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Abstract. In this paper, we rigorously derive a Boltzmann equation for mixtures from the many
body dynamics of two types of hard-sphere gases. We prove that the microscopic dynamics of two
gases with different masses and diameters is well defined, and we introduce the concept of a two
parameter BBGKY hierarchy to handle the nonsymmetric interaction of these gases. As a corollary
of the derivation, we prove Boltzmann’s propagation of chaos assumption for the case of a mixture
of gases.
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1. Introduction. Much effort has been put into studying the dynamics of a
collection of interacting gases. Gas mixtures such as helium and xenon were studied
as a possible coolant for nuclear reactors in spacecraft [21]. Similar mixtures have
also undergone extensive analysis as possible coolants for thermoacoustic refrigerators
[13]. Sound propagation in binary mixtures [16] and hypersonic shockwave analysis
for aerospace applications [30, 2] have also been studied.

In the case of two gases evolving in R¢, the phase space of a single particle takes
the form R% x R?. Call one gas type A and the other type B. If go(x,v) : R x RY — R
is an initial density distribution on phase space of the type A gas, and hg(z,v) :
R? x R* — R the distribution of the type B gas, the evolution of the two gases is
modeled by the Boltzmann system for mixtures:

Org+v-Veg =c1Q1,1(9,9) + c1,2Q1,2(9, h),
(1.1) Oth+v- -V, h= CQQQ’Q(}Lh) -1-02’162271(]1,g>7
9(0,z,v) = go(z,v), h(0,z,v) = ho(x,v).

Here, @; ; are integral, bilinear operators called collision kernels, and ¢1, c2,¢2,1,¢1,2 €
(0,00) are constants. They encode all the information about the possible collisions
between two particles. This system of equations was initially studied starting in the
1950s by Chapman and Cowling [14] and later by Hamel in the 1960s [22]. The system
(1.1) can be seen as a generalization of the standard Boltzmann equation, which has
its roots in the works of Maxwell in 1867 [27] and Boltzmann in 1872 [11]. It is
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interesting to note that although Maxwell did not study the Boltzmann system (1.1)
explicitly, he did consider collisions between particles of disparate masses [27].

Much work has been done mathematically to study the solutions of (1.1). Global
well-posedness for mild solutions has been proven in the case of inverse power molec-
ular interactions and small data [20] and in the case of hard potentials also with small
data [19]. Stability in various formulations has been extensively studied [12, 20, 19]
in addition to numerous numerical schemes [24, 30, 8]. Furthermore, rigorous con-
nections between (1.1) and the compressible Navier—Stokes equations for mixtures of
fluids have been established [12]. Explicit solutions to the space homogeneous variant
of (1.1) have been studied [10] in addition to recent proofs of global well-posedness
and propagation of moments [18, 15].

However, despite the mathematical progress on the subject of the system (1.1), no
work has been done on rigorously deriving the system from a system of hard spheres.
Mathematical derivation results for the single type hard sphere system trace back to
the pioneering work of Alexander [3, 4], Lanford [26], and King [23]. Gallagher, Saint-
Raymond, and Texier refined and extended the derivation of a single gas Boltzmann
equation for hard spheres and short range potentials [17]. More recently, the first and
last authors of this paper considered more complex interactions which model dense
gases with ternary interactions [6] and binary-ternary interactions [7]. It is of relevance
to note that each of these derivation results considers a Boltzmann like equation for a
single type of particle. In addition to the theoretical framework developed above for
a single type gas, new techniques for multiple gases are needed to keep track of the
evolution and correlation of one type of gas to the other. This is exactly what we do
in this paper.

More precisely, in this paper, we derive the Boltzmann system (1.1) from a mix-
ture of finitely many hard spheres. In order to do this, we consider N; hard spheres
of mass M; and diameter €; mixed with a system of N> hard spheres of mass Ms
and diameter €;. For the ith particle of mass M;, we denote its center by z; and
its velocity by v;. Similarly, for the ith particle of mass M, we denote its center by
y; and its velocity by w;. For notational simplicity, we will write the vector of all
positions and velocities by

Z(Nl,Nz) = (xla"'axNuyl)'"ayN27v17"'7UN17w17"'awNz)'

The natural phase space for this collection of particles is

Vi j, |z — x| > e, |yi —yj| > €,
€1 + €3
2

(N1,N2) |, _

(61,62) Z(vaNQ) :

Vi, g, |z —y;| >

To model a mixture of gases, we assume that each particle is a hard sphere that
evolves according to Newton’s laws. That is, if noncollisional, we assume that the
particles perform rectilinear motion, i.e.,

Ti = Vi, Yj = wj,
(1.2) v; = 0, w; =0,
(@i(0),vi(0)) = (@0, vi,0),  (¥:i(0), wi(0)) = (yi,0, wio)-
If there exists exactly one collisional pair of particles, we assume the collision is

completely elastic, i.e., energy and momentum are conserved under collisions. Conse-
quently, we have the following collisional laws:
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1. If (z;,v;) and (z;,v;) are such that |z; — z;| = €1, then the precollisional
velocities (v;,v;) give rise to the postcollisional velocities (v, v}) by

(1.3) v =v; — ((Ui —v;) (i — ;) ) (z; — )

s = a5l ) Nl — 5|7

(1.4) vl = v+ <(Uz — ) (x; — ;) ) (i —xj)

lzs = 2 ) [l — 5]

2. If (y;,w;) and (y;,w,) are such that |y; — y,;| = €2, then the precollisional
velocities (w;,w;) give rise to the postcollisional velocities (w;, w?) by

(1.5) w; =w; — ((wi - w;) (yi — y;) ) (yi — v5)

lyi = ysll ) Nyi = ysll”

lyi = y;ll ) llyi —y;ll°

(1.6) w§=w¢+<wa—wﬂ Qﬁ—%))@u—w)

3. If (z;,v;) and (y;,w;) are such that |x; — y;| = (€1 + €2)/2, then the pre-
collisional velocities (v;,w;) give rise to the postcollisional velocities (v}, w})
by

2M, (@i —y;) | (@i —yj)
1.7 vy = v — ——— | (v; —wjy) - )
an- - wi=w Mﬁwboz Dyl ) T

2M; (zi —yj) \ (xi — )
1.8 wi = wj + ———— | (v; —wy) - .
a8 wi=u, MHJQQ D el ) T

For convenience, we call the above system which satisfies (1.2) and (1.3)—(1.8) an

N7, Na, €1, €s particle system. This particle system describes a deterministic, i.e.,

pointwise defined, evolution on the phase space Dgé\fle’i\?). In section 3, we prove that

for almost every initial configuration in phase space, the above flow is well defined

and measure preserving. Consequently, an initial density f(n, n,),0 on the phase space
D(N17N2)

(e1,€2)

(1.9)

evolves according to the following Liouville equation:

(N1,N2)
(e1,e2)

atf(NlJVz) + Zivzll Uk - kaf(Nl,Nz) + Zﬁil Wi - vykf(leNz) =0on 20)
* N1, N:

f(N1,N2)(Z(N1,N2)) = f(N1,N2)(Z(N1,N2)) on angelfez)Z)a

fvi N2y (0) = f(vy Vo). 00

where ZE‘N1 Na) is the postcollisional configuration related to the precollisional config-

uration Z(y, n,) by the collisional laws given in (1.3)-(1.8)." We note that the above
boundary condition is defined for a full surface measure subset of the boundary (see
section 3).

IFor a precise definition, see Definition 3.2.
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In order to understand the statistical behavior of the N1, Ns, €1, €5 particle system,
we require each of the particles of the same mass to behave identically. This manifests
as the condition that f(, n,) is invariant under permutations of the (x;,v;) variables
and invariant under permutations of the (y;, w;) variables. We call this condition the
identical particles assumption.? Note that we do not require that J(Ny,N) is invariant
under interchanging (x;,v;) and (y;,w;) variables for any ¢, j. This lack of symmetry
forces f(n,,n,) to take into account the behavior of both types of particles, but places
the Ny, No,€1,€o particle system outside of the standard framework developed for
hard-sphere systems of a single type, such as those in [17]. In order to handle this
asymmetry, we introduce the following definition, which will be given more precisely
in Definition 2.1.

DEFINITION 1.1. For each s € {1,...,Ny — 1} and £ € {1,... N2 — 1}, we define
the mixed marginal of f(n, n,) to be

s,l
f((N1>N2) /II-'DEZI;I;)Z)f(Nl’NQ)deJA . dle dvs+1 . d’UN1 dy“_l e dydewu_l e dU)NQ.

This concept of a mixed marginal is key to our analysis and allows us to distinguish
the behavior of both types of particles.

Integrating by parts equation (1.9) and using the identical particles assumption,
we will derive in section 2 an evolution system for f((]sv’f,) Na) which will be given as a two

parameter hierarchy of equations called the Bogoliubov—Born—Green—Kirkwood—Yvon
(BBGKY) hierarchy:

D (5,0) (N1,N (s+1,0) | o(N1.No) 5,0+1)
(1.10) (dt>( )f(Nl,Na Clotriorro v T Cloaesyd -

Here, the operators C(i\;}) ]2];11 0 C((i\;})]zjj)z +1) are integral operators given explicitly in

subsection 2.4 and

s J4
D
(dt)(s,a =0t vV + ) wi Vi

k=1 k=1

Solutions f((]i,’f)Nz) to the BBGKY hierarchy represent the densities of subsystems to
the N1, Ny, €1, €2 particle system. Taking Ni, Ny — oo and €1,€e5 — 0 appropriately,
we formally obtain an infinite two parameter hierarchy of equations called the Boltz-

mann hierarchy:
D (s.0) (s+1,0) (s,041)
(1.11) T I =Cs0,11,0f + Cls,0), (5,041 7.
(s,0)

Here, the operators (s ¢, (s+1,0)s €(s,0),(s,6+1) are integral operators given explicitly in
subsection 2.4. Solutions f(**) to the Boltzmann hierarchy correspond to the densities
of finite subsystems to a mixture of two gases.

We are now ready to give an informal statement of our main theorem. The
rigorous statements are given in Theorems 5.1 and 5.2.

2The density f(~n1,N,) obeying (1.9) and the identical particles assumption represents the statis-

tical ensemble for the gas mixture of the N1, Na, €1, €2 particle system.
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STATEMENT OF MAIN RESULT. Let f(s ) be a sequence of initial data for the

Boltzmann hierarchy (1.11), and for each N1, Ny € N, let f((;,ZN be an approz-

imating sequence of data for the BBGKY hierarchy. Furthermore, let f*% solve

s,0 s,4 s,0)
(1.11) with initial data f( ) and let f((Nl?Nz) solve (1.10) with initial data f(N1 N0
Then, for fized c1,co,b € Ry in the mized Boltzmann-Grad scalings

d—1 —_ d—1 _ —
N161 =C1, N262 = Co, €1 = beg,

we have that f(N’ )N ) converges to f&0 in the sense of observables® as Ny, No — 0o
and €1,€5 — 0.

Furthermore, if f(é )

is a tensor of the form g(j@‘g ® h?z, then f((;;f)m) converges
to g®° @ h®* in the sense of observables as Ny, Na — oo and €1, €3 — 0, where (g, h)
is a solution of (1.1) with (go,ho) as initial data.* The constants c1 2,co1 are given
by

1+0\*! Lo\t
(1.12) C1,2 = C2 (2> y C21 =C1 9 .

We note that these constants ci,ca,c1,2,¢2,1 cannot be picked arbitrarily. In
particular, we have that the constants must lie in a three dimensional subset of (0, 00)*
which is parametrized by c1, ¢z, and b. Crucially, the constants ¢; 2 and ¢1 in (1.1)
which describe the strength of the interaction between the two gases can be calculated
from the inverse mean free paths ¢y, co and the ratio b of the diameters of the spheres.
Moreover, (1.12) shows that as b grows large, the constant c¢; o grows large while the
constant cp; becomes small. This agrees with physical intuition that if one gas is
comprised of larger particles than the other, it has a larger effect on the system as a
whole. See (2.27)—(2.29) for the computation of these constants.

REMARK 1.1. As a result of the above statement, Boltzmann’s propagation of
chaos assumption is rigorously verified. That is, in the infinite particle limit, the

joint density f(s 0 No) factors as g®° @ h®* as Ny, Ny — oco. It is worthwhile to note

that while the denszty g% @ h®t indeed factors on (R? x RY)+0 | the evolution of g
still depends on the evolution of h via (1.1) and vice versa.

While we are inspired by the program for deriving the Boltzmann equation, in-
troduced by Lanford [26] and recently revisited by Gallagher, Saint-Raymond, and
Texier [17], in this work we needed to introduce the instruments that can help us track
simultaneously more than one type of gas. In particular, the main novel contribution
of this work is to develop a theoretical framework which can handle multiple types of
collisions. After proving the mixed particle dynamics are well defined in Theorem 3.1,
we introduce a notion of identical particles (2.13) and mixed marginals in Definition
2.1. Using this initial framework, we formally derive a two parameter hierarchy of
equations in (2.26) and (2.36) that to the best of our knowledge had not been studied
in the kinetic context before. This two parameter hierarchy generates a quartic tree
of interactions between the different types of particles, as can be seen in (4.5) and
(4.17). In the proof of Theorem 5.1, we establish measure estimates in Proposition
7.2 which crucially depend on the masses of the particles. We also note that the
framework introduced below can be adapted to any number k of different types of

3Convergence in observables is defined explicitly in Definition 5.4.
4Here, we use the convention that ¢g®° ® h®€(Z(s’£)) =[T21 g(zs,v5) Hle h(yi, w;).
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gases. The resulting marginals would be indexed by an element of N*. For the sake
of clarity, we will present only the result for the mixture of two gases.

We structure the paper as follows. In section 2, we introduce the concept of a
mized marginal and derive a hierarchy of equations which relate mixed marginals. In
section 3, we prove the existence almost everywhere of a global mixed particle flow.
Next, section 4 covers the well-posedness theory for the hierarchies in addition to the
well-posedness theory for the Boltzmann system (1.1). Section 5 gives the precise
statements of the main results of the paper. The following sections are devoted to
proving these results. First, a series of approximations are proved in section 6 which
allow us to handle the observables. Next, an adjunction lemma is proved in section
7, which enables us to add particles to our system while keeping track of our global
flow. Section 8 uses this control to obtain a formulation of the observables in terms
of specific pseudo-trajectories. The final section (section 9) pieces all of the previous
approximations together to prove the main theorem.

2. Vocabulary of the paper.

2.1. Definitions. In this section, we consider two types of hard spheres evolving
in R?. We call one group of particles type (1,0) particles and the other type (0,1)
particles. We assume that all particles perform rectilinear motion in R, until they
undergo a collision with another particle of either type. The collisions occurring are
assumed to be perfectly elastic and instantaneous. Our goal is to keep track of both
gases separately, extracting some qualitative information about the evolution of their
probability distributions. To do this, we establish some new notational conventions
simplifying the combinatorics involved. While the below notations are cumbersome,
they allow us to carry out proofs without repetitious arguments and easily generalize
to k many types of particles.

e We define the set

(2.1) T ={aeN?: |a| =1}

to be the set of all types of particles. Greek indices such as «, 3, or ¢ in
Z will designate the type of particle we are considering. We introduce an
ordering on the set .7 by simply declaring (1,0) < (0, 1).

e For each o € .77, denote the number of type « particles by N, their diameter
by €4, and their mass by M,. For i € {1,...,N,}, & € R? will denote
the position vector of the ith type a particle, and v* will denote its velocity.
For a more compact notation, we will write X = (xf, ... ,x‘;‘va), VN, =
(vf, ..., 0%, ), and Z§ = (X}, VN.)-

e For each o, € J, we define the interaction distance between a particle of
type a and a particle of type § to be the quantity

€a T €5
E(Qﬁ) = 2 .

Additionally, we define the index set of interacting pairs to be

(22)  TH =700 {1, Na} x {1, N}, e # 6,
(Ne:Ng) {(,5) € {1,...,No}?: i< j}, a=p4.

The set of indices (,7) € Z(®#) above is exactly the indices i of type a

particles and indices j of type [ particles which are interacting each other
(the ordering i < j excludes double counting for particles of the same type).
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e For convenience, let us write the full vector of positions and velocities as

_ — (1,0 (0,1) (1,0) 1,(0,1)
(2.3) Z = Z(N(l,o)’Nw‘l)) = (XN(l,O)’XNw,l)’VN(LO)’VNm,l)) ’

The spacial variables of Z(N(1 0y No.1)) will be written as X(N(I.O)vN(O,l)) =

(X](Vl(fl) , XJ(\9<701,)1> ), and the velocity variables of Z(N(1,0> Neo1y) will be written as
(1,0) ,(0,1)

VNG .0y Ny = (VN<1,0>’VN(0,1))' We will sometimes abuse notation slightly
and write z&(+) or v¥(+) to denote the projection onto the correct component:

(2.4) 22(Z) =22, v™(Z) =

3 K3 K2

e We will often use the convention that Ny = N gy, N2 = N(g1), €1 = €10,
€2 = €(0,1), M1 = M1,0), and My = Mg 1)
With these notational conventions, our phase space is given by

Ni,N2) .
(2.5) D=D"M = () {Z: b -2]>ean)
a<pB (i,j)eZ(«p)

where the outer intersection is taken over all o, f € Z and o < 3. The condition that
a < 8 excludes double counting (since |z — xf| > €(a,p) implies \xf — x> €a,p))-

REMARK 2.1. We note that while these notational conventions are unwieldy, their
use is necessary for the derivation procedure. In particular, in section 6 we expand
solutions of the BBGKY and Boltzmann hierarchies in terms of their “collision his-
tories.” By using multi-indices, keeping track of this collision history is simplified.

