
a
rX

iv
:2

1
1
1
.0

7
4
7
4
v
1

[c

s.
D

S
]

 1
4
 N

o
v
 2

0
2
1

A Polynomial Lower Bound on the Number of Rounds for Parallel

Submodular Function Minimization and Matroid Intersection

Deeparnab Chakrabarty* Yu Chen† Sanjeev Khanna‡

November 16, 2021

Abstract

Submodular function minimization (SFM) and matroid intersection are fundamental discrete optimiza-

tion problems with applications in many fields. It is well known that both of these can be solved making

poly(N) queries to a relevant oracle (evaluation oracle for SFM and rank oracle for matroid intersec-

tion), where N denotes the universe size. However, all known polynomial query algorithms are highly

adaptive, requiring at least N rounds of querying the oracle. A natural question is whether these can be

efficiently solved in a highly parallel manner, namely, with poly(N) queries using only poly-logarithmic

rounds of adaptivity.

An important step towards understanding the adaptivity needed for efficient parallel SFM was taken

recently in the work of Balkanski and Singer who showed that any SFM algorithm making poly(N)
queries necessarily requires Ω(logN/ log logN) rounds. This left open the possibility of efficient SFM

algorithms in poly-logarithmic rounds. For matroid intersection, even the possibility of a constant round,

poly(N) query algorithm was not hitherto ruled out.

In this work, we prove that any, possibly randomized, algorithm for submodular function minimiza-

tion or matroid intersection making poly(N) queries requires1 Ω̃
(
N1/3

)
rounds of adaptivity. In fact,

we show a polynomial lower bound on the number of rounds of adaptivity even for algorithms that make

at most 2N
1−δ

queries, for any constant δ > 0. Therefore, even though SFM and matroid intersection

are efficiently solvable, they are not highly parallelizable in the oracle model.

*Department of Computer Science, Dartmouth College. Email: deeparnab@dartmouth.edu. Supported in part by NSF

award CCF-2041920.
†Department of Computer and Information Science, University of Pennsylvania. Email chenyu2@cis.upenn.edu
‡Department of Computer and Information Science, University of Pennsylvania. Email sanjeev@cis.upenn.edu Sup-

ported in part by NSF awards CCF-1910534, CCF-1926872, and CCF-2045128.
1Throughout the paper, we use the usual convention of using Ω̃(f(n)) to denote Ω(f(n)/ logc f(n)) and using Õ(f(n)) to

denote O(f(n) · logc f(n)), for some unspecified constant c

1 Introduction

A function f : 2U → Z defined over subsets of a ground set U of N elements is submodular if for any

two sets A ⊆ B and an element e /∈ B, the marginal of e on A, that is, f(A ∪ e) − f(A) is at least

f(B ∪ e)− f(B). The submodular function minimization (SFM) problem is to find a subset S minimizing

f(S) given access to an evaluation oracle for the function that returns the function value on any specified

subset. SFM is a fundamental discrete optimization problem which generalizes classic problems such as

minimizing global and s-t cuts in graphs and hypergraphs, and more recently has found applications in

areas such as image segmentation [BK04, BVZ01, KKT08] and speech analysis [IB13, IJB13].

A remarkable fact is that SFM can be solved in polynomial time with polynomially many queries to

the evaluation oracle. This was first established by Grötschel, Lovász, and Schrijver [GLLS81] using the

ellipsoid method. Since then, a lot of work [Cun85, IFF01, Sch00, Orl09, IO09, CJK14, LJJ15, LSW15,

CLSW17, DVZ18, ALS20, Jia21] has been done trying to understand the query complexity of SFM. The

current best known algorithms are an O(N3)-query polynomial-time and an O(N2 logN)-query exponen-

tial time algorithm by Jiang [Jia21] building on the works [LSW15, DVZ18], an Õ(N2 logM)-query and

time algorithm by Lee, Sidford, and Wong [LSW15] where |f(S)| ≤ M for all S ⊆ U , and an Õ(NM2)
query and time algorithm by Axelrod, Liu, and Sidford [ALS20] improving upon [CLSW17].

Any SFM algorithm accesses the evaluation oracle in rounds, where the queries made in a certain round

depend only on the answers to queries made in previous rounds. There is a trade-off between the number of

queries (per round) made by the algorithm, and the number of rounds needed to find the answer : there is an

obvious 1-round algorithm which makes all 2N queries. All known efficient algorithms for SFM described

above are highly sequential; all of them proceed in Ω(N) rounds. Can the number of rounds be substantially

decreased (made poly-logarithmic in N) while still keeping the number of queries bounded by poly(N)?
In spirit, this is related to the P versus NC question which at a high-level asks whether problems with

polynomial time algorithms be solved by poly-sized circuits with poly-logarithmic depth. From a practical

standpoint, given the applications of SFM to problems involving huge data and the availability of computing

infrastructure to perform parallel computation, the question of low-depth parallel SFM algorithms is timely.

A study of this question was initiated by Balkanski and Singer in [BS20] who proved that any poly-

nomial query SFM algorithm must proceed in Ω(logN
log logN) rounds. This still leaves open the possibility of

polynomial query poly-logarithmic round algorithms. Indeed for the related problem of submodular func-

tion maximization subject to cardinality constraint, in a different paper [BS18], Balkanski and Singer showed

that the correct answer is indeed Θ̃(logN). They proved that with polynomially many queries no constant

factor approximation is possible with o
(

logN
log logN

)
rounds, while an 1/3-approximation can be obtained in

O(logN)-rounds2. Can the situation be the same for SFM?

In this paper we answer this question in the negative. We prove a polynomial lower bound on the number

of rounds needed by any polynomial query SFM algorithm.

Theorem 1. For any constant δ > 0 and any 1 ≤ c ≤ N1−δ, any possibly randomized algorithm for

SFM on an N element universe making ≤ N c evaluation oracle queries per round and succeeding with

probability ≥ 2/3 must have Ω
(

N1/3

(c logN)1/3

)
rounds-of-adaptivity. This is true even when the range of

the submodular function is {−N,−N + 1, . . . , N − 1, N}, and even if the algorithm is only required

to output the value of the minimum.

2This result has since been improved [BRS19, CQ19a, CQ19b, EN19, ENV19, LLV20]; see Section 1.1 for details.

1

We note that a polynomial lower bound on the number of rounds holds even if the algorithm is allowed to

make 2N
1−δ

queries per round for any δ > 0, and the lower bound on the number of rounds is Ω̃(N1/3)
for polynomial query algorithms. Our construction also proves lower bounds on the number of rounds re-

quired for approximate submodular function minimization. In this problem, one assumes via scaling that the

function’s range is in [−1,+1] and the goal is to return a set whose value is within an additive ε from the min-

imum. We can prove an Ω̃(1/ε)-lower bound on the number of rounds required for approximate SFM. The

only previous work ruling out ε-approximate minimizers is another work of Balkanski and Singer [BS17]

who proved that non-adaptive algorithms, that is single round algorithms, cannot achieve any non-trivial

approximation with polynomially many queries.

Matroid intersection is another fundamental combinatorial optimization problem generalizing the max-

imum cardinality bipartite matching problem and the problem of packing spanning trees and arborescences

in graphs. In matroid intersection, we are given two matroids M1 = (U,I1) and M2 = (U,I2) over

the same universe, and the objective is to find the largest cardinality independent set present in both ma-

troids. There are two standard ways to access these matroids: one is via the independence oracle which

says whether a set is independent in a given matroid or not, and the other is via the rank oracle, which

when queried with a subset S returns the size of the largest independent subset of S. The rank oracle is

stronger. It is known via Edmond’s minimax [Edm70] result that matroid intersection (with access via rank

oracles) is, in fact, a special case of submodular function minimization. The first algorithms for matroid

intersection [AD71, Law75, Edm70] made O(N3) independence oracle queries, which was improved to

O(N2.5) by Cunningham [Cun86]. More recently, Chakrabarty et al. [CLS+19] and Nguyen [Ngu19] im-

proved the number of queries to Õ(N2). The current record holder is a randomized algorithm by Blikstad

et al. [BvdBMN21] making Õ(N9/5) independence queries. The best algorithm using rank oracle queries

is in [CLS+19] which gives an Õ(N1.5)-rank oracle query algorithm. As in the case of SFM, all these

algorithms are sequential requiring Ω(N)-rounds of adaptivity.

The submodular functions we construct to prove Theorem 1 are closely related to the rank functions of

nested matroids, a special kind of laminar matroids. As a result, we prove a similar result as in Theorem 1

for matroid intersection.

Theorem 2. For any constant δ > 0 and any 1 ≤ c ≤ N1−δ, any possibly randomized algorithm

for matroid intersection on an N element universe making ≤ N c rank-oracle queries per round and

succeeding with probability ≥ 2/3 must have Ω
(

N1/3

(c logN)1/3

)
rounds-of-adaptivity. This is true even

when the two matroids are nested matroids, a special class of laminar matroids, and also when the

algorithm is only required to output the value of the optimum.

In particular, any algorithm making polynomially many queries to the rank oracle must have Ω̃(N1/3)
rounds of adaptivity, even to figure out the size of the largest common independent set. That is, even the

“decision” version of the question (is the largest cardinality at least some parameter K) needs polynomially

many rounds of adaptivity.

Our results shows that in the general query model, SFM and matroid intersection cannot be solved

in polynomial time in poly-logarithmic rounds, even with randomization. This is in contrast to specific

explicitly described succinct SFM and matroid intersection problems. For instance, global minimum cuts

in an undirected graph is in NC [KM97], finding minimum s-t-cuts with poly-bounded capacities is in

RNC [KUW86], and linear and graphic matroid intersection is in RNC [NSV94]. More recently, inspired

by some of these special cases, Gurjar and Rathi [GR20] defined a class of submodular functions called

linearly representable submodular functions and gave RNC algorithms for the same.

2

Our lower bounding submodular functions fall in a class introduced by Balkanski and Singer [BS20]

which we call partition submodular functions. Given a partition P = (P1, . . . , Pr) of the universe U ,

the value of a partition submodular function f(S) depends only on the cardinalities of the |S ∩ Pi|’s. In

particular, f(S) = h(x) where x is an r-dimensional non-negative integer valued vector with xi := |S∩Pi|,
and h is a discrete submodular function on a hypergrid. Note that when r = 1, the function h is a univariate

concave function, and when r = n we obtain general submodular functions. Thus, partition submodular

functions form a nice way of capturing the complexity of a submodular function.

The [BS20] functions are partition submodular and they prove an Ω(r)-lower bound for their specific

functions. As we explain in Section 2, their construction idea has a bottleneck of r = O(logN), and thus

cannot prove a polynomial lower bound. Our lower bound functions are also partition submodular, and

we also prove an Ω(r) lower bound though we get r to be polynomially large in the size of the universe.

Furthermore, our partition submodular functions turn out to be closely related to ranks of nested matroids

which lead to our lower bound for parallel matroid intersection.

1.1 Related Work

For parallel algorithms, the depth required for the “decision” version and the “search” version may be vastly

different. In a thought provoking paper [KUW88], Karp, Upfal and Wigderson considered this question. In

particular, they proved that any efficient algorithm that finds a maximum independent set in a single (even

a partition) matroid with access to an independence oracle must proceed in Ω̃(N1/3) rounds. On the other

hand, with access to a rank oracle which takes S and returns r(S), the size of the largest independent set

in S, there is a simple algorithm3 which makes N queries in a single round and finds the optimal answer.

Our lower bound shows that for matroid intersection, rank oracles also suffer a polynomial lower bound,

even for the decision version of the problem. At this point, we should mention a very recent work of Ghosh,

Gurjar, and Raj [GGR22] which showed that if there existed poly-logarithmic round algorithms for the

(weighted) decision version for matroid intersection with rank-oracles, then in fact there exists deterministic

polylogarithmic round algorithms for the search version. A similar flavor result is also present in [NSV94].

Unfortunately, our result proves that polylogarithmic depth is impossible for arbitrary matroids (even nested

ones), even when access is via rank oracles.

The rounds-of-adaptivity versus query complexity question has seen a lot of recent work on submod-

ular function maximization. As mentioned before, Balkanski and Singer [BS18] introduced this problem

in the context of maximizing a non-negative monotone submodular function f(S) subject to a cardinal-

ity constraint |S| ≤ k. This captures NP-hard problems, has a sequential greedy (1 − 1
e)-approximation

algorithm [NWF78], and obtaining anything better requires [NW78, Von13] exponentially many queries.

[BS18] showed that obtaining even an O
(

1
logN

)
-approximation with polynomially many queries requires

Ω
(

logN
log logN

)
rounds, and gave an O(logN)-round, polynomial query, 1

3 -approximation. Soon afterwards,

several different groups [BRS19, EN19, FMZ19, CQ19b, CQ19a, ENV19] gave
(
1− 1

e − ε
)
-approximation

algorithms making polynomially many queries which run in poly(logN, 1ε)-rounds, even when the con-

straint on which S to pick is made more general. More recently, Li, Liu and Vondrák [LLV20] showed

that the dependence of the number of rounds on ε (the distance from 1 − 1/e) must be a polynomial.

