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We define the fractional powers L® = (—a¥(x)08;;)%, 0 < s < 1, of nondivergence
form elliptic operators L = —a' (2)9;; in bounded domains 2 C R", under minimal
regularity assumptions on the coefficients a'/(x) and on the boundary 0. We show
that these fractional operators appear in several applications such as fractional
Monge-Ampére equations, elasticity, and finance. The solution u to the nonlocal
Poisson problem

(—a¥(2)0;;)’u=f inQ
u=0 on 0

is characterized by a local degenerate/singular extension problem. We develop the
method of sliding paraboloids in the Monge—Ampére geometry and prove the interior
Harnack inequality and Hoélder estimates for solutions to the extension problem
when the coefficients a*’ (z) are bounded, measurable functions. This in turn implies
the interior Harnack inequality and Holder estimates for solutions u to the fractional
problem.

© 2021 Elsevier Masson SAS. All rights reserved.

RESUME

On définit les puissances fractionnaires L® = (—a%(x)9;;)°, 0 < s < 1, des
opérateurs elliptiques sous forme non-divergence L = —a% (x)9;; dans des domaines
bornés 2 C R, sous des hypotheses de régularité minimale sur les coefficients a (z)
et a la frontiere 92. Nous montrons que ces opérateurs fractionnaires apparaissent
dans plusieurs applications telles que équations fractionnaires de Monge—Ampeére,
élasticité et finance. La solution u au probléme de Poisson non local

(—a¥(x)8;;)*u = f dans Q
u=20 au 0N
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se caractérise par un probléme d’extension local dégénéré/singulier. Nous dévelop-
pons la méthode des paraboloides glissants dans la géométrie de Monge—Ampeére et
prouver 'inégalité intérieure de Harnack et estimations de Hoélder pour les solutions
a le probléme d’extension lorsque les coefficients a®/ (x) sont des fonctions mesurables
bornées. Cela implique & son tour I'inégalité intérieure de Harnack et des estimations
de Holder pour les solutions u au probléme fractionnaire.

© 2021 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper, we inaugurate the analysis of equations driven by fractional powers of nondivergence form
uniformly elliptic operators

L® = (—a"(2)0;)* in Q for 0 <s <1, (1.1)

under minimal regularity assumptions on the coefficients @/ (z) and the boundary of the domain  C R™,
n > 1. We show in Section 2 that fractional power operators as in (1.1) in such minimal regularity regime
arise in applications to fractional Monge-Ampeére equations, elasticity, and finance, among others.

The very first difficulty we need to overcome when considering (1.1) is that of giving a meaningful
definition of the fractional power operator L® when

L=—a"(z)0;; = — Z a ()0 x e (1.2)
ij=1

is an elliptic operator in nondivergence form with nonsmooth coefficients. As in other well-known cases,
this is not immediately obvious. For example, the fractional Laplacian (—A)® in R™ can be defined using
the Fourier transform as (—/_A?u = |¢]?*u. However, the nondivergence form operator (1.2) has nonsmooth
coefficients in a bounded domain €, so the Fourier transform is not the most convenient tool. Indeed, (1.2)
is not translation invariant and not defined in the whole space. If —Ap denotes the Laplacian in a bounded
domain Q subject to homogeneous Dirichlet boundary conditions on 952, then (—Ap)?® is naturally defined
in a spectral way using the basis of eigenfunctions and the corresponding eigenvalues of —Ap in the Sobolev
space H}(2). In contrast, there is no natural Hilbert space structure for nondivergence form operators as
n (1.2). The spectral method is also used to define fractional powers of divergence form elliptic operators
(—0:(a% (x)0;))*, see [6]. Nevertheless, our operator (1.2) has nonsmooth coefficients so it cannot be written
in divergence form. We further remark that these definitions, though adequate from the operator theory
point of view, do not immediately give explicit pointwise, nonlocal formulas.

Our idea to define (1.1) is to apply the method of semigroups. The main ingredient in this approach is
the semigroup {e~*},>o generated by L. With this, we define

Lou(z) = I‘(is) / (e " u(z) — u(x)) tld% (1.3)
0

for 0 < s <1,z € Q, where I is the Gamma function. Using the semigroup, we can also give formulas for the
solution w to the Poisson problem L*u = f as u = L™° f and for the solution U to local extension problems.
Moreover, if L has a heat kernel, then one can derive explicit pointwise expressions for L¥u(z), L™ f(z) and
U(z, z). These results are presented in Section 3. For details about the semigroup method applied to the
fractional Laplacian in the whole space and to other different contexts, see [32] and the references therein.
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We then consider the following fractional elliptic equation in nondivergence form:

{(—a“(m)@i Vou=f inQ 14

u=~0 on 0.

Here Q C R™, n > 1, is a bounded domain satisfying the uniform exterior cone condition. The coefficients
a(z) : Q@ — R are symmetric a¥(z) = a’*(z), i,j = 1,...,n, a¥(z) € C(Q) N L>(Q), and uniformly
elliptic, meaning that there exist constants 0 < A < A such that

AP < a'(x)&;&; < A > for all £ € R" and a.e. z € Q. (1.5)

Under these conditions, the operator L = —a% ()0;; generates a uniformly bounded Cy-semigroup with
exponential decay. Therefore, L*u is well-defined by means of (1.3). See Section 3 for these notions and the
necessary notation.

The main regularity result for (1.4) in this paper is the following interior Harnack inequality and Holder
regularity estimate.

Theorem 1.1. Assume that Q@ C R™ is a bounded domain that satisfies the uniform exterior cone condition,
a(x) € C*(Q) N L>®(Q), for some 0 < a < 1, are symmetric, satisfy (1.5), and f € Co(Q). There exist
positive constants Cg = Cy(n, A\, A, s) > 1, k = k(n,s) < 1, and K= f((n,s) > 1 such that for every ball
By p = Bip(xo) satisfying By, CC Q and every u € Dom(L), u > 0 in Q, solution to

(—a(x)0;;)%u=f in By p, (1.6)
we have that
, 2
sup < Cin (w1, ). 17)

Furthermore, there exist positive constants ag = ag(n, A\, A,s) < 1 and C = é(n,A,A,s) > 0 such that
for any uw € Dom(L) satisfying (1.6), we have that, for every x € By p(x0),

A

C

o) = o) < oo = 1% (suplul + 1l 5, B ). 19

We mention that Grubb [15,16] and Seeley [30] studied fractional powers of nondivergence form elliptic
operators with smooth coefficients in smooth domains from the operator theory and pseudo-differential
operators points of view. Gradient estimates for fractional powers of constant coefficients, nondivergence
form operators in R™ were considered in [2, Remark 1.10]. In particular, none of their results include the
Harnack inequality and Holder estimate in Theorem 1.1.

Our proof of Theorem 1.1 is based on the extension problem characterization of fractional power operators
in Banach spaces given by the method of semigroups in [12] (see [33] for the case of Hilbert spaces). In our
particular case, the extension result of [12] allows us to rewrite the nonlocal equation (1.4) in an equivalent
way as a local PDE problem.

Theorem 1.2 (Particular case of [12]). Assume that the bounded domain @ C R™ satisfies the uniform
exterior cone condition and that a™(z) € C(Q) N L>®(Q) are symmetric and satisfy (1.5). If u € Dom(L),
then a solution U € C*°((0,00); Dom(L)) N C([0,00); Co(§2)) to the extension problem
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a'(2)0,;U +22750,.U =0 in Q x {z > 0}

U(z,0) = u(z) on Qx{z=0} (1.9)
U=0 on 00 x {z > 0}
s given by
525z T 2, 1/s dt
_ —s“2z/%/t —tL
Uz, 2) T(s) /e e u(x) Py (1.10)
0

and satisfies
UG 2 o) € M |tllpoeqy  for some M > 0.
Furthermore, U4 € C([0,00); Co(€2)) and
—82+U($, 0) = dsLSU((L') S Co(Q)

where dg = % >0 and

9. U(w,0) = lim L&) =U@0)

z—0t z

for all x € Q.

If, in addition, a¥(x) € C*(Q) for some 0 < a < 1, then the solution U in (1.10) is the unique classical
solution U € C?(€2 x (0,00)) N C(Q x [0,00)) such that lim,_,e0 ||U (-, 2)| 1) = 0.

Hence, to prove Theorem 1.1, we will show interior Harnack inequalities and Holder estimates for solutions
U to the local, degenerate/singular elliptic equation in (1.9) subject to the Neumann boundary condition
—0,4+U(x,0) = f(x) up to {z = 0}, and then take the trace at {z = 0}. Towards this end, we define the
even reflection of U in the variable z by U(z, z) = U(x, |z|), for € Q, z € R. For convenience, we continue
to use the notation U instead of U and notice that U, being symmetric across {z = 0}, satisfies the equation

0 (2)0U + |2 50..U =0 in Qx {z#0}. (1.11)

Furthermore, if f(x) # 0 then 9,U is discontinuous across (x,0). Since 0 < s < 1, the equation (1.11) either
degenerates or blows up at z = 0, unless s = 1/2.

It turns out that we can recast (1.11) as an equation comparable to a linearized Monge-Ampeére equation.
Recall that the Monge-Ampeére equation for a convex function 1 is given by det D%y = G. By taking the
directional derivative J, along a unit direction e to the equation and defining v = 9.1 and g = J.G, we find
that v satisfies the linearized Monge—Ampeére equation

tr(Ay(z)D?v) = g. (1.12)

Here, Ay (z) = det(D?(x))(D?*(z)) ! is the matrix of cofactors of D?1)(z). Notice that (1.12) is a linear
equation in nondivergence form that is elliptic as soon as D21 > 0 and G > 0. However, it is not uniformly
elliptic in general since the eigenvalues of Ay (x) are not a priori controlled.
For our degenerate equation (1.11), we consider the strictly convex function ® = ®(z,z) : R"*1 — R
given by
2
i g , 0<s<1.

1
B(z,2) = 5ol + 2

1
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Then ® is in CY(R™*1) but, when s > 1/2, is not in C?(R"*1). Since the Hessian of ® is

I 0
D?®(z,2) = (0 P ig) ,

where I denotes the identity matrix of size n x n, the linearized Monge—-Ampére equation associated with
P is

tr((D2®) ' D2U) = AU + 2> 5 9..U =0 for z £0. (1.13)

As the coefficients a/ (x) are uniformly elliptic, see (1.5), we see that the coefficients in (1.11) are comparable
to the coefficients in (1.13).

An important feature of the linearized Monge—Ampeére equation is its intrinsic geometry that was first
discovered by Caffarelli-Gutiérrez [5]. They proved a Harnack inequality for classical nonnegative solutions
v to (1.12) when 9 € C? and g = 0, where the Euclidean balls and distance are replaced by Monge-Ampére
sections and the Monge—Ampere quasi-distance, respectively. The Monge—Ampeére sections associated to a
convex, C'! function 1) are the sublevel sets of 1) — ¢ where £ is any linear function, while the corresponding
quasi-distance is given by dy (2o, ) = ¥(x) — ¥(x0) — (VY (z0), z — 20).

We show that the geometry for our degenerate/singular equation (1.11) with Neumann boundary con-
dition at {z = 0} is given by the Monge-Ampeére sections Sg associated to the strictly convex function @,
that is, the sublevel sets of ® — ¢, and the Monge-Ampére quasi-distance dp in R™T1. See Section 4 for
more details. We prove the following Harnack inequality and Holder regularity estimate for the extension
equation in such sections.

Theorem 1.3. Let Q be a bounded domain, a™(z) :  — R be bounded, measurable functions that satisfy (1.5)
and let f € L®(Q). There exist positive constants Cy = Crr(n, A\, A, s) > 1, kg = ko(n,s) < 1, and Ko =
Ro(n, s) > 1 such that for every section SKOR = SKOR(’JJO,ZO) CC Q x R and every nonnegative solution
U e C*(Sk g \{z=0})NC(Sg, ) such that U is symmetric across {z = 0} and U,y € C(Sg pN{z > 0})
to

aij(a:)8ijU+|z|2—%8zzU:O in Sg,rN{z # 0} (1.14)

—0,+U(2,0) = f on Sg rN{z =0}, '
we have that

;E)I; U<Cu <Si£)fR U+ HfHLOO(SRORﬁ{ZZO}) RS) - (1.15)

Consequently, there exist constants 0 < a3 = az(n, A, A, s) < 1/2 and Ch = C’l(n, A A, s) > 1 such that, for
every solution U € C*(Sg p \{z = 0}) NC(Sk, ) to (1.14) such that U is symmetric across {z = 0} and
U.y € C(Sg,rN{z >0},

U (20, 20) = Uz, 2)]
Cy

———[da((20, 20), (2, 2))]" sup Ul + [|fllpoe(s, . ngz=op B
(KoR)al Skor(®0:20) L= (SkorNtz=00)

(1.16)

IN

for every (z,z) € Sk (o, 20).



250 P.R. Stinga, M. Vaughan / J. Math. Pures Appl. 156 (2021) 245-306

Note that if Sg p N {z =0} =@, then ||| ;=g
(1.15) and (1.16).

Regularity estimates, such as Harnack inequalities, for the linearized Monge-Ampére equation (1.12)
have been studied by Caffarelli-Gutiérrez [5], Forzani-Maldonado [10], Le [20], Maldonado [21,24], Savin
[28], among others. In each case, they either assume that det(D?%) is bounded away from zero and infinity

ko r"2=0}) R? does not appear in the right hand side of

(that is, the Monge-Ampére measure py(E) = |VY(E)|, E C R™, is comparable to the Lebesgue measure),
or that v is sufficiently regular, e.g. 1 € C2. For our function ®, we have that D?® either degenerates or
blows up near {z = 0} when s # 1/2, and, moreover, ® ¢ C? when s > 1/2. Therefore, (1.11) is not covered
by such previous results. On the other hand, Maldonado proved Harnack inequality for degenerate elliptic
equations associated with convex functions of the form (z) = |z|", p > 2, see [22] and also [23]. However,
not only are his techniques different than the ones presented here but also his work does not include the
singular case in which s > 1/2. Moreover, when we write (1.14) for s =1/2 in Q x R as a single equation,
we see that U satisfies (1.11) in Q x R with a right hand side that is a singular measure with density f(x)
supported on {z = 0}.

We develop a method of sliding paraboloids inspired by the work of Savin for fully nonlinear uniformly
elliptic equations [29]. For our setting, we work with a Neumann problem in a Monge-Ampére geometry
that brings additional challenges because ® is only C* and D?® is degenerate/singular. For this, we define
paraboloids P : R"*! — R of opening a > 0 with vertex (z,,2,) by

P((E,Z) = *aécb((xvazv)a (x,z)) +c

where ¢ is a constant. We lift these paraboloids from below until they touch the graph of U in a section
Sg for the first time. We estimate the Monge—Ampere measure of the resulting set of contact points by the
Monge-Ampére measure of the set of vertices. Observe that, since our equation (1.11) is degenerate/singular
and —0,+.U(z,0) = f(z), we need to be able to control the contact points (x, z) for which z = 0 in terms
of the size of f. Next, we show that, by increasing the opening of these paraboloids, they almost cover the
section Sk in measure. This relies on explicit barriers whose construction is very delicate because of the
Neumann boundary condition and the degeneracy/singularity of (1.11). Then, we build a refined geometric
argument to obtain a localization estimate. Thus, using a covering argument, we can conclude the proof of
Theorem 1.3 and deduce Theorem 1.1.

Our function ® was also considered in [26] to study the fractional nonlocal linearized Monge—Ampere
equation. They established Harnack inequality and Holder estimates for solutions to (1.4) when the coef-
ficients a®(z) are given by the matrix of cofactors of D%, where 1) is a C3 strictly convex function and
Q is a section of 9. Observe that in [26] the weak Harnack inequality is proved using the divergence form
structure of the equation. Whereas, in (1.4), we not only consider general elliptic coefficients a* (), but also
the equation cannot be written in divergence form. Nevertheless, since the proof of the local boundedness
of the solution to the extension problem in [26] uses purely nondivergence form techniques, one can easily
check that solutions to our extension problem (1.9) satisfy the same local boundedness estimate as that of
[26, Theorem 11.3].

We additionally mention that Le in [20] proved Harnack inequality for the linearized Monge—Ampére
equation (1.12) when 1 € C? and 0 < A < det(D?y(z)) < A, by using sliding paraboloids within the
roadmap of the proof of Caffarelli-Gutiérrez [5]. Again, our methods (inspired by Savin [29]) and results are
different and independent of [20] (in particular, ® is not smooth when s > 1/2, D?® is degenerate/singular,
and we have the Neumann boundary condition —0,+U(z,0) = f(x)).

Theorem 1.3 holds for bounded domains 2 and bounded, measurable coefficients a®/ (z). In Theorem 1.1
we additionally require that € satisfies the uniform exterior cone condition and that a%(z) are Holder
continuous. There are several reasons for these technical assumptions. First, the uniform exterior cone
condition and the hypothesis a%(x) € C(Q) N L>(Q2) give us the existence of an appropriate Cy-semigroup
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generated by L, so the fractional power operator L® can be defined using (1.3). Furthermore, under these
conditions, the extension problem characterization in Theorem 1.2 holds. Second, our proof of Theorem 1.3
is for classical solutions U to the extension problem and does not require any continuity assumptions on
a®(x) nor geometric conditions on 2. Third, to apply Theorem 1.3, we need to ensure that the solution
U given in Theorem 1.2 is classical, and for this we must require a*(z) € C*(Q2). It is an open problem
and will be the object of future work to define (—a%(x)d;;)* in bounded domains when the coefficients are
only bounded, measurable and to establish a corresponding extension equation and Harnack inequality for
viscosity solutions to (1.4).

The paper is organized as follows. First, in Section 2, we show several applications of fractional pow-
ers of nondivergence form operators (1.1). Then, in Section 3, we precisely define the fractional operator
(—a%(2)0;;)® and prove the extension characterization. In Section 4, we provide the necessary Monge-
Ampere background associated to our function ®. We prove a sequence of reductions of Theorem 1.3 in
Section 5. Section 6 contains preliminary results on the Monge-Ampeéere paraboloids P associated to ®.
Next, we establish several key results that will be used to prove the final reduction of Theorem 1.3. In
Section 7, we estimate the Monge—Ampere measure of the set of contact points for sliding paraboloids of
fixed opening by the measure of the set of vertices. The delicate construction of the barriers is done in
Section 8. These are used in Section 9 to prove a localization estimate by means of a refined geometric
argument. A Calderén—Zygmund-type covering lemma is proved in Section 10. Finally, in Section 11, we
present the proof of the final reduction of Theorem 1.3 and the proof of Theorem 1.1.