We also remark that another advantage of the above notation is that it can be
extended in a natural way to k types of particles by defining the set of types to be

T ={a eNF:|a| =1}.
For simplicity, we will only present the case k = 2.
2.2. Dynamics and Liouville’s equation. We assume that particles perform
free motion as long as there is no collision, i.e., for each @ € 7,

(2.6) i =0, =0 Vie{l,...,N.}.

K2 K2

When two particles collide, we assume that they behave like hard spheres. That
is, if for some fixed o, 3 € 7 and (i,j) € T(*?) we have |z& — xf| = €(a,p), then

the precollisional velocities v, vf are instantaneously changed to the postcollisional

velocities (v$)*, (vf)* by

B a B
2M, xd —al & — gt
I et v <(v? —f) ) Pt
ot Mp g =251 ) Ml = =5
B @ B
2M ZE? — X Tr; — T
(2.8) (W)= 4 ((U? — ). J ) i
j I My + Mg R P i I

Equations (2.7) and (2.8) are consequences of the conservation of energy and the
conservation of momentum:

(2.9) Movf + Mgv!] = M (v2)* + Mps(v])*,
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(2.10) M |vf|* + Mg|v] |* = Ma|(v)*|* + M| (v])* .

In section 3, we show that these conditions give dynamics which is globally in time
defined for almost every initial configuration.

We now consider probability densities which are constant along the above dynam-
ics. Given an initial probability density f(n, n,)0, let

f(Nl’N2)(t7 Z) = f(Nl,N2),0(q)(_]\tfl7N2)(Z))7

where @ZNI Na) is the mixed hard-sphere flow as introduced in Theorem 3.1. Since
(PZ—NI; Na) is measure preserving, f(n, n,)(t) is a probability density for all £ > 0. For-
mally assuming sufficient regularity for our calculations to make sense, the generated
flow yields that the probability density f(n, n,) of the full particle system satisfies the
Liouville equation:

Nqo

(2.11) OrfnuNg + D D 08 Vae fvy vy =0 on [0,7] x D,
acT i=1

where D is the interior of the phase space D defined in (2.5). This is accompanied by
the boundary condition

(212) f(Nl,Ng)(th) = f(Nl,Nz)(ta Z*) V(t, Z) c [O,T] x OD.

We define Z* in the following way. If Z € 0D is such that there exists exactly one
pair a, f € 7 and exactly one pair (i,5) € Z(*#) such that |z& — x]ﬁ\ = €(a,8), then
Z* is the vector Z with the v, vf components replaced by (vy)*, (’UJB)* as defined in
(2.7), (2.8). It can be shown (see section 3) that the set of all such Z € 9D fills a full
surface measure subset of 9D, and so the boundary equation (2.12) is defined almost
everywhere.

2.3. Symmetry with respect to same type particles. In order to observe
the statistical behavior of a mixture of gases, we require all particles of the same
type to behave identically. For this reason, we assume that the joint probability
density f(n, ) is invariant under permutations among the same type of particles.
Mathematically, we assume that for any o € S(N;) and o’ € S(N3),”

(2'13) f(Nl,N2)(t7 Z) = f(Nth)(t?U@U/(Z))v
where we are defining

_ (,(L,0) (1,0 _(0,1) (0,1) (1,0) (1,0) (0,1 (0,1)
0@ (Z) = (za(l) s TNy Tor(D)r - Tty Vo(l) » - -+ Vo (o) Vor (1) - - ,vo,(NQ)).

That is, we require that f(n, n,) is invariant under the above action by the group
S(N1) @ S(Na).

2.4. Mixed marginals and BBGKY hierarchies. Since Liouville’s equation
(2.11) is a linear transport equation, it yields a complete description of the mixed
particle system. However, since the number of particles is extremely large, efficiently
solving it is almost impossible. As mentioned in the introduction, we wish to extract a
statistical description with the hope that qualitative properties of the gas mixture will

5Here, we let S(N) denote the symmetric group on {1,..., N}.
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be revealed as N1, No — 0o and €1, €2 — 0. In the case of a single gas of hard spheres,
this description is the Boltzmann equation. Rigorous derivation of the Boltzmann
equation was made by Lanford [26] and later revisited by Gallagher, Saint-Raymond,
and Texier [17]. Their key idea is to derive a hierarchy of equations for the marginal
densities of the density function. In the mixture case, though, it is impossible to keep
track of the two gases separately. The reason is that by using ordinary marginals,
we would view the mixture as a uniform gas of N; 4+ N» particles. To overcome this
problem, we introduce the notion of mized marginals.

DEFINITION 2.1. For each o € .7, let so € {1,...,No — 1} and let s1 := 5(1 ),
S2 1= S(0,1)- We use the notation

Z(sy,59) "= (xgl’o), .. ,IS’O), xgo’l), .. ,xgg’l), 051,0)7 .. ,vg’o), U£0,1)7 . ,vgg’l)),
(s1,82) ._ (,.(1,0) (1,0) _(0,1) (0,1) (1,0 (1,0) (0,1) (0,1)
(lefib) T ( siA1 TNy 9Ttk 0 TN, HVUsiq1o 5 UNy H Usyp1r- -5 UN, )
We also define
(s1,N2) ._ /, (1,0) (1,0) (1,0 (1,0)
Z(Nl’NZQ) = ( sl TN Vg s U ),
(N1,s2) ., (0,1 0,1) (0,1 0,1
Zieh = @O, Gl el ).

For (s1,82) # (N1, N2), we define the (s1,s2) mized marginal of f(n, n,) to be the
function

(2.14) f((ls\fll,,slffi)(t7 Z(s1.50)) = / fovy o) (8 Z(vaNz))dZ((Js\fl;,sif)z)’
D(Z(sy,s5))

where the integral is taken over the set

81,8 N1, N.
(215 D(Zeren) = {2003 * Zaviwy € DY

(e1,€2)

Additionally, we will define f((]]\\,?]]\\,’j)) = f(N1,N2)-

Using Liouville’s equation (2.11), the boundary condition (2.12), and the symme-
try condition (2.13), we may formally derive a relation between these mixed marginals.

Let us assume that f(n, n,) € C([0,T] x D) and calculate by definition (2.14)
that

atf((;/ll’fﬁi)(t’ Z(Sl,sz)) = / atf(NlJVz)(t’ Z(N17N2))dZéj;17fJ:Il)'
D(Z(sy,59))

Now fix a € 7 and i € {1,...,s,} and compute, using (2.14) again, that
O - Vae Sy (6 Zisuon) = / O+ Vs fonn no) (b 2o, va) JAZ 0 R0
D(Z(sy,s9))
+/ v nf(ny Ne) (B Z(Ny Ny ) S,
OD(Z (s, ,54)51,0x)

where n is the outward normal vector to the surface

N
(216) OD(Zoy i) =) U {20075 € DZiorn) s 28 =2l = ey |-
B j=sp+1
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Summing over all ¢, and using (2.11), we obtain

Sa
o+ Z V8 Voo | T2 2y )

a =1
Noc
S [ Vi (6 Zon ) JAZG
a 1=8q+1 D(Z(S1 52))

+ZZ/ nf(N17N2 (t Z(N1,N2))dS

OD(Z(s;,s5)it a)

Now, integrating by parts the first term on the right-hand side results in only the
boundary terms

/ V2 - Vi fiv o) (b 20w, ) JAZ {00
D(Z(ey.0z)

_ / ( O 1y ) (b Zvy iy S (22 o dZ 20,

Z(sl ,52);1-10‘)

where Z (51’82)’; "“ is the Z((]svll’si,)z) variable without the z, v components and

(217) o*D (Z(51 52) ,’L,O( = U U {Z((]S\/}’Sﬁ[l) € 'D(Z(SMSQ)) : |$f — xla| = e(a,ﬁ)}'
B =1

Combining the above expressions together,® we obtain

<6t +ZZ“ )f((;vl 33;)< 1 Z(s1,82)) =

o =

(2.18)
-2 NZQ Z / /d/ & nf(Ny Ny (B 2Ny, Ng)) S (@ )dvadz((]svl S]%’]))’ o
@ i=sa+1 B j=1"P(Z(s] s5)4a) 'R 9B, ,3)u ) 1.N2
(2.19)
N
Sa B
(s1,82),4,8
EDIDIDIEDS & ng (t, 7 yas(@yavs az i
ol Sg+1/D(Z(51,sz)+B) /Rd /836((1,[3)@?) (N1,N2) (N1,N2) (N1,Ng)

where here we are taking n to be the inward pointing normal. Relabeling (2.18) by
reversing the roles of (7, 5) and (i, ), we can combine (2.18) and (2.19) to produce

Y Sa e f(cl ,59) ¢+, z )
t Za iZ:1 i (N1,Ng) " “(s1,82)
sar Ng ( 5
ByauB $1,82),7:8
=335 > (—u + o) nf (t, 2 )ds (@l )dvl dz .
& i=13 j:s[3+1/D(Z(sl,32)+ﬁ)/md /ﬁ'Be( 8 =) ¢ (N1,N2) (N1,N2) (N1,N2)

By our symmetry assumption (2.13) and recalling Definition 2.1, we may simplify the
each of the above integrals into

A

_ (s1,82)+8

= / / (= +08) - nf vy Ny (B Z(ny Ny )dS(af L dv? L dzZ

sﬁ‘l»l 1,42 1,42 spt+1 SB+1 (N1,Ng)
D(Z(sy,59)+8) /R JOBe(, 5y (§)

=L,
rd JoBe

6Note that the boundary sets (2.16) and (2.17) each consist of a union of sets which are pairwise
disjoint except for a set of surface measure zero. See Remark 3.4.

o s B
/ /a (=] 0 nf iy wg) (6 Zvy ) )dS (2 Yol dZ (3L 53]

(Z(sy,59)+p) /RY 10Be( gy (@ )

o (s1,82)+8
=) U5ﬁ+1 +”i)'"f(N11,31\272) (fwZ(sl,82)+ﬁ)ds($35+1)d1’5ﬁ+1'
.B) i
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For each of these integrals, change variables so that we integrate over S¥~! instead of
0B, 5 (x§) to obtain

$1,82)+8 B0+ B
(2.20) €t /Rd /Sd G S R (W A CR ARSI Ces

gt D(él,b2)+5

(51.59)+Bsc (e1,e2) is the vector

Here, we are using the notation that
(2.21)
1,0 0,1 1,0) (1,0 0,1
1,00,+ Xs(l : I‘ +E(CE :8)0 X( ) ‘/5(1 )’ §1+)17V( ) ’ 6: (170)7

ot (X8 XS a0 VT VY 0 )L 8= (0,1),

Next, break (2.20) into parts Sy := {# € S¢~1: (va_H —vf)-0>0}and S_:={0 ¢

Sé-t . (va_H — ) -0 < 0}. On S_ we use the change of variables 6 — —6 and on

S+ we use the boundary condition (2.12) to obtain

(2.22)

(875 + ZZU? : vmf‘) f((js\fll7,‘sj\2];)(t Z (s1,82) ) = Z(Nﬁ - sﬂ)e((lu:}a) 27

a =1 B,a i=1

(2.23)
a (31 52) 4By i anx (Sl s2)+8
»/]Rd Ld ) ngrl —V; ) . 0]+ ( (N1,N3) (t (31,82)+ﬁ,€) (Nl Na) (t (Sl $2)+8, e)) d@dv5ﬁ+1,

where we are using the notations

1,00, % o 2,00, 4 *
(2.24) 2 o e = (Z(sl,52)+5,e> ,
(2.25)
o (X‘£}70), — a, ,6‘)0 X(O Y V(l O)a SJrO)lv V(O 1)) ) 5 = (1’0)7
(s1,82)+B,€ (Xs(l ,0) Xs(o 1)7 — (o) 0, V;1 ,0) V(O 1)’ ggi)l) B =(0,1).

From these calculations, we are led to the following definition.

DEFINITION 2.2. For each o, 3 € T and s1,82 € N, we define the collision oper-
ator

c(N1.N2),0 gt o (DESI,SQHB) N (D(sl,@))

o -
(51,52),(51,82)+6 "= “(s1,52),(s51,52 €1,€2) (e1,€2)

by the expression

51,52)+0 o d—1 = Jé] a
C(51 $2),(81,82) +ﬁf(1\/'11 ]3{2 (Z(Shsz)) E (Nﬁ - sﬁ)e(aﬁ) Z~/Rd /Sd—l[(v5/3+1 - ) ’ 9]+
(s1,82)+8 zoe,* (81,82)+8 ( 7i,
(f(z\fll,ﬁ@) (Z(51say+m.6) = N (Z(sl,s2>+6,e)) dfdug, ;.

The collisional operator 6&1,52),(51,52)-”3 can be viewed as counting the effects
of colliding a new type [ particle with existing particles of type a. As with the
Boltzmann equation, the above equations represent the effects of a collision between
two particles and naturally split into gain and loss terms.

Summarizing the discussion above, if f(n, n,) € C°([0, 7] x D) satisfies Liouville’s
equation (2.11), the boundary condition (2.12), and the identical particles assumption
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(2.13), then we have for each a € J and s, € {1,..., N,} that the mixed marginals
satisfy

(2.26)
al a 51,8 s1,82)+8
(at +ZZW vx?) f((]\,ll’]f,;(t Z(s1.52)) Z Clara2),(s1.2) 487 Nll 132 (ts Zsy.52))-
a i=1 B, €T

We call the set of N3Ny coupled equations in (2.26) the BBGKY hierarchy. Solutions
to this hierarchy will be our main object of study. We will give the function spaces
and definition of solutions to the BBGKY hierarchy in section 4.

2.5. Scalings and the Boltzmann hierarchy. Recall that our goal is the
asymptotic behavior of the system, i.e., Ni, Ny — oo and €1,e; — 0. The only
possible scaling to make this feasible is dictated by Definition 2.2, and so we assume
that Nge‘(i;}i) ~ 1, where

N1€l11_17 Oé:ﬁ:(l,O),
Nyed=? a=p=(0,1)
2.27 Nged—1 = 2 T
220 od T\ N (552)" 7 0= (0,1).8= (1,0,
€1te€2 d—1 _ _
N2( —5 ) ) a_(170)76_ 9

Note that the terms where a # (8 in (2.27) imply N7 ~ Ns. This fact, combined with
the terms in (2.27) where o« = 3, implies €; & e5. Hence, we will explicitly require
the following scalings:

(2.28) N1e‘11*1 =, Ngegfl = ¢o, €1 = bes.

A simple calculation then yields
€1+ €9\ 241 1+b~ 1\t T 1+b\ 4!
e (%) ma(B0) L () ()

(2.30) N, = (clbl—d> No.

C2

Here, the constants c¢1,co > 0 describe the mean free path density of the different
types of gases, and b is the ratio of the type (1,0) particle diameter to the type (0, 1)
particle diameter. For the sake of simplicity, we assume that the constant c;b'~%/c,
is a rational number. While this condition is not strictly needed, it simplifies the
relation N7 has with Ns in (2.30). Assuming that our scalings (2.28) hold, we can
now obtain a formal limit of the above collisional operators by taking N1, No — oo
and €1,e3 — 0.

DEFINITION 2.3. For s1,s2 € Ny, define for each o, 8 € T the operators
o yele’s) d(s1+s2+1 [e%) d(s1+s
(2.31) Gy (ormmy e CO (R (5152 )) N (R (51 2>)
given by

(2.32)
a (
%)(51,52),(51,52)+Bf

S

— B N —+ 7,00, % s + 1,0

=Aj Z/Rd /Sdfl[(vsﬁ*l — o) - 0]+ (f(s1 s2) 5(2(51 82)+l3) fls1:82) 5(2(51 32)+B)) deUSﬁJrl.
i=1

s1,82)+8 (Z(sl,sg))
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Here, we are using the notation that

sy e (8, XV VWO VD)L 8= (1,0),

(s1,82)+8 (XS’O),XS(S’U,ZE?, Vs(ll,o) VSO 1)7 ggi)l) 5=(0,1),

and Z(’Sa sa)1p 15 the vector ZZ: s2)1p Whose components v?,vfﬂﬂ are replaced with

(vf)*, (v EBH)* given by the collisional laws

Or) =0 = g g, (07 =) 0) 0

. 2M, o
231 o) =Vl 37 gy (07 =) 0) 0

The constants Aj in (2.32) are given by

C1, a=f= (170)7

Co, a:B: (Oa 1))
(2.35) Aj = o (1 A= (0,1),8=(1,0),

(%) a=(L0.8= 0.

The associated limiting differential equation of (2.26) is given by

(2.36) <3t PN Vm;:)ﬂsl’”) = D e nsnral

aeT k=1 a,feT

We call the infinite set of coupled equations (2.36) the Boltzmann hierarchy. The
exact definition of the functional spaces on which we consider solutions is given in
section 4.2. Formal solutions to this hierarchy which are tensors of the form

(237) f(51752)(t7 Z(51,52)) = H H f’y(ta xz, Uz)

YT k=1

for some functions f(; o), f(0,1) are intimately related to the Boltzmann equation for
mixtures. Namely, (2.37) solves the Boltzmann hierarchy if for each o € 7

(2.38) [0+ vf - Ve | fa(t, 2, vf) = Y AGQY (far f5)(t 27, 0]).
BeT
The collision operators Qf above are given by the following definition.

