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We define the fractional powers Ls = (−aij(x)∂ij)s, 0 < s < 1, of nondivergence 
form elliptic operators L = −aij(x)∂ij in bounded domains Ω ⊂ Rn, under minimal 
regularity assumptions on the coefficients aij(x) and on the boundary ∂Ω. We show 
that these fractional operators appear in several applications such as fractional 
Monge–Ampère equations, elasticity, and finance. The solution u to the nonlocal 
Poisson problem

{
(−aij(x)∂ij)su = f in Ω

u = 0 on ∂Ω

is characterized by a local degenerate/singular extension problem. We develop the 
method of sliding paraboloids in the Monge–Ampère geometry and prove the interior 
Harnack inequality and Hölder estimates for solutions to the extension problem 
when the coefficients aij(x) are bounded, measurable functions. This in turn implies 
the interior Harnack inequality and Hölder estimates for solutions u to the fractional 
problem.
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r é s u m é

On définit les puissances fractionnaires Ls = (−aij(x)∂ij)s, 0 < s < 1, des 
opérateurs elliptiques sous forme non-divergence L = −aij(x)∂ij dans des domaines 
bornés Ω ⊂ Rn, sous des hypothèses de régularité minimale sur les coefficients aij(x)
et à la frontière ∂Ω. Nous montrons que ces opérateurs fractionnaires apparaissent 
dans plusieurs applications telles que équations fractionnaires de Monge–Ampère, 
élasticité et finance. La solution u au problème de Poisson non local

{
(−aij(x)∂ij)su = f dans Ω

u = 0 au ∂Ω
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se caractérise par un problème d’extension local dégénéré/singulier. Nous dévelop-
pons la méthode des paraboloïdes glissants dans la géométrie de Monge–Ampère et 
prouver l’inégalité intérieure de Harnack et estimations de Hölder pour les solutions 
à le problème d’extension lorsque les coefficients aij(x) sont des fonctions mesurables 
bornées. Cela implique à son tour l’inégalité intérieure de Harnack et des estimations 
de Hölder pour les solutions u au problème fractionnaire.

© 2021 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper, we inaugurate the analysis of equations driven by fractional powers of nondivergence form 

uniformly elliptic operators

Ls = (−aij(x)∂ij)s in Ω for 0 < s < 1, (1.1)

under minimal regularity assumptions on the coefficients aij(x) and the boundary of the domain Ω ⊂ R
n, 

n ≥ 1. We show in Section 2 that fractional power operators as in (1.1) in such minimal regularity regime 

arise in applications to fractional Monge–Ampère equations, elasticity, and finance, among others.

The very first difficulty we need to overcome when considering (1.1) is that of giving a meaningful 

definition of the fractional power operator Ls when

L = −aij(x)∂ij ≡ −
n∑

i,j=1

aij(x)∂ij x ∈ Ω (1.2)

is an elliptic operator in nondivergence form with nonsmooth coefficients. As in other well-known cases, 

this is not immediately obvious. For example, the fractional Laplacian (−Δ)s in Rn can be defined using 

the Fourier transform as ̂(−Δ)su = |ξ|2sû. However, the nondivergence form operator (1.2) has nonsmooth 

coefficients in a bounded domain Ω, so the Fourier transform is not the most convenient tool. Indeed, (1.2)

is not translation invariant and not defined in the whole space. If −ΔD denotes the Laplacian in a bounded 

domain Ω subject to homogeneous Dirichlet boundary conditions on ∂Ω, then (−ΔD)s is naturally defined 

in a spectral way using the basis of eigenfunctions and the corresponding eigenvalues of −ΔD in the Sobolev 

space H1
0 (Ω). In contrast, there is no natural Hilbert space structure for nondivergence form operators as 

in (1.2). The spectral method is also used to define fractional powers of divergence form elliptic operators 

(−∂i(a
ij(x)∂j))s, see [6]. Nevertheless, our operator (1.2) has nonsmooth coefficients so it cannot be written 

in divergence form. We further remark that these definitions, though adequate from the operator theory 

point of view, do not immediately give explicit pointwise, nonlocal formulas.

Our idea to define (1.1) is to apply the method of semigroups. The main ingredient in this approach is 

the semigroup {e−tL}t≥0 generated by L. With this, we define

Lsu(x) =
1

Γ(−s)

∞∫

0

(
e−tLu(x) − u(x)

) dt

t1+s
(1.3)

for 0 < s < 1, x ∈ Ω, where Γ is the Gamma function. Using the semigroup, we can also give formulas for the 

solution u to the Poisson problem Lsu = f as u = L−sf and for the solution U to local extension problems. 

Moreover, if L has a heat kernel, then one can derive explicit pointwise expressions for Lsu(x), L−sf(x) and 

U(x, z). These results are presented in Section 3. For details about the semigroup method applied to the 

fractional Laplacian in the whole space and to other different contexts, see [32] and the references therein.
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We then consider the following fractional elliptic equation in nondivergence form:

{
(−aij(x)∂ij)su = f in Ω

u = 0 on ∂Ω.
(1.4)

Here Ω ⊂ R
n, n ≥ 1, is a bounded domain satisfying the uniform exterior cone condition. The coefficients 

aij(x) : Ω → R are symmetric aij(x) = aji(x), i, j = 1, . . . , n, aij(x) ∈ C(Ω) ∩ L∞(Ω), and uniformly 

elliptic, meaning that there exist constants 0 < λ ≤ Λ such that

λ |ξ|2 ≤ aij(x)ξiξj ≤ Λ |ξ|2 for all ξ ∈ R
n and a.e. x ∈ Ω. (1.5)

Under these conditions, the operator L = −aij(x)∂ij generates a uniformly bounded C0-semigroup with 

exponential decay. Therefore, Lsu is well-defined by means of (1.3). See Section 3 for these notions and the 

necessary notation.

The main regularity result for (1.4) in this paper is the following interior Harnack inequality and Hölder 

regularity estimate.

Theorem 1.1. Assume that Ω ⊂ R
n is a bounded domain that satisfies the uniform exterior cone condition, 

aij(x) ∈ Cα(Ω) ∩ L∞(Ω), for some 0 < α < 1, are symmetric, satisfy (1.5), and f ∈ C0(Ω). There exist 

positive constants CH = CH(n, λ, Λ, s) > 1, κ = κ(n, s) < 1, and K̂ = K̂(n, s) > 1 such that for every ball 

BK̂R = BK̂R(x0) satisfying BK̂R ⊂⊂ Ω and every u ∈ Dom(L), u ≥ 0 in Ω, solution to

(−aij(x)∂ij)su = f in BK̂R, (1.6)

we have that

sup
BκR

u ≤ CH

(
inf
BκR

u + ‖f‖L∞(BK̂R) R2s

)
. (1.7)

Furthermore, there exist positive constants α0 = α0(n, λ, Λ, s) < 1 and Ĉ = Ĉ(n, λ, Λ, s) > 0 such that 

for any u ∈ Dom(L) satisfying (1.6), we have that, for every x ∈ BK̂R(x0),

|u(x0) − u(x)| ≤ Ĉ

(K̂R)α0

|x0 − x|α0

(
sup

Ω
|u| + ‖f‖L∞(BK̂R) R2s

)
. (1.8)

We mention that Grubb [15,16] and Seeley [30] studied fractional powers of nondivergence form elliptic 

operators with smooth coefficients in smooth domains from the operator theory and pseudo-differential 

operators points of view. Gradient estimates for fractional powers of constant coefficients, nondivergence 

form operators in Rn were considered in [2, Remark 1.10]. In particular, none of their results include the 

Harnack inequality and Hölder estimate in Theorem 1.1.

Our proof of Theorem 1.1 is based on the extension problem characterization of fractional power operators 

in Banach spaces given by the method of semigroups in [12] (see [33] for the case of Hilbert spaces). In our 

particular case, the extension result of [12] allows us to rewrite the nonlocal equation (1.4) in an equivalent 

way as a local PDE problem.

Theorem 1.2 (Particular case of [12]). Assume that the bounded domain Ω ⊂ R
n satisfies the uniform 

exterior cone condition and that aij(x) ∈ C(Ω) ∩ L∞(Ω) are symmetric and satisfy (1.5). If u ∈ Dom(L), 

then a solution U ∈ C∞((0, ∞); Dom(L)) ∩ C([0, ∞); C0(Ω)) to the extension problem
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⎧
⎪⎪⎨
⎪⎪⎩

aij(x)∂ijU + z2− 1
s ∂zzU = 0 in Ω × {z > 0}

U(x, 0) = u(x) on Ω × {z = 0}
U = 0 on ∂Ω × {z ≥ 0}

(1.9)

is given by

U(x, z) =
s2sz

Γ(s)

∞∫

0

e−s2z1/s/te−tLu(x)
dt

t1+s
(1.10)

and satisfies

‖U(·, z)‖L∞(Ω) ≤ M ‖u‖L∞(Ω) for some M > 0.

Furthermore, Uz+ ∈ C([0, ∞); C0(Ω)) and

−∂z+U(x, 0) = dsLsu(x) ∈ C0(Ω)

where ds = s2sΓ(1−s)
Γ(1+s) > 0 and

∂z+U(x, 0) = lim
z→0+

U(x, z) − U(x, 0)

z
for all x ∈ Ω.

If, in addition, aij(x) ∈ Cα(Ω) for some 0 < α < 1, then the solution U in (1.10) is the unique classical 

solution U ∈ C2(Ω × (0, ∞)) ∩ C(Ω × [0, ∞)) such that limz→∞ ‖U(·, z)‖L∞(Ω) = 0.

Hence, to prove Theorem 1.1, we will show interior Harnack inequalities and Hölder estimates for solutions 

U to the local, degenerate/singular elliptic equation in (1.9) subject to the Neumann boundary condition 

−∂z+U(x, 0) = f(x) up to {z = 0}, and then take the trace at {z = 0}. Towards this end, we define the 

even reflection of U in the variable z by Ũ(x, z) = U(x, |z|), for x ∈ Ω, z ∈ R. For convenience, we continue 

to use the notation U instead of Ũ and notice that U , being symmetric across {z = 0}, satisfies the equation

aij(x)∂ijU + |z|2− 1
s ∂zzU = 0 in Ω × {z �= 0}. (1.11)

Furthermore, if f(x) �= 0 then ∂zU is discontinuous across (x, 0). Since 0 < s < 1, the equation (1.11) either 

degenerates or blows up at z = 0, unless s = 1/2.

It turns out that we can recast (1.11) as an equation comparable to a linearized Monge–Ampère equation. 

Recall that the Monge–Ampère equation for a convex function ψ is given by det D2ψ = G. By taking the 

directional derivative ∂e along a unit direction e to the equation and defining v = ∂eψ and g = ∂eG, we find 

that v satisfies the linearized Monge–Ampère equation

tr(Aψ(x)D2v) = g. (1.12)

Here, Aψ(x) = det(D2ψ(x))(D2ψ(x))−1 is the matrix of cofactors of D2ψ(x). Notice that (1.12) is a linear 

equation in nondivergence form that is elliptic as soon as D2ψ > 0 and G > 0. However, it is not uniformly 

elliptic in general since the eigenvalues of Aψ(x) are not a priori controlled.

For our degenerate equation (1.11), we consider the strictly convex function Φ = Φ(x, z) : R
n+1 → R

given by

Φ(x, z) =
1

2
|x|2 +

s2

1 − s
|z|

1
s , 0 < s < 1.
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Then Φ is in C1(Rn+1) but, when s > 1/2, is not in C2(Rn+1). Since the Hessian of Φ is

D2Φ(x, z) =

(
I 0

0 |z|
1
s −2

)
,

where I denotes the identity matrix of size n × n, the linearized Monge–Ampère equation associated with 

Φ is

tr((D2Φ)−1D2U) = ΔxU + |z|2− 1
s ∂zzU = 0 for z �= 0. (1.13)

As the coefficients aij(x) are uniformly elliptic, see (1.5), we see that the coefficients in (1.11) are comparable 

to the coefficients in (1.13).

An important feature of the linearized Monge–Ampère equation is its intrinsic geometry that was first 

discovered by Caffarelli–Gutiérrez [5]. They proved a Harnack inequality for classical nonnegative solutions 

v to (1.12) when ψ ∈ C2 and g ≡ 0, where the Euclidean balls and distance are replaced by Monge–Ampère 

sections and the Monge–Ampère quasi-distance, respectively. The Monge–Ampère sections associated to a 

convex, C1 function ψ are the sublevel sets of ψ − � where � is any linear function, while the corresponding 

quasi-distance is given by δψ(x0, x) = ψ(x) − ψ(x0) − 〈∇ψ(x0), x − x0〉.
We show that the geometry for our degenerate/singular equation (1.11) with Neumann boundary con-

dition at {z = 0} is given by the Monge–Ampère sections SR associated to the strictly convex function Φ, 

that is, the sublevel sets of Φ − �, and the Monge–Ampère quasi-distance δΦ in Rn+1. See Section 4 for 

more details. We prove the following Harnack inequality and Hölder regularity estimate for the extension 

equation in such sections.

Theorem 1.3. Let Ω be a bounded domain, aij(x) : Ω → R be bounded, measurable functions that satisfy (1.5)

and let f ∈ L∞(Ω). There exist positive constants CH = CH(n, λ, Λ, s) > 1, κ0 = κ0(n, s) < 1, and K̂0 =

K̂0(n, s) > 1 such that for every section SK̂0R = SK̂0R(x0, z0) ⊂⊂ Ω × R and every nonnegative solution 

U ∈ C2(SK̂0R \ {z = 0}) ∩ C(SK̂0R) such that U is symmetric across {z = 0} and Uz+ ∈ C(SK̂0R ∩ {z ≥ 0})

to

{
aij(x)∂ijU + |z|2− 1

s ∂zzU = 0 in SK̂0R ∩ {z �= 0}
−∂z+U(x, 0) = f on SK̂0R ∩ {z = 0},

(1.14)

we have that

sup
Sκ0R

U ≤ CH

(
inf

Sκ0R

U + ‖f‖L∞(SK̂0R∩{z=0}) Rs

)
. (1.15)

Consequently, there exist constants 0 < α1 = α1(n, λ, Λ, s) < 1/2 and Ĉ1 = Ĉ1(n, λ, Λ, s) > 1 such that, for 

every solution U ∈ C2(SK̂0R \ {z = 0}) ∩ C(SK̂0R) to (1.14) such that U is symmetric across {z = 0} and 

Uz+ ∈ C(SK̂0R ∩ {z ≥ 0}),

|U(x0, z0) − U(x, z)|

≤ Ĉ1

(K̂0R)α1

[δΦ((x0, z0), (x, z))]α1

(
sup

SK̂0R(x0,z0)

|U | + ‖f‖L∞(SK̂0R∩{z=0}) Rs

)
(1.16)

for every (x, z) ∈ SK̂0R(x0, z0).
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Note that if SK̂0R ∩ {z = 0} = ∅, then ‖f‖L∞(SK̂0R∩{z=0}) Rs does not appear in the right hand side of 

(1.15) and (1.16).

Regularity estimates, such as Harnack inequalities, for the linearized Monge–Ampère equation (1.12)

have been studied by Caffarelli–Gutiérrez [5], Forzani–Maldonado [10], Le [20], Maldonado [21,24], Savin 

[28], among others. In each case, they either assume that det(D2ψ) is bounded away from zero and infinity 

(that is, the Monge–Ampère measure μψ(E) = |∇ψ(E)|, E ⊂ R
n, is comparable to the Lebesgue measure), 

or that ψ is sufficiently regular, e.g. ψ ∈ C2. For our function Φ, we have that D2Φ either degenerates or 

blows up near {z = 0} when s �= 1/2, and, moreover, Φ /∈ C2 when s > 1/2. Therefore, (1.11) is not covered 

by such previous results. On the other hand, Maldonado proved Harnack inequality for degenerate elliptic 

equations associated with convex functions of the form ψ(x) = |x|p, p ≥ 2, see [22] and also [23]. However, 

not only are his techniques different than the ones presented here but also his work does not include the 

singular case in which s > 1/2. Moreover, when we write (1.14) for s = 1/2 in Ω × R as a single equation, 

we see that U satisfies (1.11) in Ω × R with a right hand side that is a singular measure with density f(x)

supported on {z = 0}.

We develop a method of sliding paraboloids inspired by the work of Savin for fully nonlinear uniformly 

elliptic equations [29]. For our setting, we work with a Neumann problem in a Monge–Ampère geometry 

that brings additional challenges because Φ is only C1 and D2Φ is degenerate/singular. For this, we define 

paraboloids P : R
n+1 → R of opening a > 0 with vertex (xv, zv) by

P (x, z) = −aδΦ((xv, zv), (x, z)) + c

where c is a constant. We lift these paraboloids from below until they touch the graph of U in a section 

SR for the first time. We estimate the Monge–Ampère measure of the resulting set of contact points by the 

Monge–Ampère measure of the set of vertices. Observe that, since our equation (1.11) is degenerate/singular 

and −∂z+U(x, 0) = f(x), we need to be able to control the contact points (x, z) for which z = 0 in terms 

of the size of f . Next, we show that, by increasing the opening of these paraboloids, they almost cover the 

section SR in measure. This relies on explicit barriers whose construction is very delicate because of the 

Neumann boundary condition and the degeneracy/singularity of (1.11). Then, we build a refined geometric 

argument to obtain a localization estimate. Thus, using a covering argument, we can conclude the proof of 

Theorem 1.3 and deduce Theorem 1.1.

Our function Φ was also considered in [26] to study the fractional nonlocal linearized Monge–Ampère 

equation. They established Harnack inequality and Hölder estimates for solutions to (1.4) when the coef-

ficients aij(x) are given by the matrix of cofactors of D2ψ, where ψ is a C3 strictly convex function and 

Ω is a section of ψ. Observe that in [26] the weak Harnack inequality is proved using the divergence form 

structure of the equation. Whereas, in (1.4), we not only consider general elliptic coefficients aij(x), but also 

the equation cannot be written in divergence form. Nevertheless, since the proof of the local boundedness 

of the solution to the extension problem in [26] uses purely nondivergence form techniques, one can easily 

check that solutions to our extension problem (1.9) satisfy the same local boundedness estimate as that of 

[26, Theorem 11.3].

We additionally mention that Le in [20] proved Harnack inequality for the linearized Monge–Ampère 

equation (1.12) when ψ ∈ C2 and 0 < λ ≤ det(D2ψ(x)) ≤ Λ, by using sliding paraboloids within the 

roadmap of the proof of Caffarelli–Gutiérrez [5]. Again, our methods (inspired by Savin [29]) and results are 

different and independent of [20] (in particular, Φ is not smooth when s > 1/2, D2Φ is degenerate/singular, 

and we have the Neumann boundary condition −∂z+U(x, 0) = f(x)).

Theorem 1.3 holds for bounded domains Ω and bounded, measurable coefficients aij(x). In Theorem 1.1

we additionally require that Ω satisfies the uniform exterior cone condition and that aij(x) are Hölder 

continuous. There are several reasons for these technical assumptions. First, the uniform exterior cone 

condition and the hypothesis aij(x) ∈ C(Ω) ∩ L∞(Ω) give us the existence of an appropriate C0-semigroup 
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generated by L, so the fractional power operator Ls can be defined using (1.3). Furthermore, under these 

conditions, the extension problem characterization in Theorem 1.2 holds. Second, our proof of Theorem 1.3

is for classical solutions U to the extension problem and does not require any continuity assumptions on 

aij(x) nor geometric conditions on Ω. Third, to apply Theorem 1.3, we need to ensure that the solution 

U given in Theorem 1.2 is classical, and for this we must require aij(x) ∈ Cα(Ω). It is an open problem 

and will be the object of future work to define (−aij(x)∂ij)s in bounded domains when the coefficients are 

only bounded, measurable and to establish a corresponding extension equation and Harnack inequality for 

viscosity solutions to (1.4).

The paper is organized as follows. First, in Section 2, we show several applications of fractional pow-

ers of nondivergence form operators (1.1). Then, in Section 3, we precisely define the fractional operator 

(−aij(x)∂ij)s and prove the extension characterization. In Section 4, we provide the necessary Monge–

Ampère background associated to our function Φ. We prove a sequence of reductions of Theorem 1.3 in 

Section 5. Section 6 contains preliminary results on the Monge–Ampère paraboloids P associated to Φ. 

Next, we establish several key results that will be used to prove the final reduction of Theorem 1.3. In 

Section 7, we estimate the Monge–Ampère measure of the set of contact points for sliding paraboloids of 

fixed opening by the measure of the set of vertices. The delicate construction of the barriers is done in 

Section 8. These are used in Section 9 to prove a localization estimate by means of a refined geometric 

argument. A Calderón–Zygmund-type covering lemma is proved in Section 10. Finally, in Section 11, we 

present the proof of the final reduction of Theorem 1.3 and the proof of Theorem 1.1.

2. Applications

In this section we present some applications where fractional powers of nondivergence form elliptic oper-

ators naturally arise.

2.1. Fractional Monge–Ampère equations

If u = u(x) is a convex, C2 function, then one can check that the Monge–Ampère operator acting on u

at a point x can be written as

n det(D2u(x))1/n = inf
{

Δ(u ◦ B)(B−1x) : B ∈M
}

= inf
{

aij∂iju(x) : (aij) = B2, B ∈M
}

,

where the infimum is taken over the class M of all positive definite, symmetric matrices B of size n ×n such 

that det(B) = 1. Motivated by these identities, Caffarelli–Charro defined in [4] the fractional Monge–Ampère 

operator by

Dsu(x) = inf
{

− (−Δ)s(u ◦ B)(B−1x) : B ∈M
}

, 1/2 < s < 1. (2.1)

On the other hand, it was shown in [19] that the operator in (2.1) can also be written as

Dsu(x) = inf
{

− (−aij∂ij)su(x) : (aij) = B2, B ∈M
}

, (2.2)

where (−aij∂ij)s is the fractional power of the constant coefficients operator −aij∂ij .

The fractional Monge–Ampère operator (2.1) is degenerate elliptic because the eigenvalues of the matrices 

B ∈M are not a priori controlled from below or above. Nevertheless, it is proved in [4] that if u is Lipschitz, 

semiconcave, and Dsu ≥ η0 > 0 in a bounded domain Ω, then Ds becomes uniformly elliptic in u, that is, 

there is a constant λ > 0 such that
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Dsu(x) = Dλ
s u(x) := inf

{
− (−Δ)s(u ◦ B)(B−1x) : B ∈M, B ≥ λI

}

for all x ∈ Ω. Equivalently, in the description of (2.2),

D
λ
s u(x) = inf

{
− (−aij∂ij)su(x) : (aij) = B2, B ∈M, B ≥ λI

}
.

