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Abstract
In the non-uniform k-center problem, the objective is to cover points in a metric
space with specified number of balls of different radii. Chakrabarty, Goyal, and Krish-
naswamy [ICALP 2016, Trans. on Algs. 2020] (CGK, henceforth) give a constant
factor approximation when there are two types of radii. In this paper, we give a
constant factor approximation for the two radii case in the presence of outliers. To
achieve this, we need to bypass the technical barrier of bad integrality gaps in the
CGK approach. We do so using “the ellipsoid method inside the ellipsoid method”:
use an outer layer of the ellipsoid method to reduce to stylized instances and use an
inner layer of the ellipsoid method to solve these specialized instances. This idea is of
independent interest and could be applicable to other problems.

Keywords Approximation · Clustering · Outliers · Round-or-cut.

Mathematics Subject Classification 68, Computer Science

1 Introduction

In the non-uniform k-center (NUkC) problem, one is given a metric space (X , d) and
balls of different radii r1 > . . . > rt , with ki balls of radius type ri . The objective is to
find a placement C ⊆ X of centers of these

∑
i ki balls, such that they cover X with

as little dilation as possible. More precisely, for every point x ∈ X there must exist a
center c ∈ C of some radius type ri such that d(x, c) ≤ α · ri and the objective is to
find C with α as small as possible.
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Chakrabarty et al. [10] introduced this problem as a generalization to the vanilla k-
center problem [16–18]which one obtainswith only one type of radius.Onemotivation
arises from source location and vehicle routing: imagine you have a fleet of t-types
of vehicles of different speeds and your objective is to find depot locations so that
any client point can be served as fast as possible. This can be modeled as an NUkC
problem. The secondmotivation arises in clustering data. The k-center objective forces
one towards clustering with equal sized balls, while the NUkC objective gives a more
nuanced way to model the problem. Indeed, NUkC generalizes the robust k-center
problem [13] which allows the algorithm to throw away z points as outliers. This is
precisely the NUkC problem with two types of radii, r1 = 1, k1 = k, r2 = 0, and
k2 = z.

Chakrabarty et al. [10] give a 2-approximation for the special case of robust k-
center which is the best possible [16, 17]. Furthermore, they give a (1 + √

5)-factor
approximation algorithm for the NUkC problem with two types of radii (henceforth,
the 2-NUkC problem). [10] also prove that when t , the number of types of radii, is part
of the input, there is no constant factor approximation algorithm unless P=NP. They
explicitly leave open the case when the number of different radii types is a constant,
conjecturing that constant-factor approximations should be possible. We take the first
step towards this by looking at the robust 2-NUkCproblem. That is, theNUkCproblem
with two kinds of radii when we can throw away z outliers. This is the case of 3-radii
with r3 = 0.

Theorem 1 There is a 10-approximation for the Robust 2-NUkC problem.

Although the above theorem seems a modest step towards the CGK conjecture, it
is in fact a non-trivial one which bypasses multiple technical barriers in the [10]
approach. To do so, our algorithm applies a two-layered round-or-cut framework, and
it is foreseeable that this idea will form a key ingredient for the constantly many radii
case as well. In the rest of this section, we briefly describe the [10] approach, the
technical bottlenecks one faces to move beyond 2 types of radii, and our approach to
bypass them. A more detailed description appears in Sect. 2.

One key observation of [10] connects NUkCwith the firefighter problem on trees [1,
12, 15]. In the latter problem, one is given a tree where there is a fire at the root. The
objective is to figure out if a specified number of firefighters can be placed in each
layer of the tree, so that the leaves can be saved. To be precise, the objective is to select
ki nodes from layer i of the tree so that every leaf-to-root path contains at least one of
these selected nodes.

Chakrabarty et al. [10] use the integrality of a natural LP relaxation for the firefighter
problem on height-2 trees to obtain their constant factor approximation for 2-NUkC. In
particular, they show how to convert a fractional solution of the standard LP relaxation
of the 2-NUkC problem to a feasible fractional solution for the firefighter LP. Since
the latter LP is integral1 for height-2 trees, they obtain an integral firefighting solution
from which they construct an O(1)-approximate solution for the 2-NUkC problem.
Unfortunately, this idea breaks down in the presence of outliers as the firefighter LP

1 In the sense that, although it may not be integral at every basic feasible solution, if it is feasible for a
given dilation of the per-level budget, then it is integrally feasible.
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on height-2 trees when certain leaves can be burnt (outlier leaves, so to speak) is
not integral anymore. In fact, the standard LP-relaxation for Robust 2-NUkC has
unbounded integrality gap. This is the first bottleneck in the CGK approach.

Although the LP relaxation for the firefighter problem on height-2 trees is not
integral when some leaves can be burnt, the problem itself (in fact for any constant
height) is solvable in polynomial time using dynamic programming (DP) [1]. Using
the DP, one can then obtain (see, for instance, [21]) a polynomial sized integral LP
formulation for the firefighting problem.

This suggests the following enhancement of the CGK approach using the ellipsoid
method. Given a fractional solution x to Robust 2-NUkC, use the CGK approach to
obtain a fractional solution y to the firefighting problem. If y is feasible for the integral
LP formulation, then we get an integral solution to the firefighting problem which
in turn gives an O(1)-approximation for the Robust 2-NUkC instance via the CGK
approach. Otherwise, we would get a separating hyperplane for y and the poly-sized
integral formulation for firefighting. If we could only use this to separate the fractional
solution x from the integer hull of the Robust 2-NUkC problem, then we could use the
ellipsoid method to approximate Robust 2-NUkC. This is the so-called “round-or-cut”
technique in approximation algorithms.

