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a b s t r a c t

We consider the asymptotic behavior as ε goes to zero of the 2D smectics model

in the periodic setting given by

Eε(w) = 1

2
∫
T2

1

ε
(∣∂1∣−1 (∂2w − ∂1

1

2
w2))

2

+ ε (∂1w)2 dx.

We show that the energy Eε(w) controls suitable Lp and Besov norms of w and

use this to demonstrate the existence of minimizers for Eε(w), which has not

been proved for this smectics model before, and compactness in Lp for an energy-

bounded sequence. We also prove an asymptotic lower bound for Eε(w) as ε → 0
by means of an entropy argument.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the variational model

Eε(w) ≙ 1

2
∫
T2

1

ε
(∣∂1∣−1 (∂2w − ∂1

1

2
w2))2

+ ε (∂1w)2 dx , (1.1)

where w ∶ T2 → R is a periodic function with vanishing mean in x1, that is1

∫
1

0
w(x1, x2)dx1 ≙ 0 for any x2 ∈ ∥0, 1) . (1.2)

Here ∣∂1∣−1
is deĄned via its Fourier coefficients

̂∣∂1∣−1
f (k) ≙ ∣k1∣−1

f̂ (k) for k ∈ (2πZ)2,

and is well deĄned when (1.2) holds.

∗ Corresponding author.

E-mail addresses: michael.novack@austin.utexas.edu (M. Novack), xiaodong.yan@uconn.edu (X. Yan).
1 More generally, a periodic distribution f on T

2 has Şvanishing mean in x1Ť if for all (k1, k2) ≙ k ∈ (2πZ)2 with k1 ≙ 0,
f̂(k) ≙ 0. If f corresponds to an Lp function, p ∈ ∥1,∞), this is equivalent to the existence of a sequence {φk} of smooth, periodic
functions satisfying (1.2) that converges in Lp to f .
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This model is motivated by a nonlinear approximate model of smectic liquid crystals. The following

functional has been proposed as an approximate model for smectic liquid crystals [4,14,24,29,30] in two

space dimensions:

Eε(u) ≙ 1

2
∫
Ω

1

ε
(∂2u −

1

2
(∂1u)2)2

+ ε(∂11u)2 dx, (1.3)

where u is the Eulerian deviation from the ground state Φ(x) ≙ x2 and ε is the characteristic length scale.

The Ąrst term represents the compression energy and the second term represents the bending energy. For

further background on the model, we refer to [24,25] and the references contained therein. The 3D version of

(1.3), which we analyzed in [25] but do not consider further here, is also used for example in the mathematical

description of nuclear pasta in neutron stars [6]. Assuming that u is periodic on the torus T2
≙ Ω and setting

w ≙ ∂1u, (1.3) becomes

Eε(u) ≙ 1

2
∫
T2

1

ε
(∣∂1∣−1 (∂2w − ∂1

1

2
w2))2

+ ε (∂1w)2 dx.

Finally, a similar model to (1.1) with ∣∂1∣−1/2
replacing ∣∂1∣−1

has been derived in the context of micromag-

netics [12]; see also [31].

The asymptotic behavior of (1.3) as ε goes to zero was studied in [24]. Given εn → 0 and a sequence{un} with bounded energies Eεn(un), the authors proved pre-compactness of {∂1un} in Lq for any 1 ≤ q < p

and pre-compactness of {∂2un} in L2 under the additional assumption ∥∂1un∥Lp ≤ C for some p > 6.

The compactness proof in [24] uses a compensated compactness argument based on entropies, following the

work of Tartar [32Ű34] and Murat [21Ű23]. In addition, a lower bound on Eε and a matching upper bound

corresponding to a 1D ansatz was obtained as ε → 0 under the assumption that the limiting function u

satisĄes ∇u ∈ (L∞ ∩BV )(Ω).
In this paper, we approach the compactness via a different argument in the periodic setting. Our proof

is motivated by recent work on related variational models in the periodic setting [5,10,13,26,27,36] where

strong convergence of a weakly convergent L2 sequence is proved via estimates on Fourier series. Given a

sequence uε weakly converging in L2(T2), to prove strong convergence of uε in L2, it is sufficient to show that

there is no concentration in the high frequencies. The center piece of this approach relies on the estimates

for solutions to Burgers equation

−∂1
1

2
w2
+ ∂2w ≙ η

in suitable Besov spaces. This type of compactness argument also applies to a sequence {wn} with Eε(wn) ≤
C for any Ąxed ε. As a direct corollary, we obtain the existence of minimizers of Eε in W 1,2(T2) (see

Corollary 2.12) for any Ąxed ε. We observe that to the best of our knowledge, the existence of minimizers

of Eε in any setting was not known due to the lack of compactness for sequence {un} satisfying Eε(un) ≤ C

with Ąxed ε.