Also related is the question of maximizing a non-negative non-monotone submodular function without any

constraints. It is known that a random set gives a 1
4 -approximation, and a sequential “double-greedy” 1

2 -

approximation was given by Buchbinder, Feldman, Naor, and Schwartz [BFNS15], and this approximation

3Order elements as e1, . . . , eN and query r({e1, . . . , ei}) for all i, and return the points at which the rank changes.

3

factor is tight [FMV11]. Chen, Feldman, and Karabasi [CFK19] gave a nice parallel version obtaining an(
1
2 − ε

)
-approximation in O(1ε)-rounds.

In the continuous optimization setting, the question of understanding the “parallel complexity” of min-

imizing a non-smooth convex function was first studied by Nemirovski [Nem94]. In particular, the paper

studied the problem of minimizing a bounded-norm convex (non-smooth) function over the unit ℓ∞ ball in

N -dimensions, and showed that any polynomial query (value oracle or gradient oracle) algorithm which

comes ε-close must have Ω̃(N1/3 ln(1/ε)) rounds of adaptivity. Nemirovski [Nem94] conjectured that the

lower bound should be Ω̃(N ln(1/ε)), and this is still an open question. When the dependence on ε is

allowed to be polynomial, then the sequential vanilla gradient descent outputs an ε-minimizer in O(1/ε2)-
rounds (over Euclidean unit norm balls), and the question becomes whether parallelism can help over gradi-

ent descent in some regimes of ε. Duchi, Bartlett, and Wainwright [DBW12] showed an O(N1/4/ε)-query

algorithm which is better than gradient-descent when 1
ε2

>
√
N . A matching lower bound in this regime

was shown recently by Bubeck et al. [BJL+19], and this paper also gives another algorithm which has better

depth dependence in some regime of ε. It is worth noting that submodular function minimization can also

be thought of as minimizing the Lovász extension which is a non-smooth convex function. Unfortunately,

the domain of interest (the unit cube) has ℓ2-radius
√
N , and the above algorithms do not imply “dimension-

free” ε-additive approximations for submodular function minimization. Our work shows that Ω(1/ε)-rounds

are needed, and it is an interesting open question whether a poly(N, 1ε)-lower bound can be shown on the

number of rounds, or whether one can achieve efficient ε-approximations in rounds independent of N .

The question of rounds-of-adaptivity versus query complexity has been asked for many other compu-

tational models, and also is closely related to other fields such as communication complexity and stream-

ing. We note a few results which are related to submodular function minimization. Assadi, Chen, and

Khanna [ACK19] considered the problem of finding the minimum s-t-cut in an undirected graph in the

streaming setting. They showed that any p-pass algorithm must take Ω̃(n2/p5)-space, where n is the num-

ber of vertices. Their result also implied that any sub-polynomial round algorithm for the s-t-cut submodular

function must make Ω̃(n2) queries; note that with O(n2) queries, the whole graph can be non-adaptively

learned. Rubinstein, Schramm, and Weinberg [RSW18] considered the global minimum cut function in an

undirected unweighted graph, and showed that Õ(n) queries suffice, and their algorithm can be made to

run in O(1)-rounds. Subsequently, Mukhopadhyay and Nanongkai [MN20] generalized this for weighted

undirected graphs and gave an Õ(n) query algorithm.

2 Technical Overview

In this section, we give a technical overview of our approach to proving a polynomial lower bound on the

rounds of adaptivity. We start by describing the Balkanski-Singer [BS20] framework for proving rounds-

of-adaptivity lower bounds as it serves as a starting point for our work. Our presentation will first briefly

highlight why the approach taken in [BS20] cannot yield better than a logarithmic lower bound on the rounds

of adaptivity and then describe the approach we take to sidestep the logarithmic bottleneck.

The Lower Bound Framework. Balkanski and Singer [BS20] consider a class of submodular functions

which we call partition submodular functions. Given a partition P = (P1, . . . , Pr) of the universe U , a set

function is partition submodular if its value at a subset S depends only on the cardinalities of the number of

elements it contains from each part. That is, fP(S) = h(|S ∩P1|, . . . , |S ∩Pr|) for some function h whose

domain is the set of r-dimensional non-negative integer vectors. The lower bound framework dictates the

following three conditions on the functions h and the resulting partition submodular function fP .

4

(P1) The function h is defined such that fP is submodular.

(P2) The last part Pr is the unique minimizer of fP . We also assume fP(∅) = h(0, 0, . . . , 0) = 0, and thus

fP(Pr) is necessarily < 0.

(P3) For any 1 ≤ i < r, even if we know the identity of the parts P1, . . . , Pi−1, a single round of poly-

nomially many queries tells us nothing about the identity of the parts Pi+1 to Pr. More precisely, a

random re-partitioning of the elements in Pi+1 ∪ Pi+2 ∪ · · · ∪ Pr will, with high probability, give the

same values to the polynomially many queries made in the current round.

(P3) is the key property for proving the lower bound. The function h is fixed. Let P be the uniform

distribution over partitions with given sizes |P1| to |Pr| which, along with h, induces a distribution over

submodular functions. By Yao’s lemma it suffices to show that any (r − 2)-round deterministic algorithm

making polynomially many queries fails to find the minimizer with any non-trivial probability. (P3) implies

that after (r − 2) rounds of queries and obtaining their answers, the algorithm cannot distinguish between

two functions fP and fP ′ where the partitions P and P ′ agree on the first (r − 2) parts, but (Pr−1, Pr) and

(P ′
r−1, P

′
r) are random re-partitioning of the elements of Pr−1 ∪ Pr . Since (P2) implies the minimizer of

fP is Pr and fP ′ is P ′
r, and these will be different with high probability, any algorithm will make a mistake

on one of them. The non-triviality is therefore in the construction of the “h” functions, and in particular for

how large an r can one manage while maintaining (P1), (P2), and (P3).

The Balkanski-Singer Approach. For now, let us fix a random partition P := (P1, . . . , Pr) of the uni-

verse U . Given a subset S, let x := (x1,x2, . . . ,xr), where xi := |S ∩ Pi| be its signature. Before we

describe Balkanski and Singer’s construction approach, let us understand what one needs for establishing a

condition like (P3). Consider the case i = 1, that is, the first round of queries. (P3) requires that the answers

should not leak any information about P2, P3, . . . , Pr .

Consider a query S. Since the partition P is random, we expect S’s signature x to be random as

well. More precisely, we expect xi
|Pi|

to be “roughly same” for all i ∈ [r]. Call such vectors balanced; we

are deliberately not defining them precisely at this point. For (P3) to hold, we must have that ∂ih(x), the

marginal increase in the function upon adding an element from Pi, is the same for all 2 ≤ i ≤ r for balanced

vectors. Otherwise, the algorithm can distinguish between different parts. On the other hand, the marginals

cannot be same for all vectors x, as that would imply the sets P2 to Pr have the same value, which would

violate the constraint (P2) since Pr is the unique minimizer.

To orchestrate this, Balkanski and Singer use the idea of masking. All marginals ∂ih(x) are between

[−1, 1]. In the first round, the masking is done via the first coordinate x1
|P1|

of the signature. At a very high

level, when x1
|P1|

is “large”, all the marginals ∂ih(x), for 2 ≤ i ≤ r, take the value −1, while ∂1h(x) takes

the value 0. In plain English, if any set S contains a large fraction of elements from P1, then all elements

in P2 ∪ · · · ∪ Pr have marginal −1; the preponderance of these P1 elements masks all the other parts outs.

Therefore, at the first round, after making polynomially many queries an algorithm can only perhaps detect

P1, but has no information about parts P2 to Pr.

More generally one requires this kind of property to hold recursively as the algorithm discovers P1, P2,

and so on in successive rounds. In any round i, if one considers a set S with
|S∩Pi|
|Pi|

“large” for some i, then

for all elements e in parts Pj , j > i, the marginals are −1. In this way, they are able to maintain the property

(P3). Of course, one has to be careful about what occurs when |S∩Pi|’s are small, and the whole construction

is rather technical, but this aspect described above is key to how they maintain indistinguishability.

5

A Logarithmic Bottleneck. Unfortunately, this powerful masking property is also a bottleneck. One can

argue that the above construction cannot have r = ω(logN). Consider the first round of queries. The

Balkanski-Singer masking property asserts that if
|S∩P1|
|P1|

is “large” then all e ∈ P2∪· · ·∪Pr give a marginal

of −1. In particular, if one considers the the set S = P1, then the marginal of all elements in (P2 ∪ · · · ∪Pr)
to S is −1. This, along with submodularity, implies that fP(U) ≤ f(P1)− (

∑r
i=2 |Pi|). Since U is not the

minimizer, this needs to be > fP(Pr), and since all marginals are in [−1,+1], we get that

|P1| ≥ |P2|+ · · · + |Pr−1|

That is, the first part is thus required to be bigger than the sum of the rest. And recursively, the second part is

bigger than the sum of the rest. And so on. This implies4 r = O(logN) and therefore the Balkanski-Singer

masking idea cannot give a polynomial lower bound.

2.1 Ideas Behind Our Construction

Let us again focus on the first round of queries. In the Balkanski-Singer construction, whenever x1 is “large”

irrespective of how the other xi’s look like, the marginals ∂ih(x) = −1 for i ≥ 2. This strong masking

property led to |P1| being much larger than the sum of the remaining parts so as to compensate for all the

negative marginals coming from the elements in the other parts.

Our approach is not to set ∂ih(x) depending on just x1, but rather by looking at the whole suffix

x2 : xr . More precisely, if x1 is “large” (say, even the whole part P1), but all the rest are empty, even in that

case we want all marginals ∂ih(x) to be in fact +1. Only when (almost) all coordinates xi are “large”, do

we switch to ∂ih(x) = −1 for all i ≥ 2. Therefore, in a sense, elements in any part contribute a negative

marginal towards the function value, only after a significant number of elements from that part have already

contributed positively, thus canceling out the negative conributions. This is what allows our construction to

have all parts of equal size n = N/r, setting the stage for a polynomial lower bound.

Although deciding a marginal depending on the suffix may sound complicated, in the end our lower

bound functions are simple to describe. Indeed, all marginals are in the set {−1, 0,+1} and thus not only

do we prove a polynomial lower bound on exact SFM, we also prove a O(1/ε)-lower bound even for ε-

approximate SFM. Furthermore, as we explain below, our lower bounding functions are closely connected

to rank functions of nested matroids, which are a special class of laminar matroids. Therefore, we also

obtain lower bounds on the rounds-of-adaptivity of polynomial query matroid intersection algorithms with

rank-oracle queries. In the rest of this subsection, we give more details on how the partition submodular

functions are constructed. This discussion is still kept informal and is meant to help the reader understand

the rationale behind the construction. The full formal details along with all the properties we need are

deferred to Section 3, which the reader can feel free to skip to.

For our lower bound, we construct two partition submodular functions, fP(S) = h(x) and f∗
P = h∗(x),

where (a) the minimizer of fP is the empty set and the minimizer of f∗
P is the set Pr (satisfying (P2)), and

both these functions satisfy (P3) for 1 ≤ i < r/2, and furthermore, any, possibly randomized, algorithm

distinguishing these functions and which uses only o(N1/3/ log1/3 N) rounds of adaptivity must make

super-polynomial number of queries in some round. It is easier to understand the functions h and h∗ via

their marginals. Here are the properties we desire from these marginal functions.

4It is not easy to even orchestrate a Ω(logN) lower bound this way. The masking functions that Balkanski-Singer constructed

needs to be quite delicate to preserve submodularity, and in the end, the sets P1 is in fact r times bigger than the rest. This leads to

their Ω(logN/ log logN) lower bound.

6

• (Submodularity.) Both function’s marginals should be monotonically decreasing. Thus, once ∂jh(x)
or ∂jh

∗(x) becomes −1, they should stay −1 for all y “larger” than x.

• (Unique Minima.) The part Pr should be the unique minimizer for h∗. This restricts how often

∂jh
∗(x) can be −1 when j 6= r. This is in tension with the previous requirement.

• (Suffix Indistinguishability.) For i ≤ r/2 and for any x which is i-balanced, that is, xi ≈ xi+1 ≈
· · · ≈ xr, we need that ∂jh

∗(x) and ∂jh(x) for such x’s should be the same for all i + 1 ≤ j ≤ r.

This is what we call suffix indistinguishability. This would also imply h and h∗ would give the same

values on all queried points with high probability.

At any point x, let us first describe the r marginals ∂ih(x) for 1 ≤ i ≤ r. As mentioned above, the

marginals will be in the set {−1, 0,+1}. It is best to think of this procedure constructively as an algorithm.

Initially, all the r marginals are set to +1. Next, we select up to two coordinates a and b in {1, 2, . . . , r},

which depend on the query point x. Given these coordinates, we decrement all marginals a ≤ i ≤ r and all

marginals b ≤ i ≤ r by 1. For instance, if r = 6 and we choose the coordinates a = 2 and b = 5 at some

x, then the marginals (∂1h(x), . . . , ∂6h(x)) are (1, 0, 0, 0,−1,−1). The 5th and 6th coordinate decrement

twice and thus go from +1 to −1, while the 2nd, 3rd, and 4th coordinate only decrement once and thus go

from +1 to 0. The first coordinate is never decremented in this example. Note that the vector of marginals

when considered from 1 to r is always in decreasing order.

