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Fix integers m ≥ 2, n ≥ 1. We prove the existence of 
a bounded linear extension operator for Cm−1,1(Rn) with 
operator norm at most exp(γDk), where D :=

(
m+n−1

n

)
is 

the number of multiindices of length n and order at most 
m − 1, and γ, k > 0 are absolute constants (independent 
of m, n, E). Upper bounds on the norm of this operator are 
relevant to basic questions about fitting a smooth function 
to data. Our results improve on a previous construction of 
extension operators of norm at most exp(γDk2D). Along the 
way, we establish a finiteness theorem for Cm−1,1(Rn) with 
improved bounds on the involved constants.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Fix m ≥ 1, n ≥ 1. We let Cm(Rn) denote the Banach space of all m-times continuously 

differentiable functions F : R
n → R whose partial derivatives up to order m are bounded 

functions on Rn. We equip Cm(Rn) with a standard norm:

‖F‖Cm(Rn) := sup
x∈Rn

max
|α|≤m

|∂αF (x)|.
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Here, for a multiindex α = (α1, . . . , αn) ∈ N
n, we write |α| :=∑j αj to denote the order 

of α. We write ∂αF (x) = ∂α1

1 · · · ∂αn
n F (x) for the αth partial derivative of a function 

F ∈ Cm
loc(Rn). We also define α! :=

∏n
i=1 αi!.

The following problem goes back to Whitney [28–30]. Let E be an arbitrary subset of 

R
n. Given a function f : E → R, determine whether there exists a function F ∈ Cm(Rn)

with F = f on E.

Whitney’s problem was solved by C. Fefferman in 2006 [16].1 In a remarkable series 

of papers, Fefferman posed and solved a variety of related problems. In three of these 

papers [17,19,20], two of them joint with B. Klartag, the authors connected this work to 

the practical problem of computing a Cm interpolant for a given set of data.

Suppose now that E is a finite subset of Rn. We define the trace norm of a function 

f : E → R by

||f ||Cm(E) := inf{||F ||Cm(Rn) : F = f on E}.

A function F : R
n → R is an interpolant of f if F = f on E. Given C ≥ 1, a function 

F ∈ Cm(Rn) is a C-optimal interpolant of f provided that F = f on E and ||F ||Cm(Rn) ≤
C||f ||Cm(E). That is, F is an interpolant of f with Cm norm that is within a factor of C

of the optimal value. In [17,19,20], Fefferman and Klartag proved the following theorem.

Theorem 1.1. Fix m ≥ 1, n ≥ 1. Let E ⊆ R
n be a finite set with cardinality #(E) = N

and fix f : E → R. There exists an algorithm that computes a C-optimal interpolant 

F ∈ Cm(Rn) of f . Specifically, the algorithm takes as input (E, f, m) and performs 

C1N log N units of one-time work, on an idealized (von Neumann) computer with C2N

units of memory. Given x ∈ R
n, the computer responds to a query by returning the 

values of ∂αF (x) for all α with |α| ≤ m, where F is a C-optimal interpolant of f . 

The algorithm requires C3 log N computer operations to answer a query. The constants 

C, C1, C2, C3 depend only on m and n.

For details on the model of computation, including an explanation of the terms “one-

time work”, “query”, or what it means to “compute” a function on Rn, see [17,19,20].

We note that (1) the running time of the algorithm in Theorem 1.1 likely has optimal 

dependence on N = #(E) and (2) this is the only known algorithm for solving the 

Cm interpolation problem for arbitrary finite sets efficiently in N . Therefore, at least in 

theory, this algorithm could have widespread practical application.

Unfortunately, the constant C in Theorem 1.1 grows rapidly with m and n, rendering 

the algorithm impractical for real-world applications. While C is not computed explicitly 

in [17,19,20], an examination of the arguments in those papers shows that one must 

take C to have order of magnitude at least exp(γDk2D) for some real number γ > 0

1 The Whitney problem has a long history with contributions by many authors; below, we discuss some 
of the most relevant to our work. For a more complete history see [18] and the references therein.
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and integer k > 0; here D :=
(

m+n−1
n

)
denotes the dimension of the vector space of 

polynomials in n variables of degree at most m − 1. In other words, the optimality 

guarantees on the interpolant produced by this algorithm deteriorate rapidly as n and 

m grow. Any practical version of Theorem 1.1 will have to address this issue. There is 

considerable interest in finding such an algorithm; see [11].

The proof of Theorem 1.1 is based on a finiteness theorem for Cm−1,1(Rn). This 

theorem is the source of the double exponential dependence on D of the constant C in 

Theorem 1.1. Next, we state this result.

We let Cm−1,1(Rn) denote the space of all (m − 1)-times differentiable functions 

F : R
n → R whose (m − 1)rst order partial derivatives are Lipschitz continuous on Rn. 

We equip this space with a seminorm:

||F ||Cm−1,1(Rn) := sup
x,y∈Rn

⎛
⎝ ∑

|α|=m−1

(∂αF (x) − ∂αF (y))2

|x − y|2

⎞
⎠

1/2

.

Given a ball B ⊆ R
n, we write Cm−1,1(B) for the corresponding space of Cm−1,1 func-

tions F : B → R.

Theorem 1.2 (Finiteness theorem for Cm−1,1(Rn) – see [15]).

Let m ≥ 2, n ≥ 1. There exist constants k#, C# depending on m and n such that the 

following holds.

Let f : E → R, E ⊆ R
n an arbitrary set. Suppose that for every finite subset S ⊆ E

with cardinality #(S) ≤ k# there exists a function F S ∈ Cm−1,1(Rn) satisfying F S = f

on S and ‖F S‖Cm−1,1(Rn) ≤ 1.

Then there exists a function F ∈ Cm−1,1(Rn) with F = f on E and ‖F‖Cm−1,1(Rn) ≤
C#.

The finiteness theorem was first proved in the case m = 2, n ≥ 1 by Shvartsman [24]; 

in this case, it was shown that one can take k# = 3 · 2n−1 and C# = A exp(γn), where 

A, γ > 0 are absolute constants (independent of n). Further, Shvartsman [23] proves 

that the value k# = 3 · 2n−1 is the smallest possible when m = 2. In other words, if 

k# < 3 · 2n−1 then the finiteness theorem fails to hold for any C# > 1.

Theorem 1.2 was conjectured to hold for any m ≥ 2, n ≥ 1 by Brudnyi and Shvartsman 

in [5].

In [15], Fefferman proved the conjecture of Brudnyi and Shvartsman. He showed that 

Theorem 1.2 holds for any m ≥ 2, n ≥ 1 with k# ≤ (D + 1)3·2D

. He did not state 

an explicit bound on the value of C#, but one can check that his proof gives C# ≤
exp(γDk2D) for absolute constants γ, k > 0 (independent of m, n).

Note that in the case m = 2, Fefferman’s result implies Shvartsman’s with the caveat 

that Shvartman’s result holds for smaller k#, C#. Indeed, if m = 2, then D = (n + 1); 

therefore Shvartsman’s result implies that the finiteness theorem holds with k# = 3 ·2D−2

and C# = A exp(γD).
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The constant C in Theorem 1.1 inherits its double exponential dependence on D from 

the constant C# in Theorem 1.2. This leads us to pose the following problem.

Problem 1. Is it possible to improve the dependence of the constant C# in Theorem 1.2

on D =
(

m+n−1
n

)
?

Progress on Problem 1 is not possible by optimizing the constants in each line of 

Fefferman’s proof of Theorem 1.2. Without going into detail, his proof is by induction, 

and it produces a C# which is exponential in the number of induction steps. The number 

of induction steps is equal to 2D, leading to the double exponential dependence of C#

on D. Thus, lowering the constant C# requires new ideas.

In a joint work [6] with B. Klartag, we gave a new proof of Theorem 1.2 which 

avoided Fefferman’s induction scheme. Our proof relied on semialgebraic geometry and 

compactness arguments, however, and therefore it did not give an effective bound on 

C#. In this paper, we replace the qualitative arguments of [6] with quantitative ones 

and improve the dependence of C# on D in Theorem 1.2 to exponential in a power of 

D. Specifically, we prove the following theorem.

Theorem 1.3. There exist absolute constants γ > 0 and k ≥ 1, independent of m and 

n, such that the finiteness theorem for Cm−1,1(Rn) (Theorem 1.2) holds with C# =

exp(γDk) and k# = exp(γDk).

In [14], Fefferman showed that his proof of Theorem 1.2 can be modified to produce a 

C#-optimal interpolant F that depends linearly on the data f . This property is crucial 

in getting from Theorem 1.2 to the algorithm in Theorem 1.1. Our proof also has this 

property. Specifically, the next theorem is a byproduct of the proof of Theorem 1.3.