Unfortunately, this method also fails and indicates a much more serious bottleneck
in the CGK approach. Specifically, there is an instance of Robust 2-NUkC and an x
in the integer hull of its solutions, such that the firefighting instance output by the
CGK has no integral solution! Thus, one needs to enhance the CGK approach in
order to obtain O(1)-approximations even for the Robust 2-NUkC problem. The main
contributionof this paper is to provide such an approach.We show that if thefirefighting
instance does not have an integral solution, thenwe can tease out many stylized Robust
2-NUkC instances onwhich the round-or-cut method provably succeeds, and an O(1)-
approximation to any one of them gives an O(1)-approximation to the original Robust
2-NUkC instance.

Our ApproachAny solution x in the integer hull of NUkC solutions gives an indication
of where different radii centers are opened. As it turns out, the key factor towards
obtaining algorithms for the Robust 2-NUkC problem is observing where the large
radii (that is, radius r1) balls are opened. Our first step is showing that if the fractional
solution x tends to open the r1-centers only on “well-separated” locations then in fact,
a round-or-cut algorithm from a previous paper [11] works. More precisely, if the
Robust 2-NUkC instance is for some reason forced to open its r1 centers on points
which are at least cr1 apart from each other for some constant c > 4, then the CGK
approach plus round-or-cut leads to an O(1)-approximation for the Robust 2-NUkC
problem. We stress that this is far from trivial and the natural LP relaxations have bad
gaps even in this case, hence, we rely on [11] to handle these well-separated instances.

But how and why would such well-separated instances arise? This is where we use
ideas from recent papers on fair colorful clustering [3, 7, 20]. If x suggested that the
r1-radii centers are not well-separated, then one does not need that many balls if one
allows dilation. In particular, if p andq are two r1-centers of a feasible integral solution,
and d(p, q) ≤ cr1, then just opening one ball at either p or q with radius (c + 1)r1
would cover every point that they each cover with radius r1-balls. Thus, in this case,
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the approximation algorithm gets a “saving” in the budget of how many balls it can
open. We exploit this savings in the budget by utilizing yet another observation from
Adjiashvili, Baggio, and Zenklusen [1] on the natural LP relaxation for the firefighter
problem on trees. This asserts that although the natural LP relaxation for constant
height trees is not integral, one can get integral solutions by violating the constraints
additively by a constant. The aforementioned savings allow us to get a solutionwithout
violating the budget constraints.

In summary, given an instance of the Robust 2-NUkC problem, we run an outer
round-or-cut framework and use it to check whether an instance is well-separated or
not. If not, we straightaway get an approximate solution via the CGK approach and the
ABZ observation. Otherwise, we use enumeration (similar to [3]) to obtain O(n)many
different well-separated instances and for each, run an inner round-or-cut framework.
If any of thesewell-separated instances are feasible, we get an approximate solution for
the initial Robust 2-NUkC instance. Otherwise, we can assert a separating hyperplane
for the outer round-or-cut framework.

Recent Work Shortly after this paper appeared in Integer Programming and Combi-
natorial Optimization [IPCO] 2021, Jia et al. [19] proved that an α-approximation for
robust NUkCwith t radii, translates to a (2α +2)-approximation for NUkCwith t +1
radii. This was also brought to our attention independently by an anonymous reviewer.

Related Work NUkC was introduced in [10] as a generalization to the k-center prob-
lem [16–18] and the robust k-center problem [13]. In particular CGK reduce NUkC
to the firefighter problem on trees which has constant approximations [1, 12, 15]
and recently, a quasi-PTAS [24]. NUkC has also been studied in the perturbation
resilient [4, 5, 14] settings. An instance is ρ-perturbation resilient if the optimal
clustering does not change even when the metric is perturbed up to factor ρ. Ban-
dapadhyay [6] gives an exact polynomial time algorithm for 2-perturbation resilient
instances with constant number of radii.

As mentioned above, part of our approach is inspired by ideas from fair colorful
k-center clustering [3, 7, 20] problems studied recently. In this problem, the points
are divided into t color classes and we are asked to cover mi , i ∈ {1, . . . , t} many
points from each color by opening k-centers. The idea of moving to well-separated
instances are present in these papers. We should mention, however, that the problems
are different, and their results do not imply ours.

The round-or-cut framework is a powerful approximation algorithm technique first
used in a paper by Carr et al. [8] for the minimum knapsack problem, and since then
has found use in other areas such as network design [9] and clustering [2, 3, 11, 22,
23]. Our multi-layered round-or-cut approach may find uses in other optimization
problems as well.

2 Detailed description of our approach

In this section, we provide the necessary technical preliminaries required for prov-
ing Theorem 1 and give a more detailed description of the CGK bottleneck and our
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approach. We start with notations. Let (X , d) be a metric space on a set of points X
with distance function d : X × X −→ R≥0 satisfying the triangle inequality. For any
u ∈ X we let B(u, r) denote the set of points in a ball of radius r around u, that is,
B(u, r) = {v ∈ X : d(u, v) ≤ r}. For any set U ⊆ X and function f : U → R, we
use the shorthand notation f (U ) := ∑

u∈U f (u). For a setU ⊆ X and any v ∈ X we
use d(v,U ) to denote minu∈U d(v, u).

The 2-radii NUkC problem and the robust version are formally defined as follows.