It was observed in [34] that, for each x ∈ Ω, the infimum above is attained at some matrix aij = aij(x). 

Therefore, the fractional Monge–Ampère operator in the uniformly elliptic regime is in fact given by

D
λ
s u(x) = −(−aij(x)∂ij)su(x) for every x ∈ Ω.

In other words, Dλ
s u(x) is the fractional power of the nondivergence form uniformly elliptic operator L =

−aij(x)∂ij , where aij(x) are bounded, measurable coefficients.

2.2. Elasticity

Consider an anisotropic elastic membrane represented by the graph of a function U(x, z), for (x, z) ∈
Ω × [0, ∞). Suppose that we place a thin obstacle φ : Ω → R on the hyperplane {z = 0}, such that φ ≤ 0

on ∂Ω, which pushes U from below at {z = 0}. By fixing U = 0 on ∂Ω × [0, ∞), this problem is modeled by 

the following thin obstacle problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

aij(x)∂ijU + ∂zzU = 0 in Ω × {z > 0}
U(x, z) = 0 on ∂Ω × {z ≥ 0}
U(x, 0) ≥ φ(x) on Ω

−∂z+U(x, 0) ≥ 0 on Ω

−∂z+U(x, 0) = 0 on {U(x, 0) > φ(x)}.

(2.3)

The last two conditions are called the Signorini complementary conditions. They follow from the fact that φ

is pushing U upwards, while U is actually free in the noncoincidence set {U(x, 0) > φ(x)}. The coefficients 

aij(x) encode the heterogeneity of the membrane. The thin obstacle problem (2.3) is equivalent to the 

problem of semipermeable cell membranes in biology (see [9]), where aij(x) are a model for the cytoplasm 

inside the cell.

It follows from the extension problem characterization (see Theorem 1.2) with s = 1/2, that the trace 

u(x) := U(x, 0) satisfies

−∂z+U(x, 0) = (−aij(x)∂ij)1/2u(x) in Ω.

Therefore, U solves the thin obstacle problem (2.3) if and only if its trace u is the solution to the following 

fractional obstacle problem

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−aij(x)∂ij)1/2u ≥ 0 in Ω

(−aij(x)∂ij)1/2u = 0 in Ω ∩ {u > φ}
u ≥ φ in Ω

u = 0 on ∂Ω.
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2.3. Finance

Consider a particle moving randomly in a heterogeneous domain Ω that is killed when it reaches the 

boundary ∂Ω. This random behavior can be modeled by a diffusion process Xt whose infinitesimal generator 

is a nondivergence form elliptic operator L = −aij(x)∂ij in Ω, subject to homogeneous Dirichlet boundary 

conditions on ∂Ω. In this situation, the coefficients aij(x) serve as a measure of the anisotropy of the medium, 

or the preferred directions the particle chooses at every point x. A model for particles randomly jumping 

inside a heterogeneous medium that are killed as soon as they reach or try to cross the boundary can be 

given by subordinating the process Xt with an s-stable Lèvy subordinator Tt, for 0 < s < 1. The resulting 

subordinated process Yt = XTt
is then generated by the fractional power operator Ls = (−aij(x)∂ij)s, 

0 < s < 1. See [18] for the case of smooth coefficients and domains, and [31] for the case when Xt is a 

Wiener process.

Next, let τ be the optimal stopping time that maximizes the function

u(x) = sup
τ

E[φ(Yτ ); τ < +∞],

where φ ∈ C0(Ω) (see (3.3)), E denotes the expected value, and the process Y is set to start at x ∈ Ω. It 

turns out that u is the solution to the following obstacle problem:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−aij(x)∂ij)su ≥ 0 in Ω

(−aij(x)∂ij)su = 0 in Ω ∩ {u > φ}
u ≥ φ in Ω

u = 0 on ∂Ω.

(2.4)

These free boundary problems appear in financial models (see [8]) where u is the value of a perpetual 

American option in which the asset prices are modeled by Yt and φ is the payoff function.

3. Fractional powers of elliptic operators and extension problem

Here, we give the precise definition of the fractional power operator Ls = (−aij(x)∂ij)s in (1.4) and 

present the extension problem characterization, i.e. Theorem 1.2. For this, we apply the method of semi-

groups of [12,33] (see also [32]) which we describe next.

3.1. Method of semigroups for fractional power operators

A family {Tt}t≥0 of bounded, linear operators on a Banach space X is a semigroup on X if

T0 = Id and Tt1
◦ Tt2

= Tt1+t2
for every t1, t2 ≥ 0,

where Id denotes the identity operator. We say that a semigroup {Tt}t≥0 is a C0-semigroup if Ttu → u as 

t → 0+ for all u ∈ X. A semigroup {Tt}t≥0 is uniformly bounded if its operator norm is uniformly bounded 

in t, that is, there is a constant M ≥ 1 such that ‖Tt‖ ≤ M for all t ≥ 0. The infinitesimal generator A of 

a semigroup {Tt}t≥0 is the closed linear operator defined as

−Au = lim
t→0+

Ttu − u

t
(3.1)
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in the domain Dom(A) = {u ∈ X : the limit in (3.1) exists} ⊂ X. In this case, we write Tt = e−tA. Hence, 

if A is the infinitesimal generator of a C0-semigroup {e−tA}t≥0 on X, then the function v = e−tAu, for 

u ∈ Dom(A), satisfies the heat equation for A:

{
∂tv = −Av for t > 0

v = u for t = 0.

Conversely, a linear operator (A, Dom(A)) on X is said to generate a semigroup if there is a semigroup 

{Tt}t≥0 for which A is its infinitesimal generator, that is, Tt = e−tA. Given a uniformly bounded C0-

semigroup {Tt = e−tA}t≥0 on X, the fractional power As of its infinitesimal generator is defined as

Asu =
1

Γ(−s)

∞∫

0

(
e−tAu − u

) dt

t1+s
, for all u ∈ Dom(A) ⊂ X,

where 0 < s < 1. If the semigroup {e−tA}t≥0 has exponential decay, that is, ‖e−tA‖ ≤ Me−εt, for some 

ε > 0, for all t ≥ 0, then the negative power A−s, s > 0, is given by

A−sf =
1

Γ(s)

∞∫

0

e−tAf
dt

t1−s
, for all f ∈ X.

Thus, under the exponential decay assumption on {e−tA}t≥0, given f ∈ X, the solution u ∈ Dom(As) to 

the fractional problem Asu = f is u = A−sf . Here Dom(As) is defined as the range of A−s. For all these 

details, see [27,35].

Fractional powers A±s of infinitesimal generators A of uniformly bounded C0-semigroups can be charac-

terized by extension problems. For the case when X is a Hilbert space see [33], while for the case when X

is a general Banach space see [12].

Theorem 3.1 (See [12, Theorems 1.1 and 2.1, Remark 2.2]). Let (A, Dom(A)) be the infinitesimal generator 

of a uniformly bounded C0-semigroup {e−tA}t≥0 on a Banach space X. Let 0 < s < 1. Define, for y > 0

and any u ∈ X,

U(y) =
y2s

4sΓ(s)

∞∫

0

e−y2/(4t)e−tAu
dt

t1+s
. (3.2)

Then U ∈ C∞((0, ∞), Dom(A)) ∩ C([0, ∞), X) is a solution to the extension problem

{
−AU + 1−2s

y ∂yU + ∂yyU = 0 for y > 0

limy→0+ U(y) = u in X.

Moreover, ‖U(y)‖X ≤ M‖u‖X , for all y ≥ 0. Furthermore, if u ∈ Dom(A) then

− lim
y→0+

y1−2s∂yU(y) = csAsu = −2s lim
y→0+

U(y) − u

y2s
in X

where cs = Γ(1−s)
4s−1/2Γ(s)

> 0. If, in addition, {e−tA}t≥0 has exponential decay and u ∈ Dom(A) satisfies 

Asu = f , for some f ∈ X, then the solution U in (3.2) can also be written as
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U(y) =
1

Γ(s)

∞∫

0

e−y2/(4t)e−tAf
dt

t1−s

and, in particular, − limy→0+ y1−2s∂yU(y) = csf and U(0) = u.

3.2. Fractional powers of nondivergence form elliptic operators

To give the definition of (1.1), we need conditions on aij(x) and Ω so that L as in (1.2) generates a 

uniformly bounded C0-semigroup with exponential decay in an appropriate Banach space X. For this, we 

assume that the bounded domain Ω ⊂ R
n satisfies the uniform exterior cone condition, namely, that there 

is a right circular cone C such that for all x ∈ ∂Ω there is a cone Cx with vertex x that is congruent to C

such that Ω ∩ Cx = {x}. We define the Banach space X = C0(Ω) by

C0(Ω) = {u ∈ C(Ω) : u ≡ 0 on ∂Ω}, (3.3)

endowed with the L∞-norm. Let L be the linear operator on C0(Ω) given by

L = −aij(x)∂ij , Dom(L) = {u ∈ C0(Ω) ∩ W 2,n
loc (Ω) : Lu ∈ C0(Ω)}, (3.4)

where the coefficients aij(x) ∈ C(Ω) ∩ L∞(Ω) are symmetric and satisfy (1.5). Under these hypotheses, L

generates a uniformly bounded C0-semigroup on C0(Ω) with exponential decay.

Proposition 3.2 (See [1, Proposition 4.7]). Assume that Ω ⊂ R
n is a bounded domain that satisfies the 

uniform exterior cone condition and that aij(x) ∈ C(Ω) ∩ L∞(Ω) are symmetric and satisfy (1.5). The 

operator L defined by (3.4) generates a uniformly bounded C0-semigroup, denoted by {e−tL}t≥0, on C0(Ω), 

such that if u ∈ C0(Ω) satisfies u ≥ 0, then e−tLu ≥ 0, for all t ≥ 0. Moreover, there are constants M ≥ 1

and ε > 0 such that

‖e−tLu‖C0(Ω) ≤ Me−εt ‖u‖C0(Ω) , for all t ≥ 0. (3.5)

In other words, by Proposition 3.2 and the maximum principle for parabolic equations (see [11]), for 

any u ∈ Dom(L), the function v(x, t) = e−tLu(x) ∈ C1((0, ∞), Dom(L)) ∩ C([0, ∞), C0(Ω)) is the unique 

solution to the heat equation driven by L with initial data u:

⎧
⎪⎪⎨
⎪⎪⎩

∂tv(x, t) = aij(x)∂ijv(x, t) in Ω × {t > 0}
v(x, t) = 0 on ∂Ω × {t ≥ 0}
v(x, 0) = u(x) on Ω × {t = 0}.

(3.6)

Now we can formalize the definition of the fractional power operator (1.1).

Definition 3.3. Assume that the bounded domain Ω ⊂ R
n satisfies the uniform exterior cone condition and 

that aij(x) ∈ C(Ω) ∩ L∞(Ω) are symmetric and satisfy (1.5). Consider the Banach space C0(Ω) and the 

operator L = −aij(x)∂ij given by (3.4). We define the fractional power operator Ls = (−aij(x)∂ij)s :

Dom(L) → C0(Ω) by

(−aij(x)∂ij)su(x) =
1

Γ(−s)

∞∫

0

(
e−tLu(x) − u(x)

) dt

t1+s
, 0 < s < 1, x ∈ Ω. (3.7)
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Remark 3.4 (Pointwise formula). It is known that, under certain conditions on L, the semigroup {e−tL}t≥0

has a heat kernel, namely, there is a function Ht(x, y) such that

e−tLu(x) =

∫

Ω

Ht(x, y)u(y) dy for all t > 0, x ∈ Ω.

For example, the heat kernel exists and satisfies the Gaussian estimate

0 ≤ Ht(x, y) ≤ C
e−c|x−y|2/t

tn/2
for all t > 0, x, y ∈ Ω, (3.8)

for some constants C, c > 0, whenever the coefficients aij(x) are Hölder continuous, see [11]. In this situation, 

it follows from (3.7) that for any smooth function u ∈ Dom(L),

(−aij(x)∂ij)su(x) =

∫

Ω

(
u(x) − u(y)

)
Ks(x, y) dy + Bs(x)u(x) for all x ∈ Ω

where 0 ≤ Ks(x, y) ≤ Cn,s|x − y|−(n+2s), for x, y ∈ Ω, x �= y, and Bs(x) ∈ L∞(Ω). Therefore, the fractional 

operator Ls is a nonlocal, integro-differential operator in Ω.

Remark 3.5 (Negative fractional powers). Let f ∈ C0(Ω) and assume that u ∈ Dom(Ls) is a solution to 

(1.4), that is, (−aij(x)∂ij)su = f in Ω. By Proposition 3.2, the semigroup {e−tL}t≥0 has exponential decay. 

Then u can be written as

u(x) = (−aij(x)∂ij)−sf(x) =
1

Γ(s)

∞∫

0

e−tLf(x)
dt

t1−s
for all x ∈ Ω. (3.9)

If the coefficients aij(x) are Hölder continuous then we can use the heat kernel from Remark 3.4 into (3.9)

to write

u(x) = (−aij(x)∂ij)−sf(x) =

∫

Ω

K−s(x, y)f(y) dy for all x ∈ Ω

where, by the estimate (3.8), 0 ≤ K−s(x, y) ≤ Cn,−s|x − y|−(n−2s), for all x, y ∈ Ω, x �= y.

Proof of Theorem 1.2. We choose X = C0(Ω) and A = L as in (3.4) so that, by Proposition 3.2, L generates 

a uniformly bounded C0-semigroup on C0(Ω) with exponential decay. Then, the solution U(y) in (3.2)

satisfies the properties stated in Theorem 3.1. With the change of variables z = (y/(2s))2s, we obtain 

that U(z) ≡ U(x, z) verifies the formulas and properties of Theorem 1.2. If the coefficients aij(x) are also 

Hölder continuous then, by interior Schauder estimates (see [13, Theorem 9.19]), the solution U is classical. 

Moreover, by the weak maximum principle (see [13, Theorem 3.1]), there is at most one classical solution 

to (1.9) such that limz→∞ ‖U(·, z)‖L∞(Ω) = 0. Using (3.5) it is easy to check that the solution U given by 

(1.10) has such decay at infinity and hence is the unique solution. �

4. Monge–Ampère setting

We present the necessary background for the Monge–Ampère geometry associated to equation (1.11) as 

well as the notation that will be used throughout the rest of this work. We reference the reader to [10,17]

for details about the Monge–Ampère geometry associated to general convex functions.
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Given 0 < s < 1, we define the functions ϕ : R
n → R and h : R → R by

ϕ(x) =
1

2
|x|2 and h(z) =

s2

1 − s
|z|

1
s . (4.1)

Notice that ϕ ∈ C∞(R) and h ∈ C1(R) ∩ C2(R \ {0}) are strictly convex. Set

Φ(x, z) = ϕ(x) + h(z) for all (x, z) ∈ R
n+1. (4.2)

We note that

h′(z) =
s

1 − s
|z|

1
s −2

z, h′′(z) = |z|
1
s −2

, D2Φ(x, z) =

(
I 0

0 |z|
1
s −2

)
.

It is clear that h′(−z) = −h′(z) and h′(0) = 0.

The Monge-Ampère measure associated to a strictly convex function ψ ∈ C1(Rn) is the Borel measure 

given by

μψ(E) = |∇ψ(E)| for every Borel set E ⊂ R
n,

where |A| denotes the Lebesgue measure of a measurable set A ⊂ R
n. Since ∇ϕ(x) = x, it is clear that 

μϕ(E) = |E|.

Lemma 4.1. For a Borel set I ⊂ R,

μh(I) =

∫

I

h′′(z) dz.

Consequently, for a Borel set E ⊂ R
n+1,

μΦ(E) =

∫

E

h′′(z) dz dx.

Proof. Consider an interval (a, b) ⊂ R such that 0 ∈ (a, b). Note that h′ is monotone increasing, injective, 

and h′(z) = 0 if and only if z = 0. Since h is C2 and strictly convex in R \ {z = 0}, we have that

μh((a, b)) = |h′((a, b))| = |h′((a, 0))| + |h′(0)| + |h′((0, b))|

=

0∫

a

h′′(z) dz + 0 +

b∫

0

h′′(z) dz =

b∫

a

h′′(z) dz.

The result follows for any interval and hence for any Borel set I ⊂ R. �

The Monge-Ampère (quasi)-distance associated to a strictly convex function ψ ∈ C1(Rn) is given by

δψ(x0, x) = ψ(x) − ψ(x0) − 〈∇ψ(x0), x − x0〉.

By convexity, δψ ≥ 0, and δψ(x0, x) = 0 if and only if x0 = x. We use the terminology quasi-distance when 

there exists a constant K ≥ 1 such that

δψ(x1, x2) ≤ K (min{δψ(x1, x3), δψ(x3, x1)} + min{δψ(x2, x3), δψ(x3, x2)})
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for all x1, x2, x3 ∈ R
n. For our functions ϕ, h, and Φ in (4.1) and (4.2), we have

δϕ(x0, x) =
1

2
|x|2 − 1

2
|x0|2 − 〈x0, x − x0〉 =

1

2
|x − x0|2

δh(z0, z) = h(z) − h(z0) − h′(z0)(z − z0)

δΦ((x0, z0), (x, z)) = δϕ(x0, x) + δh(z0, z).

We will later show that δh, δϕ, and δΦ are indeed quasi-distances (see Corollary 4.7).

A Monge–Ampère section of radius R > 0, centered at x0 ∈ R
n associated to a strictly convex function 

ψ ∈ C1(Rn) is defined as

Sψ(x0, R) = {x ∈ R
n : δψ(x0, x) < R}.

The supporting hyperplane to ψ at x0 is given by �(x) = ψ(x0) + 〈∇ψ(x0), x − x0〉. Then, Sψ(x0, R) = {x :

ψ(x) − �(x) < R}, and we see that the Monge–Ampère sections for ψ are the sublevel sets of ψ − �. In the 

case of ϕ in (4.1), the sections correspond to Euclidean balls with the same center

Sϕ(x0, R) =
{

x :
1

2
|x − x0|2 < R

}
= B√

2R(x0). (4.3)

The sections for h in (4.1) with radius R > 0 correspond to intervals in R.

We say that the Monge–Ampère measure μψ is doubling with respect to the center of mass on the sections 

of ψ, written μψ ∈ (DC)ψ, if there is a constant Cd > 0 such that

μψ(Sψ(x, R)) ≤ Cdμψ

(
1

2
Sψ(x, R)

)
for all sections Sψ(x, R). (4.4)

Here, we use the notation αSψ(x, R) = {α(y − x∗) + x∗ : y ∈ Sψ(x, R)}, for α > 0, where x∗ is the center 

of mass of Sψ(x, R). On the other hand, we say that μψ is doubling with respect to the parameter on the 

sections of ψ if there is a constant C ′
d > 0 such that

μψ(Sψ(x, R)) ≤ C ′
dμψ

(
Sψ

(
x,

R

2

))
for all sections Sψ(x, R). (4.5)

It can be seen that (4.4) implies (4.5), but the converse is not true in general, see [17].

Finally, we say that ψ satisfies the engulfing property if there is a constant θ ≥ 1 such that, for every 

section Sψ(x, R), if x1 ∈ Sψ(x, R), then Sψ(x, R) ⊂ Sψ(x1, θR).

For the next result, see Theorem 5 in [10] and the comments following it and also Lemma 2.1 in [25].

Theorem 4.2. Let ψ ∈ C1(Rn) be a strictly convex function. The following are equivalent.

1. μψ ∈ (DC)ψ;

2. ψ satisfies the engulfing property;

3. there are constants c, C > 0 such that

cRn ≤ |Sψ(x, R)| μψ(Sψ(x, R)) ≤ CRn

for all sections Sψ(x, R);

4. δψ is a quasi-distance.
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All the statements are equivalent in the sense that the constants in each property only depend on each other. 

If μψ ∈ (DC)ψ, then there exists a constant Kd > 1, depending only on the doubling constant Cd in (4.4)

and on dimension, such that

μψ(Sψ(x, r2)) ≤ Kd

(
r2

r1

)n

μψ(Sψ(x, r1)) for all x ∈ R
n, 0 < r1 < r2. (4.6)

In order to show that our convex function Φ in (4.2) satisfies Theorem 4.2, we need to introduce the notion 

of Monge–Ampère cubes associated with Φ. Many of our proofs will rely on the fact that Φ(x, z) = ϕ(x) +h(z)

has separated variables.

Definition 4.3. A Monge–Ampère cube of radius R > 0, centered at (x, z) ∈ R
n+1, associated to Φ is given 

by

QR(x, z) = Sϕ1
(x1, R) × · · · × Sϕn

(xn, R) × Sh(z, R)

where x = (x1, . . . , xn) and ϕi : R → R is defined by ϕi(xi) =
1
2 |xi|2 for i = 1, . . . , n.

Notation 4.4. We will always use the following notation.

• x = (x1, . . . , xn) ∈ R
n, z ∈ R.

• SR(x) ⊂ R
n is a section of radius R > 0 associated with ϕ centered at x.

• SR(z) ⊂ R is a section of radius R > 0 associated with h, centered at z.

• SR(x, z) ⊂ R
n+1 is a section of radius R > 0 associated with Φ, centered at (x, z).

• QR(x) ⊂ R
n is a cube of radius R > 0 associated with ϕ centered at x.

• QR(z) ⊂ R is a cube of radius R > 0 associated with h centered at z.

• QR(x, z) ⊂ R
n+1 is a cube of radius R > 0 associated with Φ centered at (x, z).

The relation between Monge–Ampère cubes and sections is given by the following result.

Lemma 4.5 (Lemma 6 in [10]). Fix m ∈ N. For each j = 1, . . . , m, let ψj : R
nj → R be strictly convex, 

differentiable functions. Set n =
∑m

j=1 nj and define

ψ(x) =
m∑

j=1

ψj(xj), x = (x1, . . . , xm) ∈ R
n, xj ∈ R

nj .

Then

Sψ(x, R) ⊂
m∏

j=1

Sψj
(xj , R) ⊂ Sψ(x, mR)

for all x = (x1, . . . , xm) ∈ R
n and R > 0.

In particular, if ψj satisfy the engulfing property with corresponding constants θj for all j = 1, . . . m, then 

φ satisfies the engulfing property with θ = m maxj{θj}. Conversely, if ψ satisfies the engulfing property for 

some θ > 1, then ψj satisfies the engulfing property with constant θ for all j = 1, . . . , m.