2. Applications

In this section we present some applications where fractional powers of nondivergence form elliptic oper-
ators naturally arise.

2.1. Fractional Monge—Ampére equations

If u = u(x) is a convex, C? function, then one can check that the Monge-Ampére operator acting on u
at a point x can be written as

ndet(D*u(z))"/" = inf {A(uo B)(B™'z) : B € M}
= inf {a"9;ju(z) : (a”) = B*>, B € M},
where the infimum is taken over the class M of all positive definite, symmetric matrices B of size n x n such

that det(B) = 1. Motivated by these identities, Caffarelli-Charro defined in [4] the fractional Monge—Ampére
operator by

Dsu(z) =inf{ — (—~A)*(uo B)(B™'z): Be M}, 1/2<s<1. (2.1)
On the other hand, it was shown in [19] that the operator in (2.1) can also be written as
Dgu(z) = inf { — (—a”0;;)*u(z) : (a¥) = B*, B € M}, (2.2)

where (—a%d;;)*® is the fractional power of the constant coefficients operator —a%d;;.

The fractional Monge—Ampére operator (2.1) is degenerate elliptic because the eigenvalues of the matrices
B € M are not a priori controlled from below or above. Nevertheless, it is proved in [4] that if w is Lipschitz,
semiconcave, and Dgu > 1y > 0 in a bounded domain €2, then D, becomes uniformly elliptic in wu, that is,
there is a constant A > 0 such that
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Dyu(z) = Dyu(x) :=inf { — (=A)*(uo B)(B~'z) : BE M, B> \}
for all z € Q. Equivalently, in the description of (2.2),
Diu(x) = inf { — (—a"0;;)*u(z) : (a”) = B*, Be M, B> \}.

It was observed in [34] that, for each z € €2, the infimum above is attained at some matrix a® = a%(x).
Therefore, the fractional Monge-Ampeére operator in the uniformly elliptic regime is in fact given by

Du(x) = —(—a (x)di;) u(z) for every z € Q.

In other words, Du(z) is the fractional power of the nondivergence form uniformly elliptic operator L =
—a%(x)0;;, where a%(z) are bounded, measurable coefficients.

2.2. Elasticity

Consider an anisotropic elastic membrane represented by the graph of a function U(z, z), for (x,z) €
Q X [0,00). Suppose that we place a thin obstacle ¢ : & — R on the hyperplane {z = 0}, such that ¢ <0
on 99, which pushes U from below at {z = 0}. By fixing U = 0 on 92 x [0, 00), this problem is modeled by
the following thin obstacle problem:

¥ (2)0;U + 0..U =0 in Q x {z >0}

U(z,z) =0 on 99 x {z > 0}

U(z,0) > ¢(z) on (2.3)
- Z+U(x30) >0 on )

—0:4U(2,0) =0 on {U(z,0) > ¢(z)}.

The last two conditions are called the Signorini complementary conditions. They follow from the fact that ¢
is pushing U upwards, while U is actually free in the noncoincidence set {U(x,0) > ¢(x)}. The coefficients
a%(z) encode the heterogeneity of the membrane. The thin obstacle problem (2.3) is equivalent to the
problem of semipermeable cell membranes in biology (see [9]), where a*(x) are a model for the cytoplasm
inside the cell.

It follows from the extension problem characterization (see Theorem 1.2) with s = 1/2, that the trace
u(z) := U(x,0) satisfies

—0,,U(2,0) = (—a (2)9;;)?u(x) in Q.

Therefore, U solves the thin obstacle problem (2.3) if and only if its trace u is the solution to the following
fractional obstacle problem

(—a (2)0;;)"?u >0 inQ

(—a (2)0;;)Y?u =0 in QN {u> ¢}
u> @ in

u=20 on O0f).
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2.8. Finance

Consider a particle moving randomly in a heterogeneous domain 2 that is killed when it reaches the
boundary 0f2. This random behavior can be modeled by a diffusion process X; whose infinitesimal generator
is a nondivergence form elliptic operator L = —a%(x)d;; in €2, subject to homogeneous Dirichlet boundary
conditions on 9. In this situation, the coefficients a'/ () serve as a measure of the anisotropy of the medium,
or the preferred directions the particle chooses at every point z. A model for particles randomly jumping
inside a heterogeneous medium that are killed as soon as they reach or try to cross the boundary can be
given by subordinating the process X; with an s-stable Lévy subordinator T3, for 0 < s < 1. The resulting
subordinated process Y; = X7, is then generated by the fractional power operator L* = (—a%(x)d;;)°,
0 < s < 1. See [18] for the case of smooth coefficients and domains, and [31] for the case when X; is a
Wiener process.

Next, let 7 be the optimal stopping time that maximizes the function

u(z) = Slip]E[(b(YT);T < 4o0],

where ¢ € Cy(Q2) (see (3.3)), E denotes the expected value, and the process Y is set to start at 2 € Q. It
turns out that w is the solution to the following obstacle problem:

(—a¥(2),;)*u>0 in
—a”(2)0;;)*u=0 1in QN {u> ¢}

u>¢ in Q

w=0 on 0f.

These free boundary problems appear in financial models (see [8]) where u is the value of a perpetual
American option in which the asset prices are modeled by Y; and ¢ is the payoff function.

3. Fractional powers of elliptic operators and extension problem

Here, we give the precise definition of the fractional power operator L* = (—a"(z)8;;)® in (1.4) and
present the extension problem characterization, i.e. Theorem 1.2. For this, we apply the method of semi-
groups of [12,33] (see also [32]) which we describe next.

8.1. Method of semigroups for fractional power operators
A family {T}};>¢ of bounded, linear operators on a Banach space X is a semigroup on X if
To=1d and Ti, oTy, =T 44, foreveryty,ta >0,

where Id denotes the identity operator. We say that a semigroup {7} },>¢ is a Cy-semigroup if Tyu — u as
t — 0T for all u € X. A semigroup {T}}+>0 is uniformly bounded if its operator norm is uniformly bounded
in ¢, that is, there is a constant M > 1 such that ||T¢|| < M for all ¢t > 0. The infinitesimal generator A of
a semigroup {T}}:>o is the closed linear operator defined as

T, _
—Ay= lim —2 Y (3.1)

t—0+ t
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in the domain Dom(A) = {u € X : the limit in (3.1) exists} C X. In this case, we write T; = e~*4. Hence,

t

if A is the infinitesimal generator of a Cp-semigroup {e *4};>0 on X, then the function v = e~*4u, for

u € Dom(A), satisfies the heat equation for A:
Ow=—Av fort>0
v=u for t = 0.
Conversely, a linear operator (A,Dom(A4)) on X is said to generate a semigroup if there is a semigroup

{T};}+>0 for which A is its infinitesimal generator, that is, T, = e~t4. Given a uniformly bounded Cp-
semigroup {7} = e_tA}tzo on X, the fractional power A® of its infinitesimal generator is defined as

Ay — F(is) / (eftAu —u) %, for all u € Dom(A) C X,
0

where 0 < s < 1. If the semigroup {e~*4},>0 has ezponential decay, that is, |le7*4| < Me™¢!, for some
e > 0, for all ¢ > 0, then the negative power A™° s > 0, is given by

—spr 1 r —tA dt
A f_F(s)/e ftl_s, for all f € X.
0

Thus, under the exponential decay assumption on {e~*4},5¢, given f € X, the solution u € Dom(A®) to
the fractional problem A%u = f is u = A~®f. Here Dom(A*) is defined as the range of A~%. For all these
details, see [27,35].

Fractional powers A of infinitesimal generators A of uniformly bounded Cy-semigroups can be charac-
terized by extension problems. For the case when X is a Hilbert space see [33], while for the case when X
is a general Banach space see [12].

Theorem 3.1 (See [12, Theorems 1.1 and 2.1, Remark 2.2]). Let (A, Dom(A)) be the infinitesimal generator
of a uniformly bounded Co-semigroup {e~*4};>0 on a Banach space X. Let 0 < s < 1. Define, for y > 0
and any u € X,

2s ®

_ Y /4ty —tA, At

Uly) = FT(s) /e Y e U (3.2)
0

Then U € C*((0,00), Dom(A)) N C([0,00), X) is a solution to the extension problem

—AU + 1220,U + 0,,U =0 fory>0
limy o+ U(y) = u in X.

Moreover, |\U(y)|lx < M|u||x, for all y > 0. Furthermore, if u € Dom(A) then

L Uy —uw
1-2s _ S, —
_ ylgng y 0, U(y) = csA’u = —2s yliféﬂ T in X
where ¢, = 451:(11/—;;25) > 0. If, in addition, {e"'"};>¢ has ezponential decay and u € Dom(A) satisfies

Asu = f, for some f € X, then the solution U in (3.2) can also be written as
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17 dt
- y / 4t) —tA
- T(s) /6 f

0

and, in particular, —lim, o+ y*~20,U(y) = ¢sf and U(0) =
3.2. Fractional powers of nondivergence form elliptic operators

To give the definition of (1.1), we need conditions on a*(x) and Q so that L as in (1.2) generates a
uniformly bounded Cy-semigroup with exponential decay in an appropriate Banach space X. For this, we
assume that the bounded domain 2 C R” satisfies the uniform exterior cone condition, namely, that there
is a right circular cone C' such that for all x € OS2 there is a cone C, with vertex z that is congruent to C'
such that QN C, = {x}. We define the Banach space X = Cy(f2) by

Co() = {u e C(Q):u=0on N}, (3.3)
endowed with the L>-norm. Let L be the linear operator on Cy(2) given by
L =—a"(2)d;;, Dom(L) = {u € Co(Q)NW(Q) : Lu € Co(Q)}, (3.4)

where the coefficients a'/(z) € C(Q) N L>(2) are symmetric and satisfy (1.5). Under these hypotheses, L
generates a uniformly bounded Cp-semigroup on Cy(§2) with exponential decay.

Proposition 3.2 (See [1, Proposition 4.7]). Assume that Q C R™ is a bounded domain that satisfies the
uniform exterior cone condition and that a¥(xz) € C(Q) N L>=(Q) are symmetric and satisfy (1.5). The
operator L defined by (3.4) generates a uniformly bounded Co-semigroup, denoted by {e~*L};>0, on Co(12),
such that if u € Cy(Q) satisfies u > 0, then ety >0, for all t > 0. Moreover, there are constants M > 1
and € > 0 such that

He—tLu”CO(Q) < Me™¢t lull gy for allt = 0. (3.5)

In other words, by Proposition 3.2 and the maximum principle for parabolic equations (see [11]), for
any u € Dom(L), the function v(z,t) = e~ *Fu(x) € C((0,00), Dom(L)) N C([0,0), Co(f2)) is the unique
solution to the heat equation driven by L with initial data wu:

O(x,t) = a¥(x)d;v(x,t) in Qx {t>0}
v(z,t) =0 on 90 x {t >0} (3.6)
v(z,0) = u(x) on Q x {t =0}.
Now we can formalize the definition of the fractional power operator (1.1).
Definition 3.3. Assume that the bounded domain 2 C R" satisfies the uniform exterior cone condition and
that a(z) € C(Q) N L*>®(Q) are symmetric and satisfy (1.5). Consider the Banach space Cp(£2) and the

operator L = —a%(x)d;; given by (3.4). We define the fractional power operator L* = (—a%(z)d;;)*
Dom(L) — Cy(£2) by

(—a” (2)03) u(x

oo

dt
/ “thy(x) — u(z)) e 0<s<1, ze€. (3.7)
0
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Remark 3.4 (Pointwise formula). It is known that, under certain conditions on L, the semigroup {e~*t};>¢
has a heat kernel, namely, there is a function H;(x,y) such that

e u(z) = /Ht(x, y)u(y) dy forallt >0, z € Q.
Q

For example, the heat kernel exists and satisfies the Gaussian estimate

2
o—cla—y[*/t

0 < Hy(z,y) < CT

forallt >0, =,y € Q, (3.8)

for some constants C, ¢ > 0, whenever the coefficients a*/(z) are Hélder continuous, see [11]. In this situation,
it follows from (3.7) that for any smooth function v € Dom(L),

(—a™ (2)0;;)*u(z) = / (u(x) —u(y)) Ks(z,y) dy + Bs(z)u(x) for all x € Q
Q

where 0 < K,(z,y) < Oy 5|z —y|~ 2% for z,y € Q, x # y, and B,(x) € L>=(Q). Therefore, the fractional
operator L® is a nonlocal, integro-differential operator in 2.

Remark 3.5 (Negative fractional powers). Let f € Co(2) and assume that « € Dom(L®) is a solution to
(1.4), that is, (—a%(2)8;;)*u = f in Q. By Proposition 3.2, the semigroup {e~*%};>0 has exponential decay.
Then u can be written as

u(x) = (_aij(x)aij)fsjc(x) — ﬁ /e,th(x) tldfs for all x € Q. (3.9)
0

If the coefficients '/ () are Holder continuous then we can use the heat kernel from Remark 3.4 into (3.9)
to write

u(z) = (—a" (2)0;) " f(z) = /K_s(x,y)f(y) dy forall z € Q
Q

where, by the estimate (3.8), 0 < K_(z,y) < Cp sl —y|~ 29 forall 2,y € Q, 2 # y.

Proof of Theorem 1.2. We choose X = Cy(Q2) and A = L as in (3.4) so that, by Proposition 3.2, L generates
a uniformly bounded Cp-semigroup on Cy(€2) with exponential decay. Then, the solution U(y) in (3.2)
satisfies the properties stated in Theorem 3.1. With the change of variables z = (y/(2s))?*, we obtain
that U(z) = U(x, z) verifies the formulas and properties of Theorem 1.2. If the coefficients % (x) are also
Holder continuous then, by interior Schauder estimates (see [13, Theorem 9.19]), the solution U is classical.
Moreover, by the weak maximum principle (see [13, Theorem 3.1]), there is at most one classical solution
to (1.9) such that lim. o |U(", 2)|| = (q) = 0. Using (3.5) it is easy to check that the solution U given by
(1.10) has such decay at infinity and hence is the unique solution. O

4. Monge—Ampére setting
We present the necessary background for the Monge-Ampeére geometry associated to equation (1.11) as

well as the notation that will be used throughout the rest of this work. We reference the reader to [10,17]
for details about the Monge-Ampere geometry associated to general convex functions.



P.R. Stinga, M. Vaughan / J. Math. Pures Appl. 156 (2021) 245-306 257

Given 0 < s < 1, we define the functions ¢ : R - R and h: R — R by

82

np(x):%|x|2 and h(z) = = |2f* (4.1)

—s
Notice that » € C®(R) and h € C*(R) N C%(R \ {0}) are strictly convex. Set

®O(z,2) = @(x) + h(z) forall (z,2) € R". (4.2)
We note that

i 52 z, h'(z)=|z
1—5

B (z) =

1 0
%72, D?*®(z,2) = <0 12) .

It is clear that h'(—z) = —h/(z) and A'(0) =0
The Monge-Ampére measure associated to a strictly convex function ¢p € C1(R™) is the Borel measure
given by

py(E) = |VY(E)| for every Borel set E C R",

where |A| denotes the Lebesgue measure of a measurable set A C R™. Since V() = z, it is clear that
po(E) = |E|.

Lemma 4.1. For a Borel set I C R,
pun(I) = /h”(z) dz.
I
Consequently, for a Borel set E C R"t1,
ue(E) = /h”(z) dz dz.
E

Proof. Consider an interval (a,b) C R such that 0 € (a,b). Note that k' is monotone increasing, injective,
and h'(z) = 0 if and only if z = 0. Since h is C? and strictly convex in R \ {z = 0}, we have that

pn((a,0)) = W ((a,0))] = B ((a,0))] + [B'(0)] + |I'((0, )]
0

b b
= /h“(z) dz+()+0/h”(z) dz = a/h”(z) dz.

a

The result follows for any interval and hence for any Borel set I C R. O
The Monge-Ampére (quasi)-distance associated to a strictly convex function ¢ € C*(R"™) is given by

Oy (o, ) = Y(x) —p(x0) — (VU(20), 7 — T0).

By convexity, d, > 0, and dy (2o, z) = 0 if and only if 29 = 2. We use the terminology quasi-distance when
there exists a constant K > 1 such that

dy(z1,x2) < K (min{dy (21, x3), 6y (23, x1)} + min{dy (2, z3), Iy (23, 22)})
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for all 21, z9, 25 € R™. For our functions ¢, h, and ® in (4.1) and (4.2), we have

1 1 1
dp(20,2) = 5 |zf* — 5 |z0]? — (0, — o) = 3 |z — x|

On(z0,2) = h(z) — h(z0) — A’ (20) (2 — 20)
da((z0, 20), (x, 2)) = 0y (z0, ) + dn(20, 2).
We will later show that 05, 0., and d are indeed quasi-distances (see Corollary 4.7).

A Monge—Ampére section of radius R > 0, centered at xy € R™ associated to a strictly convex function
Y € CH(R"™) is defined as

Sy(zo,R) = {x € R" : §y(xo,x) < R}.
The supporting hyperplane to 1 at x¢ is given by ¢(z) = ¥(zo) + (V) (z0), z — xo). Then, Sy (zo, R) = {x :

Y(z) —4(z) < R}, and we see that the Monge—Ampeére sections for ¢ are the sublevel sets of ) — £. In the
case of ¢ in (4.1), the sections correspond to Euclidean balls with the same center

S, (z0, R) = {x : % |z — 20]? < R} — B zr(wo). (4.3)

The sections for h in (4.1) with radius R > 0 correspond to intervals in R.
We say that the Monge-Ampere measure jiy is doubling with respect to the center of mass on the sections
of 9, written py € (DC)y, if there is a constant Cy > 0 such that

pop (Sy (2, R)) < Capiy <%S¢(x, R)) for all sections Sy (z, R). (4.4)

Here, we use the notation aSy(z, R) = {a(y —x*) + 2* : y € Sy(z, R)}, for a > 0, where z* is the center
of mass of Sy (z, R). On the other hand, we say that p, is doubling with respect to the parameter on the
sections of ¢ if there is a constant C, > 0 such that

oy (S (2, R)) < Clipuy (Sw (33, g)) for all sections Sy (x, R). (4.5)

It can be seen that (4.4) implies (4.5), but the converse is not true in general, see [17].

Finally, we say that 1 satisfies the engulfing property if there is a constant # > 1 such that, for every
section Sy (z, R), if 1 € Sy(x, R), then Sy (x, R) C Sy(x1,0R).