Definition 1 [2-NUkC and Robust 2-NUkC] The input to 2-NUkC is a metric space
(X , d) along with two radii r1 > r2 ≥ 0 with respective budgets k1, k2 ∈ N. The
objective of 2-NUkC is to find the minimum ρ ≥ 1 for which there exists subsets
S1, S2 ⊆ X such that (a) |Si | ≤ ki for i ∈ {1, 2}, and (b)

⋃
i
⋃

u∈Si B(u, ρri ) = X .
The input to Robust 2-NUkC contains an extra parameterm ∈ N, and the objective is
the same, except that condition (b) is changed to |⋃i

⋃
u∈Si B(u, ρri )| ≥ m.

An instance I of Robust 2-NUkC is denoted as ((X , d), (r1, r2), (k1, k2),m). As is
standard, we will focus on the approximate feasibility version of the problem. An
algorithm for this problem takes input an instance I of Robust 2-NUkC, and either
asserts thatI is infeasible, that is, there is no solutionwithρ = 1, or provides a solution
with ρ ≤ α. Using binary search, such an algorithm implies an α-approximation for
Robust 2-NUkC.

Linear Programming Relaxations The following is the natural LP relaxation for the
feasibility version of Robust 2-NUkC. For every point v ∈ X , variable covi (v) denotes
its coverage by balls of radius ri . Variable xi,u denotes the extent to which a ball of
radius ri is open at point u. If instance I is feasible, then the following polynomial
sized system of inequalities has a feasible solution.

{(covi (v) : v ∈ X , i ∈ {1, 2}) :
∑

v∈X
cov(v) ≥ m (Robust2 − NUkCLP)

∑

u∈X
xi,u ≤ ki ∀i ∈ {1, 2}

cov1(v) ≤
∑

u∈B(v,r1)

x1,u, cov2(v) ≤
∑

u∈B(v,r2)

x2,u ∀v ∈ X

cov(v) = cov1(v) + cov2(v) ≤ 1 ∀v ∈ X

xi,u ≥ 0 ∀i ∈ {1, 2},∀u ∈ X}

For our algorithm,wewillworkwith the following integer hull of all possible fractional
coverages. Fix a Robust 2-NUkC instance I = ((X , d), (r1, r2), (k1, k2),m) and let
F be the set of all tuples of subsets (S1, S2) with |Si | ≤ ki . For v ∈ X and i ∈ {1, 2},
we say F covers v with radius ri if d(v, Si ) ≤ ri . Let Fi (v) ⊆ F be the subset
of solutions that cover v with radius ri . Moreover, we would like F1(v) and F2(v)

to be disjoint, so if S ∈ F1(v), we do not include it in F2(v). The following is the
integer hull of the coverages, where the coverage variables are derived from a convex
combination of the integral solutions using variables zS for S ∈ F . If I is feasible,
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there must exist a solution in PIcov.

{(covi (v) : v ∈ X , i ∈ {1, 2}) :
∑

v∈X
(cov1(v) + cov2(v)) ≥ m (PIcov)

∀v ∈ X , i ∈ {1, 2} covi (v) −
∑

S∈Fi (v)

zS = 0 (PIcov.1)

∑

S∈F
zS = 1 (PIcov.2)

∀S ∈ F zS ≥ 0} (PIcov.3)

Fact 1 PIcov lies inside Robust 2-NUkC LP.

Firefighting on Trees As described in Sect. 1, the CGK approach [10] is via the fire-
fighter problem on trees. Sincewe only focus onRobust 2-NUkC, the relevant problem
is the weighted 2-level fire fighter problem. The input includes a set of height-2 trees
(stars) with root nodes L1 and leaf nodes L2. Each leaf v ∈ L2 has a parent p(v) ∈ L1
and an integer weight w(v) ∈ N. We use Leaf(u) to denote the leaves connected to a
u ∈ L1 (that is, {v ∈ L2 : p(v) = u}). Observe that {Leaf(u) : u ∈ L1} partitions L2.
So we could represent the edges of the trees by this Leaf partition. Hence the structure
is identified as (L1, L2, Leaf,w).

Definition 2 (2-LevelFireFighter (2-FF)Problem)Givenheight-2 trees (L1, L2, Leaf,
w) along with budgets k1, k2 ∈ N, a feasible solution is a pair T = (T1, T2), Ti ⊆ Li ,
such that |Ti | ≤ ki for i ∈ {1, 2}. Let C(T ) := {v ∈ L2 : v ∈ T2 ∨ p(v) ∈ T1} be
the set of leaves covered by T . The objective is to maximize w(C(T )). Hence a 2-FF
instance is represented by ((L1, L2, Leaf,w), k1, k2).

The standard LP relaxation for this problem is quite similar to the Robust 2-NUkC
LP. For each vertex u ∈ L1 ∪ L2 there is a variable 0 ≤ yu ≤ 1 that shows the extent
to which u is included in the solution. For a leaf v, Y (v) is the fractional amount by
which v is covered in the solution, or saved, through both itself and its parent.

max
∑

v∈L2

w(v)Y (v) :
∑

u∈Li

yu ≤ ki , ∀i ∈ {1, 2}; (2-FF LP)

Y (v) := yp(v) + yv ≤ 1, ∀v ∈ L2; yu ≥ 0, ∀u ∈ L1 ∪ L2

Remark 1 The following figure shows an example where the above LP relaxation has
an integrality gap. However, 2-FF can be solved via dynamic programming in O(n3)
time and has similar sized integral LP relaxations (Fig. 1).
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Robust k-center with two types of radii 997