As a consequence of Lemma 4.5,

SR(x, z) ⊂ SR(x) × SR(z) ⊂ S2R(x, z)
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and

SR(x, z) ⊂ QR(x, z) ⊂ S(n+1)R(x, z)

for all (x, z) ∈ R
n+1 and R > 0.

As discussed in [26, Section 7.1], h′′(z) = |z|1/s−2
is a Muckenhoupt A∞(R) weight. In particular, the 

following lemma holds. See [14, Section 9.3] for definitions and properties of the class A∞(R).

Lemma 4.6. Given 0 < ε < 1, there is 0 < ε0 < 1, depending only on ε and 0 < s < 1, such that for any 

section SR = SR(z0) and any measurable set E ⊂ SR,

|E|
|SR| < ε0 implies

μh(E)

μh(SR)
< ε.

We can now establish Theorem 4.2 for ψ = Φ.

Corollary 4.7. We have μϕ ∈ (DC)ϕ and μh ∈ (DC)h, so that (1)–(4) in Theorem 4.2 hold and are equivalent 

for ϕ and h. Moreover, the following statements hold and are equivalent.

1. μΦ ∈ (DC)Φ with corresponding doubling constant Cd = Cd(n, s) > 0;

2. Φ satisfies the engulfing property with corresponding constant θ = θ(n, s) > 0;

3. there are positive constants C = C(n, s), c = c(n, s) such that

cRn+1 ≤ |SR(x, z)| μΦ(SR(x, z)) ≤ CRn+1

for all sections SR(x, z);

4. δΦ is a quasi-distance with constant K = K(n, s) ≥ 1.

Consequently, μϕ, μh and μΦ satisfying the doubling estimate (4.6).

Proof. By (4.3), we can write

μϕ(SR(x0)) = |B√
2R(x0)| ≤ 2n

∣∣1
2

B√
2R(x0)

∣∣ = 2nμϕ

(
1

2
SR(x0)

)

Hence ϕ ∈ (DC)ϕ with doubling constant Cϕ
d = Cϕ

d (n). Since h′′(z) is a Muckenhoupt A∞(R) weight for 

all 0 < s < 1, we have that μh ∈ (DC)h with doubling constant Ch
d = Ch

d (s). It follows from Theorem 4.2

that μϕ and μh satisfy the engulfing property and, by Lemma 4.5, so does μΦ. Hence, the conclusion follows 

from Theorem 4.2. �

Remark 4.8. There is a constant qs, depending only on s, so that SR(0) = BqsRs(0) for any R > 0. Indeed, 

z ∈ SR(0) if and only if

δh(0, z) = h(z) =
s2

1 − s
|z|1/s

< R

which is equivalent to

|z| <

(
1 − s

s2

)s

Rs =: qsRs. (4.7)
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Notation 4.9. We will always use the following notation.

• θ is the engulfing constant associated with Φ.

• K is the quasi-triangle constant associated with Φ.

• Kd is the constant in (4.6).

• qs is the constant in (4.7).

We end this section by presenting two lemmas that will be used later in the proofs.

Lemma 4.10. Let ψ ∈ C1(R) be a strictly convex function. If x0 < x1 < x2, then

δψ(x0, x1) < δψ(x0, x2) and δψ(x1, x2) < δψ(x0, x2).

Consequently, for any x0, x1 ∈ R and R > 0, if r > 0 is such that Sψ(x1, r) ⊂ Sψ(x0, R), then r ≤ R. In 

particular, for any (x0, z0), (x1, z1) ∈ R
n+1 and R > 0, if r > 0 is such that Qr(x1, z1) ⊂ QR(x0, z0), then 

r ≤ R.

Proof. By the convexity of ψ,

ψ′(x0) <
ψ(x1) − ψ(x2)

x1 − x2
,

so that

δψ(x0, x1) = ψ(x1) − ψ(x0) − ψ′(x0)(x1 − x0)

< ψ(x2) − ψ(x0) − ψ′(x0)(x2 − x0) = δψ(x0, x2).

Next, define a function Ψ : R → R by

Ψ(x) := [ψ(x1) + ψ′(x1)(x − x1)] − [ψ(x0) + ψ′(x0)(x − x0)].

By the convexity of ψ, Ψ′(x) = ψ′(x1) − ψ′(x0) > 0, so Ψ is increasing. Since

Ψ(x1) = ψ(x1) − ψ(x0) + ψ′(x0)(x1 − x0) = δψ(x0, x1) > 0,

we know that

0 < Ψ(x2) = [ψ(x1) + ψ′(x1)(x2 − x1)] − [ψ(x0) + ψ′(x0)(x2 − x0)]

= [−ψ(x2) + ψ(x1) + ψ′(x1)(x2 − x1)] − [−ψ(x2) + ψ(x0) + ψ′(x0)(x2 − x0)].

Hence,

δψ(x1, x2) = ψ(x2) − ψ(x1) − ψ′(x1)(x2 − x1)

< ψ(x2) − ψ(x0) − ψ′(x0)(x2 − x0) = δψ(x0, x2).

Lastly, fix x0, x1 ∈ R and R > 0. Suppose that r > 0 is such that Sψ(x1, r) ⊂ Sψ(x0, R). Write

Sψ(x0, R) = (xL
0 , xR

0 ), xL
0 < x0 < xR

0

Sψ(x1, r) = (xL
1 , xR

1 ), xL
1 < x1 < xR

1 .



262 P.R. Stinga, M. Vaughan / J. Math. Pures Appl. 156 (2021) 245–306

Without loss of generality, assume that x0 ≤ x1 so that x0 ≤ x1 < xR
1 ≤ xR

0 . Then

r = δψ(x1, xR
1 ) ≤ δψ(x1, xR

0 ) ≤ δψ(x0, xR
0 ) = R. �

Lemma 4.11 (Theorem 3.3.10 in [17]). There exist constants C0 > 0, p ≥ 1, depending only on n and s, 

such that for 0 < r1 < r2 ≤ 1, t > 0 and (x1, z1) ∈ Sr1t(x0, z0), we have that

SC0(r2−r1)pt(x1, z1) ⊂ Sr2t(x0, z0).

5. Reductions of Theorem 1.3

In this section we show that, after a series of reductions, Theorem 1.3 will follow from Theorem 5.3. First, 

we show in Theorem 5.1 that it is enough to consider Monge–Ampère cubes, instead of Monge–Ampère 

sections, and to take a nonnegative right hand side f . The second reduction, Theorem 5.2, demonstrates how 

we only need to show that the supremum of U in a small cube is controlled by the value of U at the center 

of the cube. Finally, Theorem 5.3 is a normalized statement which says that if U is controlled at the center 

of the cube and ‖f‖L∞ is controlled with respect to the size of the section, then U is uniformly bounded in 

a smaller cube. Hence, the rest of the paper will be devoted to proving Theorem 5.3 and Theorem 1.1.

5.1. First reduction

We first show that it is enough to prove Theorem 1.3 in Monge–Ampère cubes and with f ≥ 0.

Theorem 5.1. Let Ω be a bounded domain, aij(x) : Ω → R be bounded, measurable functions that satisfy 

(1.5) and let f ∈ L∞(Ω) be nonnegative. There exist positive constants CH = CH(n, λ, Λ, s) > 1, κ1 =

κ1(n, s) < 1, and K̂1 = K̂1(n, s) > 1 such that for every cube QK̂1R = QK̂1R(x0, z0) ⊂ Ω × R and every 

nonnegative solution U ∈ C2(QK̂1R \ {z = 0}) ∩ C(QK̂1R) such that U is symmetric across {z = 0} and 

Uz+ ∈ C(QK̂1R ∩ {z ≥ 0}) to

{
aij(x)∂ijU + |z|2− 1

s ∂zzU = 0 in QK̂1R ∩ {z �= 0}
−∂z+U(x, 0) = f on QK̂1R ∩ {z = 0},

we have that

sup
Qκ1R

U ≤ CH

(
inf

Qκ1R

U + ‖f‖L∞(QK̂1R∩{z=0}) Rs

)
. (5.1)

Proof of Theorem 1.3 from Theorem 5.1. Observe that

QK̂1R(x0, z0) ⊂ Qθ2K̂1R(x0, z0) ⊂ S(n+1)θ2K̂1R(x0, z0)

and

Sκ1R(x0, z0) ⊂ Qκ1R(x0, z0)

Let K̂0 = (n + 1)θ2K̂1 and κ0 = κ1.

Case 1: QK̂1R(x0, z0) ∩ {z = 0} = ∅. By Theorem 5.1 and the inclusion above, we get

sup
Sκ0R

U ≤ sup
Qκ1R

U ≤ CH inf
Qκ1R

U ≤ CH inf
Sκ0R

U.
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Case 2: QK̂1R(x0, z0) ∩ {z = 0} �= ∅ and z0 = 0. Define

V = U − ‖f‖L∞(QK̂1R∩{z=0}) |z| + ‖f‖L∞(QK̂1R∩{z=0}) |SK̂1R(0)|.

We claim that V is nonnegative in QK̂1R. Indeed, let (x, z) ∈ QK̂1R, so that z ∈ SK̂1R(0) ⊂ R. By 

Remark 4.8, SK̂1R(0) = BqsK̂s
1 Rs(0). Thus, |z| ≤ |BqsK̂s

1 Rs(0)| = |SK̂1R(0)|. Consequently, for any (x, z) ∈
QK̂1R, we have that

− ‖f‖L∞(QK̂1R∩{z=0}) |z| + ‖f‖L∞(QK̂1R∩{z=0}) |SK̂1R(0)| ≥ 0,

so that V ≥ U ≥ 0 in QK̂1R.

Next, notice that V is symmetric across {z = 0} and that V ∈ C2(QK̂1R \ {z = 0}) ∩ C(QK̂1R), 

Vz+ ∈ C(QK̂1R ∩ {z ≥ 0}). Moreover, for (x, z) ∈ QK̂1R ∩ {z �= 0}, it is clear that

aij(x)∂ijV + |z|2− 1
s ∂zzV = aij(x)∂ijU + |z|2− 1

s ∂zzU = 0

and for (x, 0) ∈ QK̂1R ∩ {z = 0},

−∂z+V (x, 0) = f(x) + ‖f‖L∞(QK̂1R∩{z=0}) := g(x) ≥ 0.

Therefore, V is a nonnegative solution to

{
aij(x)∂ijV + |z|2− 1

s ∂zzV = 0 in QK̂1R ∩ {z �= 0}
−∂z+V = g on QK̂1R ∩ {z = 0}.

Therefore, by Theorem 5.1 applied to V and using that |SK̂1R(0)| = |BqsK̂s
1 Rs(0)| = Cn,sRs,

sup
Sκ0R

U ≤ sup
Qκ1R

U

≤ sup
Qκ1R

V

≤ CH

(
inf

Qκ1R

V + ‖g‖L∞(QK̂1R∩{z=0}) Rs

)

= CH

(
inf

Qκ1R

(
U − ‖f‖L∞(QK̂1R∩{z=0}) |z| + ‖f‖L∞(QK̂1R∩{z=0}) |SK̂1R(0)|

)

+
∥∥∥f + ‖f‖L∞(QK̂1R∩{z=0})

∥∥∥
L∞(QK̂1R∩{z=0})

Rs

)

≤ CH

(
inf

Qκ1R

U + (Cn,s + 2) ‖f‖L∞(QK̂1R∩{z=0}) Rs

)

≤ C ′
H

(
inf

Sκ0R

U + ‖f‖L∞(SK̂0R∩{z=0}) Rs

)
.

Case 3: QK̂1R(x0, z0) ∩{z = 0} �= ∅ and z0 �= 0. In this case, 0 ∈ SK̂1R(z0). Then, by the engulfing property,

QK̂1R(x0, z0) = QK̂1R(x0) × SK̂1R(z0)

⊂ QθK̂1R(x0) × SθK̂1R(0) = QθK̂1R(x0, 0).

Again, applying the engulfing property,
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QθK̂1R(x0, 0) = QθK̂1R(x0) × SθK̂1R(0)

⊂ Qθ2K̂1R(x0) × Sθ2K̂1R(z0) = Qθ2K̂1R(x0, z0).

Define

V = U − ‖f‖L∞(QθK̂1R(x0,0)∩{z=0}) |z| + ‖f‖L∞(QθK̂1R(x0,0)∩{z=0}) |SθK̂1R(0)|.

We claim that V is nonnegative in QθK̂1R(x0, 0). Let (x, z) ∈ QθK̂1R(x0, 0), so that, by Remark 4.8, 

z ∈ SθK̂1R(0) = BqsθsK̂s
1 Rs(0) ⊂ R. In particular, |z| ≤ |BqsθsK̂s

1 Rs(0)| = |SK̂1θR(0)|. Consequently, for any 

(x, z) ∈ QK̂1R(x0, z0), we have that

− ‖f‖L∞(QθK̂1R(x0,0)∩{z=0}) |z| + ‖f‖L∞(QθK̂1R(x0,0)∩{z=0}) |SθK̂1R(0)| ≥ 0,

so that V ≥ U ≥ 0 in QθK̂1R(x0, 0).

Next, notice that V is symmetric across {z = 0} and that V ∈ C2(QθK̂1R(x0, 0) \ {z = 0}) ∩
C(QθK̂1R(x0, 0)), Vz+ ∈ C(QθK̂1R(x0, 0) ∩ {z ≥ 0}). Moreover, for (x, z) ∈ QθK̂1R(x0, 0) ∩ {z �= 0}, it 

is clear that

aij(x)∂ijV + |z|2− 1
s ∂zzV = aij(x)∂ijU + |z|2− 1

s ∂zzU = 0

and for (x, 0) ∈ QθK̂1R(x0, 0) ∩ {z = 0},

−∂z+V (x, 0) = f(x) + ‖f‖L∞(QθK̂1R(x0,0)∩{z=0}) := g(x) ≥ 0.

Therefore, V is a nonnegative solution to

{
aij(x)∂ijV + |z|2− 1

s ∂zzV = 0 in QK̂1R(x0, z0) ∩ {z �= 0}
−∂z+V = g on QK̂1R(x0, z0) ∩ {z = 0}.

Applying Theorem 5.1 to V and using that |SθK̂1R(0)| = |BqsθsK̂s
1 Rs(0)| = Cn,sRs, we get

sup
Sκ0R(x0,z0)

U ≤ sup
Qκ1R(x0,z0)

U

≤ sup
Qκ1R(x0,z0)

V

≤ CH

(
inf

Qκ1R(x0,z0)
V + ‖g‖L∞(QK̂1R(x0,z0)∩{z=0}) Rs

)

= CH

(
inf

Qκ1R(x0,z0)

(
U − ‖f‖L∞(QθK̂1R(x0,0)) |z| + ‖f‖L∞(QθK̂1R(x0,0)) |SθK̂1R(0)|

)

+
∥∥∥f + ‖f‖L∞(QθK̂1R(x0,0)∩{z=0})

∥∥∥
L∞(QK̂1R(x0,z0)∩{z=0})

Rs

)

≤ CH

(
inf

Qκ1R(x0,z0)
U + (Cn,s + 2) ‖f‖L∞(QθK̂1R(x0,0)∩{z=0}) Rs

)

≤ C ′
H

(
inf

Sκ0R(x0,z0)
U + ‖f‖L∞(SK̂0R(x0,z0)∩{z=0}) Rs

)
.

Therefore, (1.15) holds in all cases.
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It remains to prove the Hölder estimate (1.16). The proof follows by a standard argument (see, for 

example, [13, Sections 8.9 and 9.8]). We provide the details for completeness. Let 0 < r ≤ R and define

M(r) = sup
Sr(x0,z0)

U and m(r) = inf
Sr(x0,z0)

U.

Apply (1.15) to M(K̂0r) − U ≥ 0 in SK̂0r(x0, z0) to obtain

sup
Sκ0r(x0,z0)

(M(K̂0r) − U) ≤ CH

(
inf

Sκ0r(x0,z0)
(M(K̂0r) − U) + ‖f‖L∞(SK̂0r(x0,z0)∩{z=0}) rs

)
.

Therefore,

M(K̂0r) − m(κ0r) ≤ CH

(
M(K̂0r) − M(κ0r) + ‖f‖L∞(SK̂0R(x0,z0)∩{z=0}) rs

)
. (5.2)

Similarly, apply (1.15) to U − m(K̂0r) ≥ 0 in SK̂0r(x0, z0) to obtain

sup
Sκ0r(x0,z0)

(U − m(K̂0r)) ≤ CH

(
inf

Sκ0r(x0,z0)
(U − m(K̂0r) + ‖f‖L∞(SK̂0r(x0,z0)∩{z=0}) rs

)
,

so that

M(κ0r) − m(K̂0r) ≤ CH

(
m(κ0r) − m(K̂0r) + ‖f‖L∞(SK̂0R(x0,z0)∩{z=0}) rs

)
. (5.3)

Let ω(r) = M(r) − m(r). Adding (5.2) and (5.3) together, we get

ω(K̂0r) + ω(κ0r) ≤ CH

(
ω(K̂0r) − ω(κ0r) + 2 ‖f‖L∞(SK̂0R(x0,z0)∩{z=0}) rs

)
.

After rearranging,

ω(κ0r) ≤ γω(K̂0r) + σ(r), γ =
CH − 1

CH + 1
< 1

where

σ(r) =

⎧
⎨
⎩

2CH

CH +1 ‖f‖L∞(SK̂0R(x0,z0)∩{z=0}) rs if SK̂0R(x0, z0) ∩ {z = 0} �= ∅

0 if SK̂0R(x0, z0) ∩ {z = 0} = ∅

is a non-decreasing function of r. Note that γ = γ(n, λ, Λ, s). By [13, Lemma 8.23], for any μ ∈ (0, 1), there 

are constants C = C(n, λ, Λ, s) > 0 and α1 = (1 − μ) log γ/ log(κ0/K̂0) such that

ω(K̂0r) ≤ C
(( r

R

)α1

ω(K̂0R) + σ(rμR1−μ)
)

.

Choose μ = μ(n, λ, Λ, s) so that 2α1 < μs. Then,

ω(K̂0r) ≤ C
( r

R

)α1
(

ω(K̂0R) + σ(rμR1−μ)

(
R

r

)α1
)

≤ C
( r

R

)α1

(
2 sup

SK̂0R(x0,z0)

|U | +
2CH

CH + 1
‖f‖L∞(SK̂0R(x0,z0)∩{z=0}) rμsR(1−μ)sRα1r−α1

)
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≤ Ĉ1

(
K̂0r

K̂0R

)α1
(

sup
SK̂0R(x0,z0)

|U | + ‖f‖L∞(SK̂0R(x0,z0)∩{z=0}) Rs

)
.

By taking K̂0r = δΦ((x0, z0), (x, z)), the estimate in (1.16) follows. �

5.2. Second reduction

Next, we show that Theorem 5.1 follows from the following result which says that the supremum of U in 

a small cube can be controlled by its value at the center.

Theorem 5.2. Let Ω be a bounded domain, aij(x) : Ω → R be bounded, measurable functions that satisfy 

(1.5) and let f ∈ L∞(Ω) be nonnegative. There exist positive constants CH = CH(n, λ, Λ, s) > 1, κ2 =

κ2(n, s) < 1, and K̂3 = K̂3(n, s) > 1 such that for every cube QK̂3R = QK̂3R(x̃, ̃z) ⊂⊂ Ω × R and every 

nonnegative solution U ∈ C2(QK̂3R \ {z = 0}) ∩ C(QK̂3R) such that U is symmetric across {z = 0} and 

Uz+ ∈ C(QK̂3R ∩ {z ≥ 0}) to

{
aij(x)∂ijU + |z|2− 1

s ∂zzU = 0 in QK̂3R ∩ {z �= 0}
−∂z+U(x, 0) = f on QK̂3R ∩ {z = 0},

we have that

sup
Qκ2R

U ≤ CH

(
U(x̃, z̃) + ‖f‖L∞(QK̂3R∩{z=0}) Rs

)
.

Proof of Theorem 5.1 from Theorem 5.2. Let K̂1 = K̂1(n, s) and κ1 = κ1(n, s) be such that

1 < θK̂3 ≤ K̂1 and θκ1 ≤ κ2 < 1.

Let (x̃, ̃z) ∈ Qκ1R(x0, z0). By the engulfing property,

Qκ1R(x0, z0) ⊂ Qθκ1R(x̃, z̃) ⊂ Qκ2R(x̃, z̃).

Again applying the engulfing property, we have

QK̂3R(x̃, z̃) ⊂ QθK̂3R(x0, z0) ⊂ QK̂1R(x0, z0) ⊂⊂ Ω × R.

By Theorem 5.2, we get

sup
Qκ1R(x0,z0)

U ≤ sup
Qκ2R(x̃,z̃)

U

≤ CH

(
U(x̃, z̃) + ‖f‖L∞(QK̂3R(x̃,z̃)∩{z=0}) Rs

)

≤ CH

(
U(x̃, z̃) + ‖f‖L∞(QK̂1R(x0,z0)∩{z=0}) Rs

)
.

Taking the infimum over all (x̃, ̃z) ∈ Qκ1R(x0, z0), the Harnack inequality (5.1) holds. �
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5.3. Third reduction

Here we will see that Theorem 5.2 follows from the next, and final, reduction which is a normalized 

statement.

Theorem 5.3. Fix a > 0. Let Ω be a bounded domain, aij(x) : Ω → R be bounded, measurable functions 

that satisfy (1.5) and let f ∈ L∞(Ω) be nonnegative. Let K̂3 be as in Theorem 5.2. There exist positive 

constants CH = CH(n, λ, Λ, s) > 1, κ2 = κ2(n, s) < 1, and K0 = K0(n, s) such that for any cube QK̂3R =

QK̂3R(x̃, ̃z) ⊂⊂ Ω × R and every nonnegative solution U ∈ C2(QK̂3R \ {z = 0}) ∩ C(QK̂3R) such that U is 

symmetric across {z = 0} and Uz+ ∈ C(QK̂3R ∩ {z ≥ 0}) to

{
aij(x)∂ijU + |z|2− 1

s ∂zzU = 0 in QK̂3R ∩ {z �= 0}
−∂z+U(x, 0) = f on QK̂3R ∩ {z = 0},

if

U(x̃, z̃) ≤ aR

2K0

and

‖f‖L∞(QK̂3R∩{z=0}) ≤ aμh(SK̂3R(z̃)),

then

U ≤ CHaR in Qκ2R. (5.4)

Proof of Theorem 5.2 from Theorem 5.3. Let ε > 0. Define the nonnegative function Wε in QK̂3R by

Wε(x, z) =
aR

2K0U(x̃, z̃) + ‖f‖L∞(QK̂3R∩{z=0}) R/μh(SK̂3R(z̃)) + ε
U(x, z).

