm(z; —z)  (z; — )

N
K 252
+ Z 5( £ + 1562>+5M—5(i0—1)
i—ig+1

N N 9
€
=gd —_— K —_— 1+ 2
< Zom(xi—x)+€ 1Z($i_$)2+ ©
i=M =M
i#iQ i#io
2
€
=&l 0 K —— + 2¢.
€ ; om( —|—5 Z )+5 1;\;x7£€)2+5
‘xi*x?gR |szz‘>R i#£iQ
We can bound the second term above as follows
ol € € ed(eN —eM +¢)
1) _— ) <
c Z am(z; — x) S€ Z am|z; — x| arR
i=M =M
|z;—xz|>R |z;—z|>R
ed(v(zn) —v(zpr) +¢€)
p— < 2 o0 .
" e2fvlloo + ) —
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Therefore, by Proposition 4.7, Remark 4.8 and (4.4), we get

fj e (m — x) +eM —o(x) < f (2" 1)(@) + 0(H) +C)

5
i=M

+ Ced? 4 2¢

2|[vloo
+ e(2llelloo +£)——

com(144).

Similarly, one can prove that

i_i\;;sqb (l“ ;;vz) +eM —v(z) > o0.(1) (1 n g)

and this concludes the proof of the lemma. [

Lemma 4.11. Under the assumptions of Lemma 4.10, there exists C > 0 independent of ¢ and R such that
forallz > xn + R,

N
i§4€¢ <x;5xi>+5Mv(:cN) < Ce <1+fz>’ (4.54)
and for all x < xpr — R,
N T — T )
L)< — . .
¢§46¢( — ) \Cs<1+R> (4.55)

Proof. Let x > zy + R, then z —x; > R for all i = M, ..., N and by using that ¢ < 1, we get

N
Z € <$8(SI¢> +eM < (N+1e=wv(zn)+e.
i=M

On the other hand, by (3.1) and (4.4),

N N

T — X; ) K622
3 M= (1 - M
i:Mw( 5 )“ ( Tonlw -0 @-wp) C

i=M
)
> - . o 2
> (N+1)e 7r(5N 5M+6)R Ced
0
=v(zy)+e— —(v(zn) —v(znm) +€)E — Ced?
)

This proves (4.54).
Now, let < xpr — R, then ¢ —x; < —R for all i = M,..., N and by (3.1) and (4.4),

N T —x; N ) K622
Z”( B )gzg(m(xi—xﬁ(x—xi)?)

i=M =M

€ )
< —(eN —eM — 52
Om(s € +5)R+Ce

= = () —v(ar) +0) % + Ce?

aT

)
< — .
\Ca(1+R)
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On the other hand

N — .
Y e (x 65%> >0
i=M
This concludes the proof of (4.55) and of the lemma. O

Proposition 4.12. Let v € CY1(R) be non-decreasing and non-constant and x; be defined as in (4.1). Let
¢ be defined by (1.11). Then, for all z € R,

Ne
Z ep (:c 66%) +eM, —v(x)

=M

<o.(1), (4.56)

where o:(1) is independent of x.

Proof. Let R = R, := max{J, ce%}, with ¢ given in Proposition 4.7. If « € (xp. + R, zn. — R), then (4.56)
follows from Lemma 4.10.
Next, let us assume > xn, + R. Then, by (4.54)

N .
Z ep <x56 1) +eM, —v(z)

i=Me¢

< Jv(zn.) — v(x)| + Ce.

Now, by the monotonicity of v,
v(zn,) —v(z) <0.

On the other hand, by the definition (4.2) of N,, we have

v(z) —v(zn.) =v(x) —eN. < supv —eN, < 2e.
R

This proves (4.56) when « > zn. + R. By using (4.55), one can similarly prove (4.56) when z < zp;. — R.
Now, assume zy, —R < z < .+ R. Then by (4.56) applied at . —2R and zx_ +2R, the monotonicity
of ¢ and the regularity of v, we get

Ne
(15 e

i=M,

N,

: 2R — x;

<Y e <W> +eM. — v(zy, +2R) + O(R)
i=Mg

< Oa(l)a

and

N .
Z ep <x56 1) +eM, —v(z)

=M

N,

& _ 2 _ Z

>3 e (W) +eM. —v(zy, — 2R) + O(R)
i=M,

> o:(1).

This proves (4.56) when xy. — R < « < xn_ + R. Similarly, one can prove (4.56) when zp;, —R <z < 2p. +R
and the proof of the proposition is completed. [

We conclude this section with the following lemma that will be used later on.
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Lemma 4.13. Let v € CY1(R) be non-decreasing and non-constant and z; be defined as in (4.1). Then,
there exists C' > 0 such that for all x € R,

Y < (4.57)

Xr; — X
itig "

Proof. Let us fix T € R. In what follows we denote by C several positive constants independent of ¢ and
7. Let x;, be the closest point to T among the x;’s. Then, by (4.3), |z; —Z| > ¢/(2L) for i # iy. Since
v € CL1(R), there exists C' > 0 such that |Z; [v](Z)| < C. Moreover,

/IZ’E v(z) — v(T) 1 Trar y(z) — v(T) da + 1 /+°° v(z) — v(T) i

Ty (@—T)°

1
| ot <(> @ 1 o) (5%
B ;/700 (‘T—$>2 I " Tr‘/$+25L (x_m)Q I +O(€)’
where |O(e)| < Ce. U T € (zp. +¢/(2L),xn. — €/(2L)), then we write
I w(z) (@) Ve o) —o(@ RS [T > I o(z) ()
[ e [ dﬂ”ﬂ% / “@ome T / @z

where we define z;,—1 = z s, if 19 = M. By the monotonicity of v,

v e . e
0> / v(x) i}(x) dr > _infpv véx)
(r —7T)? Ty, — T

— 00

As in the proof of Lemma 4.2,

v (x — )2 S @i -z Tym. — T Tig—1 — T T — Tip—1
ig—1 _ _
_ OZ e v(en) —v(@)  v(wi-1) —v(@) L€
S Ti— 7T Ty, — T Tig—1— T T — Tig—1
and
20222 / i+l g — Uf)dx . ’02_:1 e . ”(st) —B(f) B ’U(l‘io_l) —Z(E) +— € .
=M. .Z‘—J? i=M5$i—$ Ty, — T xio_l—a: T — TM,