To further understand the minimization of Eε, we are also interested in a sharp lower bound for the

asymptotic limit of Eε as ε approaches zero. In the literature for such problems (see for example [1,3,11,16]),

one useful technique in achieving such a bound is an ŞentropyŤ argument, in which the entropy production

∫ divΣ(w) of a vector Ąeld Σ(w) is used to bound the energy Eε from below. For the 2D AvilesŰGiga

functional
1

2
∫
Ω

1

ε
(∣∇u∣2 − 1)2 + ε∣∇2u∣2 dx , (1.4)

such vector Ąelds were introduced in [8,16]. In [24,25], the analogue for the smectic energy, in 2D and 3D

respectively, of the Jin-Kohn entropies from [16] were used to prove a sharp lower bound which can be

matched by a construction similar to [7,28]. In this paper, we use the vector Ąeld

Σ(w) ≙ (−1

3
w3,

1

2
w2) (1.5)

2
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which is (−(∂1u)3/3, (∂1u)2/2) in terms of u, to prove a sharp lower bound. As ε → 0, entropy production

concentrates along curves and approximates the total variation of the distributional divergence of a BV

vector Ąeld. An interesting open direction which motivates studying (1.5) is utilizing the correct version of

(1.5) (or the entropies from [8,9]) in 3D, for example in a compactness argument.

The paper is organized as follows. The pre-compactness of a sequence of functions with bounded energy

is proved in Section 2, for both Ąxed ε and ε→ 0. The lower bound is established in Section 3.

2. Compactness of a sequence with bounded energy

2.1. Preliminaries

Let e1 ≙ (1, 0) and e2 ≙ (0, 1) be unit vectors in R
2. We recall some deĄnitions from [13]. For f ∶ T2 → R,

we write

∂h
j f (x) ≙ f (x + hej) − f (x) x ∈ T2, h ∈ R .

DeĄnition 2.1. Given f ∶ T2 → R, j ∈ {1, 2}, s ∈ (0, 1∥, and p ∈ ∥1,∞), the directional Besov seminorm is

deĄned as

∥f∥ ⋅
B

s

p;j

≙ sup
h∈(0,1∥

1

hs
(∫

T2
∣∂h

j f ∣p dx) 1
p

Remark 2.2. This is the Bs;p,∞ seminorm deĄned in each direction separately.

Remark 2.3. For p ≙ 2 and s ∈ (0, 1), given s′ ∈ (s, 1), the following inequality holds ([13, Equation (2.2)]):

∫
T2
∣∣∂j ∣s f ∣2 ≙∑ ∣kj ∣2s ∣f̂ (k)∣2 ≙ cs ∫

R

1

∣h∣2s ∫
T2
∣∂h

j f ∣2 dx
dh∣h∣ ≤ C(s, s′) ∥f∥2

⋅

B
s′

2;j

.

We quote two results from [13].

Lemma 2.4 ([13, Proposition B.9]). For every p ∈ (1,∞∥ and q ∈ ∥1, p∥ with (p, q) ≠ (∞, 1), there exists a

constant C(p, q) > 0 such that for every periodic function f ∶ ∥0, 1)→ R with vanishing mean,

(∫ 1

0
∣f (z)∣p dz) 1

p

≤ C(p, q)∫ 1

0

1

h
1
q −

1
p

(∫ 1

0
∣∂h

1 f (z)∣q dz) 1
q dh

h
, (2.1)

with the usual interpretation for p ≙∞ or q ≙∞.

The following estimate was derived in the proof of Lemma B.10 in [13].

Lemma 2.5 ([13, In the Proof of Lemma B.10]). For every p ∈ ∥1,∞) and every periodic function f ∶ ∥0, 1)→
R, h ∈ (0, 1∥, the following estimate holds.

(∫ 1

0
∣∂h

1 f (z)∣p dz) 1
p

≤ 2( 1

h
∫

h

0
∫

1

0
∣∂h′

1 f (z)∣p dz dh′)
1
p

. (2.2)

We deĄne ηw ≙ ∂2w − ∂1
1
2
w2, and thus (1.1) can be written as

Eε(w) ≙ 1

2
∫
T2

1

ε
(∣∂1∣−1

ηw)2 + ε(∂1w)2dx. (2.3)

3
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Finally, we introduce the ε-independent energy

E(w) ≙ (∫
T2
(∣∂1∣−1

ηw)2 dx) 1
2 (∫

T2
(∂1w)2 dx) 1

2

, (2.4)

and note that

E(w) ≤ Eε(w) for all ε > 0 . (2.5)

2.2. Besov and Lp estimates

We obtain the following estimates. The proofs follow closely those in [13, Propositions 2.3-2.4].