If 0 /∈ SK̂3R(z̃), then ‖f‖L∞(QK̂3R∩{z=0}) R/μh(SK̂3R(z̃)) = 0. Notice that Wε is symmetric across {z = 0}
and Wε ∈ C2(QK̂3R \ {z = 0}) ∩ C(QK̂3R), (Wε)z+ ∈ C(QK̂3R ∩ {z ≥ 0}). Moreover, in QK̂3R ∩ {z �= 0}, 

we have

aij(x)∂ijWε + |z|2− 1
s ∂zzWε = 0

and, in QK̂3R ∩ {z = 0},

−∂z+Wε(x, 0) =
aR

2K0U(x̃, z̃) + ‖f‖L∞(QK̂3R∩{z=0}) R/μh(SK̂3R(z̃)) + ε
f(x) =: g(x) ≥ 0.

Therefore, Wε is a nonnegative solution to

{
aij(x)∂ijWε + |z|2− 1

s ∂zzWε = 0 in QK̂3R ∩ {z �= 0}
−∂z+Wε(x, 0) = g on QK̂3R ∩ {z = 0}.

Clearly,
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‖g‖L∞(QK̂3R∩{z=0}) ≤ aμh(SK̂3R(z̃))

and

Wε(x̃, z̃) ≤ aR

2K0
.

By Theorem 5.3 applied to Wε, we get

Wε ≤ CHaR in Qκ2R

which implies

sup
Qκ2R

U ≤ C ′
H

(
U(x̃, z̃) + ‖f‖L∞(QK̂3R∩{z=0})

R

μh(SK̂3R(z̃))
+ ε

)
.

If 0 /∈ SK̂3R(z̃), then

sup
Qκ2R

U ≤ C ′
H (U(x̃, z̃) + ε) .

If 0 ∈ SK̂3R(z̃), then by the engulfing property and Remark 4.8,

SK̂3R(z̃) ⊂ SθK̂3R(0) = BqsθsK̂s
3 Rs(0).

Hence, |SK̂3R(z̃)| ≤ CRs for some C = C(n, s) > 0. With this and Corollary 4.7 part (3),

sup
Qκ2R

U ≤ C ′
H

(
U(x̃, z̃) + ‖f‖L∞(QK̂3R∩{z=0})

1

K̂3

K̂3R

μh(SK̂3R(z̃))
+ ε

)

≤ C ′
H

(
U(x̃, z̃) + ‖f‖L∞(QK̂3R∩{z=0})

1

cK̂3

|SK̂3R(z̃)| + ε

)

≤ C ′′
H

(
U(x̃, z̃) + ‖f‖L∞(QK̂3R∩{z=0}) Rs + ε

)
.

As ε > 0 was arbitrary, the conclusion follows. �

6. Paraboloids associated to Φ

In this section, we define the Monge–Ampère paraboloids associated with Φ in (4.2) and study their basic 

properties and relations with respect to solutions to the extension problem.

Definition 6.1. Let a > 0. A paraboloid P of opening a in Rn+1 is defined as

P (x, z) = −aΦ(x, z) + 〈(y, w), (x, z)〉 + b (x, z) ∈ R
n+1 (6.1)

for some (y, w) ∈ R
n+1 and b ∈ R.

Since Φ ∈ C1(Rn+1) is strictly convex, the point where the maximum of P occurs, which we call the 

vertex (xv, zv) of P , is the unique solution to ∇P (xv, zv) = 0.

We say that P touches a continuous function U : R
n+1 → R from below at (x0, z0) in a convex set 

S ⊂ R
n+1 if
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P (x0, z0) = V (x0, z0) and P (x, z) ≤ V (x, z) for all (x, z) ∈ S.

Lemma 6.2. A paraboloid P of opening a > 0 with vertex (xv, zv) given by (6.1) can be written as

P (x, z) = −aδΦ((xv, zv), (x, z)) + c (6.2)

for some constant c ∈ R. Moreover,

∇P (x, z) = −a(∇Φ(x, z) − ∇Φ(xv, zv)) = −a(x − xv, h′(z) − h′(zv))

and

∂zP (x, 0) = ah′(zv)

for all (x, z) ∈ R
n+1. If P coincides with a continuous function U : R

n+1 → R at a point (x0, z0), i.e. 

P (x0, z0) = U(x0, z0), then

P (x, z) = −aδΦ((xv, zv), (x, z)) + aδΦ((xv, zv), (x0, z0)) + U(x0, z0).

Proof. Since 0 = ∇P (xv, zv) = −a∇Φ(xv, zv) + (y, w), we can write

P (x, z) = −aΦ(x, z) + a〈∇Φ(xv, zv), (x, z)〉 + b.

Consequently,

∇P (x, z) = −a(x − xv, h′(z) − h′(zv))

and

∂zP (x, 0) = −a (h′(z) − h′(zv))
∣∣
(x,0)

= ah′(zv).

Moreover, we have

P (x, z) = −aΦ(x, z) + a〈∇Φ(xv, zv), (x, z)〉 + b

+ aΦ(xv, zv) − aΦ(xv, zv) − a〈∇Φ(xv, zv), (xv, zv)〉 + a〈∇Φ(xv, zv), (xv, zv)〉
= −a (Φ(x, z) − Φ(xv, zv) − 〈∇Φ(xv, zv), (x, z) − (xv, zv)〉)

− aΦ(xv, zv) + a〈∇Φ(xv, zv), (xv, zv)〉 + b

= −aδΦ((xv, zv), (x, z)) + c.

If P (x0, z0) = U(x0, z0), then U(x0, z0) = −aδΦ((xv, zv), (x0, z0)) +c and, after solving for c, we conclude 

that P (x, z) = −aδΦ((xv, zv), (x, z)) + aδΦ((xv, zv), (x0, z0)) + U(x0, z0). �

For the remainder of the paper, we use the terminology paraboloids to reference those given by (6.1), or 

equivalently, (6.2).

Lemma 6.3. Suppose that P is a paraboloid of opening a > 0 that touches a continuous function U : R
n+1 →

R from below at (x0, z0) in a convex set S ⊂ R
n+1. For any ã ≥ a, there exists a paraboloid P̃ of opening 

ã > 0 that touches U from below at (x0, z0) in S.
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Proof. Begin by writing

P (x, z) = −aδΦ((xv, zv), (x, z)) + aδΦ((xv, zv), (x0, z0)) + U(x0, z0)

= −a (Φ(x, z) − Φ(xv, zv) − 〈∇Φ(xv, zv), (x, z) − (xv, zv)〉)
+ a (Φ(x0, z0) − Φ(xv, zv) − 〈∇Φ(xv, zv), (x0, z0) − (xv, zv)〉) + U(x0, z0)

= −aΦ(x, z) + a〈∇Φ(xv, zv), (x, z)〉 + aΦ(x0, z0) − a〈∇Φ(xv, zv), (x0, z0)〉 + U(x0, z0)

= −a (Φ(x, z) − Φ(x0, z0) − 〈∇Φ(x0, z0), (x, z) − (x0, z0)〉)
+ a〈∇Φ(xv, zv), (x, z) − (x0, z0)〉 − a〈∇Φ(x0, z0), (x, z) − (x0, z0)〉 + U(x0, z0)

= −aδΦ((x0, z0), (x, z)) + a〈∇Φ(xv, zv) − ∇Φ(x0, z0), (x, z) − (x0, z0)〉 + U(x0, z0).

Define P̃ by

P̃ (x, z) = −ãδΦ((x0, z0), (x, z)) + a〈∇Φ(xv, zv) − ∇Φ(x0, z0), (x, z) − (x0, z0)〉 + U(x0, z0).

Note that P̃ is a paraboloid of opening ã > 0 since it can be expressed as (6.1) in the following way

P̃ (x, z) = −ãΦ(x, z) + ãΦ(x0, z0) + ã〈∇φ(x0, z0), (x, z) − (x0, z0)〉
+ a〈∇Φ(xv, zv) − ∇Φ(x0, z0), (x, z) − (x0, z0)〉 + U(x0, z0)

= −ãΦ(x, z) + 〈ã∇Φ(x0, z0) + a∇Φ(xv, zv) − a∇Φ(x0, z0), (x, z)〉
+ ãΦ(x0, z0) − 〈ã∇φ(x0, z0) + a∇Φ(xv, zv) − a∇Φ(x0, z0), (x0, z0)〉 + U(x0, z0).

Since P̃ (x0, z0) = U(x0, z0) and

P̃ (x, z) ≤ −aδΦ((x0, z0), (x, z)) + a〈∇Φ(xv, zv) − ∇Φ(x0, z0), (x, z) − (x0, z0)〉 + U(x0, z0)

= P (x, z) ≤ U(x, z),

for every (x, z) ∈ S, we conclude that P̃ touches U from below at (x0, z0) in S. �

The next two lemmas provide some observations regarding how the symmetry of U across {z = 0} effects 

the geometry of the paraboloids that touch U from below.

Lemma 6.4. Let S ⊂ R
n+1 be an open, convex set that is symmetric across {z = 0}. Consider a continuous 

function U : S → R which is symmetric across {z = 0}. Let P be a paraboloid of opening a > 0 with vertex 

(xv, zv) that touches U from below at (x0, z0) in S. If z0 > 0, then zv ≥ 0, and if z0 < 0, then zv ≤ 0. 

Moreover, the paraboloid P̃ (x, z) = P (x, −z) of opening a > 0 with vertex (xv, −zv) that touches U from 

below at (x0, −z0) in S.

Proof. Assume that z0 > 0. Write

P (x, z) = −aδΦ((xv, zv), (x, z)) + aδΦ((xv, zv), (x0, z0)) + U(x0, z0)

and note that

P (x0, −z0) = −aδΦ((xv, zv), (x0, −z0)) + aδΦ((xv, zv), (x0, z0)) + U(x0, z0)

= −aδh(zv, −z0) + aδh(zv, z0) + U(x0, −z0).
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Then

0 ≤ U(x0, −z0) − P (x0, −z0)

= aδh(zv, −z0) − aδh(zv, z0)

= a (h(−z0) − h(z0)) + 2ah′(zv)z0 = 2ah′(zv)z0.

Since z0 > 0, it follows that h′(zv) ≥ 0. Hence, zv ≥ 0, as desired. The case for z0 < 0 follows similarly.

Next, define P̃ by P̃ (x, z) = P (x, −z). Since h′(−z1) = −h′(z1) and

δh(z1, −z2) = h(−z2) − h(z1) − h′(z1)(−z2 − z1)

= h(z2) − h(−z1) − h′(−z1)(z2 − (−z1))

= δh(−z1, z2)

(6.3)

for all z1, z2 ∈ R, we may write

P̃ (x, z) = P (x, −z)

= −aδΦ((xv, zv), (x, −z)) + aδΦ((xv, zv), (x0, z0)) + U(x0, z0)

= −aδϕ(xv, x) + aδϕ(xv, x0) − aδh(zv, −z) + aδh(zv, z0) + U(x0, −z0)

= −aδϕ(xv, x) + aδϕ(xv, x0) − aδh(−zv, z) + aδh(−zv, −z0) + U(x0, −z0)

= −aδΦ((xv, −zv), (x, z)) + aδΦ((xv, −zv), (x0, −z0)) + U(x0, −z0).

Hence, P̃ is a paraboloid of opening a > 0 with vertex (xv, −zv). Since

P̃ (x, z) = P (x, −z) ≤ U(x, −z) = U(x, z) for all (x, z) ∈ S

and

P̃ (x0, −z0) = P (x0, z0) = U(x0, z0) = U(x0, −z0),

we have that P̃ touches U from below at (x0, −z0) in S. �

Notation 6.5. Given f : Ω → R, we define the functions f± by

f−(x) = min{0, f(x)} ≤ 0 and f+(x) = max{f(x), 0} ≥ 0.

Lemma 6.6. Let f ∈ L∞(Ω) and let S ⊂⊂ Ω × R ⊂ R
n+1 be an open, convex set such that S ∩ {z = 0} �= ∅. 

Suppose that a continuous function U : Ω × R → R such that Uz+ ∈ C([0, ∞); C(Ω)) is symmetric across 

{z = 0} and satisfies

−∂z+U(x, 0) ≥ f(x) on S ∩ {z = 0}.

If f(x0) > 0, then U cannot be touched from below at (x0, 0) in S by any paraboloid. If f(x0) ≤ 0 and 

P is a paraboloid of opening a > 0 with vertex (xv, zv) that touches U from below in S at (x0, 0), then 

|h′(zv)| ≤ |f−(x0)| /a. Consequently, if f(x0) = 0, then zv = 0.
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Proof. Suppose that P is a paraboloid of opening a > 0 that touches U from below at (x0, 0) in S. Write

P (x, z) = −aδΦ((xv, zv), (x, z)) + aδΦ((xv, zv), (x0, 0)) + U(x0, 0).

Let ε > 0 be small. Since U − P attains a local minimum of 0 at (x0, 0), we know that

(U(x0, ε) − P (x0, ε)) − (U(x0, 0) − P (x0, 0))

ε
=

U(x0, ε) − P (x0, ε)

ε
≥ 0.

Therefore, taking the limit as ε → 0+, we obtain

0 ≤ ∂z+U(x0, 0) − ∂zP (x0, 0) ≤ −f(x0) − ah′(zv). (6.4)

We note that, by the symmetry of U across {z = 0}, we have that

∂z−U(x0, 0) = lim
h→0−

U(x0, h) − U(x0, 0)

h

= − lim
h→0+

U(x0, −h) − U(x0, 0)

−h

= − lim
h→0+

U(x0, h) − U(x0, 0)

h

= −∂z+U(x0, 0) ≥ f(x0).

For ε > 0 small, we have that

(U(x0, −ε) − P (x0, −ε)) − (U(x0, 0) − P (x0, 0))

−ε
=

−U(x0, −ε) + P (x0, −ε)

ε
≤ 0.

Taking the limit as ε → 0+, we obtain

0 ≥ ∂z−U(x0, 0) − ∂zP (x0, 0) ≥ f(x0) − ah′(zv). (6.5)

By combining (6.4) and (6.5),

f(x0) ≤ ah′(zv) ≤ −f(x0).

If f(x0) > 0, then the previous set of inequalities provides a contradiction, so P cannot touch U from below 

in S at (x0, 0). If f(x0) ≤ 0, then

−
∣∣f−(x0)

∣∣ ≤ ah′(zv) ≤
∣∣f−(x0)

∣∣

as desired. If f(x0) = 0, then h′(zv) = 0 which implies that zv = 0. �

7. Estimate on the Monge–Ampère measure of the set of contact points

Our first key result is a measure estimate similar to the Alexandroff–Bakelman–Pucci estimate for fully 

nonlinear equations. We prove that if we lift paraboloids of fixed opening a > 0 with vertices in a closed, 

bounded set from below until they touch the graph of U for the first time, then, by using the equation 

and the Neumann boundary condition, the Monge–Ampère measure of the contact points is a universal 

proportion of the Monge–Ampère measure of the set of vertices.
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Theorem 7.1. Assume that Ω is a bounded domain and that aij(x) : Ω → R are bounded, measurable functions 

that satisfy (1.5). Let QR = QR(x̃, ̃z) ⊂⊂ Ω × R and f ∈ L∞(QR ∩ {z = 0}). Suppose U ∈ C2(QR \ {z =

0}) ∩ C(QR) such that U is symmetric across {z = 0} and Uz+ ∈ C(QR ∩ {z ≥ 0}) is a supersolution to

{
aij(x)∂ijU + |z|2− 1

s ∂zzU ≤ 0 in QR ∩ {z �= 0}
−∂z+U ≥ f on QR ∩ {z = 0}.

Let B ⊂ QR be a closed set and fix a > 0. For each (xv, zv) ∈ B, we slide paraboloids of opening a > 0 and 

vertex (xv, zv) from below until they touch the graph of U for the first time. Let A denote the set of contact 

points and assume that A ⊂ QR. Then A is compact and if

μΦ

(
B ∩

{
(x, z) : |h′(z)| ≤

‖f−‖L∞(QR∩{z=0})

a

})
≤ (1 − ε0)μΦ(B),

for some ε0 > 0, then there is a positive constant c = c(n, λ, Λ) < 1 such that

μΦ(A) ≥ ε0cμΦ(B).

Proof. We first show that A is closed. Let (xk, zk) ∈ A be such that (xk, zk) → (x0, z0). There exist 

corresponding polynomials Pk with vertices (xk
v , zk

v ) ∈ B such that Pk touches U from below at (xk, zk) in 

QR. Since B ⊂ QR is closed, B is compact. Thus, up to a subsequence, (xk
v , zk

v ) → (x0
v, z0

v) ∈ B. By the 

continuity of δΦ and U , as k → ∞,

Pk(x, z) = −aδΦ((xk
v , zk

v ), (x, z)) + aδΦ((xk
v , zk

v ), (xk, zk)) + U(xk, zk)

→ −aδΦ((x0
v, z0

v), (x, z)) + aδΦ((x0
v, z0

v), (x0, z0)) + U(x0, z0) =: P (x, z).

Since Pk(x, z) ≤ U(x, z), it must be that P ≤ U in QR. Moreover, P (x0, z0) = U(x0, z0). Therefore, P is 

a paraboloid of opening a > 0 with vertex (x0
v, z0

v) ∈ B that touches U from below at (x0, z0). This shows 

that (x0, z0) ∈ A, so that A is closed and, moreover, compact.

Define the sets

B0 = B ∩
{

(x, z) : |h′(z)| ≤
‖f−‖L∞(QR∩{z=0})

a

}

B1 = B \
{

(x, z) : |h′(z)| ≤
‖f−‖L∞(QR∩{z=0})

a

}
,

so that B = B0 ∪ B1 and B0 ∩ B1 = ∅. We lift paraboloids of opening a > 0 from below with vertices in 

B0 and B1 to form the contact sets A0 and A1, respectively. Note that A = A0 ∪ A1.

We will first show that μΦ(B1) ≤ CμΦ(A1) for some positive constant C = C(n, λ, Λ).

Let (x0, z0) ∈ A1. There exists a paraboloid P of opening a > 0 and vertex (xv, zv) ∈ B1 that touches U

from below at (x0, z0). If z0 = 0, then, by Lemma 6.6, it must be that f(x0) ≤ 0 and that

|h′(zv)| ≤ |f−(x0)|
a

≤
‖f−‖L∞(QR∩{z=0})

a

which contradicts that (xv, zv) ∈ B1. Hence, z0 �= 0.

Since U − P attains a local minimum at (x0, z0),

∇U(x0, z0) = ∇P (x0, z0) = −a (x0 − xv, h′(z0) − h′(zv))
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which implies

(xv, h′(zv)) = (x0, h′(z0)) +
1

a
∇U(x0, z0).

This is how the vertices (xv, zv) ∈ B1 are uniquely determined by (x0, z0) ∈ A1. Notice that this identity is 

equivalent to

∇Φ(xv, zv) = ∇
(

Φ +
1

a
U

)
(x0, z0) for all (xv, zv) ∈ B1.

Consider the map T : A1 → T (A1) = ∇Φ(B1) given by

T (x0, z0) = ∇
(

Φ +
1

a
U

)
(x0, z0).

For ε > 0, let Aε ⊂ A1 be given by

Aε = A1 \ {(x, z) : |z| < ε}.

Then, T is Lipschitz and injective on Aε, so that, by the area formula for Lipschitz maps,

|T (Aε)| =

∫

T (Aε)

dy dw =

∫

Aε

|det (∇T (x, z))| dz dx

=

∫

Aε

∣∣∣∣det

(
D2

(
Φ +

1

a
U

)
(x, z)

)∣∣∣∣ dz dx.

We claim that there is a constant C = C(n, λ, Λ) > 0 such that for all (x0, z0) ∈ A1

−aD2Φ(x0, z0) ≤ D2U(x0, z0) ≤ CaD2Φ(x0, z0). (7.1)

The first inequality is straightforward because P touches U from below at (x0, z0). To prove the second 

inequality in (7.1), suppose, by way of contradiction, that

D2U(x0, z0) > CaD2Φ(x0, z0) for all C > 0. (7.2)

Then

D2U(x0, z0) > Ca

(
ek ⊗ ek 0

0 0

)
> Ca

(
ek ⊗ ek 0

0 0

)
− a

(
I 0

0 |z0|
1
s −2

)

where ek, k = 1, . . . , n are the standard basis vectors in Rn. Since Ã =

(
A(x0) 0

0 0

)
≥ 0 and

D2U(x0, z0) − Ca

(
ek ⊗ ek 0

0 0

)
+ a

(
I 0

0 |z0|
1
s −2

)
≥ 0,

we have that

tr

(
ÃD2U(x0, z0) − CaÃ

(
ek ⊗ ek 0

0 0

)
+ aÃ

(
I 0

0 |z0|
1
s −2

))
≥ 0.
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By ellipticity (see (1.5)),

aij(x0)∂ijU(x0, z0) ≥ (Ca)akk(x0) − a tr(A(x0)) ≥ Caλ − anΛ. (7.3)

Similarly, from (7.2),

D2U(x0, z0) > Ca

(
0 0

0 |z0|
1
s −2

)
> Ca

(
0 0

0 |z0|
1
s −2

)
− a

(
I 0

0 |z0|
1
s −2

)
.

From the definition of positive definite matrices,

∂zzU(x0, z0) − Ca |z0|
1
s −2

+ a |z0|
1
s −2

> 0.

Therefore,

|z0|2− 1
s ∂zzU(x0, z0) > Ca − a. (7.4)

By (7.3) and (7.4), it follows that

0 ≥ aij(x0)∂ijU(x0, z0) + |z0|2− 1
s ∂zzU(x0, z0)

> Caλ − anΛ + Ca − a

= [C(λ + 1) − (nΛ + 1)]a,

which is a contradiction when C = C(n, λ, Λ) > 0 is sufficiently large. Thus, (7.1) holds.

From (7.1), we get

0 ≤ D2

(
Φ +

1

a
U

)
(x0, z0) ≤ D2Φ(x0, z0) + CD2Φ(x0, z0) = (C + 1)D2Φ(x0, z0)

for all (x0, z0) ∈ A1. Hence,

|T (Aε)| =

∫

Aε

det

(
D2

(
Φ +

1

a
U

)
(x, z)

)
dx dz

≤
∫

Aε

det
(
(C + 1)D2Φ(x, z)

)
dx dz

= (C + 1)n+1μΦ(Aε)

≤ (C + 1)n+1μΦ(A1).

