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Abstract—FPGA security is being challenged by reverse engi-
neering, Trojan, and side-channel analysis attacks. Although the
existing static obfuscation methods can protect the integrated
circuits from IP piracy and hardware tampering, they are still
vulnerable to persistent attacks in FPGAs. In this work, we
leverage the advanced function of FPGA CAD tools to develop
a Dynamic Partial Reconfiguration enabled Design Obfuscation
(DPReDO) method. FPGA emulation results show that, for each
obfuscation variant update, the proposed dynamic obfuscation
method only consumes 1.5% of the FPGA reconfiguration time
required by an existing static obfuscation. Our case study shows
that the netlist synthesis time of our method is 26% less than
the baseline.

Index Terms—FPGA, hardware security, partial reconfigura-
tion, obfuscation, hardware Trojan.

I. INTRODUCTION

The increasing FPGA market share has motivated more and
more hardware hackers to attack FPGA based systems. Various
cloud FPGA services further open the door to numerous side-
channel attacks through covert communication channels [1].
Even if lacking the explicit mapping of memory addresses to
resources and with data encryption, the reverse engineering
on FPGA bitstreams is still considered a powerful attack [2].
Hardware Trojan insertion is a significant security threat to
FPGA security throughout its life cycle [3]. A hardware Trojan
could introduce some malicious chip functionality or leak
sensitive data [4]. Malicious intellectual property (IP) could be
integrated into FPGA chips during the device manufacturing
stage [5]. Other security threats [6], [7] could be originated
from fraudulent FPGA Computer-Aided-Design (CAD) tools,
which stealthily sabotage the integrity of FPGA bitstream.

Bitstream encryption is one of the most important security
measures for FPGA security. Symmetric and asymmetric cryp-
tographic systems have been developed and widely utilized in
FPGAs. Symmetric encryption techniques, such as Advanced
Encryption Standard (AES) [8], encrypt and decrypt data
using a key that is identical to the transmitter and receiver.
Asymmetric cryptography techniques such as Elliptic Curve
Cryptography (ECC) encrypt and decrypt data using different
keys [9]. Logic locking and design obfuscation [10], [11]
are another kind of encryption, which blocks the normal
logic operations if the authorized key is not available. The
widespread machine learning techniques have been applied to
address the FPGA security issues [12].
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Despite static defense methods such as encryption and side-
channel signal analysis can provide certain attack resilience,
they are not sufficient to thwart persistent attacks. As attackers
gain more and more knowledge of the static defense mech-
anism, the protection offered by the static defense method
will eventually diminish. Thus, it is imperative to develop
countermeasures that can upgrade themselves if necessary.
In software, it is easy to patch the existing defense solu-
tion. In contrast, hardware is not patchable after fabrication.
Fortunately, FPGAs provide users with some flexibility to
advance the hardware defense mechanism through the mean
of reconfiguration. However, most of the existing defense
methods for FPGAs still belong to a static solution, not being
designed to support the flow of dynamic modification in future.
Toward this need, we propose a dynamic defense method to
strengthen the attack resilience of the design mapped to FPGA
chips.

The main contributions of this work are as follows:
• We propose a dynamic partial reconfiguration (DPR)

based obfuscation method to obscure the hardware design
mapped to FPGAs. To the best of our knowledge, this is
the first work that leverages the partial reconfiguration
function offered by the FPGA CAD tool to strengthen
the countermeasure’s attack resilience. By using partial
reconfiguration, our defense method improves the unpre-
dictability of countermeasures.

• A new FPGA design flow is proposed in this work to
enable design partition and dynamic obfuscation.

• The attack resilience achieved by the proposed dynamic
defense method is analyzed and validated with using two
ISCAS benchmark circuits.

II. RELATED WORK

The defense methods for FPGA security can be categorized
in many ways. Depending on whether the method can be
upgraded in future or not, we summarize the existing effort
into static and dynamic defense groups.

A. Static Defense Methods

The watermarking technique [13] manipulates the state
transition graph to generate a rare topological feature presented
in a sequence of inputs that traverse specified finite state ma-
chine. Hardware IP protection techniques that need to store a
permanent key is prone to memory leak attack. To address this
security threat, the work [14] introduces a scheme that links



the IP to specific FPGA devices by communicating with phys-
ical unclonable functions (PUF) on the FPGA. The method
MUTARCH [15] relies on architectural diversity, prohibits
invalid upgrades to the mutated FPGA devices, and lowers the
economic incentive for attacks. These FPGA security measures
only protect the FPGA implementation during the bitstream
generation stage. The design after FPGA deployment is still
vulnerable to the threats from the compromised FPGA devices.
Without relying on a golden version, the work [16] detects
anomalies in the FPGA physical layer by examining if the
fundamental building block on the FPGA die has different
physical statistical parameters in surrounding blocks.