For the next result, see Theorem 5 in [10] and the comments following it and also Lemma 2.1 in [25].

Theorem 4.2. Let i) € C1(R™) be a strictly convex function. The following are equivalent.

1. py € (DC)y;
2. 1 satisfies the engulfing property;
3. there are constants ¢,C > 0 such that

cR" < |Sy(x, R)| puy (Sy(z, R)) < CR"

for all sections Sy(x, R);
4. 0y is a quasi-distance.
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All the statements are equivalent in the sense that the constants in each property only depend on each other.
If wy € (DC)y, then there exists a constant Kq > 1, depending only on the doubling constant Cy in (4.4)
and on dimension, such that

pop (S (z,72)) < Kq (:—2> pop (S (z,71))  for allz € R™, 0 <1 <ra. (4.6)
1

In order to show that our convex function ® in (4.2) satisfies Theorem 4.2, we need to introduce the notion
of Monge—Ampeére cubes associated with ®. Many of our proofs will rely on the fact that ®(z, z) = ¢(x)+h(2)
has separated variables.

Definition 4.3. A Monge—Ampére cube of radius R > 0, centered at (z,z) € R"*!, associated to ® is given
by

Qr(z,2) =Sy, (1, R) x -+ x Sy, (zn, R) X Sp(z, R)

where z = (z1,...,2,) and ¢; : R = R is defined by ¢;(z;) = % |zi|* fori=1,...,n.
Notation 4.4. We will always use the following notation.

o = (x1,...,2,) ER™, zE€R.

o Sg(z) C R™ is a section of radius R > 0 associated with ¢ centered at z.

o Sg(z) C R is a section of radius R > 0 associated with h, centered at z.

o Sgp(x,z) C R™! is a section of radius R > 0 associated with ®, centered at (z, 2).
Qr(z) C R™ is a cube of radius R > 0 associated with ¢ centered at x.

e Qr(z) C R is a cube of radius R > 0 associated with h centered at z.
Qr(z,2) C R™ is a cube of radius R > 0 associated with ® centered at (z, 2).

The relation between Monge-Ampere cubes and sections is given by the following result.

Lemma 4.5 (Lemma 6 in [10]). Fix m € N. For each j = 1,...,m, let ¢; : R™ — R be strictly convez,
differentiable functions. Set n = Z;nzl n; and define

m

'1/1(35)221/)3(1’]), x:(xlv"'axm)eRn,l'jean.

j=1
Then
Sy(z, R) C H Sy, (x5, R) C Sy(x,mR)
j=1

for allx = (x1,...,2m) € R™ and R > 0.

In particular, if 1; satisfy the engulfing property with corresponding constants 0; for all j = 1,...m, then
¢ satisfies the engulfing property with = mmax;{6;}. Conversely, if 1 satisfies the engulfing property for
some 0 > 1, then 1); satisfies the engulfing property with constant 6 for all j =1,...,m.

As a consequence of Lemma, 4.5,

Sr(z,z) C Sr(z) x Sg(z) C Sagr(z, 2)
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and

Sr(z,2) C Qr(x,2) C Stny1)r(2, 2)

for all (z,z) € R"*! and R > 0.
As discussed in [26, Section 7.1], h''(z) = |z
following lemma holds. See [14, Section 9.3] for definitions and properties of the class A (R).

Vs=2 ig a Muckenhoupt A (R) weight. In particular, the

Lemma 4.6. Given 0 < ¢ < 1, there is 0 < g9 < 1, depending only on ¢ and 0 < s < 1, such that for any
section Sg = Sgr(z0) and any measurable set E C Sg,

||S£ <eg implies
R

We can now establish Theorem 4.2 for ¢ = ®.

Corollary 4.7. We have pi, € (DC),, and py, € (DC)y, so that (1)-(4) in Theorem /.2 hold and are equivalent
for ¢ and h. Moreover, the following statements hold and are equivalent.

1. pe € (DC)g with corresponding doubling constant Cy = Cy(n, s) > 0;
2. O satisfies the engulfing property with corresponding constant 8 = 0(n,s) > 0;
3. there are positive constants C = C(n,s), ¢ = c(n,s) such that

cR"™ < |Sg(z,2)| pao(Sr(z,2)) < CR™

for all sections Sr(z, z);
4. 0 is a quasi-distance with constant K = K(n,s) > 1.

Consequently, 1,, tn and pe satisfying the doubling estimate (4.6).

Proof. By (4.3), we can write

po(Sin(a0) = Bz(a0)] < 2] B a(a0)] = 2" Sin(oo)

Hence ¢ € (DC),, with doubling constant C7 = C7(n). Since h”(z) is a Muckenhoupt A (R) weight for
all 0 < s < 1, we have that uy; € (DC);, with doubling constant C* = C%(s). It follows from Theorem 4.2
that p, and py, satisfy the engulfing property and, by Lemma 4.5, so does j1¢. Hence, the conclusion follows
from Theorem 4.2. 0O

Remark 4.8. There is a constant ¢, depending only on s, so that Sgr(0) = By, r=(0) for any R > 0. Indeed,
z € Sr(0) if and only if

2
S s
on(0,2) = h(z) = T— 12|'* <R

which is equivalent to

1—-s\° . )
|z|<( = ) R® =: ¢sR°. (4.7)
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Notation 4.9. We will always use the following notation.

e 0 is the engulfing constant associated with ®.

e K is the quasi-triangle constant associated with ®.
o Ky is the constant in (4.6).

e s is the constant in (4.7).

We end this section by presenting two lemmas that will be used later in the proofs.
Lemma 4.10. Let 1) € C*(R) be a strictly convex function. If xo < 11 < xo, then
Sy (o, 1) < Oy(To,x2) and Oy(x1,x2) < 0y (0, Z2).

Consequently, for any xo,z1 € R and R > 0, if r > 0 is such that Sy(x1,7) C Sy(zo, R), then r < R. In
particular, for any (o, 20), (z1,21) € R™ and R > 0, if r > 0 is such that Q.(x1,21) C Qr(wo, 20), then
r <R.

Proof. By the convexity of ¥,

so that

Next, define a function ¥ : R — R by
U(x) = [(21) + ¢ (21) (2 — 21)] = [Y(x0) + ¥’ (z0) (x — z0)]-
By the convexity of ¢, ¥'(z) = ¢/ (1) — ¢/ (z0) > 0, so ¥ is increasing. Since
U(z1) = (x1) — ¥(@0) + ¥’ (w0) (21 — m0) = (20, 71) > 0,
we know that

0 < W(x2) = [(x1) + ' (x1) (22 — 21)] — [Y(w0) + ' (20) (22 — x0)]
= [—¢(x2) + ¥(x1) + ' (21) (22 — 21)] — [=P(22) + P (20) + ¢ (20) (22 — T0)].

Hence,

Oy (1, 22) = h(w2) — P(x1) — ' (x1) (22 — 1)
P(x2) — (w0) — P (w0)(v2 — o) = Iy (20, T2).

A

Lastly, fix z, 21 € R and R > 0. Suppose that r > 0 is such that Sy (x1,7) C Sy(zo, R). Write

Sy(z0, R) = (zf,28), b <xo <l

Sy(x1,r) = (xf,28), oF <ay <2l
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Without loss of generality, assume that zg < x; so that zg < z1 < xf‘ < a:OR. Then
r=6y(x1,2]) < 0y(w1,75) < dy(wo,2) = R. O

Lemma 4.11 (Theorem 3.3.10 in [17]). There exist constants Cy > 0, p > 1, depending only on n and s,
such that for 0 <ry <ry <1,t>0 and (x1,21) € Sr,t(x0,20), we have that

SCo(r277‘1)Pt(x17 Zl) C Srzt(an ZO)-
5. Reductions of Theorem 1.3

In this section we show that, after a series of reductions, Theorem 1.3 will follow from Theorem 5.3. First,
we show in Theorem 5.1 that it is enough to consider Monge-Ampere cubes, instead of Monge-Ampere
sections, and to take a nonnegative right hand side f. The second reduction, Theorem 5.2, demonstrates how
we only need to show that the supremum of U in a small cube is controlled by the value of U at the center
of the cube. Finally, Theorem 5.3 is a normalized statement which says that if U is controlled at the center
of the cube and || f||,« is controlled with respect to the size of the section, then U is uniformly bounded in
a smaller cube. Hence, the rest of the paper will be devoted to proving Theorem 5.3 and Theorem 1.1.

5.1. First reduction

We first show that it is enough to prove Theorem 1.3 in Monge—Ampeére cubes and with f > 0.

Theorem 5.1. Let Q be a bounded domain, a®(x) : Q — R be bounded, measurable functions that satisfy
(1.5) and let f € L>(Q) be nonnegative. There exist positive constants Cyg = Cyg(n, A\, A,s) > 1, k1 =
k1(n,s) < 1, and K, = Ky(n,s) > 1 such that for every cube Qi r = @i, r(T0,20) C QxR and every
nonnegative solution U € C*(Qg p \ {z = 0}) N C(Qg, z) such that U is symmetric across {z = 0} and
U.t € C(Qg,rN{z>0}) to

¥ (@)U + 21777 0..U =0 in Qg N {z # 0}
—0,4U(x,0) = f on Qg rN{z=0},

we have that

U<Cx( inf Ut|fllpe, im0y B 5.1
SS}; n H<Ql£llﬁ Hf”L (Qg, rN{z=0}) ) (5.1)

Proof of Theorem 1.3 from Theorem 5.1. Observe that
leR(xoyzo) C ngklR(ﬂfmZo) - S(n+1)021‘<13(330720)
and

San(xm ZO) - QﬁlR(w(J? ZO)

Let Ko = (n+ 1)92R1 and kg = K1.

Case 1: Q p(70,20) N{z =0} = @. By Theorem 5.1 and the inclusion above, we get

sup U < sup U < Cp inf U <(Cqx inf U.

SkoR QriR m1R moR
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Case 2: Qi p(0,20) N {z =0} # & and 2y = 0. Define

V = U~ 7l ey ogemon 12+ 1 lea, pntemop 1S, £ O
We claim that V' is nonnegative in Qy . Indeed, let (z,2) € Qg g, so that z € Si (0) C R. By

Remark 4.8, Sg 5(0) = B g:ps(0). Thus, [2| < |B, 4. 5. (0)] = Sk, (0)]. Consequently, for any (z,z) €
Q g, g» We have that

- ||f||L°°(QK1Rm{z:O}) 2| + ”fHLOO(QKlRﬁ{z:O}) 1Sk, r(0)] 20,

sothat V>U >0 in leR.
Next, notice that V is symmetric across {z = 0} and that V € C*(Qgz » \ {z = 0}) N C(Qx, r)
V.t € C(Qg, g N {z > 0}). Moreover, for (z,2) € Qi p N {z # 0}, it is clear that

a(x)0;;V + |z|2_% 0.,V = a"(x)0;;U + |Z‘2_% 0..U=0
and for (z,0) € Qi N {z =0},
0.4V (2,0) = f(z) + ||f||L°°(QK1Rr‘|{z:0}) = g(x) = 0.
Therefore, V' is a nonnegative solution to

a(x)0;,;V + |Z‘2—% 0.2V =0 in Qg pN{z+#0}
0.4V =g on Qi rN{z =0}

Therefore, by Theorem 5.1 applied to V and using that Sy (0)] = [B, g g (0)] = Cn s R7,

sup U < sup U

SK/[)R QNIR

<Cpu (Qi,?lfR V+ HgHLw(leRﬁ{z:O}) RS)

= OH(Qin (U - ||fHL°°(QR1Rmz:0}) |2| + ||fHLoc(QR1Rm{ZZo}) |SRIR(O)|>

K1

+ Hf + HfHLOC(QKlRm{ZZO})HLoo(QK I RS>
1

< CH( inf U+ (Cos +2) 1l (@, nnfz=oy) Rs)

leR
<Cy ( Slia U+ ||f||Loo(sK0Rn{z:o}) RS) :
Case 3: Qf(lR(‘rO’ z0)N{z =0} # @ and zy # 0. In this case, 0 € Sf(lR(ZO)' Then, by the engulfing property,

Qi r(®0,20) = Qg, g(20) X Sk, p(20)

C QOKIR(:EO) x Sef(lR(O) = QeklR(xO70)~

Again, applying the engulfing property,
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QeklR(@"OvO) = QeklR(ﬂfO) X SeklR(O)

C QQQKIR(xO> X SeQKlR(ZO) = Q92k1R(xO’ZO)’

Define

V=U = 1l (@, wwoiorniz=op) 121+ 1l (@, (wo.pniz=0p) [0, R(O)]:

We claim that V' is nonnegative in Qg r(20,0). Let (z,2) € Qi r(70,0), so that, by Remark 4.8,
2 € Syi, r(0) = By gs g5 = (0) € R. In particular, |z| < [B, . 4o 5« (0)] =[Sk, g (0)]. Consequently, for any
(z,2) € Qg r(T0, 20), we have that

Lo (@, mo.00ngz=0p) 121+ 1F e (@, . o, 0)niz=01) 1905, RO 20,

so that V> U >0 in QeklR(mo’O)'
Next, notice that V' is symmetric across {z = 0} and that V € C*(Quz r(70,0) \ {z = 0}) N

C(Q9K1R<.Z'0,O)), V.y € C(QaklR(%vO) N {z > 0}). Moreover, for (z,z) € Q9K1R<.Z'O,O) N{z # 0}, it
is clear that

@ (2)0;V + |2|* 77 0.,V = a (2)0,U + 2> 7% 0..U =0
and for (z,0) € Qyx, g(70,0) N {z =0},
0.4V (2,0) = f(z) + ||fHLoo(QSKIR(zO,o)m{z:o}) i=g(z) 2 0.
Therefore, V' is a nonnegative solution to
(@) V + |27 0.,V =0 in Qg glx0,20) N {z # 0}
—-0,4V =g on Qg, r(7o,20) N {z = 0}.
Applying Theorem 5.1 to V and using that [Syz (0)] = [B, g: gs g« (0)] = Cn s R, we get
sup U< sup U
Skor(%0,20) Qr; r(z0,20)
< sup V

B Qr1Rr(%0,20)

<Cy < inf )V + ||gHLOC(QRIR(IO,ZO)Q{Z:O}) RS)

w1 R(T0,20

= CH< inf (U - Hf”LOO(QgRlR(mO,O)) 2| + ||f||L°°(Q9K1R(zo,O)) |Sek1R(O)|)

Q1 Rr(%0,20)

S
* Hf * ”f||L°°<QeK1R<zo»0>ﬁ{z:°}>HL@O(QK 7 (0,20)N{2=0}) i >
r(@o,

ch< inf U+(Cn,s+2)||f|L&(QW1R(IO7O)H{Z_O})Rs)

Qrq1Rr(Z0,20)

sc;,(s i U+ [l o (oo Rs>.

roR(Z0,20

Therefore, (1.15) holds in all cases.
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It remains to prove the Holder estimate (1.16). The proof follows by a standard argument (see, for
example, [13, Sections 8.9 and 9.8]). We provide the details for completeness. Let 0 < r < R and define

M(r)= sup U and m(r)= inf U.
Sr(z0,20) Sy (z0,20)

Apply (1.15) to M(Kor) — U >0 in Sk,r(T0; 20) to obtain

sup (M (Kor)—U) < Chy ( inf (M (Kor)—U) + Hf”L”(Skor(zo,zO)m{zzo}) rS) .

Snm(ﬂfmzo) Snor(QCo»ZU)

Therefore,

A~

M(Kor) — m(kor) < Cq (M([A(OT) — M (kor) + Hf”L”(SROR(IO,ZO)F\{Z:O}) rs) ) (5.2)

Similarly, apply (1.15) to U — m(Kor) > 0 in Sk, (T0; 20) to obtain

sup (U —m(Kor)) < Cy (S inf (U —m(Kor) + Hf||L°°(Sf<m(ro,zO)m{z:o}) TS) 7

Sror(T0,20) rwor(Z0,20)

so that
M (kor) — m(Kor) < Cy (m(nor) — m(Kor) + Hf||L°°(SROR(mo,zo)m{z:o}) r$> } (5.3)

Let w(r) = M(r) — m(r). Adding (5.2) and (5.3) together, we get

A

w(Kor) + w(ker) < Cx <w(f(o7“) — w(kor) +2 ||f”L”(SKOR(IO,ZO)m{z:o}) rS) .

After rearranging,

. Cy—1
wlror) S qw(Ror) + o), 7= G 7
where
C s 3 —
o(r) = Aty ||fHLDO(SKOR(;CO,ZO)ﬁ{zzo}) r if Sg o p(20,20) N {2 =0} # @
0 if Sg r(z0,20)N{z =0} =0

is a non-decreasing function of r. Note that v = v(n, A\, A, s). By [13, Lemma 8.23], for any u € (0,1), there
are constants C' = C(n,\,A,s) > 0 and a; = (1 — u)log~/log(ko/Kyo) such that
r

w(Kor) < C ((E)al w(KoR) + U(T”Rliu)) .

Choose p = p(n, A\, A, s) so that 2a; < us. Then,
2 7\ @1 A R [e5]
< — rpl—p -t
w(Kor) < C(R) (w(KoR)—i-a(r R )(r) )
7\ %1 2CH . ) o
(f_%) (25 sup U+ & =7 Ml (s meoszornta=on ™ RO R )

kOR(w07ZO

IN
Q
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A ai
A K()T S
S Cl ([A{OR> (S sup |U| + Hf||L°°(SKOR(Io,Zo)ﬁ{Z:O}) R ) .

KoR Z0,20
By taking Kor = da((20, 20), (2, 2)), the estimate in (1.16) follows. O
5.2. Second reduction

Next, we show that Theorem 5.1 follows from the following result which says that the supremum of U in
a small cube can be controlled by its value at the center.

Theorem 5.2. Let Q be a bounded domain, a*(x) : & — R be bounded, measurable functions that satisfy
(1.5) and let f € L*°(Q) be nonnegative. There exist positive constants Cy = Cg(n, A\, A, 8) > 1, ko =
ka(n,s) < 1, and Ky = Kg(n,s) > 1 such that for every cube Qg p = QKSR(&Z) CcC Q2 xR and every

nonnegative solution U € C2(QK3R \{z = 0}) N C(Qg,r) such that U is symmetric across {z = 0} and
Ust € C(Qi,rN{z>0}) to

a(x)0;;U + \z|2_é 0.:U=0 inQg,rN{z#0}
—0,4U(x,0) = f on Qg,rN{z =0},

we have that

sup U < Cy (U(sz,z) + 11l 2= @, uromop) Rs) .
ko R

Proof of Theorem 5.1 from Theorem 5.2. Let Ky = Ki(n,s) and k1 = k1 (n, s) be such that
1<9K3§k1 and Or1 < Ko < 1.
Let (%,2) € Qu,r(x0,20). By the engulfing property,
Qr1r(T0,20) C Qowy R(T, Z) C Quyr(T, 2).
Again applying the engulfing property, we have

QKSR(.’Z',E) - QGKSR(CC(),,Z()) C QRIR(l‘o,Zo) CC QxR.