The crux of the construction is, therefore, in the choice of the a and the b at a certain point x. These will

clearly depend on x, but how? Submodularity tells us that if we move from x to y = x + ei, then the a’s

and the b’s should only move left, that is, become smaller; that would ensure decreasing marginals. This in

turn implies that a and b should be defined by the suffix sums at x. More precisely, if we decide to choose

a and b as the coordinates which maximize some function φ(·) which depends on the suffix sums
∑

i≥t xi,

t ranging from 1 to r, then increasing a coordinate can only move a’s and b’s to the left. This is precisely

what we do, and now the crux shifts to the choice of this function φ(·).
Consider an i-balanced vector x. We need that when all the coordinates are “large”, then the marginals

of h∗ should be −1; otherwise, Pr would not be the minimizer. Since h and h∗ should be indistinguishable,

the same should be true for h. On the other hand, when all the coordinates are “small”, most marginals of

both function should be +1, otherwise U would be the minimizer. In sum, when the coordinates of x are

“large”, we should have the a and b to the left, close to 1; this would make most marginals −1. And when

they are small, a and b should be towards the right; this would make most marginals +1. This motivates

the following rule that we formalize in the next section : we define r different functions (called ℓt(x) for

1 ≤ t ≤ r) where the tth function ℓt(x) is the sum of (xi − τ) over all coordinates t ≤ i ≤ r where τ is

a “threshold” which is “close” to n/2. Here n is the size of each part |Pi|. After taking the sum over these

coordinates, we further subtract an“offset” γ. In sum, the functions look like ℓt(x) := (
∑r

i=t(xi − τ))− γ.

We choose a (respectively b) to be the odd (respectively, even) coordinate t with the largest ℓt(x),
ignoring them if this largest value is negative. That is, if all odd ℓt(x)’s are negative, a is undefined; if

all even ℓt(x)’s are negative, b is undefined. Note that if both a and b are undefined, all marginals ∂ih(x)
are +1; if one of them is undefined, then the marginals ∂ih(x) are {+1, 0}. Indeed, the function h which

achieves such marginals can be succinctly stated as

h(x) = ‖x‖1 −
(
max(0, max

a:odd
ℓa(x)) + max(0, max

b:even
ℓb(x))

)

To see why x satisfies suffix indistinguishability, consider a balanced vector x with x1 ≈ x2 · · · ≈ xr. If

all of these entries xi ≫ n
2 for all i, then note that the odd/even arg-maximizers are precisely {1, 2}. Thus,

7

the marginals ∂ih(x)’s are (0,−1,−1, . . . ,−1). On the other hand if all xi ≪ n
2 , then due to our choice

τ ≈ n
2 , all ℓt(x)’s will be negative, and thus {a, b} will be ignored, implying that the marginals ∂ih(x)

will be (+1,+1, . . . ,+1). In either case, the marginals ∂ih(x) for i ≥ 2 are the same, implying Suffix

Indistinguishability . In reality, we must allow a wiggle room of “few standard deviations” in the ≈ between

the xi’s since even a random set would exhibit such a behavior. To account for this, the same wiggle room

needs to provided in the threshold τ and also in the offset γ. More precisely, we need to choose τ = n
2 − g,

where g ≈ Θ̃(
√
n), and choose γ ≈ g · r.

Indeed the fact that this gap g = Θ̃(
√
n) also is the reason why our construction cannot get better than

N1/3 lower bound. If we take the set S = U = P1 ∪ · · · ∪ Pr, that is, the signature x = n = (n, n, . . . , n),
then one can evaluate h(n) = n

2 − Θ̃(r
√
n). If we want f(U) > 0, we must have n > Θ(r

√
n), implying

r = Õ(
√
n). Since N = nr, this implies r = Õ(N1/3).

The above was the description of the function h which is non-negative. The function h∗ is simply the

function h if xr < n
2 − g

4 , but if xr ≥ n
2 − g

4 , the rth coordinate has marginal −1 irrespective of the

other xj’s. This makes Pr become the minimizer of f∗
P with value −Θ(g). Since we only modify the

behavior of the last index in going from h to h∗, in the beginning few rounds h and h∗ behave similarly.

Indeed, if xr > n
2 − g

4 , then any i-balanced vector for i ≤ r/2, has half the coordinates ≥ n
2 − O(g). The

offset γ is chosen such that in this case h also has marginal −1 for the rth coordinate. Thus, h and h∗ are

indistinguishable in the first r/2 rounds. This, in turn, shows that if an algorithm runs for < r/2 rounds,

then it cannot distinguish between these two functions, and therefore, cannot distinguish between the case

when the minimum value is 0 and when the minimum value is ≈ −N1/3.

We end this informal description by stating how our results also imply lower bounds for approximate

SFM. Since the marginals of our functions are {−1, 0,+1}, the range of the function is [−N,N]. If we scale

by a multiplicative factor N , we immediately get an Ω̃(1/
√
ε)-lower bound on the number of rounds needed

to get an ε-additive approximation. However, we can boost this by a bit. The main idea is to not have Pr as

the minimizer in h∗, but have the last r/3 parts together be the minimizer. This is done by simply having the

last r/3 parts behave differently in h∗; and this boosts the minimum value to ≈ −Θ(gr) ≈ −N2/3. This

implies an Ω̃(1/ε)-lower bound on the depth required to obtain an ε-additive approximation.

Connection with Matroid Ranks and Matroid Intersection. The above description of h(x) may seem

a bit obscure. However, they are intimately connected to rank functions of matroids, in particular, nested

matroids. Given a universe U , consider a nested family of subsets C := (U = C1 ⊇ C2 ⊇ · · · ⊇ Cr).
Furthermore, let each set Ci have a “capacity” capi. Then, the following family of subsets IC := {I ⊆
U : |I ∩ Ci| ≤ capi} forms a matroid. Such matroids are called nested matroids, and they form a special

class of laminar matroids. A nested matroid can also be described using a partition P = (P1, . . . , Pr) where

Pr = Cr and Pi := Ci \ Ci+1 for all 1 ≤ i < r, and thresholds τr = capr and τi := capi − capi+1 for

1 ≤ i < r. It is not too hard to show (see Section 5) that the rank of the matroid is given by

rk(S) := |S| −max

(
0, max

1≤a≤r
ℓa(S)

)
, where ℓt(S) :=

∑

i≥t

(|S ∩ Pi| − τi)

The reader can see the connection between these rank functions and the partition submodular functions

described above. Indeed, our partition submodular functions can be decomposed as rkM1(S) + rkM2(U \
S) (plus a constant) for two nested matroids M1 and M2. Using Edmond’s minimax relationship that

the cardinality of the largest common independent set in M1 and M2 is precisely the minimum value of

functions as above, our lower bounds for parallel SFM also prove a lower bound of Ω̃(N1/3) on the rounds

of adaptivity required for efficient matroid intersection, even in the presence of rank oracle queries.

8

3 Description of our Lower Bound Functions

We begin by formally defining partition submodular functions and some properties of such functions. We

then describe in detail the lower bound functions that we use in the proof of Theorem 1.

3.1 Partition Submodular Functions

Let U be a universe of elements and P = (P1, . . . , Pr) be a partition of the elements of U . Let h : Zr
≥0 → R

be a function whose domain is the r-dimensional non-negative integer hypergrid. Given (P, h), one can

define a set-function fP : 2U → R as follows:

fP(S) = h (|S ∩ P1|, . . . , |S ∩ Pr|) (1)

In plain English, the value of fP(S) is a function only of the number of elements of each part that is present

in S. We say that fP is induced by the partition P and h. A partition submodular function is a submodular

function which is induced by some partition P and some hypergrid function h.

A function defined by (P, h) is submodular if and only if h satisfies the same decreasing marginal

property as f . To make this precise, let us settle on some notation. Throughout the paper, for any integer

k, we use [k] to denote the set {0, 1, . . . , k}. First, note that the domain of h is the r-dimensional hypergrid

[|P1|]× [|P2|]× · · · × [|Pr|]. For brevity’s sake, we call this dom(h). We use boldfaced letters like x,y to

denote points in dom(h). When we write x+ y we imply coordinate-wise sum. Given i ∈ {1, . . . , r}, we

use ei to denote the r-dimensional vector having 1 at the ith coordinate and 0 everywhere else. The function

h induces r different marginal functions defined as

For 1 ≤ i ≤ r, ∂ih(x) := h(x+ ei)− h(x) (2)

The domain of ∂ih is [|P1|]× [|P2|]× · · · × [|Pi| − 1]× · · · × [|Pr|].

Definition 1. We call a function h : Zr → R defined over a integer hypergrid dom(h) (hypergrid) sub-

modular if and only if for every 1 ≤ i ≤ r, for every x ∈ dom(h) with xi < |Pi|, and every 1 ≤ j ≤ r, we

have

∂jh(x) ≥ ∂jh(x+ ei) (3)

Lemma 1. A set function fP defined by a partition P and hypergrid function h as in (1) is (partition)

submodular if and only if h is (hypergrid) submodular.

Proof. Let A ⊆ U and let x be the r-dimensional integer vector with xi := |A ∩ Pi|. Pick elements

e, e′ ∈ U \ A. Let e ∈ Pi and e′ ∈ Pj for 1 ≤ i, j ≤ r. Note that j could be the same as i. Then fP is

submodular is equivalent to fP(A + e′) − fP(A) ≥ fP(A + e + e′) − fP(A + e), which is equivalent to

(3).

The following lemma shows that minima of partition submodular functions can be assumed to take all or

nothing of each part.

Lemma 2. Let fP be a partition submodular function induced by a partition P = (P1, . . . , Pr) and hyper-

grid function h. Let O be a maximal by inclusion minimizer of f . Then, O ∩ Pi 6= ∅ implies O ∩ Pi = Pi.

9

Proof. Let x ∈ dom(h) be the vector induced by O, that is, xi = |O ∩ Pi| for all 1 ≤ i ≤ r. For the

sake of contradiction, assume 0 < xi < |Pi|. Let e1 and e2 be two arbitrary elements in O ∩ Pi and

Pi \O respectively. Since O is the minimizer, fP(O)−fP(O−e1) ≤ 0. Now note that the LHS is precisely

∂ih(x−ei). And this is also equal to f(O−e1+e2)−f(O−e1) and thus this is also ≤ 0. By submodularity,

however, f(O+ e2)− f(O) ≤ f(O− e1 + e2)− f(O− e1), and thus we obtain f(O+ e2) ≤ f(O) which

contradicts that O was an inclusion-wise maximal minimizer.

3.2 Suffix Functions

The lower bound functions we construct are partition submodular functions defined with respect to a parti-

tion P = (P1, . . . , Pr) of the universe U of N elements into r parts. The number of parts r is an odd integer

whose value will be set to be Θ̃(N1/3). Each part Pi has the same size n, where n is an even positive integer

such that nr = N . The hypergrid submodular function h : [n]r → Z which define the partition submodular

function are themselves defined using suffix functions, which we describe below.

Let g be an integer which is divisible by 4 and which is Θ̃(
√
n). That is,

(
n
2 − g

)
is “many standard

deviations” away from n
2 , and in particular, any random subset of an n-universe set has cardinality within

±g of the expected value with all but inverse polynomial probability. As described in the previous informal

discussion, the following linear suffix functions play a key role in the description of the marginals. Define

For any 1 ≤ t ≤ r, ℓt(x) :=
r∑

s=t

(
xs −

(n
2
− g

))
− gr

4
(4)

Given x, let a := a(x) ∈ [r] be the odd-coordinate t ∈ [r] with the largest ℓt(x), breaking ties towards

smaller indices in case of ties. Let b := b(x) ∈ [r] be the even-coordinate t ∈ [r] with the largest ℓt(x),
breaking ties towards smaller indices in case of ties. We call {a, b} the largest odd-even index of x.

Now we are ready to describe our lower bounding functions. First define the function h : [n]r → Z as

follows

h(x) = ‖x‖1 −
(
max(0, ℓa(x)) + max(0, ℓb(x))

)
(5)

The above function contains the seed of the hardness, and satisfies (P1) and (P3). However, the above

function, for the precise choice of g we will finally choose, will in fact be non-negative. To obtain the lower

bounding functions which treats Pr specially, we define

h∗(x) =

{
h(x) if xr ≤ n

2 − g
4

h(x↓)−
(
xr −

(
n
2 − g

4

))
otherwise

where,x↓ :=
(
x1, . . . ,xr−1,min(xr,

n

2
− g

4
)
)

(6)

In Section 3.3, for completeness sake, we give a direct proof that both the functions, h and h∗ are

hypergrid submodular. However, as we show in Section 5, these functions arise as sum of rank functions

of particular nested matroids, and thus give a more principled reason why these functions are submodular.