Given an arbitrary set E ⊆ R
n (not necessarily finite), we let Cm−1,1(E) denote the 

space of all restrictions to E of functions in Cm−1,1(Rn), equipped with the standard 

trace seminorm:

‖f‖Cm−1,1(E) := inf{‖F‖Cm−1,1(Rn) : F = f on E} (f ∈ Cm−1,1(E)).

Theorem 1.4. There exist absolute constants γ > 0 and k ≥ 1, independent of m and n, 

such that the following holds. Given E ⊂ R
n, there exists a linear map T : Cm−1,1(E) →

Cm−1,1(Rn) satisfying Tf |E = f and ||Tf ||Cm−1,1(Rn) ≤ C#||f ||Cm−1,1(E) for all f ∈
Cm−1,1(E), where C# = exp(γDk).

While the constant C# in Theorems 1.3 and 1.4 is still too large to give rise to a 

practical algorithm for Cm interpolation, this marks the first progress on Problem 1

since Fefferman’s proof of Theorem 1.2.

Theorem 1.3 shows that the constant C# in the finiteness theorem can be taken to be 

exponential in a power of D. We do not know whether this is the optimal dependence—

little is known about lower bounds for C#. Trivially one has the lower bound C# ≥ 1. 
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One might hope that for any C# > 1 there exists some k# sufficiently large depending 

on C# such that the Finiteness Theorem holds. This is true when m = 1 (see [12]), but 

not in general. In [13], Fefferman and Klartag show that there exists a constant c0 > 0

such that Theorem 1.2 does not hold for C# < 1 + c0 for any k# when m = n = 2. It 

would be interesting to obtain a lower bound on C# that grows with n or m.

A loose inspection of our proof indicates that it is sufficient to take the power k = 8

in Theorem 1.3. In the case m = 2 we know that this is not sharp—Shvartsman’s work 

shows that Theorem 1.3 holds with k = 1 when m = 2 (see the discussion of Theorem 1.2

above).

While this paper is concerned with upper bounds on the constant C#, there is also 

interest in understanding the dependence of the constant k# on m and n. Bierstone 

and Milman, in [3], and Shvartsman, in [25], independently showed that the Finiteness 

Theorem holds with k# = 2D and C# as in Fefferman’s proof of Theorem 1.2, i.e. 

C# = exp(γDk2D) for absolute constants γ, k > 0. Our proof gives k#, C# ≤ exp(γ̂Dk̂)

for absolute constants γ̂, ̂k. We would be interested to know whether the Finiteness 

Theorem holds with k# = 2D and C# ≤ exp(γ̂Dk̂) simultaneously.

We remark that, by standard arguments, Theorem 1.4 implies the analogous theorem 

for Cm(Rn) when E is a finite subset of Rn. Fefferman proved the analogue of Theo-

rem 1.4 for Cm(Rn) when E is compact; the argument is significantly more complicated 

(see [9]). It would be interesting to understand the norm of linear extension operators 

T : Cm(E) → Cm(Rn) for E compact.

We will now sketch the proof of Theorem 1.3, highlighting the new ideas in the ar-

gument. Small modifications to this argument enable us to obtain the existence of a 

linear extension operator T : Cm−1,1(E) → Cm−1,1(Rn) with improved bounds on the 

operator norm, as in Theorem 1.4.

By a compactness argument, it suffices to prove the finiteness theorem for a finite 

set E in Rn. Note that the constants C# and k# in the finiteness theorem are to be 

chosen independent of E. In the following, constants written C, C#, etc., are assumed 

to depend only on m and n. We write ‖ϕ‖ = ‖ϕ‖Cm−1,1(Rn) for the Cm−1,1 seminorm of 

a function ϕ ∈ Cm−1,1(Rn).

Fix a finite set E ⊆ R
n and function f : E → R. We assume the data (E, f) satisfies 

the hypotheses of the finiteness theorem; namely, we assume the following finiteness 

hypothesis is valid:

(FH)

⎧
⎪⎪⎨
⎪⎪⎩

for any subset S ⊆ E with #(S) ≤ k#

there exists a Cm−1,1 function F S : R
n → R

satisfying F S = f on S and ‖F S‖ ≤ 1.

We assume k# in the finiteness hypothesis is a sufficiently large constant determined by 

m and n.
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To prove the finiteness theorem, we will construct an F ∈ Cm−1,1(Rn) satisfying 

F = f on E and ‖F‖ ≤ C# for a constant C# determined by m and n. That is, we will 

construct an interpolant F ∈ Cm−1,1(Rn) of f with Cm−1,1-seminorm at most C#.

Let P be the vector space of real-valued polynomials on Rn of degree ≤ m − 1. Write 

Jx(ϕ) to denote the (m −1)rst order Taylor polynomial at x of a function ϕ ∈ Cm−1,1(Rn), 

defined by

Jx(ϕ)(z) :=
∑

|α|≤m−1

(∂αϕ(x)/α!)(z − x)α.

We call Jx(ϕ) ∈ P the (m − 1)-jet of ϕ at x. We define a ring product 	x on P by 

defining P 	x Q = Jx(PQ) for P, Q ∈ P. We write Rx for the ring (P, 	x).

Fefferman’s papers on the Whitney extension problem (e.g., [8–10,14–16]) introduce 

and make extensive use of a family of convex subsets σ(x) ⊆ P, indexed by x ∈ E. 

Informally, the set σ(x) measures the freedom in choosing the (m − 1)-jet Jx(F ) for an 

interpolant F ∈ Cm−1,1(Rn) of f . Let

σ(x) := {Jx(ϕ) : ϕ|E = 0, ‖ϕ‖ ≤ 1} ⊆ P.

Note that if Jx(F1) = P1 and Jx(F2) = P2 for two different interpolants F1, F2 of f , and 

if ‖F1‖ ≤ M and ‖F2‖ ≤ M for some M > 0, then P1 − P2 belongs to 2Mσ(x). Indeed, 

ϕ := F1 −F2 satisfies ϕ|E = 0 and ‖ϕ‖ ≤ 2M ; hence, P1 −P2 = Jx(ϕ) ∈ 2Mσ(x). Thus, 

the (dilates) of σ(x) can be used to control the freedom in the choice of Jx(F ) for an 

interpolant F of f on E of bounded seminorm.

A key idea in Fefferman’s proof of the finiteness theorem is to index an interpolation 

problem by a label2 A which records information on the “large coordinate directions” 

in the set σ(x). Fefferman introduces an order relation < on labels, which can be used 

to sort interpolation problems according to their “difficulty”. By a divide and conquer 

approach, he decomposes an interpolation problem with a given label A into a family of 

easier interpolation problems with smaller labels A′ < A. The proof is organized as an 

induction on the label assigned to a given interpolation problem. For details, see [15].

In a joint work [6] with B. Klartag, we gave a coordinate-free proof of the finiteness 

theorem. To accomplish this we explained how to replace the notion of a label in Fef-

ferman’s inductive scheme by the notion of a DTI subspace. We record information on 

the large directions in σ(x) by specifying that a DTI subspace is transverse to σ(x). We 

mimic Fefferman’s divide and conquer strategy. However, one crucial difference is that 

our proof is organized as an induction with respect to an integer-valued quantity called 

the complexity of E. Roughly speaking, the complexity of E measures how often the 

geometry of the set σ(x) changes dramatically as one applies a rescaling transformation 

about a fixed point x ∈ E.

2 A label is a multi-index set A = {α1, · · · , αL} with each αi a multiindex of order at most m − 1.
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Let V be a subspace of P. We say that V is dilation-and-translation-invariant, or 

DTI, provided that (1) V is dilation-invariant, i.e., P (·/δ) ∈ V for all P ∈ V , δ > 0 and 

(2) V is translation-invariant, i.e., P (· −h) ∈ V for all P ∈ V , h ∈ R
n. These conditions 

on V can be reformulated as follows: A subspace V is dilation-invariant provided that 

V =
⊕m−1

i=0 Vi, where Vi ⊆ Pi := span{xα : |α| = i} is a homogeneous subspace of P, 

for i = 0, 1, 2, . . . , m − 1. Further, a subspace V is translation-invariant if and only if the 

orthogonal complement V ⊥ of V with respect to a natural inner product3 on P satisfies 

that V ⊥ is an ideal in the ring of (m − 1)-jets R0 = (P, 	0) based at x = 0. It follows 

that the DTI subspaces V are orthogonal to those ideals I in R0 which admit a direct 

sum decomposition into homogeneous subspaces.

We assign a DTI label V to the set E at position x ∈ E and scale δ > 0 provided 

that V is a DTI subspace of P, while σ(x) and V satisfy a quantitative transversality 

condition at (x, δ). Roughly speaking, the transversality condition states that the “big 

directions” in σ(x) do not make a small angle with V , and the intersection V ∩ σ(x) is 

suitably small. Here, to make sense of angles, we equip the vector space P with a suitable 

inner product 〈·, ·〉x,δ. See Definition 7.6 for the precise statement of the transversality 

condition.