By Theorem 5.2, we get

sup UL sup U

Qrq rR(0,20) Qryr(E,2)
<Cpy (U(;ﬁ,g) + ||f||Loo(Qk3R(:z,z~)m{z:0}) RS)

<Cn (U(j, zZ) + ||f||Loo(QK1R(IO,ZO)m{z:o}) RS) :

Taking the infimum over all (%, ) € Q, r(x0, 20), the Harnack inequality (5.1) holds. O
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5.8. Third reduction

Here we will see that Theorem 5.2 follows from the next, and final, reduction which is a normalized
statement.

Theorem 5.3. Fiz a > 0. Let Q be a bounded domain, a*(x) : Q@ — R be bounded, measurable functions
that satisfy (1.5) and let f € L% () be nonnegative. Let K5 be as in Theorem 5.2. There exist positive
constants Cyg = Cy(n, A\, A, s) > 1, ko = ka(n,s) < 1, and Ko = Ky(n,s) such that for any cube Qf.r =
Qi,r(%,2) CC QxR and every nonnegative solution U € CQ(QKSR \{z=0}) NC(Qg,r) such that U is
symmetric across {z =0} and U+ € C(Qg,pN{z = 0}) to

{aia‘(x)aijU 12700 =0 in Qg0 {z#0)

—0,4U(z,0) = f on Qg,rN{z =0},
if

aR
i
U(z,2) oK,

and

||f||Loo(QK3Rm{z:o}) < auh(SKBR(Z)),
then

U S CHCLR n QK,QR- (54)
Proof of Theorem 5.2 from Theorem 5.3. Let € > 0. Define the nonnegative function W, in Q% by

aR
2K0U(7,2) + ||f||LD°(QK3Rﬁ{Z:O}) R/pun(Sg,r(2)) +¢

We(w, 2) Uz, z).

If 0 ¢ Sk, (%), then ||fHL°°(QK N{z=0}) R/pun(Sg,r(%)) = 0. Notice that W, is symmetric across {z = 0}
and We. € C*(Qg,z \ {2 =0}) NC(Qx, ), We)zy € C(Qg,zr N {z = 0}). Moreover, in Q, N {z # 0},

we have
a7 (2)0;We + |27 0., W, =0

and, in Qg p N {z =0},

aR
-0+ W.(2,0) = — - f(x) =:g(x) > 0.
el 0 = RT3+ ey poomon) RlinSaoa@) 17 ) 790

Therefore, W, is a nonnegative solution to

a'(2)0;;We + |z\2*% 0.:We =0 in Qg N {z+#0}
—0,4W(x,0) =g on Qg,rN{z =0}

Clearly,
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HgHLOO(QRSRO{z:O}) < aﬂh(skgR(g))

and

By Theorem 5.3 applied to W, we get
We < CgaR in Qg
which implies
sup U < Cly (U(@é) T P —— ) -
Quar 3 b (S, r(2))

If 0 ¢ Sk, r(2), then

sup U < Oy (U(Z,2) +¢).
QroR

If 0 € Sk, r(2), then by the engulfing property and Remark 4.8,

SR3R(5) C SekgR(O) = queskgRs (0).

Hence, |Sk, (2)] < CR® for some C = C(n, s) > 0. With this and Corollary 4.7 part (3),

- 1 K3R
sup USC" UE,2)+ ;o0 o - +¢
Gurn H @ 2)+1fl (Qg,rN{z=0}) K Hh(SkgR(Z))

1
CKg
< G (U(,2) + 1 =y uromon B +)

< G (U18.2) 4 1L~ 0y intomon -5l + )

As e > 0 was arbitrary, the conclusion follows. O

6. Paraboloids associated to ®

In this section, we define the Monge—Ampére paraboloids associated with ® in (4.2) and study their basic
properties and relations with respect to solutions to the extension problem.

Definition 6.1. Let a > 0. A paraboloid P of opening a in R"*! is defined as
P(z,2) = —a®(z, z) + ((y,w), (x,2)) + b (z,2) € R*T! (6.1)
for some (y,w) € R"*! and b € R.

Since ® € C1(R"*!) is strictly convex, the point where the maximum of P occurs, which we call the
vertex (,,z,) of P, is the unique solution to VP(z,, z,) = 0.

We say that P touches a continuous function U : R — R from below at (x9,20) in a convex set
S c R if
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P(xzg,20) = V(x0,20) and P(x,z) <V(zx,z) forall (z,2)€S.
Lemma 6.2. A paraboloid P of opening a > 0 with vertex (x,,z,) given by (6.1) can be written as
P(z,z) = —ade((xy, 20), (x,2)) + ¢ (6.2)
for some constant ¢ € R. Moreover,
VP(z,2) = —a(V®(x,2) — VO(2,, 2,)) = —a(x — xy, V' (2) — W (2,))
and
0. P(x,0) = ah/(z,)

for all (z,z) € R" L. If P coincides with a continuous function U : R™*1 — R at a point (x¢,20), i.e.
P(xg, 20) = U(xo, 20), then

P(z,2) = —ado((zv, 20), (2, 2)) + ado ((2v, 20), (20, 20)) + U (2o, 20)-
Proof. Since 0 = VP(z,,2,) = —aV®(zy,2,) + (y, w), we can write
P(z,z) = —a®(z, 2) + a{(VO(zy, 2y), (, 2)) + b.
Consequently,
VP(z,2) = —a(x — x4, M (2) — W (20))
and

0, P(2,0) = —a (h'(z) — W(2)) |(z10) = ah/(zy).

Moreover, we have

P(z,2) = —a®(z, 2) + a(VO(xy, 2,), (x,2)) + b
+ a®(xy, 2y) — aP(xy, 20) — A(VO(24, 20), (Tv, 20)) + AV P(2y, 24), (T4, 20))
=—a(P(x,2) — P(zy, 20) — (VO (24, 20), (2, 2) — (24, 2,)))
—a®(zy, zy) + a(VO(xy, 20), (Ty, 20)) + b
= —ade((zy, 2), (x,2)) + c.

If P(xo,20) = Ul(xo, 20), then U(xg, 20) = —ada((xv, 20), (%0, 20)) + ¢ and, after solving for ¢, we conclude
that P(z,z) = —ads ((Ty, 2v), (%, 2)) + ade (24, 2v), (To, 20)) + U(xo,20). O

For the remainder of the paper, we use the terminology paraboloids to reference those given by (6.1), or
equivalently, (6.2).

Lemma 6.3. Suppose that P is a paraboloid of opening a > 0 that touches a continuous function U : R*t1 —
R from below at (zo,20) in a convex set S C R™ ™. For any @ > a, there exists a paraboloid P of opening
a > 0 that touches U from below at (xg, z) in S.
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Proof. Begin by writing

P(z,2) = —ade((zy, 20), (2, 2)) + ado (24, 24), (T0, 20)) + U(x0, 20)
= —a(P(x, 2) — D(xy, 2y) — (VO (2, 20), (z,2) — (T4, 20)))
+a(®(z0,20) — (0, 20) — (V@(20, 20), (0, 20) — (Tw, 20))) + U(20, 20)
= —a®(z,2) + a(VO(zy, 20), (2, 2)) + a®(xg, 20) — a{VP(xy, 2,), (Z0, 20)) + U(z0, 20)
= —a(®(z,2) — ®(20,20) — (V(0, 20), (%, 2) — (20, 20)))
+ a(V®(zy, 20), (x, 2) — (20, 20)) — a(V®(20, 20), (¢, 2) — (w0, 20)) + U (0, 20)
= —ade((xo, 20), (x, 2)) + (VO (x4, 2,) — VO(20, 20), (z,2) — (20, 20)) + U(xo, 20)-

Define P by

P(z,2) = —ade((z0, 20), (2, 2)) + a{VO(xy, 20) — V®(20, 20), (2, 2) — (20, 20)) + U (20, 20)-
Note that P is a paraboloid of opening @ > 0 since it can be expressed as (6.1) in the following way

P(z,2) = —a®(x, 2) + a®(zo, 20) + a(Vd(zo, 20), (z, 2) — (20, 20))
+ a{VP(zy, 2y) — VO(x0, 20), (x, 2) — (z0, 20)) + U(x0, 20)
= —a®(z,2) + (aVP(x9, 20) + aVP(xy, z,) — aVP(x0, 20), (, 2))
+ a®(xo, 20) — (aVP(x0, 20) + aV(xy, 2y) — aVP(xo, 20), (z0, 20)) + U(xo, 20)-

Since P(z¢, 20) = U(zo, z0) and

P(.T,Z) < —(L(s.:p((l'mzo), (1'72)) + a<v(b($vvzv) - VCI)((E(),Z()), ((E,Z) - (anZO» + U(:L'07ZO)
= P(z,2) < U(x, 2),

for every (z,z) € S, we conclude that P touches U from below at (z, 29) in S. O

The next two lemmas provide some observations regarding how the symmetry of U across {z = 0} effects

the geometry of the paraboloids that touch U from below.

Lemma 6.4. Let S C R™™ be an open, conver set that is symmetric across {z = 0}. Consider a continuous

function U : S — R which is symmetric across {z = 0}. Let P be a paraboloid of opening a > 0 with vertex
(Ty, 2y) that touches U from below at (xg,z0) in S. If z9 > 0, then z, > 0, and if z9 < 0, then z, < 0.
Moreover, the paraboloid P(x,z) = P(x,—z) of opening a > 0 with vertex (x,, —z,) that touches U from

below at (xg, —z0) in S.
Proof. Assume that zg > 0. Write
P(z,2z) = —ads((zy, 20), (2, 2)) + ada (4, 2u), (%0, 20)) + U(xo, 20)

and note that

P(x0,—20) = —ads((Tv, 20), (T0, —20)) + ada (v, 2v), (%0, 20)) + U(xo, 20)
= —adp (24, —20) + adp(2v, 20) + U(x0, —20).
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Then

0 < U(xg,—20) — P(x0,—20)
= adp (24, —20) — adp (24, 20)

=a (h(—20) — h(20)) + 2ah’(zy)20 = 2ah/(2y) 20

Since 2y > 0, it follows that h’(z,) > 0. Hence, z, > 0, as desired. The case for zy < 0 follows similarly.

Next, define P by P(z,z) = P(x, —z). Since h/(—z) = —h'(z1) and

5h(21, 722) = h(*ZQ) — h(Zl) — h/(Zl)(sz — Zl)
= h(22) — h(=21) = ' (=21)(22 = (—21)) (6.3)

= 0p(—21, 22)

for all z1, 20 € R, we may write

P(z,z) = P(x,—2)
= —ady (LL'U, ZU) ( ) )) + a5<1>((32v, Zv)v (xOv ZO)) + U(CL'(), ZO)

= —a0, (T, ) + a0y (X0, To) — adp (2, —2) + adp(2y, 20) + U(xo, —20)

(
(
= —a0, (20, ) + ady (20, o) — a0 (—2v, 2) + adp(—2y, —20) + U(z0, —20)
= —ado (4, —2y), (T, 2)) + ado ((xy, —2v), (0, —20)) + U(wo, —20)-
Hence, P is a paraboloid of opening a > 0 with vertex (24, —2y). Since

P(z,z) = P(x,—2) <U(x,—z) =U(x,z) forall (z,z) €S
and

P(xo, —20) = P(x0,20) = U(xo,20) = U(wo, —20),

we have that P touches U from below at (zg, —20) in S. O
Notation 6.5. Given f : Q — R, we define the functions f* by

f(x) =min{0, f(z)} <0 and f¥(z)=max{f(z),0} > 0.
Lemma 6.6. Let f € L>=(Q) and let S CC QxR C R™™ be an open, convex set such that SN{z = 0} # 2.
Suppose that a continuous function U : Q@ x R = R such that U, € C([0,00); C(Q)) is symmetric across
{#z = 0} and satisfies

—0,+:U(x,0) > f(x) on SN{z=0}.

If f(xo) > 0, then U cannot be touched from below at (xq,0) in S by any paraboloid. If f(xg) < 0 and

P is a paraboloid of opening a > 0 with vertex (x,,2,) that touches U from below in S at (x,0), then
[W (z0)] < |f~(x0)| /a. Consequently, if f(xo) =0, then z, = 0.
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Proof. Suppose that P is a paraboloid of opening a > 0 that touches U from below at (x,0) in S. Write
P(ﬁ, Z) = —a5q>((:vv, Zv)a (‘Tv Z)) + a5<1>((a:v, Zv)7 ({170, 0)) + U(x(h 0)
Let € > 0 be small. Since U — P attains a local minimum of 0 at (x,0), we know that

(U(xo,) = P(x0,¢)) = (U(0,0) — P(x0,0)) _ Ulxo,e) — P(xo,€) >0
15 15 B

Therefore, taking the limit as ¢ — 0%, we obtain
0<09,,U(x0,0) — 0,P(x0,0) < —f(m0) — ah’(2,). (6.4)
We note that, by the symmetry of U across {z = 0}, we have that

9. U(zo,0) = lim L&) = Ulwo,0)

= —=0:1U(20,0) = f(20).
For £ > 0 small, we have that

(U(wo, —€) — P(x0, —¢)) — (U(w0,0) — P(20,0))  —U(xo, —¢) + P(x0, —¢)

- <.
—€ €
Taking the limit as ¢ — 0T, we obtain
0>09, U(xg,0) — 0,P(x0,0) > f(z0) — ah’(2y). (6.5)

By combining (6.4) and (6.5),

flxo) < ah’(z,) < —f(xo).

If f(xzo) > 0, then the previous set of inequalities provides a contradiction, so P cannot touch U from below
in S at (z9,0). If f(xo) <0, then

=7 (zo)| < ab/(20) < [f (wo)|
as desired. If f(xzo) =0, then h'(z,) = 0 which implies that z, =0. O
7. Estimate on the Monge—Ampére measure of the set of contact points

Our first key result is a measure estimate similar to the Alexandroff-Bakelman—Pucci estimate for fully
nonlinear equations. We prove that if we lift paraboloids of fixed opening a > 0 with vertices in a closed,
bounded set from below until they touch the graph of U for the first time, then, by using the equation
and the Neumann boundary condition, the Monge-Ampeére measure of the contact points is a universal
proportion of the Monge—Ampeére measure of the set of vertices.
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Theorem 7.1. Assume that ) is a bounded domain and that a® (x) : Q@ — R are bounded, measurable functions
that satisfy (1.5). Let Qr = Qr(%,2) CC QxR and f € L>®(Qr N {z = 0}). Suppose U € C*(Qr \ {z =
0}) NC(Qr) such that U is symmetric across {z =0} and U4+ € C(Qr N{z > 0}) is a supersolution to

0l (2)05U + 2277 0..U <0 in QN {z # 0}
04U > f on QrN{z = 0}.

Let B C Qg be a closed set and fix a > 0. For each (x.,,2,) € B, we slide paraboloids of opening a > 0 and
vertex (T, z,) from below until they touch the graph of U for the first time. Let A denote the set of contact
points and assume that A C Qr. Then A is compact and if

s (B N {u,z) () < W e=@anmon }) < (1 - eo)ua(B),

a

for some g9 > 0, then there is a positive constant ¢ = c(n, A\, A) < 1 such that

pa(A) > eocpa(B).

Proof. We first show that A is closed. Let (xg,2;) € A be such that (vy,zr) — (2o,20). There exist
corresponding polynomials P with vertices (z¥, 2%) € B such that P, touches U from below at (xy, 2x) in
Qg. Since B C Qp is closed, B is compact. Thus, up to a subsequence, (%, 2%) — (29,20) € B. By the

v v

continuity of d¢ and U, as k — oo,

Pk('r’ Z) = _aé‘I’((m& 25)7 <x7 z)) + a(5¢,((l‘5, Zf% ('rkv Zk)) + U(mk’ Zk)
— —ade (29, 29), (2, 2)) + ade (22, 22), (0, 20)) + U(xo, 20) =: P(x, 2).

Since Py(z,z) < U(x, z), it must be that P < U in Qr. Moreover, P(xzg, z9) = U(xo, 29). Therefore, P is
a paraboloid of opening a > 0 with vertex (29, 29) € B that touches U from below at (z¢, 29). This shows
that (z, 20) € A, so that A is closed and, moreover, compact.

Define the sets

Bo=Bn {(w) A ||Lx(QRm{Z_O})}
a

B =B\ {(az,z) DR (2)] < 177 @nngz=on } ’

a

so that B = By U By and By N By = &. We lift paraboloids of opening a > 0 from below with vertices in
By and Bj to form the contact sets Ag and Ajp, respectively. Note that A = Ag U A;.

We will first show that pe(B1) < Cus(Ar) for some positive constant C' = C(n, A, A).

Let (zo, z0) € A;j. There exists a paraboloid P of opening a > 0 and vertex (z,, z,) € B; that touches U
from below at (xq, 29). If 29 = 0, then, by Lemma 6.6, it must be that f(z) < 0 and that

\h’(zy)| < ‘f_(l'0)| < Hf HLOO(QRI"W{Z:O})
a

- a
which contradicts that (x,, z,) € By. Hence, zg # 0.
Since U — P attains a local minimum at (zg, 20),

VU (g, 20) = VP(x0,20) = —a(xg — Ty, ' (20) — W' (20))
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which implies

(0, 1 (20)) = (0, 1 (20)) + éVU(a:o,zo).

This is how the vertices (z,, z,) € By are uniquely determined by (x¢, z9) € A;. Notice that this identity is
equivalent to

VO(xy,2,) =V (CID + lU) (z0,20) for all (z,,2,) € By.
a
Consider the map T : A1 — T(A;) = V®(By) given by
1
T(LL'(),Z()) =V ((I) + EU> (1'0720).

For € > 0, let A, C A; be given by
Ac = A\ {(z,2) : |z| < e}.

Then, T is Lipschitz and injective on A., so that, by the area formula for Lipschitz maps,

IT(Ao)| = / dy dw = / |det (VT (z, 2))| dz dx
T(Ae) A
det <D2 <<I) + %U) (x, z)) ‘ dzdzx.