Therefore, by the Lipschitz regularity of v and using that T — x;,—1 > ¢/(2L), we get

TN _ i9—2 i+l g

/ v@) =@ Z/ f)dx

—o00 ( LL‘—{L‘

i9g—1 __ -

€ v(zp,) —v(T v(xi—1) — v(T €

gzx»—f+ (xM)—f()_ (;0 lz—f()+f—x- 1

i=M; "t € ig— ig—

ig—1 c
<) — +4L,
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and
M y(z) 072 rwiyg g, () J;)
/ @) ~ (@) Z / —dx
o (:C —7) (x —7)
S if € ’U(I’ME) —infrv v(;vio,l) — ’U(f)
- Py T, — T Ty, — T Tip—1— T
ig—1 c
S S
X Ty — X
1=Mg¢

—infgrv < 2¢ and zp, — T < —¢/(2L).

where in the last inequality we used that v(zy, )
v(4,—1) = 2¢, the monotonicity of v and that T — x;,_;

Next, using that v(T) —v(zi,—1) < v(Tiy+1)
¢/(2L), we have
2L

o> (v(aig) = olo) (B - o —) > -

3

0> / o v((z)_;)(;)

We conclude that
T— £ ig—1 =_ €
2L w(x) —v(T) c € /I_ﬁ v(x) —v(ZT)
d < < —————d : 4.
= 2ams). mowp wrC (4.59)
Similarly,

+oo _ Ne +o0 _ —

/ va) Zol@) ;o g —_ / o) Zvl@) 4 4 g (4.60)
T+ 57 T —T) imig 1 ¥ i~ T T+ (z—7)

From
T— 55 _ +00 _
Z < g/ de +/ Md +O< @) +C<C,
e A T R S
and
T— £ . — “+o00 . —
St TR, [ e, e s o
2w ) w T gy e
which gives (4.57).
If  <xp. +€/(2L), then x;, = xp. and we write
“+ o0 _ TMe+1 _ — Ne—1 i1 _ 400 _ —
/ v(@) U(z )dx_/ v(@) f(f)da;+ Y / v() f(f)dwr/ v(@) f(f)dx
s @-D) ey @ P 2 e v, (@-7)
If £ > zn. —¢/(2L), then z;, = xn, and we write
_ Ne—2 Tit1 — T— 57 _
D g+ Z/ () z)d:H—/ ule) @),
IN571 (‘T_’T)

TN, _
dr — / v((:z: v(T

— 00

[

Similar computations as before show (4.57). This concludes the proof of the lemma

O
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5. Proof of Theorem 1.1

We first show that the functions u® are bounded uniformly in €. Since W/(z) = 0 for any z € Z, integers
are stationary solutions to (1.1). Let k1, ko € Z be such that k; < infgrug < supgug < k2. Then by the
comparison principle we have that for any € > 0

k1 <u®(t,z) < kg forall (t,2) € (0,+00) x R.

In particular, u™ = limsup}_,,u° is everywhere finite. We will prove that u™ is a viscosity subsolution
of (1.5) when testing with test functions whose derivative in z at the maximum point is different than 0.
Similarly, we can prove that u~ := liminf,._,ou® is a supersolution of (1.5) when testing with functions
whose derivative in z at the minimum point is different than 0. We will show that this is enough to conclude
that the following comparison principle holds true: if @ is the viscosity solution of (1.5), then

vt <u<u. (5.1)

Since the reverse inequality u~ < u always holds true, we conclude that the two functions coincide with u
and that u* — uw as ¢ — 0, uniformly on compact sets. We will prove (5.1) in Section 6.
Let n € CZ((0,+0) x R) be such that

ut(t,x) — n(t,z) < ut(to, o) — n(to,z0) =0 for all (t,2) # (to, 7o), (5.2)

and assume 9,7(to, o) # 0. By the comparison principle, u¢ is non-decreasing in x, and thus also u™ is
non-decreasing in x. The monotonicity of u™ and (5.2) imply that 9,n(tg,zo) > 0. Therefore, we have

(%ﬂ](to,iﬁo) > 0. (53)
The goal is to show that
A (to, xo) < codina(to, wo) Tu[n(to, -))(2o0)- (5.4)
Assume by contradiction that
den(to, zo) > coOina(to, o) Zu[n(to, -))(xo)- (5.5)

Denote
Lo = I1[n(to, -)}(wo)-

By (5.3) and (5.5), there exists 0 < p < 1 and L; > 0 such that

S aa;’](to, LU())

Om(t, z) > 5 >0 forall (t,x) € Q2p,25(t0, Zo), (5.6)

and
On(t, x) = co0xn(t,x)(Lo + Ly) for all (t,2) € Q2p,2,(t0, Z0)- (5.7)

By (5.6), n is increasing in x over Q2,.2,(to, o). Without loss of generality, we can assume 7(t,-) to be
non-decreasing over R, for |t — to| < 2p. Indeed, if not, since n > u™ outside Q2 2,(t0, o) and u™(t,-) is
non-decreasing over R, we can replace n with 7 such that n = 7 in Q2, 2,(t0, zo), 7i(t, -) is non-decreasing over
R for [t — to] < 2p, 71 € CZ((to—2p, to+2p) xR), ut < 7 < nin (to—2p, to+2p) x (—K, K). If we prove (5.4) for
71, then, since dyfi(to, x0) = ym(to, xo), Duil(to, wo) = Dan(to, wo) and I} [fi(to, )] (x0) < Ty [n(to, )] (xo),
by letting K go to +o0, (5.4) holds true for 1. Therefore in what follows we assume 7 non-decreasing with
respect to « over R for |t — to| < 2p.
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We then define the points

af, <o <a) <aly <oo-<al
such that
0 . . .
x; = inf{x | n(to,z) = et} i=M,.,...,Ng,
where

M. = anﬂ{a n(to, ) +5-‘ and N = LSUPR n(to,-) — EJ .
€ €

Next, for 0 < R < p to be determined, let M, be the biggest integer such that x(}wp is smaller than xg—(p+R)
and N, is the lowest integer such that J;?vp is bigger than 2o + (p + R), that is

2y, <wo—(p+R) <afy (5.8)

and
95(1)\[,)—1 <zo+(p+R) < :C?Vp. (5.9)

Then, we define the points x;(t) as follows

x;(t) = inf{x | n(t,x) = i} fori=M,,...,N,. (5.10)
By definition,
n(t, z:(t)) = e, (5.11)
moreover,
zi(to) = 9. (5.12)