DEFINITION 2.4. For G, H : [0,00) x R x R? = R and o, B € 7, we define the
bilinear forms

Q3 (G, H)(t,z%,v%)
= [ [ (@7 =00 [Gla%, (0 H (2, (7)) = Gty 0, v H (2%, 07)] oo,
Rd Jgd—1
where (v*)*, (v)* are given by the collisional laws

2Mj oM,

K __ o0 a _ By, By« _ B, “Tra a _ By .
() =vw 7MQ+M5 ((vl V") 9)9, (v”) v +MQ+M5 ((vz v?) 9)9.
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These operators QF are related to the operators @; ; in the Boltzmann system for
mixtures (1.1) by

Q1717 o = 6 - (170)7

a_ ) @22, a=p5=(0,1),
(2.39) @5 = Qe a=(1,0),8=(0,1),
Q2,1, a=(0,1),8=(1,0).

3. Dynamics of mixed particles. In this section, we rigorously show that a
measure preserving global in time flow for almost every initial configuration can be
defined for the mixture of two hard-sphere gases such that the first gas consists of
N7 identical particles of mass M7 and diameter ¢; and the second gas consists of N
identical particles of mass M5 and diameter €. We assume that both types of particles
perform rectilinear motion, until they run into a binary collision with a particle of
either type. Depending on the type of particles colliding, velocities instantaneously
transform according to (2.7), (2.8). However, since the exchange of velocities is not
smooth in time, it is not obvious that a global dynamics can be defined. In particular,
the system might run into pathological trajectories (multiple collisions of particles,
grazing collisions, infinitely many collisions in a finite time).

In the case of a single gas of identical hard sphere, pathologies might arise as
well, and existence of a global flow was established by Alexander [3]. Inspired by the
ideas of [3, 4], Ampatzoglou and Pavlovié 7] constructed a global flow for a system of
particles performing ternary interactions and later [6] for particles performing both
binary and ternary interactions.

Our case does not directly follow from [3] because our mixture consists of gases
of different masses, and therefore we have to construct the dynamics from the very
beginning. To do this, we adapt ideas from [6] in the case of mixture of gases.
The crucial lemma required to pass from the local flow to the global flow is to note
that once a collision occurs, subsequent collisions cannot involve the same particles.
This observation allows us to remove a set of measure zero leading to pathological
configurations while having well-defined trajectories on the complement.
(N1,N2)
(€1,€2)
by (2.5) and our set of interacting pairs Z(®#) is given by (2.2). We denote the interior
of D by Zo), and we write its boundary as

(3.1) o= U =) 50 =12 1 -2l =€an}-
a<pB (i,j)eZ(®p)

3.1. Mixed particle notation. Recall our phase space D = D is given

These parts EEZO‘][; ) of the boundary are not disjoint, and the intersection of two non-

identical parts forms sets where three or more particles are colliding. The subset of
the boundary where the only particles in collision are exactly the ¢th a-particle and
jth B-particle will be denoted by

(32)

EE?’].’?)SC ={Ze€dD: Z¢c ngﬁ) for a unique 4-tuple (a, 3,4, ) with a < 8 and (4, j) € Z(*#)}.
The set where exactly two particles are colliding is called the simple collisional subset
of the boundary and will be given by the disjoint union

(3.3) 0D:= U =

a<p (i,j)eZ(:h)
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The subset of the boundary not in a simple collision is said to be in multiple collisions
and is denoted by

(3.4) OmeD 1= 0D \ D5 D.

(@,8)

In the following definition, we further classify (i.]). 5

or nongrazing collisions.

DEFINITION 3.1. Let a < 3 € 7. For (i,7) € T(*®) and Z ¢ ngﬁ)sc, we define

into parts where we have grazing

the following collision types:
precollisional: — (x$ — m]ﬁ > f
;o . B B
postcollisional: — (z§ — ) - (vf* —v}) >0,
B a B
J i J

grazing: (& —27) - (v —v) = 0.
This leads to the definition of the simple collisional grazing and nongrazing sets

2(0‘75) — {Z c E(avﬁ) - 7 s gmzing }, E(avﬁ) — E(aﬂ) \EE%B)

(i,5),s¢,9 (i,7),s¢ (i,5),s¢c,ng -~ (4,5),s¢ i,5),s¢,9°

Moreover, we have the decomposition
ascD = asc,ngl) U asc,g1>7
where we define the simple collisional grazing and nongrazing sets

Ose,ngD :={Z € 05D : Z is not grazing }, Ose,gD :={Z € 0scD : Z is grazing }.

(a!/B)

) we have a natural impact operator.
(4,4),8¢,ng

On these nongrazing sets X

DEFINITION 3.2. Let o < B € 7. Then for (i,j) € T(®P), define (b))

(4,9)
Tesreens = Sesrsens o
TN @)
(XG0, x00 v e @) @) e ) a=p=(01),
=3 (O X G @) e e )oY = (1,0),8 = (0,1),
(x50 x GV o0 @) @) e v ) a=p=(1,0),

where the (v9)*, (vf)* are given by (2.7), (2.8). Since the sets EE?;‘;)SC ng aT€ disjoint

for a < B and (i,j) € I'™P), the above operators define an operator T : Ose,ngD —
Ose,ngD. For notational convenience, we will often write

(3.5) Z*=T(Z).

DEFINITION 3.3. We define the energy of the configuration Z € D to be
N1 No
(3.6) E(Z) = ZM1|U¢(1’O)|2 4 ZM2|”§O’1)|2-
=1 i=1

We conclude this section with the following remarks.
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REMARK 3.1. It is clear that T is an involution. Moreover, it satisfies that Z €
Ose,ngD is precollisional (posteollisional) if and only if T(Z) is postcollisional (pre-
collisional).

REMARK 3.2. One can check by a simple computation that the conservation of
energy holds under the action of the operator T'. That is, for every Z € OgscngD, we
have that E(T(Z)) = E(Z).

REMARK 3.3. The operator T : OscngD — OsengD leaves positions invariant.
That is, x¢ o T = x, where here x is the projection operator given by (2.4).

17

3.2. Mixed particle local flow. In this section, we construct our mixed particle
flow up to the time of the first collision. First, let us define the refined phase space

(3.7) D* := QyengD UD.

REMARK 3.4. The sets Oy, D and Osc.¢D have zero Hausdorff 2d(Ny + Na) — 1
measure. Hence, the set D* differs from the full phase space D only up to a set of
surface measure zero.

To discuss the propagation of the particles in the direction of their velocities, we
define the velocity propagator

(3.8) P:D — R2MN1+N2), P(Z) = (V}V}O), VoD o, o) .

This vector P(Z) allows us to keep track of the velocities of our particles and formulate
the following lemma compactly.

LEMMA 3.1. Let N1, Ny > 2 and Z € D*, where D is defined in (3.7) Then, there
is a time 7' =7} € (0,00] such that the function
(3.9)
707 5D, givenby Z(t) = Z +tP(Z) z}fZ z's non- o‘r ?ostcollzszonal,
T(Z)+tPoT(Z) if Z is precollisional,

with T' given by Definition 3.2 satisfies the following conditions:

o Z(t) €D forte (0,7h).

o If ! < 0, then Z(11) € D.

o If Z € ngﬁ)ng for some o < B and (i,j) € Z(h) and 1 < oo, then

2 ¢ 3.
Proof. This is a standard stopping time construction. Note that Z(-) given above
is a well defined-function from [0, c0) — R24N1+N2) Tp order to keep its range within
the domain D, we define

=14 :=inf{t > 0/ Z(t) € OD}.

First note that if 72 = oo, then Z(t) ¢ 9D for all times ¢t > 0. So we can assume
that 75 < co. Since Z € D*, it is either an interior point of D or it is in the simple,
nongrazing subset of the boundary. If it is an interior point, by continuity 7 > 0 and
by the definition of the stopping time we have that the conclusions of the lemma are
satisfied.

Next, assume that Z € £(*7) for some a < /3 and index (i,5) € Z(*%). We

(i,5),5¢,ng
consider the two cases: where Z is postcollisional and where Z is precollisional. For
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the postcollisional case, we calculate for ¢ > 0

g + v — (@ + )] = o — 2] + (ol — o)
> faf — o+ 20(af — a0 = o)
> |zg — mf|2 = 6%a,5)~

This strict inequality shows that x$* does not collide with xf for small, positive times
t. Moreover, since we are assuming a simple collision, no other particles are colliding
at time t = 0 apart from x?,xf . By using continuity, this fact combined with the
strict inequality above shows that 7! > 0. By the definition of the stopping time,
the first two conditions of the lemma are also immediate. Moreover, the inequality
directly above also shows that the last condition of the lemma is true.

Now, for the precollisional case, apply the above argument to the postcollisional
configuration 7'(Z). This completes the proof in all cases. ]

3.3. Mixed particle global flow. To define global flow, we inductively apply
the above construction. We will use the notation 7! = 71 as in Lemma 3.1 above,

and if Z(1') € Dsc,ngD, then we define
(3.10) T2 = Té(,rl).
That is, 72 is the stopping time of the process started at Z(7') which is guaranteed

to exist by Lemma 3.1. We then can define a process Z() : [0,72] — D given by

(3.11) {Z(~) [0,7] =D  on 0,7,

Z(): (4,7 =D on (71,73

We wish to continue this local construction of the flow Z(-) for arbitrarily large times
for initial configurations Z outside a set of measure zero in D.

Now, to analyze the measure of the sets in which this inductive construction is
well-defined, we introduce a time truncation parameter 6 > 0 and a velocity truncation
parameter R > 0 that satisfy

(3.12) 0<dR<1<R.
Given p > 0, we define
@ 1,0 0,1 1,0 0,1
(313) By = {(x" X)) € RIVEN) /)(x g X0 < o)

We additionally define
v 1,0 0,1 1,0 0,1
(314)  Bp={(V{" vyV) e RIVEN) (v v < Ry,
Now, define the truncated, refined phase space as
(3.15) D(p, R) := D" N (B; x BE),

where D* is given by (3.7). We now decompose the truncated refined phase space
into five parts:

(3.16) Ifree :={Z € D(p,R)/ 75 > 6},
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(3.17) Lieng =12 €D(p,R)/ 75 <0, Z(7") € DsengD, and 73 > b},
(3.18) L2, ={Z€D(p,R)/ 75 <0, Z(7") € DsengD, and 73 < 6},
(3.19) L., ={Z €D(p,R)/ 7} <6, Z(") € Dsc,¢D},
(3.20) I} :={Z€D(p,R)/ 7} <6, Z(t") € OncD}.

Clearly, we have that

D(p,R) = Ifrec UL, U1l ;UL VI

sc,g sc,ng*

Here, the good sets are Ij.c. and I, ,,, for they allow us to continue our inductive
construction without issue. The bad sets for which we seek measure estimates are
Ik, 97 I} ., and I2, ng- To handle the sets 12, ng,ImC, we first show they have a par-
ticular covering by intersections of orthogonal annuli. In particular, for « < § and

(i,7) € Z(*P) we define the annuli to be
(3.21) U = {2 € B x BY/ €(a,5) < |18 — 8| < €(a) + 2C3R},

where C' = C(M;, Ms) > 11is a constant depending only on the masses of the particles.
We have the following lemma.

LEMMA 3.2. We have

2 1 a,pB) B)
(3.22) Tseng U Tm U Uiy nUG -
where the index set ¥ is defined to be the set of pairs of 4-tuples («, 8,1, ), (o, 8,4, 7")
such that o < B,o/ < B, (i,§) € ZP), (i',§) € T(F) | and

(3.23) (a,B,i,5) # (', 8,7, 7).

Proof. We prove that the set I
set Il . is carried out similarly.

Let Z(-): [0,7%] = D be our constructed flow, and assume that Z € IZ,,,,. Then
by definition we have 71,72 < §, and

2 ng 18 contained in the union. The proof for the

,7ﬁl
Z(eyesty L. and  Z(r) esi )
for some o < 8, o/ < ' and indices (i, ) € Z(*#), (i, ') € Z@#) . Note that by the
last condition of Lemma 3.1, we cannot have that (o, 8) = («/, 8) and (4, j) = (¢/, 7).
Recall from (2.4) the projection operators. We consider two cases.
e Assume that Z is noncollisional or postcollisional. Then we can write

E(a B) < |£B 7(£ﬁ|

< |zd + o —(x —|—Tv )|—|—T1|v —vf|
=& (2(r")) = 2 (Z()] + 7o = ]|

J
= €(ap) + 7 0F = 0]
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Noting that |v¢], |vf| < R and 7! < §, we obtain that ¢, < |2& — xf\ < €(a,8) + 2R0.

e When Z is precollisional, apply the above argument to the precollisional
T(Z). Note that since Z € By x Bg, we have T(Z) € B x B¢y by Remarks 3.2
and 3.3 and a comparison of E(Z) with the Euclidean norm on R4 Mi+N2) The
constant C' > 1 above can explicitly be computed in terms of M, M. We thus
obtain €, 5y < [25(T(Z)) — a:f(T(Z))\ < €(a,3) + 2CR4. Since T leaves the positions
unaffected, by Remark 3.3 we have that €, g) < |z§ — xf| < €a,p) T 2CR0 in this

case also. So in all cases, Z € U((Z J))

Next, let us show that Z € U (ff j,ﬁ)) We can calculate, by Remark 3.3,

oy < a8 — 2l
= |28 (T(2)) — 2, (T(2))]
< |2 (T(2)) + 708 (T(2)) — (2 (T(2))
+ 7200 (T(2))| + 72[v8 (T(2)) = v} (T(2))].

Now, since there are no collisions in the interval (71, 72), we have
2§ (T(2)) 470 (T(2) (2 (T(2))+7%0] (T(2))) = 2 (T(2(2))) =2} (T(Z(7))).
Hence, we can conclude that

e(alwﬁ/) S ‘.’L'g — ZCJB/|

< |2 (T(Z(r%) — 2 (T(Z(+)| + 7o (T(2)) = v} (T(2))]

= €ar,g) + 703 (T(2)) = v} (T(2))].

Again, by Remark 3.2 and a comparison of E(Z) with the Euclidean norm on RAN1+N2)
we obtain that |[v& (T(Z))], |vf, (T(Z))] < CR. Hence, since 72 < §, we obtain

€ar,pry) < |x1°f/ — x?,,| < € py + 2CR6. This shows that Z € U((fjf) N U((Z(,]ﬁ) and

IZ.,, is contained in the claimed union. 0

REMARK 3.5. One can show that the Hausdorff measure H2d(N1+N2)(Islc7g) =0.

Next, we estimate the measure of our “bad” sets using Lemma 3.2 and Remark
3.5.

LEMMA 3.3. Assume that 0 < €1,€e2 < 1. We have the measure estimate

HRANAEND (11 T UTZ ) < C(Ny, Na,d, R)pMNiFN2=2)52,

sc,ng

Proof. By Lemma 3.2 and Remark 3.5, it suffices to uniformly estimate U ((:XJ)B ’n

U(;f ’,B)) for the indices a < 3, o < ', (i,j) € Z#  and (i', ') € Z@"#) such that

either («a, 8) # (o/, ) or (i,5) # (i',j'). Note that this implies we have only three

possibilities for the coordinates x ,xf , :(:Z, , f :

1. zf = xi// and the rest are distinct.

2. xf = a:?,/ and the rest are distinct.
3. All coordinates are distinct.
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By symmetry, cases 1 and 2 are identical, so it suffices to prove the bounds for cases
1 and 3 only.

1. Assume z$ = 2§ and the rest are distinct. Then, we have that
TtN2=3) g0, R)|N1+N2/ diqdw?dzﬁl

/2d(N1+N2) U((a ;)3) U((Z 7[/3))(Z)dz =1B(0,p)ly, B(0,p)3 Séa Ejﬁ)) i

where
SEPE) = {8 ol 28 ea,py < 198 = 2B S capy + 2O5R, €(qr gry S 158 = )1 S ¢(or gy +2C5R).
We have
/ Its(agg)dx dwﬁdx </// Il(a55>dx dxﬁdx,
B(0,p)3  “(i.d.") Rt JRa JB(0,p) Siah
<cf . ((2COR + €a)? = ety ) (2COR+ (e 1) = €l ) ) .
Ny

Since we picked d, R such that R < 1, this is bounded above by Cp?R?§2.
Hence, we get

/ Lo nper  (Z2)dZ < CpHNHN2=2) RAUNIFN) 252,
R2d(Ni+Ng) (4,5)

@i,3")

This completes this case.

3. Assume that all coordinates z* xf , xfﬂ xf, are distinct. In this case, we have

/ L mqyaran(Z)dZ
R2d(N1+Ng2) (i,3) @i’,5")

= |B(0aP)|2V1+N2_4|B(07R)|2V1+N2/ Lo gtar.on dag dxﬁdx s i
Bt i Marin

where here we are defining

S((f‘j?) = {(as xf,x / z?, )/ €ap) < @ — xf| < €a,8) + 2C5R},

O/,ﬂl L ’ a/ ’
S((i’,j’)) = {(:v xf,x o ,x?/ )/ €5y < |5 — z?, | < €(arpry + QCéR}.

Again, we can estimate the above integral by Fubini:

/ ]lS(aB)ﬂS(a g)de dfﬂ d.’E(d.’E -
B(0,p)* (4,5) @,

/ / / / 1 (a B) S(a ﬁ/)dl’ dIﬁdI/ d:l?,
R JB(0,0) Jra JB(0,p) S M

= Cp* ((2COR + €a,))" = el ) P (2COR + (o 90)" = €l 1)
< CpZdR262. O

Hence, we obtain

/ Iy auer  (Z)dZ < Cp N1+ N2=2) RANIEN) 252,
R2d(N1+N2) Gi3) (57
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After having established the measure estimates of Lemma 3.3, we are able to
construct a global in time measure preserving flow by iteration. We will omit the
proof since it follows the same arguments presented in detail in, e.g., [3, 5]. However,
let us outline the main idea: First, we introduce a small time parameter § and truncate
the phase space by a large parameter R. By Lemma 3.3, outside of a small measure set
(in terms of 0 and R) of initial configurations, we can define a measure preserving flow
in [0, d]. Then, we inductively repeat the argument and use conservation of measure
by the flow to reach arbitrarily large times, outside of a small set of initial data. In
the end, it can be shown that as 6 — 0 and R — oo, the measure preserving flow
can be defined almost everywhere in the phase space for arbitrarily large times. More
specifically, we obtain the following result.