Lemma 2.6. There exists a universal constant C1 > 0 such that if w ∈ L2 (T2) and has vanishing mean in

x1 and h ∈ (0, 1∥, then

∫
T2
∣∂h

1 w∣3 dx ≤ C1hE(w) (2.6)

and

sup
x2∈∥0,1)

∫
h

0
∫

1

0
∣∂h′

1 w (x1, x2)∣2 dx1dh′ ≤ C1 (hE(w) + h
5
3 E

2
3 (w)) . (2.7)

Proof. Throughout the proof, we assume that w is smooth; once the estimates hold for smooth w, they

hold in generality by approximation. The constant C1 may change from line to line. Following [13, Equations

(2.5)Ű(2.6)], we apply the modiĄed HowarthŰKármánŰMonin identities for the Burgers operator. For every

h′ ∈ (0, 1∥, we have

∂2
1

2
∫

1

0
∣∂h′

1 w∣∂h′

1 w dx1 −
1

6
∂h′ ∫

1

0
∣∂h′

1 w∣3 dx1 ≙ ∫
1

0
∂h′

1 ηw ∣∂h′

1 w∣dx1, (2.8)

∂2
1

2
∫

1

0
(∂h′

1 w)2 dx1 −
1

6
∂h′ ∫

1

0
(∂h′

1 w)3 dx1 ≙ ∫
1

0
∂h′

1 ηw∂h′

1 w dx1. (2.9)

Integrating (2.8) over x2 and using the periodicity of w yields

∂h′ ∫
T2
∣∂h′

1 w∣3 dx ≙ −6∫
T2

∂h′

1 ηw ∣∂h′

1 w∣dx

≙ −6∫
T2

ηw∂−h′

1 ∣∂h′

1 w∣dx. (2.10)

Now

∣∫
T2

ηw∂−h′

1 ∣∂h′

1 w∣dx∣ ≤ (∫
T2
(∣∂1∣−1

ηw)2 dx) 1
2 (∫

T2
(∂1∂−h′

1 ∣∂h′

1 w∣)2 dx) 1
2

≤ C1 (∫
T2
(∣∂1∣−1

ηw)2 dx) 1
2 (∫

T2
(∂1w)2 dx) 1

2

,

so that integrating (2.10) from 0 to h and using ∂0
1w ≙ 0, we have

∫
T2
∣∂h

1 w∣3 dx ≤ C1 (∫
T2
(∣∂1∣−1

ηw)2 dx) 1
2 (∫

T2
(∂1w)2 dx) 1

2

h ≤ C1hE(w).
To prove (2.7), we integrate (2.9) from 0 to h and again utilize ∂0

1w ≙ 0 to obtain

∂2
1

2
∫

h

0
∫

1

0
(∂h′

1 w)2 dx1dh′ −
1

6
∫

1

0
(∂h

1 w)3 dx1 ≙ ∫
h

0
∫

1

0
∂h′

1 ηw∂h′

1 w dx1dh′. (2.11)

We set

f (x2) ≙ ∫ h

0
∫

1

0
(∂h′

1 w)2 dx1dh′,

4
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and recall the Sobolev embedding inequality for W 1,1 (T) ⊂ L∞ (T):
sup
z∈T

∣f (z)∣ ≤ ∫
T

∣f (y)∣dy +∫
T

∣f ′ (y)∣dy.

Then applying this to f(x2) and referring to (2.11), we have

sup
x2∈∥0,1)

∫
h

0
∫

1

0
(∂h′

1 w)2 dx1dh′ (2.12)

≤ ∫
h

0
∫
T2
(∂h′

1 w)2 dx dh′

+
1

3
∫
T2
∣∂h

1 w∣3 dx + 2∫
h

0
∫

1

0
∣∫ 1

0
ηw∂−h′

1 ∣∂h′

1 w∣dx1∣x2 dh′.

Since

∫
T2
(∂h′

1 w)2 dx ≤ (∫
T2
∣∂h′

1 w∣3 dx) 2
3

≤ C1 (h′E(w)) 2
3 ,

and

∫
1

0
∣∫ 1

0
ηw∂−h′

1 ∣∂h′

1 w∣dx1∣x2

≤ (∫
T2
(∣∂1∣−1

ηw)2 dx) 1
2 (∫

T2
(∂1∂−h′

1 ∣∂h′

1 w∣)2 dx) 1
2

≤ C1 (∫
T2
(∣∂1∣−1

ηw)2 dx) 1
2 (∫

T2
(∂1w)2 dx) 1

2

,

(2.12) therefore implies

sup
x2∈∥0,1)

∫
h

0
∫

1

0
(∂h′

1 w)2 dx1dh′ ≤ C1 (h 5
3 E

2
3 (w) + hE(w)) ,

which is (2.7). ◻

Lemma 2.7. If w ∈ L2 (T2) and has vanishing mean in x1, then the following estimates hold:

∥w∥ ⋅
B

s

3;1

≤ C1E
1
3 (w) , for every s ∈ (0,

1

3
] , (2.13)

where C1 is as in Lemma 2.6;

∥w∥Lp(T2) ≤ C2(p)E 2
3α (w)(E(w) + E 2

3 (w))α−2
2α , (2.14)

for every 1 ≤ p < 10
3

, where α ≙max{2, p}; and

∥w∥Lp(T2) ≤ C2(p)ε− 1
α E

1
α

ε (w)(Eε(w) + E 2
3

ε (w))α−2
2α (2.15)

for every ε > 0 and 1 ≤ p < 6, where again α ≙max{2, p}.
Proof. The estimate (2.13) follows from (2.6) and the deĄnition of ∥⋅∥ ⋅

