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1. Introduction

‘We consider the variational model
1 1
T2 Jre

£.(w) (|al|*1 (agw _ 31;1&))2 e (Ow)?de, (1.1)

where w : T? - R is a periodic function with vanishing mean in 1, that is’

fol w(xy,x2)dry =0 for any z € [0,1). (1.2)
Here |01| " is defined via its Fourier coefficients

O F () = llal F(k) for ke (2nZ)°,

and is well defined when (1.2) holds.

* Corresponding author.
E-mail addresses: michael.novack@austin.utexas.edu (M. Novack), xiaodong.yan@uconn.edu (X. Yan).
! More generally, a periodic distribution f on T? has “vanishing mean in z1” if for all (ki,k2) = k € (27Z)? with k; = 0,
f(k) =0. If f corresponds to an L? function, p € [1, 00), this is equivalent to the existence of a sequence {¢)} of smooth, periodic
functions satisfying (1.2) that converges in L? to f.
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This model is motivated by a nonlinear approximate model of smectic liquid crystals. The following
functional has been proposed as an approximate model for smectic liquid crystals [4,14,24,29,30] in two
space dimensions:

E.(u) = %/Q é (82u - %(8111)2) +e(011u)? de, (1.3)

where u is the Eulerian deviation from the ground state @(x) = x2 and ¢ is the characteristic length scale.
The first term represents the compression energy and the second term represents the bending energy. For
further background on the model, we refer to [24,25] and the references contained therein. The 3D version of
(1.3), which we analyzed in [25] but do not consider further here, is also used for example in the mathematical
description of nuclear pasta in neutron stars [6]. Assuming that u is periodic on the torus T? = 2 and setting
w = O1u, (1.3) becomes

1 1 _ 1 2
Es(u):ifpg(bﬂ 1(8210—81511/2)) +6(61w)2dx.

Finally, a similar model to (1.1) with |81|_1/ ? replacing |81|”" has been derived in the context of micromag-
netics [12]; see also [31].

The asymptotic behavior of (1.3) as € goes to zero was studied in [24]. Given €, — 0 and a sequence
{u,} with bounded energies E., (u,), the authors proved pre-compactness of {0u,} in L? for any 1 <g<p
and pre-compactness of {Jau,} in L? under the additional assumption ||0yu,|rr < C for some p > 6.
The compactness proof in [24] uses a compensated compactness argument based on entropies, following the
work of Tartar [32-34] and Murat [21-23]. In addition, a lower bound on E. and a matching upper bound
corresponding to a 1D ansatz was obtained as ¢ — 0 under the assumption that the limiting function u
satisfies Vu € (L™ n BV)(£2).

In this paper, we approach the compactness via a different argument in the periodic setting. Our proof
is motivated by recent work on related variational models in the periodic setting [5,10,13,26,27,36] where
strong convergence of a weakly convergent L? sequence is proved via estimates on Fourier series. Given a
sequence u. weakly converging in L?(T?), to prove strong convergence of u. in L? it is sufficient to show that
there is no concentration in the high frequencies. The center piece of this approach relies on the estimates
for solutions to Burgers equation

1
-0h 51112 +0w =17

in suitable Besov spaces. This type of compactness argument also applies to a sequence {w,, } with & (w,) <
C for any fixed . As a direct corollary, we obtain the existence of minimizers of E. in W12(T?) (see
Corollary 2.12) for any fixed €. We observe that to the best of our knowledge, the existence of minimizers
of E. in any setting was not known due to the lack of compactness for sequence {u,} satisfying E.(u,) < C
with fixed e.