As this holds for all ε > 0,

μΦ(B1) = |∇Φ(B1)| = |T (A1)| ≤ (C + 1)n+1μΦ(A1).

Thus,

μΦ(B) = μΦ(B0) + μΦ(B1) ≤ (1 − ε0)μΦ(B) + (C + 1)n+1μΦ(A1)

from which it follows that

μΦ(A) ≥ μΦ(A1) ≥ ε0

2(C + 1)n+1
μΦ(B) = cε0μΦ(B). �
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The following is a parallel result to that of Theorem 7.1 for subsolutions when paraboloids of opening 

a < 0 are lowered from above until they touch the graph of U for the first time. The proof is straightforward. 

We will apply this lemma in the proof of Theorem 5.3.

Theorem 7.2. Assume that Ω is a bounded domain and that aij(x) : Ω → R are bounded, measurable functions 

that satisfy (1.5). Let QR = QR(x̃, ̃z) ⊂⊂ Ω × R and f ∈ L∞(QR ∩ {z = 0}). Suppose U ∈ C2(QR \ {z =

0}) ∩ C(QR) such that U is symmetric across {z = 0} and Uz+ ∈ C(QR ∩ {z ≥ 0}) is a subsolution to

{
aij(x)∂ijU + |z|2− 1

s ∂zzU ≥ 0 in QR ∩ {z �= 0}
−∂z+U ≤ f on QR ∩ {z = 0}.

Let B ⊂ QR be a closed set and fix a < 0. For each (xv, zv) ∈ B, we slide paraboloids of opening a and 

vertex (xv, zv) from above until they touch the graph of U for the first time. Let A denote the set of contact 

points and assume that A ⊂ QR. Then A is compact and if

μΦ

(
B ∩

{
(x, z) : |h′(z)| ≤

‖f+‖L∞(QR∩{z=0})

|a|

})
≤ (1 − ε0)μΦ(B),

for some ε0 > 0, then there is a positive constant c = c(n, λ, Λ) < 1 such that

μΦ(A) ≥ ε0cμΦ(B).

Remark 7.3. By checking the proofs, it is easy to see that Theorems 7.1 and 7.2 are still valid when the 

cube QR is replaced by a section SR.

8. Explicit barriers

This section contains the construction of the barriers that will be used in Section 9 to prove a localization 

estimate. This is a quite delicate task due to the degeneracy/singularity of the extension equation and the 

presence of the Neumann boundary condition.

The idea for the barrier is to use δΦ((x0, z0), (x, z))−α, for α > 0 large, to construct subsolutions in a ring 

S2r(x0, z0) \Sγr(x0, z0). This depends heavily on whether s is smaller or larger than 1/2. When 0 < s ≤ 1/2, 

the coefficient |z|2−1/s
blows up at the origin. When 1/2 < s < 1, the coefficient |z|2−1/s

degenerates near 

z = 0. In the latter case, we need to use an auxiliary function that bypasses the points where |z|2−1/s
is 

small. A similar auxiliary function will be used when z0 = 0 to force the Neumann condition to be strictly 

positive. By the symmetry of the equation, it will be enough to consider the nonnegative side of the ring if 

z0 ≥ 0 and the nonpositive side if z0 ≤ 0.

The following is a preliminary result that will be used in the case when 0 < s ≤ 1/2.

Lemma 8.1. Let 0 < s ≤ 1/2 and z0 > 0 be fixed. Define the function Q : R → R by

Q(z) =
(h′(z) − h′(z0))2

δh(z0, z)h′′(z)
.

Then Q is a continuous function of z > 0, and Q(z) ≥ 1 for all z > 0.

Proof. By L’Höpital’s rule, limz→z0
Q(z) = 2, so that Q(z) is continuous for z > 0. Also, for s = 1/2 and 

all z �= z0, we have Q(z) = 2. Hence, let us assume for the remainder of the proof that 0 < s < 1/2.
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It is easy to see that limz→0+ Q(z) = ∞ and that limz→∞ Q(z) = 1
1−s ≥ 1. Therefore, it is enough to 

prove that Q(z) is decreasing for z > 0, z �= z0. To this end, we will show that Q′(z) < 0 for z �= z0. First, 

observe that

Q
′(z) =

(h′(z) − h′(z0))h′′(z)

(δh(z0, z)h′′(z))2
· I(z) (8.1)

where

I(z) = 2δh(z0, z)h′′(z) − (h′(z) − h′(z0))2 − δh(z0, z)(h′(z) − h′(z0))
h′′′(z)

h′′(z)
.

We can write

I(z) = − s

1 − s
z

2
s −2
0 +

s

1 − s
z

1
s
0 z

1
s −2 − s(1 − 2s)

1 − s
z

1
s −1
0 z

1
s −1 +

s(1 − 2s)

1 − s
z

2
s −1
0 z−1.

It follows that I(z) > 0 for all z > 0 if and only if

ψ(z) := −z
2
s −1
0 z + z

1
s +1
0 z

1
s −1 − (1 − 2s)z

1
s
0 z

1
s + (1 − 2s)z

2
s
0 > 0,

for all z > 0. Note that ψ(z0) = 0 and ψ(0) = (1 − 2s)z
2
s
0 > 0. We claim that ψ is decreasing as function of 

z > 0. Indeed, ψ′(z) < 0 if and only if

−z
2
s −1
0 +

(
1

s
− 1

)
z

1
s +1
0 z

1
s −2 − (1 − 2s)

s
z

1
s
0 z

1
s −1 < 0.

Multiplying both sides by z
−1/s
0 s/(1 − s) > 0 and rearranging, this is equivalent to

z0z
1
s −2 <

(
s

1 − s

)
z

1
s −1
0 +

(
1 − 2s

1 − s

)
z

1
s −1,

which is true by Young’s inequality, and the claim follows. Thus, we conclude that

ψ(z) > 0 for 0 < z < z0 and ψ(z) < 0 for z > z0.

This gives that

I(z) > 0 for 0 < z < z0 and I(z) < 0 for z > z0.

Since, in addition,

h′(z) − h′(z0) < 0 for 0 < z < z0 and h′(z) − h′(z0) > 0 for z > z0,

we deduce from (8.1) that Q′(z) < 0 for all z �= z0. This completes the proof. �

We now construct the barriers φ. For a set S ⊂ R
n+1, we introduce the notation

S+ = S ∩ {z ≥ 0} and S− = S ∩ {z ≤ 0}.

To deal with the singularity at z = 0, we define φ in either the positive or negative half spaces. In particular, 

if z0 ≥ 0, then we consider the partial ring [Sr(x0, z0) \ Sγr(x0, z0)]+. If z0 < 0, then we consider the partial 

ring [Sr(x0, z0) \ Sγr(x0, z0)]−. We will use the condensed notation
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[Sr(x0, z0) \ Sγr(x0, z0)]± =

{
[Sr(x0, z0) \ Sγr(x0, z0)]+ if z0 ≥ 0

[Sr(x0, z0) \ Sγr(x0, z0)]
−

if z0 < 0.

Lemma 8.2. Fix 0 < γ < 1 and consider a section Sr(x0, z0) ⊂ R
n+1.

If z0 ≥ 0, then there exists a classical subsolution φ = φ(x, z) to

{
aij(x)∂ijφ + |z|2− 1

s ∂zzφ > a(nΛ + 1) in [S2r(x0, z0) \ Sγr(x0, z0)]+ ∩ {z �= 0}
−∂z+φ(x, 0) < 0 on [S2r(x0, z0) \ Sγr(x0, z0)]+ ∩ {z = 0}.

(8.2)

If z0 ≤ 0, then there exists a classical subsolution φ = φ(x, z) to

{
aij(x)∂ijφ + |z|2− 1

s ∂zzφ > a(nΛ + 1) in [S2r(x0, z0) \ Sγr(x0, z0)]− ∩ {z �= 0}
−∂z−φ(x, 0) > 0 on [S2r(x0, z0) \ Sγr(x0, z0)]− ∩ {z = 0}.

(8.3)

In each case, φ > 0 in [Sr(x0, z0) \ Sγr(x0, z0)]±, φ ≤ 0 on [∂S2r(x0, z0)]±, and there is a constant C =

C(n, λ, Λ, γ) > 0 such that φ ≤ Car on [∂Sγr(x0, z0)]±.

Proof. The proof of (8.3) will follow from (8.2) at the end by symmetry. The construction of the subsolution 

in (8.2) will depend on whether z0 > 0 or z0 = 0 and on whether 0 < s ≤ 1/2 or 1/2 < s < 1.

Case 1: z0 > 0 and 0 < s ≤ 1/2.

We begin by considering the function (δΦ((x0, z0), (x, z)))−α for a large constant α = α(γ, n, λ, Λ, s) > 0

which will be fixed later on. Let Q(z) be the function defined in Lemma 8.1. For a point (x, z) ∈ [S2r(x0, z0) \
Sγr(x0, z0)]+ \ {z = 0}, we use ellipticity and Lemma 8.1 to estimate

aij(x)∂ij(δΦ((x0, z0), (x, z)))−α + |z|2− 1
s ∂zz(δΦ((x0, z0), (x, z)))−α

= α(δΦ((x0, z0), (x, z)))−α−2

[
(α + 1)

(
aij(x)(x − x0)i(x − x0)j + |z|2− 1

s (h′(z) − h′(z0))2
)

− (tr(A(x)) + 1) δΦ((x0, z0), (x, z))

]

≥ α(δΦ((x0, z0), (x, z)))−α−2

[
(α + 1)

(
λ |x − x0|2 + |z|2− 1

s (h′(z) − h′(z0))2
)

− (nΛ + 1) δΦ((x0, z0), (x, z))

]

= α(δΦ((x0, z0), (x, z)))−α−2

[
(α + 1)

(
2λδϕ(x0, x) +

(h′(z) − h′(z0))2

h′′(z)δh(z0, z)
δh(z0, z)

)
− (nΛ + 1) (δϕ(x0, x) + δh(z0, z))

]

= α(δΦ((x0, z0), (x, z)))−α−2

[
(2λ(α + 1) − (nΛ + 1)) δϕ(x0, x) + (Q(z)(α + 1) − (nΛ + 1)) δh(z0, z)

]

≥ α(δΦ((x0, z0), (x, z)))−α−2

[
(2λ(α + 1) − (nΛ + 1)) δϕ(x0, x) + ((α + 1) − (nΛ + 1)) δh(z0, z)

]
.

Choose α = α(γ, n, λ, Λ) large so that
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2λ(α + 1) − (nΛ + 1) > 4γ−1(nΛ + 1) and (α + 1) − (nΛ + 1) > 4γ−1(nΛ + 1).

Since γr ≤ δΦ((x0, z0), (x, z)) = δϕ(x0, x) + δh(z0, z), it must be that δϕ(x0, x) ≥ γr/2 or δh(z0, z) ≥ γr/2. 

If δϕ(x0, x) ≥ γr/2, then

aij(x)∂ij(δΦ((x0, z0), (x, z)))−α + |z|2− 1
s ∂zz(δΦ((x0, z0), (x, z)))−α

> α(δΦ((x0, z0), (x, z)))−α−2

[
4γ−1(nΛ + 1)δϕ(x0, x) + 0

]

≥ α(nΛ + 1)(2r)−α−1.

If δh(z0, z) ≥ γr/2, then

aij(x)∂ij(δΦ((x0, z0), (x, z)))−α + |z|2− 1
s ∂zz(δΦ((x0, z0), (x, z)))−α

> α(δΦ((x0, z0), (x, z)))−α−2

[
0 + 4γ−1 (nΛ + 1) δh(z0, z)

]

≥ α(nΛ + 1)(2r)−α−1.

Combining the previous two estimates, we have that, for all (x, z) ∈ [S2r(x0, z0) \ Sγr(x0, z0)]+ \ {z = 0},

aij(x)∂ij(δΦ((x0, z0), (x, z)))−α + |z|2− 1
s ∂zz(δΦ((x0, z0), (x, z)))−α > α(nΛ + 1)(2r)−α−1.

Define φ in [S2r(x0, z0) \ Sγr(x0, z0)]+ by

φ(x, z) = α−1a(2r)α+1[(δΦ((x0, z0), (x, z)))−α − r−α].

Then aij(x)∂ijφ(x, z) + |z|2− 1
s φ(x, z) > a(nΛ + 1). If [S2r(x0, z0) \ Sγr(x0, z0)]+ ∩ {z = 0} �= ∅, we need 

to check the Neumann condition. In this case, let (x, 0) ∈ [S2r(x0, z0) \ Sγr(x0, z0)]+ ∩ {z = 0} and observe 

that

∂z+φ(x, 0) = −a(2r)α+1(δΦ((x0, z0), (x, z))−α−1(h′(z) − h′(z0))
∣∣
z=0

= a(2r)α+1(δΦ((x0, z0), (x, 0))−α−1h′(z0)

≥ ah′(z0) > 0

since z0 > 0. Therefore, φ defined in [S2r(x0, z0) \ Sγr(x0, z0)]+ is a subsolution to (8.2). It is easy to check 

that φ ≤ 0 in [S2r(x0, z0) \ Sr(x0, z0)]+ and φ > 0 in [Sr(x0, z0)]+. Lastly, for (x, z) ∈ [∂Sγr(x0, z0)]±, we 

have that φ(x, z) = α−1a2α+1(γ−1 − 1)r = Car, where C = C(γ, n, λ, Λ) > 0.

Case 2: z0 ≥ 0 and 1/2 < s < 1.

Here we need to bypass the points where |z|2− 1
s is small with respect to the size of the section S2r(z0) ⊂ R. 

Let 0 < ε < 1 be a small constant, to be chosen. Let 0 < ε0 < 1 be as in Lemma 4.6 and define the set Hε

by

Hε =

{
z ∈ S2r(z0) : |z|2− 1

s ≤ ε0
|S2r(z0)|

μh(S2r(z0))

}

=

{
z ∈ S2r(z0) : 1 ≤ ε0

|S2r(z0)|
μh(S2r(z0))

h′′(z)

}
.
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We first show that the measure of Hε is small with respect to the measure of the section S2r(z0). Indeed, 

using Lemma 4.1, we estimate

|Hε| =

∫

Hε

dz ≤
∫

Hε

ε0
|S2r(z0)|

μh(S2r(z0))
h′′(z) dz

≤ ε0
|S2r(z0)|

μh(S2r(z0))

∫

S2r(z0)

h′′(z) dz = ε0 |S2r(z0)| .

By Lemma 4.6, μh(Hε) ≤ εμh(S2r(z0)).

We will construct a function hε in [S2r(z0)]+ that bypasses the points in Hε. Let H̃ε be an open interval 

such that

Hε ⊂ H̃ε ⊂ S2r(z0), μh(H̃ε \ Hε) ≤ εμh(S2r(z0)),

and let ψε = ψε(z) be a smooth function satisfying

ψε = 1 in Hε, ψε = ε in S2r(z0) \ H̃ε, ε ≤ ψε ≤ 1 in S2r(z0).

We use the notation

[S2r(z0)]+ = (zL, zR), where 0 ≤ zL ≤ z0 < zR.

Note that zL = 0 if 0 ∈ S2r(z0).

In [S2r(z0)]+, let hε = hε(z) be the strictly convex solution to

⎧
⎪⎪⎨
⎪⎪⎩

h′′
ε = 2(nΛ + 1)ψεh′′ in [S2r(z0)]+

hε(zR) = 0

h′
ε(zL) = εμh(S2r(z0)).

We remark that hε ∈ C∞((zL, zR)) and, since h ∈ C1(R), we have hε ∈ C1([S2r(z0)]+). Since hε is strictly 

convex in [S2r(z0)]+ and hε ∈ C1([S2r(z0)]+), it follows that h′
ε > 0 in [S2r(z0)]+. Moreover, since hε is 

strictly increasing, hε achieves its maximum at z = zR, so that hε ≤ 0 in [S2r(z0)]+.

To bound hε and h′
ε, we first estimate

∫

S2r(z0)

ψε dμh =

∫

Hε

ψε dμh +

∫

H̃ε\Hε

ψε dμh +

∫

S2r(z0)\H̃ε

ψε dμh

≤
∫

Hε

dμh +

∫

H̃ε\Hε

dμh +

∫

S2r(z0)\H̃ε

ε dμh

= μh(Hε) + μh(H̃ε \ Hε) + εμh(S2r(z0) \ H̃ε)

≤ εμh(S2r(z0)) + εμh(S2r(z0)) + εμh(S2r(z0)) = 3εμh(S2r(z0)).

Let δ > 0. For z ∈ [S2r(z0)]+, by the previous estimate,

|h′
ε(z)| = h′

ε(z) =

z∫

zL+δ

h′′
ε (w) dw + h′

ε(zL + δ)
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=

z∫

zL+δ

2(nΛ + 1)ψεh′′(w) dw + h′
ε(zL + δ)

≤ 2(nΛ + 1)

∫

S2r(z0)

ψε dμh + h′
ε(zL + δ)

≤ 6(nΛ + 1)εμh(S2r(z0)) + h′
ε(zL + δ)

= Cεμh(S2r(z0)) + h′
ε(zL + δ)

for a constant C = C(n, Λ) > 0. Taking the limit as δ → 0, we have

h′
ε(z) ≤ Cεμh(S2r(z0)) + h′

ε(zL) = Cεμh(S2r(z0)) + εμh(S2r(z0)) = C1εμh(S2r(z0))

for a constant C1 = C1(n, Λ).

Again, let δ > 0. For z ∈ [S2r(z0)]+, by Corollary 4.7 part (3),

|hε(z)| = −hε(z) =

zR−δ∫

z

h′
ε(w) dw − hε(zR − δ)

≤ C1εμh(S2r(z0))

zR−δ∫

z

dw − hε(zR − δ)

≤ C1εμh(S2r(z0)) |S2r(z0)| − hε(zR − δ)

≤ C2εr − hε(zR − δ)

for a constant C2 = C2(n, Λ, s) > 0. Taking the limit as δ → 0, we have

|hε(z)| ≤ C2εr − hε(zR) = C2εr.

Suppose that γr/2 ≤ δh(z0, z) < 2r. By the convexity of δh(z0, z) in the variable z, we obtain

0 = δh(z0, z0) ≥ δh(z0, z) + ∂zδh(z0, z) · (z0 − z).

By Corollary 4.7 part (3), this implies

|∂zδh(z0, z)| ≥ δh(z0, z)

|z − z0| ≥ γr/2

|S2r(z0)| ≥ C3μh(S2r(z0))

for a constant C3 = C3(γ, s). Choose ε = ε(γ, n, Λ, s) > 0 small so that C1ε < C3. Then,

|∂zδh(z0, z) − h′
ε(z)| ≥ |∂zδh(z0, z)| − |h′

ε(z)| ≥ (C3 − C1ε)μh(S2r(z0)) > 0

and

(∂zδh(z0, z) − h′
ε(z))2 ≥ (C3 − C1ε)2[μh(S2r(z0))]2 = C4[μh(S2r(z0))]2 (8.4)

for a constant C4 = C4(γ, n, Λ, s) > 0.

For a large constant α = α(γ, n, λ, Λ, s) > 0, we define the function φ̃ on [S2r(x0, z0) \ Sγr(x0, z0)]+ by

φ̃(x, z) = (δΦ((x0, z0), (x, z)) − hε(z))−α.
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Let (x, z) ∈ [S2r(x0, z0) \ Sγr(x0, z0)]+ \ {z = 0}. Since hε ≤ 0, we first note that

γr ≤ δΦ((x0, z0), (x, z)) ≤ δΦ((x0, z0), (x, z)) − hε(z) < 2r + C2εr = (2 + C2ε)r. (8.5)

The equation for φ̃ in [S2r(x0, z0) \ Sγr(x0, z0)]+ \ {z = 0} is

aij(x)∂ij φ̃ + |z|2− 1
s ∂zzφ̃

= α(δΦ((x0, z0), (x, z)) − hε(z))−α−2

(
(α + 1)

[
aij(x)(x − x0)i(x − x0)j + |z|2− 1

s (∂z(δΦ((x0, z0), (x, z))) − h′
ε(z))2

]

− (δΦ((x0, z0), (x, z)) − hε(z))

[
tr(A(x)) + 1 − 2(nΛ + 1)ψε

])
.

Using ellipticity and

∂zδΦ((x0, z0), (x, z)) = ∂z(δϕ(x0, x) + δh(z0, z)) = ∂zδh(z0, z), (8.6)

we estimate

aij(x)∂ij φ̃ + |z|2− 1
s ∂zzφ̃

≥ α(δΦ((x0, z0), (x, z)) − hε(z))−α−2

(
(α + 1)

[
2λδϕ(x0, x) + |z|2− 1

s (∂zδh(z0, z) − h′
ε(z))2

]

− (δΦ((x0, z0), (x, z)) − hε(z))(1 − 2ψε)(nΛ + 1)

)
.

Suppose that z ∈ Hε. Since ψε(z) = 1, we can use (8.5) to estimate

aij(x)∂ij φ̃ + |z|2− 1
s ∂zzφ̃

≥ α(δΦ((x0, z0), (x, z)) − hε(z))−α−2

(
0 + (δΦ((x0, z0), (x, z)) − hε(z))(nΛ + 1)

)

≥ α(nΛ + 1)(2 + C2ε)−α−1r−α−1.

(8.7)

Next, suppose that z /∈ Hε. Since ψε(z) > 0 and |z|2− 1
s > ε0 |S2r(z0)| /μh(S2r(z0)), we estimate

aij(x)∂ij φ̃ + |z|2− 1
s ∂zzφ̃

≥ α(δΦ((x0, z0), (x, z)) − hε(z))−α−2

(
(α + 1)

[
2λδϕ(x0, x) + ε0

|S2r(z0)|
μh(S2r(z0))

(∂zδh(z0, z) − h′
ε(z))2

]

− (δΦ((x0, z0), (x, z)) − hε(z))(nΛ + 1)

)
.

(8.8)

Since δΦ((x0, z0), (x, z)) ≥ γr, we have that δϕ(x0, x) ≥ γr/2 or δh(z0, z) ≥ γr/2. Suppose first that 

δϕ(x0, x) ≥ γr/2. Then

2λδϕ(x0, x) + ε0
|S2r(z0)|

μh(S2r(z0))
(∂zδh(z0, z) − h′

ε(z))2 ≥ 2λδϕ(x0, x) ≥ λγr.
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Choose α = α(γ, n, λ, Λ, s) large enough to guarantee that

(α + 1)λγ − (nΛ + 1)(2 + C2ε) > (nΛ + 1)(2 + C2ε).