B
s

3;1

. Turning to (2.14)Ű(2.15), we

Ąrst prove a preliminary estimate. We Ąx x2 ∈ ∥0, 1) and apply Lemma 2.4 to f (z) ≙ w (z, x2) with q ≙ 2,

p > 2 to deduce

(∫ 1

0
∣w (x1, x2)∣p dx1)

1
p

≤ C2(p)∫ 1

0

1

h
1
2
−

1
p

(∫ 1

0
∣∂h

1 w (x1, x2)∣2 dx1)
1
2 dh

h
.

5
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Integrating over x2, we thus have by MinkowskiŠs integral inequality

∥w∥Lp(T2) ≙ (∫ 1

0
∫

1

0
∣w (x1, x2)∣p dx1dx2)

1
p

≤ C2(p)⎛⎝∫
1

0

⎡⎢⎢⎢⎢⎣∫
1

0
h

1
p−

3
2 (∫ 1

0
∣∂h

1 w(x1, x2)∣2 dx1)
1
2

dh

⎤⎥⎥⎥⎥⎦
p

dx2

⎞⎠
1
p

≤ C2(p)∫ 1

0
h

1
p−

3
2

⎡⎢⎢⎢⎢⎣∫
1

0
(∫ 1

0
∣∂h

1 w (x1, x2)∣2 dx1)
p
2

dx2

⎤⎥⎥⎥⎥⎦
1
p

dh

≤ C2(p)∫ 1

0
h

1
p−

3
2 sup

x2∈∥0,1)
(∫ 1

0
∣∂h

1 w (x1, x2)∣2 dx1)
p−2
2p

⋅ (∫
T2
∣∂h

1 w (x)∣2 dx) 1
p

dh .

The Ąrst term in the integrand can be estimated using (2.2) and (2.7), which gives

sup
x2∈∥0,1)

(∫ 1

0
∣∂h

1 w (x1, x2)∣2 dx1)
p−2
2p

≤ sup
x2∈∥0,1)

( 4

h
∫

h

0
∫

1

0
∣∂h′

1 w(x1, x2)∣2 dx1dh′)
p−2
2p

≤ C1 (E(w) + h
2
3 E

2
3 (w)) p−2

2p
,

and therefore

∥w∥Lp(T2) ≤ C2(p)(E(w) + E 2
3 (w)) p−2

2p ∫
1

0
h

1
p−

3
2 (∫

T2
∣∂h

1 w (x)∣2 dx) 1
p

dh . (2.16)

To prove (2.14) and (2.15) we estimate the h-integrand in two different fashions before integrating. For

(2.14), using HölderŠs inequality and (2.6), we have the upper bound

(∫
T2
∣∂h

1 w (x)∣2 dx) 1
p

≤ (∫
T2
∣∂h

1 w (x)∣3 dx) 2
3p

≤ C1h
2

3p E
2

3p (w) .
Inserting this into (2.16) and using p ∈ (2, 10/3) yields

∥w∥Lp(T2) ≤ C2(p)E 2
3p (w)(E(w) + E 2

3 (w)) p−2
2p ∫

1

0
h

5
3p−

3
2 dh

≙ C2(p)E 2
3p (w)(E(w) + E 2

3 (w)) p−2
2p ,

which is (2.14) when p > 2. For p ≤ 2, we apply (2.14) with p′ > 2, use the fact that ∥w∥Lp ≤ ∥w∥
Lp′ , and

let p′ ↘ 2. Now for (2.15), we instead use the fundamental theorem of calculus and JensenŠs inequality to

estimate

(∫
T2
∣∂h

1 w(x)∣2 dx) 1
p

≤ (h2 ∫
T2
(∂1w(x))2 dx) 1

p

≤ h
2
p ε
−

1
p E

1
p

ε (w) .
When plugged into (2.16) and combined with (2.5), this implies

∥w∥Lp(T2) ≤ C2(p)ε− 1
p E

1
p

ε (w)(Eε(w) + E 2
3

ε (w)) p−2
2p ∫

1

0
h

3
p−

3
2 dh

≙ C2(p)ε− 1
p E

1
p

ε (w)(Eε(w) + E 2
3

ε (w)) p−2
2p

for p ∈ (2, 6). The case p ∈ ∥1, 2) is handled similarly as in (2.14). ◻

6
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Remark 2.8. Generalizing the previous argument to the 3D smectics model from [25] is open. An

intermediate step would be analyzing the AvilesŰGiga model (which is a special case of the energy in [25])

on T
2 using these type of ideas.