In Section 3.4, we show that the function h is non-negative, while h∗(0, 0, . . . , 0, n) attains a negative value

of −g/2. In Section 3.5, we show that i-balanced vectors, for i < r/2, cannot distinguish between h and

h∗. This, in turn, is used in Section 4 to prove the lower bound for parallel SFM.

10

3.3 Submodularity

We first prove that h : [n]r → Z is submodular, and then use this to prove that h∗ : [n]r → Z is submodular.

We need to prove

Lemma 3. Fix x and a coordinate 1 ≤ i ≤ r. Let y := x + ei. Let j be any arbitrary coordinate.

Then,

∂jh(x) ≥ ∂jh(y) (7)

The high-level reason why h is submodular is when one moves from x to y = x + ei, the odd-even index

{a, b} of y can only “move to the left”, that is, become smaller. Formally,

Claim 1. Let x be any point and let y := x + ei. Suppose a is the odd coordinate t with the largest ℓt(x)
breaking ties towards smaller indices. Suppose a′ is the odd coordinate t with the largest ℓt(y) breaking

ties towards smaller indices. If a′ 6= a, then (i) a′ ≤ i < a, and (ii) ℓa′(y) = ℓa(y). A similar statement is

true for even coordinates.

Proof. First from the definition, observation that ℓt(y) = ℓt(x) if t > i and ℓt(y) = ℓt(x) + 1 if t ≤ i.
Thus, if a′ 6= a, we must have that a′ ≤ i < a, establishing (i). Furthermore, since a′ < a, we must have

ℓa(x) ≥ ℓa′(x) + 1 for otherwise a′ would’ve been chosen with respect to x. Since ℓa′(y) ≥ ℓa(y), again

by the observation of the first line, we establish (ii).

To see how the claim helps in proving Lemma 3, it is instructive to first establish how the marginals of

the function defined in (5) look like. To this end, define the following indicator functions. For any 1 ≤ t ≤ n
and for any 1 ≤ i ≤ n, define

Ct(x) =

{
−1 if ℓt(x) ≥ 0

0 otherwise
and Ci

t(x) = Ct(x) · 1{i≥t}

where 1{i≥t} is the indicator function taking the value 1 if i ≥ t and 0 otherwise. Using these notations, we

can describe the r different marginals at x succinctly as

Lemma 4. Fix x in the domain of h. Let {a, b} be largest odd-even index of x. Then,

∀1 ≤ i ≤ r, ∂ih(x) = 1 + Ci
a(x) + Ci

b(x) (Marginals)

In plain English, given a point x, one first finds the largest odd-even index {a, b} of x. If any of these

function values are negative, throw them away from consideration: the suffixes aren’t large enough. Next,

given a coordinate i, the marginal ∂ih(x) depends on where i lies in respect to a and b (if they are still in

consideration). If i is smaller than both, then the marginal is 1, if i is smaller than one, then the marginal is

0, if i is greater than or equal to both, the marginal is −1. Given this understanding of how the marginals

look like, it is perhaps clear why Claim 1 implies submodularity : as {a, b} move left the the marginal of

any coordinate j can only decrease when one moves to y.

Proof of Lemma 4. Fix an x and a coordinate i. Let y = x+ ei. Let’s consider h(y) − h(x) using (5), and

then show it is precisely as asserted in (Marginals). First note that we can rewrite

h(x) = ‖x‖1 + Ca(x)ℓa(x) + Cb(x)ℓb(x) (8)

11

Consider the expression Ca(y)ℓa(y)−Ca(x)ℓa(x). If i < a, then ℓa(y) = ℓa(x), and thus Ca(y) = Ca(x),
and thus the expression evaluates to 0. If i ≥ a, then ℓa(y) = ℓa(x) + 1. For the expression to contribute

anything non-zero, we must have ℓa(y) ≥ 1 implying ℓa(x) ≥ 0, or in other words, Ca(x) = Ca(y) = −1.

And in that case, we get Ca(y)ℓa(y)− Ca(x)ℓa(x) = −1. To summarize,

Ca(y)ℓa(y)− Ca(x)ℓa(x) =

{
0 if i < a or if ℓa(x) < 0, that is, Ca(x) = 0

−1 otherwise, that is, if i ≥ a and Ca(x) = −1

In other words,

Ca(y)ℓa(y) − Ca(x)ℓa(x) = Ci
a(x) (9)

Now suppose {a′, b′} are the odd-even index of y. The above discussion proves the claim when {a′, b′} =
{a, b}. Indeed, plugging (9) into (8), we get

h(y) − h(x) = (‖y‖1 − ‖x‖1)︸ ︷︷ ︸
=1

+Ci
a(x) + Ci

b(x)

A little more care is needed to take care of the case when {a′, b′} 6= {a, b}. Suppose a 6= a′. Then,

by Claim 1, we get that a′ < i ≤ a and ℓa′(y) = ℓa(y). Thus, Ca′(y)ℓa′(y)−Ca(x)ℓa(x) = Ca(y)ℓa(y)−
Ca(x)ℓa(x) and the proof follows as in the a′ = a case. The case b′ 6= b is similar.

Proof of Lemma 3. Let {a1, b1} be the odd-even index of x. Let {a2, b2} be the odd-even index of ≻y.

From the definition of the marginals, what we need to show is

Cj
a1(x) + C

j
b1
(x) ≥ Cj

a2(y) + C
j
b2
(y) (10)

We will show this term by term, and focus on a1, a2. For any 1 ≤ t ≤ r, observe that ℓt(y) ≥ ℓt(x), and

thus Ct(x) ≥ Ct(y). Thus if a1 = a2, we are done.

If a1 6= a2, then by Claim 1 a2 ≤ i < a1 and ℓa2(y) = ℓa1(y) ≥ ℓa1(x). This implies Ca1(x) ≥
Ca2(y). Since a2 < a1, we get that 1{j≥a2} ≥ 1{j≥a1}. Since C is non-positive, we get C

j
a1(x) =

1{j≥a1} · Ca1(x) ≥ 1{j≥a2} · Ca2(y) = C
j
a2(y).

Lemma 5. The function h∗ as defined in (6) is submodular

Proof. We recall the definition.

h∗(x) =

{
h(x) if xr ≤ n

2 − g
4

h(x↓)−
(
xr −

(
n
2 − g

4

))
otherwise

where,x↓ :=
(
x1, . . . ,xr−1,min(xr,

n

2
− g

4
)
)

Observe,

• If j 6= r, then ∂jh
∗(x) = ∂jh(x↓).

• If j = r, then ∂rh
∗(x) = −1 if xr ≥ n

2 − g
4 , else ∂rh

∗(x) = ∂rh(x).

Now pick x ∈ [n]r, y := x+ ei. Since x↓ is coordinate wise dominated by y↓, we get that if j 6= r,

∂jh
∗(x) = ∂jh(x↓) ≥︸︷︷︸

Lemma 3

∂jh(y↓) = ∂jh
∗(y)

If j = r, then either yr ≥ n
2 − g

4 and then ∂rh
∗(x) ≥ ∂rh

∗(y) since the RHS is −1 and the LHS is at least

that. Or, both xr,yr <
n
2 − g

4 , and thus ∂rh
∗(x) = ∂rh(x) ≥︸︷︷︸

Lemma 3

∂rh(y) = ∂rh
∗(y) .

12

3.4 Minimizers

Lemma 6. Suppose the parameters n, g and r chosen such that 5gr ≤ n. Let P = (P1, . . . , Pr) be any

partition with |Pi| = n for all i. Let fP be the partition submodular function induced by (P ;h) and

let f∗
P be the partition submodular function induced by (P ;h∗). Then, ∅ is the unique minimizer of fP

achieving the value 0, anda f∗
P (Pr) ≤ − g

2 .

aIn fact, one can show Pr is the unique minimizer of f∗

P , but that is not needed for the lower bound.

Proof. It is obvious that fP(∅) = f∗
P (∅) = h(0, 0, . . . , 0) = 0. Next, observe that

f∗
P (Pr) = h∗(0, 0, . . . , n) = h

(
0, 0, . . . , 0,

n

2
− g

4

)
−
(n
2
+

g

4

)

If we let z = (0, 0, . . . , 0, n2 − g
4), then just using h(z) ≤ ‖z‖1, we get f∗

P (Pr) ≤ − g
2 . Indeed, when r ≥ 3,

this is an equality since then ℓt(z) ≤ 0 for all t and h(z) = ‖z‖1.

Next, we establish that if 5gr ≤ n, then the minimum value fP takes is indeed 0. From Lemma 2, we

know that the maximal minimizer of h is a vector x∗ where x∗
i ∈ {0, n} for 1 ≤ i ≤ r. Now fix an arbitrary

x with xi ∈ {0, n} which is different from the all zeros vector. We claim that h(x) > 0, which would prove

the lemma. Let the number of i’s with xi = n among the coordinates {1, 2, . . . , r} be k ≥ 1.

Note that for any t ≤ r,

ℓt(x) =
∑

i≥t

(
xi −

(n
2
− g

))
− gr

4
≤ (k − t+ 1) ·

(n
2
+ g

)
− gr

4

Therefore, if {a, b} are the odd-even index of x, we get that these ℓt values are at most k ·
(
n
2 + g

)
− gr

4
and (k − 1) ·

(
n
2 + g

)
− gr

4 , respectively, since a and b are distinct (and occurs when a = 1 and b = 2).

Thus,

h∗(x) = h(x) > kn−max
(
0, k ·

(n
2
+ g

)
− gr

4

)
−max

(
0, (k − 1) ·

(n
2
+ g

)
− gr

4

)

If both the max terms in the expression for h turn out to be 0, then since k ≥ 1, we get h(x) > n. If only

one of them is 0, then we get h(x) > k
(
n
2 − g

)
+ gr

4 > 0. Otherwise, we get that

h∗(x) = h(x) > kn− (2k − 1) ·
(n
2
+ g

)
− gr

2
≥︸︷︷︸

using k ≤ r

n

2
− 5gr

2
+ g >︸︷︷︸

if 5gr≤n

0

3.5 Suffix Indistinguishability

We now establish the key property about h and h∗ which allows us to prove a polynomial lower bound on

the rounds of adaptivity. To do so, we need a definition.

Definition 2. For 1 ≤ i < r, a point x ∈ [n]r is called i-balanced if xi − g
8 ≤ xj ≤ xi +

g
8 for all j > i.

Suffix Indistinguishability asserts that two points x and x′ which are i-balanced, have the same norm,

and which agree on the first i coordinates have the same function value. More precisely,

13

Lemma 7 (Suffix Indistinguishability). Let i < r
2 . If x and x′ are two i-balanced points with xj = x′

j

for j ≤ i and ‖x‖1 = ‖x′‖1, then h∗(x) = h∗(x′) = h(x) = h(x′).

Proof. We first prove Suffix Indistinguishability for h, and then show that if i < r
2 , then h and h∗ take the

same value on i-balanced points, which implies Suffix Indistinguishability for h∗ as well (for i < r
2).

Claim 2. Let i ≤ r − 2. If x and x′ are two i-balanced points with xj = x′
j for j ≤ i and ‖x‖1 = ‖x′‖1,

then h(x) = h(x′).

Proof. First note that for any t ∈ {1, 2, . . . , i + 1}, ℓt(x) = ℓt(x
′); this follows from the fact that ‖x‖1 =

‖x′‖1 and that x and x′ agree on the first i-coordinates.

Case 1: xi = x′
i <

n
2 −

7g
8 . Since x and x′ are both i-balanced, we have xj ,x

′
j <

n
2 −

7g
8 + g

8 = n
2 −

3g
4 for all

j ≥ i. This, in turn, implies that for any t ≥ i, ℓt(x), ℓt(x
′) are both ≤ gr

4 − gr
4 = 0, since each summand in

the definition (4) contributes at most g
4 . So the largest odd (similarly, even) indexed ℓt(x) is either negative

in which case it contributes 0 to h(x), or t ∈ {1, . . . , i + 1} in which case it subtracts ℓt(x) = ℓt(x
′) from

‖x‖1 = ‖x′‖1. Furthermore, in the latter case, the same t is the maximize for x′ as well. Therefore, in either

case, h(x) = h(x′).
Case 2: xi = x′

i ≥ n
2 − 7g

8 . Since x and x′ are both i-balanced, we have xj ,x
′
j ≥ n

2 − g for all j ≥ i. Thus

each term in the summands of (4) is ≥ 0. This, in turn implies that both the odd and the even maximizers

of ℓt(x), ℓt(x
′), lie in {1, 2, . . . , i+ 1}. Since ℓt(x) = ℓt(x

′) for all such t’s and ‖x‖1 = ‖x′‖1, we get that

h(x) = h(x′).

Next, we prove that when i is bounded way from r, for any i-balanced vector x, we have h∗(x) = h(x).
This lemma is useful to prove the indistinguishability of h∗ and h.

Claim 3. If i < r
2 and x is i-balanced, then h∗(x) = h(x).