B. Dynamic Defense Methods

Moving target defense (MTD) and partial reconfigura-
tion are the two primary dynamic defense mechanisms.
The work [17] executes dynamic defense with Instruction
Set Randomization (ISR) and Address Space Randomization
(ASR) techniques in microsystems. That method lowers the
probability of a successful reverse engineering attack and
the risk of being discovered via minimizing the adversary’s
reconnaissance knowledge. The principle of MTD is exploited
by the work [18], [19] to thwart the Trojan insertion attack
from malicious FPGA CAD tools. The MTD based defense
method creates ambiguity in the FPGA’s place and routing
stage, thereby reducing the hardware Trojan hit rate and safe-
guarding the bitstream from harmful modification. However,
the methods in [18], [19] do not protect the FPGA design
once the bitstream is downloaded to the FPGA. To mitigate
the Trojans induced in fabrication or design time, the MORPH
architecture [20] combines multiple protection schemes, in-
cluding morph operation, onion encryption, replication, partial
run-time reconfiguration, and hardware abstraction layer, to
prevent information from leaking. That work does not perform
idea validation. The recent work [21], [22] provides insight
into dynamic partial reconfiguration and proposes the chal-
lenges and opportunities of FPGA DPR.

III. PRELIMINARIES

In the traditional FPGA design flow, an FPGA user needs
to halt the current FPGA operation and then reconfigure the
FPGA fabric with a new bitstream. In contrast, the partial
reconfiguration (PR) function allows the FPGA user to change
the logic inside reconfigurable modules without reprogram-
ming the entire top module or disturbing the active design in
the rest of the FPGA chip. The FPGA design flow that supports
partial reconfiguration is depicted in Fig. 1. In step 1, the
design is first divided into static logic and dynamic logic. The
static logic consists of a top module and any other submodules
in the design that do not require dynamic programming, such
as clock trees. The dynamic logic is the submodules for future
partial reconfiguration and comes with variants. In step 2, all
design modules are synthesized separately, and the synthesis
design checkpoints are generated for all the module variants
and static logic. In step 3, the static logic will be linked with
one variant of all the dynamic modules. Note, we will need

Fig. 1. FPGA design flow that supports partial reconfiguration.

Fig. 2. Control flow of DPR in FPGA.

to create a Pblock and then assign each dynamic module to
the Pblock in this step. We can repeat this step if multiple
variants are available to update the design. At the end of Step
3, post-implementation routing checkpoints are generated for
the entire design variant. In step 4, the bitstreams for the full
static design and dynamic variants are formed. To support the
dynamic obfuscation defense, the blocks highlighted in Fig. 1
will be involved. A Xilinx DPR controller can be customized
to deploy bitstreams without designer intervention. As shown
in Fig 2, when a trigger signal is sent to the controller, a partial
bitstream of a different variant of obfuscation module is read
from an external flash memory or designer into the FPGA.

IV. PROPOSED DPR-ENABLED DESIGN OBFUSCATION

A. Method Description

Aiming to improve the attack resilience, we exploit the
dynamic partial reconfiguration function (DPR), which is pro-
vided by the FPGA CAD tool (e.g., Xilinx Vivado), to develop
a DPR-enabled design obfuscation (DPReDO) method. This
method inherently has a dynamic feature as the obfuscated
module can be updated as a partial bitstream at runtime.
The conceptual view of the proposed DPReDO is shown in
Fig. 3. Assume the top design has two submodules being
obfuscated (i.e., BX1 and BX2) and the entire project is run
in a cloud FPGA. The incomplete top design that misses BX1
and BX2 is described in the static bitstream and uploaded
to the cloud FPGA first. A series of BX1 (i.e., BX1’ and
BX1”) and BX2 (i.e., BX2’ and BX2”) are implemented as
multiple FPGA bitstream variants, which will be sent to the
cloud later for dynamic obfuscation. The complete design for
the top module is formed in the cloud and the bitstream for
the entire top unit varies with the deployed partial bitstream.
From the attacker’s point of view, the top design is not only
obfuscated but also the obfuscation is not fully predictable in
terms of time and function. Thus, the extra uncertainty offered
by the proposed DPReDO strengthens the attack resilience of
the design obfuscation.
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Fig. 3. Proposed dynamic partial reconfiguration enabled design obfuscation:
(a) top module with reconfiguration variants (b) design integration.