We associate to a point x ∈ E a sequence of DTI subspaces

V1, V2, . . . , VL

and lengthscales

δ1 > δ2 > · · · > δL

such that V� is a DTI label assigned to E at position x and scale δ� (� ≤ L), and V� is 

not a DTI label assigned to E at position x and scale δ�+1 < δ� (� < L). We denote by 

C(E) the supremal length of any such sequence associated to any x ∈ E. By convention, 

C(E) = 0 if E = ∅. Borrowing notation from our earlier work [6], we refer to the quantity 

C(E) as the complexity of E. It is evident from the definition that complexity is locally 

monotone with respect to inclusion, in the sense that C(E ∩ B) ≥ C(E ∩ B′) whenever 

B′ ⊆ B ⊆ R
n. To construct an extension F of f of bounded Cm−1,1 norm, we proceed 

by induction on C(E).

The base case of the induction corresponds to the case C(E) = 0. If C(E) = 0 it easily 

follows that E is the empty set, whence it is trivially true that there exists an extension 

of f on E of bounded Cm−1,1 seminorm.

For the induction step, we assume the induction hypothesis that the finiteness theorem 

is true for any data (Ẽ, f̃) satisfying that C(Ẽ) < L0 for fixed L0 ≥ 1. We then fix data 

(E, f) satisfying the hypotheses of the finiteness theorem, with C(E) = L0. To complete 

the induction step we must construct an interpolant F of f with ‖F‖ ≤ C.

3 This claim is valid, e.g., for the inner product 〈P, Q〉′ :=
∑

|α|≤m−1
1

α!
∂αP (0)∂αQ(0) for P, Q ∈ P; see 

Lemma 3.11 of [6]. We will make use of another inner product 〈·, ·〉 on P later in the paper.
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Fix a closed ball B0 ⊆ R
n with E ⊆ B0 and diam(B0) = diam(E). We define a cover 

of B0 by a family W of closed balls in Rn; thus, B0 ⊆ ⋃B∈W B. We construct the cover 

W to have the following properties: First, C(E ∩B) < C(E) = L0 for all B ∈ W. On the 

other hand, C(E ∩ 100B) = C(E) = L0 for all B ∈ W. Finally, the cover W has good 

geometry in the sense that for every B ∈ W we have B ∩ B′ �= ∅ for at most C balls 

B′ ∈ W; also, if B ∩B′ �= ∅ for B, B′ ∈ W then diam(B) and diam(B′) differ by a factor 

of at most K. Here, C = C(n) and K = K(n) are appropriate dimensional constants.

Evidently, it is sufficient to construct an interpolant F of f on B0, satisfying 

‖F‖Cm−1,1(B0) ≤ C. For then, it is trivial to extend F to all of Rn, while not increasing 

the Cm−1,1-seminorm by more than a constant factor.

By the induction hypothesis applied to the set Ẽ = E ∩ B, for each B ∈ W there 

exists a local interpolant FB of f on E∩B satisfying two conditions: (local interpolation) 

FB = f on E ∩ B and (bounded seminorm) ‖FB‖ ≤ M for all B ∈ W. Here, M will be 

a constant determined by m, n and the induction index L0. So {FB}B∈W is a family of 

local interpolants associated to the balls in the cover W. We define

F =
∑

B∈W
FBθB on B0,

where {θB}B∈W is a partition of unity on B0 (thus, 
∑

B θB = 1 on B0), while each θB

is supported on B, θB ≡ 1 near the center of B, and each partition function θB satisfies 

the derivative bounds ‖∂αθB‖L∞ ≤ C diam(B)−|α| for |α| ≤ m. Such a partition of unity 

is guaranteed to exist by the covering and good geometry properties of W. Evidently, 

since FB = f on E ∩ B for all B ∈ W, we have F = f on E. We hope to prove that 

‖F‖Cm−1,1(B0) ≤ C̃M for a constant C̃ determined by m and n. Unfortunately, there 

is no reason to expect this to be true, given that the FB were chosen independently 

of one another. By following the ideas in [6] (inspired by analogous ideas in [15]), we 

construct local interpolants FB which are compatible with one another – to enforce 

these compatibility conditions, we modify by a small additive correction function the FB

specified above. We now state the extra compatibility conditions on the FB. First we 

establish the existence of a DTI subspace V that is transverse to σ(x) for each x ∈ E at 

some scale δ > 0. Then fix an appropriate jet P0 ∈ P (determined by the data (f, E)) 

and specify that JxB
FB ∈ P0 + V for every B ∈ W; here xB is a specified point of B. 

Essentially, the compatibility conditions state that JxB
FB belongs to the same coset of 

V for every B ∈ W. These are the extra conditions required of the local interpolants 

FB , beyond those stated before. For a family of local interpolants FB satisfying the 

aforementioned conditions, we can prove that ‖F‖Cm−1,1(B0) ≤ C̃(m, n) maxB ‖FB‖ ≤
C̃(m, n)M for the F defined before. Since F is an interpolant of f , this completes the 

induction step. As a final remark, we note that to carry out the above modification 

step and prove the existence of local solutions FB satisfying the extra compatibility 

conditions, it is required to bring in the finiteness hypothesis (FH) and certain convex 

sets Γ�(x, f, M) (these being sometimes referred to as Kf (x; k, M) in Fefferman’s work). 

We spare the details in this sketch.
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Thus we have shown, by induction on C(E), that there exists an extension F of f with 

norm at most C̃C(E), where C̃ is a fixed constant determined by m and n. To see this, 

note that the bound on the norm of the extension F increases by a factor of C̃ = C̃(m, n)

at each step of the induction proof.

To conclude the proof of the finiteness theorem, we must demonstrate that the com-

plexity C(E) is bounded uniformly for all finite subsets E ⊆ R
n. We define the worst-case 

complexity Lmax by

Lmax := sup
E⊆Rn

C(E),

where the supremum is over finite sets E ⊆ R
n. In [6], we demonstrated that Lmax is 

bounded by a constant C(D) determined by D =
(

n+m−1
n

)
. Our proof used semialgebraic 

geometry, resulting in poor dependence C(D) � exp(exp(D)). Also in [6], we conjectured 

that

Lmax � poly(D). (1)

The first main technical result of this paper, Proposition 2.11, establishes the conjecture 

(1). More specifically, in Section 4, we prove that Lmax ≤ 4mD2.

By our discussion above, we can construct an extension F of f : E → R with 

||F ||Cm−1,1(Rn) ≤ C̃Lmax for any finite set E ⊆ R
n. Combining this with (1) gives 

||F ||Cm−1,1(Rn) ≤ C̃poly(D). Therefore to establish Theorem 1.3 it just remains to show 

that

C̃ � exp(poly(D)). (2)

Indeed, (2) follows from a careful bookkeeping of various constants appearing in the 

proof, and our second main technical result, Proposition 2.9, which we prove in Section 5.

This completes our sketch of the proof of Theorem 1.3.

To establish Theorem 1.4, we show that our construction can be modified so that, for 

a fixed set E, the extension F depends linearly on the data f .

We finish the introduction by describing the content of Sections 6-10 in more detail.

Section 6 contains the statement of our main extension theorem for finite sets E ⊆ R
n.

Section 7 contains the definitions of the convex sets σ(x) and their variants, and gives 

results on the basic properties of these sets.

Section 8 contains additional technical results (many borrowed from [14]) needed for 

the proof of Theorem 1.4.

Sections 9–10 contain the main analytic ingredients of the paper, including the Main 

Decomposition Lemma (Lemma 10.2), which is the apparatus used to decompose the 

extension problem for (E, f) into easier subproblems.

Finally, Section 11 contains the proof of the extension theorem for finite E, and the 

proofs of the theorems from the introduction (Theorems 1.3 and 1.4).
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The notation and terminology in the previous discussion is not necessarily used in the 

rest of the paper. This discussion captures the spirit of the proof of our theorems, but 

some of the definitions given above are simplified for ease of explanation. In particular, 

the phrase “DTI label” does not appear in the remainder of the paper, nor in our earlier 

work [6]. Furthermore, the definition of complexity and the description of the properties 

of the cover W are presented somewhat differently than in the main body of the paper 

– for instance, certain technical constants have been obscured in the above discussion to 

simplify the exposition.
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2. Notation and preliminaries

Fix m ≥ 2, n ≥ 1 throughout the paper (with the exception of Section 4). Let 

D :=
(

m+n−1
n

)
.

We write B(x, r) = {z ∈ R
n : |z − x| ≤ r} for the closed ball of radius r and center x

in Rn.

Given a ball B ⊆ R
n and λ > 0, let λB denote the ball with the same center as B

and radius equal to λ times the radius of B.

For any finite set S, write #(S) to denote the number of elements of S. If S is infinite, 

we put #(S) = ∞.

Let M := {α = (α1, α2, . . . , αn) : |α| = α1 + α2 + · · · + αn ≤ m − 1} be the set of all 

multiindices of length n and order at most m − 1. Then #(M) = D.