Fig. 1 A 2-FF instance with budgets k1 = k2 = 1. Multiplicity w is 1 for the circle leaves and 3 for the
triangles. The highlighted nodes have y = 1/2 and the rest of the nodes have y = 0. The objective value
for this y is 4 × 1/2 + 6 = 8 but no integral solution can get an objective value of more than 7

2.1 CGK’s approach and its shortcomings

Given fractional coverages (cov1(v), cov2(v) : v ∈ X), the CGK algorithm [10] runs
the classic clustering subroutine by Hochbaum and Shmoys [17] in a greedy fashion.
In English, the Hochbaum-Shmoys (HS) routine partitions a metric space such that
the representatives of each part are well-separated with respect to an input parameter.
The CGK algorithm obtains a 2-FF instance by applying the HS routine twice. Once
on the whole metric space in decreasing order of cov(v) = cov1(v) + cov2(v), and
the set of representatives forms the leaf layer L2 with weights being the size of the
parts. The next time on L2 itself in decreasing order of cov1 and the representatives
form the parent layer L1. These subroutines and the subsequent facts form a part of
our algorithm and analysis.

Algorithm 1 HS
Input: Metric (U , d), parameter r ≥ 0, and assignment {cov(v) ∈ R≥0 : v ∈ U }
1: R ← ∅ 
 The set of representatives
2: while U �= ∅ do
3: u ← argmaxv∈U cov(v) 
 The first client in U in non-increasing cov order
4: R ← R ∪ u
5: Child(u) ← {v ∈ U : d(u, v) ≤ r} 
 Points in U at distance r from u (including u itself)
6: U ← U\Child(u)

7: end while
Output: R, {Child(u) : u ∈ R}

Algorithm 2 CGK
Input: Robust 2-NUkC instance ((X , d), (r1, r2), (k1, k2),m), dilation factors α1, α2 > 0, and assign-

ments cov1(v), cov2(v) ∈ R≥0 for all v ∈ X
1: (L2, {Child2(v), v ∈ L2}) ← HS((X , d), α2r2, cov = cov1 + cov2)
2: (L1, {Child1(v), v ∈ L1}) ← HS((L2, d), α1r1, cov1)
3: w(v) ← |Child2(v)| for all v ∈ L2
4: Leaf(u) ← Child1(u) for all u ∈ L1
Output: 2-FF instance ((L1, L2, Leaf,w), (k1, k2))

Definition 3 [Valuable 2-FF instances] We call an instance T returned by the CGK
algorithm valuable if it has an integral solution of total weight at least m.
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Fig. 2 At the top, there is a feasible Robust 2-NUkC instance with k1 = 2, k2 = 3, andm = 24. There are 6
triangles representing 3 collocated points each, alongwith 12 circles, each representing one point. The black
edges are distance r1 > α2r2 and the grey edges are distance α1r1. There are two integral solutions S and S′
each covering exactly 24 points. S1 = {u1, u4}, S2 = {u2, v2, u3}, S′

1 = {u2, u3}, and S′
2 = {u1, v1, u4}.

Having zS = zS′ = 1/2 in PIcov, gives cov1 of 1/2 for all the points and cov2 of 1/2 for the triangles. The
output of Algorithm 2 is the 2-FF instance at the bottom. According to Proposition 1 the highlighted nodes
have y = 1/2 and the rest of the nodes have y = 0 with objective value 12× 1/2+ 18 = 24 but no integral
solution can get an objective value of more than 23

Using a dynamic programming algorithm (see [1]), one can check whether a 2-FF
instance is valuable in polynomial time.

Fact 2 The following are true regarding the output of HS: (a) ∀u ∈ R,∀v ∈ Child(u) :
d(u, v) ≤ r , (b) ∀u, v ∈ R : d(u, v) > r , (c) The set {Child(u) : u ∈ R} partitionsU ,
and (d) ∀u ∈ R,∀v ∈ Child(u) : cov(u) ≥ cov(v).

Lemma 1 [rewording of Lemma3.4. in [10]] LetI be aRobust 2-NUkC instance. If for
any fractional coverages (cov1(v), cov2(v)) the instance 2-FF created by Algorithm
2 is valuable, then one obtains an (α1 + α2)-approximation for I.

This is simply by opening r1 and r2 centers on points corresponding to L1 and L2
firefighters respectively, and since the 2-FF instance is valuable, dilating the radii by
(α1 + α2) covers at least m points. See [10] for more detail.

Lemma 1 suggests that if we can find fractional coverages so that the corresponding
2-FF instanceT is valuable, thenwe are done. Unfortunately, the example illustrated in
Fig. 2 shows that for any (α1, α2) there exists Robust 2-NUkC instances and fractional
coverages (cov1(v), cov2(v)) ∈ PIcov in the integer hull, for which the CGK algorithm
returns 2-FF instances that are not valuable.

2.2 Our idea

Although the 2-FF instance obtained by Algorithm 2 from fractional coverages
(cov1(v), cov2(v) : v ∈ X) may not be valuable, [10] proved that if these cover-
ages come from Robust 2-NUkC LP, then there is always a fractional solution to 2-FF
for this instance which has value at least m.

Proposition 1 (rewording of Lemma 3.1. in [10]) Let (cov1(v), cov2(v) : v ∈ X) be
any feasible solution to Robust 2-NUkC LP. As long as α1, α2 ≥ 2, the following is
a fractional solution of 2-FF with value at least m for the 2-FF instance output by
Algorithm 2.
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Robust k-center with two types of radii 999

yv =
{
cov1(v) v ∈ L1

min{cov2(v), 1 − cov1(p(v))} v ∈ L2.