To further understand the minimization of &, we are also interested in a sharp lower bound for the
asymptotic limit of &, as e approaches zero. In the literature for such problems (see for example [1,3,11,16]),
one useful technique in achieving such a bound is an “entropy” argument, in which the entropy production
[ divZ(w) of a vector field X'(w) is used to bound the energy &. from below. For the 2D Aviles-Giga
functional 1 1 ) )

5 [ vul - 1) 4 efv?uf’ da, (L.4)
2Jac¢

such vector fields were introduced in [8,16]. In [24,25], the analogue for the smectic energy, in 2D and 3D
respectively, of the Jin-Kohn entropies from [16] were used to prove a sharp lower bound which can be
matched by a construction similar to [7,28]. In this paper, we use the vector field

Y(w) = (—%w ,§w2) (1.5)

2
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which is (=(01u)3/3, (01u)?/2) in terms of u, to prove a sharp lower bound. As & — 0, entropy production
concentrates along curves and approximates the total variation of the distributional divergence of a BV
vector field. An interesting open direction which motivates studying (1.5) is utilizing the correct version of
(1.5) (or the entropies from [8,9]) in 3D, for example in a compactness argument.

The paper is organized as follows. The pre-compactness of a sequence of functions with bounded energy
is proved in Section 2, for both fixed ¢ and € — 0. The lower bound is established in Section 3.

2. Compactness of a sequence with bounded energy
2.1. Preliminaries

Let e; = (1,0) and ey = (0,1) be unit vectors in R?. We recall some definitions from [13]. For f:T? - R,
we write

Nf(x)=f(z+he))-f(z)  weT? heR.

Definition 2.1. Given f:T? - R, j € {1,2}, s € (0,1], and p € [1,00), the directional Besov seminorm is
defined as

1

1 P P

fl.s = sup —(/ ol f dx)
7152, = 5 g { e 001

Remark 2.2. This is the B*P* seminorm defined in each direction separately.

Remark 2.3. For p=2and se (0,1), given s’ € (s,1), the following inequality holds ([13, Equation (2.2)]):

s 2_ 128 |7 2_ L h 2 dj ’ 9
Jo i 4 = Sl [T =ec [ [ 001 aafiy s 0o 11

2;

We quote two results from [13].

Lemma 2.4 ([13, Proposition B.9]). For every p € (1,00] and q € [1,p] with (p,q) # (o0,1), there exists a
constant C(p,q) > 0 such that for every periodic function f :[0,1) - R with vanishing mean,

(/01|f(2)|pd2); SC(p,q)folhélé(/01|3?f(2)|qd2) % (2.1)

with the usual interpretation for p = oo or q = oo.

Q=

The following estimate was derived in the proof of Lemma B.10 in [13].

Lemma 2.5 ([13, In the Proof of Lemma B.10]). For every p € [1,00) and every periodic function f :[0,1) —»
R, h € (0,1], the following estimate holds.

(f01|aff(z)|pdz)'l’ 32(;fohfol‘af,f(z)‘pdzdh’)p. (2.2)

We define 7, = Oow — 81%102, and thus (1.1) can be written as

£.(w) - % 1, §(|al|‘177w)2 + e(Oyw)2da. (2.3)
3
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Finally, we introduce the e-independent energy

£(w) = (fw (|61|_177w)2dx)§ ([TQ (alw)de)% , (2.4)

E(w) <& (w) foralle>0. (2.5)

and note that

2.2. Besov and LP estimates
We obtain the following estimates. The proofs follow closely those in [13, Propositions 2.3-2.4].

Lemma 2.6. There exists a universal constant Cy > 0 such that if w € L? (’H‘Q) and has vanishing mean in
x1 and h € (0,1], then

[, 10t dz < Cine(w) (2.6)
and

sup foh /01 |a{‘,w (xl,x2)|2 dz1dh' < C4 (hS(w) + h%g%(w)). (2.7)

z2¢€[0,1)

Proof. Throughout the proof, we assume that w is smooth; once the estimates hold for smooth w, they
hold in generality by approximation. The constant C; may change from line to line. Following [13, Equations
(2.5)-(2.6)], we apply the modified Howarth—-Karmén—Monin identities for the Burgers operator. For every
h' € (0,1], we have

82%[01‘5?’w|8{/wdx1—éah'folpillw‘g dry = folaf’nw |8{’/w|dx1, (2.8)

1 1 l 2 1 1 , 3 1 , ,
825[) (8? w) dxl_éah'fo (8{’ w) dmlzfo O N0t wdzy . (2.9)

Integrating (2.8) over x5 and using the periodicity of w yields
713 7 ’
h h h
O /1r2 |81 w‘ dx = -6 fTQ 07 Mw |81 w‘ dx

6 /TQ 107" (08 w| de. (2.10)

Now

‘fm nwﬁl_h’ |8{L,w‘ dz

([ (o) dm)% ([, (2u0 o)) dm)%
<G (f?” Cln ”w)Qd“’”)% (fm (D1w)? dx)% :

so that integrating (2.10) from 0 to h and using d)w = 0, we have

1 1
. :
Lokl ar< ey (fTQ (121 1) dx)2 (/TQ (alw)de)z h < CLhE ().