Lemma 5.1. Let By := 0,7(to,z0)/(2||0¢1]|sc) and z;(t) be defined by (5.10), i = M,, ..., N,. Then, there
exists g = €o(p) such that for e < eg and R < p/3, x; € C(to — BoR,to + BoR) and for |t — to| < BoR,

|&:(1)] < By (5.13)
To+p <N, (t) <z0+p+ 3R, (5.14)
o — (p + 3R) < TM, (t) < xp—p. (515)

In particular (t,z;(t)) € Q2p,2(t0, To)-

We postpone the proof of Lemma 5.1 to Section 7.
Now, since by the lemma the z;(¢)’s are of class C* and (¢, z;(t)) € Q2p,2,(to, z0), we can differentiate in
t Bq. (5.11)
On(t, i(t)) + Oun(t, xi(t)):(t) =0

and use (5.7) to get, for |t — ty| < BoR,
71‘1(1&) >CO(LO+L1)7 Z‘:]\4p7"'7]\7p' (516)

Next, we are going to construct a supersolution of (1.1) in @p,r,r(to, o) for R < p < 1.
Since the maximum of u™ — 7 is strict, there exists yg > 0 such that

ut —n < =2y <0 in Qap2,(t0, 20) \ @Byr,k(t0; o). (5.17)
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Then, we define

° (1) = he(t,x) +eM. + % —e|22| for (t,z) € QBOR,g(to,fUO) (518
S us(t, x) outside '
where
ol x — x(t) x — x;(t)

= 30 e (o (S5 ) o (F5)
Mt g N o (5.19)

+_Z 5(;5( — )+Z eqs( — )

i=Mg i=Np+1

with ¢ solution of (1.11) and % solution of (3.3) with L = Lo + L4.

Remark 5.2. We choose z;(t) = ¥ to be constant in time for i = M., ..., M,—-1andi=N,+1,..., N,
because we cannot bound the derivative &;(¢) for all i = M., ..., N.. This will produce an error O(R) when
comparing 9¢ with 7 when |t — to| < BoR and |x — 29| > p — R, see Lemma 5.6.

Lemma 5.3. There exists 0 < R < p and €9 = €o(R, p) > 0 such that for any € < g, the function ®°
defined by (5.18) satisfies

P° > u®  outside Qpyr,r(to, To), (5.20)
1 7
5875 @° 2 Il[és] — gW’ <;) mn QBOR,R(tO7$O)7 (5.21)
and
P° < n + 05(1) — & {V?RJ m QBOR,R(t07x0>~ (522)

We are now in position to conclude the proof of Theorem 1.1.
By (5.20) and (5.21) and the comparison principle, Proposition 3.6, we have

us(t,x) < 9°(t,x) for all (¢, ) € Qpyr,r(to, To)-
Passing to the upper limit as ¢ — 0 and using (5.22) and that u™*(tg, zo) = n(to, zo), We obtain
0< —R>

a contradiction. This concludes the proof of Theorem 1.1.

5.1. Proof of Lemma 5.3
We divide the proof of Lemma 5.3 in several steps. We start with the following lemma.
Lemma 5.4. There exists €9 = eo(R, p) > 0 such that for any e < gy and for any (t,x) € Qpyr,p—r(to, To),
we have
|h®(t,z) +eM: —n(t,z)] < oe(1).

We postpone the proof of Lemma 5.4 to Section 7.

Proof of (5.20). Outside QBOR’g(tO,xO), by definition (5.18) of @°, $°(t,x) = us(t,x).
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Next, by Lemma 5.4 and (5.17), for (¢,z) € QBOR%(to,xo) \ @Byr,r(t0, Z0),

L
O (t,x) = h°(t,x) + eM. + 0Ly _ € {W?RJ
o
> n(t,@) +0-(1) ¢ | 2|
>ut(t,z) +o0.(1) + 2y — ¢ P?RJ
> u(t, )

for € small enough, where in the last inequality we have used that u'(t,z) > w®(t,z) + o0.(1) and
27r — e | 2] — yg > 0 as e — 0. This concludes the proof of (5.20).

Proof of (5.22). By Lemma 5.4, for (¢,z) € Qp,r,r(to, Z0)

edLy pR
_:|r

=
e )

J <ty z) +o0:.(1) —e L 5

Q% (t,x) = h°(t,z) + eM. +
o
which gives (5.22).

Next, we need some preliminary results in order to prove (5.21).

Lemma 5.5. There exists C' > 0 independent of € and p such that, for any x € R,

e x — x;(t)
Proof. We have,
i x — x;(t)
> eow (Z5) < olplle(, - b1, 4 1)
i=M)p
= 6l|¢llo (n(t, 2w, (8)) = n(t; 20, () + )
<Cé. 0O

Lemma 5.6. There existseyg = eo(R, p) > 0 such that for anye < eq, if |t — to| < BoR, and |x — xy| = p—R,
then
|h(t,z) + eM. —n(t,z)| < 0c(1) + O(R).

We postpone the proof of Lemma 5.6 to Section 7.

Corollary 5.7. There exists eg = eo(R,p) > 0 such that for any ¢ < g9, R < p/4, and any (t,z) €
QByr,r(to, x0), we have

T (8, )] (@) < Tulh (8, ))(a) + 0. (1) + 0’15” . (5.23)

Proof. We have

nie e =n e w L [ SRRy e )
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If (t,2) € @Byr,r(to, o) and |y — x| < p/4 then for R < p/4, |y — x| < p/2, that is (¢,y) € QBOR,g(tova)-
Therefore, by the definition (5.18) of &¢,

1.2
4

) 1,4
00 [0t )] () = 2y T B () (). (5.24)
If (t,z) € Qyr,r(to,z0) and |y — x| > p then |y —zo| > p/2, therefore &°(t,y) = u®(t,y). Then, by
Lemmas 5.4, 5.6 and using that u® < u™ + 0-(1) < 1+ 0:(1), we get

If)ﬂ[@a(u.)](x) = 1/ | @6(&(3;)_—;)5;(@95)
Yy—x|>p

_ / “(y) = (h*(1,2) +2M- +0(e) + O(1m))
ly—z|>p

dy

- (y —x)?