THEOREM 3.1. Let N1, Ny € Ny and €1,e5 > 0, and recall the definition of the
energy (3.6). Then there exists a family of measure preserving maps (‘Ille,NQ))tER :
D — D such that for all t € RT the following hold:

1. \IJEKM)(Z) = Uiy, vy (Z) 0 Uin, nyy(Z2) = Wiy, ny)(2) 0 Uiy, nyy(2) for
almost every Z € D.

2. E(\II’EN17N2)(Z)) = E(Z) for almost every Z € D.

3. We have \II’EN1 oy (T(2)) = \IlﬁNl Ny (Z) for H2ANIHN) =1 gimost every Z €
Ose,ngD.

4. Local well-posedness. In this section, we show local in time well-posedness
of the BBGKY hierarchy, the Boltzmann hierarchy, and the Boltzmann system for
mixtures in their mild forms. The proofs for these three results are carried out in
a similar spirit, and we will present it only in the BBGKY setting. We remark
that throughout this section we will maintain the superscript notation 953) to denote
sequences of functions, even though we do not assume that they come from mixed

marginals of gy as in Definition 2.1.

4.1. Well-posedness of BBGKY hierarchy. Recall that .7 is the set of types
of particles, as given in (2.1). Let € = (e1,0),€(0,1)) record the diameters of the
particles of each type, and let N' = (N(1,0), N(0,1)) record the total number of particles
of each type. Throughout this section, we will assume the Boltzmann-Grad scaling
(2.28) holds. We first define the Maxwellian weighted spaces in which we will be
working.

DEFINITION 4.1. Recall the definition of the phase space (2.5) and the energy
(3.6). Fiz~vy >0, and let p € R. Define the index sets

(41) [N] = {1, . 'aN(l,O)} X {1, .. .,N(071)}
and
(42) [N — ].} = {]., . .7N(170) — ].} X {]., .. '7N(0,1) — ].}

e For s € [N] and gg\s,) € L>(D2;R), define the Banach space

XKoo= {ol € LD R) [198 lscr < o0}

(4.3) with |g§3)|s,e7'y = He'VE(')gg\S])

L>=(Dg)

e Define for Gn = (gg\?) with gg\?) € L (Dg;R) the norm and the Banach

)se[N]
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space

XN, = {Gn = (00)sem |98 € LXDER), G lle < 0},

€Y
(s) )
N s, ) -

Let T > 0, 0 > 0, upo € R. Consider v : [0,T7] — (0,00), and let

: [0,T] = R be nonincreasing functions with v(0) = v and p(0) = po.
Deﬁne XN .([0,T]) to be the set of all continuous mappings G : [0,T] —
ng(t),#(t) such that the following norm is finite:

|G e i= sup (e¥llg
s€[N]

NGN ey, = OzltlET IGN @) lleqt),uct)-

To state the mild formulation of the BBGKY hierarchy, we define for each s € [IN]
and t € R

(44)  Ti.:Xeen = Xoen, givenby T g9(Zs) = g (V5L(Zs)),

where U . is the s particle flow given by Theorem 3.1. Conservation of energy and
invariance of the flow under particle collisions as proven in Theorem 3.1 imply that

T; ¢ is an isometry of X ... Also, T, is the semigroup which generates the left-

hand side of (2.26). With this in mind, we define the following mild formulation of
the BBGKY hierarchy.

DEFINITION 4.2. Let T > 0, 79 > 0, pg € R. Consider v : [0,T] — (0,00), and
let w : [0, T] — R be nonincreasing functions with ¥(0) = v9 and p(0) = po. Given

FNO e XN “o,uo: WE say that

_(f®
Fn = ( N )se[N] € Xoull0.7)

is a mild solution to the BBGKY hierarchy with initial data Fi o if for each t € [0,T],
we have

(4.5) Fn(t)=T!Fno+ Y /Tt TCYFN(T)dr,
a,BET

where for each a,f € 7, we define the operators Cg,TEt by their action on each
component:

(4.6) CiGN = (C§s+ﬁgg§+ﬁ))se[N] ’ TeGn = <T§ egg\s})) s€[N]

Here, the operators C¢ o, 5 are given in Definition 2.2 and T, S ¢ 1s given by (4.4).

REMARK 4.1. We note that the above collision operators Cgs+5 are ill-defined

on L™ since they involve integration over a set of measure zero (the sphere S¢=1).
However, one can overcome this technical problem by defining the filtered BBGKY
hierarchy as

(4.7) Gn(t)=Gnot Y /T TCRT.Gn(T)dr
a,BeT
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Although (4.7) is just a filtered hierarchy by the transport version of (4.5), it enjoys
much better reqularity properties, allowing us to define the collision integrals in L
outside of some measure zero sets. This has been done in detail in the erratum of [17]
for the derivation of the classical Boltzmann equation and can be naturally extended
in the case of miztures. The idea is that upon combining Cg ;5 with T, 5 ., time can
be seen as the missing coordinate in the direction orthogonal to the boundary of the
phase space, and that allows the collision integral to be defined. See [28] for a different
approach which avoids this issue by working with measures on the phase space. To
avoid further technical complications, throughout this work, we will be using the mild
formaulation (4.5), assuming that the collision integrals are well-defined. However, we
should mote that the same estimates and results we prove hold true for the filtered
hierarchy (4.7) as well.

LEMMA 4.1. Assume that we have the Boltzmann-Grad scalings (2.28). For all
5= (501,0,50,1)) €[N —=1], all o, € T, and all Zs € D, we have

(4.8) Cgs+ﬁg(s+5)(zs) e_’yE(Zs)|9(s+ﬁ)|s+ﬁ7eﬁ-

< Oy [sw_l/g + > [of]
k=1

The constant C' above depends only on d,c1,co,a, and b as in the Boltzmann-Grad
scalings (2.28) and the masses My, My of the particles.

Proof. Fix «, 3, and Zs. Using the definition of the operator, the triangle in-
equality, the definition of the norm (4.3), and the conservation of energy, we obtain

Ce et 9™ (Zs)]

)

Sa
_ s) —YM \vf |2
< CZ/quvftﬁﬂ + [v&])e VE(Zs),, BlVsg+1 |g(s+ﬁ)|S_~_B’67’defﬁ+1
k=1

= CeTPE gD,

Sa
B2 5 2
B —yMg|v] +1| B a —yMg|v +1| B
X Sa/ [vg,41le o dug ) okl e AT dvg, 4y
R4 Pt Re

Computing these Gaussian integrals results in the desired bounds. 0

LEMMA 4.2. Fiz N € N2 and € € (0,00)? to agree with the mized Boltzmann-
Grad scaling (2.28). Let vo > 0, po € R, and T, A > 0 such that TA < ~y. Then, the

following bound holds on XX, ,([0,T]):

< dIGnll
€7 1

t
(4.9) H‘/ T "C3GnN(r)dr foralla,p e .7,
0

€71

where V(t) = 7 — >\t; H(t) = Mo — >\t7 and ¢ = C(d, €1, C2, @, ba MlaMQafYOaNJOa)‘aT)'
We can pick T >0 and a X € (0,7/T) independent of N, € such that ¢ < 1/8.

Proof. This is a standard argument which follows from carefully lifting the esti-
mate in Lemma 4.1 to the space Xé\;(t) (t) for each t > 0 and then estimating a time
integral. Details can be found in [17]. 0

THEOREM 4.1. Fiz N € N3 and € € (0,00)? to agree with the Boltzmann-Grad
scaling (2.28). Let g € R and g > 0 be given. Then there exists T, A > 0 independent

of N, e such that for any Fno € Xgﬂm#o we have a unique mild solution Fn €
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XN .([0,7)) to the BBGKY hierarchy (4.5) with v(t) = v — A\t and p(t) = po — At.

€7, 1
Moreover, this unique solution satisfies

(4.10) IEN ey, < 21FN 0llero .o

Additionally, for any GN € XQJXY7“([O,T]), we have
t

(4.11) H / TITCsGn(Mdr|| < 1/8IGnlle,,  foralla,fe .
0 €Y1

Proof. The proof follows by applying a fixed point argument which can be done
thanks to Lemma 4.2. ]

4.2. Well-posedness of the Boltzmann hierarchy. This subsection is de-
voted to proving the local well-posedness of the Boltzmann hierarchy. The estimates
and proofs essentially mirror those of the previous subsection 4.1, with appropriate
adjustment of the functional spaces. We begin by introducing the relevant Maxwellian
weighted spaces.

DEFINITION 4.3. Recall the definition (3.6)of the energy E(-). Fixz v > 0, and
letp € R.
e For s € N2 and g®) € L®(R¥sI;R), define the Banach space

199 |60y = Hevm-)g(s)

Loc(Rd\s\) ’

(4.12) Xyo, = {g<s) e L= (R R) ) 19 a0 < oo} .

e Define for G = (g(s))seNi with g®) € L>®(RYUsI;R) the Banach space

(413) X33, = {G = (0 uere

o) € L¥RILR), (Gl < o0},

(4.14) 1Gllon = sup (e19]50.,)
sEN?.

o LetT >0, v0 > 0, uo € R. Consider v : [0,T] — (0,00), and let p :
[0,T] — R be nonincreasing functions with v(0) = v and pu(0) = po. Define
X52.u([0,T7) to be the set of all continuous mappings G+ [0, T] = X5 ) )
such that the following norm is finite:

Gl 3 3= 501G o0y

In order to state the mild formulation of the Boltzmann hierarchy, we define for
each s € Ni and t € R the free flow propagator

(4.15) St X0 — Xs.04 Stg\®)(Zs) = g'=) (,1(Zs)),

S

where @, is the s particle free flow given by
(4.16) QL (X, V) = (Xs + Vs, V).

It follows directly from the definitions that S, is an isometry of X, ¢ . Moreover, one
can check that Ss is the semigroup whose generator is the left-hand side of (2.36).
With these definitions in hand, we define a solution to the Boltzmann hierarchy as
follows.
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DEFINITION 4.4. Let T > 0, 79 > 0, po € R. Consider v : [0,T] — (0,00), and
let p:[0,T] — R be nonincreasing functions with v(0) = o and u(0) = po. Given
Fo € X35, 1y, We say that

P= (1), € Xrul0.7)

is a mild solution to the Boltzmann hierarchy with initial data Fy if for each t € [0,T)
we have

t
(4.17) Fit)=S"F+ Z / S'TEGF(T)dr,
a,feET 0

where for each o, € T we define the operators Q:gf,St by their action on each
component:

(4.18) €3G = (%éfswg(”m) . 5'G:= (Sﬁg(S))

2 2’
:s'ENJr seN+

Here, the operators €3, 5 are given in (2.32) and Ss is given by (4.15).

REMARK 4.2. As in Remark 4.1, the operators CKSOfSJFB are ill-defined on L* (here,
one could consider continuous functions, though). In the same spirit as in the BBGKY
hierarchy case, one can define the filtered Boltzmann hierarchy as

t
(4.19) Git)=Go+ Y / S7TCYSTG(r)dr
a,pes ?0

and make sense of the collision integrals in L°°. To avoid further technical compli-
cations, throughout this work, we will be using the mild formulation (4.17), assuming
that the collision integrals are well-defined. However, we should note that the same
estimates and results we prove hold true for the filtered hierarchy (4.19) as well.

THEOREM 4.2. Let puy € R and vy > 0 be given. Then there exists T, A > 0 such
that for any Fo € X§°, ., we have a unique mild solution F' € X¢¢%, ,([0,T]) to the
Boltzmann hierarchy (4.17) with y(t) = 0 — At and u(t) = po — A\t. Moreover, this
unique solution satisfies

(4.20) Mo e < 211 F0ll0,70,110-
Additionally, for any G € X2, ,([0,T]) we have

< 1/8IGll . foralla,f e T.

(1.21) H
0,7,

t
/O ST €8G(r)dr

4.3. Well-posedness of the Boltzmann equation for mixtures. Recall
from section 2.4 the Boltzmann system for mixtures given by (2.38). Recall also
that the set of types .7 is given by (2.1). We begin our analysis by defining the
appropriate function spaces.

DEFINITION 4.5. Let v > 0 and € R. Define for each o € . the one particle
space

Xayp = {9al 9o € L= (R*), |gala,y,u. < 00},

|9

e/t+’yMa [v]?

wn = | ga(.v)|

Loo(R2d)
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where M., is the mass of the type a particle. We also define the two particle space given
by Xy = [lae s Xaqyp with the induced 01 product norm |G|y, =" c & |9alayus
where G = (ga)acs-

Given T > 0 and nonincreasing functions v : [0,T)] = Ry, p: [0,T] = R, we
define

Xy u([0.T1) = {G = (9a)ac 7| ga € CO([0,T]; L% (R*?)) and ||Gll,u < o0} ,
where the norm is given by

1Glly = sup |Gt )|y (t), o)
te[0,T

It is clear that the space (X5 ,([0,T1]),] - |ly,n) is @ complete metric space. We will
study the local well-posedness of the Boltzmann equation for mixtures on the above
spaces. We begin with defining our notion of solution. First, fix T > 0, 79 > 0,
and po € R and let v : [0,7] — Ry, p : [0,7] — R be nonincreasing functions with
Y(0) = 70, p(0) = po. Recalling the constants (2.35) and collision operators given in
Definition 2.4, introduce the nonlinear operator A" on X, ,,([0,7T7) for each component
a € T by
N(G)lg = D A5Q5(9a:95), where G = (ga)ocs-

pBeT
Recall the free flow operator Sf, ;) from (4.15). In this section, we will set S* = S, |,
to reduce the notation. As in the case for the BBGKY and Boltzmann hierarchies,
we consider mild formulations.

DEFINITION 4.6. Let T > 0, v9 > 0, po € R. Consider v : [0,T] — (0,00), and
let w: [0,T] — R be nonincreasing functions with ¥(0) = v9 and u(0) = po. Given
Fo = (fa,0)ac7 € Xqguo, we say that F = (fa)acs € Xqy,u([0,T]) is a solution of
the Boltzmann equation with initial data Fy = (fa,0)acs if

t
(4.22) F(t)=S'F, —|—/ S'*"TNF(t)dr  for everyt €[0,T].
0

REMARK 4.3. As in Remarks 4.1 and 4.2, the operator N is ill-defined on L
(one could consider continuous functions, though). In the same spirit as in the
BBGKY and Boltzmann hierarchies, one can define the filtered Boltzmann equation
as

(4.23) G(t) = Go + / t STTNSTG(r)dr
0

and make sense of the collision integrals in L>°. To avoid technical complications,
throughout this work, we will be using the mild form (4.22), assuming that the collision
integrals are well-defined. However, we should note that the same estimates and results
we prove hold true for the filtered equation (4.23) as well.

As in the previous subsections, we first prove some estimates on the nonlinearity
N and use this to set up a contraction mapping.

LEMMA 4.3. Fiz v >0, p € R, and G = (9a)ac7,G = (¢))acz € X5, Then,
we obtain the pointwise estimates for all x,v € R%:

2
Q8 (9 98) — QB (90 9p) (2, v) < Ce 27 Mt MOl /2y /2 (57172 4y

% (19alau +196lam.w)96 — 9alay,u a=p,
9alayulgs — 9/ﬁ|ﬂmu + |9;3|Bmu‘ga = Yalaqu, @#B.
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Here, the constant C' depends only on the dimension d, the masses My, Mg, and
the constants c1,ca,a,b in the Boltzmann-Grad scaling (2.28). Also note that these
inequalities are invariant under the action of S*.

Proof. This follows from applications of the triangle inequality and the conserva-
tion of energy and momentum for the collision laws stated in (2.32). a

THEOREM 4.3. Let vy > 0 and po € R be given. Then there exists T, > 0
depending only on ~o, o and the Boltzmann-Grad scalings as in (2.28) such that
given any Fo = (fa,0)aca € Xqg,uo With |Folyg,ue < 1 there exists a unique solution
F e Xy u([0,T]) of (4.22) that satisfies

||F||'77u < 2|F0|'m,uov

with y(t) = vo — At and p(t) = po — At.

Proof. This proof follows again from setting up a contraction mapping using
Lemma 4.3. 0

REMARK 4.4. The local time of existence T and the constant A > 0 in Theorems
4.1, 4.2, and 4.3 can all be taken to be the same, which we assume throughout the rest of
the paper. Crucially, they only depend on the parameters g, po, the masses My, Mo,
the Boltzmann-Grad scaling (2.28), the dimension d, and universal constants.

5. Statement of the main theorem. In this section, we define the appropriate
notion of convergence and state the main theorem of the paper. Throughout, we will
be using the convention that N = (N7, N2) and € = (€1,€2). Moreover, N and €
are related by the Boltzmann-Grad scalings (2.28). We now give some notation and
define approximate Boltzmann initial data.

5.1. Approximation of Boltzmann initial data.
DEFINITION 5.1 (joint limit in N7, No). We say a doubly indexed sequence of

real numbers (AN)N€N2+ converges to a real number A with respect to the mized
Boltzmann-Grad scalings if the following condition holds: For every ¢ > 0, there
exists Ni, N5 € N such that for all N; > N}, i = 1,2, which satisfy the scalings
(2.30), we have

|[An — Al < C.
We denote this type of convergence as imy_soo AN = A or ANy — A.