Therefore, the problematic instances are precisely 2-FF instances that are integrality
gap examples for 2-FF. Our first observation stems from what Adjiashvili, Baggio,
and Zenklusen [1] call “the narrow integrality gap of the firefighter LP”.

Lemma 2 (From Lemma 6 of [1]) Any basic feasible solution {yv : i ∈ {1, 2}, v ∈ Li }
of the 2-FF polytope has at most 2 loose variables. A variable yv is loose if 0 < yv < 1
and yp(v) = 0 in case v ∈ L2.

In particular, if y(L1) ≤ k1−2, then the above lemma alongwith Proposition 1 implies
there exists an integral solution with value ≥ m. That is, the 2-FF instance is valuable
(see Proposition 5). Conversely, the fact that the instance is not valuable asserts that
y(L1) > k1 − 2 which in turn implies cov1(L1) > k1 − 2. In English, the fractional
coverage puts a lot of weight on the points in L1.

This is where we exploit the ideas in [3, 7, 20]. By choosing α1 > 2 to be large
enough in Proposition 1, we can ensure that points in L1 are “well-separated”. More
precisely, we can ensure for any two u, v ∈ L1 we have d(u, v) > α1r1 (from Fact 2).
Thewell-separated condition implies that the same center cannot be fractionally cover-
ing twodifferent points in L1. Therefore, if cov1(L1) > k1−2 and (cov1, cov2) ∈ PIcov
is in the integer hull, then there must exist an integer solution which opens at most
1 radius r1 center that does not cover points in L1 (see Proposition 6). For the time
being assume in fact no such center exists and cov1(L1) = k1. Indeed, the integrality
gap example in Fig. 2 satisfies this equality.

Our last piece of the puzzle is that if the cov1’s are concentrated on separated points,
then indeed we can apply the round-or-cut framework to obtain an approximation
algorithm. To this end, we make the following definition, and assert the following
theorem.

Definition 4 (Well-Separated Robust) The input is the same as Robust 2-NUkC, along
with Y ⊆ X where d(u, v) > 4r1 for all pairs u, v ∈ Y . The objective is to find S1
and S2 as in Definition 1 with the constraint that S1 ⊆ Y .

Theorem 2 Given a Well-Separated Robust 2-NUkC instance there is a polynomial
time algorithm using the ellipsoid method that either gives a 4-approximate solution,
or proves that the instance is infeasible.

We remark the natural Robust 2-NUkCLP relaxation still has a bad integrality gap, and
we need the round-or-cut approach. Formally, given fractional coverages (cov1, cov2)
we run Algorithm 2 (with α1 = α2 = 2) to get a 2-FF instance. If the instance is
valuable, we are done by Lemma 1. Otherwise, we prove that (cov1, cov2) /∈ PIcov
by exhibiting a separating hyperplane. This crucially uses the well-separated-ness of
the instance and indeed, the bad example shown in Fig. 2 is not well-separated. This
implies Theorem 2 using the ellipsoid method.

In summary, to prove Theorem 1, we start with (cov1, cov2) purported to be inPIcov.
Our goal is to either get a constant approximation, or separate (cov1, cov2) from PIcov.
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Fig. 3 Our framework for approximating Robust 2-NUkC. The three black arrows each represent separating
hyperplanes we feed to the outer ellipsoid. The box in the bottom row stating “4-approximation for well-
separated Robust 2-NUkC” runs the inner ellipsoid method

We first run the CGK Algorithm 2 with α1 = 8 and α2 = 2. If cov1(L1) ≤ k1 − 2,
we can assert that the 2-FF instance is valuable (in Proposition 5) and get a 10-
approximation. Otherwise, cov1(L1) > k1 − 2, and we guess one r1 center, out of the
O(n)many possible centers, “far away” from L1, and obtain that many well-separated
instances. We run the algorithm promised by Theorem 2 on each of them. If any one
of them gives a 4-approximate solution, then we immediately get an 8-approximate2

solution to the original instance. Ifallof them fail, thenwe can assert cov1(L1) ≤ k1−2
must be a valid inequality for PIcov (see Proposition 6), and thus obtain a hyperplane
separating (cov1, cov2) from PIcov. The polynomial running time is implied by the
ellipsoid algorithm. Note that there are two nested runs of the ellipsoid method in the
algorithm. Figure 3 below shows an illustration of the ideas.

2.3 Discussion

Before we move to describing algorithms proving Theorem 2 and Theorem 1, let us
point out why the above set of ideas does not suffice to prove the full CGK conjecture,
that is, give an O(1)-approximation for NUkC with constant number of radii. Given
fractional coverages, the CGK algorithm now returns a t-layered firefighter instance
and again if such an instance is valuable, that is, a placement of firefighters can save
at least m leaves (which can be checked in nO(t) time via a dynamic program [1]),
we get an O(1)-approximation. As above, the main challenge is when the firefighter
instance is not valuable. Theorem 2, in fact, does generalize if all layers are separated.
Formally, if there are t types of radii, and there are t sets Y1, . . . ,Yt such that (a) any
two points p, q ∈ Yi are well-separated, that is, d(p, q) > 4ri , and (b) the ri -radii
centers are only allowed to be opened inYi , then in fact there is an O(1)-approximation
for such instances. Furthermore, if we had fractional coverages (cov1, cov2, . . . , covt )

2 The factor doubles as we need to double the radius, but that is a technicality. See Proposition 6 for the
detail.
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such that in the t-layered firefighter instance returned, all layers have “slack”, that is
covi (Li ) ≤ ki − t , then one can repeatedly use Lemma 2 to show that the tree instance
is indeed valuable.