(a) (b)

Fig. 4. Two styles of dynamic obfuscation: (a) hierarchical and (b) parallel.

The dynamic obfuscation module can be a unit with two
hierarchical layers, one for obfuscation logic and another for
obfuscation key management, as shown in Fig. 4(a). With the
support of multiple FPGA variants, we have the flexibility to
create as many obfuscation key sets as needed. This method
eliminates the need of hardcoded key or limited key options
in hardware. The obfuscation key can also be provided as a
direct replacement via dynamic partial reconfiguration, which
is depicted in Fig. 4(b). Regardless which dynamic obfusca-
tion style is applied in the DPReDO, our method improves
the unpredictability of the design and achieves better attack
resilience than the static obfuscation.

Meanwhile, the DPReDO has potential to reduce the to-
tal time that the FPGA design upgrading needs. Figure 5
illustrates the time difference between static and dynamic
FPGA reconfiguration. In the static reconfiguration, we will
accumulate the time for netlist compilation time, bitstream
programming, and operation for functional assessment per
each design revision. The total elapsed time is proportional
to the number of iterations we have in the FPGA application
development cycle. In the dynamic partial reconfiguration, we
save the time from multiple stages: (1) do not need to repeat
the compilation of static logic of the top design, (2) only
compile the variants for dynamic obfuscation, and (3) hide
the FPGA mapping time underneath the functional assessment
time. Besides offering better attack resilience, our method can
also reduce the development time of the entire project.

The pseudo code for our DPReDO method is de-
scribed in Algorithm 1. The dynamic obfuscation module
DPR obfuscation is instantiated in the highest level of the
design module TopDesign. The inputs for the obfuscation
modules are only internal signals from the top module such
that no risk of leaking the locking key, including key size
and the key input portal. The bitstream for DPR obfuscation
is provided as a blackbox after the main design IP is de-

Fig. 5. Conceptual illustration of design reduction achieved by proposed
DPReDo.

Algorithm 1: Pseudo Code for Proposed DPReDO.

1 module TopDesign (port list);
2 Declaration of input ports;
3 Declaration of output ports;
4 DPR obfuscation Inst(internal nets);
5 Original logic statements;
6 endmodule
7 module DPR obfuscation (port list);
8 Declaration of input ports;
9 Declaration of output ports;

10 Declaration of obfuscation key vector;
11 /*Example of an obfuscation logic statement*/
12 if ((in1 & (∼ in2)) == Key[0])
13 NextState = CORRECT NextState;
14 else
15 NextState = WRONG NextState;
16 Other obfuscation logic statements;
17 module KeyManagement (Key);
18 Hierarchical obfuscation;
19 Parallel obfuscation;
20 endmodule

TABLE I
COMPARISON OF FPGA RESOURCE UTILIZATION IN STATIC AND

PROPOSED DYNAMIC OBFUSCATION METHODS.

Method FPGA Utilization
Baseline
[11]

# of LUTs # of slices
1871 537

Proposed
Static logic
(# of LUTs)

Static logic
(# of slices)

Dynamic logic
(# of LUTs)

Dynamic logic
(No. of slices)

1753 486 27 33

livered. Furthermore, that bitstream is in a format of partial
bitstream and varies with each variant, which changes during
the dynamic reconfiguration. The key vector for obfuscation
is handled by a KeyManagement module (another dynamic
FPGA variant module). Thus, the vulnerability of key leaking
is significantly reduced.