2.3. Compactness and existence

We prove compactness and existence theorems in this section. First we deĄne the admissible sets

Aε ≙ {w ∈ L2 (T2) ∶ ∫ 1

0
w (x1, x2)dx1 ≙ 0 for each x2 ∈ ∥0, 1) and Eε(w) <∞}

and

A ≙ {w ∈ L2 (T2) ∶ ∫ 1

0
w (x1, x2)dx1 ≙ 0 for each x2 ∈ ∥0, 1) and E(w) <∞} .

Note that for any positive ε > 0, (2.5) implies that Aε ⊂ A. We prove the following compactness result.

Proposition 2.9. If {wn} ⊂ A satisfy Eεn(wn) ≤ C3 < ∞ and supn ∣εn∣ ≤ ε0, then {wn} is precompact in

L2 (T2).
Proof. By (2.14),

∥wn∥L2(T2) ≤ C2(p)E 2
3α (w)(E(w) + E 2

3 (w))α−2
2α ,

and thus, by (2.5) (that is, E(w) ≤ Eε(w)), ∥wn∥L2(T2) ≤ C4 depending on p and C3. As a consequence,

we can Ąnd w0 ∈ L2 (T2) such that up to a subsequence, wn ⇀ w0 weakly in L2 (T2). Therefore, for each

k ∈ (2πZ)2,

ŵn (k)→ ŵ0 (k) , ∣ŵn (k)∣ ≤ (∫
T2

w2
n)

1
2

≤ C4, and ∣ŵ2
n (k)∣ ≤ ∫

T2
w2

n ≤ C2
4 . (2.17)

We therefore know that for any Ąxed N ∈ N,

∑
∣k1 ∣≤2πN,

∣k2 ∣≤2πN

∣ŵn (k) − ŵ0 (k)∣2 → 0 as n→∞,

and so the strong convergence of wn → w0 would follow if

∑
∣k1 ∣>2πN

or∣k2 ∣>2πN

∣ŵn (k)∣2 → 0 uniformly in n as N →∞. (2.18)

The rest of the proof is dedicated to showing (2.18).

We Ąx 0 < s < 1/3 and appeal to Remark 2.3 and (2.13) to calculate

∫
T2
∣∣∂1∣s wn∣2 ≙ ∑ ∣k1∣2s ∣ŵn (k)∣2 ≤ C(s, 1/3) ∥wn∥2⋅

B
1/3
2;1

≤ C(s, 1/3) ∥wn∥2⋅
B

1/3
3;1

≤ C(s, 1/3)C1E
2
3 (wn) ≤ C5, (2.19)

for suitable C5. We recall the formula

ηw ≙ ∂2w − ∂1
1

2
w2,

which, in terms of Fourier coefficients, reads

η̂w (k) ≙ −ik2ŵ (k) + 1

2
ik1ŵ2 (k) .

7
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For M1, M2 ∈ N to be chosen momentarily, we combine this with (2.17) and then (2.19) to Ąnd

∑
∣k1 ∣>2πM1

or
∣k2 ∣>2πM2

∣ŵn (k)∣2

≤ ∑
∣k1∣>2πM1

∣ŵn (k)∣2 + ∑
∣k1 ∣≤2πM1

∣k2 ∣>2πM2

∣ŵn (k)∣2

≤ (2πM1)−2s ∑
∣k1∣>2πM1

∣k1∣2s ∣ŵn (k)∣2 + 2 ∑
∣k1 ∣≤2πM1

∣k2 ∣>2πM2

1

∣k2∣2 ∣η̂wn (k)∣2

+
1

2
∑

∣k1 ∣≤2πM1

∣k2 ∣>2πM2

∣k1∣2∣k2∣2 ∣ŵ2
n (k)∣

≤ (2πM1)−2s ∑
∣k1∣>2πM1

∣k1∣2s ∣ŵn (k)∣2 + 2M2
1

M2
2

∑
∣k1 ∣≤2πM1

∣k2 ∣>2πM2

1

∣k1∣2 ∣η̂wn (k)∣2 + C2
4

2
∑

∣k1 ∣≤2πM1

∣k2 ∣>2πM2

∣k1∣2∣k2∣2
≤ (2πM1)−2sC5 +

2M2
1

M2
2

× ε0Eεn(wn) + C2
4

2
× 2(2πM1)3 × 1

πM2
.

Taking M1 ≙M ∈ N and M2 ≙M4, we Ąnd that

∑
∣k1 ∣>2πM

or

∣k2 ∣>2πM4

∣ŵn (k)∣2 → 0 uniformly in n as M →∞,

which concludes the proof of (2.18). ◻

Corollary 2.10. If {wn} ⊂ A satisfy Eεn(wn) ≤ C < ∞ and supn ∣εn∣ ≤ ε0, then {wn} is precompact in

Lp (T2) for any p ∈ ∥1, 10
3
).