2.1. Convention on constants

By an “absolute constant” we mean a numerical constant whose value is independent 

of m and n.

Given quantities A, B ≥ 0, we write A = O(B) to indicate that A ≤ γB for an 

absolute constant γ > 0. We write poly(x) to denote a polynomial poly(x) =
∑d

k=0 akxk

with coefficients ak and maximum degree d given by absolute constants. Similarly, we 

write poly(x, y) to denote a polynomial in two variables with coefficients and maximum 

degree given by absolute constants.

4 The first-named author acknowledges the support of AFOSR grant FA9550-19-1-0005. The third-named 
author acknowledges the support of NSF grant DMS-1700404 and AFOSR grant FA9550-19-1-0005.
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We say that C > 0 is a controlled constant if C depends only on m, n and both 

1/C and C are O(exp(poly(D))). Note that the product of O(poly(D)) many controlled 

constants is again a controlled constant.

Provided m ≥ 2, the binomial coefficient D =
(

m+n−1
n

)
satisfies max{m, n} ≤ D. So, 

if both C and 1/C are O(exp(poly(m, n))) then C is a controlled constant.

We say that two quantities X, Y ≥ 0 are equivalent up to a controlled constant if 

C−1Y ≤ X ≤ CY for a controlled constant C.

2.2. Function spaces Cm−1,1 and Ċm

Let G ⊆ R
n be a convex domain with nonempty interior. We write Cm−1,1(G) to 

denote the space of all (m − 1)-times differentiable functions F : G → R whose (m − 1)-

st order partial derivatives are Lipschitz continuous on G, equipped with the seminorm

‖F‖Cm−1,1(G) := sup
x,y∈G

⎛
⎝ ∑

|α|=m−1

(∂αF (x) − ∂αF (y))2

|x − y|2

⎞
⎠

1/2

. (3)

For r ≥ 1, we define the space Ċr(G) to consist of all r-times continuously differen-

tiable functions F : G → R whose r-th order partial derivatives are uniformly bounded 

on G, equipped with the seminorm

‖F‖Ċr(G) := sup
z∈G

max
|β|=r

|∂βF (z)|. (4)

Let F ∈ Ċm(G). Given a multiindex α with |α| = m − 1, the Mean Value The-

orem implies that the difference quotient |∂αF (x) − ∂αF (y)|/|x − y| is bounded by 

supz∈[x,y] |∇∂αF (z)|, where [x, y] is the line segment connecting x and y (contained in 

G). The latter quantity is bounded by 
√

n · ‖F‖Ċm(G). Therefore, if F ∈ Ċm(G) then 

F ∈ Cm−1,1(G) and

‖F‖Cm−1,1(G) ≤ C‖F‖Ċm(G), (5)

for a controlled constant C.

We write Cm−1
loc (Rn) to denote the space of all functions F : R

n → R such that 

F ∈ Ċm−1(B(0, R)) for any R > 0.

2.3. Jet space

Let P denote the vector space of all polynomials on Rn of degree at most m −1. Then 

P admits a basis of monomials, Vx := {mα,x(z) := (z − x)α : α ∈ M} for any x ∈ R
n. 

In particular, dim(P) = #(M) = D.

Given x ∈ R
n and F ∈ Cm−1

loc (Rn), let Jx(F ) ∈ P denote the (m − 1)-jet of F at x, 

given by
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Jx(F )(z) :=
∑

|α|≤m−1

(∂αF (x)/α!) · (z − x)α.

We endow P with a product 	x (“jet multiplication at x”) defined by P 	x Q = Jx(P ·Q)

for P, Q ∈ P. We write Rx to denote the ring (P, 	x) of (m − 1)-jets at x. We write 

	 = 	0 for the jet product at x = 0.

Note that if F, G ∈ Cm−1
loc (Rn) then Jx(F · G) = Jx(F ) 	x Jx(G). That is, Jx :

Cm−1
loc (Rn) → Rx is a ring isomorphism.

We often use the notation P and Rx interchangeably. We shall use P when the ring 

structure of the jet space is irrelevant to the intended application.

2.3.1. Translations and dilations

The jet space P inherits the structure of translations and dilations from Rn. Specifi-

cally, we let τh : P → P (h ∈ R
n) and τx,δ : P → P (x ∈ R

n, δ > 0) be translation and 

dilation operators defined by

τh(P )(z) := P (z − h), and

τx,δ(P )(z) := δ−mP (x + δ · (z − x)) (P ∈ P).
(6)

2.3.2. Inner products and norms

Let x ∈ R
n. We define the inner product 〈P, Q〉x of P, Q ∈ P by

〈P, Q〉x :=
∑

|α|≤m−1

∂αP (x)∂αQ(x)/(α!)2.

The corresponding norm |P |x of P ∈ P is given by

|P |x :=
√

〈P, P 〉x =

√ ∑

|α|≤m−1

(∂αP (x))2/(α!)2.

The purpose of the 1/(α!)2 factor in the above expressions is to ensure the monomials 

mα,x(z) := (z − x)α have unit length, i.e., |mα,x|x = 1 for |α| ≤ m − 1.

For x ∈ R
n, δ > 0, we define the scaled inner product 〈P, Q〉x,δ of P, Q ∈ P by

〈P, Q〉x,δ := 〈τx,δ(P ), τx,δ(Q)〉x

=
∑

|α|≤m−1

1

(α!)2
δ2(|α|−m)∂αP (x) · ∂αQ(x).

The associated scaled norm |P |x,δ of P ∈ P is

|P |x,δ :=
√

〈P, P 〉x,δ =

( ∑

|α|≤m−1

1

(α!)2
· (δ|α|−m · ∂αP (x))2

) 1
2

.
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The closed unit ball for the scaled norm | · |x,δ is denoted by

Bx,δ :=

{
P : |P |x,δ ≤ 1

}
⊆ P.

For fixed x the monomial basis Vx := {mα,x : |α| ≤ m − 1} is orthogonal in P, with 

respect to the scaled inner product 〈·, ·〉x,δ for any δ > 0. The monomial basis Vx is 

orthonormal in P only for the inner product 〈·, ·〉x = 〈·, ·〉x,1.

For any δ ≥ ρ > 0, and P ∈ P,

(ρ

δ

)m

· |P |x,ρ ≤ |P |x,δ ≤
(ρ

δ

)
· |P |x,ρ. (7)

Therefore,

(
δ

ρ

)
Bx,ρ ⊆ Bx,δ ⊆

(
δ

ρ

)m

Bx,ρ. (8)

In particular,

|P |x,δ ≤ |P |x,ρ, and Bx,ρ ⊆ Bx,δ for δ ≥ ρ > 0. (9)

Observe that |P |x,δ = |τx,δP |x for P ∈ P. It follows that

τx,rBx,δ = Bx,δ/r. (10)

Note that 〈·, ·〉x,1 = 〈·, ·〉x and | · |x,1 = | · |x for x ∈ R
n. When x = 0, we write 

〈P, Q〉 = 〈P, Q〉0,1 and |P | = |P |0,1 for the standard inner product and norm on P. Write 

B = B0,1 to denote the closed unit ball for the standard norm on P.

Unless stated otherwise, we equip P by default with the standard norm and inner 

product.

We write Pi = span{xα : |α| = i} ⊆ P to denote the subspace of homogeneous 

polynomials of degree i.

We require bounds on the norm of a product of polynomials. These bounds are some-

times referred to in the literature as Bombieri inequalities. Recall that 	 is the jet 

product at x = 0.

Lemma 2.1. Let Cb := (m + 1)!. Then

|P 	 Q| ≤ Cb|P | · |Q| (P, Q ∈ P) (11)

|P 	 Q| ≥ C−1
b |P | · |Q| (P ∈ Pi, Q ∈ Pj , i + j < m). (12)

Proof. We use two inequalities from [2], stated below in (13). Our standard norm on P
is given by |P | =

√∑
c2

α if P =
∑

cαxα. In [2] this is called the 2-norm and denoted by 
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|P |2. From [2] (see Proposition 1.B.3 and Theorem 1.1), the following holds: If P ∈ Pi

and Q ∈ Pj for i + j < m, then

((i + j)!)−1/2|P ||Q| ≤ |P · Q| ≤ 2(i+j)/2|P ||Q|. (13)

Note that P · Q = P 	 Q if P ∈ Pi and Q ∈ Pj for i + j < m; else, if P ∈ Pi and 

Q ∈ Pj for i + j ≥ m then P 	Q = 0. Therefore, the left-hand inequality in (13) implies 

(12).

Now let P, Q ∈ P. Write P =
∑

i<m Pi and Q =
∑

i<m Qi for Pi, Qi ∈ Pi. Then 

|P | =
√∑ |Pi|2 and |Q| =

√∑ |Qi|2 by orthogonality of the homogeneous subspaces Pi. 