B. A Practical Example

An ISCAS benchmark circuit, s5378, is used in this case
study. In the baseline, we obfuscated the circuit with the
method in [11]. Next, the same circuit was obfuscated by
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Fig. 6. FPGA floor plan post implementation. (a) s5378 with obfuscation
module (b) Obfuscation Pblock with and without logic.

the proposed DPReDO, which generated one static bitstream
for the s5378 top module and three variant bitstreams for
the obfuscation submodules. Here, parallel style of dynamic
obfuscation was used in DRPeDO. In step 3 of the FPGA
design flow shown in Fig. 1, we created a pblock with isolation
property to host the obfuscated module logic as shown in
Fig. 6(a). The static logic plus one variant of the obfuscation
submodule forms a full design. As this case study had three
variants of the obfuscation submodule, step 3 was repeated
three times. The implementation of the obfuscation submodule
was removed from the pblock and a new variant logic was
added and implemented as shown in Fig. 6(b). The FPGA
utilization for two obfuscation methods is shown in Table I.
The proposed method consumes comparable LUTs and FPGA
slices that the static obfuscation needs.

C. Attack Resilience of Proposed DPReDO

1) Key Leaking Attack: The existing static obfuscation
methods (e.g., logic locking and state obfuscation [10], [11],
[19]) all assume that a secure key management is available be-
fore the deployment of the design obfuscation. Unfortunately,
separating key handling from the design obfuscation is not
desirable since the encryption key is critical to ensure the suc-
cess of obfuscation. The proposed DPReDO method integrates
the design obfuscation and key management into a unified
framework, in which the encryption key can be provided and
erased through the process of dynamic partial reconfiguration.
Because of the run-time modification feature in DPReDO, the
risk of leaking the encryption key is significantly reduced
over the static obfuscation and meanwhile the overhead on
complicate key management is saved.

2) Reverse Engineering Attack: Although static obfuscation
obscures the design, the obfuscated netlist is released entirely.
If adversaries conduct persistent reverse engineering attacks,
the protection from obfuscation will eventually diminish. Our
DPReDO enables the runtime update of multiple (theoretically
infinite) variants, thus maximizing the dynamicity and unpre-
dictability of the design under obfuscation. For example, a
physical unclonable function (PUF) unit is used in the dynamic
obfuscation and the corresponding partial reconfiguration bit-
streams are sent to overwrite the FPGA chip with an arbitrary
time interval. As we can use different PUFs in the process of
obfuscation or leave the PUF variant as a blank place holder,
the randomness from the PUF further raises the bar for reverse
engineering attack (even if machine learning algorithms are
used in the attack).

3) Hardware Trojan Attack: Hardware Trojans could sab-
otage the integrity of the original design, leak information, or
consume extra power. The dynamicity introduced by DPReDO
increases the resilience against the Trojan attack with the
following two reasons: (1) Since the complete design is not
fixed, the Trojan trigger condition is more difficult to meet
in DPReRO than in static obfuscation. Thus, the deactivated
Trojan payload will be benign. (2) If the hardware Trojan could
hit the exact FPGA location where the target logic is, that
location could move as we replace the critical variants. As
a result, the Trojan insertion cannot always succeed and the
attack is not persistent anymore.

4) Side-Channel Analysis Attack: FPGAs are prone to side-
channel analysis attack. The availability of multiple variants
(i.e., partial reconfiguration bitstreams) will break the consis-
tent correlation between the obfuscation submodule and the
total power consumption (or critical path delay) of the full
design. We envision that DPReDO has a potential to strengthen
the obfuscated design from side-channel analysis attack.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Two testbench circuits ISCAS s298 and s5378 were used in
the following assessment. Both the circuits were modified to
host an obfuscation submodule, in which a correct key must
be provided for the proper function. Different variants of the
obfuscation submodules were designed to obfuscate the critical
state transition in the benchmark circuits. The small circuit
s298 has five obfuscation variants with different locking logic
function and key size. The large circuit s5378 is provided with
three obfuscation variants. The FPGA board used in this work
is Xilinx KC705 evaluation kit hosting Kintex-7 FPGA. The
compilation, implementation, and bitstream generation were
performed in Vivado 2019.2, which was installed in Intel(R)
Core(TM) i7-8565U CPU @1.80GHz 1.99 GHz using x64-
based processor. A TI USB-TO-GPIO interface adapter was
used to monitor the voltage buses of the FPGA at runtime. The
communication between USB interface adapter and PMBus on
the FPGA happened using I2C protocol and communication
between the adapter and host computer happened via USB.
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Fig. 7. Current profile of the FPGA receiving (a) static obfuscation and (b)
proposed DPReDO bitstream.

B. FPGA Obfuscation Speed

The proposed dynamic obfuscation achieves a better FPGA
reconfiguration speed than the static obfuscation [11]. In this
section, we present the real-time current profile of the FPGA
chip and also show the impact of benchmark circuits under
obfuscation and the number of variants used in obfuscation
on the netlist compilation and FPGA programming time.