Then, from (8.8) and (8.5),

aij(x)∂ij φ̃ + |z|2− 1
s ∂zzφ̃

≥ α(δΦ((x0, z0), (x, z)) − hε(z))−α−2

(
(α + 1)λγr − (nΛ + 1)(2 + C2ε)r

)

> α(δΦ((x0, z0), (x, z)) − hε(z))−α−2(nΛ + 1)(2 + C2ε)r

≥ α(nΛ + 1)(2 + C2ε)−α−1r−α−1.

(8.9)

Next, suppose that δh(z0, z) ≥ γr/2. Since S2r(x0, z0) ⊂ S2r(x0) ×S2r(z0), we know that γr/2 ≤ δh(z0, z) <

2r. By (8.4) and Corollary 4.7 part (3), we obtain

2λδϕ(x0, x) + ε0
|S2r(z0)|

μh(S2r(z0))
(∂zδh(z0, z) − h′

ε(z))2

≥ ε0
|S2r(z0)|

μh(S2r(z0))
(∂zδh(z0, z) − h′

ε(z))2

≥ ε0
|S2r(z0)|

μh(S2r(z0))
C4[μh(S2r(z0))]2

≥ C5ε0r

for some constant C5 = C5(γ, n, Λ, s) > 0. Let α = α(γ, n, λ, Λ, s) > 0 be large so that

(α + 1)C5ε0 − (nΛ + 1)(2 + C2ε) > (nΛ + 1)(2 + C2ε).

Then, from (8.8), we use (8.5) to obtain

aij(x)∂ijφ̃ + |z|2− 1
s ∂zzφ̃

≥ α(δΦ((x0, z0), (x, z)) − hε(z))−α−2

(
(α + 1)C5ε0r − (nΛ + 1)(2 + C2ε)r

)

> α(δΦ((x0, z0), (x, z)) − hε(z))−α−2(nΛ + 1)(2 + C2ε)r

≥ α(nΛ + 1)(2 + C2ε)−α−1r−α−1.

(8.10)

From (8.7), (8.9), and (8.10), there is an α = α(γ, n, λ, Λ, s) > 0 such that for all (x, z) ∈ [S2r(x0, z0) \
Sγr(x0, z0)]+ \ {z = 0}, we have

aij(x)∂ijφ̃ + |z|2− 1
s ∂zzφ̃ > α(nΛ + 1)(2 + C2ε)−α−1r−α−1.

We define the barrier φ on [S2r(x0, z0) \ Sγr(x0, z0)]+ by

φ(x, z) = aα−1(2 + C2ε)α+1rα+1
(
φ̃(x, z) − (1 + C2ε)−αr−α

)
.

For (x, z) ∈ [S2r(x0, z0) \Sγr(x0, z0)]+ \{z = 0}, it then follows that aij(x)∂ijφ + |z|2− 1
s ∂zzφ > a(nΛ +1). If 

zL = 0, we need to check the Neumann condition. In this case, let (x, 0) ∈ [S2r(x0, z0) \ Sγr(x0, z0)]+ ∩ {z =

0}. Using (8.5), we see that
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∂z+φ(x, 0) = a(2 + C2ε)α+1rα+1(δΦ((x0, z0), (x, 0)) − hε(0))−α−1(h′(z0) + εμh(S2r(z0)))

> a(2 + C2ε)α+1rα+1(2 + C2ε)−α−1r−α−1(h′(z0) + εμh(S2r(z0)))

= a(h′(z0) + εμh(S2r(z0))) > 0,

since z0 ≥ 0. Therefore, φ is a subsolution to (8.2). In [Sr(x0, z0) \ Sγr(x0, z0)]+, we have

γr ≤ δΦ((x0, z0), (x, z)) − hε(z) < (1 + C2ε)r,

so that φ > 0 in [Sr(x0, z0) \ Sγr(x0, z0)]+. Choose ε > 0 small so that 2 > 1 + C2ε. Then, φ ≤ 0 on 

[∂S2r(x0, z0)]+. Indeed, for (x, z) ∈ [∂S2r(x0, z0)]+, we have that

−hε(z) ≥ 0 > (1 + C2ε − 2)r

which implies

δΦ((x0, z0), (x, z)) − hε(z) = 2r − hε(z) > (1 + C2ε)r.

Thus, φ(x, z) ≤ 0. Lastly, let (x, z) ∈ [∂Sγr(x0, z0)]+ and observe that

φ(x, z) = aα−1(2 + C2ε)α+1rα+1
(
(γr − hε(z))−α − (1 + C2ε)−αr−α

)

≤ aα−1(2 + C2ε2)α+1rα+1
(
(γr + 0)−α − 0

)
= Car

for C = C(γ, n, λ, Λ, s) > 0.

Case 3: z0 = 0 and 0 < s ≤ 1/2.

For the barrier constructed in Case 1, the inequality for the Neumann condition was not strict for z0 = 0. 

We will add a function gε to the quasi-distance function δΦ to adjust the barrier as we did in Case 2.

Let (x, z) ∈ [S2r(x0, 0) \ Sγr(x0, 0)]+. Since (x, z) ∈ S2r(x0, 0) ⊂ S2r(x0) × S2r(0), we know that z ∈
S2r(0) = Bqs2sr2(0) by Remark 4.8. That is,

|z| < qs2srs = C̄2rs. (8.11)

Also, since 2 − 1
s ≤ 0,

|z|2− 1
s ≥ C̄

2s−1
s

2 r2s−1. (8.12)

Given ε > 0, define gε in [S2r(0)]+ by

gε(z) = εr1−sz − εC̄2r.

For all z ∈ [S2r(0)]+, we have that gε ≤ 0 by (8.11). We also have that

|gε(z)| = εC̄2r − εr1−sz ≤ C̄2εr, and g′
ε(z) = εr1−s > 0.

Let z be such that γr/2 ≤ δh(0, z) < 2r. As in Case 2 above, since z ∈ S2r(0) = BC̄2rs(0), we can use 

the convexity of δh(0, z) in the variable z to obtain

|∂zδh(0, z)| ≥ δh(0, z)

|z| ≥ γr/2

C̄2rs
= C̄3r1−s
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for a constant C̄3 = C̄3(γ, s). Choose ε = ε(γ, s) > 0 small so that ε < C̄3. Then,

|∂zδh(0, z) − g′
ε(z)| ≥ |∂zδh(0, z)| − |g′

ε(z)| ≥ (C̄3 − ε)r1−s > 0

and

(∂zδh(0, z) − g′
ε(z))2 ≥ (C̄3 − ε)2r2−2s = C̄4r2−2s (8.13)

for a constant C̄4 = C̄4(γ, s) > 0.

Let (x, z) ∈ [S2r(x0, 0) \ Sγr(x0, 0)]+. Since −gε ≥ 0, we have that

γr ≤ δΦ((x0, 0), (x, z)) ≤ δΦ((x0, 0), (x, z)) − gε(z) < 2r + εC̄2r = (2 + εC̄2)r. (8.14)

We define a function φ̄ on [S2r(x0, 0) \ Sγr(x0, 0)]+ by

φ̄(x, z) = (δΦ((x0, 0), (x, z)) − gε(z))−α.

Let (x, z) ∈ [S2r(x0, 0) \ Sγr(x0, 0)]+ \ {z = 0}. Using ellipticity, (8.6), (8.12), and (8.14), we estimate the 

equation for φ̄ as follows:

aij(x)∂ij φ̄ + |z|2− 1
s ∂zzφ̄

≥ α(δΦ((x0, 0), (x, z)) − gε(z))−α−2

(
(α + 1)

[
2λδϕ(x0, x) + C̄

2s−1
s

2 r2s−1(∂zδh(0, z) − g′
ε(z))2

]

− (δΦ((x0, 0), (x, z)) − gε(z))(nΛ + 1)

)

≥ α(δΦ((x0, 0), (x, z)) − gε(z))−α−2

(
(α + 1)

[
2λδϕ(x0, x) + C̄

2s−1
s

2 r2s−1(∂zδh(0, z) − g′
ε(z))2

]

− (nΛ + 1)(2 + εC̄2)r

)
.

(8.15)

Since δΦ((x0, 0), (x, z)) ≥ γr, we know that δϕ(x0, x) ≥ γr/2 or δh(0, z) ≥ γr/2. Suppose first that 

δϕ(x0, x) ≥ γr/2. Then

2λδϕ(x0, x) + C̄
2s−1

s
2 r2s−1(∂zδh(0, z) − g′

ε(z))2 ≥ 2λδϕ(x0, x) ≥ λγr.

Choose α = α(γ, n, λ, Λ, s) large enough to guarantee that

(α + 1)λγ − (nΛ + 1)(2 + C̄2ε) > (nΛ + 1)(2 + C̄2ε).

Then, from (8.15) and using (8.14), we have that

aij(x)∂ij φ̄ + |z|2− 1
s ∂zzφ̄

≥ α(δΦ((x0, 0), (x, z)) − gε(z))−α−2
(
(α + 1)λγr − (nΛ + 1)(2 + C̄2ε)r

)

> α(δΦ((x0, 0), (x, z)) − gε(z))−α−2(nΛ + 1)(2 + C̄2ε)r

≥ α(nΛ + 1)(2 + C̄2ε)−α−1r−α−1.

(8.16)
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Next, suppose that δh(0, z) ≥ γr/2. We further know that γr/2 ≤ δh(0, z) < 2r, so, by (8.13),

2λδϕ(x0, x) + C̄
2s−1

s
2 r2s−1(∂zδh(0, z) − gε(z)))2

≥ 0 + C̄
2s−1

s
2 r2s−1C̄4r2−2s = C̄4C̄

2s−1
s

2 r.

Let α = α(γ, n, λ, Λ, s) > 0 be large so that

(α + 1)C̄4C̄
2s−1

s
2 − (nΛ + 1)(2 + C̄2ε) > (nΛ + 1)(2 + C̄2ε).

Then, from (8.15) and using (8.14),

aij(x)∂ij φ̄ + |z|2− 1
s ∂zzφ̄

≥ α(δΦ((x0, 0), (x, z)) − gε(z))−α−2

(
(α + 1)C̄4C̄

2s−1
s

2 r − (nΛ + 1)(2r + C̄2ε)r

)

> α(δΦ((x0, 0), (x, z)) − gε(z))−α−2(nΛ + 1)(2 + C̄1ε)r

≥ α(nΛ + 1)(2 + C̄2ε)−α−1r−α−1.

(8.17)

From (8.16) and (8.17), there is an α = α(γ, n, λ, Λ, s) > 0 such that for all (x, z) ∈ [S2r(x0, 0) \
Sγr(x0, 0)]+ \ {z = 0}, we have

aij(x)∂ijφ̄ + |z|2− 1
s ∂zzφ̄ > α(nΛ + 1)(2 + C̄2ε)−α−1r−α−1.

We define the barrier φ on [S2r(x0, 0) \ Sγr(x0, 0)]+ by

φ(x, z) = aα−1(2 + C̄2ε)α+1rα+1
(
φ̄(x, z) − (1 + C̄1ε)−αr−α

)
.

For (x, z) ∈ [S2r(x0, 0) \ Sγr(x0, 0)]+ \ {z = 0}, it follows that aij(x)∂ijφ + |z|2− 1
s ∂zzφ > a(nΛ + 1). 

If (x, 0) ∈ [S2r(x0, 0) \ Sγr(x0, 0)]+ ∩ {z = 0}, by (8.14),

∂z+φ(x, 0) = a(2 + C̄2ε)α+1rα+1(δΦ((x0, 0), (x, 0)) − gε(0))−α−1εr1−s

≥ a(2 + C̄2ε)α+1rα+1(2 + C̄2ε)−α−1r−α−1εr1−s

= aεr1−s > 0.

Therefore, φ defined in [S2r(x0, 0) \ Sγr(x0, 0)]+ is a subsolution to (8.2). One can also check that φ > 0

in [Sr(x0, 0) \ Sγr(x0, 0)]+ and that φ ≤ 0 on [∂S2r(x0, 0)]+ when ε = ε(γ, s) is small enough to guarantee 

that 2 > 1 + C̄2ε. Moreover, there is a constant C = C(γ, n, λ, Λ, s) > 0 such that φ(x, z) ≤ Car on 

[∂Sγr(x0, 0)]+.

Case 4: z0 ≤ 0 and 0 < s < 1.

By (6.3), if (x, z) ∈ [S2r(x0, z0) \ Sγr(x0, z0)]−, then (x, −z) ∈ [S2r(x0, −z0) \ Sγr(x0, −z0)]+. Define 

ψ in [S2r(x0, z0) \ Sγr(x0, z0)]− to be the even reflection across {z = 0} of the solution φ to (8.2) in 

[S2r(x0, −z0) \ Sγr(x0, −z0)]+:

ψ(x, z) = φ(x, −z), for (x, z) ∈ [S2r(x0, z0) \ Sγr(x0, z0)]−.
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Since D2ψ(x, z) = D2φ(x, −z), we know, for (x, z) ∈ [S2r(x0, z0) \ Sγr(x0, z0)]− \ {z = 0}, that

aij(x)∂ijψ(x, z) + |z|2− 1
s ∂zzψ(x, z) = aij(x)∂ijφ(x, −z) + |z|2− 1

s ∂zzφ(x, −z)

> a(nΛ + 1).

For (x, 0) ∈ [S2r(x0, z0) \ Sγr(x0, z0)]− ∩ {z = 0}, we have −∂z−ψ(x, 0) = ∂z+φ(x, 0) > 0. Therefore, ψ is a 

subsolution to (8.3). It is straightforward to check that ψ > 0 in [Sr(x0, z0) \ Sγr(x0, z0)]− and that ψ ≤ 0

on [∂S2r(x0, z0)]−. Lastly, if (x, z) ∈ [∂Sγr(x0, z0)]−, then (x, −z) ∈ [∂Sγr(x0, −z0)]+. This gives the desired 

estimate ψ(x, z) = φ(x, −z) ≤ Car for (x, z) ∈ [∂Sγr(x0, z0)]−. �

9. Localization lemma

In this section, we prove the main localization estimate, Lemma 9.4. We show that if a supersolution U

can be touched from below with a paraboloid P of opening a > 0 in a cube Qr, then the set in which U

can be touched from below by paraboloids of increased opening Ca > 0, where C = C(n, λ, Λ, s) > 0, in 

a smaller cube Qηr makes up a universal proportion of Qr. To prove this result, we first use the barrier φ

constructed in Lemma 8.2 to control how U detaches from a touching paraboloid P , see Lemma 9.2.

Before stating the main lemma of this section, we need to introduce some notation. First, we define a 

constant K̂2 to be large enough so that for any (x0, z0), (x̃, ̃z) ∈ R
n+1 and R > 0, if Qr(x0, z0) ⊂ QR(x̃, ̃z), 

then Q2(n+1)r(x0, z0) ⊂ QK̂2R(x̃, ̃z). By Lemma 4.10, we know that if Qr(x0, z0) ⊂ QR(x̃, ̃z) then r ≤ R. If 

(x, z) ∈ Q2(n+1)r(x0, z0) then, by the quasi-triangle inequality (see Notation 4.9),

δϕ(x̃, x) ≤ K (δϕ(x̃, x0) + δϕ(x0, x)) < K (R + 2(n + 1)r) < K(1 + 2(n + 1))R

δh(z̃, z) ≤ K (δh(z̃, z0) + δh(z0, z)) < K(1 + 2(n + 1))R.

We then take K̂2 = K̂2(n, s) as

K̂2 = (2n + 3)K. (9.1)

Let K̂3 = K̂3(n, s) be given by

K̂3 = θ2K̂2. (9.2)

If QK̂2R(x̃, ̃z) ∩ {z = 0} �= ∅, then 0 ∈ SK̂2R(z̃) and, by the engulfing property,

QK̂2R(x̃, z̃) = QK̂2R(x̃) × SK̂2R(z̃) ⊂ QθK̂2R(x̃) × SθK̂2R(0) = QθK̂2R(x̃, 0)

and

QθK̂2R(x̃, 0) = QθK̂2R(x̃) × SθK̂2R(0) ⊂ Qθ2K̂2R(x̃) × Sθ2K̂2R(z̃) = QK̂3R(x̃, z̃).

We define a vertex set Bv ⊂ QK̂3R(x̃, ̃z) by

Bv =

{
QK̂2R(x̃, z̃) if z̃ = 0 or if QK̂2R(x̃, z̃) ∩ {z = 0} = ∅

QθK̂2R(x̃, 0) if z̃ �= 0 and QK̂2R(x̃, z̃) ∩ {z = 0} �= ∅,

so that Bv is symmetric with respect to {z = 0} if QK̂2R(x̃, ̃z) ∩ {z = 0} �= ∅.
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Define the contact set Aa,R for a continuous function U on QK̂2R(x̃, ̃z) by

Aa,R :=

{
(x, z) ∈ QK̂2R(x̃, z̃) : U(x, z) ≤ aR and there is (xv, zv) ∈ Bv such that

U can be touched from below at (x, z) in QK̂3R(x̃, z̃)

by a paraboloid of opening a > 0 with vertex (xv, zv)

}
.

(9.3)

Lemma 9.1. The contact set Aa,R is closed in QK̂2R(x̃, ̃z).

Proof. Let (xk, zk) ∈ Aa,R and (x0, z0) ∈ QK̂2R(x̃, ̃z) be such that (xk, zk) → (x0, z0). Since U(xk, zk) ≤ aR

and U is continuous, U(x0, z0) ≤ aR. By the same argument as in the proof of Theorem 7.1 with B = Bv, 

we can touch U from below in QK̂3R(x̃, ̃z) at (x0, z0) by a paraboloid P of opening a > 0 with vertex 

(x0
v, z0

v) ∈ Bv. Therefore, (x0, z0) ∈ Aa,R which shows that Aa,R is closed in QK̂2R(x̃, ̃z). �

Lemma 9.2. Fix 0 < γ < 1. Assume that Ω is a bounded domain and that aij(x) : Ω → R are bounded, 

measurable functions that satisfy (1.5). For a cube QR = QR(x̃, ̃z) ⊂ R
n+1, consider a cube QK̂3R =

QK̂3R(x̃, ̃z) where K̂3 is as in (9.2). Let f ∈ L∞(QK̂3R ∩ {z = 0}) be nonnegative. Suppose U ∈ C2(QK̂3R \
{z = 0}) ∩ C(QK̂3R) such that U is symmetric across {z = 0} and Uz+ ∈ C(QK̂3R ∩ {z ≥ 0}) is a 

supersolution to

{
aij(x)∂ijU + |z|2− 1

s ∂zzU ≤ 0 in QK̂3R ∩ {z �= 0}
−∂z+U ≥ f on QK̂3R ∩ {z = 0}.

Assume that Qr(x0, z0) ⊂ QR for some point (x0, z0) such that z0 ≥ 0. Suppose that U is touched from below 

at (x1, z1) ∈ [Sr(x0, z0)]+ ∩ Aa,R in QK̂3R by a paraboloid P of opening a > 0 with vertex (xv, zv) such that 

zv ≥ 0. Then, there exists a constant C = C(γ, n, λ, Λ) > 0 and a point (x2, z2) ∈ [Sγr(x0, z0)]+ such that

U(x2, z2) − P (x2, z2) ≤ Car.

Proof. If (x1, z1) ∈ [Sγr(x0, z0)]+,

U(x1, z1) − P (x1, z1) = 0 ≤ Car

for all C > 0, so we can take (x2, z2) = (x1, z1). Therefore, we assume for the remainder of the proof that 

(x1, z1) ∈ [Sr(x0, z0) \ Sγr(x0, z0)]+.

Let W = U − P . For (x, z) ∈ QK̂3R \ {z = 0}, we have that

aij(x)∂ijP (x, z) + |z|2− 1
s ∂zzP (x, z) = −a(tr(A(x)) + 1) ≥ −a(nΛ + 1)

which implies

aij(x)∂ijW (x, z) + |z|2− 1
s ∂zzW (x, z) ≤ a(nΛ + 1).

Since zv ≥ 0, we also have that

−∂z+W (x, 0) ≥ f(x) + ah′(zv) ≥ 0.
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Let φ be the subsolution to (8.2) in [S2r(x0, z0) \Sγr(x0, z0)]+. By the choice of K̂2 in (9.1), we have that 

Qr(x0, z0) ⊂ QR implies

S2r(x0, z0) ⊂ Q2r(x0, z0) ⊂ QK̂2R ⊂ QK̂3R

Therefore, W − φ satisfies

{
aij(x)∂ij(W − φ) + |z|2− 1

s ∂zz(W − φ) < 0 in [S2r(x0, z0) \ Sγr(x0, z0)]+ ∩ {z �= 0}
−∂z+(W − φ)(x, 0) > 0 on [S2r(x0, z0) \ Sγr(x0, z0)]+ ∩ {z = 0}.

(9.4)

Let (x2, z2) ∈ [S2r(x0, z0) \ Sγr(x0, z0)]+ be such that

W (x2, z2) − φ(x2, z2) = min
[S2r(x0,z0)\Sγr(x0,z0)]+

(W − φ).

By the maximum principle (see [13, Theorem 3.1]), the minimum of W − φ occurs on the boundary 

∂[S2r(x0, z0) \ Sγr(x0, z0)]+. That is,

(x2, z2) ∈ [∂S2r(x0, z0)]+ ∪ [∂Sγr(x0, z0)]+ ∪ [(S2r(x0, z0) \ Sγr(x0, z0)) ∩ {z = 0}].

We claim that (x2, z2) ∈ [∂Sγr(x0, z0)]+.

First, we will show that (x2, z2) /∈ [∂S2r(x0, z0)]+. Since (x1, z1) ∈ [Sr(x0, z0)]+, we know that φ(x1, z1) >

0 which implies W (x1, z1) − φ(x1, z1) = 0 − φ(x1, z1) < 0. Moreover, since φ ≤ 0 on [∂S2r(x0, z0)]+, we have 

that W (x, z) − φ(x, z) ≥ 0 on [∂S2r(x0, z0)]+. Therefore, the minimum is strictly negative and cannot occur 

on [∂S2r(x0, z0)]+.

If [S2r(x0, z0)]+ ∩ {z = 0} = ∅, then our claim holds. Suppose that [S2r(x0, z0)]+ ∩ {z = 0} �= ∅. 