Proof. If xr ≤ n
2 − g

4 , we have h∗(x) = h(x) by definition. So we only need to consider the case when

xr ≥ n
2 − g

4 . Let k := xr −
(
n
2 − g

4

)
, by definition ‖x‖1 = ‖x↓‖1 + k and h∗(x) = h(x↓) − k. For any

1 ≤ t ≤ r, we have ℓt(x) = ℓt(x↓) + k, which means that the odd (respectively, even) index t with largest

ℓt(x) is the same for ℓt(x↓). That is the odd-even index {a, b} is the same for x and x↓.

Since x is i-balanced and xr ≥ n
2 −

g
4 , we have xi ≥ n

2 −
3g
8 , and thus, for any j ≥ i, xj ≥ n

2 −
g
2 . Thus,

all summands in (4) for j ≥ i give non-negative contribution. This means both a and b lie in {1, 2, . . . , i+1}.

On the other hand, both ℓi(x↓) and ℓi+1(x↓) are at least (r − i − 1)g2 − gr
4 ≥ 0 since i ≤ r

2 − 1. So both

ℓa(x↓) and ℓb(x↓) are at least 0, which implies that both ℓa(x) and ℓb(x) are at least k (we only need they

are ≥ 0). Therefore, we have

h∗(x) = h(x↓)− k =
(
‖x↓‖1 − ℓa(x↓)− ℓb(x↓)

)
− k = ‖x‖1 − ℓa(x) − ℓb(x) = h(x).

Claim 2 and Claim 3 implies the Suffix Indistinguishability property of h∗ and h.

4 Parallel SFM Lower bound : Proof of Theorem 1

We now prove lower bounds on the rounds-of-adaptivity for algorithms which make ≤ N c queries per round

for some 1 ≤ c ≤ N1−δ where δ > 0 is a constant. Let n be an even integer and g be an integer divisible by

4 such that 800
√
cn log n ≥ g ≥ 200

√
cn log n. Let r be the largest odd integer such that 5gr ≤ n. Finally,

14

let N = nr. Note that g = Θ(N1/3(c logN)2/3), r = Θ
(

N1/3

(c logN)1/3

)
, and n = Θ(N2/3(c logN)1/3).

Since c ≤ N1−δ, we get n > cN2δ/3 > c logN and thus g ≥ 200c log n.

Remark 1. It is perhaps worth reminding that we are allowing the algorithm to query NN1−δ
sets. A reader

may wonder with these many queries available won’t one be able to find the minimizer by brute force even

in a single round. In the “hard functions” we construct, the minimizer has n ≈ N1− δ
3 ≫ N1−δ elements.

And thus NN1−δ
queries would not be able to find the minimizer by enumeration over ≈ Nn sets.

Let P = (P1, . . . , Pr) be a random equipartition of a universe U of N elements into parts of size n.

Given a subset S, let the r-dimensional vector x defined as xi := |S ∩Pi| be the signature of S with respect

to P. We say a query S is i-balanced with respect to P if the associated signature x is i-balanced. We use

the following simple property of a random equipartition.

Lemma 8. For any integer i ∈ [1, . . . , (r − 1)], let P1, P2, ..., Pi−1 be a sequence of (i − 1) sets each of

size n such that for 1 ≤ j ≤ (i − 1), the set Pj is generated by choosing uniformly at random n elements

from U \ (P1 ∪ P2 ∪ ...Pj−1). Let S ⊂ U be any query that is chosen with possibly complete knowledge of

P1, P2, ..., Pi−1. Then if we extend P1, P2, ..., Pi−1 to a uniformly at random equipartition (P1, ..., Pr) of U ,

with probability at least 1−1/n2c+3, the query S is i-balanced with respect to the partition (P1, P2, ..., Pr);
here the probability is taken over the choice of Pi, Pi+1, ..., Pr .

Proof. Let V = U \ (P1 ∪ P2 ∪ ... ∪ Pi−1). For i ≤ j ≤ r, let Xj be the random variable whose value

equals |S ∩ Pj |, and let µ = E[Xj] = |S ∩ V |/(r − i+ 1) ≤ n. To prove the assertion of the lemma, it is

sufficient to show that with probability at least 1− 1/n2c+3, we have |Xj − µ| ≤ g/16 for any j.

Note that each Xj is a sum of |V | negatively correlated 0/1 random variables. By Chernoff bound for

negatively correlated random variables [DR98, IK10], the probability that Xj deviates from its expectation

µ by more than g/16 is at most 2e
max{− (g/16)2

3µ
,−(g/16)} ≤ 2e−10c logn ≤ 1/n2c+4. By taking a union bound

over all i ≤ j ≤ r, with probability at least 1− 1/n2c+3, we have |Xj − µ| ≤ g/16 for all such j.

To prove Theorem 1, we use Yao’s minimax lemma. The distribution over hard functions is as follows.

First, we sample a random equipartition P of the U into r parts each of size n. Given P and a subset

S, let fP(S) := h(x) and f∗
P(S) := h∗(x), where x is the signature of S with respect to P. Select one

of fP and f∗
P uniformly at random. This fixes the distribution over the functions, and this distribution is

offered to a deterministic algorithm. We now prove that any s-round deterministic algorithm with s < r
2

fails to return the correct answer with probability > 1/3, and this would prove Theorem 1. In fact, we

prove that with probability ≥ 1− 1/n, over the random equipartition P, the deterministic algorithm cannot

distinguish between fP and f∗
P , that is, the answers to all the queries made by the algorithm is the same on

both functions. This means that the deterministic algorithm errs with probability ≥ 1
2 · (1− 1

n) >
1
3 .

An s-round deterministic algorithm performs a collection of queries Q(ℓ) at every round 1 ≤ ℓ ≤ s with

|Q(ℓ)| ≤ N c ≤ n2c. Let Ans(ℓ) denote the answers to the queries in Q(ℓ). The subsets queried in Q(ℓ) is a

deterministic function of the answers given in Ans(1), . . . ,Ans(ℓ−1). After receiving the answers to the sth

round of queries, that is Ans(s), the algorithm must return the minimizing set S. We now prove that when P
is a random equipartition of U , then with probability 1 − 1

n , the answers Ans(ℓ) given to Q(ℓ) are the same

for fP and f∗
P , if s < r

2 .

We view the process of generating the random equipartition as a game between an adversary and the

algorithm where the adversary reveals the parts one-by-one. Specifically, the process of generating the

random equipartition will be such that at the start of any round ℓ ∈ [1, . . . , s], the adversary has only chosen

15

and revealed to the algorithm the parts P1, P2, ..., Pℓ−1, and at this stage, Pℓ, Pℓ+1, ..., Pr are equally likely

to be any equipartition of U \ (P1 ∪ P2 ∪ ... ∪ Pℓ−1) into (r − ℓ + 1) parts. By the end of round ℓ, the

adversary has committed and revealed to the algorithm the part Pℓ, and the game continues with one caveat.

In each round, there will be a small probability (at most 1/n2) with which the adversary may “fail”. This

occurs at a round ℓ if any query made by the algorithm on or before round ℓ turns out to be not ℓ-balanced

with respect to the sampled partition at round ℓ. In that case, the adversary reveals all remaining parts to

the algorithm (consistent with the answers given thus far), and the game terminates in the current round

ℓ itself with the algorithm winning the game (that is, the algorithm can distinguish between fP and f∗
P).

The probability of this failure event can be bound by s/n2 ≤ 1/n, summed over all rounds. In absence of

this failure event, by Lemma 7, we know that the answers will be the same for fP and f∗
P at the end of the

algorithm, concluding the proof. We now formally describe this process.

At the start of round 1, the adversary samples a uniformly at random equipartition of U , say, Γ(1) =

(P
(1)
1 , P

(1)
2 , ..., P

(1)
r). The algorithm reveals its set of queries for round 1, namely, Q(1). The adversary

answers all queries in Q(1) in accordance with the partition Γ(1). By Lemma 8, since |Q(1)| ≤ n2c, every

query in Q(1) is 1-balanced with respect to the partition Γ(1), with probability at least 1 − 1/n3. If this

event occurs, the adversary reveals P
(1)
1 to the algorithm, and continues to the next round. Otherwise, the

adversary reveals the entire partition Γ(1) to the algorithm and the game terminates.

At the start of round 2, the adversary samples another uniformly at random equipartition of U , say,

Γ(2) = (P
(2)
1 , P

(2)
2 , ..., P

(2)
r) subject to the constraint P

(2)
1 = P

(1)
1 . Note that Γ(2) is a uniformly at random

equipartition of U since P
(1)
1 was chosen uniformly at random. The algorithm reveals its set of queries for

round 2, namely, Q(2). Again by Lemma 8, we have that (i) every query in Q(1) is 1-balanced with respect to

the partition Γ(2), with probability at least 1− 1/n3, and (ii) every query in Q(2) is 2-balanced with respect

to the partition Γ(2), with probability at least 1−1/n3. If this event occurs, the adversary answers all queries

in Q(2) in accordance with the partition Γ(2), and the game proceeds to the next round. The key insight here

is that by Lemma 7, if a query S ∈ Q(i) is i-balanced w.r.t. some partition (P1, ..., Pr), then the function

value on the query S is completely determined by P1, P2, ..., Pi and |S|, and does not require knowledge of

Pi+1, ..., Pr . Furthermore, the value of fP(S) and f∗
P(S) are the same. In other words, the function value on

query S remains unchanged, for both f and f∗, if we replace P := (P1, ..., Pi, Pi+1, ..., Pr) with any other

partition P ′ := (P1, ..., Pi, P
′
i+1, .., P

′
r) such that S remains i-balanced with respect to P ′. So answers to all

queries in Q(1) are the same under both partitions Γ(1) and Γ(2). On the other hand, if either (i) or (ii) above

does not occur, the adversary terminates the game and reveals the entire partition Γ(1) to the algorithm.

In general, if the game has successfully reached round ℓ ≤ s, then at the start of round ℓ, the adversary

samples a uniformly at random equipartition of U , say, Γ(ℓ) = (P
(ℓ)
1 , P

(ℓ)
2 , ..., P

(ℓ)
r) subject to the constraints

P
(ℓ)
1 = P

(1)
1 , P

(ℓ)
2 = P

(2)
2 , ..., P

(ℓ)
ℓ−1 = P

(ℓ−1)
ℓ−1 . Once again, note that Γ(ℓ) is a uniformly at random equipar-

tition of U since P
(1)
1 was chosen uniformly at random, P

(2)
2 was chosen uniformly at random having fixed

P
(1)
1 , and so on. The algorithm now reveals its set of queries for round ℓ, namely, Q(ℓ). By Lemma 8, we

have that for any fixed i ∈ [1, . . . , ℓ], all queries in Q(i) are i-balanced with respect to the partition Γ(ℓ)

with probability at least 1− 1/n3 each. Thus with probability at least 1− ℓ/n3, for every i ∈ [1, . . . , ℓ], all

queries in Q(i) are i-balanced with respect to the partition Γ(ℓ). If this event occurs, the adversary answers

all queries in Q(ℓ) with respect to the partition Γ(ℓ), and once again, by Lemma 7, answers to all queries

in Q(1),Q(2), ...,Q(ℓ−1) remain unchanged if we answer them using the partition Γ(ℓ). The game then con-

tinues to the next round. Otherwise, with probability at most ℓ/n3 ≤ 1/n2, the game terminates and the

adversary reveals the entire partition Γ(ℓ−1) to the algorithm.

Summing up over all rounds 1 through s ≤ r
2 − 1, the probability that the game reaches round s is at

16

least 1 − s/n2 ≥ 1 − 1/n. This, in turn, implies that with probability ≥ 1 − 1
n , the random equipartition

P satisfies the following property : all the queries in Q(i) are i-balanced with respect to P for all i ∈ [1..s].
Now, since s ≤ r

2 , by Claim 3 we get that the answers Ans(1), . . . ,Ans(s) given to these queries are the same

for fP and f∗
P . Hence the algorithm cannot distinguish between these two cases. This completes the proof

of Theorem 1.

4.1 Modification to boost gap : Ω(1/ε)-lower bound for ε-approximate SFM

An inspection of the proof of Theorem 1 shows us that the minimum values of fP and f∗
P are 0 and − g

2

for all P’s (by Lemma 6). That is, any polynomial query algorithm making fewer than Ω̃(N1/3) rounds

of adaptivity cannot distinguish between the case when the minimum value is 0 and minimum value is

−g/2. Since g = Θ(N1/3(c logN)2/3), we also rule out additive O(N1/3)-approximations for submodular

functions whose range is {−N,−N + 1, . . . , N}. Scaling such that the range is [−1,+1], we in fact obtain

an Ω̃(1/
√
ε)-dept lower bound to obtain ε-additive approximation algorithms.

In this section we show how a small modification leads to indistinguishability between functions with

minimum value 0 and those with minimum value −Θ(N2/3) thus proving an Ω̃(1ε) lower bound on the depth

required for polynomial query ε-additive approximation algorithms for SFM.