<! n(t,y) ((;E(t )I)Jré‘M ) gy 1 =) +00rm)
T Jy— m|>p -

< }/ “(t,y) — ho(t, x)der 0-(1) + O(yr) + O(R)
T y—ai>p (Y- 2)? p

Therefore,
0:(1) +or(1)
P

IPP10° (8, ) (@) < IPP[RS(t, )] (=) + (5.25)

Finally, if p/4 < |y —x| < p then either ?°(t,y) = u°(t,y) and by Lemmas 5.4 and 5.6, ¢°(t,y) <
he(t,y) + M + 0:.(1) + O(R) or $°(t,y) = he(t,y) + eM: + 0-(1) + or(1). In both cases,

@5(t,y) - @E(t,x) hE(t’ y) _ he(t, 17) 05(1) i OR(l)
/<|y z|<p (y_x)Q dyg /<y z|<p (y—m)z dy+ P . (526)

From (5.24), (5.25) and (5.26), inequality (5.23) follows. O

Now, we are ready to prove (5.21).

Proof of (5.21). Denote

1 b,
A= 5& &° *Il[ée] + SW/ <g> .

We want to show that A(t,z) > 0 for all (t,z) € Qp,r,r(to, %0). Fix (t,Z) € Qpyr,r(to, zo). By Corollary 5.7,

T [9°(L,))(@) < L[ (L, )] (F) + 0=(1) + or(1)
S e Ne
_ 0 O
= 2 GBI+ 3 FREED T 3 FhiE o
N, :
+ Z T[] (2) + 0.(1) + r( )7
Z:Mp ,D

where we denote 2 = (Z —2?)/(£d) and 2; = (T — z;(1))/(£5). Let ig be such that z;,(Z) is the closest point
to Z. Since (¢,%) € Qpyr,r(to, z0), by Lemma 5.1 we have M, < iy < N,. If T = x;, + €7, then (4.5) and
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(5.6) imply that |y| < 2/9.n(to,z0). Note that z;, = /6. By (5.27), we have

A(t,T) = 60, 9°(t,T) — L1 [P (¢, )|(T) + %W’ <¢5(§’x))
.- ()
0
> D [P0 (20) = 0ai(E0 (20)] +0:(1) + =
i=M, P
Ny 1 Mp—1 1 Ne 1
- Z 511[¢](2i)— Z gL[‘Zﬂ(z?) Z 5 Z Ty
i=M, i=M, i=Np+1 i=M,
1 ol M” ! N 5L
/ 0 1
z:Mp 1=Mg¢ 1= Np+1
where we have used the periodicity of W' in the last term. Let us denote
EO = 06(1) + ORﬁgl)v (528)

and

where H is the Heaviside function. Then, by (5.16), (1.11), the periodicity of W’ and making a Taylor

expansion of W' around ¢(z;,), we obtain

A, T) = co(Lo + L1)¢' (2i)
) Mp—l ~ Ne _
5 [~ 6) ZW — WG - Y W)
i=M, i=M¢ i=Np+1

1710

Np
S Tl) — Talelei) + 5 W (6051)

i=Mp
iig
L Np Mp—1 Ne
W Bi)) | D (B + ()] + o) + Y S+ Y O
i1, i=M, i=Np+1
i#ig
+ Eog+ E1 + Ea,
where we define E7 as follows
Np
FEy=— Z Zl -9 Z -fz 6‘7510( )w/(zio)v
i:Mp = Mp
i#ig i#ig

and Fs as the error from the Taylor expansion,

1| & Mo Ne 5L 2
2= 50 | 30 10(0) + 00z + 0uze) + D0 BN+ D B+ 2N
i=Mp =M. i=Np+1

1710
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Making a Taylor expansion of W’ around 0, using that W’(0) = 0 and rearranging the terms, we obtain

A(L,E) 2 co(Lo + L)@ (2i0) — Ta[¥](2ig) + W ((2i0)) ¥ (i)

1 N, M,—1
" 7 " "
o5 | W) Y2 6=~ W) Y aled) W §j¢
i=Mp i=Me i=Np+1
i#ig
Np
> LiY)(z)
i=Mp
1710
N, M,—1 5L
+wwwm ST B(z) + 0wz + Y G §j¢ =
i=Mp i=Mg i=Np+1
i#ig
+ Eg+ L1 + B> + B,
where Ej3 is defined by
1 & 1! 1 &
By=< 3 06(=) +5 > 0@(=)*+< D O@@())
i=M, i=M. i=Np+1
i#ig

Since v solves (3.3) with L = Ly 4+ Ly, we have that

Lo+ L
(Lo + L) (zig) — Talt)(sig) + W (9510 51g) = === (W (9()) — W (0)
Therefore,
- Lo+ L
A7) >~ W (6(z4,)) - W (0))
18 et 1 Qe
+ (W"(0zi) = W) | 5 D Bz +5 D el +5 D o)
i=Mp i=M, i=Np+1
i;éio
- L No
+ W (9(zi0)) -+ W (D(z30)) Zwa > Tl
iy iy
+ Eg+ B, + Ey + Es.
Rearranging the terms and recalling that « = W”(0), we finally get
1 Np Mp—l N¢ ~ I
AET) > (W (0z0) = W) | 330 3G+ 3 > dE+3 Y a6 -2 (5.29)
i=M, i=M, i:Np-l-l :

+L1+E0+E1+E2+E3+E4,

where Ej is given by

Np
= W"($(21,) szl > Tiw)(z:). (5.30)

i=Mp i=Mp

i#10 i#iQ
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Next, for fixed L; > 0, we are going to show that all the other terms on the right-hand side of (5.29) are
small. Recall that

Lo = Ti[n(to, )(zo) = Zy " [n(to, -)](wo) + I3 [n(to, )] (o).