For each 6 > 0 and m € Ni, we define the set of 6-well separated configurations
as

(5.1) A (0) = {Zm Vo, € T, ¥(i.j) € TGP, |af — 2| > 0},

where we recall the definition of the impact operator T given in Definition 3.2 and
the set I((Za/; ) given by (2.2). We also define the spatial components of this set as

(5.2) AN(0) = {Xp Vo, € T, V(i,j) € TGP, |af — 2| > 0}.

In analogy with [7], we introduce an approximating sequence for the BBGKY
initial data.

DEFINITION 5.2. Let o € R and 9 > 0. Given Fy = ( és)) € X100 WE SAY

a sequence Fn o = (fZ(Vs,)O)se[N] is a BBGKY hierarchy sequence approximating Fy if
the following conditions hold:
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oy < 00, where the supremum is taken over (N,€)
obeying the mized Boltzmann-Grad scalings (2.28).

o We have for each s € N2 and 6 > 0 that limpy_, ||f(§s) —fj(\??o\\Lm(As(g)) =0.
REMARK 5.1. For any initial data Fy € XG7 . there always exists at least
one approzimating BBGKY hierarchy sequence, although it may not be a probability
measure. A simple example of such a sequence is given by fz(\i,)o = 1As(max(61752))fés)
The uniform upper bound for Fno = (fﬁ?o)se[N] follows by the definition of the
function spaces, and the convergence follows from the fact that max(ej,e3) — 0 as
N — oo in the mized Boltzmann-Grad scaling (2.28).
REMARK 5.2. Consider initial data uo = (fo,a)acs € Xqo,uo+1 for the Boltz-

mann equation for miztures with || follye uo+1 < 1/2. Assume that [po4 fo,q(z,v)dxdy =
1 and fo,o > 0 almost everywhere for each o € 7. Define

= (faeres =180 @I

This tensor corresponds to an initially chaotic conﬁgumtwn of the Boltzmann hier-
archy. From this data, we may form the conditioned BBGKY initial data defined

by

fz(\?,)o(ZS) = Z;JI ]lDi"fo(z?(J\ll,lo) ® f .0 1)(ZN)d:z:$ﬂdv( ¢
R2d|N —s|
1 0 (1,0) 0,1) 0,1 0,1 0,1
(5.3)  ...daW a0 deO a0l e (Y,

where Zn is a normalization factor which makes fz(\??o a probability measure given by
N N.
v [ Aok ® S i

This sequence Fn o 1= (f1570)s€[N] is @ BBGKY hierarchy sequence approrimating
Fo. In fact, it can be shown (see Chapter 6 of [17]) that we get explicit rates for any
s €N? and 6 > 0:

(5.4)

1780 = 15" L= (a0 < Clsl max(er, e2) | N I Folloeo < Cs max(er, e)l| Folloso.so-
where in the last inequality we have crucially used the scalings (2.28).

5.2. Convergence in observables. In this subsection, we define the notion of
convergence of observables. As usual, we let s = (s1,52) € Ni and denote the space of
test functions C.(R¥*!) to be the space of continuous compactly supported functions.

DEFINITION 5.3. Let T >0, s € N2, and f(*) € L>([0,T]; L>(R24#])). Given a
test function ¢s € Co(RYUS), we define the s-observable function as

Lo, (f)(t, Xs) = - bs(Ve) [ (t, X, Vi) dVs.

With this definition in hand, we can now define the notion of convergence in observ-
ables.

DEFINITION 5.4 (convergence in observables). Let T > 0, v > 0, and p € R.
Given a sequence (FN)NeNi such that

Fn = (fz(\?))se[ ~MEeEXN , and F= (f(s))seNi € X620

€7, 1
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we say that Fxn converges to F if for any s € N2, any 6 > 0, and any ¢, € C.(R¥*))
we have

Jim 174, (F8)0) ~ Lo, (/) D)l (ax ) = 0 wniformly i [0,7].

We denote this type of convergence by FN—F.

REMARK 5.3. We note that the above convergence of the functionals in L (AX (o))
for each o > 0 fized implies locally uniform convergence on RUSI\ {X, € Rsl ;v £

5.3. Statement of the main theorem. We are now ready to state the main
results of this paper. We start with the most general theorem.

THEOREM 5.1. Let vg > 0, let ug € R, and let T > 0 be the existence time for
the BBGKY and Boltzmann hierarchies as found in Theorems 4.1 and 4.2. Let Fy =
(fos)>seNi € X%, be Boltzmann initial data and (Fn0)nenz be an approzimating

BBGKY hierarchy sequence as given in Definition 5.2. Assume the following:

e Foreach N e N}, Fy € X[, ,([0,T]) is a solution to the BBGKY hierarchy
with initial data Fn o (as in Theorem 4.1). Here, € is related to N by (2.28),
and the functions v, : [0,T] — R are given as in Theorem 4.1.

o I'e X2, ,([0,T]) solves the Boltzmann hierarchy (as in Theorem 4.2), where
v, : [0,T] = R are given as in Theorem 4.2.

o The initial data Fy satisfies the following uniform continuity condition: There
exists a constant C such that for all { > 0 there exists a ¢ = q({) such that
for all s € N2 and Z,, Z, € R2Usl with |Zs — Z.| < q(¢) we have

(5.5) 1$9(Z) — £52(20)) < CleI-2¢.

Then, Fn converges to F in the sense of observables.

REMARK 5.4. Using Definition 5.4, the convergence in observables of Theorem
5.1 is equivalent to showing that for every 6§ > 0, s € Ni, and every ¢ € C.(R¥Us!)
we have

Z\}I—I)noo ||Is — s HLOO(AX(G)) =0 umformly m [O7T]7

where we define
(5.6)

IN(X,) = /Rd‘s‘ Gs(Va) f (X, Va)dVe,  I(X,) = » Gs(Va) f ) (X, Vi) dVs.

REMARK 5.5. The condition (5.5) is a uniform continuity condition on the initial
data with uniform growth as the number of particles becomes large. Indeed, it can be
easily seen by induction that in the special case of tensorized Hélder continuous initial
data, i.e., Iy = (98951 ®h8§sg)shszeN+, where go,hg € CO*, 0 < A < 1, condition
(5.5) is satisfied. As we will see in Theorem 5.2, in the case of Hélder continuous,
tensorized initial data, we obtain explicit rates of convergence as well.

REMARK 5.6. The convergence in observables above can be upgraded to another
type of weak convergence by a density argument. In particular, we can show using
Theorem 5.1 and the continuity of the BBGKY and Boltzmann hierarchy solution
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mappings that for any ¢ in the exponentially weighted space LL(R?s) with w(V,) =
o—1(T)E(Zs)

(5.7) / OfdX AV, — o f D dXdVs
R2d|s| R2d|s|

uniformly for all t € [0,T]. Here we are extending fz(\?) to be zero outside of DN .

In statistical mechanics [25], the integrals (5.7) above correspond to the expected
value of the function ¢ of the system. For example, if A C R?? is measurable and
|A] < oo, define the function ¢(X(1,1), Vi1,1)) = 1A(X(171))v§1’0). The integral of ¢

against fj(\}’l) corresponds to the mean velocity of the type (1,0) particle in the region
A of space.

We end this section with the theorem showing the propagation of chaos and the
relation between the finite BBGKY hierarchy and solutions of the Boltzmann equation
for mixtures.

THEOREM 5.2. Let vg > 0, let pg € R, and let T > 0 be the existence time for the
BBGKY hierarchy (4.5), the Boltzmann hierarchy (4.17), and the Boltzmann equation
for miztures (4.22) obtained in Theorems 4.1-4.3. Additionally, define v, to be as
in those theorems. Also let ug = (go, ho) € Xng o1 be Holder CO* initial data with
0 <A< 1 and |ug|yg,uo+1 < 1/2. Let (g,h) € X, ([0, T]) be the unique solution to
the Boltzmann equation (4.22) as given by Theorem 4.3. Define

Fy = (gggs1 ® hy® and F:= (g% @ h®*?)

)51,82€N+ 51,526N+ :

Then, Fy € X§%, .0, I € X52,([0,T]), and F solves the Boltzmann hierarchy with
initial data Fy. Moreover, if (FN,O)NeNi is the conditioned BBGKY hierarchy initial

data as given by (5.3) and Fny = (fl(\,s))se[N] e XN, .([0,T)) is the unique solu-
tion to the BBGKY hierarchy with initial data Fi o, then we have explicit rates of

convergence for each ¢ € C.(RUS!) given by

(58) (S0 ~ To(6™ @ hE=)(O)| 1w ax oy = O(F), €= maxea

aeT
for any r < X and uniformly in t € [0,T).
6. Reduction to term-by-term convergence.

6.1. Initial expansion and notation. In this section, we show that solutions
to the BBGKY and Boltzmann hierarchies can be expanded into a series depend-
ing only on initial data. In the BBGKY hierarchy, this series expansion termi-
nates. In the Boltzmann hierarchy, the series expansion converges in the sense of
observables. For notational convenience, we will continue to use our convention that
N = (Nau,0), No,1)) = (N1, No) in addition to s = (s(1,0),5(0,1)). We note that the
combinatorial complexity of this series expansion motivated us to introduce the vector
notation for particle numbers and particle types, which in turn simplifies the record-
keeping and proofs. In particular, the notation allows the quartic tree generated by
the above series expansions to be dealt with.

Recall that Fiy = (f](\?))se[N] with initial data Fiv o = (fl(\i,)o)se[N] (where [N] is
given by (4.1)) solves the BBGKY hierarchy (4.5) if it satisfies, for every s € [IN],

t
NO=Tiefnot > | T SN (m)dn.
ay,/1€T
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Here, we recall that T ¢ is the particle flow operator given in (4.4), 7 is the set of
types given in (2.1), and C?,s-s-ﬁ is the collisional operator given in (2.2). Using this

representation for fp %) for each B € 7, we may expand the above expression in

terms of the initial data f SH}
this for the first term below.

I(\}g>(t) = T.:,e (S> + Z / T.: eTCs s+5 +5 ef S+B)d7—
a,BeT

t (S+B +82)
* Z Z / / T eTlcs S+ﬁ1T-;151T,2€ Sjﬁl s+B1+P82 e (T2)dT2dT1’
a1,81€T az,B2€T

and a time dependent remainder. For clarity, we do

where we have used the continuity and linearity of the operators to commute the
integrals and operators. This can be simplified notationally. Let us define

(6.1) Sk ={B = (B1,...,B)| Vi, Bi € T}.
Then, for each 1 <[ < k and 8 € Si, define the quantities
~ l ~ ~
(6.2) B = Zﬂi eN? and 83 =( l(l,O)’ 1(0 )y,
i=1

Also define the sequence of times
(6.3) Ti(t) = {(t1,t2,...,ty) ERE : 0< ¢, <+ <ty <t

Now, for ¢, 3 € S, introduce the function

(s) I t—T1 Q1 T1—T2 Qo
fN,(aﬂ)(t) T /Tk(t)T ' s,5+B1" s+B1,e s+PB1,5+B2

L TTR=1TTE ooy (s+Bk)
(64) T3+,3k 1,eCS+Bk 1,548k 3+,3k ef dr ... dry.

For k = 0, define Sy := {(0,0)} and write for o, 3 € Sp
(6.5) f(S)(a,g)( ) = T* J(\?)O

These are the terms in the expansion of fz(\?) which only depend on initial data. The
rest of the terms are considered as a remainder, which we define as

(s) R t—T1 TT1 T2 [P
RN (am(®) _/Tk(t)T G ot Lstfy Cs+é17s+éz

Th—1—" "'kcak (3+Bk)(

TE)dT) ... dTy.
s+Br—1  s+Br_1,5+B%k k) k 1

By induction, the solution Fy = (f](\f))se[m of the BBGKY hierarchy (4.5) can be
written as
(6.6)

(s> Z Z f1(5>(a,5)( )+ Z Rﬁ\sf)m,e (t), where n < mig(Na — Sa).

[e1S
k=0 a,B€Sy o,BESn 11
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We can proceed in a similar manner for the Boltzmann hierarchy (4.17), where
F=(f (S))seNi is a solution to the Boltzmann hierarchy. Define the following expres-
sion for a, 3 € Sy:

(s) R t—T1cp01 T1—T2 2
f(an@ (t) = / Ss %s ,5+B1 SS+B1 Cgs+ﬁ1 s+B2
Ti(t)

L QTR-1—Thcpag Th (s+Bk)
(6'7) Ss+ﬁk—1 %S-‘rﬁk 1,8+,3kss+ﬂk dr ... dry.

Here, we recall that S} is free transport as given in (4.15), and €, , 4 is the collision
operator as given in (2.32). As above, we define for a, 3 € Sy

(6.8) £ 5 ) = SLIEY.

Next, define the remainder term:

(s) i t—T1cp1 QT 22
R(aﬁ)(t) T /77¢(t) Ss %s ,5+061 S+,31 %S+,@175+[§2

TR LTk g (s+Bk)
SSJFﬁk_l %er,@k 1,s+6kf (Tk)di .. dTl~

Then, as above, we have for any n € N

(6.9) £t Z Yo fdet+ Y RE .

k=0 ,3€ Sk a,BE€Sn 11

2. Reduction to finitely many terms. Here, we reduce the convergence
proof to term by term convergence of terms with bounded energy and separated
collision times. Recalling (3.6), given R >0, £ € N2, and «, 8 € .7 types as given in
(2.1), we define the energy truncated operators

a £+ « £+
Coorpngn” = Curs (gg" ﬁ)]l[EgB}i'”B']) ’
(610) %ZQ’£+B7R9(Z+§) = Cgecfe_;’_ﬁ <g(e+ﬁ)l[E§Bgl+[i\}> .
Consider § > 0. Given t > 0 and k € N, we define the separated collision times

(6.11)
E75(t) = {(tl,...,tk) 677@(75) 05t <t;—0 Vie [O,k‘}}, th+1 =0, to :=1t.

For the BBGKY hierarchy, we define for k£ € N, and o, 8 € S

(s) (t) == t—T1 000 TI—T2 pQ B
N,(e,8),R, 6\ ° Tos(®) $€  Ts,5+PB1,R" s+Pi,e s+PB1,5+82,R

(6.12) TR T pletee)

st e st Brrist BB st el No - ATk T,

and for k = 0 we define f3; o) ps(t: Zs) := =T! (f(s) ]I[ESBEQS\])(ZS).
For the Boltzmann hierarchy, we define for k € N, and o, 8 € S,

(s) R t— Ticg T1—T2cp02
f(aﬁ)yRﬁ(t) T / S s s+ﬁ1 R s+B1  s+B1,5+82,R
Th,s(t)

. QTR—1"Tkcpay (s+8r)
(6'13) SS+BA-,—1 %84“[31@ 1,8+B8k.R S+,5 fo A ...dry,
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0
Given ¢ € C.(R¥#), k € N, and a, B € Sy, let us write

and for k = 0 we define f(5y, . 5(t, Zs) = S! (fol s o)) (Zs).

(6.14) N ps(O(X) = > 05 (Vo) IS ov.).m.5 (1 X Va) AV,
os E<B7%|s| (e,8)
o, k —

(6.15) IS5rs(Xe) = Y 65(Va) £ gy 7.5 (6 X, Vi) AV
a.ges, Y ESBR®!

The following estimates show that the observables IN, I° defined in (5.6) can
be approximated by the truncated observables (6.14), (6.15) for small § and large n
and R.

PROPOSITION 6.1. For any s € N3, n € N, R > 1,6 > 0, and t € [0,T], the
following estimates hold:
-0 p?

n

N N _

15 (t)_z Is,k,R,é(t)H < CS»VU,MU,T||¢>S||L§’,°S (2 "te 3 + 6Cis,wo,uo,T) HFN,OHN,’YOvMU’
k=0 L%,

Yy

n
_ _ 2
Isoo(t)f E :I.:,ok,R,é(t)HL SCS,'YQ,H(),THQSSHL?,Z (2 "4e 3 +6CZ1L,S,’YO,H07T) ||F0||oo,'yo,u0~
k=0 Xs

Proof. For the proof, one needs to use the a priori bounds of section 4 to perform
successive reductions to finitely many terms, bounded energies, and separated collision
times, respectively, and connect these estimates via the triangle inequality. The proof
is similar to the corresponding reductions in the binary case [17]. For more details on
the strategy of the proof, see [5], where related reductions were made for the case of
ternary interactions. O

7. Good configurations and stability.

7.1. Construction of good sets and notation. Let m = (m;,m2) € N2 be
the number of particles of each type, let € = (€1, €2) € (0,00)? be their diameters, and
recall from section 2.1 that we denote the vectors of all positions and velocities by

X,, = (X(LO)’X(O;D> and V,, = (Vﬁl’o)vvﬁ’l)) :

ma m

The full phase space vector is similarly given by Z,, := (X, Vin). For each 6 > 0
and m € N7, recall from (5.1)—(5.2) the set of §-well separated configurations

An(0) = {Zn : Yo, B € T, W(i,j) € I&P, |2 — 28| > 0}
and its spatial components

AN(0) = {Xp Vo, € T, Y(i,j) € TGP, |af — 2| > 0}.
Now, let Z,(t) be the backwards particle flow given by
(7.1) Zm(t) = Ury (Zm),

where W,  is given in Theorem 3.1. Define a (6, t9)-good configuration to be

(7.2) G (0,10) = {Zm : Zum(t) € Am(6) ¥ > to}.
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Define additionally
(7.3) (S9! x BE)F (v) := {(w1,11) € S¢™ x B¢+ wy - (v —v) > 0}

The “plus” is meant to indicate postcollisional configurations. Now, as in [26, 17],
we wish to exclude trajectories on which recollisions occur in the backwards flow.
The strategy is to construct a “bad set” whose complement is exactly the set of initial
configurations of an adjoined particle which do not run into collisions under backwards
flow.