The issue we do not know how to circumvent is when some layers have slack and
some layers do not. In particular, even with 3 kinds of radii, we do not know how to
handle the case when the first layer L1 is well-separated and cov1(L1) = k1, but the
second layer has slack cov2(L2) ≤ k2 − 3. Lemma 2 does not help since all the loose
vertices may be in L1, but they cannot all be picked without violating the budget. At
the same time, we do not know how to separate such cov’s, or whether such a situation
arises when cov’s are in the integer hull. We believe one needs more ideas to resolve
the CGK conjecture.

3 Approximating well-separated robust 2-NUkC

In this section we prove Theorem 2 stated in Sect. 2.2. As mentioned there, the main
idea is to run the round-or-cut method, and in particular use ideas from a previous
paper [11] of ours. The main technical lemma is the following.

Lemma 3 Given Well-Separated Robust 2-NUkC instance I and fractional coverages
( ˆcov1(v), ˆcov2(v)), if the output of the CGK Algorithm 2 is not valuable, there is a
hyperplane separating ( ˆcov1(v), ˆcov2(v)) from PIcov. Furthermore, the coefficients of
this hyperplane are bounded in value by |X |.
Remark 2 We need to be careful in one place. Recall that HS is used in the CGK
Algorithm 2. We need to assert in HS, that points u with d(u,Y ) ≤ r1 are prioritized
over points v with d(v,Y ) > r1 to be taken in L1. This is w.l.o.g. since cov1(v) = 0
if d(v,Y ) > r1 by definition of Well-Separated Robust 2-NUkC.

This remark is a simple technicality that only appears in the proof of Proposition 3.
Using the ellipsoid method, the above lemma implies Theorem 2.

Proof (Proof of Theorem 2) The goal is to either prove PIcov is empty, or give a 4-
approximate solution. To do so, we run the ellipsoid algorithm. Each time the ellipsoid
algorithm provides a purported fractional point ( ˆcov1(v), ˆcov2(v)) ∈ PIcov and asks
for a separating hyperplane. Given such a solution, we first check if ˆcov1(v) = 0 for
all v with d(v,Y ) > r1. By the well-separatedness property of I, this must be a valid
equality and we can force the ellipsoid method to run over these equalities. Then we
run CGK Algorithm 2 with this ( ˆcov1, ˆcov2) and α1 = α2 = 2. If the resulting 2-FF
instance is valuable, we get a 4-approximate solution by Lemma 1. If not, Lemma 3
provides a separating hyperplane to feed to ellipsoid. Since our hyperplanes can be
described in polynomial size, ellipsoid terminates in polynomial time, either giving us
some ˆcov leading to a 4-approximation along the way, or prompts that PIcov is empty
thereby proving I is infeasible. ��
The rest of this section is dedicated to proving Lemma 3. Fix a well-separated Robust
2-NUkC instance I. Recall that Y ⊆ X is a subset of points, and the radius r1 centers
are only allowed to be opened at Y . Let T be the 2-FF instance output by Algorithm
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2 on I and cov with α1 = α2 = 2. Recall, T = ((L1, L2, Leaf,w), k1, k2). The key
part of the proof is the following valid inequality in case T is not valuable.

Lemma 4 IfT is not valuable, then
∑

v∈L2
w(v)cov(v) ≤ m−1 for any cov(v) ∈ PIcov.

Before we prove Lemma 4, let us show how it proves Lemma 3. Given ( ˆcov1, ˆcov2)
we first check3 that

∑
u∈X ˆcov(u) ≥ m, or otherwise that would be the hyperplane

separating it fromPIcov. Now recall that inAlgorithm2, for v ∈ L2,w(v) = |Child2(v)|
which is the number of points assigned to v by HS (see Line 1 of Algorithm 1 of
Algorithm 2). By definition of w and then parts d) and c) of Fact 2,

∑

v∈L2

w(v) ˆcov(v) =
∑

v∈L2

∑

u∈Child(v)

ˆcov(v) ≥
∑

v∈L2

∑

u∈Child(v)

ˆcov(u) =
∑

u∈X
ˆcov(u) ≥ m.

That is, ( ˆcov1, ˆcov2) violates the valid inequality asserted in Lemma 4, and this would
complete the proof of Lemma 3. All that remains is to prove the valid inequality lemma
above.

Proof (of Lemma 4) Fix a solution cov ∈ PIcov and note that this is a convex combi-
nation of coverages induced by integral feasible solutions inF . The main idea of the
proof is to use the solutions inF to construct solutions to the tree instance T. Since T
is not valuable, each of these solutions will have “small” value, and then we use this
to prove the lemma. To this end, fix S = (S1, S2) ∈ F where |Si | ≤ ki for i ∈ {1, 2}.
The corresponding solution T = (T1, T2) for T is defined as follows: For i ∈ {1, 2}
and any u ∈ Li , u is in Ti iff Si ∈ Fi (u). That is, d(u, Si ) ≤ ri .

Proposition 2 T satisfies the budget constraints |Ti | ≤ ki for i ∈ {1, 2}.
Proof For i ∈ {1, 2} and two different u, v ∈ Ti by Fact 2 and our choice of αi = 2,
d(u, v) > 2ri . By the triangle inequality, a facility in Si cannot cover both u and v

meaning |Ti | ≤ |Si | ≤ ki . ��
The next claim is the only placewherewe need thewell-separated-ness ofI. Basically,
we will argue that the leaves saved by T1 capture all the points covered by S1.