Lemma 5.8. We have,

i=Mp
iig
and
et 1 & 1 R
- - 2,
5D D D - ATl ) =00 + 0,010 (). 632)
i=Mg i=Np+1 P
Proof. Let us prove (5.31). By (4.3), for ¢ # ig, and ¢ (thus ¢) small enough
T — IZ(E) Lt
|=l—"12—-—21
il < ’ 25
Then, by (3.1), for i # ig,
~ ed K16252
i = | < =5
oo+ | < T a
which implies that
S E
Zi
In-I;< Z 5 5111’/)[77@0’ N(wo) < I + I,
i=M,
i#ig
where I} and [y are respectively defined by
N, N,
1|1 & £ 1 s €26
n=—1|- — —TI;"In(to, d Ih:=K —_—
1 o T Z:zjv; l‘v(t) 7 1 [77( 0, )}("Eo) an 2 1 Z:z]; (1.2 73@))2
il P
i7#ig i

Since (t,7) € Qpyr.r(to;20), by Lemma 5.1 we have that xn,(f) =T > zo +p—Z > p— R and
T —an,(t) >Z —x0+p>p— R. Then,

Np Np NP

g Z e 3
> - B S SR
farrd z;(t) — T S, z(t)—T = zi(t) -7
i#£iQ _i#ig lz; (t)—Z|>p—R
|z; (t)-Z|<p—R
NP
€ €
SHED DR
i#ig zi(f) - i=M, i(t) — T
|3 (t)—Z|<p—R |z; (t)—Z|>p—R

Notice that

Iy (@, ))(@) — Iy [n(to, )] (o) = or(1),

5.33
I In(&, (@) = "R [n(E,))(@) = or(1). >33
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By (5.33) and Proposition 4.7, we have
€ - - .
> e =0 @) +ou(1) +0,(1) +0()
— zi(t)— T
B i#£1(
i (-7 <p— R
=7, [n(to, )] (o) + 0r(1) + 0(1) + 0, (1) + O(y).

Next, let n be the number of points x;(t), i = M,, ..., N,, such that |z;(t) — Z| > p — R. Since [T — zo| < R
and by Lemma 5.1 z;(t) € (o — (p + 3R),x0 + p + 3R), such points must belong to the set {p — 2R <
|x — xo| < p+ 3R} whose length is 10R. Therefore, by (4.3), n < CR/e. Then,

N, N,

€ € € € CR R
v xi(t)—T v p—R p—R p—R ¢ p
lz; (£)—Z|>p—R lz; (1) —Z|>p—R

We conclude that R
I' =0.(1) + or(1) + 0,(1) + O(v) + O <p> )

Since in addition, by (4.4), I's = O(§), we have proven that

SEORE R
Z 521 - 5111’9[77(750, N(@o) = 0c(1) + or(1) + 0,(1) + O(7) + O <p) : (5.34)
ig

Notice that O(v) is not necessarily small. Next, we consider two cases.
Case 1: |y| < 6. Then, O(y) = o-(1) and

Np 7,
W @) - W) | 30 25 Lo, (e
< 2o (os<1> T or(1) +0,(1) + O (f)) 7

and (5.31) is proven.
Case 2: |y| = 6. By (3.1), and using the fact that z;, = v/d, we have
‘ ~ ) 52

&(zi) + amy| ST 2

which implies that
"o " " 71 7 2 g 52 0
(W (0(2i5)) = W(O)] < [W(0)] (i) + O(d(2i))” < C FRET R Cm~
Hence, it follows that

Ny 1
W) - o) | Y0 X Loy, o)

‘4:1\2440’3 Y
<o (streont ot 0 (2)

< o.(1) + or(1) + 0,(1) + O (f) .

This completes the proof of (5.31).
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Let us now turn to the proof of (5.32). As before, by (3.1), for i = M,,...,M,—1landi=N,+1,...,

<0 €d K1e252
P+ | <
Hence, we obtain
Mpy—1 N. Mp—1 Mp—1
J 1 - 1 24
D SRR MR CIEE DSy S
i=Me i=Np+1 i=Me i=Me ¢
N N
1 : € : )
f LS ek 3 P
O Ny i T i=Np+1 (7 —7)
and
My—1 N My—1 My—1
'~ -, o 1 - 0 1 £ 24
52 M+ XD K Y ey
i=Mg i=Np+1 1=Mgc 1=Mg
N, N
1 = 5 = 25
— - K
o Z 0 _z L Z (20 — 7)2
i=Np+1 T i=Np+1 ?
By (4.4), we have
Mp—1 2 N: 2
€% €%
Ky Z @0 —z2 + K Z e = 0(9).
=M. Vi i=Np4+1 V%

Moreover, since |T — zg| < R and |29 — x| > p+ R, for i = M,,...,M, —1land i = N, +1,...,

follows that |29 — Z| > p, thus,

Mp 1 Ne Ne NP

1 € 1 €
7233—95 ;Z z? Z -z 7 Z ) -7
1=Mg p+1 1=Mg 7,:Mp
|w?75\>p |w?—5|2p
By Lemma 4.3,
Ne
S =t (w0) +on(1) + 0,()
T l‘?—f 1 Mo, 0 e P )
1=Mg
|z —|>p
and as before,
1 £ R
- <C0=
m zM: ) -7 p
i=Mp
|20 —Z|>p
Therefore,
M,—1 N,
1 & 1 J € 9 R
R I D D s U CIRRA RN C R
i=Mg i=Np+1 *

Combining (5.35), (5.36), (5.37) and (5.38), yields (5.32). This concludes the proof of the lemma.

Next, we have a control over the remaining errors.

Ne,

(5.35)

(5.36)

(5.37)

N, it

(5.38)

(]
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Lemma 5.9. Fori > 1, the error E; satisfies

We postpone the proof of Lemma 5.9 to Section 7.
Let us finally complete the proof of (5.21). By (5.29), Lemmas 5.8, 5.9 and recalling the definition (5.28)
of Ey, we obtain

_ 1
AR T) > Ly + 0c(1) + or(1) + 0,(1) + ORFE ).
We choose R < p < 1 and g¢ so small that for any € < ¢,
1 L
0:(1) + 0r(1) + 0,(1) + OR[E )| < 71
Then, I
A7) > 71 > 0.

This completes the proof of (5.21).