Also, P 	Q =
∑

i+j<m Pi ·Qj . By the triangle inequality, and the right-hand inequality 

in (13),

|P 	 Q| ≤
∑

i+j<m

|Pi · Qj | ≤ 2m/2 ·
∑

i+j<m

|Pi| · |Qj | ≤ 2m/2

(
∑

i<m

|Pi|
)

·

⎛
⎝∑

j<m

|Qj |

⎞
⎠ .

By Cauchy-Schwartz, 
∑

i<m |Pi| ≤
√

m
√∑

i<m |Pi|2, and similarly for the Qi. Hence,

|P 	 Q| ≤ m2m/2

√∑

i<m

|Pi|2
√∑

i<m

|Qi|2 = m2m/2|P ||Q|. (14)

Observe that m2m/2 ≤ (m + 1)!. Thus, (14) implies (11). �

Proposition 2.2 (Taylor’s theorem). Let G be a convex domain with nonempty interior. 

There exists a controlled constant CT ≥ 1 such that, for all F ∈ Cm−1,1(G), x, y ∈ G, 

and δ ≥ |x − y|,

|JxF − JyF |x,δ ≤ CT ‖F‖Cm−1,1(G). (15)

Proof. Taylor’s theorem implies that if F ∈ Cm−1,1(G), x, y ∈ G, and |β| ≤ m − 1 then

|∂β(JxF − JyF )(x)| ≤ C · ‖F‖Cm−1,1(G) · |x − y|m−|β|,

for a controlled constant C. Thus, for δ ≥ |x − y|, we obtain:

δ|β|−m|∂β(JxF − JyF )(x)| ≤ C · ‖F‖Cm−1,1(G).

Now square both sides of the above inequality, divide by (β!)2, sum over β with |β| ≤
m − 1, and take the square root, to obtain (15). �
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2.3.3. The classical Whitney Extension Theorem

We make use of the classical Whitney Extension Theorem for (m − 1)-jets. We state 

the result here in a convenient form for later use.

Let E ⊆ R
n. Suppose we are given a family of polynomials Px ∈ P, indexed by x ∈ E. 

We use the notation P• : E → P to denote the polynomial-valued map P• : x �→ Px. We 

refer to P• as a Whitney field on E. Endow the space of Whitney fields with a seminorm 

‖P•‖P(E) := sup{|Px − Py|x,|x−y| : x, y ∈ E, x �= y}. We let P(E) := {P• : E → P :

‖P•‖P(E) < ∞}.

Proposition 2.3 (Classical Whitney Extension Theorem). There exists a linear map T :

P(E) → Cm−1,1(Rn) such that ‖T (P•)‖Cm−1,1(Rn) ≤ CW h‖P•‖P(E), and JxT (P•) = Px

for all x ∈ E, and all P• ∈ P(E). Here, CW h is a controlled constant.

We refer the reader to [7], where it is proven that the classical Whitney extension 

theorem holds with the constant CW h = Cmn5m/2, for a constant Cm determined by m. 

The proof in [7] does not give an explicit bound on Cm, but by inspection of the proof 

one can see that Cm is a polynomial function of m!. Therefore, CW h is controlled.

We now state an elementary consequence of the Whitney extension theorem: We can 

extend a Cm−1,1 function on a convex domain G ⊆ R
n to all of Rn, with control on the 

Cm−1,1 seminorm of the extension.

Lemma 2.4. Let G be a convex domain in R
n with nonempty interior. Let F ∈

Cm−1,1(G). Then there exists a function F̂ ∈ Cm−1,1(Rn) with F̂ |G = F and 

‖F̂‖Cm−1,1(Rn) ≤ C‖F‖Cm−1,1(G), for a controlled constant C ≥ 1. Furthermore, F̂ can 

be taken to depend linearly on F .

Proof. Given F ∈ Cm−1,1(G), define a Whitney field P• ∈ P(G) by Px = JxF for x ∈ G

(note that JxF is well-defined for x ∈ G by the hypothesis that G has nonempty interior). 

By Taylor’s theorem (Proposition 2.2), ‖P•‖P(G) ≤ CT ‖F‖Cm−1,1(G). Let T : P(G) →
Cm−1,1(Rn) be as in the classical Whitney extension theorem, and set F̂ := T (P•). Then 

F̂ depends linearly on F . Because JxF̂ = Px = JxF for all x ∈ G, we have F̂ |G = F . 

Furthermore,

‖F̂‖Cm−1,1(Rn) ≤ CW h‖P•‖P(G) ≤ CW hCT ‖F‖Cm−1,1(G).

This completes the proof of the lemma with C = CT CW h. �

2.3.4. Graded decomposition of the jet space

Given x ∈ R
n, the jet space Rx � P admits a graded decomposition into homogeneous 

vector subspaces. Specifically,

Rx =

m−1⊕

i=0

Ri
x, where Ri

x := span{mx,α(z) := (z − x)α : |α| = i}.
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Note that τx,δ(P ) = δi−mP for P ∈ Ri
x – thus, Ri

x is homogeneous of order (i −m) with 

respect to the dilations τx,δ (δ > 0). The subspaces Ri
x are pairwise orthogonal with 

respect to the inner product 〈·, ·〉x,δ (any δ > 0). Furthermore, span(Rx
i 	x Rx

j ) = Rx
i+j

if i + j < m, and Rx
i 	x Rx

j = {0} if i + j ≥ m.

2.3.5. Dilation and translation invariant subspaces

Let V be a subspace of P. We say V is translation invariant if τh(P ) ∈ V for all 

P ∈ V , h ∈ R
n. Let x0 ∈ R

n. We say V is dilation invariant at x0 if τx0,δ(P ) ∈ V for all 

P ∈ V , δ > 0. For the definitions of the translations τh and dilations τx,δ, see (6).

Note that V is dilation invariant at x0 if and only if V admits a decomposition

V =
m−1⊕

i=0

V x0

i ,

for subspaces V x0

i ⊆ Ri
x0

(0 ≤ i ≤ m − 1).

We say V is DTI (dilation-and-translation-invariant) if V is both translation invariant 

and dilation invariant at x0 for some x0 ∈ R
n. If V is DTI then V is dilation invariant 

at x for all x ∈ R
n, due to the identity τx,δ = τx−x0τx0,δτx0−x.

A special class of DTI subspaces arises by looking at the span of monomials in P. 

Given A ⊆ M, let VA := span{xα : α ∈ A}.

Definition 2.5. A set A ⊆ M is monotonic provided that if α ∈ A, β ∈ M, and α + β ∈
M, then α + β ∈ A.

Lemma 2.6. Let A ⊆ M. Then the following are equivalent:

(i) A is monotonic.

(ii) VA is an ideal in the ring R0 = (P, 	).

(iii) VM\A is a DTI subspace.

Proof. Recall that 	 = 	0 is the “jet product at x = 0”. Note that VA is an ideal in R0

if and only if xβ 	 P ∈ VA for every polynomial P in a basis for VA and every β ∈ M. 

Thus, VA is an ideal if and only if xβ 	 xα ∈ VA for all β ∈ M and α ∈ A. Observe that 

xβ 	 xα = 0 if |β| + |α| ≥ m, and else, xβ 	 xα = xα+β if |α| + |β| ≤ m − 1. Thus, VA is 

an ideal if and only if α + β ∈ A whenever α ∈ A, β ∈ M, |α| + |β| ≤ m − 1. Therefore, 

VA is an ideal if and only if A is monotonic, establishing the equivalence of (i) and (ii).

It remains to establish the equivalence of (i) and (iii). Evidently, V = VM\A is dilation 

invariant at x0 = 0 due to the fact that V is spanned by monomials based at x0 = 0. 

Therefore it suffices to show that V is translation invariant if and only if A is monotonic.

Suppose A is monotonic. By linearity it suffices to show that τhP ∈ V for any element 

P in the basis {xγ}γ∈M\A for V . Fix γ ∈ M \ A and h ∈ R
n, and use the binomial 

identity to write
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τh[xγ ] = (x − h)γ =
∑

γ1,γ2∈M
γ1+γ2=γ

cγ1γ2
xγ1hγ2 .

Since A is monotonic, and γ ∈ M \A, we have γ1 ∈ M \A if γ = γ1 + γ2. Consequently, 

each term cγ1γ2
xγ1hγ2 in the above sum belongs to V . By linearity, τh[xγ ] ∈ V for any 

γ ∈ M \ A. Thus, V is translation invariant.

Next we suppose V is translation invariant and show that A is monotonic. Note the 

identity ∂xi
P = limh→0 h−1(P − τhei(P )) where ei ∈ R

n is the i’th coordinate vector. 

Because V is translation invariant, this identity implies that ∂xi
P ∈ V for any P ∈ V . 

Therefore, ∂βP ∈ V for P ∈ V and any multiindex β. For sake of contradiction suppose 

that A is not monotonic. Then there exist α ∈ A, β ∈ M with α + β ∈ M \ A. Thus, 

xα+β ∈ V . Consequently, ∂βxα+β ∈ V . Note that ∂βxα+β = cxα for c ∈ R, c �= 0. Thus, 

xα ∈ V , implying that α ∈ M \ A, a contradiction.