We will now fix parameters v, €9, R, 7,8 (to be chosen later) which are related by

(7.4) max(€er, €2) K 7 K €9 K 1, Ry < neg.

PROPOSITION 7.1. Fiz m = (m1,0y,M(0,1)) € N3, and recall that T is the set
given by (2.1). Let Zm = (Xm,Vim) € Gm(€0,0), and assume that E(Z,) < R?,
where E(-) is given by (3.6). For each a € 7 and £ € {1,...,mq}, there exists a bad
set By.o(Zm) C (ST71 x BE)H(W$) such that for any X, € Bj‘/;n‘(ym) we have the
following:

1. Forall B € J and (whv,ﬁnﬁﬂ) € (S x BT @)\ Be.o(Zim), we have
(8) Zmys(t) € D™ for all t > 0,
(b) Zpm+p € Gmaplen/2,9), and

(C) Zm"rﬁ S Gm+ﬁ(€0, 5)7
where we have defined Zp,15(t) via (7.1) and

(X(l,o) 210 x(0.1) V(LO) 50 V(O,l) ), B =(1,0),

VA p = ™(1,0)7 ¥m(q oy+12FT(0,1)7 T ™M(1,0) “mq oy F+17 T ™M(0,1)
mEp (1,0) (0,1) _(0,1) (1,00 =0, (0,1) -~
(Xm(LU)’Xm(0~1)’xm(0,1)+1’Vm(lyﬂ)’Vm(ﬂvl)’vm(o,l)Jrl)’ p=10,1),
~~(1,0) (1,0) +(0,1)  =(1,0) (1,0) 17(0,1) _
7 . (XM(1’0>7 mq 0)+17Xm<011)7vm(1’0>7 m1,0 “+1 m(O,l))7 /8 - (170)7
m+8 = ) =(1,00 =0,1) _(0,1) (1,00 =0,1)  (0,1) _
(Xinir0s Xmgonyr Tmig 1) 410 Vingr oy Vingo 1y Umiggy 41)> - 8= (0,1),

$fng+1 = T{ — €(a,p)W1-
2. Fordll p € .J and (wl,v,ﬁnﬂ_irl) € (ST x BOYT @)\ Bo.o(Zom), we have
(a) Z,y5(t) € DIHF for all t > 0,
(b) Zyis € Gmp(e/2,6), and
(C) Zm+ﬁ € Ger,B(GOa 5):
where we have defined the backwards flow via (7.1), Z}, 5 = T(Z::LH,),

7:1“3 = T(Z:,HB), where T 1is given by Definition 3.2, and

(1,0) (1,0 (0,1) 77(1,0) (1,0 7(0,1) _
g+ '7 (Xm(lxﬂ)’(zm(1,0)+1)+’Xm(0»1)’V?L(ljo)’v'"(lu,(; +17V7n(0~1))7 8= (170)7
mts = 1.0 (01 (01 AL 01 (01) _
(X’m(lyg)va(o,l)v(xm(o’l)-‘—l) 7Vm<110)7Vm(o’l)vvm(071)+1)7 ﬁ - (071)7
—(1,0) (1,0) L =01 (1,00  (1,0) —(0,1) _
Z+ 5 L {(in(ljo)’(z’(m(ljo)+l) 7Xm(011)7V:n(ljU)’v7r(b(1,gl)+l’vm(0:1))’ B - (1’0))
m+p T (1,0 (0,1 (0,1) + (1,0 (0,1 (0,1) _
(Xm(l,o)’Xm(O,l)’( m(071)+1) 7Vm(l,o)7Vm(071)7vm(011)+1)7 /B - (071)7

(xfn{i+1)+ =27 + €(a,p)Wi-
We now require a few lemmas in order to prove this proposition. The first lemma
shows that in the simple case of two particles, one can exclude a small cylinder to
obtain a noncollisional trajectory.
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LEMMA 7.1. Let the parameters v, eg, R,n,0 be related by (7.4). Let 5,7, € R?
with |§, —Ys| > €0. Also let vi € B&. Then there exists a d-dimensional cylinder Kf,l
such that for any vy € B%\Kg, Y1 € B;l(yl), and yo € Bg(%) we have the following:

1. For allt >0, |(y1 —tv1) — (y2 — tv2)| > €o/2.
2. Forallt >4, |(y1 —tv1) — (y2 — tva)] > €.

Proof. The proof of this lemma can be found in Chapter 12 of [17]. |

For the next few lemmas, we construct a “bad set” such that outside of this set,
the new particle is noncollisional for its whole trajectory. We compare each pair of
particles considering three cases:

1. Compare zf,z?/ fori € {1,...,mys} and j € {1,...,my}. We will call this
the existing particle case.

2. Compare the adjoined particle Z’?’Iﬂ“‘l with z{ for (i,0) # (¢,a). We will call
this the existing particle and adjoined particle case.

3. Compare the adjoined particle zfjw 41 with the particle z§ which is adjoined
close to. This case is the only case which uses the collisional laws, and hence
we call it the collistonal law case.

For the first lemma, we find a bad set B?’; (Zm) such that for all time ¢t > 0, the
initial configurations in the complement do not encounter collisions.

LEMMA 7.2. Let us be in the same scenario as in Proposition 7.1. Then, there
exists a set Bg”;(Zm) such that for all (wl,viﬁﬂ) € (S x B&YT(TY) \Bz’; (Zm),
we have Zpm 1 5(t) € D™P for all t > 0.

Proof. This proof follows by applying the same arguments as found in [17, 6, 7]
to the three cases above.

1. (Existing Particle Case) We first show that for 0,0’ € 7, i € {1,...,ms},

and j € {1,...,my}, we have |z7(t) — as;'(t)| > €(g,0r) for all £ > 0. Since

Zm € Gm(€0,0), we have by definition that
(7.5) Z7(t) — 77 (t)] > e VE>0.

Therefore, by the reverse triangle inequality

27 (5) = a7 (8)] = o] — 2] —t(@7 — 77 )|
> (77 — a7 — @] =7 )| — (27 =75 — (o] —a7)|
(76) Z €0 — 7Y Z €(o,07)"

We have used in the first inequality in (7.6) equation (7.5) and the fact that
Xm € nyil/;nl(ym). For the second inequality in (7.6), we have used that
€(0,0) K 77 K €0 by the scaling (7.4).

2. (Euisting Particle and Adjoined Particle Case) Next, we show that for all o €
T andi € {1,...,my} with (i,0) # (£, ) we have 27 (t) 2}, 1 (t)] > €(0,3)
for (w1, vfmﬂ) outside a specific set. Again using that Z,, € G (€0,0), we

'Cy”/?l (X,n), we also have that

have |z — Z%| > €. Since X,,, € B
27 —T7| <~v/2 <,

_ _ ol
T — | = B — 2 + capwn| < 5 T <7
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where in the last line we have used € 3y < 7. Applying the first part of
Lemma 7.1 with 5, = %{, ¥y = 29, y1 = xJ, and yo = xanH, we obtain a

cylinder Kg’i’[, such that for any v,ﬁnﬁ+1 € B4\ Kf; and any w; € S¢71,

g (1) — 2, (O] > €0/2 > €(op) V>0,

where we have used that €., 5) < €o.
3. (Collisional Law Case) Finally, let’s show that for any (w1, vanH) e (St x
B3)T(0¢) we have |z¢(t) — zfnﬁﬂ(t)\ > €(a,) for all t > 0. First, note that

(7.7)
23 () = @, 1 () = [2f — 407 — (& — e(a,pwr — 0], 41)I

(7.8) = le(@pwr +t(vh, 11 — 7))

(7.9) = e%a’ﬁ) + t2|v7€w+1 — Y| + 2te(q,pywr - (v,ﬁnﬁ_|r1 — %)

(7.10) > €0 )

where in (7.10) we used that (wl,vfnﬁﬂ) € (S§! x BE)*(@9).

Combining cases (1)—(3) together, set Up,i1,i0 = S x K¢

1,4,0°

Then, the set
BZ’; (Zm) = U(i)a)#e@) Unms+1,i,0, satisfies the desired properties. O

For the next lemma, we obtain a bad set Bg; (Zm) outside of which we are in a
well separated configuration for the precollisional trajectory for all times t > 4.

LEMMA 7.3. Let us be in the same scenario as in Proposition 7.1. Then, there
exists a set BZ’;(Zm) such that f(ﬁ“ (wl,viﬁH) € (S x BE)*(@9) \BZ’;(Zm) we
have Zp15 € Gms(€0/2,0) and Zmys € Gms(€o,6).

Proof. By considering the three cases found in the proof of Lemma 7.2, we show
5— 7% - - 0,— (7
(7.11) Byo(Zm) = (ST7" x B(@)) UBy, (Zm),

with Bg’; given in Lemma 7.2 satisfying our desired properties. 0

Lemmas 7.4 and 7.5 below are the postcollisional analogues of Lemmas 7.2 and
7.3. Their proofs are similar after taking preimages under the collisional law.

LEMMA 7.4. Let us be in the same scenario as in Proposition 7.1. Then, there ex-
ists a bad set Bgy’;r(Zm) such that for all (wr, ng,gﬂ) € (ST x BE) T (w9) \Bg:;r(Zm),
Zr. . 5(t) € D™HP for all t > 0.

m+3
Proof. By applying Lemma 7.2 to Z;, . 5, the set
(7.12)
0,4+ /7 L * * o . *
BZ,:(Z'"I) T U Umg-{-l,i,U? Um5+17i,0 T {(wl’vfnlg+l) . (U;Bn5+1) € Kz,i,o}

(4,0)#(L,0x)
satisfies the desired properties, where (vfw 4+1)" is given by the collisional law

* 2M —a
(v'/rﬂng-‘,-l) = Uf + m((w - U?) “wp)wi. o
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LEMMA 7.5. Let us be in the same scenario as in Proposition 7.1. Then, there
exists a set ng(?m) such that for all (wl,viﬁﬂ) € (S§71 x BE)T(T9) \ B?:;L (Zm,)
we have Z}, | 5 € Gmyp(eo/2,0) and Z:n+5 € Gm+p(€o,0).

Proof. We apply Lemma 7.3 to Z;, . 5. For n > 0 satisfying (7.4), define the set

(7.13)

Uigintin = {1,050 ,00) = |06, 10)" = @)

<= {1 vh,0) Vi € By(@)).

The last equality follows from conservation of momentum and energy. One is then

able to verify that the set B‘g’: (Zm) = (NJ;‘%_H%Q U BY T (Z,) satisfies the desired

properties. 0

Proof of Proposition 7.1. Combining the sets found in Lemmas 7.2 through 7.5,

define
Bé,a(fm) = Bg,ﬁ; (Zm)U Bg,ﬁi(jm) U Bg,; (Zm) U Bg,;r(?m)

This set satisfies all of the desired properties. a0

7.2. Measure estimates. We will now provide a measure estimate of the set
constructed in Proposition 7.1 with respect to the truncation parameters. We will
rely on the geometric estimates for binary interactions as presented in [6]. However,
our collision law may involve particles of different masses, which we treat using the
corresponding transition maps (operators reducing the postcollisional case to the pre-
collisional case) for each type of collision.

PROPOSITION 7.2. Let 7, ¢€0,€(1,0), €0,1), B, 1,6 be related by (7.4). Fizr m =
(m(1,0y,m0,1)) € N2, and o, 8 € T, where T is the set of types (2.1). Let Zy, €
Gm/(€0,0), and assume that E(Z,,) < R?, where E(-) is given by (3.6). Let By o(Zm)
be the set found in Proposition 7.1. We have

J— d—1
(7.14) 1Bt.a(Zm)| < (my1,0) + mo,1)) Rm2a77,

where | - | denotes the product measure on S9! x B%.

REMARK 7.1. The constants hidden in (7.14) only depend on dimension and the
ratio of the masses of the type (1,0) and type (0,1) particles.

Proof. As in [6], it suffices to bound each of the terms in
(7.15) (17 x BRY* ()] 0 [BY (Zin) UBLL (Zim) U B (Zan) U B (Zim)

where we recall (7.3). We will only prove the estimate on the BZ’;F term since it is
the most delicate and uses the collisional law.
Estimate of Bg”:(zm). Recall the definition of Bz’: as given in (7.12). Fix
(i,0) # (¢, ), and define
SHTF o) = {wr €811 wi (v, 40 = 7F) > 0}
= {w1 €577 (w1, v,40) € (81 x BR) " (@7))-

Using radial coordinates with integration in vfn ,+1 centered at Uy, we estimate
(7.16)

2R
d—1 d\+ (=
(S x BE)T (@) N U:;Lﬁ+1,i7g| S/ / / 1y +Mod(,uldcrrdr,
0 OB, (v3) J 5+ (T WP B

g1
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where o, is the surface measure on 0B, (7}). Now, fix r € [0,2R] and introduce a
parameter 6 € (0,1) to decompose S*(v¢, U;B,Lﬂﬂ) into two parts:

(7’]‘7) Si‘r(ﬁ?7v1€7,ﬁ+1) = {wl € Sfil Py (U’IE’L[;+1 _E?) > 9|v1€7,5+1 _E?|}7

— d— _ .
(7.18) 3;(”?,7}51[34-1) i={w1 €55 Lo (ngﬁﬂ —-7) < 9|U§m+1 - U7 [}

It is clear that S (7Y, quﬁ 41) is contained in a spherical cap of direction vﬁlﬁ 41— Ug

and angle arccosf. Hence, by integration in spherical coordinates we have (see, e.g.,

[5])

(7.19) |8§r(5§“,vfm+1)|§? < arcsin 6.

The other term S; (7Y, Urﬁn[.; +1) is more difficult to handle. Motivated by the binary

transition map from [6], we introduce the following transition map tailored to the
masses of the particles:

(720)  Jpups :STPosST g (w)y=7r"" ((@?)**(vfwﬂ)*)

Ve Vmg 41 5?’Ufn5+1
Here, we define
* ZMOL —a O\ * =a 2Mﬁ =
(mys)” =0+ g3 (@ =) e, @) =t g (@ —v))whe,

and r = |77 — vfnﬁﬂ\. Set v := jﬁ?vvfwﬂ(wl)' We can check that

(Vh11) = Clap)Vm, 11 + Cia.a) 7% — Cla,a)TV,
(7.21) (@?)* = C(a’g)viﬁ_,'_l + C(g’a)ﬁg + C(aﬁ)?“l/,
where we define

M, .
(7.22) Cloory = o 1 I M, = “mass of the o-type particle.”

Using (7.21) and recalling the cylinder K, ; , from (7.12), note that

B * d d
(723) (U77L5+1) € Kn,i,a A ve Kn/rC(ﬁwa),i,U7
where K:;l/rc(ﬁva),i,a is a cylinder of radius 7/7C(g 4. Using this fact, we write
(7.24)
1y ) (wl)dwl = / ]le ~ © T 8 (wl)dwl.
/‘sl*(v?,vfnﬁﬂ) L SE@gl ) et T m

Now, using a change of variables and a Jacobian estimate similar to Proposition 12.2
in [6], we estimate
(7.25)

d—1

—d. . Ui 2
1a 0w 58 wy)dwy S0 dmm{l,< ) }
/sf(vmﬂ ) gy T W) rC(5,0)

mB+1
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Now, putting (7.16), (7.19), and (7.25) together, we obtain
(7.26)

o .\
|(S‘1i71 x B&)F (@3N mﬁ+1 il / / arcsin® + 6~ %m dodr.
OB (7) C(8,a)

Estimating this integral and minimizing over allowable 6 (see, e.g., [5]), we obtain

1—d _
(7.27) |(S¢=1 x B&Y @) N U < (max(1,Cip.a)) = Répiaes.

mg+1,i,o’|
Summing over indices (i,0) # (¢, ), of which there are less than m; ¢y + m(o,1),
subadditivity gives the estimate.

8. Elimination of recollisions for mixtures. In this section, we reduce the
convergence proof to comparing truncated elementary observables. We first restrict
ourselves to good configurations and provide the corresponding measure estimate.

8.1. Restriction to good configurations. Inductively using Proposition 7.2
we are able to reduce the convergence proof to good configurations, up to a small mea-
sure set. The measure of the complement will be negligible in the limit. Throughout
this subsection, s = (s(1,0y,5(0,1)) € Ni will be fixed, and N = (N1 ,0y, No,1)),
€ = (€(1,0), €(0,1)) Will be given the Boltzmann-Grad scaling as in (2.28). The param-
eters R, €g,7,n, 0 satisfy (7.4).

Given m € N2, and recalling (7.2), let us define the set

(81) Gm(e, €0, 5) = Gm(e(lﬁo), 0) N Gm(6(071), 0) n Gm(GQ, 6)
Let us also recall from (5.1)—(5.2) the set AZX (eg) of well separated spatial configura-
tions. The following lemma can be found in [5].

LEMMA 8.1. Let s € N2, v,€0, R, 1,8 be parameters as in (7.4). Then, for any

dls|

X5 € AX(€9), there is a subset of velocities Ms(Xs) C BR®' of measure

(8.2) (M (Xs)lgs < Cas Rl

such that for any Vs € szls‘ \ M (Xs) we have
(8.3) Zs = (Xs,Vs) € Gs(e, €0,0).