Assume, by way of contradiction, that the minimum occurs on [S2r(x0, z0) \ Sγr(x0, z0)]+ ∩ {z = 0}, i.e. 

z2 = 0. Then −∂z+(W − φ)(x2, 0) ≤ 0, which contradicts (9.4). Therefore, it must be that the minimum 

occurs at (x2, z2) ∈ [∂Sγr(x0, z0)]+ ⊂ [Sγr(x0, z0)]+.

It follows from Lemma 8.2 that φ(x2, z2) ≤ Car for C = C(n, λ, Λ, γ) > 0. Since W (x2, z2) −φ(x2, z2) < 0, 

this implies that

U(x2, z2) − P (x2, z2) = W (x2, z2) < φ(x2, z2) ≤ Car. �

Remark 9.3. An analogue of Lemma 9.2 with z0, z1, zv ≤ 0 can be similarly proved using the subsolution φ

to (8.3) in [S2r(x0, z0) \ Sγr(x0, z0)]−.

To state the main result of this section, we define positive constants K0 > 1 and η < 1 by

K0 = 2K2 + 2K and η =
1

K2(2KK0 + 1)
. (9.5)

Lemma 9.4. Fix a > 0. Assume that Ω is a bounded domain and that aij(x) : Ω → R are bounded, measurable 

functions that satisfy (1.5). For a cube QR = QR(x̃, ̃z) ⊂ R
n+1, consider QK̂3R = QK̂3R(x̃, ̃z) where K̂3 is 

as in (9.2). Let f ∈ L∞(QK̂3R ∩ {z = 0}) be nonnegative. Suppose U ∈ C2(QK̂3R \ {z = 0}) ∩ C(QK̂3R)

such that U is symmetric across {z = 0} and Uz+ ∈ C(QK̂3R ∩ {z ≥ 0}) is a supersolution to

{
aij(x)∂ijU + |z|2− 1

s ∂zzU ≤ 0 in QK̂3R ∩ {z �= 0}
−∂z+U ≥ f on QK̂3R ∩ {z = 0}.
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Let Qr(x0, z0) be such that

Qr(x0, z0) ⊂ QR and Qr(x0, z0) ∩ Aa,R �= ∅.

There exist positive constants C = C(n, λ, Λ, s) > 1 and c = c(n, λ, Λ, s) < 1 such that

μΦ(ACa,R ∩ Qηr(x0, z0)) ≥ cμΦ(Qr(x0, z0)),

where η = η(n, s) < 1 is as in (9.5).

Remark 9.5. Once the existence of C = C(n, λ, Λ, s) > 1 has been established in Lemma 9.4, one can always 

take C larger. Indeed, if C ′ > C then, by Lemma 6.3, we have that ACa,R ⊂ AC′a,R.

Proof of Lemma 9.4. Without loss of generality, we can assume that Qr(x0, z0) ∩ Aa,R �= ∅. Otherwise, we 

replace r by r + ε and then take the limit as ε → 0+ at the end. Let (x1, z1) ∈ Qr(x0, z0) ∩ Aa,R.

Since (x1, z1) ∈ Aa,R, there is a paraboloid P of opening a > 0 with vertex (xv, zv) ∈ Bv that touches U

from below in QK̂3R at (x1, z1). We write P as

P (x, z) = −aδΦ((xv, zv), (x, z)) + aδΦ((xv, zv), (x1, z1)) + U(x1, z1).

As for z0, it must be that either z0 ≥ 0 or z0 < 0. We may assume that z1 has the same sign as z0, 

meaning that z0, z1 ≥ 0 or that z0, z1 ≤ 0. Indeed, suppose that z0 ≥ 0 and z1 < 0. If QK̂2R ∩ {z = 0} = ∅, 

this is a contradiction. If QK̂2R ∩ {z = 0} �= ∅ then, by Lemma 6.4, P̃ (x, z) = P (x, −z) touches U from 

below in QK̂3R at (x1, −z1) with vertex (xv, −zv) ∈ Bv. Since

δh(z0, −z1) = h(z1) − h(z0) + h′(z0)z1 + h′(z0)z0

< h(z1) − h(z0) − h′(z0)z1 + h′(z0)z0 since z0 ≥ 0 and z1 < 0 < −z1

= δh(z0, z1) < r,

it follows that (x1, −z1) ∈ Qr(x0, z0) ∩ Aa,R. We proceed with the proof of the lemma using P̃ and −z1 > 0

in place of P and z1 < 0. The argument for z0 ≤ 0 and z1 > 0 follows similarly.

Hence, without loss of generality, let us assume that z0, z1 ≥ 0. Then, zv ≥ 0. Indeed, if z1 > 0, then by 

Lemma 6.4, we know that zv ≥ 0. If z1 = 0, then, since f ≥ 0, by Lemma 6.6, it must be that f(x1) = 0

and, consequently, zv = 0.

Let γ = η/(2θ2). Note that (x1, z1) ∈ Qr(x0, z0) ⊂ S(n+1)r(x0, z0). We apply Lemma 9.2 with r0 = (n +1)r

and γ0 = γ/(n + 1) to find a point

(x2, z2) ∈ [Sγ0r0
(x0, z0)]+ = [Sγr(x0, z0)]+ ⊂ Sγr(x0, z0)

and a constant C = C(n, λ, Λ, s) > 0 such that

U(x2, z2) − P (x2, z2) ≤ Car.

Let α = η/(2θ3) < 1 and let C ′ = C ′(n, λ, Λ, s) > 1 be a large constant, to be determined. Slide from 

below the family of paraboloids

P̄ (x, z) = P (x, z) − C ′aδΦ((x̄v, z̄v), (x, z)) + d, for (x̄v, z̄v) ⊂ Sαr(x2, z2) (9.6)

until they touch the graph of U in QK̂3R for the first time. It is clear that
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P̄ (x, z) = −aδϕ(xv, x) − C ′aδϕ(x̄v, x) − aδh(zv, z) − C ′aδh(z̄v, z) + d′

for some constant d′. Let ξ ∈ R be such that

h′(ξ) =
h′(zv) + C ′h′(z̄v)

C ′ + 1
.

It follows that, for some constant b′,

−aδh(zv, z) − C ′aδh(z̄v, z) = −(C ′ + 1)aδh(ξ, z) + b′.

Since

∇ϕ(xv) + C ′∇ϕ(x̄v)

C ′ + 1
=

xv + C ′x̄v

C ′ + 1
= ∇ϕ

(
xv + C ′x̄v

C ′ + 1

)
,

we similarly write, for some constant b′′,

−aδϕ(xv, x) − C ′aδϕ(x̄v, x) = −(C ′ + 1)aδϕ

(
xv + C ′x̄v

C ′ + 1
, x

)
+ b′′.

Therefore

P̄ (x, z) = −(C ′ + 1)aδΦ

((
xv + C ′x̄v

C ′ + 1
, ξ

)
, (x, z)

)
+ d′′,

for some constant d′′. Hence, the opening of P̄ is (C ′ + 1)a > 0 and its vertex is of the form

(
xv + C ′x̄v

C ′ + 1
, ξ

)
where h′(ξ) =

h′(zv) + C ′h′(z̄v)

C ′ + 1
.

Let B be the set of these vertices and let A denote the set of corresponding touching points.

Since P̄ (x2, z2) ≤ U(x2, z2), we have that P (x2, z2) − C ′aδΦ((x̄v, ̄zv), (x2, z2)) + d ≤ U(x2, z2). By the 

engulfing property, Sαr(x2, z2) ⊂ Sαθr(x̄v, ̄zv), so that δΦ((x̄v, ̄zv), (x2, z2)) < αθr. Therefore,

d ≤ U(x2, z2) − P (x2, z2) + C ′aδ((x̄v, z̄v), (x2, z2)) ≤ Car + C ′αθar.

Since (x2, z2) ∈ Sαθr(x̄v, ̄zv) ⊂ S2αθr(x̄v, ̄zv), we again use the engulfing property to see that 

S2αθr(x̄v, ̄zv) ⊂ S2αθ2r(x2, z2). Suppose that (x, z) ∈ QK̂3R is such that δΦ((x2, z2), (x, z)) ≥ 2αθ2r. Then 

δΦ((x̄v, ̄zv), (x, z)) ≥ 2αθr and

P̄ (x, z) ≤ P (x, z) − C ′a(2αθr) + (Car + C ′αθar)

= P (x, z) + (C − C ′θα) ar < P (x, z) ≤ U(x, z)

when C ′ = C ′(n, λ, Λ, s) > 1 is such that C ′ > C/(θα). Hence, the contact points for P̄ are inside 

S2αθ2r(x2, z2). That is, A ⊂ S2αθ2r(x2, z2).

Recall that (x2, z2) ∈ Sγr(x0, z0). Since γ = αθ, we use the engulfing property to obtain

Sγr(x0, z0) = Sαθr(x0, z0) ⊂ Sαθ2r(x2, z2)

⊂ S2αθ2r(x2, z2)

⊂ S2αθ3r(x0, z0) = Sηr(x0, z0) ⊂ Qηr(x0, z0).
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Consequently, A ⊂ S2αθ2r(x2, z2) ⊂ Qηr(x0, z0).

We now estimate

P̄ (x, z) ≤ P (x, z) + d

≤ aδΦ((xv, zv), (x1, z1)) + U(x1, z1) + d

≤ aδΦ((xv, zv), (x1, z1)) + aR + (Car + C ′αθar)

≤ aK (δΦ((x̃, z̃), (xv, zv)) + δΦ((x̃, z̃), (x1, z1))) + aR + (CaR + C ′αθaR)

≤ aK(K̂3R + R) + aR + (CaR + C ′αθaR)

=
(

(K̂3 + 1)K + 1 + C + C ′αθ
)

aR.

If C ′ = C ′(n, λ, Λ, s) > 1 is sufficiently large, then

P̄ (x, z) ≤ (C ′ + 1)aR

which shows that A ⊂ A(C′+1)a,R.

Since f ≥ 0, we trivially have that

μΦ

(
B ∩

{
(x, z) : |h′(z)| ≤

‖f−‖L∞(QK̂3R)

(C ′ + 1)a

})
= μΦ (B ∩ {(x, z) : z = 0}) = 0.

Therefore, by Theorem 7.1,

μΦ(A(C′+1)a,R ∩ Qηr(x0, z0)) ≥ μΦ(A ∩ Qηr(x0, z0)) = μΦ(A) ≥ cμΦ(B). (9.7)

We claim that

cμΦ(B) ≥ c′μΦ(Qr(x0, z0)) (9.8)

for a positive constant c′ = c′(n, λ, Λ, s) < 1.

For the proof of (9.8), we first show that

μΦ(B) ≥
(

C ′

C ′ + 1

)n+1

μΦ(S αr
2

(x2, z2)). (9.9)

Observe that the B can be expressed as

B =

{
(x, z) : x =

xv + C ′x̄v

C ′ + 1
, h′(z) =

h′(zv) + C ′h′(z̄v)

C ′ + 1
, (x̄v, z̄v) ∈ Sαr(x2, z2)

}
.

Define the sets B1 and B2 by

B1 =

{
x =

xv + C ′x̄v

C ′ + 1
: x̄v ∈ Sαr/2(x2)

}

B2 =

{
z = (h′)−1

(
h′(zv) + C ′h′(z̄v)

C ′ + 1

)
: z̄v ∈ Sαr/2(z2)

}
.

Since Sαr/2(x2, z2) ⊂ Sαr/2(x2) × Sαr/2(z2) ⊂ Sαr(x2, z2), we know that B1 × B2 ⊂ B and
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μΦ(B) ≥ μΦ(B1 × B2) = μϕ(B1)μh(B2). (9.10)

By a change of variables,

μϕ(B1) =

∫

B1

dx =

(
C ′

C ′ + 1

)n ∫

Sαr/2(x2)

dx̄v =

(
C ′

C ′ + 1

)n

μϕ

(
Sαr/2(x2)

)
.

Notice that the set Z0 given by

Z0 =

{
z̄v ∈ R : h′(z̄v) = − 1

C ′ h′(zv)

}

is a singleton. Then, by using a change of variables,

μh(B2) =

∫

B2\{z=0}

h′′(z) dz

=

∫

Sαr/2(z2)\Z0

h′′
(

(h′)−1

(
h′(zv) + C ′h′(z̄v)

C ′ + 1

))
∂z(h′)−1

∣∣∣∣
h′(zv)+C′h′(z̄v)

C′+1

(
C ′

C ′ + 1

)
h′′(z̄v) dz̄v

=
C ′

C ′ + 1

∫

Sαr/2(z2)\Z0

h′′(z̄v) dz̄v =
C ′

C ′ + 1
μh

(
Sαr/2(z2)

)
.

Combining these estimates into (9.10), we obtain

μΦ(B) ≥
(

C ′

C ′ + 1

)n+1

μϕ

(
Sαr/2(x2)

)
μh

(
Sαr/2(z2)

)

≥
(

C ′

C ′ + 1

)n+1

μΦ

(
Sαr/2(x2, z2)

)

and (9.9) holds.

For (9.8), observe that, by the doubling estimate (4.6) for μΦ,

μΦ(Sγθr(x2, z2)) ≤ Kd

(
2θγ

α

)n+1

μΦ(S αr
2

(x2, z2))

and

μΦ(S(n+1)r(x0, z0)) ≤ Kd

(
n + 1

γ

)n+1

μΦ(Sγr(x0, z0)).

Since (x2, z2) ∈ Sγr(x0, z0), the engulfing property gives Sγr(x0, z0) ⊂ Sγθr(x2, z2). Hence, by using (9.9)

and the previous two estimates,

cμΦ(B) ≥ c

(
C ′

C ′ + 1

)n+1

μΦ(S αr
2

(x2, z2))

≥ c

(
C ′

C ′ + 1

)n+1
1

Kd

(
α

2θγ

)n+1

μΦ(Sγθr(x2, z2))
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≥ c

(
C ′

C ′ + 1

)n+1
1

Kd

(
α

2θγ

)n+1

μΦ(Sγr(x0, z0))

≥ c

(
C ′

C ′ + 1

)n+1
1

K2
d

(
α

2θ(n + 1)

)n+1

μΦ(S(n+1)r(x0, z0))

≥ c′μΦ(Qr(x0, z0)).

This completes the proof of (9.8).

From (9.7) and (9.8), the lemma follows. �

10. Covering lemma

Here, we establish the following covering lemma.

Lemma 10.1. Let K0 = K0(n, s) > 1, η = η(n, s) < 1 be as in (9.5), and fix 0 < c < 1. Consider a 

cube QR/K0
= QR/K0

(x̃, ̃z). Suppose there is a countable family of closed sets Dk ⊂ R
n+1 that satisfy the 

following properties:

1) D0 ⊂ D1 ⊂ · · · ⊂ Dk ⊂ · · · ⊂ QR/K0
, D0 �= ∅;

2) for any (x, z) ∈ R
n+1, ρ > 0 such that

Qρ(x, z) ⊂ QR(x̃, z̃), Qηρ(x, z) ⊂ QR/K0
(x̃, z̃), Qρ(x, z) ∩ Dk �= ∅,

we have

μΦ(Qηρ(x, z) ∩ Dk+1) ≥ cμΦ(Qρ(x, z)).

Then

μΦ(QR/K0
\ Dk) ≤ (1 − c)kμΦ(QR/K0

).

Remark 10.2. Observe that Lemma 10.1 is similar the Calderón–Zygmund lemma in [3]. In fact, the sets 

QR/K0
\Dk+1 and QR/K0

\Dk, the parameter 1 −c, the Monge–Ampère cubes Qr and Qηρ, and the Monge–

Ampère measure μΦ can be seen as analogues of the sets A and B, the parameter δ, the dyadic cubes Q̃

and Q, and the Lebesgue measure of Lemma 4.2 in [3], respectively. See also [29, Lemma 2.3].

To prove Lemma 10.1, we need the following simple consequence of [7, Theorem 1.2] for Monge–Ampère 

cubes.

Lemma 10.3. Let E ⊂ R
n+1 be a bounded subset. For each (x, z) ∈ E, consider a cube Qr(x,z)

(x, z) with 

radius r(x,z) > 0. Then there is a countable subfamily of such cubes {Qri
(xi, zi)}∞

i=1 such that

E ⊂
∞⋃

i=1

Qri
(xi, zi), with Qri/K0

(xi, zi) pairwise disjoint.

Proof of Lemma 10.1. For any (x0, z0) ∈ E := QR/K0
(x̃, ̃z) \ Dk and let r be given by

r = r(x0,z0) = inf{r0 : Qr0
(x0, z0) ∩ Dk �= ∅}. (10.1)
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The family {Qr(x0, z0)} covers E. By Lemma 10.3, there is a countable collection of cubes {Qri
(xi, zi)}∞

i=1

such that E = QR/K0
\ Dk ⊂

⋃
i Qri

(xi, zi), with Qri/K0
(xi, zi) pairwise disjoint. Then,

μΦ(QR/K0
\ Dk) ≤ μΦ

(
⋃

i

Qri
(xi, zi) ∩ QR/K0

)
≤
∑

i

μΦ(Qri
(xi, zi) ∩ QR/K0

).

We claim that, for any (x0, z0) ∈ E and r given by (10.1),

μΦ(Qr(x0, z0) ∩ QR/K0
) ≤ 1

c
μΦ(Qr/K0

(x0, z0) ∩ Dk+1). (10.2)

Suppose for now that (10.2) holds. Then

μΦ(QR/K0
\ Dk) ≤

∑

i

μΦ(Qri
(xi, zi) ∩ QR/K0

)

≤
∑

i

1

c
μΦ(Qri/K0

(xi, zi) ∩ Dk+1)

=
1

c
μΦ

(
⋃

i

Qri/K0
(xi, zi) ∩ (Dk+1 \ Dk)

)

≤ 1

c
μΦ(Dk+1 \ Dk).

In the second to last estimate, we used our choice of r in (10.1). Since

μΦ(QR/K0
\ Dk+1) = μΦ(QR/K0

\ Dk) − μΦ(Dk+1 \ Dk)

≤ μΦ(QR/K0
\ Dk) − cμΦ(QR/K0

\ Dk)

= (1 − c)μΦ(QR/K0
\ Dk),

by iteration, we finally obtain μΦ(QR/K0
\ Dk) ≤ (1 − c)kμΦ(QR/K0

), and the lemma is proved.

It is left to prove (10.2). We will present the proof for n = 1 for which

QR/K0
(x̃, z̃) = SR/K0

(x̃) × SR/K0
(z̃) ⊂ R

2.

The more general case follows similarly and is left to the reader.

First, we estimate r. Given any point (x, z) ∈ QR/K0
and (x0, z0) ∈ QR/K0

\ Dk, we have

δϕ(x0, x) ≤ K (δϕ(x̃, x0) + δϕ(x̃, x)) <
2KR

K0
,

and, similarly, δh(z0, z) ≤ 2KR/K0. Therefore, r < 2KR/K0 whenever r is given by (10.1).

Let (x0, z0) ∈ QR/K0
\ Dk and r as in (10.1) be fixed.

Next, let (x, z) ∈ Qr(x0, z0). By the quasi-triangle inequality, the choice of K0 in (9.5), and the estimate 

on r,

δϕ(x̃, x) ≤ K (δϕ(x̃, x0) + δϕ(x0, x)) < K

(
R

K0
+ r

)
≤ R.

Similarly, one can show that δh(z̃, z) < R. Therefore, we have that
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Sr(x0) × Sr(z0) = Qr(x0, z0) ⊂ QR(x̃, z̃) = SR(x̃) × SR(z̃). (10.3)

We will break into cases based on how far (x̃, ̃z) is from (x0, z0).

Case 1. Suppose that x̃ ∈ Sr/K0
(x0), z̃ ∈ Sr/K0

(z0).

We will show that Qr(x0, z0) satisfies the hypothesis 2) in the statement with ρ = r:

Qr(x0, z0) ⊂ QR(x̃, z̃), Qηr(x0, z0) ⊂ QR/K0
(x̃, z̃), Qr(x0, z0) ∩ Dk �= ∅.

We have already established (10.3). By the definition of r, we know that Qr(x0, z0) ∩ Dk �= ∅. Thus, it is 

left to show that Qηr(x0, z0) ⊂ QR/K0
(x̃, ̃z). Let (x, z) ∈ Qηr(x0, z0). By the quasi-triangle inequality and 

by choice of K0 and η in (9.5), since x ∈ Sηr(x0),

δϕ(x̃, x) ≤ K (δϕ(x0, x̃) + δϕ(x0, x)) < K

(
r

K0
+ ηr

)
≤ R

K0
.

We can similarly show that

δh(z̃, z) <
R

K0
since z ∈ Sηr(z0). (10.4)

Hence, Qηr(x0, z0) ⊂ QR/K0
(x̃, ̃z).

Therefore, since η ≤ 1/K0, by property 2), we obtain the desired estimate:

μΦ(Qr/K0
(x0, z0) ∩ Dk+1) ≥ μΦ(Qηr(x0, z0) ∩ Dk+1)

≥ cμΦ(Qr(x0, z0))

≥ cμΦ(Qr(x0, z0) ∩ QR/K0
(x̃, z̃)).

Case 2. Suppose that x̃ /∈ Sr/K0
(x0), z̃ ∈ Sr/K0

(z0).

It must be that x0 < x̃ or x̃ < x0. Without loss of generality, we assume that x0 < x̃.

From (10.3) and (10.4), we deduce that

Sr(z0) ⊂ SR(z̃), Sηr(z0) ⊂ SR/K0
(z̃).

We will find x1 between x0 and x̃ such that

Sr/(2K2K0)(x1) ⊂ Sr/K0
(x0) ∩ SR/K0

(x̃). (10.5)

Let x1 > x0 be such that δϕ(x0, x1) = r/(2KK0). We first show that Sr/(2KK0)(x1) ⊂ Sr/K0
(x0). Indeed, 

for x ∈ Sr/(2KK0)(x1), we have that

δϕ(x0, x) ≤ K (δϕ(x0, x1) + δϕ(x1, x)) <
r

K0
.

Since

r

2KK0
= δϕ(x0, x1) ≤ Kδϕ(x1, x0) ≤ K2δϕ(x0, x1) = K2 r

2KK0
,

we know that

r

2K2K0
≤ δϕ(x1, x0) ≤ r

2K0
.
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Thus, x0 /∈ Sr/(2K2K0)(x1). Since the sections Sr/(2K2K0)(x1) and Sr/K0
(x0) are one-dimensional intervals, 

we can write them as

Sr/(2K2K0)(x1) = (xL, xR) where xL < x1 < xR

Sr/K0
(x0) = (x0

L, x0
R) where x0

L < x0 < x0
R.