6. Comparison between u™ and u~: proof of (5.1)

Let us consider the approximation of the initial datum uy € CH1(R), given by Proposition 4.12:

N. ‘
Z 0] (m ;;O’Z> +eM,, (6.1)

i=M,

where

x0,; = inf{x € R | up(z) = ei} i= M., ...,Ng,

M. — [infR ug + 5-‘ and N — {supR Uug — EJ ' (6.2)
€ €
Then, for all z € R,
Ne A
Z ep <x ;0”) +eM, —up(z)| < 0:(1). (6.3)
i=M. c
Let us first show the following asymptotic behavior of u™ and u~.
Lemma 6.1. Forallt > 0,
. — _ . + —
$Br_noou (t,x) = mEIEloo ut(t,x) = I%f Ug, (6.4)
and
li “(t,z) = i t(tz) = . :
m u (t,z) m u (t,x) s%puo (6.5)
Moreover, for all x € R,
ut(0,2) = u(0,2) = up(z). (6.6)

Proof. To prove the asymptotic behavior at infinity of u™ and u~, we will construct sub and supersolutions
of (1.1). Let x;(t), i = M., ..., N: be the solutions of

SCZ(t) = 7COL, t>0
x;(0) = 20,4,
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with L > 0 to be chosen and x ;, M., N, defined by (6.2), that is z;(t) = zo,; — coLt. Consider the function

Wit = 3 a(¢ (””‘5(“) iy (x—”j;“))) + 2L n, e Wﬂ |

i=M,
where ¢ and v are respectively solution of (1.11) and (3.3). By the fact that

Ne

>

i=M,

e8t (“”_ggg(”)‘ < &(Ne = Mo + 1)l 0w < (supug — inf g + )84, (6.7)
R

and (6.3), we can choose o-(1) such that
uo(x) < h§(0, x). (6.8)

We are going to show that for L > 0 large enough, h° is supersolution of (1.1). Fix (¢,%) € (0,400) x R. Let
z;,(t) be the closest point to Z and let us denote z; := (T — z;(¢))/(0). As in the proof of Lemma 5.3, we
compute

AEF) = 60,h5 (5, 7) — Tu (b5 (F, (@) + (hf’(t’ “””)

1) €
— Z [coL¢'(2;) + deo Ly’ (%)) Z 511 Z Ty
i=Mg i=M¢ 1=Mg¢
e 5L
W ( S [8(z1) + (] + ) .
Iy

By (1.11) and making a Taylor expansion of W’ around ¢(z;,), we get
A, T) = coL¢' (zi0) — T W](%) + W (6 (2i0) (24

1 Je
— 5V (6(z0)) ZMj w'( —;4) Tiy)(=:)
1Z7$ZO€ Zz;ézog
1 Jey 5L
5 (6(z10)) + 5 (6(210)) | D 18() + b)) +
o
2
1| & 5L
+ 50 Z [6(20) + 69p(=z:)] + e colL Z (2i) 4 09" (2:)] + 0" (2i0),
i=Mg i=Mg
i#ig i#ig

where ¢(z) = ¢(z) — H(z) with H the Heaviside function. By (3.3) and making a Taylor expansion of W’
around 0, we obtain

A T) = 20" (9(z)) — W' (0))

; L
W6 - 0 3 82 1w L
Zz;ékfos
2
L, Ne 5 5L 1 Qe OGa)?
+ 3 ; [6(z:) + ¢(Zi)]+g +g ;; ((21))

1710 i7#i0
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W) S v — S Tz

i=Mg i=Meg

1710 17140

+ coL Z Zz +5¢ Zz)] + 5¢/(Zio)-

i
Thus, recalling that o = W"(0),

AGET) = (W ((2)) — W(0 2‘75

o
2
N G 5L 1
+ SO Z [p(2i) + 0(z:)] + o + 3 Z O(¢(»
o e

Ne N.
+ W (B(z10)) Y wlz) = Y Tz

i=Mg i=Meg

i#ig iig

+ ¢oL Z (zi) + 00" (2:)] + 8¢ (2i)-
i=Mg
i
Notice that if z;,(f) is the closest point to Z, then zg;, is the closest point to T + coLt and T — z;(t) =
(T + coLt) — xo ;. Then, by (3.1), Lemma 4.13 applied to ug € C*(R), and (4.4),

< da)| 1| & e £2
YD N D O <c
havilNd am | = o — (T + coLt) (w0 — (T coLt))?
i1 i#10 17&10
Moreover, as in the proof of Lemma 5.3,
2
AEN 5L 1 &
SO [ S 18 +ov(a)] + = | 435 3 0=
i=Mg i=Meg
[EN) 1740
Ne
W ((2i0)) Y (z) = DT
i=Meg i=Me
i#ig i#ig
+coL Z (zi) + 00/ (2:)] + 6¢' (24)
i1=Meg
i#ig
= 0(9).

We conclude that
A, 7)== -C+L=>0,

choosing L > 0 large enough (but independent of € and (¢,7)). Since in addition (6.8) holds true, by the
comparison principle, for all (¢,z) € (0, +00) x R,

u®(t, ) < h(t, x). (6.9)
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We will show that the previous inequality implies that for any 7 > 0 there exists K = K (7,T) such that for
all (t,z) € [0,T] x R with z < K,
u®(t,x) < i%fuo + 7+ 0:(1). (6.10)

Fix 7 > 0. Since lim,_, o up(x) = infg ug, there exists K € R such that for all < K,

up(z) < iféf ug + 7.
Given T' > 0, let K := K — coLT. Then, by (6.9), (6.3) and (6.7), for all (t,z) € [0, T] x R such that z < K,
u(t,x) < hg(t, x)

Ne T+ colt — x;
= Z ep (01,0) +eM: + o-(1)

vl €d
ug(x + coLt) + 0-(1)

<
< i%fuo + 7+ 0.(1),

which proves (6.10). On the other hand, by the comparison principle, u® > e|infg ug/e|. Thus, (6.4) follows.
Similarly one can prove that the limits (6.5) hold true.
Finally, to prove (6.6), take a sequence (te,zc) — (0,z) as € — 0. Then by (6.9), (6.3) and (6.7),

u(te, we) < ug(we + coLt:) + 01(€)

which implies that u™(0,z) < wo(z). On the other hand, u*(0,z) > limsup._,u®(0,2) = wuo(z). We
infer that u(0,2) = ug(x). Similarly, 4~ (0,2) = ug(z). This proves (6.6) and concludes the proof of the
lemma. O

Now, let f¢ be the smooth and positive global solution of Eq. (1.7) with initial datum

c 1 Ne 1 [ T — Z0,i
o= 3 o (T ) >0

i=Me

provided by Theorem 3.9. Notice that by (3.2),
/5 € LP(R) forall p € [1,00].

Integrating equation (1.7) from a to b yields

b
3t/ [t y) dy = cof*(8,0) H[F* (¢, )](b) — cof* (¢, a) H[f*(t, ))(a). (6.11)

Sending a — —oco and b — +o0 and using that f€ > 0 is vanishing at infinity and H[f¢(¢, )] € L=(R), we
see that f€(t,-) € LY(R) for all ¢t > 0 and

15 )L wy = /511wy

Following [2], one can actually show that for all p € [1, 00),

p+1 _

_p=1
£t e < Nf5llewy, N5 ) r@) < Cp||f§||L"’f’(R)t .