To prove (2.7), we integrate (2.9) from 0 to h and again utilize Yw = 0 to obtain

1 b r1, ., 2 1,1 3 o1, ,
82§f0 /0 (6{’ w) dwldh'—g : (o1 w) da:lzfo [0 N 10 wdxydh . (2.11)

We set
h 1 , 2
f(wz):f f (af w) dzdh/,
o Jo
4
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and recall the Sobolev embedding inequality for W11 (T) c L* (T):
swlf ()< [Ifwldy+ [ ldy.
z€eT T T

Then applying this to f(x2) and referring to (2.11), we have

sup [ f o' w d:rldh’ (2.12)

:1:26 0 1)

sf f (21'w) ? dw dh’
0 T2
1 h
+7
5 ).

/T2 (3{1,10)2 dx < ([ |81 w‘ alaﬂ)g <Cy (W €(w))%

1,1 ,

1 1

(Lot o) (L oar o) )
1

<Cy ([11‘2 (|61|_1 nw)2 dac)2 ([T? (Ow)? dm) ,

X2 dh,

! A
o |8f w| dzq

Since

and

!
h w|da:1 To

[N

(2.12) therefore implies

sup f f O w) dardh’ < Cy (RS €3 (w) + hE(w))

126 O 1)

which is (2.7). O

Lemma 2.7. IfweL? ('IFQ) and has vanishing mean in x1, then the following estimates hold:

1
[w] . s éC’lé’%(w), for every s € (07,]’ (2.13)
53;1 3
where Cy is as in Lemma 2.6;
a=2
|wl o (z2y < Co(p)ET% (w) (£(w) + £3 (w)) = (2.14)
for every 1 < p <12 where a = max{2,p}; and
12 TIRC
0] 2y < Cap)e™ % EX (w)(Ex(w) + 5 () (2.15)
for every e >0 and 1 < p <6, where again o = max{2,p}.
Proof. The estimate (2.13) follows from (2.6) and the definition of |- H . Turning to (2.14)—(2.15), we

first prove a preliminary estimate. We fix x5 € [0,1) and apply Lemma 2 4 to f(z) =w(z,22) with ¢ =2,

p > 2 to deduce
1
1 P 11 1 2 dh
([ |w(331,332)|pdx1) SCg(p)f — ([ |8{1U}((E1,I2)| dml) —_—.
0 0 p27p \JO h
5

[N
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Integrating over xo, we thus have by Minkowski’s integral inequality

folangeny = ([ [ ool )’
502(1;)(/01[]0 hE %(f 10" w(z1,72)] dml) dhrdxg)p

1 1 1 g
SCQ(]D)]O hi 3 lfo (fo yafw(xl,xz)fdxl) d:@] dh

p—2

1
<02(P)f B3 sup (/01|8{1w(a:1,x2)|2d:z:1) ! .(/1;2 |8{Lw(x)|2dx)pdh.

x2€[0,1)

D=

The first term in the integrand can be estimated using (2.2) and (2.7), which gives

sup (f |81w 331,332)| d$1) < sup ( / f |61 w(xl,xg‘ da:ldh)
z9€[0,1) z9€[0,1)
<C1 (E(w) +hIES (w)) %

and therefore

[l o cezy < Ca(p)(E(w) + €3 (w)) folh%-% (fTQ |8{‘w(m)‘2d:r)5dh. (2.16)

To prove (2.14) and (2.15) we estimate the h-integrand in two different fashions before integrating. For
(2.14), using Holder’s inequality and (2.6), we have the upper bound