1) Demonstration of Current Profile: To be fair, we assume
that the static obfuscation was executed twice and two variant
bitstreams for partial reconfiguration were programmed to the
same FPGA. Figure 7 shows the current flowing through
the Kintex-7 FPGA while we were compiling the netlist of
s5378 obfuscated statically/dynamically and downloading the
corresponding bitstreams to the FPGA chip. Each peak current
in Fig. 7(a) indicates the starting point of transferring a new
full bitstream. The time interval between two current peaks
represents the total time (∼400 seconds) that is required by
programming one complete design protected by static obfus-
cation. As our DPReDO method only updates the obfuscation
submodules via partial reconfiguration bitstream, the time
interval between two variants is 6 seconds, which is 1.5%
of the time used in static obfuscation. If the design revision is
taking place in the FPGA cloud, the reduction on the FPGA
reconfiguration time will be more significant than the stand-
alone FPGA platform.

2) Impact of Circuit Size on FPGA Obfuscation Time:
We followed the same current monitoring approach to further
compare the FPGA design time that the static obfuscation
and proposed DPReDO methods need when we apply them
to s298 and s5378. The total FPGA design time is the sum of

Fig. 8. Time consumed by s298 and s5378.

(a)

(b)

Fig. 9. Synthesis time for dynamic design variants. (a) DPR and static
reconfiguration synthesis for s298 (b) DPR and static reconfiguration for
s5378.

the synthesis time, place and routing time, and the bitstream
generation time (all reported by Vivado). For each benchmark
circuit, three obfuscation cases were tested. As shown in
Fig. 8, our method consumes 11.9% and 7.4% less CPU time
than the static obfuscation for s298 and s5378, respectively.
This experiment result indicates that the reduction on the
FPGA obfuscation time increases as the size of the circuit
under protection increases with respect to the obfuscation
circuit.

3) Impact of Number of Obfuscation Variants on FPGA
Synthesis Time: The more variants available for DPReDO will
make the obfuscated design achieve stronger attack resilience.
In this section, we perform quantitative assessment on the
impact of the number of dynamic variants on the FPGA
synthesis time.

As shown in Fig. 9, the time for synthesizing one variant in
the proposed DPReDO design flow is higher than the time
for the static design. This is because the dynamic partial



Fig. 10. FPGA current variation.

TABLE II
CURRENT STATISTICS FOR THREE DYNAMIC VARIANTS IN FIG. 10.

Obfuscated variants #1 #2 #3
Mean 0.45 0.44 0.44
Standard deviation 0.04 0.04 0.04
Correlation coefficient 0.7 0.7 0.8

reconfiguration has overhead time on separately synthesizing
static logic, saving checkpoints, Pblock allocation, and partial
reconfiguration. Fortunately, The top logic is synthesized only
once in DPR whereas in static reconfiguration top logic is
synthesized anytime there is a change in the obfuscation
variant. This fact helps us to reduce the synthesis time for
DPReDO over the static defense. The case study results shown
in Fig. 9 indicate that dynamic partial reconfiguration will
enable us to reduce the FPGA synthesis time by 2.54% for
s298 (with 5 variants) and 26.28% for s5378 (with 3 variants).

C. Variation on Side-channel Signal

We monitored the current through the power line of the
FPGA chip and observed that different obfuscation variants
yield different current traces. Figure 10 shows the current
variation of three obfuscation designs. The statistics of the
current profiles for these three designs are listed in Table II.
As can be seen, the correlation between any two obfuscation
designs is between 0.7 and 0.8, which means that using
dynamic obfuscation variants has the potential to increase the
difficulty of the side-channel analysis attack.

VI. CONCLUSION

This work introduces a dynamic defense method (DPReDO)
to address the persistent hardware attacks on FPGAs. The
detailed design flow for dynamic defense in the FPGA plat-
form is proposed, as well. The case studies performed on a
Xilinx KC705 FPGA evaluation board prove the feasibility
of DPReDO design flow. The FPGA emulation results show
that our method not only significantly reduces the FPGA
reconfiguration time (as low as 1.5% of static obfuscation), but
also saves the netlist compilation time in Vivado and FPGA
resource utilization. We further analyze the attack resilience
that can be improved by DPReDO. In the future, we will
perform more assessments on diverse benchmark circuits.
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