This completes the proof of the lemma. �

2.3.6. Whitney convexity

A subset Ω of a vector space is symmetric provided that v ∈ Ω =⇒ −v ∈ Ω.

Given x ∈ R
n, we denote X	xY := {P 	xQ : P ∈ X, Q ∈ Y } for subsets X, Y ⊆ Rx.

The next definition plays a key role in the theory of Cm−1,1 extension.

Definition 2.7 (Whitney convexity). Let x ∈ R
n, and let Ω ⊆ Rx be a closed symmetric 

convex set. We say that Ω is A-Whitney convex at x if (Ω ∩Bx,δ) 	x Bx,δ ⊆ AδmΩ for all 

δ > 0. If Ω is A-Whitney convex at x for some A < ∞, then we say that Ω is Whitney 

convex at x.

The Whitney coefficient wx(Ω) of Ω at x is the infimum of all A > 0 such that Ω is 

A-Whitney convex at x. If no finite A exists, then wx(Ω) := +∞.

2.4. Main technical results

Here, we state the new technical results of this paper. The second result will be used 

to affirm a conjecture from the introduction of [6]. Sections 3, 4 and 5 are dedicated to 

the proofs of these results.

Fix x ∈ R
n. We equip the jet space Rx = (P, 	x) with the inner product 〈·, ·〉x

and norm | · |x; see Section 2.3.2. Then Rx is a finite-dimensional Hilbert space, with 

dim(Rx) = D =
(

m+n−1
n

)
. Let Bx be the unit ball of Rx. We let ΠV : Rx → V denote 

the orthogonal projection map on a subspace V ⊆ Rx.

Definition 2.8. Let V be a subspace of Rx, let Ω be a closed symmetric convex subset 

of Rx, and let R ≥ 1. Say that Ω is R-transverse to V at x if Ω ∩ V ⊆ RBx and 

ΠV ⊥(Ω ∩Bx) ⊇ R−1Bx ∩V ⊥. Here, V ⊥ is the orthogonal complement of V with respect 

to the inner product 〈·, ·〉x on Rx.
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Obviously, we can state a corresponding definition of transversality in a general finite-

dimensional Hilbert space. We do so in Definition 3.7.

We now note a couple of trivial properties of R-transversality for the unfamiliar reader.

• If Ω is R-transverse to V , then Ω is R′-transverse to V for any R′ ≥ R.

• If Ω = V ⊥, then Ω is R-transverse to V for any R ≥ 1.

Our first technical result is as follows:

Proposition 2.9. Let x ∈ R
n, A ≥ 1, and Ω ⊆ Rx be given. Suppose that Ω is A-Whitney 

convex at x. Then there is a DTI subspace V ⊆ Rx such that Ω is R0-transverse to V at x. 

Here, R0 is a constant determined by m, n, and A of the form R0 = exp(poly(D) log(A)).

We write l(I) ≤ r(I) to denote the left and right endpoints of a compact interval 

I ⊆ R, respectively. If I and J are compact intervals, we write I > J if l(I) > r(J). We 

write I > 0 if l(I) > 0.

Definition 2.10. Let x ∈ R
n. Given a closed symmetric convex set Ω ⊆ Rx, δ > 0, and real 

numbers 1 < R < R∗ < ∞, we define the quantity Cx(Ω, R, R∗, δ) to be the supremum of 

all integers K such that there exist subspaces Vk ⊆ Rx and compact intervals Ik ⊆ (0, δ]

(k = 1, 2, . . . , K) such that the following conditions hold:

• I1 > I2 > I3 > · · · > IK > 0

• For all k, τx,r(Ik)Ω is R-transverse to Vk at x.

• For all k, τx,l(Ik)Ω is not R∗-transverse to Vk at x.

• For all k, Vk is dilation invariant at x.

We refer to Cx(Ω, R, R∗, δ) as the pointwise complexity of Ω at x at scale below δ with 

parameters (R, R∗).

If δ = ∞, we set Cx(Ω, R, R∗) = Cx(Ω, R, R∗, ∞), which we refer to as the pointwise 

complexity of Ω at x with parameters (R, R∗).

Our second technical result provides a bound on the pointwise complexity of a general 

closed symmetric convex subset of Rx.

Proposition 2.11. Let x ∈ R
n, δ > 0, R ≥ 16, and R∗ ≥ D2D+1/2R4D be given. Then 

Cx(Ω, R, R∗, δ) ≤ 4mD2 for any closed symmetric convex set Ω ⊆ Rx.

2.5. Elementary tools and techniques

This section contains elementary lemmas on polynomial inequalities and cutoff func-

tions. Many of these results were proven in [6] via compactness arguments. Here we give 

direct proofs that yield explicit constants.
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2.5.1. Properties of polynomial norms

We present inequalities for polynomial norms used throughout the paper.

Lemma 2.12 (cf. Lemma 2.1, part (i) in [6]). Let x, y ∈ R
n and δ > 0. Suppose |x − y| ≤

ηδ for 0 ≤ η ≤ 1. Then for any P ∈ P,

|P |2y,δ ≤ (1 + Cη)|P |2x,δ

for a controlled constant C.

Proof. By Taylor’s theorem, for any α with |α| ≤ m − 1 we have

∂αP (y) =
∑

γ:|α+γ|<m

1

γ!
(∂α+γP )(x) · (y − x)γ .

Therefore

|P |2y,δ =
∑

|α|<m

δ2(|α|−m)

α!

⎛
⎜⎜⎝∂αP (x) +

∑

γ>0:
|α+γ|<m

1

γ!
(∂α+γP )(x) · (y − x)γ

⎞
⎟⎟⎠

2

= |P |2x,δ + (R)

(16)

where

(R) =
∑

|α|<m

δ2(|α|−m)

α!

∑

γ1>0,γ2>0:
|α+γ1|<m
|α+γ2|<m

1

γ1!γ2!
(∂α+γ1P )(x)(∂α+γ2P )(x)(y − x)γ1+γ2

+
∑

|α|<m

δ2(|α|−m)

α!
2(∂αP )(x) ·

∑

γ>0:
|α+γ|<m

1

γ!
(∂α+γP )(x) · (y − x)γ

≤ 2
∑

|α|<m

δ2(|α|−m)

α!

∑

γ1≥0,γ2>0:
|α+γ1|<m
|α+γ2|<m

1

γ1!γ2!
(∂α+γ1P )(x)(∂α+γ2P )(x) · (y − x)γ1+γ2 .

Now use the trivial bound

|∂α+γP (x)| ≤ |P |x,δ
(α + γ)!

δ|α+γ|−m

and the hypothesis |y − x| ≤ δη to get that
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|(R)| ≤ 2
∑

|α|<m

δ2(|α|−m)

α!

∑

γ1≥0,γ2>0:
|α+γ1|<m
|α+γ2|<m

(α + γ1)!(α + γ2)!

γ1!γ2!

ηγ1+γ2

δ2(|α|−m)
|P |2x,δ.

Using the fact that the number of multiindices appearing in each of the above sums is 

bounded by D, and the hypothesis η < 1, we see that

|(R)| ≤ 2D3 ((m − 1)!)
2

η|P |2x,δ. (17)

Combining (16) and (17) proves the lemma, with C = 2D3 ((m − 1)!)
2
. �

Lemma 2.13 (cf. Lemma 2.1, part (ii) in [6]). Let x ∈ R
n and 0 < ρ ≤ δ. Then there 

exists a controlled constant C such that for any P, Q ∈ P,

|P 	x Q|x,ρ ≤ Cδm|P |x,δ|Q|x,ρ.

Proof. By translating and rescaling, we reduce matters to the case x = 0, ρ = 1. For 

δ ≥ 1, we have δm|P |0,δ ≥ |P |0,1, by (7). Thus, it suffices to prove the bound |P	0Q|0,1 ≤
C|P |0,1|Q|0,1. This inequality is a consequence of Lemma 2.1. �

Lemma 2.14 (cf. Lemma 2.1, part (iii) in [6]). Let x, y ∈ R
n and δ, ρ > 0. Assume that 

|x − y| ≤ ρ ≤ δ. Then there exists a controlled constant C such that for any P, Q ∈ P,

|(P 	y Q) − (P 	x Q)|x,ρ ≤ Cδm|P |x,δ|Q|x,δ.

Proof. By translating and rescaling, we reduce matters to the case x = 0, δ = 1. Write 

| · | = | · |0,1 for the standard norm on P. Fix P, Q ∈ P with |P | ≤ 1, |Q| ≤ 1. Then 

P (z) =
∑

|α|≤m−1 cαzα and Q(z) =
∑

|α|≤m−1 dαzα, with |cα|, |dα| each bounded by a 

controlled constant. Our task is to show that |P 	y Q − P 	0 Q|0,ρ ≤ C for |y| ≤ ρ ≤ 1.