(/ |81w(m | dm) ([ |81w(:c)| dm) z <C’1h%5%(w).
Inserting this into (2.16) and using p € (2,10/3) yields
lwlgezy < CoWEF () () + 1) [ nds B an
b—
T

= Co(p)EF (w)(E(w) + €3 (w))

which is (2.14) when p > 2. For p < 2, we apply (2.14) with p’ > 2, use the fact that ||w|rr < |w],,, and
let p' N\ 2. Now for (2.15), we instead use the fundamental theorem of calculus and Jensen’s inequality to
estimate

1
<hPePEY (w).
When plugged into (2.16) and combined with (2.5), this implies

p=2 1
[l o(ez) < Cop)e P EF () (E-(w) + £5 () T [ tan

p-

= CQ(p)e*Esf (w)(E-(w) + el (w)) ™

M

for p € (2,6). The case p € [1,2) is handled similarly as in (2.14). O
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Remark 2.8. Generalizing the previous argument to the 3D smectics model from [25] is open. An
intermediate step would be analyzing the Aviles—Giga model (which is a special case of the energy in [25])
on T? using these type of ideas.

2.3. Compactness and existence

We prove compactness and existence theorems in this section. First we define the admissible sets
A = {w e L*(T?%): /:w(zl,zg)d:cl =0 for each x5 € [0,1) and & (w) < 00}
and )
A= {w e L*(T%): /(; w (x1,x2) dx1 =0 for each x9 € [0,1) and E(w) < oo}.
Note that for any positive € > 0, (2.5) implies that 4. c . A. We prove the following compactness result.

Proposition 2.9. If {w,} c A satisfy &, (w,) < C3 < o0 and sup,, |en] < €0, then {w,} is precompact in
L2 (T?).

Proof. By (2.14),
a=2
2a

a2 (z2y < Co(P)ETS (w)(E(w) + 5 (w))

and thus, by (2.5) (that is, E(w) < E(w)), ||wn HLz(Tz) < Cy depending on p and C3. As a consequence,
we can find wy € L? (']T2) such that up to a subsequence, w, — wy weakly in L? (TQ). Therefore, for each
ke (2nZ)2,

1
@ (k) > @5 (k) @ (F)| < ([w w,%)2 <Cy, and ‘ﬂ;\%(k)‘ < fT2 w2 < CF. (2.17)

We therefore know that for any fixed N € N|

Z |1Tn(k)—wA0(k)|2 - 0asn— oo,
|kq|<27 N,
|k-12\s27rN

and so the strong convergence of w,, - wy would follow if

> |wa (k))* - 0 uniformly in n as N - oo. (2.18)
|kq|>27 N
or|}12|>27rN

The rest of the proof is dedicated to showing (2.18).
We fix 0 < s <1/3 and appeal to Remark 2.3 and (2.13) to calculate

2 .
JLIonf wal” = Sl (5 () < € 1)

T 2;1

< C(8,13) |wn | 15 < C(s,1/3)CLEF (wy) < Cs, (2.19)
B3;1
for suitable C5. We recall the formula )
Nw = Oow — 01 5’(1)2,
which, in terms of Fourier coefficients, reads

T (k) = —iko@ (k) + %ik@? (k).

7
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For My, M; € N to be chosen momentarily, we combine this with (2.17) and then (2.19) to find

S |wn (F)

[kq|>2m My

or
|ko|>2m My

DY A Gl Y A O

|k1|>271']\/11 |k1|£27rM1
|ko|>2m My
—2s 25 | — 2 1 2
<@ Y k@2 Y —— T, (R)]
|k1|>27rM1 ‘k1|327TM1 | 2|
|kg|>2m My
1 1) | —
D w? (k)|
[k |<2m My |k2|
|ko|>2m My
_os 25— a2 . 2MT 12 CF ||
< (2mMy) Z k1| @y, (R)[™ + 2 Z — [, (K) +7 Z —
|k [>27 M, 3 kg f<znar, [K ey [<zear, Kol
[ko|>2m My |ko|>2m My
2M7 5
—2s 1 4 3
< (27TM1) Cs + M22 X 505€n(wn) + 7 X 2(27TM1) X 7rM2.