For each s € N2 and X, € A (e), let us denote ME(X) = Bgs‘ \ Mg (Xs).
Consider 1 < k < n and a,3 € Sj, where S} is given in (6.1). Let us recall the
observables I & 5, 155 r.s defined in (6.14), (6.15). We will restrict the domain of
integration to Velocities giving good configurations. In particular, we define

B4 D)= S [ i BV s (X V) Ve
«,BES

55 D= Y [ (X)¢s<vs>f§:;{m,R,5<Xs,v;>dvs,
o,BESk s

where we recall that f](\f)(a g).r,s and f((z)g) r.s are defined in (6.12), (6.13). Let us
apply Lemma 8.1 to restrict ourselves to initially good configurations.
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PROPOSITION 8.1. Let n € N, let s € N2, and let 7, €y, R, 1, be parameters as
n (7.4). Then, the following estimates hold for all t € [0,T] and uniformly in N :

ZHIschS - skRzS( M Lo (A% (o)) < Cyspyr RN =

sY050 0

d-1
Z ” s,k,R, 6 s k R, 6( )”L‘X’(Af(eo)) < Cd,&umTRd‘S‘n 2 ”FO”OOKYUMO'

Proof. We present the proof for the BBGKY hierarchy case only. The proof for
the Boltzmann hierarchy case is similar. Let us fix X5 € AX(ey) and k € {1,...,n}.
Applying k times Lemma 4.2, we obtain

|Is kR0 (1) (Xs) — TR & Ré(t)(XS)|

<y / VR a0 X Vo -

aﬁesk
e S T P e TN P / eV MIEZ0) gy,
a,B€Sk Ms(Xs)
(8.6) < 3T (el BT M (X agal| Fov ol oo
o,B€Sk

For k = 0, recall that the map T! defined in (4.2) is an isometry on the space

XX .([0,T]). An application of the triangle inequality thus implies

100,760 (Xs) = 100, .6 (1) (Xs)| < 19l 0w ™ T Mes (X) | ajsf | FN,01 .70 0

We now sum the estimates (8.6)—(8.7) over k = 0,...,n and apply the measure
estimate of Lemma 8.1. |

REMARK 8.1. Given s € N2 and X € A (eo), the definition of Ms(X,) implies
that I 0.7s0)(Xs) =I5 r5(t)(Xs). Therefore, Proposition 8.1 allows us to reduce

the convergence to controlling the differences Tlek,R,é(t) — INSOf’k’R’é (t), fork=1,...,n
in the scaled limit.

8.2. Reduction to elementary observables. In this subsection, given s € N2
and 1 < k < n, we express the observables IV, ors(t) and 129 g 5(t), defined in (8.4),
(8.5), as a superposition of elementary observables

For this purpose, given £ := ({(1,0),4(0,1)) € N2, and «, 3 € .7, and recalling the
truncated collision operators (6.10), we decompose the BBGKY hierarchy collisional
operators in the following way:

Lo Lo
« _ a,i,+ a,t,—
Coerpr= E Cotinr— E :Cl,lJrﬁ,R’

i=1 =1

where we define
(8.8)

@, N,(a, 1 a *
Ce e+J,rB RQ( )(Ze) = Ae,e( K /Sd—l Bd (Wi (Ufﬁ+1 v7"))+ (Hﬁ)( )dwl d”e +13
X
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(8.9)
a,i, N,(«,
Coeis, Rg( D(Ze) = Ael( K éd—l B (M-(vfﬁﬂ v?)) 9% W)( 5.e) dwi d”e +1
X

Here, we let Agé(avﬁ) = (Ng —E@)e?;g) and let ZZf;e, Z£+B be as defined in (2.21),
(2.24), and (2.25). This process of splitting the collision operators can be viewed as
isolating the types of interactions being summed over. Given 1 < k < n, a,3 € Sy
and recalling (6.2), let us denote

(8.10)
Tse ={J =01, dx) s di € {+,—} Vie{l,...,k}},
(8.11)
Mg ={M=(m,...om) eNEimye {1, sp + 50} Vie {1l k}H},
(8.12)

Us g = Ts o X Ms 1.3

Here, the number sg, + Biﬁ_il is exactly the number of §; type particles in the system
after adding particles of types fi,...,8;—1 to the system of s particles. Under this
notation, the BBGKY hierarchy observable functional I k.r.s(t) defined in (8.4) can
be expressed, for 1 < k < n, as a superposition of elementary observables

(813)  INors(Xe)= > > <sz> skrs(t 0 B, J, M)(Xs),

a,B€Sy (J,M)eUs 1,3 \i=1

where the elementary observables are defined by
(8.14)

TN _ t—t1 o1, ma,j1 oty —ta
Is,k,R,5<taaaﬁ, J»M)(XS) /MC(XS) ¢S(VS)A6( )T Cs s+ﬁ1,RTs+51,

tre—1—1k o, ME,Jk tr (5+§k)
TS+Bk 1,€Cs+ﬁk 1,848k, RTS+Bk e’ N0 (Zs) dtyc ... dtrdVs.

Similarly, given £ = (£(1,0),4(0,1)) € N2, a, 8 € 7, and recalling the truncated Boltz-
mann collision operator (6.10), we decompose the Boltzmann collisional operators
as

ea éa
a _ a,i,+ o ,l,—
Covisn =Y Covibr— O Coiipr

i=1 i=1

where we define
(8.15)

‘5&12 Q(H’g)(le) = Ag /S‘H . (wr - (Uzﬂﬁl - v?))+g“+ﬁ)(22f¢§*) dwy d”iﬂa

(8.16)
‘5&1},39“*5)(22) = Ag /S‘“l , (wi - (Ueﬁﬁ+1 - U?))+Q(Z+B)(22f5) duwy dvéﬁﬁﬂ-

Here, A§ is given as in (2.35) and szﬁ*, szﬁ are given as in Definition 2.3. Under

this notation, the Boltzmann hierarchy observable functional fsook r.s(t) defined in
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(8.5) can be expressed, for 1 < k < n, as a superposition of elementary observables

(8.17) ;O?k,R,é(t)(Xs) = Z Z (Hﬁ) sk.rs(ta, B, J, M)(Xs),

a,B€Sk (J,M)EUs ik, \i=1

where the elementary observables are defined by
(8.18)

"fsoo (taavﬁ) J7M)(XS) :/ ¢S(VS)/ St t1(ga1,m17‘71st1 b2
k,R,8 Me(Xs) T s() s,5+61,R" s+

th—1—tk cptp,mp,J t s+
S G e S J0 T (B b Ve,

8.3. Boltzmann hierarchy pseudo-trajectories. We introduce the following
notation, which we will be constantly using from now on. Let s = (5(1,0),5(0,1)) =
(s1,82) N2, Zs € R2¥sl 1 <k <n,a,B €Sy, and t € [0,T]. Let us recall the set
Ti(t) defined in (6.3).

Consider (t1,...,tx) € Te(t), J = (j1,- -, Jk), M = (m1,...,my), (J,M) € Us 1 3
given in (8.12). We inductively define the Boltzmann hierarchy pseudo-trajectory of
Zs. Roughly speaking, the Boltzmann hierarchy pseudo-trajectory forms the config-
urations on which particles are adjusted during backwards in time evolution.

For instance, assume we are given a configuration Z, € R2¥| at time t, = t.
The dynamics of Z4(-) evolves under backwards free flow until the time ¢; where the
configuration (wl,US‘;H) € S‘li_l x B% is added, neglecting positions, to the mjth
particle of type «;, the adjunction being precollisional if j; = —1 and postcollisional
if j1 = 1. We then form an (s + aj)-configuration and continue this process induc-
tively until time t;4+1 = 0. In order to concisely write the adjunction process in the
Boltzmann pseudo-trajectory, we introduce the following definitions.

DEFINITION 8.1 (Boltzmann particle adjunction). Let s = (s1,s2) € N2, o, 3 €
T, and m € {1,...,54}. Then, for any Zs = (X4, Vs) € R?4Us| and v € R? define

w10 e (X8 g, XEV VY0 VD) 5= (1,0),
. s@ﬂ’ V=
(X80, X8 g, VO VI 0) 8= (0,1).

That is, the vector Zs @g’m v 1s the result of a new particle to the configuration Z
that is of type B with position z&, and velocity v.

DEFINITION 8.2 (w-impact operator). Let s = (s1,s2) € N2, and o, 8 € 7, and
let (m,€) € {1,...,504} x {1,...,83}. For any Zs € R?>¥sl and w € S¥1, define
T((Z:f))’w(Zs) € R24sl to be the vector whose components are given by

(B (74

()05
( x{0 x G0 v (0 oD (& Dyws (O yws vgg*”) , a=8=(01),
(x 0 x G0 f0wler0 D e Der D) e = 08 = 0,0,
(xg?m,xgg'l),vgl*o) ,,,,, (i Ohyw= ofh0) 0D (@ Dywn vgg*l)) . a=(0,1),8 = (1,0),
(x50 %D w0 @My (v,ﬁl'o))w* ,,,,, oD VD). a=6=(10,

where we define

(8.20) (v )" =w
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2M,

(5.21) )7 =l + 5o, (06— o) w)w

That 1s, T((m’f)) (Zs) takes the configuration Zs and collides v2, and vf with relative

impact direction w.
Now, we inductively construct the Boltzmann hierarchy pseudo-trajectory of Zs =
(X5, Vs) € R24sl a5 follows.
Time to = t. We initially define
ZF(ty) = Zs.

We will use the following notation for the components of Z2°(t; ) :

(8:22) 23 (ty ) = (XZ°(tg ), Vi~ (tg)-
Time t; with ¢ € {1,...,k}. Counsider ¢ € {1,...,k}, and assume we know
(Zgyp,_,)>(t;_1). We define (Zs+5i71)°°(t;-") as follows:

(Zori, )0 = (Xupz ¥ — (i1 = )V, )00 Vs, ¥ ().

We also define (Zs_‘_Ev)oo(ti_) depending on the sign of j; as
(8.23)
oo (41 i, my BL R
B (Zs+§i—1) (ti )6951‘, SBlJrgfll’ Ji=-1
(Zs+§,i) (ti ) = (a i) (Z _ ) ( )@az ,my 51 ,] = 1.
L messy 18 o \ZotBicn B Tep 4Bl ) T

Time tp+1 = 0. We finally obtain

255,07 = 225, ) = (X235, () = Vs, (60) Vs, ()

The process is illustrated in the following diagram:

8;
(@i, 5 +B2 ) (1,0 41),
(Jumz) (41, ml)

ti—1 —t; t] — to
Z = (t7

T
s+ﬁ 1(ti ) : s+ﬂ1 ) Zoo

—tp41 ti — tit1
0o -
ZS+EI<: (tk+1 ‘—{ 8+ﬂ

DEFINITION 8.3. Let Zg = (X4, Vi) € R2U8l k€ N, (t1,....t;) € Ti(t), o, B €

Sk, J = (1, Jk), M = (ma,...,my), (J,M) € Us 8, and for each i =1,...,k,

L5 +1) € Sﬁl_l X Bji%. The sequence {Z:jrﬁ (tj')}i:o7___7k+1 con-
i—1 i—1

structed above is called the Boltzmann hierarchy pseudo-trajectory of Zs.

we consider (w;, vﬁ

8.4. Reduction to truncated elementary observables. We will now use the
Boltzmann hierarchy pseudo-trajectory to define the BBGKY hierarchy and Boltz-
mann hierarchy truncated observables. The convergence proof will then be reduced
to the convergence of the corresponding truncated elementary observables. Given
£ € N2, recall the notation from (8.1):

Ge(€(1,0), €(0,1)5 €0, 6) := Ge(€(1,0),0) N Gel€0,1),0) N Ge(eo, d).
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Fix s = (s(1,0),8(0,1)) € N?, and let X € Af (&), 1 < k < n, a,8 € S,
t € [0,T], and (J, M) € Us 3. Also fix (t1,...,tx) € Tis(t). By Lemma 8.1, for any
Vs € ME(Xs), we have

Zs = (Xs,Vs) € Gs(€1,0)5 €0,1), €0,9)-

This implies that by construction, since ty — t; > d, we obtain Z2°(t]") € Gs(eo,0).
We will inductively apply part 1(c) of Proposition 7.1. Given i € {1,...,k}, assume
that

o0 + _
(8.24) 235 (6 €G, 5  (e,0).

ists a s + d—1 d g
Then, there exists a set By, q, (ij_aiil (tF)) € S{™" x Bf, such that

(825)  2355(th) € Gy @0,0) i o )€ Bl (225, ().

where

c 7 + L d—1 d a; Yoo 1+ Vi +
Bry (2255 (8)) = 817 5 BR (050 (60)) \ Bmvas (2355, (1))
After completing this procedure, we finally obtain Z:—Ek (0M) e G, 5,(€0,0).

Let us now define the truncated elementary observables. Heuristically we will
truncate the domains of adjusted particles in the definition of the observables I é\’k R.6
fgf’kﬁﬁ, defined in (8.4)—(8.5). More precisely, consider 1 < k < n, a,3 € Sk,
(J,M) € Us .3, and t € [0,T]. For Xs € AX (o), Lemma 8.1 implies there is a set
of velocities Mg(X,) C B?QM such that Z; = (Xs, Vs) € Gs(e1,0)5 €0,1) €0,0) for all
Vs € MS%(Xs). Now we define the BBGKY hierarchy truncated observables as
(8.26)

N _ t—t, Ao ,m1,J1 oty —to
Rirstas = [ o [ moedn s

Ak, M,k th (s+5%) .
Cs-‘rﬁk 178+Ek1RTs+Bk N,0 (Zs)dtk dtdVs,

where for each i = 1,...,k we recall the sets (8.25) and define

WL e s+B;_1\ ¢

A MG, i - — (%M \Ji ~1
C3+Bz 17S+B’L (gs+ﬁb> CS+BZ 173“1‘617 [gs+ﬂ‘ Be (Zoo pe (t+)>

In the same spirit, for X5 € AX(¢g), we define the Boltzmann hierarchy truncated
elementary observables:
(8.27)

00 _ t—t1 o0, m1,j1 qt1—ts2
Tokns (e B J M) (Xa) = /m(xs) OelVe) /Tk 5(1) S5, i m RS ety
(g;a:g_kf;ﬁkﬁsziék N Zg)dty - dtydV,

where for each i = 1,...,k we recall the sets (8.25) and define

m7 @ s+Bi_q N i

oM, g4 _ — a'hlniyji _ ~1
Cgs-‘rﬂb 1,8+8:i,R (gSJrﬁi) %8+5ri7178+5i,R [gs+51 Be v<Z°°~ (t*))
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Recalling the observables fst R.6» fsook s defined in (8.4)—(8.5) and using Propo-
sition 7.2, we obtain the following proposition.

PROPOSITION 8.2. Letn € N, let s € Ni, and let v, €9, R,n, 6 be parameters as
n (7.4). Additionally, let (N, €) be as in the scaling (2.28). Then, for all t € [0,T]
the following estimates hold uniformly in IN :

Z Z Z ”ng,R,é(tvaaﬂv J, M) _J.%,R,é(tvavﬂv J» M)||L°°(A§(6o))
k=1a,B€Sk (J,M)EUs 1,3

Rl +2n), “5HGE

< Cle,s,ug,T|‘¢S||L{7; HFN;OHE,’YmMm

n
Z Z ”I.;Ok,R,é(tvavﬁv J» M) _J.;),ok,R,é(t»avﬁv J» M)”L“’(Af(eo))
k=1 a,B€Sk (J,M)Eus,kyg
(d—1)(d+2)
< Cgll,s,uo,TH(bSHL?,‘;Rd(‘SHQn)n 2042 | Fo |07, 10 -

Proof. As usual, it suffices to prove the estimate for the BBGKY hierarchy case
and the Boltzmann hierarchy case follows similarly. Fix k € {1,...,n}, a,8 € Sk,
and (J, M) € Us ,, 3. We will bound the norm of the summand

(828) Tsj\,’k,R,é(t7a7IBa Ja M) - ng,R,é(t7a7IB? Ja M)

and then use some combinatorial estimates to evaluate a bound on the whole sum.
To bound this single term, note first that the Cauchy—Schwarz inequality and triangle
inequality imply

(8.29) {wi,v1 —v)] <2R VYw; €SYY, VYo,v; € Bé.

Therefore, we have for large R,

(8.30) / l{w,v1 — v)|dwdv; < C4RYTY Vo € B
Sd-1x B¢

In order to estimate the iterated integrals (8.28), we must integrate over at least one of
the sets By, ., (Zzig (t)) for some i € {1,...,k}. By Proposition 7.2 and (8.29),

we may estimate

(8.31) /B (Z ( +)> (w1, v1—v)|dwidvr < Cd|3+§i71\Rd+177% Vo € Bf.
mg,ay bt t;

s+Bi_1

Moreover, we have the elementary inequalities

(8.32) 185 e < e 1050 || By ol o

t 1 th—1 tk Tk
s [ aneans [ [T [T = G T
Tr,5(t) 0o Jo 0 ! !

and by Lemma 8.1 we have the estimate

(8.34) IMy(X,)| < CqeRYeIn.
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Therefore, (8.29)—(8.34) imply that for some 7 € {1,...,k} and sufficiently large R, n,

| wrs(t o, B, J, M) JskRé(tvavﬁv J, M)} < ||@sllzooe” 10| Frg ol om0

~ ., Tk
x Cy s RY%Ip s| Ck 1 p(d+1)(k=1) d(|3+/6i—1|)Rd+1772%17+12k7

(Is| + k) (d=1)(d+2)
< C a0l IIFN,ollem,uoTR‘MS'”")W B

Adding for all (J,M) € Usrp we have 2[s|(|s| + 1)...(|s| + k) < 2%(|s| + k)¥
contributions, and thus

Z ||[skR6(t avﬂ JM) JskRé(t avﬂ JM)||L°° (AX (o))
(J,]W)Eus,k)ﬁ

2F(|s| + k)k+L

1)(d+2)
< O sy 90l I F.0 e

Rd(‘SH‘Qn) L= Zd+2

(d=1)(d+2)
SCﬁ,s,#omﬂ%||L$,<;Rd(‘s‘+2")77 27552 || N ollevo,m0

k+1
since M < C*. Summing over o, 3 € Sy, k = 1,...,n, we gain a factor of
S 4k < n4” < C™ in the full sum but still obtain the requ1red estimate. |

9. Convergence proof. In order to conclude the convergence proof, we will
estimate the differences of truncated elementary observables for the BBGKY and
Boltzmann hierarchies in the scaled limit.