Let B = B(0, 1) be the closed unit ball in Rn of radius 1 centered at 0.

Let F (z) = P (z)Q(z). Then F is a polynomial of degree at most 2m − 2 of the form

F (z) =
∑

|α|≤2m−2

fαzα, |fα| ≤ C, C controlled.

Each of the monomial functions z �→ zα is in Ċm(B) with Ċm seminorm bounded by a 

controlled constant. Thus, ‖F‖Ċm(B) ≤ C ′ for a controlled constant C ′. Using (5), we 

deduce that F is in Cm−1,1(B) and ‖F‖Cm−1,1(B) ≤ C for a controlled constant C.

By Taylor’s theorem (15), we have

|(P 	0 Q) − (P 	y Q)|0,ρ = |J0F − JyF |0,ρ ≤ CT ‖F‖Cm−1,1(B) ≤ CT C

for 1 ≥ ρ ≥ |y|. This completes the proof of the lemma. �
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Lemma 2.15 (cf. Lemma 2.2 of [6]). Fix polynomials Px, Qx, Rx and Py, Qy, Ry in P, for 

|x − y| ≤ ρ ≤ δ. Suppose that Px, Py ∈ M0Bx,δ, Qx, Qy ∈ M1Bx,δ, and Rx, Ry ∈ M2Bx,δ. 

Also suppose that Px − Py ∈ M0Bx,ρ, Qx − Qy ∈ M1Bx,ρ, and Rx − Ry ∈ M2Bx,δ. Then

|Px 	x Qx 	x Rx − Py 	y Qy 	y Ry|x,ρ ≤ Cδ2mM0M1M2,

where C is a controlled constant.

Proof. This lemma is identical to Lemma 2.2 in [6] with the additional claim that the 

constant C is controlled. To see that this is true, we examine the proof of Lemma 2.2 

in [6]. Note that C is a product of a finite number (independent of D) of the constants 

appearing in Lemma 2.1 in [6]. Lemmas 2.12, 2.13, and 2.14 of this paper show that we 

can take these constants to be controlled. �

Lemma 2.16 (cf. equation (2.4) of [6]). If |x − y| ≤ λδ for λ ≥ 1, then for any P ∈ P,

|P |y,δ ≤ C ′λm−1|P |x,δ

for a controlled constant C ′. Consequently,

Bx,δ ⊆ C ′λm−1By,δ.

Proof. Apply (7) twice and Lemma 2.12 to get:

|P |y,δ ≤ λm|P |y,λδ ≤ (1 + C)λm|P |x,λδ ≤ (1 + C)λm−1|P |x,δ,

where C is the controlled constant from Lemma 2.12. �

2.5.2. Whitney covers and partitions of unity

Lemma 2.17. For any ball B ⊆ R
n and any 0 < r < 1 there exists a cutoff function θ ∈

Cm(Rn) with θ ≡ 0 on Rn\B, θ ≡ 1 on (1 − r)B, ‖∂αθ‖L∞(Rn) ≤ Cθ,1(r) diam(B)−|α|

for any |α| ≤ m, where Cθ,1(r) := 9 (4m)4m

rm .

Proof. By translating and rescaling it suffices to construct θ supported on the unit ball 

B = {x : |x| ≤ 1}.

Let ψ : R → R+ be given by ψ(x) = e−x−1

e−(1−x)−1

for x ∈ (0, 1), and ψ(x) = 0

for x /∈ (0, 1). Evidently, ψ ∈ C∞(R), and ψ(k)(0) = ψ(k)(1) = 0 for all k ≥ 0. By 

the product rule, for x ∈ (0, 1), ψ(k)(x) is the sum of at most 2k terms of the form 

fi,j(x) = di

dxi (e−x−1

) dj

dxj (e−(1−x)−1

) with i + j = k. By induction on i, di

dxi (e−x−1

) is the 

sum of at most 2i terms of the form hw,r,s(x) = wx−2s−re−x−1

for integers r, s with 

r + s = i, and real w with |w| ≤ (2s + r)r. Using the bound tKe−t ≤ KK (t, K > 0), 

we find |hw,r,s(x)| ≤ |w|(2s + r)2s+r ≤ (2s + r)2s+2r ≤ (2i)2i, and thus | di

dxi (e−x−1

)| ≤
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2i(2i)2i = 8ii2i for x > 0. Similarly, | dj

dxj (e−(1−x)−1

)| ≤ 8jj2j for x < 1. Thus, |fi,j(x)| ≤
8i+j max{i, j}2(i+j) for x ∈ (0, 1). We deduce that ‖ψ(k)‖L∞(R) ≤ 2k8kk2k = (4k)2k for 

k ≥ 0.

Note that γ :=
∫∞

−∞ ψ(t)dt ≥ 1
3e−2/3 ≥ 1

9 . Now, let

υ(x) := γ−1

x∫

−∞

ψ(t)dt.

Then υ(t) = 0 for t ≤ 0, υ(t) = 1 for t ≥ 1, and υ(k)(0) = υ(k)(1) = 0 for k ≥ 1. Finally, 

‖υ(k)‖L∞(R) ≤ 9 · (4k)2k for k ≥ 0; here, our convention is that 00 = 1.

For 0 < η < 1 let ϕη : R
+ → R given by ϕη(t) = v((1 − t)/(1 − η)). Then

1. ϕη(t) = 1 for t ≤ η,

2. ϕη(t) = 0 for t ≥ 1,

3. ‖ϕ
(k)
η ‖L∞(R+) ≤ 9 · (4k)2k

(1−η)k for k ≥ 0.

Define θ : R
n → R by θ(x) := ϕ(1−r)2(|x|2). Note that θ(x) ≡ 0 for |x| ≥ 1 due 

to property 2 of ϕη. Furthermore, θ(x) ≡ 1 for |x| ≤ 1 − r, by property 1 of ϕη. By 

induction on |α|, using the product and chain rules, we establish the following claim: For 

0 < |α| ≤ m, the function ∂αθ(x) is a sum of at most 2|α|−1 ≤ 2m terms of the form 

hj,β(x) = Cj,βϕ
(j)
(1−r)2(|x|2) · xβ for integers j ≤ m, multiindices β with |β| ≤ m, and 

constants Cj,β satisfying |Cj,β | ≤ m|α| ≤ mm. If |x| ≤ 1 then |xβ | ≤ 1. Property 3 of ϕη

implies that, for |x| ≤ 1 and |α| ≤ m:

|∂αθ(x)| ≤ 2m · mm · 9
(4m)2m

(1 − (1 − r)2)m
≤ 9

(4m)3m

(2r − r2)m
≤ 9

(4m)3m

rm
.

(We use 2r − r2 ≥ r.) Because θ(x) ≡ 0 for |x| ≥ 1, we conclude that

‖∂αθ‖L∞(Rn) ≤ 9
(4m)3m

rm
≤ 9

(4m)3m

rm
2m diam(B)−|α| ≤ 9

(4m)4m

rm
diam(B)−|α|.

This completes the proof of the lemma. �

Definition 2.18. A finite collection W of closed balls is a Whitney cover of a ball B̂ ⊆ R
n if 

(1) W is a cover of B̂, (2) the collection of third-dilates {1
3B : B ∈ W} is pairwise disjoint, 

and (3) diam(B1)/ diam(B2) ∈ [1/8, 8] for all balls B1, B2 ∈ W with 6
5B1 ∩ 6

5B2 �= ∅.

Lemma 2.19 (Bounded overlap of Whitney covers). If W is a Whitney cover of B̂ then 

#{B ∈ W : x ∈ 6
5B} ≤ 100n for all x ∈ R

n.

Proof. See Lemma 2.14 of [6] for the proof. �
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Lemma 2.20 (Partitions of unity adapted to Whitney covers – cf. Lemma 2.15 of [6]). 

If W is a Whitney cover of B̂, then for each B ∈ W there exists a non-negative C∞

function θB : B̂ → [0, ∞) such that

1. θB = 0 on B̂\6
5B.

2. |∂αθB(x)| ≤ C diam(B)−|α| for all |α| ≤ m and x ∈ B̂.

3.
∑

B∈W θB = 1 on B̂.

Here, C is a controlled constant.

Proof. Use Lemma 2.17 to obtain a function ψB : R
n → R for each B ∈ W satisfying (1) 

supp(ψB) ⊆ 6
5B, (2) ψB = 1 on B, and (3) ‖∂αψB‖L∞ ≤ C diam(B)−|α| for all |α| ≤ m, 

for a controlled constant C.

Set Ψ :=
∑

B∈W ψB and define

θB(x) := ψB(x)/Ψ(x), x ∈ B̂. (18)

Since each point in B̂ belongs to some B ∈ W, Ψ ≥ 1 on B̂ and thus θB is well-defined 

on B̂. Property 1 follows from the fact that ψB is supported on 6
5B. Property 3 follows 

because 
∑

B∈W θB =
∑

B∈W ψB/Ψ = 1 on B̂.