A/
We claim that there is a constant C = C(n, A\, A) > 0 such that for all (z, z0) € A;

€

—aD?*® (20, 20) < D*U(x, 20) < CaD?*® (2, 20). (7.1)

The first inequality is straightforward because P touches U from below at (zg, z0). To prove the second

inequality in (7.1), suppose, by way of contradiction, that
D?U(xg,20) > CaD?*®(zq,29) for all C' > 0. (7.2)

Then

2 er®er 0 er®er 0 I 0
DU(zo,Zo)>Ca( 0 0>>C'a< 0 O)—a(o |ZO%72

where ey, k = 1,...,n are the standard basis vectors in R". Since A = (A(go) 8) >0 and

2 er®e, 0 I 0
DU(I‘mZo)—Ca( 0 O>+a<0 |20%,2 >0,

we have that

. - (T 0
tr <AD2U(330,20) —CaA <6k(§6k 8) +aA (0 12)) > 0.
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By ellipticity (see (1.5)),
a¥ (20)0i;U (0, 20) > (Ca)akk(xo) —atr(A(zp)) > Cal — anA. (7.3)

Similarly, from (7.2),

U 1 1 1 .
o, 20 [¢ ‘ |§_ a | g_jg a | g_jg

From the definition of positive definite matrices,

1_o 1_o
0..U(xg,20) — Calzol* "+ a|zp|* " > 0.

Therefore,
|zo|2*% 0..U(z0,20) > Ca — a. (7.4)
By (7.3) and (7.4), it follows that

0> a"(20)9;;U(x0, 20) + \Zo|2_% 0..U(z0, 20)
> Cal—anA+Ca—a
=[CA+1)— (nA+1)]a,

which is a contradiction when C' = C(n, A\, A) > 0 is sufficiently large. Thus, (7.1) holds.
From (7.1), we get

1
0< D? <<I> + aU) (z0, 20) < D*®(x0, 20) + CD?*® (20, 20) = (C + 1)D?*® (0, 20)
for all (x,29) € A;. Hence,

IT(Ac)| = [ det (D2 (q> + éU) (x,z)) dx dz

— T —

< [ det ((C +1)D*®(x,2)) dxdz
Ae

= (C+1)""pua(A.)

< (C+ 1) ua(Ay).

As this holds for all € > 0,
po(B1) = [VO(B1)| = |T(A1)] < (C+1)" " pa(Ar).
Thus,
pa(B) = pa(Bo) + pa(B1) < (1 - eo)ua(B) + (C+ 1) " ua(Ar)

from which it follows that

3

yntl pa(B) = ceopa(B). O

H«b(A) > M@(Al) > 2(0_'_701
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The following is a parallel result to that of Theorem 7.1 for subsolutions when paraboloids of opening
a < 0 are lowered from above until they touch the graph of U for the first time. The proof is straightforward.
We will apply this lemma in the proof of Theorem 5.3.

Theorem 7.2. Assume that ) is a bounded domain and that a¥(x) : Q@ — R are bounded, measurable functions
that satisfy (1.5). Let Qr = Qr(#,2) CC 2 xR and f € L>®(Qr N{z = 0}). Suppose U € C*(Qr\ {z =
0}) NC(Qr) such that U is symmetric across {z =0} and U 4+ € C(Qr N {z > 0}) is a subsolution to

i (2)0;U + |27 7% 0..U > 0 in QN {z # 0}
~0..U<f on Qr N {z = 0}.

Let B C Qg be a closed set and fix a < 0. For each (v,,2,) € B, we slide paraboloids of opening a and
vertexr (T, 2z,) from above until they touch the graph of U for the first time. Let A denote the set of contact
points and assume that A C Qgr. Then A is compact and if

lal

Il e .
e (B n {@c,z) e < e @anemn Uy ),
for some €9 > 0, then there is a positive constant ¢ = c(n, A\, A) < 1 such that

pa(A) > eocpa(B).

Remark 7.3. By checking the proofs, it is easy to see that Theorems 7.1 and 7.2 are still valid when the
cube Qg is replaced by a section Sg.

8. Explicit barriers

This section contains the construction of the barriers that will be used in Section 9 to prove a localization
estimate. This is a quite delicate task due to the degeneracy/singularity of the extension equation and the
presence of the Neumann boundary condition.

The idea for the barrier is to use da((zo, 20), (%, 2)) ™%, for @ > 0 large, to construct subsolutions in a ring
Sar (20, 20) \ Syr (0, 20). This depends heavily on whether s is smaller or larger than 1/2. When 0 < s <1/2,
271/ Blows up at the origin. When 1/2 < s < 1, the coefficient |z|*~"/*
z = 0. In the latter case, we need to use an auxiliary function that bypasses the points where |z|

the coefficient |z| degenerates near

2—1/s is
small. A similar auxiliary function will be used when 2y = 0 to force the Neumann condition to be strictly
positive. By the symmetry of the equation, it will be enough to consider the nonnegative side of the ring if
zp > 0 and the nonpositive side if zg < 0.

The following is a preliminary result that will be used in the case when 0 < s < 1/2.

Lemma 8.1. Let 0 < s < 1/2 and zg > 0 be fized. Define the function Q : R — R by

_ (W(z) = h'(%0))?
A=) = G, o I (z)
Then Q is a continuous function of z > 0, and Q(z) > 1 for all z > 0.

Proof. By L’Hopital’s rule, lim,_,., Q(z) = 2, so that Q(z) is continuous for z > 0. Also, for s = 1/2 and
all z # zg, we have Q(z) = 2. Hence, let us assume for the remainder of the proof that 0 < s < 1/2.
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Tt is easy to see that lim, ,o+ Q(z) = oo and that lim,_, . Q(z) = ﬁ > 1. Therefore, it is enough to
prove that Q(z) is decreasing for z > 0, z # 2. To this end, we will show that @ (z) < 0 for z # 2. First,
observe that

(h'(2) = W'(20)) 1" (2)

(=) = (On (20, 2)h" ()2 () (8.1)
where
I(2) = 264 (20, 21" () — ((2) = I (20))% — On (20, 2) (W' () — W' (20)) ’28
We can write
10 =i e Sgatme U2 o U R) fe

It follows that I(z) > 0 for all z > 0 if and only if

2_ 1 1 2
W(z) = —2§ Y + zg“z%_l —(1—2s)z 25+ (1—2s)z5 >0,

for all z > 0. Note that 1(z9) = 0 and ¥(0) = (1 — 25)20% > 0. We claim that 1) is decreasing as function of
z > 0. Indeed, ¥'(z) < 0 if and only if

2_ 1 1 1-2s) 1
—z5 ' + (— - 1> z5+lz%_2 — 7( )zgz%_l <0.
s s

Multiplying both sides by z, 1/ ®s/(1 — s) > 0 and rearranging, this is equivalent to

1_o S 11 1—2s 14
s < R S s R
w0 <1—s)z0 +(1—5 :

which is true by Young’s inequality, and the claim follows. Thus, we conclude that

Y(z) >0 for0<z<z and (z) <0 forz> 2.
This gives that

I(z) >0 for0<z<z and I(z) <0 forz > z.
Since, in addition,

h'(2) —h(2) <0 for0<z<z and h'(z)—h'(2) >0 forz> 2,
we deduce from (8.1) that Q' (z) < 0 for all z # zy. This completes the proof. O
We now construct the barriers ¢. For a set S C R™*!, we introduce the notation
St=8n{z>0} and S~ =Sn{z<0}.

To deal with the singularity at z = 0, we define ¢ in either the positive or negative half spaces. In particular,
if zp > 0, then we consider the partial ring [S, (2o, 20) \ Syr (0, 20)] . If 29 < 0, then we consider the partial
ring [Sy (o, 20) \ Syr (20, 20)]~. We will use the condensed notation
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(S (20, 20) \ Syr(@o, 20)] T if 29 >0

Sr X, 2 S'YT Zo, 2 * = o
150 (0, 20) Se (0, 20)] {[Sr(xmzo)\sw(gﬁov%)] if 20 <0.

Lemma 8.2. Fiz 0 < v < 1 and consider a section S,(zo, z9) C R"T1.
If z9 > 0, then there exists a classical subsolution ¢ = ¢(x,z) to

{aij(x)(?ij<b + ‘Z|27é azz¢ > a(nA + 1) in [S2r(‘r07 ZO) \ SWT(xov ZO)]+ N {Z 7& 0} (8 2)
—0.4¢(2,0) <0 on [Sar (20, 20) \ Syr (20, 20)]t N {z = 0}. '
If zo < 0, then there exists a classical subsolution ¢ = ¢(x, z) to
{ (£)01y6+ |=*7* 0.6 > a(mA +1) 0 [Sar (@0, 20) \ S1r(0, 20)]~ N {z 7 0} (5.3)
—0,_¢(2,0) >0 on [Sa, (20, 20) \ Sy (0, 20)]~ N {z = 0} '

In each case, ¢ > 0 in [Sp(z0,20) \ Syr(20,20)]%, ¢ < 0 on [0Sz (w0, 20)]F, and there is a constant C =
C(n, A\, A,y) > 0 such that ¢ < Car on [0S, (z0, 20)]%.

Proof. The proof of (8.3) will follow from (8.2) at the end by symmetry. The construction of the subsolution
in (8.2) will depend on whether zp > 0 or zp = 0 and on whether 0 < s <1/20r 1/2 < s < 1.

Case 1: zp >0 and 0 < s < 1/2.

We begin by considering the function (d¢((zo, 20), (z,2)))~* for a large constant o = a(y,n, A, A, s) >0
which will be fixed later on. Let Q(z) be the function defined in Lemma 8.1. For a point (z, z) € [Sa, (20, 20)\
Syr(x0,20)]" \ {z = 0}, we use ellipticity and Lemma 8.1 to estimate

a7 ()03 (0 (0, 20), (2, 2))) ™ + |2° 7 02 (da (w0, 20), (2, 2))) ™
= a(de((x0, 20), (z,2))) "7

(@ + 1) (a¥ (2) (2 — z0)ilx — z0); + 21>+ (W'(2) — h'(20))?)

() + 1 B0, 20). (2,9
> a(da((z0, ), (2, )
(a4 DM = a0l + 277 () = 1(a0))?) = (0 + 1) B, o), 2 2)|
— a3 (0, 0), (2,2)))
(a+1) <2)\6¢(aco,x) +
— a(F((x0,20), ()

(2 1) = 0+ 1)l ) + (@) o+ 1) = (0 + 1) 3y, )|

v

Oé(&p((xo, ZO)? (‘L Z)))—a—2

(2@ 1) = 0+ 1)y lan,) + (-4 1)~ (04 1) 020, 2)

Choose a = a(v,n, A, A) large so that
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20a+1)—(nA+1) >4y (nA+1) and (a+1)—(nA+1) >4y (nA+1).

Since yr < 0a((zo, 20), (2, 2)) = dp (20, ) + On(20, 2), it must be that d,(zo,z) > vyr/2 or d;(20,2) > yr/2.
If §,(zo, ) > yr/2, then

0 ()05 (80 (w0, 20, (,2))) ™ + |2]** 0.z (G0 (w0, 20), (&, 2))) ™
> a(0a (w0, 20), (2,2))) 7% |4y (nA + 1)d, (w0, 2) + 0
> a(nA +1)(2r) 1,

If 0, (20, 2) > yr/2, then

0 ()05 (0 (20, 20), (2, 2))) " + |2~ * 0. (0 ((x0, 20). (x, 2)))
> (00 (30, 20), (,2))~2{0 4+ 497 (nA + 1) 84 (20, 2)
> a(nA +1)(2r)7 71,
Combining the previous two estimates, we have that, for all (z,z) € [Sa, (20, 20) \ Sy (%0, 20)]T \ {z = 0},
a1 (2)0;; (00 (0, 20), (.2))) ™ + 2177 Bz (B8 (20, 20). (2, 2)) ™ > a(nA + 1)(2r) =1,

Define ¢ in [Sa, (20, 20) \ Syr(z0, 20)]T by

¢(x,2) = a " a(2r)* (s ((x0, 20), (2, 2)) 7 =777,

Then a"(2)9;;¢(z, z) + |z|27% Pz, z) > a(nA + 1). If [Sar (20, 20) \ Syr(z0,20)]T N {z = 0} # &, we need
to check the Neumann condition. In this case, let (z,0) € [Sa, (2o, 20) \ Sy (20, 20)]" N {z = 0} and observe
that

0:+¢(2,0) = —a(2r)* " (d((z0, 20), (2, 2) "7 (W (2) = I (20))|,_,
= a(2r)* " (de((x0, 20), (=,0)) "' A/ (20)

> ah’(z9) >0

since zg > 0. Therefore, ¢ defined in [Sa,(zo, 20) \ Syr (20, 20)]" is a subsolution to (8.2). It is easy to check
that ¢ < 0 in [Sa,. (w0, 20) \ Sr(20,20)]" and ¢ > 0 in [S,.(z9,20)]F. Lastly, for (x,2) € [0S, (w0, 20)]F, we
have that ¢(z,2) = a=ta2*t(y=t — 1)r = Car, where C = C(y,n,\,A) > 0.

Case 2: zp > 0and 1/2 < s < 1.

Here we need to bypass the points where |z|2_-% is small with respect to the size of the section Sa,.(z9) C R.
Let 0 < & < 1 be a small constant, to be chosen. Let 0 < g9 < 1 be as in Lemma 4.6 and define the set H,
by

_1 ‘SQT(ZO)|
H, =<z¢€ 5S9.(z): 2275 <egpg——"i—7~"—
= {esuta b (Sar (0)

= { S SQT( 0) 1< €O/_Lh(527-(30))h ( )} .
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We first show that the measure of H, is small with respect to the measure of the section Ss,(zp). Indeed,
using Lemma 4.1, we estimate

‘SQT(ZON "
[Hel = / dz</ S (0)) " )P

|2, (20)]

_Eom / h"(z) dz = e¢ |Sa2r(20)] -

Sar(20)

By Lemma 4.6, up(He) < epp(S2r(20)). i
We will construct a function he in [Sa,(20)]" that bypasses the points in H.. Let H. be an open interval
such that

H. C H. C Sor(20), pn(H:\ He) < epn(Sar(20)),
and let ¥ = 1.(z) be a smooth function satisfying
Ye=1in He, ¢ =cinSy(20)\He, € <te<1inSa ().
We use the notation
[Sor(20)]" = (21,2R), where 0 < zy < 25 < zg.

Note that z;, = 0 if 0 € Sa,(20).
In [S2,(20)]T, let he = h.(2) be the strictly convex solution to

R =2(nA+ 1)k in [Sar(20)]
he(zr) =0
RL(z1) = epn(Sar(20)).

We remark that h. € C*°((z1,zg)) and, since h € C1(R), we have h. € C1([Sa,(20)]T). Since h. is strictly
convex in [Sa,(20)]* and he € C([Sa,(20)]), it follows that hL > 0 in [S2,.(20)]T. Moreover, since h. is
strictly increasing, h. achieves its maximum at z = zg, so that h. < 0 in [Sa,(20)]*.

To bound h. and h., we first estimate

/waduh—/wedﬂw / Ve dpn, + / Ve dpn

Sar(20) H.\H. Sor(20)\He
g/duw / dpn + / edpn
Hs I:I&\HE Szr(z‘j)\ﬁa

= up(H:) + /Jh(ga \ H.) + epn(S2r(20) \HE)
< eun(S2r(20)) + epn(S2r(20)) + epn(S2r(20)) = 3epn(S2r(20))-

Let § > 0. For z € [S2,(20)] ", by the previous estimate,

z

W =K = [ ) dw e+ )

zL+06
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z

_ / 2(n + 1)l (w) dw + . (21, + )
zr+6

<2(nA+1) / Ve dup, + hl(zp +9)
Sar(20)

< 6(nA + Depn(S2r(20)) + hL(2L + 0)

= Cepn(S2r(20)) + hL(2L + 0)

for a constant C' = C(n,A) > 0. Taking the limit as 6 — 0, we have
hi(2) < Cepn(Sar(20)) + hi(21) = Cepn(Sar(20)) + epn(S2r(20)) = Crepn(Sar(20))

for a constant Cy = Cy(n, A).
Again, let § > 0. For z € [S2,(20)]", by Corollary 4.7 part (3),

ZRf(S

Ihe(2)] = —ha () = / B, (w) dw — he(z — 0)

2p—

rR—0
< Creun(Sar(20)) / dw — he(zp — )

z

< Crepn(S2r(20)) |S2r(20)| — he(zr — 9)
< Caer — he(zr — 9)

for a constant Cy = Ca(n, A, s) > 0. Taking the limit as 6 — 0, we have
|he (2)| < Caer — he(zr) = Caer.
Suppose that yr/2 < 5 (20, z) < 2r. By the convexity of 5 (20, z) in the variable z, we obtain
0 = 61(20, 20) > On(20,2) + 0.01(20, 2) - (20 — 2).
By Corollary 4.7 part (3), this implies

6h(ZO>Z) > 77"/2
|z — 20l ~ [S2r(20)|

1.6 (20, 2)| > > C3pn(S2r(20))

for a constant C3 = C3(7, s). Choose € = £(y,n, A, s) > 0 small so that Cie < C3. Then,
0201 (20, 2) — hi(2)] = 1020n(20, 2)| — ML (2)] = (C5 — C1)pn(Sa2r(20)) > 0
and

(0:0n(20, 2) = he(2))* = (C3 — C1e)*[un(Sar(20))]* = Calpen(Sar(20)))? (8.4)
for a constant Cy = Cy(y,n, A, s) > 0.
For a large constant o = a(7y,n, A, A, s) > 0, we define the function ¢ on [Sa, (20, 20) \ Syr (%0, 20)]T by