Taking M, = M €N and M, = M*, we find that

> oy, (k) = 0 uniformly in n as M — oo,

|kq |>2m M
or
‘k2|>27'rM4

which concludes the proof of (2.18). O

Corollary 2.10. If {w,} c A satisfy &, (wy,) < C < oo and sup,, |en| < €0, then {w,} is precompact in
r (Tg) for anype|l, 1—30 .

Proof. The conclusion follows from the precompactness of {w,} in L?*(T?), the bound (2.14) from
Lemma 2.7, and interpolation. O

Corollary 2.11. If {w,} c A satisfy E-(wy,) < C < oo for a fized €, then {wy} is precompact in LP (Tg) for
any p € [1,6).

Proof. We again appeal to the precompactness of w,, in L?(T?) (taking &, = € in Proposition 2.9), but
instead use the bound (2.15) from Lemma 2.7 before interpolating. O

As a direct application of Corollary 2.11, we can prove an existence theorem for the original smectic
energy E. defined in (1.3). For any periodic g: T! — R, we define

~ 1
Acg= {u e wh? (']IQ) t B (u) < oo, f u(xzy,x9)dry = g(ag) for a.e. zg € [0, 1)}
0
We note that Kg,g is non-empty for example when g is smooth.

Corollary 2.12. For fized € > 0, if .Z&g is non-empty, then there exists u. € .Ze,g such that E. (ue) =
inf E. (u).

ueAe g
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Proof. Since admissible class is non-empty, we can let u,, be a minimizing sequence for

11 1 2
E. (u) = 5 L - (82u - 5(81u)2) +e(011u)? da;

in particular, the energies are uniformly bounded. By Corollary 2.11, we have, up to a subsequence that we
do not relabel,
o, > Oug  in L*(T?) (2.20)

for some ug. Since u, is a minimizing sequence, the first term in E. combined with the L*-convergence of
O1u,, implies that {dou, } are uniformly bounded in L?(T?). Thus, up to a further subsequence which we do
not notate, there exists vy € L? such that dou,, — vy weakly in L?(T?). Furthermore, by the uniqueness of
weak limits, it must be that vy = daug, so ug € WH2(T?). Expanding

[Q (agun - (611;”)2)2 dr = fQ [(32un)2 — (01up)?Oguy, + i(alun)4:| dz,

we see that by (2.20), the lower semicontinuity of the L?-norm under weak convergence, and the fact that
lim (81un)282Un dx = f (81U0)282U0 dl‘,
n—oo JT2 T2

we have

242 212
lim inf (82un - (alun)) dx > f (agu - (alu)) dx. (2.21)
n—oo ’]I‘Q 2 TQ 2

Also, the uniform L?-bound on 9j1u and the uniqueness of limits implies that, up to a subsequence,
011Uy, — O11up weakly in L?(T?), and thus

lim inf Q(anun)z dx > .[]1‘2 (811U0)2 dr. (222)
Putting together (2.21)—(2.22), we conclude

inf E. =liminf E.(u,) > E-(ug).
As,g n—oo0

Finally, by Poincare’s inequality and the weak convergence of Vu,, to Vug in L?(T?), we conclude that u,,
converges to ug strongly in L?(T?). Hence

1 1
f u(zy,x2)dry = lim [ Up (1, 22)dx1 = g(22) for a.e. x4 €[0,1),
0 n—oo Jo
therefore uy belongs to A; 4 and is a minimizer. D

3. Lower bound

We consider the question of finding a limiting functional as a lower bound for E. as € goes to zero. Given
a sequence {we} with E.(w.) < C and € > 0, then

[, 0u1 ) 0. (31)
Therefore 7,,, - 0 distributionally and the natural function space for the limiting problem is

Ag={we L*(T?): ny = —31%w2 + 0w =01in D'}.