Proposition 3 If u ∈ L1 but u /∈ T1 then no v ∈ Leaf(u) can be covered by a ball of
radius r1 in S1.

Proof We will prove the contrapositive by showing that if u = p(v) and v is covered
through f ∈ S1, then u as well must be covered by the same f and therefore, u ∈ T1.
Recall that Y is a set of well-separated points where r1 centers are allowed. Consider
the following two cases: either d(u,Y ) > r1 in which case, by our assumption on HS
in Remark 2, v is prioritized over u to be chosen in L1 so this cannot happen. Thus,
we must have d(u,Y ) ≤ r1 which means there is fu ∈ Y with d(u, fu) ≤ r1. This fu
has to be equal to f otherwise, by definition of Y we must have d( f , fu) > 4r1 that
contradicts the following: d( fu, f ) ≤ d( fu, u)+d(u, v)+d(v, f ) ≤ r1+α1r1+r1 =
4r1. ��
3 Recall, ˆcov(v) = ˆcov1(v) + ˆcov2(v).
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Next, we can prove that overall, the leaves saved by T capture the whole set of
points covered by S. Recall that C(T ) = {v ∈ L2 : v ∈ T2 ∨ p(v) ∈ T1} is the set of
leaves saved by T . For v ∈ X letF (v) := F1(v) ∪F2(v) be the set of solutions that
cover v.

Proposition 4 Take 2-FF solution T corresponding toWell-Separated Robust 2-NUkC
solution S as described earlier. We have:

∑

v∈L2:S∈F (v)

w(v) ≤ w(C(T )).

That is, the total w of the points covered by S is at most w(C(T )).

Proof The leaves saved by T are saved either by T1 or T2. Thus, we get

w(C(T )) =
∑

u∈T1

∑

v∈Leaf(u)

w(v) +
∑

u /∈T1

∑

v∈Leaf(u):v∈T2
w(v). (1)

The first of these terms can be lower-bounded as

∑

u∈T1

∑

v∈Leaf(u)

w(v) ≥
∑

u∈T1

∑

v∈Leaf(u):S∈F (v)

w(v).

that is, we only consider the leaves v of u ∈ T1 which are covered by the Robust
2-NUkC solution S. The second term, by definition of T2 is

∑

u /∈T1

∑

v∈Leaf(u):v∈T2
w(v) =

∑

u /∈T1

∑

v∈Leaf(u):S∈F2(v)

w(v) =
∑

u /∈T1

∑

v∈Leaf(u):S∈F (v)

w(v).

where the last equality uses Proposition 3 which implies for u /∈ T1 and v ∈ Leaf(u),
d(v, S1) > r1. Thus, the solution S covers v iff S2 covers v. Plugging back in (1), we
complete the proof.
The proof of Lemma 4 now follows from the fact thatT is not valuable thusw(C(T )) ≤
m − 1 and therefore, for any S ∈ F we have

∑
v∈L2:S∈F (v) w(v) ≤ m − 1. So we

have:

∑

v∈L2

w(v)cov(v) =(PIcov.1)
s

∑

v∈L2

w(v)
∑

S∈F (v)

zS =
∑

S∈F
zS

∑

v∈L2:
S∈F (v)

w(v)

≤ (m − 1)
∑

S∈F
zS =(PIcov.2)

m − 1.

��
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4 Themain algorithm: proof of theorem 1

As mentioned in Sect. 2, we focus on the feasibility version of the problem: given an
instanceIofRobust 2-NUkCweeitherwant to prove it is infeasible, that is, there are no
subsets S1, S2 ⊆ X with (a) |Si | ≤ ki and (b) | ⋃i

⋃
u∈Si B(u, ri )| ≥ m, or give a 10-

approximation that is, open subsets S1, S2 that satisfy (a) and |⋃i
⋃

u∈Si B(u, 10ri )| ≥
m. To this end, we apply the round-or-cut methodology on PIcov. Given a purported
ˆcov := ( ˆcov1(v), ˆcov2(v) : v ∈ X) we want to either use it to get a 10-approximate

solution, or find a hyperplane separating it from PIcov. Furthermore, we want the
coefficients in the hyperplane to be poly-bounded. Using the ellipsoid method we
indeed get a polynomial time algorithm thereby proving Theorem 1.

Upon receiving ˆcov, we first check whether ˆcov(X) ≥ m or not, and if not
that will be the separating hyperplane. Henceforth, we assume this holds. Then,
we run CGK Algorithm 2 with α1 = 8 and α2 = 2 to get 2-FF instance T =
((L1, L2, Leaf,w), (k1, k2)). Let {yv : v ∈ L1 ∪ L2} be the solution described in
Proposition 1. Next, we check if ˆcovi (Li ) = y(Li ) ≤ ki for both i ∈ {1, 2}; if not,
by Proposition 1 that hyperplane would separate ˆcov from PIcov (and even Robust
2-NUkC LP in fact). The algorithm then branches into two cases.

Case I y(L1) ≤ k1 − 2. In this case, we assert that T is valuable, and therefore by
Lemma 1 we get an α1 + α2 = 10-approximate solution for I via Lemma 1, and we
are done.

Proposition 5 If y(L1) ≤ k1 − 2, then there is an integral solution T for T with
w(C(T )) ≥ m.