¢(z,2) = (0 (0, 20), (%, 2)) — he(2)) "
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Let (z, 2) € [Sa, (20, 20) \ Syr (20, 20)] T \ {# = 0}. Since h. <0, we first note that
1 < 8o ((20, 20), (2, 2)) < 0o (20, 20), (, 2)) — he(2) < 21 + Coer = (2 4 Coe)r- (8.5)
The equation for ¢ in [Sa, (20, 20) \ Sy (%0, 20)] T\ {z = 0} is
0" (2)0i;6 + |27 022
= aF((z0, 20), (2. 2)) = ha(2)) "
(o 0 a e~ an)sa = an)s 14 (0. {020, (0.2) = el
— (G0 (@0, 20), (2, 2)) — hel2)) | tr(A(2)) + 1 — 2(nA + wg} )
Using ellipticity and
0.8((w0: 20). (2, 2)) = 0.6, (30,2) + 3n (20, 2)) = -6 (20, 2, (5.6)
we estimate

a (2)0i;$ + |2[*7* 0.9
2 a(5¢(<$07 20)7 (37, Z)) - hE(Z))_a_Z
<(a +1) [2/\%(930, 2) + 27 (0:0n(20, %) — hé(z))rﬂ
(B, 0), (5:2)) = hele)) 1 = 20)(A + 1))
Suppose that z € H.. Since ¥.(z) = 1, we can use (8.5) to estimate
aij (1:)61]& + |Z|2_‘% 8zz¢~)
> alba{(aa.20) (0.9) = ()2 (04 Gol(an. o) (0.2) = he()nd + 1)) (8D
> a(nA 4 1)(2 + Cye) 1yl
Next, suppose that z ¢ H.. Since t.(z) > 0 and |z|27% > g0 |S2r(20)| /1n(S2r(20)), we estimate
a" ()i + |2[*7* 0.9

> a(0a (w0, 20), (#,2)) — he(2)) 77

|2, (20)]
1 (S2r(20))

— (6o ((z0, 20), (2, 2)) — he(2))(RA + 1))

((a +1) [2>\5¢($0, z) + €0 (02020, 2) — hL(2))? (8.8)

Since da((o, 20), (z,2)) > ~r, we have that d,(xo,x) > yr/2 or 0n(z20,2) > 7r/2. Suppose first that
dp(z0,2) > yr/2. Then

|2 (20)]

200 ,X) FeEg—
e(v0:2) F 20 Te o))

0.0n(20,2) — h(2))? > 20, (z0, ) > Ayr.
e @
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Choose a = a(vy,n, A\, A, s) large enough to guarantee that
(@ + Ay — (nA + 1)(2 + Coe) > (nA + 1)(2 + Cae).
Then, from (8.8) and (8.5),
0" (2)0; + 12" 7F 0.9
> alba{(aa.20) (0.9) = ()2 (a+ Dxar = (d + D2+ Caor )

> a(0s((0, 20), (2, 2)) = he(2)) 772 (A +1)(2+ Cae)r
> a(nA 4+ 1)(2 + Coe) @ tpma L,

Next, suppose that dp,(z0,2) > yr/2. Since Sz, (20, 20) C Sor(z0) X S2r(20), we know that yr/2 < §;(z0,2) <
2r. By (8.4) and Corollary 4.7 part (3), we obtain

|S2r(20)|
tn(S2r(20))
> e |S2r (20)]
pn(S2r(20))
> e |2 (20)]
11 (S2r(20))
> Cseor

2X0y, (0, ) + €0 (0:0n(20, 2) — h/e(z))z

(azéh(zm Z) - hla(z))2

Calpn (S2r(20))]?

for some constant C5 = C5(y,n, A, s) > 0. Let a = a(v,n, A\, A, s) > 0 be large so that
(a+1)Cse9 — (RA + 1)(2 + Cae) > (nA + 1)(2 + Cae).
Then, from (8.8), we use (8.5) to obtain
a' ()0i; + |Z\27% -0
> a(0s((w0, 20), (7, 2)) — he(2)) "2 ((a +1)Cse0r — (A + 1)(2+ Czé‘)?“) (8.10)

> a(de((xo, 20), (z,2)) — hg(z))_o‘_Q(nA + 1)(2+ Coe)r
> a(nA +1)(2 4 Cye) > 1yt

From (8.7), (8.9), and (8.10), there is an a = a(y,n, A, A, s) > 0 such that for all (z,z) € [Sa,(x0,20) \
Sy (20, 20)]" \ {z = 0}, we have

()01 + 12777 0220 > a(nA + 1)(2+ Cae) @ 1po L,
We define the barrier ¢ on [Sa, (20, 20) \ Svr (0, 20)]* by
Pz, 2) = aa™ (2 4 Coe)* T (¢(z, 2) — (1 + Coe)™*r™?).
For (2, 2) € [Sar (20, 20) \ Syr (0, 20)]* \ {z = 0}, it then follows that a% ()36 + |2|*~* 0.2 > a(nA+1). If

zr, = 0, we need to check the Neumann condition. In this case, let (z,0) € [S2, (%0, 20) \ S4r(Z0, 20)] T N{z =
0}. Using (8.5), we see that
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0:16(2,0) = a(2+ C2)* ™ (8a (0, 20), (2, 0)) = he(0)) ™7 (W (20) + et (S2r (20)))
> a(2 4+ Coe)* Tt (2 4 Coe) ™ ™1 (W (20) + epan(S2r(20)))
= a(h'(20) + epn(S2r(20))) > 0,

since zp > 0. Therefore, ¢ is a subsolution to (8.2). In [S, (20, 20) \ Syr (20, 20)]", we have
vr < o (20, 20), (%, 2)) — he(2) < (1 + Cog)r,

so that ¢ > 0 in [S,(z0, 20) \ Syr(z0,20)]". Choose € > 0 small so that 2 > 1 + Cse. Then, ¢ < 0 on
[0Sa,-(z0, 20)]T. Indeed, for (z,2) € [0Sa,(z0, 20)]T, we have that

—he(z) > 0> (1+ Coe —2)r
which implies
0a ((z0,20), (2,2)) — he(2) = 2r — he(2) > (1 4 Cae)r.
Thus, ¢(z, z) < 0. Lastly, let (z,2) € [0Sy-(x0,20)]" and observe that

(Z)(x’ Z) = ClO{il(2 + 028)a+lra+1 ((’y’r — h&_(z )70‘ — (1 + 026)*04,’”704)
<ao (24 Cogg)* Tt ((yr +0)7* = 0) = Car

for C = C(v,n, A\ A, s) > 0.
Case 3: zp=0and 0 < s < 1/2.

For the barrier constructed in Case 1, the inequality for the Neumann condition was not strict for zy = 0.
We will add a function g. to the quasi-distance function d¢ to adjust the barrier as we did in Case 2.

Let (z,2) € [Sor(20,0) \ Syr(x0,0)]". Since (z,2) € Sar(x0,0) C Sop(z0) X S2,-(0), we know that z €
S (0) = By, 2:r2(0) by Remark 4.8. That is,

2| < qs2°7° = Cor®. (8.11)
Also, since 2 — % <0,
2278 >0y e (8.12)
Given ¢ > 0, define g. in [S2,.(0)]* by
ge(2) = er' ™%z — eCor.

For all z € [S2,(0)]T, we have that g. <0 by (8.11). We also have that

1-s

|9:(2)| = eCor —er'™*2 < Cher, and g¢.(z) =er'™* > 0.

Let z be such that yr/2 < 05(0,2) < 2r. As in Case 2 above, since z € S3.(0) = Bg,,..(0), we can use
the convexity of §,(0, z) in the variable z to obtain

5h(0,2) > ’Y’r/2 _ C*«B,rlfs

0.0n(0,2)| > > =
0:60(0,2)| 2 P > T
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for a constant Cs = C3(, s). Choose ¢ = (v, s) > 0 small so that ¢ < C3. Then,
1020(0, 2) — g(2)] = 10204 (0, 2)| — |g.(2)| = (C5 —)r'™* >0
and
(0.64(0,2) — gL(2))? > (C3 — &)*r? 725 = Cyr?*~2¢ (8.13)

for a constant Cy = Cy(7,s) > 0.
Let (z,z) € [Sa,(20,0) \ Syr(x0,0)]". Since —g. > 0, we have that

1 < 6a((20,0), (2, 2)) < da((x0,0), (x,2)) — go(2) < 2r + eCyr = (2 4 Co)r. (8.14)
We define a function ¢ on [Sa,.(70,0) \ Sy (20,0)]* by
$@,2) = (6a((0,0), (z,2)) — ge(2)) ™"

Let (z,2) € [Sor(20,0) \ Syr(20,0)]7 \ {z = 0}. Using ellipticity, (8.6), (8.12), and (8.14), we estimate the

equation for ¢ as follows:

0l ()96 + |27 F 0.9
> a(0e((20,0), (x,2)) — ge(2)) "2

((a +1) [2)\6W(xo, x) + C e 10.01(0,2) — (z))ﬂ
— (da((z0,0), (x, 2)) — g-(2))(nA + 1)) (8.15)
a(0a((x0,0), (2, 2)) — ge(2)) 77

((a +1) [2)\%(360, x) + C e 18.01(0,2) — (z))ﬂ

— (A +1)(2 —|—602)7“).

Since ds((x0,0), (x,2)) > ~r, we know that d,(zo,z) > ~r/2 or 6,(0,2) > ~r/2. Suppose first that
dp(z0,z) > yr/2. Then

2X0y, (2o, ) + C’ , 2 H0,61(0,2) — gL(2))? > 2X0, (0, 7) > M7
Choose a = a(vy,n, A, A, s) large enough to guarantee that
(@ + DAy — (A +1)(2 + Cae) > (nA +1)(2 + Cae).
Then, from (8.15) and using (8.14), we have that

a7 (2)0:;6 + 2777 0.0
> a8 ((20,0), (2, 2)) = g-(2)) " ((a + 1)Myr — (A +1)(2 + Cae)r)
> a(6s((20,0), (2, 2)) — ge(2)) 2 (nA +1)(2 4 Cae)r
> a(nA +1)(2+ Cog) "1yt

(8.16)
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Next, suppose that 5(0, z) > yr/2. We further know that vyr/2 < §,(0,2) < 2r, so, by (8.13),

220, (w0,2) + Cy = 12771 (0.04(0, 2) — g(2)))?

2s5—1

- _ _ _2s-1
>040Cy ¢ r2=10, 2% = CyCy ¢ 1.

Let @ = a(y,n, A\, A, s) > 0 be large so that

(@+1)CiCy 7 — (nA +1)(2+ Ce) > (nA + 1)(2 + Coe).

Then, from (8.15) and using (8.14),

0" (@) + |2* 77 0.6

> aldn((an. 00 0:2) - () (@4 DEG T = a4 G )

> a(ds((20,0), (2, 2) = g:(2) " *(nA +1)(2 + Cre)r
> a(nA 4+ 1)(2 + Cye) 1yl

From (8.16) and (8.17), there is an a = a(y,n, A\, A,s) > 0 such that for all (z,z) € [Sar(20,0) \
Syr(20,0)]1 \ {z = 0}, we have

aij(x)aij(g + |Z‘2_% zz(g > a(nA + 1)(2 + 6126)—a—1r—a—1.
We define the barrier ¢ on [Sa,(z9,0) \ Sy (z0,0)]* by
gf)(iL" Z) = (10[71(2 + 62€)a+1ra+1 (gf;(;a Z) — (1 + C‘lg)farfa) )

For (z,2) € [S2r(%0,0) \ Syr(20,0)]7 \ {z = 0}, it follows that a%(x)d;;¢ + |z\27% 0200 > a(nA + 1).
If (x,0) € [S2r(z0,0) \ Syr(z0,0)]t N {z =0}, by (8.14),

9.10(2,0) = a(2 + Cae)* ™ (65 (20, 0), (z,0)) — g-(0)) ™ ter'~*
> a(2 + Cog)*Tlra (2 4 Coe) @ Iy lgpl=s

=aer'™* > 0.

Therefore, ¢ defined in [Sa,.(20,0) \ Syr(20,0)]" is a subsolution to (8.2). One can also check that ¢ > 0
in [S,(20,0) \ Syr(z0,0)]" and that ¢ <0 on [0S2,(20,0)]" when € = £(, s) is small enough to guarantee
that 2 > 1 4 Cae. Moreover, there is a constant C = C(v,n,\, A,s) > 0 such that ¢(x,z) < Car on
[0S (z0,0)]T.

Case 4: zp <0and 0 < s < 1.

By (6.3), if (x,2) € [S2r(20,20) \ Syr(z0,20)] 7, then (z,—2z) € [Sar(x0, —20) \ Syr(x0, —20)]". Define
Y in [Sor (20, 20) \ Syr(x0,20)]” to be the even reflection across {z = 0} of the solution ¢ to (8.2) in
[Sor (20, —20) \ Syr(z0, —20)] T

Y(z,2) = ¢(x,—2), for (z,z) € [S2r (o, 20) \ Syr(x0, 20)] -
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Since D (z, z) = D*¢(x, —z), we know, for (z,z) € [Sar (20, 20) \ Syr (%0, 20)]~ \ {z = 0}, that

0¥ (@)0i50(, 2) + |2 F Ooatb(w, 2) = ' (2)0i50(w, —2) + |2 Dz, —2)
> a(nA +1).

For (x,0) € [Sar(20,20) \ Syr(20,20)]” N {z = 0}, we have —0,_¢(z,0) = 0.4 ¢(x,0) > 0. Therefore, ¥ is a
subsolution to (8.3). It is straightforward to check that ¢ > 0 in [S, (o, 20) \ Syr (%0, 20)]~ and that ¢» <0
on [0Ss, (o, 20)] . Lastly, if (z, z) € [0S4,(x0,20)]~, then (z, —z) € [0Sy, (x0, —20)]". This gives the desired
estimate ¢(z, z) = ¢(z, —z) < Car for (z,2) € [0S,,(x0,20)]”. O

9. Localization lemma

In this section, we prove the main localization estimate, Lemma 9.4. We show that if a supersolution U
can be touched from below with a paraboloid P of opening @ > 0 in a cube @,, then the set in which U
can be touched from below by paraboloids of increased opening Ca > 0, where C = C(n, A\, A, s) > 0, in
a smaller cube @, makes up a universal proportion of ;.. To prove this result, we first use the barrier ¢
constructed in Lemma 8.2 to control how U detaches from a touching paraboloid P, see Lemma 9.2.

Before stating the main lemma of this section, we need to introduce some notation. First, we define a
constant K» to be large enough so that for any (20,20), (%,2) € R"L and R > 0, if Q. (20, 20) C Qr(%, 2),
then Qa(n11)r(%0,20) C Qg, 5 (%, 2). By Lemma 4.10, we know that if Q. (w0, 20) C Qr(Z, Z) then r < R. If
(7, 2) € Qa(ng1)r(T0, 20) then, by the quasi-triangle inequality (see Notation 4.9),

&
INA

590( ;)

(0p(Z,20) + dp(z0,2)) < K (R+2(n+1)r) < K(1+2(n+1))R
(%, 2) h

K
K (0n(Z,20) + 0n(20,2)) < K(1+2(n+1))R.

IA

We then take Ko = kQ(ﬂ, s) as
Ky = (2n+3)K. (9.1)
Let Ky = Kg(n, s) be given by
K3 = 0°K,. (9.2)
If Qg,z(%,2) N {z =0} # &, then 0 € Si (%) and, by the engulfing property,
Qiyr(%,2) = Qi p(T) X Si,r(2) C Qur,r(F) X Syi, r(0) = Qyi, r(%,0)
and
Qesz(iwo) = QGKQR(@ X SGKQR(O) C Qe?i@zz(@ X 5921%21?,(5) = QKgR(‘%’g)'

We define a vertex set B, C @KSR@, Z) by

B _ Qp,p(#,2) fZ2=00rif Qg n(#,2)N{z=0}=0
© Qo p(7.0) ifZ#0and Qg p(7,5) N {2 =0} # 2,

so that B, is symmetric with respect to {z = 0} if Q4 (%, 2) N {z = 0} # @.
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Define the contact set A, r for a continuous function U on Qg (%, Z) by

A= {(x,z) € Qg,r(T,2) 1 U(z,2) < aR and there is (zy, 2,) € B, such that
U can be touched from below at (,2) in Qg, »(Z, 2) (9.3)

by a paraboloid of opening a > 0 with vertex (x,, zv)}

Lemma 9.1. The contact set A, R is closed in Qg, (%, Z).

Proof. Let (zy,2x) € Aq r and (20, 20) € Q, (%, Z) be such that (zx, zx) — (20, 20). Since U(zy, 2¢) < aR
and U is continuous, U(xg, 20) < aR. By the same argument as in the proof of Theorem 7.1 with B = B,,
we can touch U from below in @z, (%, %) at (zg,z0) by a paraboloid P of opening a > 0 with vertex
(29, 29) € B,. Therefore, (0, 20) € Aq,r Which shows that A, g is closed in QKQR(QE, Z). O

v Tv

Lemma 9.2. Fiz 0 < v < 1. Assume that Q is a bounded domain and that a*(x) : Q@ — R are bounded,
measurable functions that satisfy (1.5). For a cube Qr = Qgr(%,2) C R™"L consider a cube Qi,r =
Qk, (7, Z) where Ks is as in (9.2). Let f € L>*(Qg,r N {z = 0}) be nonnegative. Suppose U € CZ(ngR\
{z = 0}) N C(Qg,r) such that U is symmetric across {z = 0} and U, € C(Qg,zp N{z = 0}) is a
supersolution to

a(z)0;U + \z|2_%8zzU§O in Qp,rN{z#0}
—0,4.U>f on Qg,rN{z=0}.
Assume that Q. (g, z0) C Qr for some point (xg, 29) such that zg > 0. Suppose that U is touched from below

at (x1,21) € [Sr(wo,20)|T N Aa R in Q g, g by a paraboloid P of opening a > 0 with vertex (zy, 2v) such that
zy > 0. Then, there exists a constant C = C(v,n,\,A) > 0 and a point (z2,22) € [S,r(20,20)]" such that

U(xa, z0) — P(x2,22) < Car.
Proof. If (z1,21) € [Syr(20,20)] T,
U(x1,21) — P(z1,21) =0 < Car
for all C' > 0, so we can take (z2,22) = (21, 21). Therefore, we assume for the remainder of the proof that

(21, 21) € [Sr (w0, 20) \ Syr (20, 20)]*
Let W =U — P. For (z,z) € Qg,r \ {# = 0}, we have that

a"(2)0;; P(z, 2) + |z|2_% 0..P(x,z) = —a(tr(A(x)) + 1) > —a(nA + 1)
which implies
0" ()0 W (2, 2) + |2 % 82 W (2, 2) < a(nA +1).
Since z, > 0, we also have that

-0, W(z,0) > f(x) + ah’(z,) > 0.
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Let ¢ be the subsolution to (8.2) in [S2, (o, 20) \ Sy (20, 20)]T. By the choice of Ko in (9.1), we have that
Qr(x0,20) C Qr implies

Sar(20,20) C Qa2r(20,20) C Q,r C Qur

Therefore, W — ¢ satisfies

{aw‘ma,» (W =) + |24 0. (W = ) <0 in [Sa, (@0, 20) \ Sy w0, 20)]+ 1 {z # 0}
0,4+ (W — ¢)(x,0) >0 on [Sa,(x0,20) \ Syr(zo,20)]T N {z = 0}.