9
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3.1. Properties of BV functions

Let £2 ¢ R? be a bounded open set. We first recall the BV structure theorem. For v € [BV(£2)]?, the
Radon measure Dv can be decomposed as

Dv = D% + D% + D%v

where D% is the absolutely continuous part of Dv with respect to Lebesgue measure £2 and Dv, D’v are
the Cantor part and the jump part, respectively. All three measures are mutually singular. Furthermore,
D% = VuL? {2 where Vv is the approximate differential of v; Dv = Dyvi(£2\S,) and D7v = D,vLJ,, where
D,v is the singular part of Dv with respect to £2, S, is the set of approximate discontinuity points of v,
and J, is the jump set of v. Since .J, is countably H!-rectifiable, D/v can be expressed as

(v =vT) @ vH'LI,,

where v is orthogonal to the approximate tangent space at each point of J, and v*, v~ are the traces of v
from either side of J,.
Next we quote the following general chain rule formula for BV functions.

Theorem 3.1 (/2, Theorem 3.96]). Let w € [BV(2)]?, 2 c R?, and f € [C'(R?)]? be a Lipschitz function
satisfying f(0) =0 if |£2| = co. Then v = f ow belongs to [BV (2)]? and

Dv =V f(w)VwL? L2+ Vf(0)Dw+ (f(w*) - f(w)) ® vuH 'L Jy. (3.2)
Here w(x) is the approzimate limit of w at x and is defined on 2\J,.

In what follows, we will use Theorem 3.1 to compute the distributional divergence of such f ow as the
trace of the measure (3.2), that is

div (fow) = tr (Vf(w)Vw)L2LR + tr (Vf(@0)Dw) + (f(w") = f(w)) - vwH LTy (3.3)
as measures.
Lemma 3.2. If w € Agn (BV n L*®)(T?), then denoting by Diw and Dfw the ith components of the
measures D*w and D°w, we have
(—wDfw+D5w) =0 and (—~wDjw+ D5w) =0
as measures, and, setting o(w) = (~w?/2,w),

[oc(w") —o(w )] -vw=0 H'-ae. on J,. (3.4)

Proof. Let o(w) = (—w?/2,w). By virtue of w € Agn (BV nL>)(T?) and (3.3), we know that, in the sense
of distributions,

1
0=-01 §w2 + Oow
=divo(w)
= (~wDSw + D§w) + (~D§w + D5w) + (o(w*) = (w™)) - vy H'L Ty . (3.5)

But the measures D%w, D°w, and D/w are mutually singular, which implies that each individual term in
(3.5) is the zero measure. The lemma immediately follows. O

10
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3.2. Limiting functional and the proof of the lower bound

Let
1 1
Y(w) = (—fw3 wz).
3 2
If we Agn(BV n L®)(T?), we can apply the chain rule (3.2) and Lemma 3.2 to X (w), yielding

div ¥ (w) = w(~wD{w + D§w)L? + (-0 Djw + Diw)
+(Z(wh) - Z(w)) - veH' LT,
= (Z(w*) - Z(w)) - vpH' LTy (3.6)

Remark 3.3. Observe if w = u, and u. = 1u2, the entropy ¥ (w) here is exactly the entropy 2(Vu) =
3 1
T

a proof of the lower bound on any domain 2 ¢ R?; the only necessary modification of the proof presented

~(ugu,-gu3, Fu2), which we used in the lower bound estimates in [24]. In fact, the argument below also gives

above is that one does not use |81|_17]w to represent the compression energy, but rather the original expression
from (1.3).

Theorem 3.4. Lete, N\ 0, {w,} c L*(T?) with 0,w, € L?>(T?) such that
wy, — w in L*(T?), (3.7)
for some w e (BV n L®)(T?). Then

—w
Jw 12\/1+ (w* +w- )2

Remark 3.5. Due to recent progress on the rectifiability for the defect set to certain solutions of Burgers
equation [20], the lower bound should in fact be valid among a larger class of limiting functions. Specifically,

hm mfé' A (wn) 2

if w e AgnL>(T?) and for every smooth convex entropy @ : R — R and corresponding entropy flux ¥ : R - R
with ¥'(v) = - &' (v)v,
01 ¥ (w) + 02 P(w) is a finite Radon measure, (3.9)

then there exists an H'-rectifiable set .J,, with strong traces on either side such that
w* - w '
12/1+ T (wt +w)?