Proof. The conclusion follows from the precompactness of {wn} in L2(T2), the bound (2.14) from

Lemma 2.7, and interpolation. ◻

Corollary 2.11. If {wn} ⊂ A satisfy Eε(wn) ≤ C <∞ for a Ąxed ε, then {wn} is precompact in Lp (T2) for

any p ∈ ∥1, 6).
Proof. We again appeal to the precompactness of wn in L2(T2) (taking εn ≙ ε in Proposition 2.9), but

instead use the bound (2.15) from Lemma 2.7 before interpolating. ◻

As a direct application of Corollary 2.11, we can prove an existence theorem for the original smectic

energy Eε deĄned in (1.3). For any periodic g ∶ T1 → R, we deĄne

Ãε,g ≙ {u ∈W 1,2 (T2) ∶ Eε (u) <∞, ∫
1

0
u(x1, x2)dx1 ≙ g(x2) for a.e. x2 ∈ ∥0, 1)} .

We note that Ãε,g is non-empty for example when g is smooth.

Corollary 2.12. For Ąxed ε > 0, if Ãε,g is non-empty, then there exists uε ∈ Ãε,g such that Eε (uε) ≙
infu∈Ãε,g

Eε (u).
8
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Proof. Since admissible class is non-empty, we can let un be a minimizing sequence for

Eε (u) ≙ 1

2
∫
Ω

1

ε
(∂2u −

1

2
(∂1u)2)2

+ ε(∂11u)2 dx;

in particular, the energies are uniformly bounded. By Corollary 2.11, we have, up to a subsequence that we

do not relabel,

∂1un → ∂1u0 in L4 (T2) (2.20)

for some u0. Since un is a minimizing sequence, the Ąrst term in Eε combined with the L4-convergence of

∂1un implies that {∂2un} are uniformly bounded in L2(T2). Thus, up to a further subsequence which we do

not notate, there exists v0 ∈ L2 such that ∂2un ⇀ v0 weakly in L2(T2). Furthermore, by the uniqueness of

weak limits, it must be that v0 ≙ ∂2u0, so u0 ∈W 1,2(T2). Expanding

∫
Ω

(∂2un −
(∂1un)2

2
)2

dx ≙ ∫
Ω

[(∂2un)2 − (∂1un)2∂2un +
1

4
(∂1un)4] dx ,

we see that by (2.20), the lower semicontinuity of the L2-norm under weak convergence, and the fact that

lim
n→∞

∫
T2
(∂1un)2∂2un dx ≙ ∫

T2
(∂1u0)2∂2u0 dx,

we have

lim inf
n→∞

∫
T2
(∂2un −

(∂1un)2
2

)2

dx ≥ ∫
T2
(∂2u −

(∂1u)2
2
)2

dx. (2.21)

Also, the uniform L2-bound on ∂11u and the uniqueness of limits implies that, up to a subsequence,

∂11un ⇀ ∂11u0 weakly in L2(T2), and thus

lim inf
n→∞

∫
Ω

(∂11un)2 dx ≥ ∫
T2
(∂11u0)2 dx . (2.22)

Putting together (2.21)Ű(2.22), we conclude

inf
Aε,g

Eε ≙ lim inf
n→∞

Eε(un) ≥ Eε(u0).
Finally, by PoincareŠs inequality and the weak convergence of ∇un to ∇u0 in L2(T2), we conclude that un

converges to u0 strongly in L2(T2). Hence

∫
1

0
u(x1, x2)dx1 ≙ lim

n→∞
∫

1

0
un(x1, x2)dx1 ≙ g(x2) for a.e. x2 ∈ ∥0, 1),

therefore u0 belongs to Aε,g and is a minimizer. ◻

3. Lower bound

We consider the question of Ąnding a limiting functional as a lower bound for Eε as ε goes to zero. Given

a sequence {wε} with Eε(wε) ≤ C and ε→ 0, then

∫
T2
(∣∂1∣−1

ηwε)2dx→ 0. (3.1)

Therefore ηwε → 0 distributionally and the natural function space for the limiting problem is

A0 ≙ {w ∈ L2(T2) ∶ ηw ≙ −∂1
1

2
w2
+ ∂2w ≙ 0 in D′}.

9
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3.1. Properties of BV functions

Let Ω ⊂ R
2 be a bounded open set. We Ąrst recall the BV structure theorem. For v ∈ ∥BV (Ω)∥2, the

Radon measure Dv can be decomposed as

Dv ≙Dav +Dcv +Djv

where Dav is the absolutely continuous part of Dv with respect to Lebesgue measure L2 and Dcv, Djv are

the Cantor part and the jump part, respectively. All three measures are mutually singular. Furthermore,

Dav ≙ ∇vL2
⌞Ω where ∇v is the approximate differential of v; Dcv ≙Dsv⌞(Ω/Sv) and Djv ≙Dsv⌞Jv, where

Dsv is the singular part of Dv with respect to L2, Sv is the set of approximate discontinuity points of v,

and Jv is the jump set of v. Since Jv is countably H1-rectiĄable, Djv can be expressed as

(v+ − v−)⊗ νH1
⌞Jv,

where ν is orthogonal to the approximate tangent space at each point of Jv and v+, v− are the traces of v

from either side of Jv.