Let (IQ, 2'2) S [Egr(.fo, Zo) \ SWT(IE(), Zo)]Jr be such that

W (g, 22) — ¢(x2,22) = min (W — ¢).

[S2r(%0,20)\S~r(20,20)] T

By the maximum principle (see [13, Theorem 3.1]), the minimum of W — ¢ occurs on the boundary
9[Sa2r (w0, 20) \ Syr (o, 20)]T. That is,

(LEQ, ZQ) (S [aSQT(JZo, Zo)rr U [8577«(560, ZO)]+ U [(SQT(I'O, Zo) \ S—W«(l‘o, ZQ)) n {Z = 0}}

We claim that (22,22) € [0S, (20, 20)] T

First, we will show that (z2, 22) ¢ [0S2- (20, 20)] . Since (x1, 21) € [Sr(x0,20)] T, we know that ¢(z1,21) >
0 which implies W (x1, 21) — ¢(21,21) = 0— ¢(21,21) < 0. Moreover, since ¢ < 0 on [0Sa,(z0, 20)]T, we have
that W (z, z) — ¢(x,z) > 0 on [0S2, (o, 20)]". Therefore, the minimum is strictly negative and cannot occur
on [0Ss,-(zo, 20)] .

If [So-(z0,20)]T N {z = 0} = &, then our claim holds. Suppose that [S2.(z0,20)]T N {z = 0} # @.
Assume, by way of contradiction, that the minimum occurs on [Sa.(20,20) \ Syr(Z0, 20)]" N {z = 0}, ie.
zo = 0. Then —0, (W — ¢)(x2,0) < 0, which contradicts (9.4). Therefore, it must be that the minimum
oceurs at (z2,22) € [0Sy(wo, 20)]T C [Syr (20, 20)] T

Tt follows from Lemma 8.2 that ¢(z3, 22) < Car for C = C(n, A\, A,v) > 0. Since W (z2, 22) —¢(z2, 22) < 0,
this implies that

U(xa,22) — P(x2,22) = W(x2,22) < ¢(x2,22) < Car. O

Remark 9.3. An analogue of Lemma 9.2 with zg, 21, 2, < 0 can be similarly proved using the subsolution ¢
to (8.3) in [Sar (0, 20) \ Syr(0, 20)] -

To state the main result of this section, we define positive constants Ky > 1 and n < 1 by

1

Ko=2K?+2K and n=-— .
0 el A = e KK, 1+ 1)

(9.5)

Lemma 9.4. Fiza > 0. Assume that Q is a bounded domain and that a” (z) : @ — R are bounded, measurable
functions that satisfy (1.5). For a cube Qr = Qr(%,%) C R""1, consider Qi,r = Qi,r(T,Z) where K is
as in (9.2). Let f € L®(Qg, r N {z = 0}) be nonnegative. Suppose U € C*(Qy n \ {2z = 0}) N C(Qg, r)
such that U is symmetric across {z =0} and U1 € C(Qg,zr N {2 > 0}) is a supersolution to

a(z)0;U + \Z|27% 0::U <0 inQg,zrN {z # 0}
—0.4+U > f on Qg pN{z=0}
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Let Q. (xo,20) be such that

Q. (z0,20) CQr and Q.(z0,20) N Aar # 2.

There exist positive constants C = C(n, A\, A, s) > 1 and ¢ = ¢(n, A\, A, s) < 1 such that

pao(Aca,r N Qur(z0,20)) > cpa(Qr(xo, 20)),
where n =n(n,s) <1 is as in (9.5).

Remark 9.5. Once the existence of C = C(n, A\, A, s) > 1 has been established in Lemma 9.4, one can always
take C larger. Indeed, if C’ > C' then, by Lemma 6.3, we have that Ace.r C Acra,R-

Proof of Lemma 9.4. Without loss of generality, we can assume that Q,(zo,20) N Aq,r # @. Otherwise, we
replace 7 by r + € and then take the limit as ¢ — 0% at the end. Let (z1,21) € Q. (0, 20) N Aq, -

Since (x1, z1) € Aq R, there is a paraboloid P of opening a > 0 with vertex (x,, 2,) € B, that touches U
from below in Qg p at (z1,21). We write P as

P(z,2) = —ade((zy, 20), (2, 2)) + ado (24, 20), (21, 21)) + U(x1, 21).

As for zgy, it must be that either zg > 0 or zy < 0. We may assume that z; has the same sign as zy,
meaning that zg, z; > 0 or that zg, z; < 0. Indeed, suppose that zg > 0 and z; < 0. If QKQR N{z=0} =g,
this is a contradiction. If @KQR N{z = 0} # @ then, by Lemma 6.4, P(z,z) = P(zx,—z) touches U from
below in kaR at (z1,—z1) with vertex (z,,—z,) € B,. Since

5h(20, —2’1) = h(Zl) — h(Zo) + h/(Zo)Zl + h/(ZO)ZO
< h(z1) — h(z0) — h'(20)21 + h'(20)20 since 2o > 0 and z; <0 < —2;

= 5h(20,21) <r,

it follows that (1, —21) € Qr(xo, 20) N Aq,r. We proceed with the proof of the lemma using Pand —z >0
in place of P and z; < 0. The argument for zg < 0 and z; > 0 follows similarly.

Hence, without loss of generality, let us assume that 2y, zy > 0. Then, z, > 0. Indeed, if z; > 0, then by
Lemma 6.4, we know that z, > 0. If z; = 0, then, since f > 0, by Lemma 6.6, it must be that f(z1) =0
and, consequently, z, = 0.

Let v = 1/(26?). Note that (x1,21) € Qr(20, 20) C S(n+1)r (20, 20). We apply Lemma 9.2 with 7o = (n+1)r
and vo = v/(n + 1) to find a point

(%2, 22) € [Syoro (w0, 20)]" =[S (w0, 20)] " C Sy (o, 20)
and a constant C' = C(n, A\, A, s) > 0 such that
U(xa, z0) — P(x2,29) < Car.

Let a = 1/(203%) < 1 and let C" = C'(n,\,A,s) > 1 be a large constant, to be determined. Slide from
below the family of paraboloids

P(x,2) = P(z,2) — C'ade ((Ty, 2,), (1,2)) + d, for (Zy,Z,) C Sar(wa, 22) (9.6)

until they touch the graph of U in Q. » for the first time. It is clear that
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P(z,2) = —aby (x4, 2) — C'aby(Zy, x) — adp (20, 2) — C'adp(Zy, z) + d’
for some constant d’. Let £ € R be such that

R (z,) + C'h (Zy)

W(E) = C'+1

It follows that, for some constant ¥/,
—abp(zy,2) — C'adp(zy, 2) = —(C" + 1)adn(&,2) + b'.

Since

Vo(x,)+C'Vo(z,)  x,+C'z, T, +C'z,
C'+1 O +1 cC'+1 )’

we similarly write, for some constant b”,

—aby (T4, x) — C'adyy (T, x) = —(C" + 1)ad,, (LC%J) +0".

C'+1

Therefore

Plaz) = (€ + Nade ( (2 E6) (w,2)) +

for some constant d”. Hence, the opening of P is (C’ + 1)a > 0 and its vertex is of the form

W(z) + C'h' (2,)
C'+1

<xv + C'z,

. ,s) where 1(€) =

Let B be the set of these vertices and let A denote the set of corresponding touching points.
Since P(z2,22) < Ul(xa,22), we have that P(x9,22) — C'ade((Zy, Zy), (T2, 20)) + d < U(xa, 29). By the
engulfing property, So,(22,22) C Saor (T, Zy), 80 that de((Zy, Zy), (T2, 22)) < abr. Therefore,

d < U(xa, 22) — P(w2,22) + C'ad((Zy, Zv), (72, 22)) < Car + C'abar.

Since (z2,22) € Saor(Tv,2Zy) C S200r (T, Zy), we again use the engulfing property to see that
S200r (T, Zv) C Song2r (T2, 22). Suppose that (z,z) € @, g 18 such that do (w2, 22), (x,2)) > 2a0?r. Then
0 ((Zy, 2v), (x,2)) > 2a6r and

P(x,2) < P(z,2) — C'a(2a0r) + (Car + C'abar)
T,z

P
P(x,2)+ (C - C'0a)ar < P(z,2) < U(z,2)

when ¢’ = C’(n,\,A,s) > 1 is such that ¢’ > C/(fa). Hence, the contact points for P are inside
Soa2r (T2, 22). That is, A C Saqez, (22, 22).
Recall that (z2,22) € S (20, 20). Since v = af, we use the engulfing property to obtain

Sy (0, 20) = Saer(0,20) C Sapzr (T2, 22)
C Soap2r (2, 22)

C S2003r (%0, 20) = Spr(T0, 20) C Qur(0, 20)-
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Consequently, A C Saq92, (22, 22) C Qur (0, 20).
We now estimate

P(z,2) < P(z,2) +d

(Tyy 20), (@1, 21)) + U(21,21) + d

(T, 20), (21, 21)) + aR + (Car + C'abar)

8o ((7,2), (20, 20)) + 08 ((Z, 2), (21,21))) + aR + (CaR + C'afaR)
K3R+ R) + aR + (CaR + C'afaR)

- ((f(?, +1)K +1+C+C'ad) ak.
If C"=C'(n,\ A, s) > 1 is sufficiently large, then
P(z,2) < (C'+1)aR

which shows that A C A(¢/41)a,r-
Since f > 0, we trivially have that

po (B0 {(2) 5102 < %}) — e (BN {(z,2) 2= 0}) =0.

Therefore, by Theorem 7.1,
1o (A 11ya,r N Qyr(To, 20)) > pa (AN Qyr(wo, 20)) = pa(A) > cua(B).
We claim that

cle (B) > C/,U<I>(Qr(x07 ZO))

for a positive constant ¢/ = ¢/(n, A\, A, s) < 1.
For the proof of (9.8), we first show that

C, n+1
nolB) > (i) melSup(on)
Observe that the B can be expressed as

2y + C'Fy B (z0) + C'H (Z,)

B= {(w) tw = T W () = , (T, 20) € Sar(x2722)}.

C'+1

Define the sets By and Bs by

T, +C'z,
Bl = {.’L‘ = 0/7“ LTy € SQT/Q(JTQ)}

B, = {z — () (h(z);flh(z)) 3, € Sm/g(zZ)} .

Since Sor/2(22, 22) C Sarj2(®2) X Sarj2(22) C Sar(2, 22), we know that By x By C B and

(9.7)
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pa(B) > pa(B1 X B2) = py(B1)un(Bae). (9.10)
By a change of variables,
c\" _ ¢ \"
/’LL,D(B:[) = / dxr = <C/——|—1> / dx, = (C,—H> My (Sar/Z(lC2)) .
B Sar/2(w2)

Notice that the set Zy given by

Zy = {zv ER: N (2) = —%h’(zv)}

is a singleton. Then, by using a change of variables,

in(Ba) = / W) dz

By \{z=0}
(W () + O (z) } o o
= ROL(R)TH ) ) 0-(h) h'(%,) dz,
[ (e (M 0.0 (e ) M
Sary2(22)\Zo c’F1
c’ o C'
= —C/ 1 / hl/(zv)dzv = O—H'uh (SaT/Q(ZQ)) .
Sar/2(22)\Zo

Combining these estimates into (9.10), we obtain

Y

/ n+1
H<I>(B) (C,L_H> My (Sar/2(x2)) Hh (Sar/2(32))

Y

Cl n+1
(C’—H> Ho (Sozr/Q(anZQ))

and (9.9) holds.
For (9.8), observe that, by the doubling estimate (4.6) for ug,

20 n+1
i (Syor (72, 22)) < Ky (—7) pa(Sar (w2, 22))

[e%

and

n+1
1o (Snt1yr (70, 20)) < Kg < ) o (Syr(20, 20))-

Since (72, 22) € Sr(20,20), the engulfing property gives S.,(zo, 20) C S~or (22, 22). Hence, by using (9.9)
and the previous two estimates,

cpue(B) > C( ,C/ >”+1 pa (S (22, 22))

C/ n+1 1 o n+1
2 ¢ (C, + 1> Fd (%) M@(S’yer(xg,ZQ))
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C,/ n+1 1 o n+1
() ) st

' n+1 1 o n+1
> —_— —
=¢ (C’ + 1) K2 <29(n T 1)) 13 (S(n+1)r (70, 20))

Z C//L@(Qr(x07 ZO))

This completes the proof of (9.8).
From (9.7) and (9.8), the lemma follows. O

10. Covering lemma
Here, we establish the following covering lemma.

Lemma 10.1. Let Ko = Ko(n,s) > 1, n = n(n,s) < 1 be as in (9.5), and fir 0 < ¢ < 1. Consider a
cube Qr/x, = Qr/K,(Z,Z). Suppose there is a countable family of closed sets Dy, C R™+! that satisfy the
following properties:

1) DyC Dy C---CDyC- CQpg,, Do # 2;
2) for any (z,z) € R p >0 such that

Qp(w,2) CQR(T,2), Qup(z,2) C Qr/k, (T, 2), Qp(x,z) N Dy # 2,

we have

110 (Qnp(x,2) N Diy1) > cpa(Qp(, 2)).

Then

1e(Qryiy \ D) < (1= ¢)* e (Qryx,)-

Remark 10.2. Observe that Lemma 10.1 is similar the Calderén-Zygmund lemma in [3]. In fact, the sets
Qr/ro \ Dry1 and Qg i, \ Dy, the parameter 1 —c, the Monge-Ampere cubes @, and Q,,, and the Monge—
Ampere measure pug can be seen as analogues of the sets A and B, the parameter d, the dyadic cubes Q
and @, and the Lebesgue measure of Lemma 4.2 in [3], respectively. See also [29, Lemma 2.3].

To prove Lemma 10.1, we need the following simple consequence of [7, Theorem 1.2] for Monge—Ampére
cubes.

Lemma 10.3. Let E C R™"! be a bounded subset. For each (x,2) € E, consider a cube Qr, ., (7, 2) with
radius 7y .y > 0. Then there is a countable subfamily of such cubes {Q,(x;,2;)}52, such that

o0
EC U Qr(4,2:), with Q,, /K, (T, z;) pairwise disjoint.
i=1

Proof of Lemma 10.1. For any (z0,20) € £ := Qr/k,(Z,2) \ Dy and let r be given by

T = T(zg,20) = {70 : Qry (w0, 20) N Dy # T} (10.1)
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The family {Q,(x0,20)} covers E. By Lemma 10.3, there is a countable collection of cubes {Q,, (z;, 2;)}52,
such that E = Qr/k, \ Dr C UU; @r, (74, ), with Q. /k, (s, 2;) pairwise disjoint. Then,

pae(Qr/r, \ Di) < pa (U Qr,(wiy 2i) N QR/K0> < ZM‘:D(QW (74, 2:) N QR/K,)-
We claim that, for any (x,20) € E and r given by (10.1),

pa (Qr (0, 20) N QR/KO) < %M@(QT/KO (z0,20) N Diy1)- (10.2)

Suppose for now that (10.2) holds. Then

1o (Qr/xy \ Di) < Z 1 (Qr; (T, 2:) N Qr/K,)

1
<> ~he(Qri /i (T3, 2i) N Dics1)

K3

= %/ﬂb (U Qri /i (Ti i) N (D1 \Dk)>

1
< Ho(Dry1 \ D).
In the second to last estimate, we used our choice of r in (10.1). Since

ta(Qr/xo \ Di+1) = pa(Qr/x, \ Di) — pa(Dry1 \ Dk)
< pa(Qr/x, \ Dk) — cpa(Qr/x, \ Dk)
= (1 = )ua(Qr/x, \ Di)s

by iteration, we finally obtain pe(Qr/x, \ Dr) < (1 — c)ku¢(QR/KO), and the lemma is proved.
Tt is left to prove (10.2). We will present the proof for n = 1 for which

Qr/ro (2, 2) = Sr/K, (£) X S/, (2) C R

The more general case follows similarly and is left to the reader.
First, we estimate r. Given any point (z, 2) € Qr/x, and (zo, 20) € Qr/k, \ Dk, we have

2KR

5¢(.%‘0,x) < K(étp(i'vmo) + 6@(‘%755)) < Ko’
0

and, similarly, 0y, (20, 2) < 2K R/Kj. Therefore, r < 2K R/Ky whenever r is given by (10.1).

Let (x0,20) € Qr/Kx, \ Dr and r as in (10.1) be fixed.

Next, let (z, z) € Q. (o, 20). By the quasi-triangle inequality, the choice of Ky in (9.5), and the estimate
onr,

0,(Z,2) < K (8,(Z,x0) + 0p(x0, 7)) < K (KEO + r) <R.

Similarly, one can show that d5(Z, z) < R. Therefore, we have that
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Sr(xo) X ST(Z()) = QT(.T(),ZQ) C QR(:i,é) = SR(f) X SR(E) (103)

We will break into cases based on how far (Z, Z) is from (xg, 29).

Case 1. Suppose that Z € S,/ x,(z0), Z € S;/Kk,(20)-
We will show that Q,.(xg, 20) satisfies the hypothesis 2) in the statement with p = r:

Qr(w0,20) C Qr(%,2), Qnr(wo,20) C Qr/Kr,o(Z,2), Q,(0,20) N Dy # 2.

We have already established (10.3). By the definition of r, we know that Q,.(xo,20) N Dy # @. Thus, it is
left to show that Q,.(z0,20) C Qr/Kk, (T, 2). Let (z,2) € Qy (w0, 20). By the quasi-triangle inequality and
by choice of Ky and 7 in (9.5), since x € Sy, (o),

R
0,(Z,x) < K (0p(x0,Z) + 0p(z0,2)) < K (L —|—77r) < —.
Ky Ky
We can similarly show that

0z z) < KE since z € Sy (20). (10.4)
0

Hence, Q- (w0, 20) C Qr/K, (T, Z).
Therefore, since n < 1/Kjy, by property 2), we obtain the desired estimate:
pa(Qr /iy (20, 20) N Dig1) > pa(Qyr(wo, 20) N Dyy)
> cpa (Qr (o, 20))
> cpa(Qr(zo,20) N Qr/ K, (T, 2)).
Case 2. Suppose that T ¢ S,/k,(%0), Z € Sk, (20)-

It must be that zg < & or < xy. Without loss of generality, we assume that x¢ < Z.
From (10.3) and (10.4), we deduce that

Sr(20) C Sr(2), Syr(20) C SryK,(2).