By taking b =z and a = —oo in (6.11), we see that the function

Fe(t,x) = /j fe(t,y) dy,
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is a solution of (1.5) with initial datum

Note that for all ¢ > 0,
lim F*(t,x) =0, (6.12)

T——00

and by using that lim,_, ;o ¢(z) =1 and lim,_,_ ¢(z) =0,

Ne
i Pt 2) = 5 e = il = 3 € = (Ve — M +1), (6.13)
i=M,

Finally, w® (t,z) = F¢(t,z)+eM, is the unique (and smooth) viscosity solution of (1.5) with initial datum
(6.1). Moreover O, we(t,z) = fe(t,z) > 0 for all (¢,z) € (0,+00) x R. By (6.12) and (6.13), we see that

lim w®(t,z) =eM. and lim w®(t,z) =e(N: +1).

T——00 r—+00

In particular, by Lemma 6.1 and the fact that 0 < e M, — infr up < 2¢ and 0 < supg up —eNe < 2¢, we have
that
lim (ut(t,z) —w(t,z)) <0 and lim (u"(t,2) —w'(t,x)) < e. (6.14)

T——00 T—+00

Moreover, by (6.3) and (6.6),

u(0,2) — w(0,7) = ug(x Z ed ( ) eM. < o1(g). (6.15)

i=Mg
We next show that
ut(t,x) —we(t,x) < o0.(1) forall (¢,z) € (0,+00) x R, (6.16)
for 0.(1) > € for which such that (6.15) holds true.
Suppose by contradiction that for some T > 0,

sup ut(t,z) — we(t,z) > 0.(1). (6.17)
(t,2)€(0,T) xR

Then, for ¥ > 0 small enough the supremum of the function

wt(tx) — w4, x) — TL;t 0-(1)

is positive and by (6.14) and (6.15) attended at some point (¢,Z) € (0,7) x R. Then, n(t,z) = w®(t,z) +
72+ 0.(1) is a test function for u* as subsolution with 9,7(t,Z) = 9,ws(¢,Z) > 0, and by (5.4),

¥
(T —1)?

On the other hand, since w® is a smooth solution of (1.5) we have

Ow® (t,T) = coOpw® (L, T) L1 [w (1, )|(T).

Ot (1,7) < + 0w (1, 7) < codyw® (¢, 7)1 [w (2, )] (T).

We have reached a contradiction. This proves (6.16). Moreover, by (6.3) and the comparison principle,
|w® — 1| < 0-(1). Therefore, passing to the limit as ¢ — 0, we finally obtain u™ < u. Similarly we can
prove that @ < w~. This completes the proof of (5.1).

Remark 6.2. Notice that the viscosity solution T = u* = u~ of (1.5) satisfies

lim @ = inf 1 =5 .
m_{r}loou(t,x) inf ug and j&loou(t x) = b%puO
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7. Proofs of Lemmas 5.1, 5.4, 5.6 and 5.9
7.1. Proof of Lemma 5.1

Recall that by (5.9)
x?\,p —xz9 > p+ R, (7.1)

and by (5.9), (5.6) and (4.5),

2%, — w0 = (2%, — % 1) + (&% 1 —20) < Ce+p+ R< p+2R < 2, (7.2)
for £ small enough. Similarly,
—(p+2R) <zl —xo < —(p+R).

In particular, for all i = M,,...,N,, (to,2?) € Q2p2,(to, o). Then by the regularity of n and (5.6), the

OPE 0)
Oan(t, yi(t))
has a unique local solution y; (t) such that y;(ty) = 2? which is of class C* as long as (¢,y:(t)) € Q2p.2,(to, o).
Since in addition (¢, y;(t)) = €i and 7 is strictly increasing in Q2 2, (to, o), we must have y; = z,. Moreover,
as long as (t,z;(t)) € Q25,2 (0, zo), by (5.6),

vi(t) = (7.3)

RN T —
()| < =——————— =B, . 7.4
OIS Gtz 4

Next, let —oco < t* < +o0 be the first time such that
o, () — % | = B,

and
7 := min{2p, [t* — to|}.

Then, for ¢ such that |t — o] < T,
N, (1) —afy, | < R (7.5)

and by (7.2),
rN,(t) — w0 < [N, (t) — x?vp| + x?vp —xzo < p+ 3R, (7.6)

In particular, (¢,zn,(t)) € Q2p,2,(to, ¥0) and (7.4) holds true. Therefore, if [t* —to| < 2p,

/ "

to

[t* — to]

R=|zn,(t") —znN, (o) = < By

which implies that |t* — ¢g| > BoR. Hence, for ¢ such that |t — o] < BoR, (7.6) holds true which proves the
upper bound in (5.14). For the lower bound, for ¢ such that |t — ty] < BoR, by (7.5) and (7.1), we have

xn,(t) —zo > ac?vp —x0 — |z, (1) —m?vp| >p+R—-R=p.

This completes the proof of (5.14). Similarly, one can prove (5.15). By the monotonicity of 7, for ¢ =
My, ..., Ny, war, (1) < xi(t) < zn,(t) and by (5.14) and (5.15), for [t — to| < BoR, |2i(t) — wo| < p+3R < 2p.
Therefore, x; € C1(tg — BoR,to + BoR) and (7.4) holds true. This proves (5.13) and concludes the proof of
the lemma.
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7.2. Proof of Lemma 5.4
We divide the proof of the lemma into three claims.
T— a:l t ")
Claim 1. ‘ZZ M, € ( ( )> +eM, - (t,x)‘ <o(1)(1+ %)

Proof of Claim 1. By Lemma 5.1, if (¢, z) € Q@Byr,p—r(to, Zo), then z € (zr, (t)+ R, 2n, (1) — R). Therefore,

Claim 1 immediately follows from Lemma 4.10.

Claim 2. ‘ZMp_l (z i >+EM eM,| < Ce (1—}—%).

Proof of Claim 2. By (5.8), if (t,z) € @Byr,p—R(t0, Z0), then = > 95(1)\4p71 + R. Claim 2 then follows from
(4.54) and the fact that e M, = n(to, :c(])wﬂ_l) +e.