The difference is in the definition of h∗; we redefine it such that the minimizer is not just Pr (or rather

(0, 0, . . . , 0, n)) but P 2r
3
∪P 2r

3
+1∪· · ·∪Pr, and the minimum value becomes − gr

6 = −Θ(N2/3). However,

it still remains indistinguishable from h if the number of rounds is < r/2, and thus the proof of Theorem 1

carries word-to-word.

Define x↓ :=
(
x1, . . . ,x 2r

3
−1,min(x 2r

3
, n2 − g

4),min(x 2r
3
+1,

n
2 − g

4) . . . ,min(xr,
n
2 − g

4)
)

. Then,

h∗∗(x) = h(x↓)−
r∑

i= 2r
3

max
(
0,xi −

(n
2
− g

4

))
(11)

Below we note the relevant changes. Let f∗∗
P be the partition submodular function induced by a partition

P = (P1, . . . , Pr) with |Pi| = n, and h∗∗.

• The proof of Lemma 5 generalizes to prove h∗∗ is partition submodular. The two cases are j < 2r
3

and j ≥ 2r
3 . In the former case, ∂jh

∗∗(x) = ∂jh(x↓) and ∂jh
∗∗(y) = ∂jh(y↓), and submodularity

follows from submodularity of h. If j ≥ 2r
3 and yj ≥ n

2 − g
4 , then ∂jh

∗∗(y) = −1 which implies it’s

≤ ∂jh
∗∗(x). Otherwise, both xj ,yj <

n
2 − g

4 , and then submodularity again follows from that of h.

• In Lemma 6, we can now assert f∗∗
P (P 2r

3
∪ · · · ∪ Pr) = − g

2 · r
3 = − gr

6 .

• We assert that Lemma 7 still holds. To see this, note that the only changes are in the proof of Claim 3

(not the statement), and we sketch this below. Let k :=
∑r

i= 2r
3
max

(
0,x 2r

3
−

(
n
2 − g

4

))
; we (still)

have ‖x‖1 = ‖x↓‖1 + k and h∗∗(x) = h(x↓) − k. Furthermore, for any 1 ≤ t ≤ 2r
3 , we have

ℓt(x) = ℓt(x↓) + k, and so if the odd-even index {a, b} of x is in {1, . . . , 2r3 }, then {a, b} is also the

odd-even index for x↓.

Now, if xt ≤ n
2 − g

4 for all 2r
3 ≤ t ≤ r, then x↓ = x and k = 0 and h∗∗(x) = h(x). So, we may

assume that some xt >
n
2 − g

4 . And since x is i-balanced (for i < t), we get (just as in the previous

proof) xj ≥ n
2 − g

2 for all j ≥ i. And thus, the odd-even index {a, b} of x lies in {1, 2, . . . , i + 1}.

The rest of the proof now proceeds exactly as in Claim 3.

17

5 Suffix Functions, Nested Matroids, and Parallel Matroid Intersection

In this section we explain how our suffix functions, and as a result our partition submodular functions, arise

in the context of matroid intersection. This is then used to prove Theorem 2 which states that any efficient

matroid intersection algorithm, even with access to rank functions to the two matroids, must proceed in

polynomially many rounds.

Matroids. A matroid M = (U,I) is a set-system over a universe U satisfying the following two axioms

• I ∈ I and J ⊆ I implies J ∈ I .

• For any I, J ∈ I with |I| < |J |, there exists x ∈ J \ I such that I + x ∈ I .

The sets in I are called independent sets of the matroid. A maximal independent set is called a base. It is

well-known that all bases have the same cardinality. There are two usual oracles to access matroids. The

first is the independence oracle which given a subset S ⊆ U returns whether S is independent or not. The

second stronger oracle, and we assume an algorithm has access to this, is the rank oracle which given a

subset S returns rkM(S) which is the cardinality of the largest independent subset of S. It is well known

that rk(S) is a submodular function whose marginals are in {0,+1}.

Nested Matroids. Let C = {U = C1 ⊇ C2 ⊇ · · · ⊇ Cr} be a collection of nested subsets of the universe

U . Let each set Ci have an associated non-negative integer capacity capi. Let ~cap = (cap1, . . . , capr) be

the capacity vector. Then (C, ~cap) defines the following set family which is a matroid. Such matroids are

called nested matroids (see, for example, [FO17]) and are a special class of laminar matroids.

MC := {I ⊆ U : |I ∩ Ct| ≤ capt, 1 ≤ t ≤ r} (Nested Matroids)

Given the nested family C, there is an obvious associated partition P := (P1, P2, . . . , Pr) of the universe

U defined as Pr := Cr, the minimal subset in C, and Pj := Cj \ Cj+1 for all 1 ≤ j < r. Similarly, we

define “thresholds” for each part of the partition P as τr := capr, and τj := capj − capj+1. We use ~τ to

denote the threshold vector (τ1, . . . , τr).
Observe that these definitions are interchangeable : given (P, ~τ) one gets the nested matroid defined by

(C, ~cap), where Cj =
⋃

t≥j Pt for all 1 ≤ j ≤ r, and capj =
∑

t≥j τt.

Rank of a Nested Matroid. Given a nested matroid M, let P = (P1, . . . , Pr) be the associated partition

with thresholds τ1 to τr. For simplicity, let us assume |Pi| = n for all 1 ≤ i ≤ r. Given a subset S ⊆ U , let

x ∈ Z
r
≥0 be the signature of S where xi := |Pi ∩ S|. Define

for any 1 ≤ t ≤ r, ℓt(x) :=
r∑

s=t

(xs − τs) (12)

Note that a set S is independent if and only if ℓt(x) ≤ 0 for all 1 ≤ t ≤ r. Also note the connection with (4)

when we set τ1 = · · · = τr−1 =
(
n
2 − g

)
and τr =

(
n
2 − g

)
+ gr

4 . The next lemma shows how these

functions define the rank of a nested matroid.

Lemma 9 (Rank of a Nested Matroid).

Let M be a nested matroid defined by (P = (P1, . . . , Pr);~τ = (τ1, . . . , τr)) where τi ≥ 0 for all i.

18

Given any subset S ⊆ U with signature x, the rank of S is

rkM(S) = ‖x‖1 −max

(
0, max

1≤a≤r
ℓa(x)

)

where ℓt(x) is as defined in (12).

Proof. The rank rkM(S), which we also denote as rkM(x), is the cardinality of the largest independent

subset of S. This value can be found by the following linear program, which is integral because the constraint

matrix is totally unimodular.

rk(x) := max

r∑

i=1

yi

yi ≤ xi, ∀i ∈ [r]
∑

i≥t

yi ≤
∑

i≥t

τi, ∀t ∈ [r]

=︸︷︷︸
Duality

min

r∑

i=1

ηixi +

r∑

t=1

zt ·



∑

i≥t

τi




∑

t≤i

zt + ηi = 1, ∀i ∈ [r]

z, η ≥ 0
We do not impose non-negativity constraints on the yi variables in the primal because the maximizing

solution will indeed have non-negative yi’s. To see this, suppose yj < 0 and let t ≤ j be the largest

index such that
∑

i≥t yi =
∑

i≥t τi. That is, the largest indexed constraint, among the ones containing yj ,

which is tight. There must be such a t for otherwise we could increase the objective by incrementing yj .

Furthermore, yt > 0 for otherwise
∑

i≥t+1 yi =
∑

i≥t+1 τi and our t won’t be largest; this argument uses

τt ≥ 0. Now, increasing yj and decreasing yt by the same amount gives a feasible solution with the same

optimum, and continuing the above procedure, we will get to a non-negative y.

We can massage the dual as follows. Let pref i(z) :=
∑

t≤i zt. Thus, we can rewrite ηi = 1− pref i(z),
and since ηi ≥ 0, we get all pref i(z)’s, and in particular which is equivalent to, by the non-negativity of z,

the constraint ‖z‖1 ≤ 1. Therefore, we can eliminate η’s and get

rk(x) = min
z:‖z‖1≤1

r∑

i=1

xi · (1− pref i(z)) +

r∑

t=1

zt



∑

i≥t

τi




Next, using the observation that
∑r

t=1 zt

(∑
i≥t τi

)
=

∑r
i=1 pref i(z) · τi, we can further simplify to get

rk(x) = min
z:‖z‖1≤1

r∑

i=1

xi −
r∑

i=1

pref i(z) · (xi − τi) = ‖x‖1 − max
z:‖z‖1≤1

r∑

t=1

zt



∑

i≥t

(xi − τi)




︸ ︷︷ ︸
ℓt(x)

The last summand maxz:‖z‖1≤1

∑r
t=1 ztℓt(x) is 0 if all ℓt(x) ≤ 0 (by setting z ≡ 0), and otherwise, it is

max1≤a≤t ℓa(x). This completes the proof.

The reader should notice the similarity with (5). We will now make the connection more precise. Before

doing so, we need another well known definition.

19

Duals of Matroids. Given a matroid M, the dual matroid M∗ is defined as follows

I∗ := {S ⊆ U : U \ S contains a base of M}

It is not too hard to check this is a matroid. The rank of any set in the dual matroid can be computed using

the rank of the original matroid as follows.

Lemma 10 (e.g., Theorem 39.3 in [Sch03]). Let M be a matroid with rank function rk. Let M∗ be its dual

with corresponding rank function rk∗. Then,

∀S ⊆ U : rk∗(S) = rk(U \ S) + |S| − rk(U)

It is not too hard to see that the dual of a nested matroid is another nested matroid whose nesting is from

the “other end”. More formally, one can prove the following.

Lemma 11. Let M be a nested matroid defined by the partition P = (P1, . . . , Pr) and thresholds ~τ :=
(τ1, . . . , τr). Then, M∗ is another nested matroid defined by the reverse partition P ′ = (Pr, Pr−1,. . . ,P2, P1)
and thresholds ~τ ′ := (nr − τr, nr−1 − τr−1, . . . , n1 − τ1), where ni := |Pi|.

Proof. Let S be a subset with signature x with respect to the original partition P. S is independent in M∗ if

and only if U \ S contains a base of M. Equivalently, rkM(U \ S) = rkM(U). Now, the latter is precisely

‖n‖1− ℓ1(n) where n = (n1, n2, . . . , nr) is the signature of the universe U . Let z be the signature of U \S;

note that zi = ni − xi. Thus, we get that S is independent in M∗ if and only if

‖z‖1 −max(0, max
1≤a≤r

ℓa(z)) = ‖n‖1 − ℓ1(n) ⇒︸︷︷︸
Rearranging

ℓ1(z) = max(0, max
1≤a≤r

ℓa(z))

ℓ1(z) is largest suffix if and only if all the (r − 1) prefix-sums are non-negative, and ℓ1(z) ≥ 0 implies all

prefix-sums are non-negative. Thus, we get

∀1 ≤ j ≤ r,
∑

j≤t

(zj − τj) ≥ 0 ≡ ∀1 ≤ j ≤ r,
∑

j≤t

(xj − (nj − τj)) ≤ 0

which is precisely the signature of an independent set in the nested matroid defined by (P ′, ~τ ′).

The Hard Matroid Intersection Set-up. Let r = 2k + 1 be an odd number. Let P = (P1, . . . , Pr) be a

partition with |Pi| = n. Each part will be associated with a parameter τi. These will be set to τ1 = · · · =
τr−1 =

(
n
2 − g

)
and τr =

(
n
2 − g

)
+ gr

4 , where g, gr4 are as described in Section 4.

We define three coarsenings of this partition. The first is the odd coarsening containing (k + 1) parts

defined as follows.

Podd := (P1 ∪ P2, P3 ∪ P4, . . . , Pr−2 ∪ Pr−1, Pr)

and the associated τ -values are, as expected, the sum of the relevant τj’s. More precisely, they are ~τodd :=
(τ1 + τ2, τ3 + τ4, . . . , τr−2 + τr−1, τr). Let Modd be the nested matroid defined by (Podd, ~τodd). The rank

of Modd is given by Lemma 9 as follows; we only consider the odd indices since r is odd.

Claim 4. Let S ⊆ U . Let x be the signature of S with respect to the (2k + 1)-part partition P. Then,

rkModd
(x) := rkModd

(S) = ‖x‖1 −max

(
0, max

1≤a≤r, a odd
ℓa(x)

)

20

The second coarsening is the even coarsening containing (k + 1)-parts defined as

Peven := (P1, P2 ∪ P3, P4 ∪ P5, . . . , Pr−1 ∪ Pr)

The associated τ -values are slightly different in that the first part is effectively “ignored”. The vector of τ ’s

are ~τeven := (n, τ2 + τ3, τ4 + τ5, . . . , τr−1 + τr). Let Meven be the corresponding nested matroid defined

by (Peven, ~τeven). Note that any base of Meven must contain the whole set P1. Again using Lemma 9, the

rank of this matroid is given as follows.

Claim 5. Let S ⊆ U . Let x be the signature of S with respect to the (2k + 1)-part partition P. Then,

rkMeven
(x) := rkMeven

(S) = ‖x‖1 −max

(
0, max

1≤a≤r, a even
ℓa(x)

)

The reason the first part does not count is because (x1 − n) is ≤ 0, and this cannot be the maximizer

when we apply Lemma 9. And otherwise, it corresponds to an even index in the original partition.