Next we quote the following general chain rule formula for BV functions.

Theorem 3.1 ([2, Theorem 3.96]). Let w ∈ ∥BV (Ω)∥2, Ω ⊂ R2, and f ∈ ∥C1(R2)∥2 be a Lipschitz function

satisfying f(0) ≙ 0 if ∣Ω ∣ ≙∞. Then v ≙ f ○w belongs to ∥BV (Ω)∥2 and

Dv ≙ ∇f(w)∇wL2
⌞Ω +∇f(w̃)Dcw + (f(w+) − f(w−))⊗ νwH

1
⌞Jw. (3.2)

Here w̃(x) is the approximate limit of w at x and is deĄned on Ω/Jw.

In what follows, we will use Theorem 3.1 to compute the distributional divergence of such f ○ w as the

trace of the measure (3.2), that is

div (f ○w) ≙ tr (∇f(w)∇w)L2
⌞Ω + tr (∇f(w̃)Dcw) + (f(w+) − f(w−)) ⋅ νwH

1
⌞Jw (3.3)

as measures.

Lemma 3.2. If w ∈ A0 ∩ (BV ∩ L∞)(T2), then denoting by Da
i w and Dc

i w the ith components of the

measures Daw and Dcw, we have

(−wDa
1w +Da

2w) ≙ 0 and (−w̃Dc
1w +Dc

2w) ≙ 0

as measures, and, setting σ(w) ≙ (−w2/2, w),
∥σ(w+) − σ(w−)∥ ⋅ νw ≙ 0 H

1
− a.e. on Jw . (3.4)

Proof. Let σ(w) ≙ (−w2/2, w). By virtue of w ∈ A0 ∩ (BV ∩L∞)(T2) and (3.3), we know that, in the sense

of distributions,

0 ≙ −∂1
1

2
w2
+ ∂2w

≙ div σ(w)
≙ (−wDa

1w +Da
2w) + (−w̃Dc

1w +Dc
2w) + (σ(w+) − σ(w−)) ⋅ νwH

1
⌞Jw . (3.5)

But the measures Daw, Dcw, and Djw are mutually singular, which implies that each individual term in

(3.5) is the zero measure. The lemma immediately follows. ◻

10
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3.2. Limiting functional and the proof of the lower bound

Let

Σ(w) ≙ (−1

3
w3,

1

2
w2) .

If w ∈ A0∩(BV ∩L∞)(T2), we can apply the chain rule (3.2) and Lemma 3.2 to Σ(w), yielding

divΣ(w) ≙ w(−wDa
1w +Da

2w)L2
+ w̃(−w̃Dc

1w +Dc
2w)

+ (Σ(w+) −Σ(w−)) ⋅ νwH
1
⌞Jw

≙ (Σ(w+) −Σ(w−)) ⋅ νwH
1
⌞Jw . (3.6)

Remark 3.3. Observe if w ≙ ux and uz ≙
1
2
u2

x, the entropy Σ(w) here is exactly the entropy Σ̃(∇u) ≙
−(uxuz−

1
6
u3

x, 1
2
u2

x), which we used in the lower bound estimates in [24]. In fact, the argument below also gives

a proof of the lower bound on any domain Ω ⊂ R
2; the only necessary modiĄcation of the proof presented

above is that one does not use ∣∂1∣−1
ηw to represent the compression energy, but rather the original expression

from (1.3).

Theorem 3.4. Let εn ↘ 0, {wn} ⊂ L2(T2) with ∂1wn ∈ L2(T2) such that

wn → w in L3(T2), (3.7)

for some w ∈ (BV ∩L∞)(T2). Then

lim inf
n→∞

Eεn(wn) ≥ ∫
Jw

∣w+ −w−∣3
12
√

1 + 1
4
(w+ +w−)2 dH1. (3.8)

Remark 3.5. Due to recent progress on the rectiĄability for the defect set to certain solutions of Burgers

equation [20], the lower bound should in fact be valid among a larger class of limiting functions. SpeciĄcally,

if w ∈ A0∩L∞(T2) and for every smooth convex entropy Φ ∶ R→ R and corresponding entropy Ćux Ψ ∶ R→ R

with Ψ
′(v) ≙ −Φ′(v)v,

∂1Ψ(w) + ∂2Φ(w) is a Ąnite Radon measure, (3.9)

then there exists an H1-rectiĄable set Jw with strong traces on either side such that

∣divΣ(w)∣ ≙ ∣w+ −w−∣3
12
√

1 + 1
4
(w+ +w−)2H1

⌞Jw. (3.10)