We will find z; between xy and Z such that

Sr/(QKzKO)(.%l) C ST/KO (:Co) N SR/KO (5;‘) (10.5)

Let o1 > xo be such that §,(wo,z1) = /(2K Ko). We first show that S,k ky) (1) C Sy K, (70). Indeed,
for x € S, /2K K,)(71), we have that

r
dp(x0, ) < K (0p(x0,21) + 0p(21,2)) < %

Since

r

2K K,

r
2KK0 = 5§(,(a:0,x1) S K5<p(l‘1,$0) S K25¢($0,$1) = K2

we know that

L<5(£ x)<L
2K2K, — 2TV = oKy
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Thus, zo ¢ S,/(2k2K,)(T1). Since the sections S, /2x2k,)(71) and S, k,(2¢) are one-dimensional intervals,
we can write them as

Sr/ek2Ky) (1) = (zL,2R) Where 2, < z1 < 2R

Sy iy (T0) = (29,2%)  where 29 < 2o < 2%.
Since & ¢ S,/ x,(z0) and zg < Z, we know that
2 <xp < 2% < 7.
Since xg < z1 and S, /(2x2K,)(71) C Sy/K,(20), we have that
m0<a:L<m1<xR<ac%<:E.

Thus, for any = € S, /2x2K,)(71), Wwe know that zo < 2 < Z. By Lemma 4.10,

- N R
0o(Z,x) < 0p(T,20) < o

Hence, S,/ 2k2k,)(21) C Sr/K, (%) and we proved (10.5).
Define

1
—(K+—)\r
p <+2K0)T

Clearly S,(z0) C Sy(20). Let & € Sy.(x0). Then,

-
5(31,) < K (8,(0,21) + 8p(20,2)) < K (2KKO —H") .
Hence, S, (x¢) C S,(x1). Therefore,

Qr(l'o,Zo) = Sr(l'o) X ST(Z()) C Sp(l'l) X Sp(Zo) = Qp(l'l,ZO). (106)

Since Q,.(x¢, 20) N Dy # @, we know by (10.6) that @p(azl, 20) N Dy # &. Next, in order to apply property
2) in the statement, we will show that Q,(x1, zo) satisfies the following:

Qp(71,20) C Qr(%,2), Qnp(x1,20) C Qr/K,(T,2), Qnp(T1,20) C Qr/K,(T0, 20)- (10.7)

First, let us check that Q,(z1,20) C Qr(&, 2). Take (x,2) € Q,(x1, 20) and observe that
- - R
0p(Z,2) < K (0,(Z,21) + 0p(x1,2)) < K 7 +p] <R
0

We can similarly show that 65(Z,2) < R. Hence, Q,(x1,20) C Qr(Z, Z). Next, by the choice of 7 in (9.5),
we know that

r r

= — < —. 10.
2K2K, — Ky (08)

np

Then, by (10.5),
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Qup(1,20) = S /262 K0) (T1) X Sp 22K ) (20)
C Sr/ko(®0) X Sy /iy (20) = Qr /i, (T0, 20)-

Lastly, since Z € S, /k,(20), for z € Sy,(20), by (9.5),

R
01(2:2) < K (0020, 2) 4 00(20,2) < K (1 +10) <
Ky Ky

Therefore, Sy,(20) C Sgr/K, (). With this, (10.8), and (10.5), we obtain
an(iﬁhzo) = 5r/(2K2K0)($1) X Snp(zo)
- SR/KO(:Z:) X SR/KO(E) = QR/KO(ZE,Z).

We have shown that Q,(x1,20) satisfies the hypotheses of property 2). Therefore, by using (10.7), the
conclusion of 2), and (10.6), we obtain the desired estimate:

1a(Qr /iy (T0, 20) N Diy1) > pa(Qnp(21,20) N Diy1)
> cua(Qp(z1,20))
> cua(Qr (o, 20))-

Case 3. Suppose that T € S, /k,(20), Z & Sr/K,(%0)-
This follows exactly as in Case 2 by switching the roles of & and Z and using dy, in place of J,.

Case 4. Suppose that T ¢ S, /k,(%0), Z ¢ Sr/K,(20)-
This follows by combining the arguments in Case 2 and Case 3. O

11. Proof of Theorem 5.3 and Theorem 1.1
11.1. Proof of Theorem 5.3

We begin by sliding a paraboloid P of opening a > 0 with vertex (Z, Z) from below until it touches the
graph of U for the first time in Q% p, say at (7o, 20) € Qg, - Then

P((E, Z) = *aéé((fa 2)7 ((E, Z)) + ad@(('(za 2)3 (:L'O,ZO)) + U(mOa ZO)'
If (5@((53,2), (Z‘Q,Z())) > ff/[(o7 then

aft >U(%,2) > P(%,2) = ads((%, 2), (w0, 20)) + U(z0,20) > @-
2K0 KO

Hence, (x9, 20) € ER/KO = ?R/Ko(i,é) C @R/Kg and
U(zo, 20) = P(x0,20) < P(%,2) < aR.

Thus, if A, g is defined as in (9.3),

AarNQp/k, # 2.
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In order to apply Lemma 10.1, we define the closed sets Dy C @R/KO by
Dy = Agcr RN Qpryryr k>0

where C = C(n, A\, A, s) > 1 is the constant from Lemma 9.4. If necessary, we can enlarge C' to guarantee
that

C—-2K>2 and C—2K—¥>O, (11.1)

see Remark 9.5. As a consequence of Lemma 6.3, we have
@#DyCD; CDyC---CDpC-- CQpp,-

Thus, hypothesis 1) of Lemma 10.1 is satisfied. To check that property 2) in Lemma 10.1 holds, let (z,z) €
R™*L p > 0 be such that

Qp(x,2) CQr(Z,2), Qup(z,2) C Qr/k, (%, 2), Qp(x,z) N Dy # @.
By Lemma 9.4, there is a positive constant ¢ = ¢(n, A, A, s) < 1 such that
p1e (D41 N Qup(,2)) = po(Agcrrr g N Qup(, 2)) 2 cpia(Qnp(2, 2)).
Hence, property 2) is satisfied. It follows from Lemma 10.1 that
1o (Qryiy \ D) < (1= ¢) 1e(Qr/x,)- (11.2)
Also, from the definition of A,ck g,
U(zx,z) <aRC* for (z,2) € Dy. (11.3)

For k > 0, let pr = pr(n, A\, A,s) < 1 be a sequence of positive constants, to be determined, such that
Pr \¢ 0 as k — oco. For convenience in the notation, let

1

523[(0'

Let ko = ko(n, A\, A, s) > 0 be a large constant, to be determined.

Claim. Suppose that, for some k > ko, there exists a point (xx,2) € Qar/(n+1) C Spr = Sar(%, Z) such
that

Uz, 2zx) > aRCFH,
Then there is a point (Tg41, 2k+1) € S, r(Tk, 21) such that
U(Zpa1, 2kp1) > aRCFF2,

Proof of claim. Suppose, by way of contradiction, that U < aRC**? on 0S5, r(Tk, 21). In the section

Sk = S r(Tk, 21)
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we lower paraboloids of the form

20K CF+2
P(z,2) = ey 00 ((Ty, 20), (2, 2)) + Co,  (Tu,20) € Sppr 2k, 21) (11.4)
Pk acz

from above until they touch the graph of U for the first time in Si. Let A denote the set of contact points.
Fix a point (xg, 20) € A and a corresponding paraboloid P as in (11.4) that touches U from above in Sy at
(0, 20)- i

If necessary, slide P further until it intersects U at (zy, zx) and let us denote this paraboloid by P. By
Lemma 6.2, we can write

~ 20K CF+2 2aK Ck+2

P(z,z) = p—k&b((mu, ), (¢, 2)) = T§¢((xvvzv)7 (zk, 21)) + U(wk, 2k).
Since (x4,2,) € ?g(xk,zk) by the engulfing property, S%’; (zg,21) C S,JC%R (24, 2y). In particular,
00 ((T, 20), (Tk, 21)) < %3~ Therefore, for (z,2) € Sk,

. 20K CF+2 20K Ck+2 kR

P ) > ——0 vy AV ) ) + Rck+1
(z,2) > o o((z0, 20), (2,2)) — PG
k2 (11.5)
> “piacp((xv,zv)? (w,2)) + 2aRC*,
k

where we used (11.1). Therefore,
U(zo, 20) = P(x0,20) > P(xo,zo) > 2aRC*
which shows that
A C {(x0,20) € S, r(T, 21) : Ulzo, 20) > 2aRC*}.

We will next prove that (zo,z20) € S, r(Zk,2x); that is, the contact points in A are interior points
of the section S,, r(2k,2k). Assume, by way of contradiction, that o ((zx, 2x), (20, 20)) = pxR. By the
quasi-triangle inequality,

prR < K (0a((Tk, 21)s (T, 20)) + 00 (20, 20), (%0, 20)))

< K (gglz + 5@((1'1)7211)7 (x0720))> y

so that

1 1
Pollra 20), (0, 20)) = ot (E - m) |
Since (zg, z0) € Sk, from (11.5) and (11.1), we get

Ul(zo, z0) = P(xo, 20) > P(xo, 20)
20K Ck+2
Pk
20K Ck+2 1
> Pk <

1
o R 03+ ORCH(© ~2K) > 2RO,

6o (2, 20), (0, 20)) + aRC* (C — 2K)
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which contradicts our assumption that U < aRC**2 on 05, r(Tk, 21). Therefore, it must be that (xo,29) €
S, r(xk, 2). Consequently,

A C {(x0,20) € Sppr(xh, 21) : U(xo, 20) > 2aRC*}. (11.6)

Next, we want to apply Theorem 7.2 with Remark 7.3 in Sy with g = 1/2. For this, we need to choose
ko = ko(n, A\, A, s) sufficiently large to guarantee that

1o 6C?

" (S’i}; oz {(x’Z) el (2aK(jki2/pk) < gha (S (zh, 21)) (11.7)
for all k > kg. Indeed, observe that
22 S R(xk Zk) ol (33 Z) . |h,(2’)| < ||f+||L°°(Skm{z:0})

s e singemo)
< g (Sg%g_(xk)) Hh ({z eR:|p'(2)] < (2aLng+2/pZ)) }) ’

Notice that

||f||Loo(s N{z=0}) ||fHL°°(S N{z=0})

R:|p < BT =2 A

278 ({Z € |h'(2)] < (2aKCF2/pp) (2a K C*+2/py,)
e Wl sunge=op
- chJrQ a

%Mh(&%(g))-

Since 2, € Sgr/(nt1)(2), by the engulfing property, we have Sgr/(n+1)(2) C Sogr/(n+1)(2k). With this and
the doubling property (4.6) for pp,

pn(Sr(2)) < K,

n 1)
<K, 3 o BT
n+1 R/(n+1)
<Kd< 5 )K (ka/ 902)) wSzg (o)
20212
Ba0C (S r (1))
Pk 0c?

Hence

1f1l oo (5,1 {z=0}) o K20°C?
R :|A < el e < d oL R
" <{e WIS T, f ) = oy )

K202
K—C,kﬂh(sgkcg(zk))-
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This and the doubling property (4.6) for pg give

1 pos (s {=0p)
P | < o
72 (Sﬁg (Tk, 25) N {(:E,Z) |n'(2)] < (2aKC*2/ )

< @ (Ska(lL'k)) h (Ska(Zk))

KOk \Posg T2l
K262

S gorhe (SWR (x’“’zk))

- K262

Kd2”+1uq> (Spka (xk,zk)) .

6C?2

KC*¥

Therefore, (11.7) holds if we choose kg = ko(n, A, A, s) large enough so that

K3p2an+!

KCF =

% for all &k > kg.

Hence, by Theorem 7.2 with Remark 7.3 for g = 1/2, it follows that

o

pe(A) 2 SHa(Soyr (2k, 21))- (11.8)

c?

Y

Next, we will choose pj, in order to estimate ”‘P(S# (7x, 21)) in (11.8) from below by ua(Qr/x, (T, Z))
Cc<o

and get

pa(A) 2 2(1 = ) ue(Qr/ i, (7, 7). (11.9)

In fact, since 3 < 1/Ky, we have that (zx, zx) € Qgr/n+1)(Z, 2) C Spr(Z,2) C Sgr/k,(Z, Z), so that, by the
engulfing property,

Sr/Ko(T,2) C Sory o (Th, 2k)-
As a consequence of the doubling property (4.6) for ue,

C262
Ko

n+1
pa(Sor/k, (Trs 21)) < Ka ( ) LL@(S%CQ% (T, 21))
and

1 (Sh(na1) /10 (F:2)) < Ko (n+ 1" o (Shy i, (2, ).

Combining these estimates, we obtain

pa (S oy (Th, 21)) > Ky

c?

&y
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If we take

pk = Co(l —_— C)k/(n+1)’ CO

CC22(n+ 1) (4}(3)1/ (nt)
C

K,

we arrive at (11.9).
We next show, by enlarging k if necessary, that

S((wr, 21), prR) = Spr(Tk, 21) CC Qr/K, (T, Z)
so that
A:AﬁSka(xk,zk):AﬂQR/KO(a?,E). (11.10)

Let Cp > 0 and p > 1 be the constants in Lemma 4.11. Since (zx, zx) € Sgr(Z, ), we know by Lemma 4.11
with ry = B8, ro = B+ (pr/Co)'/P, and t = R, that

1/p
S((xx %), ok R) C S ((fc,z» (B + (g—k) ) R> |

If necessary, make kg = ko(n, A, A, s) larger to guarantee that
© 1/p
P 1
— — — . 11.11
Z <Co> = 2Ky b ( )
j=ko
In particular,
1/p
Pk 1
= < —— forall k> kg.
ﬁ—l—(CO) T or all k> kg
Therefore, S,, r(Tk, 2x) C Sr/2K,) (T, 2) CC Sg/k, (T, 2) C Qr/K, (T, Z), which shows (11.10).

By the definition of Dy,

{(z,2) : U(z,2) > aRC'k} ﬂ@R/KO - @R/Ko \ Dg.

With this, (11.2), (11.9), (11.10), and (11.6), we estimate

e ({U > aRC*} N Qr/xr,) < 1a(Qr/x, \ D)

<(1-0)*ne(Qr/x,)

Sra(4)

1

5/@(1‘1 NQr/K,)

1
5M({U > 2aRC*} N Qr/x,)

IA

IA

IN

1
§M‘I>({U > aRC*} N QR/K,)>

which is a contradiction. This completes the proof of the claim. O
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We now use the claim to prove (5.4) with ke = B8/(n + 1) and Cy = C**Ll. Suppose, by way of
contradiction, that there is a point (2,, 2k,) € @Qgr/(n+1) such that

sup U > Ulzpy, 21,) > aRCHTL
QBR/(n+1)

By the claim, there is a point (Tko+1, 2ko+1) € OSp, R(Tkos 2k,) such that
U(Thyt1, 2kgs1) > aRCFOT2,
Repeating this process, we can find a sequence (Zp41, 2x4+1) € 05, r(Tk, 21) such that
U(Thi1, 2ps1) > aRCHT2 for k> k.

For all k > kg, by Lemma 4.11 with

k+1 1/p
™ = 5+Z(p]> ) ﬂ+z< ) ’ t:Ra

Jj=ko Jj=ko

and by (11.11), we obtain

k+1 1/p
S((Ths1: zh41) i1 R) C S [ (2,2), [ B+ D ( ) R

Jj=ko

cs (@ >2f;)cc2(< e )

Therefore, (7x41,2141) € Qry/2K,) for all k > k. In particular, U is unbounded in QR/(2K0)~ This is a
contradiction and completes the proof. O

11.2. Proof of Theorem 1.1
Let k = r(n,s) <1 and K = K(n,s) > 1 be such that
Kk =+/ko and 2Ky = K
where kg and K are the constants from Theorem 1.3. We recall from (4.3) that
By(xz0) = Sy2/2(20) for any r > 0.
By taking r = \/ko R,
Brr(zo) X {z =0} C Sk r2/2(w0) X Skyr2/2(0) C Skyr2(20,0). (11.12)
By taking r = \/ﬁR7

Sty (20,0) € B e 50) % S, a0
= By p(wo) X S, p2(0) CC O xR.
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We also note that
Skyr2(%0,0) N {z =0} = Bgp(x0) x {2 =0} (11.13)

Let U be as in Theorem 1.2. By Proposition 3.2 and (1.10), it follows that U > 0. Let U be the
even reflection of U so that U is symmetric across {z = 0}. Notice that U € C*(Siyr2(10,0) \ {z =
0}) N C(Sk, g2 (70,0)), U., € C(Sk,r2(0,0) N {z > 0}) and that U is a nonnegative solution to

a' (2)0;;U + 22730.,U=0 in Sk, re(w0,0) N {z # 0}
—0.,U(z,0) = f(x) on Sg p2(20,0) N {z = 0}.

Since U(x,0) = u(x), by (11.12), Theorem 1.3, and (11.13), we have that

sup u < sup U
Bir(zo0) S,.or2(%0,0)

. 7 2s
<Cu (s ln(f O)U+ ”fHLOC(SkORg(wo,O)ﬂ{z:O}) R )

w2 (T0,

<Cy (3 in(f Jut 11l Lo (B, (20)) R2S> ’

rR(Z0

which proves (1.7). Since  is bounded, the Hélder estimate (1.8) immediately follows for R < |z — zo| < KR.
Assume that |z — z¢| < R. Note that

BR(.’E()) X {Z = 0} C SR2(CL'0,O) C SKORQ(LU(),O).
By this, (1.16), and (11.13), we have, for any x € Br(zo), that

[u(z0) — u(z)| = |U(z0,0) - U(z,0)|

& i
— Aia‘b xo,0), (z,0 o sup Ul + f (S T z= R2s
(KORz)al (( ) ( )) Sgor2 (0,0 ‘ | H ”L (SKURQ( 0,0)N{z=0})
<G g — a** sup O]+ £ R
- 2 O - oo N xT .
(K R)2en Bl (20) S 2 (0) L (Bicn(o))

For each fixed z > 0, by (3.5),

dt

UHLOO(BI’(R(IO)) ti+s S M””HL“’(Q) .

e—tL

o0
(25)z _s2 .3
HU('aZ>||L°°(BkR(IO)) < 45T(s) “
0

Letting C' = M}, and ag = 201 < 1, we conclude (1.8). O
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