Finally, the third coarsening is a refinement of Peven where the last part Pr−1 ∪ Pr is divided into two.

That is,

P ′
even := (P1, P2 ∪ P3, P4 ∪ P5, . . . , Pr−1, Pr)

The associated τ vector is ~τ ′even := (n, τ2 + τ3, τ4 + τ5, . . . , τr−1 + τr − θ, θ) for some parameter θ, which

is set to
(
n
2 − g

4

)
. Let M′

even be the nested matroid defined by (P ′
even, ~τ

′
even).

Claim 6. Let S ⊆ U . Let x be the signature of S with respect to the (2k + 1)-part partition P. Then,

rkM′

even
(x) := rkM′

even
(S) = rkMeven

(x↓)

where, x↓ = (x1, . . . ,xr−1,min(xr, θ)).

Proof. First observe that for any t, ℓt(x) = ℓt(x↓) + max(0, (xr − θ)). Therefore, for any x, the t maxi-

mizing ℓt(x) also is the one maximizing ℓt(x↓).
When computing rkM′

even
(x) as ‖x‖ − max(0,maxa ℓa(x)), the maximization over a is over all even

indices and also r. This leads to two cases.

Case 1: This maximizer is at a = r, that is, rkM′

even
(x) = ‖x‖1 − max(0,xr − θ). In that case, we

have ℓa(x) ≤ (xr − θ) for all other a’s. Which implies ℓa(x↓) ≤ 0. Therefore, rkMeven
(x↓) = ‖x↓‖1 =

‖x‖1 −max(0,xr − θ) = rkM′

even
(x).

Case 2: This maximizer at a 6= r, that is, rkM′

even
(x) = ‖x‖1 − max(0, ℓa(x)) for some even a. Note

that this a is also the maximizer when computing rkMeven
(x↓). Therefore,

rkMeven
(x↓) = ‖x↓‖1 −max(0, ℓa(x↓)) = ‖x↓‖1 −max(0, ℓa(x)−max(0, (xr − θ)︸ ︷︷ ︸

ℓr(x)

))

If xr ≤ θ, we get rkMeven
(x↓) = ‖x↓‖1−max(0, ℓa(x)) = ‖x‖1−max(0, ℓa(x)) = rkM′

even
(x), where

the second equality follows because x↓ = x when xr ≤ θ.

If xr > θ, then rkMeven
(x↓) = ‖x↓‖1 − (ℓa(x)− (xr − θ)) since ℓa(x) ≥ ℓr(x) ≥ 0 as a is the

maximizer. Now observe that ‖x↓‖1 = ‖x‖1 − (xr − θ), and so rkMeven
(x↓) = ‖x‖ − ℓa(x) = rkM′

even
(x).

Claim 7. rkMeven
(U) = rkM′

even
(U).

21

Proof. Let n be the (n, n, . . . , n) vector. rkMeven
(U) = ‖n‖1−ℓ2(n), and rkM′

even
(U) = rkMeven

(n↓). This,

in turn, is ‖n↓‖1 − ℓ2(n↓) = (‖n‖ − (n− θ))− (ℓ2(n)− (n− θ)) = ‖n‖1 − ℓ2(n).

The following lemma connects matroid intersection with submodular function minimization for the

functions described in Section 3.

Lemma 12. The size of the largest cardinality independent set in Modd ∩ M∗
even is precisely C +

minS⊆U f(S) where C = |U | − rkMeven
(U) and f(S) = h(x) with

h(x) = ‖x‖1 −max

(
0, max

1≤a≤r, a odd
ℓa(x)

)
−max

(
0, max

1≤a≤r, a even
ℓa(x)

)

and the size of the largest cardinality independent set in Modd∩(M′
even)

∗ is precisely C+minS⊆U f∗(S)
where C = |U | − rkM′

even
(U) = |U | − rkMeven

(U) and f∗(S) = h∗(x) with

h∗(x) =

{
h(x) if xr ≤ θ

h(x↓)− (xr − θ) otherwise
where,x↓ := (x1, . . . ,xr−1,min(xr, θ))

Proof. From Edmond’s theorem [Edm70], we know that for any two matroids M1 and M2, one has

max
I∈M1∩M2

|I| = min
S⊆U

(rkM1(S) + rkM2(U \ S))

Fix a set S with signature x with respect to the (2k+1)-part partition P. By Claim 4, we have rkModd
(S) =

rkModd
(x) = ‖x‖1−max (0,max1≤a≤r, a odd ℓa(x)). By Lemma 10, we have rkM∗

even
(U\S) = rkMeven

(S)+
|U | − rkMeven

(U) − |S| = rkMeven
(x) + C − ‖x‖1. By Claim 5, we have rkMeven

(S) = rkMeven
(x) =

‖x‖1 −max (0,max1≤a≤r, a even ℓa(x)). And thus,

rkModd
(S) + rkM∗

even
(U \ S) = C + h(x)

Similarly, by Lemma 10, we have rk(M′

even)
∗(U \S) = rkM′

even
(S)+ |U |− rkMeven

(U)−|S| = rkM′

even
(x)+

C − ‖x‖1. By Claim 6, the RHS equals rkMeven
(x↓) + C − ‖x‖1. And so,

rkModd
(S)+rk(M′

even)
∗(U \S) = C+‖x↓‖1−max

(
0, max

1≤a≤r, a odd
ℓa(x)

)
−max

(
0, max

1≤a≤r, a even
ℓa(x↓)

)

When xr ≤ θ, the RHS is C + h(x). When xr > θ, we have ℓt(x) = ℓt(x↓) + (xr − θ) for all t, and as

before, one can argue that max (0,max1≤a≤r, a odd ℓa(x)) = max (0,max1≤a≤r, a odd ℓa(x↓)) + (xr − θ).
Which implies the RHS is C + h(x↓)− (xr − θ). In sum, the RHS is C + h∗(x).

An Illustration. It is perhaps instructive to illustrate the difference in the two situations described in

Lemma 12 with a concrete example which directly describes why the largest cardinality common indepen-

dent sets are different in the two different cases. Take r = 3. Fix a partition (P1, P2, P3) with each part

having n elements each, and the size of the universe is 3n. The τ values are (n2 − g, n2 − g, n2 − 0.25g).
Let us understand what Modd is in this case. This is generated by (P1∪P2, P3) and the threshold vector

(n − 2g, n2 − 0.25g). So, a subset I is independent in Modd iff (a) it contains ≤ n
2 − 0.25g elements from

P3, and (b) ≤ 3n
2 − 2.25g elements overall.

Similarly, the matroid Meven is generated by (P1, P2∪P3) with the threshold vector (n, n−1.25g). We

are interested in its dual, which is also a nested matroid which, by Lemma 11 is generated by the partition

22

(P2 ∪ P3, P1) with thresholds (n+ 1.25g, 0). That is, a subset I is independent in M∗
even iff (a) it contains

0 elements from P1, and (b) ≤ n+ 1.25g elements overall.

Notice that any set I∗ which contains n
2 − 0.25g elements from P3, n

2 + 1.5g elements from P2, and 0
elements from P1 is a base of Meven which is independent in Modd. All that is needed is that 1.5g ≤ n

2 so

that there are enough items in P2 to pick from.

Finally, let us consider the matroid (M′
even) and its dual. The former is a nested matroid generated by

(P1, P2, P3) with thresholds (n, n2 − g, n2 − 0.25g). Which, in turn, implies that its dual is a nested matroid

generated by (P3, P2, P1) with thresholds (n2 + 0.25g, n2 + g, 0). That is, an independent set cannot contain

more than n
2 + g elements from P2, thus ruling out the I∗ described in the previous paragraph. Indeed,

since Modd forces at most n
2 − 0.25g elements from P3, the largest common independent set in Modd and

(M′
even)

∗ is at most of size n + 0.75g elements. Which is exactly −g/2 less, as predicted by Lemma 12

and Lemma 6. Note, however, that the size of the largest independent set in (M′
even)

∗ is the same as that

in M∗
even, that is n + 2.75g; that set picks more elements from P3. It is the intersection with Modd which

prevents picking such a base of (M′
even)

∗.

Proof of Theorem 2. To complete the proof of Theorem 2, we need one more thing. In SFM, we have

access to evaluation oracle for the function. In particular, if x is the signature of a set S with respect to a

partition, then we have access to h(x). In the matroid intersection problem, we have access to the individual

ranks of each matroid. Therefore, we need to establish suffix-indistinguishability for each of the individual

ranks. Since the rank of the dual matroid can be simulated by the rank of the original matroid, the suffix

indistinguishability of both matroids is established by the following lemma whose proof is very similar to

that of Lemma 7.

Lemma 13. A signature x (with respect to the original (2k + 1)-part partition) is i-balanced if xi − g
8 ≤

xj ≤ xi +
g
8 . Let i < r

2 . If x and x′ are two i-balanced points with xj = x′
j for j ≤ i and ‖x‖1 = ‖x′‖1,

then (a) rkModd
(x) = rkModd

(x′), and (b) rkMeven
(x) = rkMeven

(x′) = rkM′

even
(x) = rkM′

even
(x′)

Proof. As in the proof of Lemma 7, we proceed in two claims. First, we claim that for any i ≤ r−2, if x and

x′ are i-balanced, then rkMeven
(x) = rkMeven

(x′). If xi = x′
i <

n
2 − 7g

8 , then just as in Claim 2, all xj ,x
′
j ,

for j ≥ i, are ≤ n
2 − 3g

4 , implying that the even-index with the largest ℓt(·) must lie in {1, 2, . . . , i + 1}.

And this, due to the premise of the lemma, implies (using Claim 5) rkMeven
(x) = rkMeven

(x′). A similar

argument using odd-index and Claim 4 proves part (a).

The proof of the second and third equality in part(b) follows as in Claim 3. We have θ = n
2 − g

4 . If

xr ≤ θ, then the two ranks are the same by Claim 6. If xr > θ, then since x is i-balanced, all xj ≥ n
2 − g

2
for j ≥ i. This means the even index with the largest ℓt(x) lies in {1, . . . , i+1}. And since i ≤ r/2, which

implies that both ℓi(x↓) and ℓi+1(x↓) (we look at both for we don’t know which is even, but one of them is)

are ≥ 0. Therefore, rkMeven
(x) = ‖x‖1− ℓa(x) for some even a ≤ i+1, and rkM′

even
(x) = ‖x↓‖1− ℓa(x↓)

for the same a. Since a ≤ i+1, we get that ‖x↓‖1 = ‖x‖1−k and ℓa(x↓) = ℓa(x)−k, where k = xr−θ. In

sum, we get rkMeven
(x) = rkM′

even
(x), and this, together with the previous paragraph, implies part (b).

The proof of Theorem 2 then follows almost word-to-word as the proof of Theorem 1. The hard dis-

tributions over the pairs of matroids are as follows. First one samples a random equipartition P of U into

(2k + 1) parts. Given P , the “odd” matroid Modd is one nested matroid. The other nested matroid is either

M∗
even or (M′

even)
∗. Note that by Lemma 11, these duals are also nested matroids. We give the algorithm

rank-oracle access to these two matroids. As in the proof of Theorem 1, armed with Lemma 13, one can

show that for any s-round deterministic algorithm for s ≤ r
2 − 1, with probability ≥ 1 − 1

n , the answers

given in the case of (Modd,M∗
even) and the answers given in the case of (Modd, (M′

even)
∗) are exactly the

23

same. Since the sizes of the largest common independent sets in both cases are different, one gets the proof

of Theorem 2.

6 Concluding Remarks

The main finding of this paper is that submodular function minimization and matroid intersection, two

fundamental discrete optimization problems which have efficient algorithms, are not highly parallelizable

in the oracle model. More precisely, if the access to the submodular function is via an evaluation oracle, or

if the access to the matroids is via rank oracles, then any, possibly randomized, algorithm making at most

poly(N) queries to these oracles must proceed in Ω̃(N1/3) rounds, where N is the number of elements in

the universe the functions/matroids are defined on. It is an interesting question if the lower bound can be

improved to Ω̃(N), or if there can be o(N)-round poly(N) query algorithms for either of these problems.

As remarked in Section 2, our constructions have a bottleneck at N1/3, and a new idea is needed if one

wants to prove better lower bounds.

Figuring out what the query complexity of SFM and matroid intersection, regardless of adaptivity, is an

intriguing question. Currently, the best known upper bounds on the query complexity for SFM is Õ(N2)
[Jia21]. For matroid intersection, the best known upper bounds using rank-oracles is Õ(N1.5) [CLS+19]

and with independence oracles it is Õ(N9/5) [BvdBMN21]. For both SFM and matroid intersection, even

with independence oracles, the best known lower bounds [GPRW20, Har10] are only linear in N . At this

juncture we mention that the submodular functions we construct in this paper can indeed be minimized

in O(N) queries. The main idea is that in the ith round one can find O(g) elements from the ith part

making only O(gr) queries, and once these O(g) elements are known, one can repeat the same for the next

round. This gives an O(gr2) = O(N) query algorithm. Similar ideas also give Õ(N)-independence query

algorithms for the matroid intersection problem, for the matroids we consider. One would need more ideas

to obtain a super-linear lower bound.