In particular, by substituting any entropy/entropy flux pair for X in the argument below, one finds that for

|div X (w)] = H' Ty (3.10)

an energy bounded sequence, any limiting function w satisfies (3.9) and thus (3.10). Technically, applying the
results of [20] to deduce (3.10) would require extending the arguments there from [0,7'] xR to the bounded
domain T? as in [17,18] andproving that (3.9) implies that w € C°([0,1]; L*(T')) (the continuous in time
dependence being a technical assumption in [20, Definition 1.1]). Regarding the regularity assumption, it
is known (see e.g. [19, Remark 5.2], [15, pg. 191]) that the argument of Vasseur [35] applies in this context
and gives a representative of w belonging to C°([0,1]; L*(T')). The extension of [20] to a bounded domain
should not present serious difficulties, although we have not pursued the details further. The concentration of
the entropy measures on an H!-rectifiable jump set should be a key step in obtaining the full I-convergence
of E. in (1.3) to the limiting energy (3.10). The remaining obstacles to such a result are the construction
of a recovery sequence for functions that with gradients that do not belong to BV n L™ (as the existing
technology from [7,28] uses both those assumptions) and the strengthening of the results of [20] to include
functions which do not belong to L.
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Proof of Theorem 3.4. Without loss of generality, we assume liminf,,_, &, (w,) < oo, so that w € Ay by
(3.1). Now for any smooth v, direct calculation shows

div ¥ (v) al(—ézﬁ)mQ(%&) (3.11)

v(O2v — vO1V) = VN,
On the other hand, we can bound &, from below as follows:

1rl
2J12 ¢

A AR
111,

£.(v) = (|al|*1 (82@—81;1)2))2 +2(Ay0)2da (3.12)

3 2
9 ||31UHL2(T2)

[\

LQ(TQ) ”61U||L2(T2) .

From (3.11) and (3.12), given any smooth periodic function ¢, for any smooth v, we have

“fw E(’U)~V¢dx‘ = VT2 divE(v)gﬁdm‘ (3.13)
< (L1 par) ([ lovworras)”
< H|81|_1771) r2ry 1010 L2 qr2) (9] oo 2

1007 0] 2 gy 10l 2 r2) 1010 ooy
1
< E(v) ||¢HL<><>(T2) + C\/ESE(U)Q HUHL2(T2) ||81¢HL°°(T2) .

By the density of smooth functions in L2(T2), (3.13) holds for any v € L2(T?2) with |01 "n,, drv € L2(T?).
Thus

‘_ [, ) Vc/)dx‘ (3.14)
1
< & (wn) [0l oo (r2) + CVEREe,, (wn) 2 W L2(r2) 010 oo (p2) -
Letting n — oo, by the strong convergence of w,, in L3(T?), we have X (w,) - Y (w) in L'(T?), so that

—[T2 Y(w)-Vodx

- lim - X(wy) - Vodx (3.15)

n—o0o

IA

hﬁg}f Eep (wy) | ¢HL°°(T2) :

By taking the supremum over all smooth test functions ¢ with @]/ < 1in (3.15), we see that |div X (w)|(T?)
is a lower bound for the energies. To derive the explicit expression for this measure, we note that since
we Agn (BV nL>)(T?), (3.4) and (3.6) apply, so that

HLT,.

. (o(w?) —o(w7))"
[Z(w") = Z(w)]-
lo(w*) = o (w)|
The right hand side of this equation can be calculated directly from the formulas for o(w) and X'(w) and
simplifies to (3.8) (see [24, Proof of Lemma 4.1, Equation (6.3)]). O

div 2(w)|(T%) =

Remark 3.6. When comparing with the lower bound proof from [24], this proof requires an extra
integration by parts, as it does not rely on a pointwise lower bound on the energy density (see e.g. [24,
Equation (4.11)]). The relationship between these two entropies and the structure of the corresponding
arguments is exactly mirrored in the entropies devised in [8,16] for the Aviles—Giga problem — they are
equal on the zero set of the potential term, and both give lower bounds, with only one of them [16] bounding
the energy density from below pointwise.
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