Since x̃ /∈ Sr/K0
(x0) and x0 < x̃, we know that

x0
L < x0 < x0

R < x̃.

Since x0 < x1 and Sr/(2K2K0)(x1) ⊂ Sr/K0
(x0), we have that

x0 < xL < x1 < xR < x0
R < x̃.

Thus, for any x ∈ Sr/(2K2K0)(x1), we know that x0 < x < x̃. By Lemma 4.10,

δϕ(x̃, x) < δϕ(x̃, x0) <
R

K0

Hence, Sr/(2K2K0)(x1) ⊂ SR/K0
(x̃) and we proved (10.5).

Define

ρ =

(
K +

1

2K0

)
r.

Clearly Sr(z0) ⊂ Sρ(z0). Let x ∈ Sr(x0). Then,

δϕ(x1, x) ≤ K (δϕ(x0, x1) + δϕ(x0, x)) ≤ K

(
r

2KK0
+ r

)
= ρ.

Hence, Sr(x0) ⊂ Sρ(x1). Therefore,

Qr(x0, z0) = Sr(x0) × Sr(z0) ⊂ Sρ(x1) × Sρ(z0) = Qρ(x1, z0). (10.6)

Since Qr(x0, z0) ∩Dk �= ∅, we know by (10.6) that Qρ(x1, z0) ∩Dk �= ∅. Next, in order to apply property 

2) in the statement, we will show that Qρ(x1, z0) satisfies the following:

Qρ(x1, z0) ⊂ QR(x̃, z̃), Qηρ(x1, z0) ⊂ QR/K0
(x̃, z̃), Qηρ(x1, z0) ⊂ Qr/K0

(x0, z0). (10.7)

First, let us check that Qρ(x1, z0) ⊂ QR(x̃, ̃z). Take (x, z) ∈ Qρ(x1, z0) and observe that

δϕ(x̃, x) ≤ K (δϕ(x̃, x1) + δϕ(x1, x)) < K

(
R

K0
+ ρ

)
≤ R.

We can similarly show that δh(z̃, z) < R. Hence, Qρ(x1, z0) ⊂ QR(x̃, ̃z). Next, by the choice of η in (9.5), 

we know that

ηρ =
r

2K2K0
≤ r

K0
. (10.8)

Then, by (10.5),
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Qηρ(x1, z0) = Sr/(2K2K0)(x1) × Sr/(2K2K0)(z0)

⊂ Sr/K0
(x0) × Sr/K0

(z0) = Qr/K0
(x0, z0).

Lastly, since z̃ ∈ Sr/K0
(z0), for z ∈ Sηρ(z0), by (9.5),

δh(z̃, z) ≤ K (δh(z0, z̃) + δh(z0, z)) < K

(
r

K0
+ ηρ

)
≤ R

K0
.

Therefore, Sηρ(z0) ⊂ SR/K0
(z̃). With this, (10.8), and (10.5), we obtain

Qηρ(x1, z0) = Sr/(2K2K0)(x1) × Sηρ(z0)

⊂ SR/K0
(x̃) × SR/K0

(z̃) = QR/K0
(x̃, z̃).

We have shown that Qρ(x1, z0) satisfies the hypotheses of property 2). Therefore, by using (10.7), the 

conclusion of 2), and (10.6), we obtain the desired estimate:

μΦ(Qr/K0
(x0, z0) ∩ Dk+1) ≥ μΦ(Qηρ(x1, z0) ∩ Dk+1)

≥ cμΦ(Qρ(x1, z0))

≥ cμΦ(Qr(x0, z0)).

Case 3. Suppose that x̃ ∈ Sr/K0
(x0), z̃ /∈ Sr/K0

(z0).

This follows exactly as in Case 2 by switching the roles of x̃ and z̃ and using δh in place of δϕ.

Case 4. Suppose that x̃ /∈ Sr/K0
(x0), z̃ /∈ Sr/K0

(z0).

This follows by combining the arguments in Case 2 and Case 3. �

11. Proof of Theorem 5.3 and Theorem 1.1

11.1. Proof of Theorem 5.3

We begin by sliding a paraboloid P of opening a > 0 with vertex (x̃, ̃z) from below until it touches the 

graph of U for the first time in QK̂3R, say at (x0, z0) ∈ QK̂3R. Then

P (x, z) = −aδΦ((x̃, z̃), (x, z)) + aδΦ((x̃, z̃), (x0, z0)) + U(x0, z0).

If δΦ((x̃, ̃z), (x0, z0)) > R/K0, then

aR

2K0
≥ U(x̃, z̃) ≥ P (x̃, z̃) = aδΦ((x̃, z̃), (x0, z0)) + U(x0, z0) >

aR

K0
.

Hence, (x0, z0) ∈ SR/K0
= SR/K0

(x̃, ̃z) ⊂ QR/K0
and

U(x0, z0) = P (x0, z0) ≤ P (x̃, z̃) < aR.

Thus, if Aa,R is defined as in (9.3),

Aa,R ∩ QR/K0
�= ∅.
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In order to apply Lemma 10.1, we define the closed sets Dk ⊂ QR/K0
by

Dk := AaCk,R ∩ QR/K0
, k ≥ 0

where C = C(n, λ, Λ, s) > 1 is the constant from Lemma 9.4. If necessary, we can enlarge C to guarantee 

that

C − 2K ≥ 2 and C − 2K − 2K

θ
> 0, (11.1)

see Remark 9.5. As a consequence of Lemma 6.3, we have

∅ �= D0 ⊂ D1 ⊂ D2 ⊂ · · · ⊂ Dk ⊂ · · · ⊂ QR/K0
.

Thus, hypothesis 1) of Lemma 10.1 is satisfied. To check that property 2) in Lemma 10.1 holds, let (x, z) ∈
R

n+1, ρ > 0 be such that

Qρ(x, z) ⊂ QR(x̃, z̃), Qηρ(x, z) ⊂ QR/K0
(x̃, z̃), Qρ(x, z) ∩ Dk �= ∅.

By Lemma 9.4, there is a positive constant c = c(n, λ, Λ, s) < 1 such that

μΦ(Dk+1 ∩ Qηρ(x, z)) = μΦ(AaCk+1,R ∩ Qηρ(x, z)) ≥ cμΦ(Qηρ(x, z)).

Hence, property 2) is satisfied. It follows from Lemma 10.1 that

μΦ(QR/K0
\ Dk) ≤ (1 − c)kμΦ(QR/K0

). (11.2)

Also, from the definition of AaCk,R,

U(x, z) ≤ aRCk for (x, z) ∈ Dk. (11.3)

For k ≥ 0, let ρk = ρk(n, λ, Λ, s) < 1 be a sequence of positive constants, to be determined, such that 

ρk ↘ 0 as k → ∞. For convenience in the notation, let

β =
1

3K0
.

Let k0 = k0(n, λ, Λ, s) > 0 be a large constant, to be determined.

Claim. Suppose that, for some k ≥ k0, there exists a point (xk, zk) ∈ QβR/(n+1) ⊂ SβR = SβR(x̃, ̃z) such 

that

U(xk, zk) ≥ aRCk+1.

Then there is a point (xk+1, zk+1) ∈ ∂SρkR(xk, zk) such that

U(xk+1, zk+1) ≥ aRCk+2.

Proof of claim. Suppose, by way of contradiction, that U < aRCk+2 on ∂SρkR(xk, zk). In the section

Sk = SρkR(xk, zk)
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we lower paraboloids of the form

P (x, z) =
2aKCk+2

ρk
δΦ((xv, zv), (x, z)) + cv, (xv, zv) ∈ S ρkR

θC2
(xk, zk) (11.4)

from above until they touch the graph of U for the first time in Sk. Let A denote the set of contact points. 

Fix a point (x0, z0) ∈ A and a corresponding paraboloid P as in (11.4) that touches U from above in Sk at 

(x0, z0).

If necessary, slide P further until it intersects U at (xk, zk) and let us denote this paraboloid by P̃ . By 

Lemma 6.2, we can write

P̃ (x, z) =
2aKCk+2

ρk
δΦ((xv, zv), (x, z)) − 2aKCk+2

ρk
δΦ((xv, zv), (xk, zk)) + U(xk, zk).

Since (xv, zv) ∈ S ρkR

θC2
(xk, zk), by the engulfing property, S ρkR

θC2
(xk, zk) ⊂ S ρkR

C2
(xv, zv). In particular, 

δΦ((xv, zv), (xk, zk)) ≤ ρkR
C2 . Therefore, for (x, z) ∈ Sk,

P̃ (x, z) ≥ 2aKCk+2

ρk
δΦ((xv, zv), (x, z)) − 2aKCk+2

ρk

ρkR

C2
+ aRCk+1

≥ 2aKCk+2

ρk
δΦ((xv, zv), (x, z)) + 2aRCk,

(11.5)

where we used (11.1). Therefore,

U(x0, z0) = P (x0, z0) ≥ P̃ (x0, z0) ≥ 2aRCk

which shows that

A ⊂ {(x0, z0) ∈ SρkR(xk, zk) : U(x0, z0) ≥ 2aRCk}.

We will next prove that (x0, z0) ∈ SρkR(xk, zk); that is, the contact points in A are interior points 

of the section SρkR(xk, zk). Assume, by way of contradiction, that δΦ((xk, zk), (x0, z0)) = ρkR. By the 

quasi-triangle inequality,

ρkR ≤ K (δΦ((xk, zk), (xv, zv)) + δΦ((xv, zv), (x0, z0)))

< K

(
ρkR

θC2
+ δΦ((xv, zv), (x0, z0))

)
,

so that

δΦ((xv, zv), (x0, z0)) > ρkR

(
1

K
− 1

θC2

)
.

Since (x0, z0) ∈ Sk, from (11.5) and (11.1), we get

U(x0, z0) = P (x0, z0) ≥ P̃ (x0, z0)

≥ 2aKCk+2

ρk
δΦ((xv, zv), (x0, z0)) + aRCk (C − 2K)

>
2aKCk+2

ρk
ρkR

(
1

K
− 1

θC2

)
+ aRCk (C − 2K) > 2aRCk+2,
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which contradicts our assumption that U < aRCk+2 on ∂SρkR(xk, zk). Therefore, it must be that (x0, z0) ∈
SρkR(xk, zk). Consequently,

A ⊂ {(x0, z0) ∈ SρkR(xk, zk) : U(x0, z0) ≥ 2aRCk}. (11.6)

Next, we want to apply Theorem 7.2 with Remark 7.3 in Sk with ε0 = 1/2. For this, we need to choose 

k0 = k0(n, λ, Λ, s) sufficiently large to guarantee that

μΦ

(
S ρkR

θC2
(xk, zk) ∩

{
(x, z) : |h′(z)| ≤

‖f+‖L∞(Sk∩{z=0})

(2aKCk+2/ρk)

})
≤ 1

2
μΦ(S ρkR

θC2
(xk, zk)) (11.7)

for all k ≥ k0. Indeed, observe that

μΦ

(
S ρkR

θC2
(xk, zk) ∩

{
(x, z) : |h′(z)| ≤

‖f+‖L∞(Sk∩{z=0})

(2aKCk+2/ρk)

})

≤ μϕ

(
S ρkR

θC2
(xk)

)
μh

({
z ∈ R : |h′(z)| ≤

‖f‖L∞(Sk∩{z=0})

(2aKCk+2/ρk)

})
.

Notice that

μh

({
z ∈ R : |h′(z)| ≤

‖f‖L∞(Sk∩{z=0})

(2aKCk+2/ρk)

})
= 2

‖f‖L∞(Sk∩{z=0})

(2aKCk+2/ρk)

=
ρk

KCk+2

‖f‖L∞(Sk∩{z=0})

a

≤ ρk

KCk+2
μh(SR(z̃)).

Since zk ∈ SβR/(n+1)(z̃), by the engulfing property, we have SβR/(n+1)(z̃) ⊂ SθβR/(n+1)(zk). With this and 

the doubling property (4.6) for μh,

μh(SR(z̃)) ≤ Kd

(
R

βR/(n + 1)

)1

μh(S βR
n+1

(z̃))

= Kd

(
n + 1

β

)
μh(S βR

n+1
(z̃))

≤ Kd

(
n + 1

β

)
μh(S θβR

n+1
(zk))

≤ Kd

(
n + 1

β

)
Kd

(
θβR/(n + 1)

ρkR/(θC2)

)1

μh(S ρkR

θC2
(zk))

=
K2

dθ2C2

ρk
μh(S ρkR

θC2
(zk)).

Hence

μh

({
z ∈ R : |h′(z)| ≤

‖f‖L∞(Sk∩{z=0})

(2aKCk+2/ρk)

})
≤ ρk

KCk+2

K2
dθ2C2

ρk
μh(S ρkR

θC2
(zk))

=
K2

dθ2

KCk
μh(S ρkR

θC2
(zk)).
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This and the doubling property (4.6) for μΦ give

μΦ

(
S ρkR

θC2
(xk, zk) ∩

{
(x, z) : |h′(z)| ≤

‖f+‖L∞(Sk∩{z=0})

(2aKCk+2/ρk)

})

≤ K2
dθ2

KCk
μϕ

(
S ρkR

θC2
(xk)

)
μh

(
S ρkR

θC2
(zk)

)

≤ K2
dθ2

KCk
μΦ

(
S 2ρkR

θC2
(xk, zk)

)

≤ K2
dθ2

KCk
Kd2n+1μΦ

(
S ρkR

θC2
(xk, zk)

)
.

Therefore, (11.7) holds if we choose k0 = k0(n, λ, Λ, s) large enough so that

K3
dθ22n+1

KCk
≤ 1

2
for all k ≥ k0.

Hence, by Theorem 7.2 with Remark 7.3 for ε0 = 1/2, it follows that

μΦ(A) ≥ c

2
μΦ(S ρkR

C2θ

(xk, zk)). (11.8)

Next, we will choose ρk in order to estimate μΦ(S ρkR

C2θ

(xk, zk)) in (11.8) from below by μΦ(QR/K0
(x̃, ̃z))

and get

μΦ(A) ≥ 2(1 − c)kμΦ(QR/K0
(x̃, z̃)). (11.9)

In fact, since β < 1/K0, we have that (xk, zk) ∈ QβR/(n+1)(x̃, ̃z) ⊂ SβR(x̃, ̃z) ⊂ SR/K0
(x̃, ̃z), so that, by the 

engulfing property,

SR/K0
(x̃, z̃) ⊂ SθR/K0

(xk, zk).

As a consequence of the doubling property (4.6) for μΦ,

μΦ(SθR/K0
(xk, zk)) ≤ Kd

(
C2θ2

ρkK0

)n+1

μΦ(S ρkR

C2θ

(xk, zk))

and

μΦ(SR(n+1)/K0
(x̃, z̃)) ≤ Kd (n + 1)

n+1
μΦ(SR/K0

(x̃, z̃)).

Combining these estimates, we obtain

μΦ(S ρkR

C2θ

(xk, zk)) ≥ K−1
d

(
ρkK0

C2θ2

)n+1

μΦ(SθR/K0
(xk, zk))

≥ K−1
d

(
ρkK0

C2θ2

)n+1

μΦ(SR/K0
(x̃, z̃))

≥ K−1
d

(
ρkK0

C2θ2

)n+1

K−1
d (n + 1)

−(n+1)
μΦ(SR(n+1)/K0

(x̃, z̃))

≥ K−1
d

(
ρkK0

C2θ2

)n+1

K−1
d (n + 1)

−(n+1)
μΦ(QR/K0

(x̃, z̃)).
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If we take

ρk = c0(1 − c)k/(n+1), c0 =
C2θ2(n + 1)

K0

(
4K2

d

c

)1/(n+1)

we arrive at (11.9).

We next show, by enlarging k0 if necessary, that

S((xk, zk), ρkR) = SρkR(xk, zk) ⊂⊂ QR/K0
(x̃, z̃)

so that

A = A ∩ SρkR(xk, zk) = A ∩ QR/K0
(x̃, z̃). (11.10)

Let C0 > 0 and p > 1 be the constants in Lemma 4.11. Since (xk, zk) ∈ SβR(x̃, ̃z), we know by Lemma 4.11

with r1 = β, r2 = β + (ρk/C0)1/p, and t = R, that

S((xk, zk), ρkR) ⊂ S

(
(x̃, z̃),

(
β +

(
ρk

C0

)1/p
)

R

)
.

If necessary, make k0 = k0(n, λ, Λ, s) larger to guarantee that

∞∑

j=k0

(
ρj

C0

)1/p

<
1

2K0
− β. (11.11)

In particular,

β +

(
ρk

C0

)1/p

≤ 1

2K0
for all k ≥ k0.

Therefore, SρkR(xk, zk) ⊂ SR/(2K0)(x̃, ̃z) ⊂⊂ SR/K0
(x̃, ̃z) ⊂ QR/K0

(x̃, ̃z), which shows (11.10).

By the definition of Dk,

{(x, z) : U(x, z) > aRCk} ∩ QR/K0
⊂ QR/K0

\ Dk.

With this, (11.2), (11.9), (11.10), and (11.6), we estimate

μΦ({U > aRCk} ∩ QR/K0
) ≤ μΦ(QR/K0

\ Dk)

≤ (1 − c)kμΦ(QR/K0
)

≤ 1

2
μΦ(A)

=
1

2
μΦ(A ∩ QR/K0

)

≤ 1

2
μΦ({U ≥ 2aRCk} ∩ QR/K0

)

≤ 1

2
μΦ({U > aRCk} ∩ QR/K0

),

which is a contradiction. This completes the proof of the claim. �
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We now use the claim to prove (5.4) with κ2 = β/(n + 1) and CH = Ck0+1. Suppose, by way of 

contradiction, that there is a point (xk0
, zk0

) ∈ QβR/(n+1) such that

sup
QβR/(n+1)

U ≥ U(xk0
, zk0

) > aRCk0+1.

By the claim, there is a point (xk0+1, zk0+1) ∈ ∂Sρk0 R(xk0
, zk0

) such that

U(xk0+1, zk0+1) > aRCk0+2.

Repeating this process, we can find a sequence (xk+1, zk+1) ∈ ∂SρkR(xk, zk) such that

U(xk+1, zk+1) > aRCk+2 for k > k0.

For all k ≥ k0, by Lemma 4.11 with

r1 = β +

k∑

j=k0

(
ρj

C0

)1/p

, r2 = β +

k+1∑

j=k0

(
ρj

C0

)1/p

, t = R,

and by (11.11), we obtain

S((xk+1, zk+1), ρk+1R) ⊂ S

⎛
⎝(x̃, z̃),

⎛
⎝β +

k+1∑

j=k0

(
ρj

C0

)1/p
⎞
⎠R

⎞
⎠

⊂ S

(
(x̃, z̃),

R

2K0

)
⊂ Q

(
(x̃, z̃),

R

2K0

)
.

Therefore, (xk+1, zk+1) ∈ QR/(2K0) for all k ≥ k0. In particular, U is unbounded in QR/(2K0). This is a 

contradiction and completes the proof. �

11.2. Proof of Theorem 1.1

Let κ = κ(n, s) < 1 and K̂ = K̂(n, s) > 1 be such that

κ =
√

κ0 and

√
2K̂0 = K̂

where κ0 and K̂0 are the constants from Theorem 1.3. We recall from (4.3) that

Br(x0) = Sr2/2(x0) for any r > 0.

By taking r =
√

κ0R,

BκR(x0) × {z = 0} ⊂ Sκ0R2/2(x0) × Sκ0R2/2(0) ⊂ Sκ0R2(x0, 0). (11.12)

By taking r =
√

2K̂0R,

SK̂0R2(x0, 0) ⊂ B√
2K̂0R

(x0) × SK̂0R2(0)

= BK̂R(x0) × SK̂0R2(0) ⊂⊂ Ω × R.
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We also note that

SK̂0R2(x0, 0) ∩ {z = 0} = BK̂R(x0) × {z = 0}. (11.13)

Let U be as in Theorem 1.2. By Proposition 3.2 and (1.10), it follows that U ≥ 0. Let Ũ be the 

even reflection of U so that Ũ is symmetric across {z = 0}. Notice that Ũ ∈ C2(SK̂0R2(x0, 0) \ {z =

0}) ∩ C(SK̂0R2(x0, 0)), Ũz+ ∈ C(SK̂0R2(x0, 0) ∩ {z ≥ 0}) and that Ũ is a nonnegative solution to

{
aij(x)∂ijŨ + z2− 1

s ∂zzŨ = 0 in SK̂0R2(x0, 0) ∩ {z �= 0}
−∂z+Ũ(x, 0) = f(x) on SK̂0R2(x0, 0) ∩ {z = 0}.

Since U(x, 0) = u(x), by (11.12), Theorem 1.3, and (11.13), we have that

sup
BκR(x0)

u ≤ sup
Sκ0R2 (x0,0)

Ũ

≤ CH

(
inf

Sκ0R2 (x0,0)
Ũ + ‖f‖L∞(SK̂0R2 (x0,0)∩{z=0}) R2s

)

≤ CH

(
inf

BκR(x0)
u + ‖f‖L∞(BK̂R(x0)) R2s

)
,

which proves (1.7). Since u is bounded, the Hölder estimate (1.8) immediately follows for R ≤ |x − x0| < K̂R. 

Assume that |x − x0| < R. Note that

BR(x0) × {z = 0} ⊂ SR2(x0, 0) ⊂ SK̂0R2(x0, 0).

By this, (1.16), and (11.13), we have, for any x ∈ BR(x0), that

|u(x0) − u(x)| = |Ũ(x0, 0) − Ũ(x, 0)|

≤ Ĉ1

(K̂0R2)α1

δΦ((x0, 0), (x, 0))α1

(
sup

SK̂0R2 (x0,0)

|Ũ | + ‖f‖L∞(SK̂0R2 (x0,0)∩{z=0}) R2s

)

≤ Ĉ ′
1

(K̂R)2α1

|x0 − x|2α1

(
sup

BK̂R(x0)×SK̂0R2 (0)

|Ũ | + ‖f‖L∞(BK̂R(x0)) R2s

)
.

For each fixed z ≥ 0, by (3.5),

‖U(·, z)‖L∞(BK̂R(x0)) ≤ (2s)z

4sΓ(s)

∞∫

0

e− s2

t z
1
s
∥∥e−tLu

∥∥
L∞(BK̂R(x0))

dt

t1+s
≤ M ‖u‖L∞(Ω) .

Letting Ĉ = MĈ ′
1, and α0 = 2α1 < 1, we conclude (1.8). �
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