Claim 3. 0< Y% 1y q5( ><Cs(1+g)

Proof of Claim 3. By (5.9), if (t,x) € @B, r,p—r(to, o), then z < z?v,,+1 — R. Claim 3 then immediately

follows from (4.55).
Finally, the lemma is a consequence of Claims 1-3 and Lemma 5.5, by choosing ¢ so small that /R < 1

7.83. Proof of Lemma 5.6

We first consider the case

|z — 20| > p+4R.

Let us assume z > xo + p + 4R. Similarly one can prove the lemma for < z¢p — (p + 4R).

We divide the proof into three claims.
Claim 1. ‘ZZ M, € (m wl”) +eM, —eN, ‘ e(1+%).

Proof of Claim 1. By Lemma 5.1, if [t — o] < BoR and x > o + p+ 4R, then z >z, () + R. Therefore,
Claim 1 immediately follows from (4.54) and the fact that eN, = n(t, vy, ()).

<C£(1+%).

Claim 2. ‘ZMp_l (z i ) +eM, —eM,

Proof of Claim 2. By (5.8), if z > zo + p + 4R, then = > x(}\/[p + R. Claim 2 then follows from (4.54) and
the fact that M, = 1(to, 2%, 1) +¢.

<o:(1) (14 2)+O(R).

Claim 3. ‘Zz Npt1 5¢>< ) +eN: —n(t,x)
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Proof of Claim 3. By (5.9), if # > z + p+ 4R and in addition z < z%_ — R, then z € (:v(])\,p + R,z —R).
Therefore by Lemma 4.10 and the fact that |t — tg| < BoR,

> ('S

1= Nerl

)+5N n(t,z)| = i ed <IEI?)+5NE—n(t,x) +o:(1)

i=N,

<Z¢<

i=Np
+ [n(to, 2) = n(t, z)| + 0-(1)

< o:(1) (1 + ;) +O(R),

) + &N —n(to, x)

and the claim is proven for zog + p+ 4R < z < x?vs —R.
Next, if > 5‘79\/5 + R, then by (4.55),

% o (x ;55”?) < Ce (1 + ;) . (7.7)

i=Np+1

Moreover, since e N — supg 1)(to, ) as € = 0, |t — to| < BoR and 7 is non-decreasing,
n(t,2) = n(to, 2) + O(R) < supn(to, ) + O(R) = eNe + 0=(1) + O(R), )
(7.8
n(t, ) = n(t, 2, + R) = n(to, 2%,) + O(R) = eN. + O(R).

Estimates (7.7) and (7.8) imply Claim 3 for z > 2%,_+ R.

Finally, let us assume x?va —R<x < x?vi + R. Then, by using the monotonicity of ¢ and that the claim

holds true for = 2% — 2R and z = 2%+ 2R, we get

N B
> ("5

20
: ) + ENE - n(tvx)
z‘*Nerl

2R —
Z e (W> +eN. —n(t, 2% +2R) + O(R)

i= Np+1

< o:(1) (1 + ;) +O(R),

and

Ne x —2?
E 0] < ) +eN: —n(t,x)
150
i=Np+1

Ne 0 0
xy, — 2R —x;
> 2. e (55

i=Np+1

> 0.(1) (1 + g) +O(R).

) +eNe —n(t, 2. — 2R) + O(R)

This concludes the proof of Claim 3.

The lemma for |x — 9| > p+ 4R is then a consequence of Claims 1-3 and Lemma 5.5, by choosing & so
small that §/R <
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Next, let us consider the case

p—R< |z —z0| <p+A4AR.

Assume without loss of generality that p — R < x — 29 < p+4R. Then, by using Lemma 5.4 at the point
xo + p — 2R, Lemma 5.5 and the monotonicity of ¢, we get

e x —x;(t) ! r— ) e x—a)
h(tw)—i—sME}'ZEqb(Eé)—i—_z 5¢< 5 )+Z 5¢< —~ )—0(5
Z*M i=Mg¢ 1:Np+1

xo+p—2R —xz;(t zo+p— 2R — 2
> 3 (B2 n) S (e
i=Mp =M,
Ve zo+p—2R —
+ ) ¢>( orp . )-c&
i= Np+1 €

n(t, xo + p — 2R) + 0-(1)

>
> n(t,z) + o:(1) + O(R).

Moreover, by using that the lemma holds true at the point zg + p + 5R, Lemma 5.5 and the monotonicity

of ¢, we get
i(t) e z— ) Ne 2z — 29
hE(t,x) + M, < Z ( )+Za¢< 51)+Zs¢< 5’)+05
=M, i=M, i=Np+1
zo+p+5R— xo +p+5R — ]
S ZE¢< 2] > Z < ed
i=M, =M,
e xo+p+5R—
+ ) Egb( U . Z>+05
i=Np+1 €

n(t,xo + p + 5R) + 0:(1) + O(R)

<
< n(t,x) + o:(1) + O(R).

This concludes the proof of the lemma.
7.4. Proof of Lemma 5.9

By (5.13), (3.2), (3.5) and (4.4), we have

N, N,
By <Byt | D () 400 [ ()l + 00 (2]
i=Mp i=Mp
i#ig iig
N, 2
< By | (Ka+0Ka)3* 3 oy + 0l
i=Mp !
i;ﬁio

which gives Eq = O(9).
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Now, for Es, using (3.1), (3.4), and (4.4) we get

C 9 9 2+ 62L2
1Bl < 5 IETIEEC) SRTENECINR N SIS R
i=Mp i=Mp i=Me i=Np+1
i#ig i#ig
N,
C S g282 5 L1
< _ 52 2
S| X ot S I
i=Mg¢
i#ig
< 04,

that is, By = O(9).
Similarly, (3.1) and (4.4) imply that E3 = O(9).
Finally, consider E, defined by (5.30). From (3.4), (4.4), Proposition 4.7 and the fact that ||

2/60677(t07x0)7
N, . N, 22
" 2
W’ (6(2i) szz Zmi_i +C6 42 o < C6.
i=Mp i=Mp i=Mp
[EN) 1740 i#i0

Now, using (3.3) and a Taylor expansion, we get

Tuy)(a0) = W (B(z0)b(an) + 2L (07 () = W7 (0) + oo + L) (=)

= W(0)p(z) + ———W"(0)(:) + O(d(2)(2:) + O(9)?
+ co(Lo + L1)¢' (2).

Hence, again from (3.1), (3.2), (3.4), (4.4) and Proposition 4.7, we obtain

We infer that E4 = O(). This completes the proof of the lemma.
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