9.1. BBGKY pseudo-trajectories and proximity to Boltzmann pseudo-
trajectories. Let s = (s(1,0),5(0,1)) = (51,52) € N2, Zy € R¥Isl 1 < k < n,
a,3 € Si, and t € [0,T]. Moreover, fix (N, €) to obey the Boltzmann-Grad scaling
(2.28). Let us recall from the set Tj(t) defined in (6.3). Consider (t1,...,t;) €
Te(), J = (G1,---, k), M = (ma,...,mg) with (J,M) € Us . We define the
BBGKY hierarchy pseudo-trajectory of Zs in an inductive manner similar to that of
the Boltzmann pseudo-trajectory, with the appropriate modifications to account for
the positive diameter of the particles.

DEFINITION 9.1 (BBGKY particle adjunction). Let s = (s1,s2) € N7, o, € .7,
and m € {1,...,54}. Then, for any Zs = (Xs,Vs) € R?Isl and (w,v) € R? x R?
define

(XS’O) 28 4, X0 00, ’VS(20.,1)> ., B=(1,0),
(9.1) Zsdy™ (w,v) =
’ (X0 X0 g, + w0, VIR VED 0) 5= (0,1),

That is, the vector Zg EBg’m (w,v) is the result of adding a new particle to the config-
uration Zs that is of type S with position x% + w and velocity v.

Time to = t. We initially define ZN (¢;) := Zs. We will denote the components
of ZN (ty ) by

(9-2) Z3' (ty) = (X3 (t5), V¥ (1)

Individual components of the vectors XN (t;), VN (t;) will simply be written as
()N (ty) or (V)N (ty ), respectively.
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Time t; with ¢ € {1,...,k}. Counsider ¢ € {1,...,k}, and assume we know

YN (t; ;). We define (Z__, 5 1)N(ﬁ;") as follows:

(Z s+3i—

S+gi—1

(Zyog V) = (X5, )N () = (o = ) (Ve OV (1), Veys, )V ()

We also define (Zs+§.)N(ti_) depending on the sign of j; as

(9:3)
(Zs+Ei—1)N(t+) gq i (]26(047 57)“’19”6 “'B ) Ji = —1,
(Zy 5N () =
s [CTH:D) N () g2i™i (4 Bi :
T Z . = t: D (e, Wi,V g , Ji =1,
(o 45 ) (( stBiiy) (B @ Uik(as,0) Saﬁﬁf’*l)) J
where 7% is the impact operator given in Definition 3.2.

=8
(mi,sp;+ 511)

Time try1 = 0. We finally obtain

205,07 = 235, = (XN, () 0V 5, () V5 ()

DEFINITION 9.2. Let t > 0, Z, € R¥s1ts2) (¢, #)) € Ti(t), 1 < k < n,
a,B €S, (J,M) €Uskp, and for eachi =1,...,k let (w;,v ﬂl - ) € Si~tx Bg.

We call the sequence {Ziv 5 (t+) 1 defined above the BBGKY pseudo trajectory.
LEMMA 9.1. Fi:v s = (8(1,0),80,1)) = (s1,82) € N>, n € Ny, and (N,€). Fiz

E[O,T} (t1,. . tk) € Te(®), 1 <k <mn, a,B € S, (JM)EZ/{skﬁ, and for each

i=1,...,k let (w;,v ﬁ e +1) S‘li b B&. Then, for each i = 1,...,k +1 and

each o € T, we have

(94) @) = @)YV < V2 - Dmaxea, ()7 () = (7)N ()

for each” £ =1,...,5, + 51‘11. In particular, for s1,s9 <n andi=1,...;k+ 1, we
have
(9.5) |Xs+/3, 1( - inﬁ < VgnZSleagea.

Proof. The statement (9.4) follows from a simple inductive argument. See [17]
for details. For the uniform bound (9.5), fix s1,80 <n, 1 <k <n,and 1 <i<k-+1.
Now apply (9.4) to calculate

se+B7_4
2
XN5 D) = X35 D] =20 Y @) - DN DI < 80 max(ea)®.
ceT (=1
Taking square roots proves (9.5). d

9.2. Truncated observables in terms of pseudo-trajectories. We will now
write the truncated observables coming from the Boltzmann hierarchy in terms of

"Here, the number s, + Bg’_l comes from the total number of particles in the system plus the
number of particles we have added in constructing the BBGKY pseudo-trajectory.
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the Boltzmann pseudo-trajectories. By Definition 8.3 of the Boltzmann pseudo-
trajectories, we may rewrite the truncated observables given in (8.27) as

Jso,ok,R,é(t»a»ﬁv Ja M)(Xs)
= A k/ ¢S(VS)/ / f(s+§k) 70 _ (O+)
P s e sy Jee e ° (Z25.0)

+
H]z wi, ( +5511+1) () — >+dwkdv55k+,8

(9:6)  ...dwidvlt | di .. dtydtdVs,

(Z ;’iﬁ (t*)) and

A gk =11¢ i1 Ag‘ The constants AF are determined by our scaling (2.28) and are
explicitly given in (2.35).

Since the e particle flow may include recollisions, it is not immediately clear
that we can perform the same expansion for the BBGKY truncated observables
I rs(t,a,B,J,M)(X,) as given in (8.26) in terms of the BBGKY pseudo-
trajectories given in Definition 9.2. However, due to the angle and velocity sets which
we excluded in constructing J2Y, kr.s(t o, B, J, M)(Xs) from ng,Rj(t’ a, 3, J, M)(Xs)
(as given in (8.14)), we clalm the relevant e flows will not experience recollisions. To
show this claim, fix initial positions Xs € AX(eg), 1 < k < n, (J,M) € Us 1.3, and
(t1,...,tx) € Trs(t) for t € [0,T]. Consider (N, €) that obey the scalings (2.28) and,
moreover, satisfy

where we recall the sets given in (8.25) and define Bf := B¢

m; 0

2
(9.7) n” max eq <7,

where the implicit constants depend only on universal constants. Additionally assume
that s1,$2 < n. Then, given Vg € MS(X5), we have by Lemma 8.1 that

Zs = (Xs,Vs) € Gs(€(1,0),€0,1), €0,0),

s,€e) ¢7S— glven

where Gs(€(1,0), €(0,1); €0,9) is defined in (8.1). Recalling the operators W
n (3.1), (4.16), we obtain

(9-8) Vo (Zs) = @7 710(Ze) = 27 ()

since tg — t; > 0. Moreover, recall that by (8.25) we have by construction that for
each i € {1,...,k},

+ Bi c A +
Zs_;'_[g (terl) G3+3~i (6070) V(wz,v 56, +BBL1+1) € Bm1 a; ( 3+Ei—1 (tz )) .

Since we have s1, so < n, we obtain by Lemma 9.1, recalling (9.7), that

(9.9) XN X% o ()] < VBn?maxeq < 2.
acT 2

5+B'L 1 ( ) 3+16

Now, note by parts 1(a) and 2(a) of Proposition 7.1 that for each i € {1,...,k} we

have picked the set By, . ( sj_ﬁv (t1)) so that by (9.9) we have that Zij_g_ (t;) lies

in the interior of the phase space Dg*gi. Therefore, we have

tiv1—t; - tiv1—t;
(010)  WEEN () = N () = 2N ().
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Combining (9.8) and (9.10) together, we obtain the following expansion for the trun-
cated observable:

TN (b B M) (Xa) = AN / / /
MC Xs n& ('

(s+l3k) +
/ R (#25,0)

sz wza +f3[3 1+1) (tj) > dwkdv +Bffk

dwldv +1dtk .dt1dtdVs,

where we are defining By := B, ,.(Z>° - (1)) as in (8.25). The constant AL, 5,

M, X Ve B
is given by the following formula:
E
N N _ RBi . d—1
Asapir Agtitanpy  Where A s+Bi, (i, Bi) = (Noi =88 = B,21)€(a, 5
i=1

REMARK 9.1. Note that as N — 0o and € — 0 according to the scalings (2.28),
we have for fived s € N, o, 3 € Sy, and k € N that Aé\,]aﬂ,k S AY g k- Moreover,
we have the trivial bound

(9.11) 0<1—(AZ54) "AN0 5k <Cs gneagei—l.

Let us now approximate the BBGKY truncated observables in terms of the Boltz-
mann initial data and the kernel coming from the Boltzmann pseudo-trajectories.
Let s = (5(1,0),500,1)) € Ni, X, € AX(eg), 1 < k < n, (J,M) € Usyp, and
(t1,...,tk) € Tr,s(t) for t € [0,T]. Define for o, 8 € Sy, the functional

JskRé(t o, B,J, M)(X,
= A% / / / / f‘“ﬁ") ~(0T)

k
. . Bi N+
H‘]’<w“(v55i+ﬁfil+1) ORI s tBRE

cdandvt | dty . diydtdV,

We can now approximate the functional J %.R,s 0 terms of the functional J kR

PROPOSITION 9.1. Letn € N, and let s := (s1,53) € Ni such that s1,s0 < n. Fix
parameters 7, €9, R,n, 8 as in (7.4), and let t € [0,T]. Then, given ¢ > 0, there exists
a pair (N7, N3) € N2 with N = N} (¢,n,7,1m,€0) such that for all N; > NF,i=1,2,
for which (N, €) = (N1, Na, €1, €2) obey the scalings of (2.28) we have

Z Z Z ||Jsl,gc,R,6(t7aw@a J, M) - ‘Z%,R,(S(tvaw@a J, M)||L§°(A§(eo))

k=1 co,B€Sk (J,M)EUs 1,8
d 2 2
S C(?,.S,MO,T”QZ)SHLOCR (|S‘+ n)c )

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/14/23 to 128.62.216.51 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

BOLTZMANN MIXTURE DERIVATION 2369

In the case of conditioned tensorized initial data as in Theorem 5.2, we have the
upgraded bound

Z Z Z ||Jﬁc,R,5(t7aw87 J, M) - Jﬁc,R,J(tvaw@7 J, M)HLSQ(ASX(EO))
k=1 a,B€S, (J,M)Eusyk,g

< Oy all e RU2 max e,

Proof. Fix 1 < k <n, a,8 € Sk, and (J,M) € Us 1, 3. Assume (N7, N, €1, €2)
obey the scalings (2.28). Then, for N; large enough, the scaling assumption implies
that
(9.12) n? max(eq, €2) < 7,

where the implicit constants are universal. By an argument similar to that of [6], we
can bound

N ck .
HJﬁc,R,ﬁ(ta «, /37 Ja M) - Jﬁc,R,ﬁ(t’ o, /87 Ja M)HL?"(A?(GO)) < T)u@”d)SHL“Rd(‘S‘—FQk)
x (nf}s,*o‘*“ — £ | poe |> -

Summing the above estimate over all a,3,J, M, and k, we use the elementary in-
equality

(co/2) + (A% ) " ANy gk — 1l Fo

S+Ek

n k

C’dT n
3 —ETH 4R s (|| + 1) ... (18] + k) < Cli
k=1 ’

Using Definition 5.2, Remark 9.1, and the case of conditioned tensorized initial data,
the estimate (5.4) finishes the proof. 0

Next, we compare the functionals jsj\’]kﬁ’é(t, o, B,J, M) to J35 g st a, B, J,M).
The following proposition crucially uses the continuity assumption on our initial data
Fy.

PROPOSITION 9.2. Let n € N, and let s1,s2 < n. Fix parameters v, €y, R,n,d as
in (7.4), and let t € [0,T). Then, given ¢ > 0, there exists a pair (N;*, N5*) € N?
with N}* = N*((,n,c1,c2,a,b) such that for all N; > N}*, i = 1,2, for which
(N1, Na, €1, €2) obey the scalings of (2.28) we have

Z Z Z ||J.Q;C,R,5(t7aw67 J, M) - J.;Ok,R,J(tvavﬁv J, M)HL?(A?(EO))

k=1 a,B3€Sk (J,M)Eusyk,g
d 2 2
< Cf o rl19all Lo RIS 2,

For the case of conditioned, tensorized, and Hélder initial data in C°*, we have the
improved estimate

Z Z Z ||J31}§C,R,6(t7a7/3a J, M) - J;Ok,R,E(t7a7/3a J, M)HL;)O(A?(EO))
k=1 o,B€S (.],M)eus,k,ﬁ

d A
< Clf g rllell = U2 (mac ),
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Proof. Let ¢ > 0 be given. Fix 1 <k <n, a,8 € Sy, and (J, M) € Us 1. 3. Then,
since s1, s2 < n, we may apply Lemma 9.1 to obtain
N +\ oo + 2
(9.13) |Zs+,§k(0 ) Zs+5k(0 )| < V8n? max(ey, €).
According to (2.28), there exists (N7*, N3*) € N? with N}* = N*((,n,c1,c2,a,b)
such that for all V; > N;*, the right-hand side of (9.13) is so small that by the
continuity condition (5.5) we have

(s4+Bi) (7N (s4B) ( 700 k—1,2
o™ 25, (07)) = fo™ (255, (0 < CEie
for all Zy € R24(s1+52)  Ag in the proof of Proposition 9.1, summing this inequality
over1 <k <n,a,B € Sk, and (J, M) € Us ;, g proves the first part of the proposition.
For the second estimate, note that for any Z,, Z, € R24 we have by induction for
€= (l1,0) € N2

(9.14) 95 @ 1§ (Ze) — 95" @ hi*®(Zy)| < CaelZe — Zyl ™.

Applying this estimate with (9.13), the proof is complete. 0
9.3. Proof of the main theorem.

Proof of Theorem 5.1. Here, we choose parameters n € N, §,7,7,¢9 > 0 and R >
1 to show convergence in Theorem 5.1. First, fix s = (s1,82) € N? and ¢, € CC(RdM).
Define the constant Cs ~,,.,,7 > 1 to be the maximum of all of the constants found
in Propositions 6.1, 8.1, 8.2, 9.1, and 9.2. Then, define the constant

C = Cs 50,10, 7|95l Lge max(L, [[Foll oo no,0) > 1-

Then, let 0 > 0 and 0 < ¢ < 1 be sufficiently small so that
(9.15) Ces 3 s

We pick parameters so that for all sufficiently large N7, N> and sufficiently small €1, €2
which obey (2.28) we have for all ¢ € [0, T that ||[IN (t) — Il e ax @) S ¢ We
choose these parameters in the following order:
(Py) Pick n € N such that n > max(sy, s2,log,(C¢™1)). This implies that s;,ss <
nand C47" < (.
(Py) Pick § > 0 such that § < (C~(*+D. This implies that 6C"** < .
(Ps) Pick n > 0 such that < ¢*/(?=1_ This implies that n(¢=1/2 < ¢2,
(P4) Pick R > 1 such that max(1, \/370_1/2 log'/2(C¢™1)) < R < ¢~/ (dn) =1/ (4d)
This implies that (2R4"C™ < ¢ and Ce 0R/3 < (.
(Ps) Pick € > 0 such that ¢g < nd as in (7.4), and let ¢y < 0.
(Ps) Pick v > 0 such that v < € and 7 < R~ 'n as in (7.4).
Note that (Py) implies that s1, so < n, so the fact that R > 1 implies R?s!, Rd(IsI+2n) <
R4 Moreover, since 451 < % and n < 1, we get n(¢=1/2 > p(d=1)(d+2)/(2d+2)
Hence, we have

O (RSl d=1)/2 . Ra(ls|+2n), (d=1)(d+2)/(24+2)) < ocm phdn, (d=1)/2,

Can(\s|+2n)< < CnR4dn<.
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Now note that for ¢ = 1,2, if N; > max(N;, N;*) and N; so large that max(ey, €2) < 7y
as in (7.4), our parameter choices (P;)—(Fs) imply that the conditions on our param-
eters from Propositions 6.1, 8.1, 8.2, 9.1, and 9.2 hold. Moreover, we have that

(9.16)
2
1IN (8) = I ()| Lo (aF (eo)) < CAT™ + e /3 4 5Cm)
+ Cm(Rd\s\n(d—l)/Q +Rd(|s|+2n)n(d—1)(d+2)/(2d+2))

+ Can(\s\+2n)C2
(9.17) < 6¢

for all N; > max(N}, N;*), (N1, Na, €1, €2) that satisfy the mixed Boltzmann-Grad
scalings (2.28). Because of our choice (Ps), we have ¢y < o, which implies AX () C
AZX(€p). This, combined with the bound (9.17), concludes the proof. d

Proof of Theorem 5.2. The inclusion of Fy and F' in the correct spaces follows
from the definition of the norms and the continuity estimate of Theorem 4.3. Tt
follows by a computation that F' indeed solves the Boltzmann hierarchy. By Theorem
5.1 it thus suffices to check the continuity estimate. This follows from an induction
using the bound proved in Theorem 4.3 and our assumption that |ug|,,u0+1 < 1/2.
Using the upgraded estimates in Propositions 9.1 and 9.2, we obtain as above

—n _ 2 ”
1IN () = I ()| Lo (ax (cg)) < C(AT™ + e /3 4 5Cm)
+ Cn(Rdls\n(d—l)/2 + Rd(\s|+2n)n(d—l)(d+2)/(2d+2))]

+ C" RS20 max(eq ).
aceT

Picking parameters n,d,, R, €g, and « in a manner similar to (P;)—(Ps) above, we
obtain the claimed convergence rate in € = max,co €,. For details of a related
calculation, see, e.g., [7]. d
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