In particular, by substituting any entropy/entropy Ćux pair for Σ in the argument below, one Ąnds that for

an energy bounded sequence, any limiting function w satisĄes (3.9) and thus (3.10). Technically, applying the

results of [20] to deduce (3.10) would require extending the arguments there from ∥0, T ∥×R to the bounded

domain T
2 as in [17,18] andproving that (3.9) implies that w ∈ C0(∥0, 1∥; L1(T1)) (the continuous in time

dependence being a technical assumption in [20, DeĄnition 1.1]). Regarding the regularity assumption, it

is known (see e.g. [19, Remark 5.2], [15, pg. 191]) that the argument of Vasseur [35] applies in this context

and gives a representative of w belonging to C0(∥0, 1∥; L1(T1)). The extension of [20] to a bounded domain

should not present serious difficulties, although we have not pursued the details further. The concentration of

the entropy measures on an H1-rectiĄable jump set should be a key step in obtaining the full Γ -convergence

of Eε in (1.3) to the limiting energy (3.10). The remaining obstacles to such a result are the construction

of a recovery sequence for functions that with gradients that do not belong to BV ∩ L∞ (as the existing

technology from [7,28] uses both those assumptions) and the strengthening of the results of [20] to include

functions which do not belong to L∞.

11
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Proof of Theorem 3.4. Without loss of generality, we assume lim infn→∞ Eεn(wn) <∞, so that w ∈ A0 by

(3.1). Now for any smooth v, direct calculation shows

divΣ(v) ≙ ∂1(−1

3
v3) + ∂2(1

2
v2) (3.11)

≙ v(∂2v − v∂1v) ≙ vηv.

On the other hand, we can bound Eε from below as follows:

Eε(v) ≙ 1

2
∫
T2

1

ε
(∣∂1∣−1 (∂2v − ∂1

1

2
v2))2

+ ε(∂1v)2dx (3.12)

≙
1

2ε

XXXXXX∣∂1∣−1
ηv
XXXXXX2

L2(T2)
+

ε

2
XXXX∂1vXXXX2

L2(T2)

≥
XXXXXX∣∂1∣−1

ηv
XXXXXXL2(T2)

XXXX∂1vXXXXL2(T2) .

From (3.11) and (3.12), given any smooth periodic function ϕ, for any smooth v, we have

∣−∫
T2

Σ(v) ⋅ ∇ϕ dx∣ ≙ ∣∫
T2

divΣ(v)ϕ dx∣ (3.13)

≤ (∫
T2
∥∂1∣−1ηv ∣2dx) 1

2 (∫
T2
∣∂1(vϕ)∣2dx) 1

2

≤
XXXXXX∣∂1∣−1

ηv
XXXXXXL2(T2)

XXXX∂1vXXXXL2(T2)
XXXXϕXXXXL∞(T2)

+
XXXXXX∣∂1∣−1

ηv
XXXXXXL2(T2)

∥v∥L2(T2)
XXXX∂1ϕXXXXL∞(T2)

≤ Eε(v)XXXXϕXXXXL∞(T2) +C
√

εEε(v) 1
2 ∥v∥L2(T2)

XXXX∂1ϕXXXXL∞(T2) .

By the density of smooth functions in L2(T2), (3.13) holds for any v ∈ L2(T2) with ∣∂1∣−1
ηv, ∂1v ∈ L2(T2).

Thus

∣−∫
T2

Σ(wn) ⋅ ∇ϕ dx∣ (3.14)

≤ Eεn(wn)XXXXϕXXXXL∞(T2) +C
√

εnEεn(wn) 1
2 ∥wn∥L2(T2)

XXXX∂1ϕXXXXL∞(T2) .

Letting n→∞, by the strong convergence of wn in L3(T2), we have Σ(wn)→ Σ(w) in L1(T2), so that

−∫
T2

Σ(w) ⋅ ∇ϕ dx ≙ − lim
n→∞

∫
T2

Σ(wn) ⋅ ∇ϕ dx (3.15)

≤ lim inf
n→∞

Eεn(wn)XXXXϕXXXXL∞(T2) .

By taking the supremum over all smooth test functions ϕ with ∥ϕ∥L∞ ≤ 1 in (3.15), we see that ∣divΣ(w)∣(T2)
is a lower bound for the energies. To derive the explicit expression for this measure, we note that since

w ∈ A0 ∩ (BV ∩L∞)(T2), (3.4) and (3.6) apply, so that

∣divΣ(w)∣(T2) ≙ ∣∥Σ(w+) −Σ(w−)∥ ⋅ (σ(w+) − σ(w−))⊥∣σ(w+) − σ(w−)∣ ∣H1
⌞Jw.

The right hand side of this equation can be calculated directly from the formulas for σ(w) and Σ(w) and

simpliĄes to (3.8) (see [24, Proof of Lemma 4.1, Equation (6.3)]). ◻

Remark 3.6. When comparing with the lower bound proof from [24], this proof requires an extra

integration by parts, as it does not rely on a pointwise lower bound on the energy density (see e.g. [24,

Equation (4.11)]). The relationship between these two entropies and the structure of the corresponding

arguments is exactly mirrored in the entropies devised in [8,16] for the AvilesŰGiga problem Ů they are

equal on the zero set of the potential term, and both give lower bounds, with only one of them [16] bounding

the energy density from below pointwise.
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