Proof Since y(L1) ≤ k1 − 2, we see that there is a feasible solution to the slightly
revised LP below.

max
∑

v∈L2

w(v)Y (v) :
∑

u∈L1

yu ≤ k1 − 2,
∑

u∈L2

yu ≤ k2,

Y (v) := yp(v) + yv ≤ 1, ∀v ∈ L2

Consider a basic feasible solution {y′
v : v ∈ L1 ∪ L2} for this LP, and let T1 := {v ∈

L1 : y′
v > 0}. By definition y′(T1) = y′(L1) ≤ k1 − 2. According to Lemma 2,

there are at most 2 loose variables in y′. So there are at most 2 fractional vertices in
T1. This implies |T1| ≤ k1. Let U be the set of leaves that are not saved by T1, that
is, U := {v ∈ L2 : p(v) /∈ T1}. Let T2 be the top k2 members of U according to
decreasing w order. We return T = (T1, T2).

We claim T has value at least m, that is, w(C(T )) ≥ m. Note that w(C(T )) =
w(T2) + ∑

u∈T1 w(Leaf(u)). By the greedy choice of T2, w(T2) ≥ ∑
v∈U w(v)y′

v .
Since y′

p(v) = 0 for any v ∈ U , we havew(T2) ≥ ∑
v∈U w(v)y′

v = ∑
v∈U w(v)Y ′(v).

Furthermore, by definition,
∑

u∈T1 w(Leaf(u)) = ∑
v∈L2\U w(v) which in turn is

at least
∑

v∈L2\U w(v)Y ′(v). Adding up proves the claim as the objective value is at
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Robust k-center with two types of radii 1005

least m.

w(C(T )) ≥
∑

v∈U
w(v)Y ′(v) +

∑

v∈L2\U
w(v)Y ′

v =
∑

v∈L2

w(v)Y ′(v) ≥ m.

Case II y(L1) > k1−2. In this case, we either get an 8-approximation or prove that the
following is a valid inequality which will serve as the separating hyperplane (Recall
ˆcov1(L1) = y(L1)).

cov1(L1) ≤ k1 − 2. (2)

Todo so,weneed the followingpropositionwhich formalizes the idea stated inSect. 2.2
that in case II, we can enumerate over O(|X |) many well-separated instances.

Proposition 6 Let (cov1, cov2) ∈ PIcov be fractional coverages and suppose there is a
subset Y ⊆ X with d(u, v) > 8r1 for all u, v ∈ Y . Then either cov1(Y ) ≤ k1 − 2, or
at least one of the following Well-Separated Robust 2-NUkC instances are feasible

I∅ := ((X , d), (2r1, r2), (k1, k2), Y ,m)

Iq := ((X\B(q, r1), d), (2r1, r2), (k1 − 1, k2), Y ,m − |B(q, r1)|) ∀q ∈ X : d(q, Y ) > r1.

Before proving the above proposition, let us use it to complete the proof of Theorem 1.
We let Y := L1, and obtain the instances I∅ and Iq ’s as mentioned in the proposition.
We apply the algorithm in Theorem2 on each of them. If any of them returns a solution,
then we have an 8-approximation. More precisely, if I∅ is feasible, Theorem 2 gives a
4-approximation for it which is indeed an 8-approximation for I (the extra factor 2 is
becauseI∅ uses 2r1 as its largest radius). IfIq is feasible for some q ∈ X and Theorem
2 gives us a 4-approximate solution S′ = (S′

1, S
′
2) for it and S = (S′

1∪{q}, S′
2) is an 8-

approximation for I. If none of them are feasible, then we see that cov1(L1) ≤ k1 −2
indeed serves as a separating hyperplane between ˆcov and PIcov. This ends the proof
of Theorem 1.

Proof (Proof of Proposition 6) Let us assume cov1(Y ) > k1 − 2, and prove that
one of the proposed Well-Separated Robust 2-NUkC instances are feasible. First of
all, note that the described Well-Separated Robust 2-NUkC instances indeed satisfy
the definition: Y is separated enough for radius 2r1 and by definition of q, Y ⊆
(X\B(q, r1)).

Suppose, for the sake of contradiction, none of the describedWell-SeparatedRobust
2-NUkC instances are feasible. Since cov1(Y ) > k1 − 2 and cov ∈ PIcov, there has to
be some S = (S1, S2) ∈ F such that S1 covers strictly more than k1 − 2 points in Y .
Take any such S. There are two types of centers in S1, the ones that do contribute to
cov1(Y ), and the ones that do not. The former is A := { f ∈ S1 : d( f ,Y ) ≤ r1} and
the latter is B := { f ∈ S1 : d( f ,Y ) > r1}. By our assumption of cov1(Y ) > k1 − 2
and the fact that Y points are more than 2r1 apart, |A| > k1 − 2. This leaves us with
|B| ≤ 1.

Let IB be the Well-Separated Robust 2-NUkC instance corresponding to this B
(i.e. IB = I∅ if B = ∅ and IB = Iq if B = {q}). We construct a feasible solution S′
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1006 D. Chakrabarty, M. Negahbani

for IB which contradicts our assumption. By definition of IB , S′ only needs to cover
as many points as (A, S2) covers in I. That is,m points if B = ∅ andm − |B(q, r1)|
points if B = {q}. Setting S′

2 := S2 and S′
1 := { f ∈ Y : d( f , A) ≤ 1} does the trick:

S′ balls with radii 2r1 and r2, cover all the elements in X that are covered by (A, S2)
in I. Also note that S′ satisfies the budget constraints. ��
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