We believe that partition submodular functions deserve further study in their own right. When r = N
they encompass every submodular function, and at the other extreme when r = 1, they contain the functions

which are concave functions of the cardinality. In this sense, the number of parts r behaves as a measure of

complexity of such functions. Can r-partition submodular functions be minimized in O(N + poly(r)) or

O(N · poly(r)) queries? Can partition submodular functions be minimized in poly(r) rounds, independent

of N? We believe these questions are worthy of study.

References

[ACK19] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Polynomial pass lower bounds for graph

streaming algorithms. In Proc., ACM Symposium on Theory of Computing (STOC), pages

265–276, 2019. 4

[AD71] Martin Aigner and Thomas A Dowling. Matching theory for combinatorial geometries.

Trans. Amer. Math. Soc., 158(1):231–245, 1971. 2

[ALS20] Brian Axelrod, Yang P. Liu, and Aaron Sidford. Near-optimal approximate discrete and

continuous submodular function minimization. In Proc., ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 837–853, 2020. 1

24

[BFNS15] Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. A tight linear

time (1/2)-approximation for unconstrained submodular maximization. SIAM Journal on

Computing (SICOMP), 44(5):1384–1402, 2015. 3

[BJL+19] Sébastien Bubeck, Qijia Jiang, Yin-Tat Lee, Yuanzhi Li, and Aaron Sidford. Complexity of

highly parallel non-smooth convex optimization. In Adv. in Neu. Inf. Proc. Sys. (NeurIPS),

pages 13900–13909, 2019. 4

[BK04] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow

algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and

Machine Intelligence (PAMI), 26(9):1124 – 1137, 2004. 1

[BRS19] Eric Balkanski, Aviad Rubinstein, and Yaron Singer. An exponential speedup in parallel

running time for submodular maximization without loss in approximation. Proc., ACM-

SIAM Symposium on Discrete Algorithms (SODA), pages 283–302, 2019. 1, 3

[BS17] Eric Balkanski and Yaron Singer. Minimizing a submodular function from samples. In Adv.

in Neu. Inf. Proc. Sys. (NeurIPS), pages 814–822, 2017. 2

[BS18] Eric Balkanski and Yaron Singer. The adaptive complexity of maximizing a submodular

function. In Proc., ACM Symposium on Theory of Computing (STOC), pages 1138–1151,

2018. 1, 3

[BS20] Eric Balkanski and Yaron Singer. A lower bound for parallel submodular minimization. In

Proc., ACM Symposium on Theory of Computing (STOC), pages 130–139, 2020. 1, 3, 4

[BvdBMN21] Joakim Blikstad, Jan van den Brand, Sagnik Mukhopadhyay, and Danupon Nanongkai.

Breaking the quadratic barrier for matroid intersection. In Proc., ACM Symposium on Theory

of Computing (STOC), pages 421–432, 2021. 2, 24

[BVZ01] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization vi-

agraph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),

23(11):1222 – 1239, 2001. 1

[CFK19] Lin Chen, Moran Feldman, and Amin Karbasi. Unconstrained submodular maximization

with constant adaptive complexity. In Proc., ACM Symposium on Theory of Computing

(STOC), pages 102–113, 2019. 4

[CJK14] Deeparnab Chakrabarty, Prateek Jain, and Pravesh Kothari. Provable submodular minimiza-

tion using Wolfe’s algorithm. In Adv. in Neu. Inf. Proc. Sys. (NeurIPS), pages 802–809,

2014. 1

[CLS+19] Deeparnab Chakrabarty, Yin Tat Lee, Aaron Sidford, Sahil Singla, and Sam Chiu-wai Wong.

Faster matroid intersection. In Proc., IEEE Symposium on Foundations of Computer Science

(FOCS), 2019. To appear. 2, 24

[CLSW17] Deeparnab Chakrabarty, Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. Subquadratic

submodular function minimization. In Proc., ACM Symposium on Theory of Computing

(STOC), pages 1220–1231, 2017. 1

25

[CQ19a] Chandra Chekuri and Kent Quanrud. Parallelizing greedy for submodular set function max-

imization in matroids and beyond. In Proc., ACM Symposium on Theory of Computing

(STOC), pages 78–89, 2019. 1, 3

[CQ19b] Chandra Chekuri and Kent Quanrud. Submodular function maximization in parallel via the

multilinear relaxation. In Proc., ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 303–322, 2019. 1, 3

[Cun85] William H. Cunningham. On submodular function minimization. Combinatorica, 5:185 –

192, 1985. 1

[Cun86] William H. Cunningham. Improved bounds for matroid partition and intersection algorithms.

SIAM Journal on Computing (SICOMP), 15(4):948–957, 1986. 2

[DBW12] John C. Duchi, Peter L. Bartlett, and Martin J. Wainwright. Randomized smoothing for

stochastic optimization. SIAM Journal on Optimization, 22(2):674–701, 2012. 4

[DR98] Devdatt P. Dubhashi and Desh Ranjan. Balls and bins: A study in negative dependence.

Random Struct. Algorithms, 13(2):99–124, 1998. 15

[DVZ18] Daniel Dadush, László A. Végh, and Giacomo Zambelli. Geometric rescaling algorithms for

submodular function minimization. In Proc., ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 832–848, 2018. 1

[Edm70] J. Edmonds. Submodular Functions, Matroids, and Certain Polyhedra. In R. Guy, H. Hanam,

and J. Schonheim, editors, Combinatorial structures and their applications, pages 69–85,

New York, 1970. Gordon and Breach. 2, 22

[EN19] Alina Ene and Huy L. Nguyen. Submodular maximization with nearly-optimal approxima-

tion and adaptivity in nearly-linear time. Proc., ACM-SIAM Symposium on Discrete Algo-

rithms (SODA), pages 274–282, 2019. 1, 3

[ENV19] Alina Ene, Huy L. Nguyen, and Adrian Vladu. Submodular maximization with matroid and

packing constraints in parallel. In Proc., ACM Symposium on Theory of Computing (STOC),

pages 90–101, 2019. 1, 3

[FMV11] Uriel Feige, Vahab Mirrokni, and Jan Vondrak. Maximizing non-monotone submodular

functions. SIAM Journal on Computing (SICOMP), 40(4):1133 – 1153, 2011. 4

[FMZ19] Matthew Fahrbach, Vahab Mirrokni, and Morteza Zadimoghaddam. Submodular maximiza-

tion with nearly optimal approximation, adaptivity and query complexity. In Proc., ACM-

SIAM Symposium on Discrete Algorithms (SODA), pages 255–273, 2019. 3

[FO17] Tara Fife and James Oxley. Laminar matroids. European Journal of Combinatorics, 62:206–

216, 2017. 18

[GGR22] Sumanta Ghosh, Rohit Gurjar, and Roshan Raj. A deterministic parallel reduction from

weighted matroid intersection search to decision. In Proc., ACM-SIAM Symposium on Dis-

crete Algorithms (SODA), page to appear, 2022. 3

26

[GLLS81] Martin Grötschel, László Lovasz, and Alexander Schrijver. The ellipsoid method and its

consequences in combinatorial optimization. Combinatorica, 1:169 – 197, 1981. 1

[GPRW20] Andrei Graur, Tristan Pollner, Vidhya Ramaswamy, and S. Matthew Weinberg. New query

lower bounds for submodular function minimization. In Proc., Innovations in Theoretical

Computer Science (ITCS), pages 64:1–64:16, 2020. 24

[GR20] Rohit Gurjar and Rajat Rathi. Linearly representable submodular functions: An algebraic

algorithm for minimization. In Proc., International Colloquium on Automata, Languages

and Programming (ICALP), pages 61:1–61:15, 2020. 2

[Har10] Nicholas J. A. Harvey. Query lower bounds for matroid intersection. RIMS Kokyuroku

Bessatsu, B23:81–105, 2010. 24

[IB13] Rishabh Iyer and Jeff A. Bilmes. Submodular optimization with submodular cover and sub-

modular knapsack constraints. Adv. in Neu. Inf. Proc. Sys. (NeurIPS), 2013. 1

[IFF01] Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial strongly polynomial

algorithm for minimizing submodular functions. Journal of the ACM, 48(4):761–777, 2001.

1

[IJB13] Rishabh Iyer, Stefanie Jegelka, and Jeff A. Bilmes. Fast semidifferential-based submodular

function optimization. In Proc., International Conference on Machine Learning (ICML),

pages 855–863, 2013. 1

[IK10] Russell Impagliazzo and Valentine Kabanets. Constructive proofs of concentration bounds.

In Proc., International Workshop on Randomization and Computation (RANDOM), pages

617–631, 2010. 15

[IO09] Satoru Iwata and James B. Orlin. A simple combinatorial algorithm for submodular func-

tion minimization. In Proc., ACM-SIAM Symposium on Discrete Algorithms (SODA), pages

1230–1237, 2009. 1

[Jia21] Haotian Jiang. Minimizing convex functions with integral minimizers. In Proc., ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 976–985, 2021. 1, 24

[KKT08] Pushmeet Kohli, M. Pawan Kumar, and Philip H. S. Torr. P3 and beyond: Move making algo-

rithms for solving higher order functions. IEEE Trans. Pattern Anal. and Machine Learning,

31:1–8, 2008. 1

[KM97] David R. Karger and Rajeev Motwani. An NC algorithm for minimum cuts. SIAM J. Com-

put., 26(1):255–272, 1997. 2

[KUW86] Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is in

random NC. Combinatorica, 6(1):35–48, 1986. 2

[KUW88] Richard M. Karp, Eli Upfal, and Avi Wigderson. The complexity of parallel search. J.

Comput. System Sci., 36(2):225–253, 1988. 3

[Law75] Eugene L. Lawler. Matroid intersection algorithms. Math. Programming, 9(1):31–56, 1975.

2

27

[LJJ15] Simon Lacoste-Julien and Martin Jaggi. On the global linear convergence of Frank-Wolfe

optimization variants. In Adv. in Neu. Inf. Proc. Sys. (NeurIPS), 2015. 1

[LLV20] Wenzheng Li, Paul Liu, and Jan Vondrák. A polynomial lower bound on adaptive complexity

of submodular maximization. In Proc., ACM Symposium on Theory of Computing (STOC),

pages 140–152, 2020. 1, 3

[LSW15] Yin Tat Lee, Aaron Sidford, and Sam Chiu-Wai Wong. A faster cutting plane method and its

implications for combinatorial and convex optimization. Proc., IEEE Symposium on Foun-

dations of Computer Science (FOCS), pages 1049–1065, 2015. 1

[MN20] Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: sequential, cut-query,

and streaming algorithms. In Proc., ACM Symposium on Theory of Computing (STOC),

pages 496–509, 2020. 4

[Nem94] Arkadi Nemirovski. On parallel complexity of nonsmooth convex optimization. Journal of

Complexity, 10(4):451–463, 1994. 4

[Ngu19] Huy L. Nguyen. A note on cunningham’s algorithm for matroid intersection. arXiv e-prints,

2019. 2

[NSV94] H. Narayanan, Huzur Saran, and Vijay V. Vazirani. Randomized parallel algorithms for ma-

troid union and intersection, with applications to arborescences and edge-disjoint spanning

trees. SIAM J. Comput., 23(2):387–397, 1994. 2, 3

[NW78] George L. Nemhauser and Laurence A. Wolsey. Best algorithms for approximating the max-

imum of a submodular set function. Math. Oper. Res., 3(3):177–188, 1978. 3

[NWF78] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approxi-

mations for maximizing submodular set functions – I. Math. Programming, 14(1):265–294,

1978. 3

[Orl09] James B. Orlin. A faster strongly polynomial time algorithm for submodular function mini-

mization. Math. Programming, 118(2):237–251, 2009. 1

[RSW18] Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing exact minimum

cuts without knowing the graph. In Proc., Innovations in Theoretical Computer Science

(ITCS), pages 39:1–39:16, 2018. 4

[Sch00] Alexander Schrijver. A combinatorial algorithm minimizing submodular functions in

strongly polynomial time. J. Combin. Theory Ser. B, 80(2):346–355, 2000. 1

[Sch03] Alexander Schrijver. Combinatorial Optimization. Springer, New York, 2003. 20

[Von13] Jan Vondrák. Symmetry and approximability of submodular maximization problems. SIAM

J. Comput., 42(1):265–304, 2013. 3

28

	1 Introduction
	1.1 Related Work

	2 Technical Overview
	2.1 Ideas Behind Our Construction

	3 Description of our Lower Bound Functions
	3.1 Partition Submodular Functions
	3.2 Suffix Functions
	3.3 Submodularity
	3.4 Minimizers
	3.5 Suffix Indistinguishability

	4 Parallel SFM Lower bound : Proof of thm:parallel-sfm-lb
	4.1 Modification to boost gap : (1/)-lower bound for -approximate SFM

	5 Suffix Functions, Nested Matroids, and Parallel Matroid Intersection
	6 Concluding Remarks