Property 2 is valid if x ∈ B̂\6
5B since then Jx(θB) = 0. Now fix x ∈ 6

5B∩B̂. If ψB′(x) �=
0 for some B′, then x ∈ 6

5B′, so 6
5B ∩ 6

5B′ �= ∅, and hence, diam(B)/ diam(B′) ∈ [ 1
8 , 8]

by definition of Whitney covers. By Lemma 2.19, the cardinality of Wx := {B′ ∈ W :

x ∈ 6
5B′} is ≤ 100n. Therefore,

|∂αΨ(x)| ≤
∑

B′∈Wx

|∂αψB′(x)| ≤
∑

B′∈Wx

C diam(B′)−|α| ≤ C ′ diam(B)−|α| (19)

for controlled constants C, C ′. Given (19) and the fact that Ψ ≥ 1 on B̂, by repeated 

application of the quotient rule we obtain |∂γ(1/Ψ(x))| ≤ C ′′ diam(B)−|γ| for |γ| ≤ m

for a controlled constant C ′′. By application of the product rule to (18), we see that 

|∂αθB(x)| is bounded above by a sum of 2|α| terms of the form

|∂βψB(x)| · |∂γ(1/Ψ(x))|, where β + γ = α.

Given |∂βψB(x)| ≤ C diam(B)−|β| we conclude that |∂αθB(x)| ≤ C ′′′ diam(B)−|α| for a 

controlled constant C ′′′. This finishes the proof of property 2. �

Lemma 2.21 (Gluing lemma – cf. Lemma 2.16 of [6]). Fix a Whitney cover W of B̂, 

a partition of unity {θB}B∈W as in Lemma 2.20, and points xB ∈ 6
5B for each B ∈

W. Suppose {FB}B∈W is a collection of functions in Cm−1,1(Rn) with the following 

properties:
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• ‖FB‖Cm−1,1(Rn) ≤ M0

• FB = f on E ∩ 6
5B.

• |JxB
FB − JxB′ FB′ |xB ,diam(B) ≤ M0 whenever 6

5B ∩ 6
5B′ �= ∅.

Let F =
∑

B∈W θBFB. Then F ∈ Cm−1,1(B̂) with F = f on E ∩ B̂ and ‖F‖Cm−1,1(B̂) ≤
CM0, where C is a controlled constant.

Proof. We sketch the proof, following the proof of Lemma 2.16 in [6], which is identical 

to Lemma 2.21 but without the claim that C is a controlled constant.

See the proof of Lemma 2.16 of [6] for verification that F = f on E ∩ B̂.

The proof of Lemma 2.16 of [6] then goes on to show that

|Jx(F ) − Jy(F )|x,|x−y| ≤ CM0 (20)

whenever x, y ∈ B̂ with |x − y| ≤ δmin := 1
100 min{diam(B) : B ∈ W}. By definition of 

the | · |x,δ-norm, (20) implies the local Lipschitz condition:

|∂αF (x) − ∂αF (y)| ≤ C ′M0|x − y| for |α| = m − 1, x, y ∈ B̂, |x − y| ≤ δmin.

Then by the triangle inequality, the Lipschitz constant of ∂αF on all of B̂ is ≤ C ′M0, 

for each |α| = m − 1. Therefore, ‖F‖Cm−1,1(B̂) ≤ C ′′M0, as desired.

All that remains is to show that C in (20) is a controlled constant. From the proof 

in [6], we note that C is a sum or product of finitely many (independent of m, n) of the 

constants CT (appearing in Taylor’s theorem), 100n, 4m, and the constants in Lemmas 

2.2, 2.15, and equation (2.4) of [6]. By Lemmas 2.15, 2.20, and 2.16 of the present paper, 

we see that each of the last three of these constants is controlled. CT is controlled by 

Proposition 2.2. Thus, C is a controlled constant. �

3. Geometry in the Grassmanian

Let (X, 〈·, ·〉) be a real finite-dimensional Hilbert space, and set d := dim X. Denote 

the norm on X by | · | =
√

〈·, ·〉, and let B = {x ∈ X : |x| ≤ 1} be the unit ball of X. 

Write K(X) for the collection of all closed, convex, symmetric subsets of X. Recall that 

a subset Ω ⊆ X is symmetric if v ∈ Ω =⇒ −v ∈ Ω.

3.1. Tools from linear and multilinear algebra

Here we present a few tools and pieces of terminology from multilinear algebra.

For 0 ≤ k ≤ dim(X), let 
∧k

X be the k’th exterior power of X. We refer to elements 

of 
∧k

X as tensors. If v1, v2, . . . , vk ∈ X then v1 ∧ v2 ∧ · · · ∧ vk ∈ ∧k
X is called a pure 

tensor. Every tensor is a finite linear combination of pure tensors. We specify a Hilbert 

space structure on 
∧k

X as follows. Let e1, . . . , ed be an orthonormal basis for X. For 
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1 ≤ i1 < · · · < ik ≤ d, 1 ≤ j1 < · · · < jk ≤ d, let 〈∧k
�=1 ei�

, 
∧k

�=1 ej�
〉 be 1 if i� = j� for 

all �, and 0 otherwise. We extend this inner product to all of 
∧k

X by bilinearity. Then 

{∧k
�=1 ei�

: 1 ≤ i1 < · · · < ik ≤ d} is an orthonormal basis for 
∧k

X. Write 〈·, ·〉 and | · |
for the inner product and associated norm on 

∧k
X. This inner product can be defined 

in a basis-independent manner as the unique bilinear mapping obeying the identity

〈
k∧

i=1

vi,
k∧

i=1

wi

〉
= det(〈vi, wj〉)1≤i,j≤k, for all v1, . . . , vk, w1, . . . , wk ∈ X.

In particular, the Hilbert space structure on 
∧k

X is independent of the choice of or-

thonormal basis for X.

Let V be a k-dimensional subspace of X, and fix a basis {vj}1≤j≤k for V . We set 

ωV := v1 ∧ v2 ∧ · · · ∧ vk ∈ ∧k
X. We call ωV a representative form for V . The next 

remark implies that the representative forms associated to different choices of basis for 

V are scalar multiples of one another.

Remark 3.1. If {v̂j}1≤j≤k and {vj}1≤j≤k are two bases for V then v̂1 ∧ v̂2 ∧ · · · ∧ v̂k =

det(A) · v1 ∧ v2 ∧ · · · ∧ vk, where A = (Aij) ∈ R
k×k is the change-of-basis matrix defined 

by the relations v̂i =
∑

j Aijvj (i = 1, 2, . . . , k).

The eigenvalues of a self-adjoint operator T : X → X will be written in descending 

order: λ1(T ) ≥ λ2(T ) ≥ · · · ≥ λd(T ) (d = dim X).

Let X0, X1 be k-dimensional Hilbert spaces. We denote the singular values of a linear 

transformation T : X0 → X1 by σ1(T ) ≥ σ2(T ) ≥ · · · ≥ σk(T ) ≥ 0. The squared singular 

values of T are eigenvalues of T ∗T , or TT ∗ (equivalently), i.e.,

σ�(T ) =
√

λ�(T ∗T ) =
√

λ�(TT ∗) for � = 1, 2, . . . , k.

The extremal singular values σ1(T ) and σk(T ) are related to the operator norms of T

and T −1. First, σ1(T ) = ‖T‖op. Also, σk(T ) > 0 if and only if T : X0 → X1 is invertible, 

and then σk(T ) = ‖T −1‖−1
op . This implies the following description:

σk(T ) = sup{η ≥ 0 : ‖Tx‖X1
≥ η‖x‖X0

for all x ∈ X0}. (21)

Finally, σk(T ) has a description in terms of the images of balls under T . Let BXj
:=

{x ∈ Xj : ‖x‖Xj
≤ 1} be the unit ball of Xj (j ∈ {0, 1}). Then

σk(T ) = sup{η ≥ 0 : T (BX0
) ⊇ ηBX1

}. (22)

3.2. Angles between subspaces

Let G(k, X) be the Grassmanian of k-dimensional subspaces of X (1 ≤ k ≤ d). Note 

that G(k, X) ⊆ K(X).
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Given V, W ∈ G(k, X), the maximum principal angle θmax(V, W ) ∈ [0, π2 ] between V

and W is defined by

θmax(V, W ) := arccos

(
inf

{ |ΠW v|
|v| : v ∈ V, v �= 0

})
. (23)

Here and below, we write ΠW : X → W to denote the orthogonal projection operator 

on a subspace W of X. Below we show that θmax(·, ·) is symmetric. In fact, θmax(·, ·) is 

a metric on the Grassmanian G(k, X). For a further discussion of principal angles, see 

[22] and the references therein.

Given V, W ∈ G(k, X), let

∠(V, W ) = arccos

( |〈ωV , ωW 〉|
|ωV | · |ωW |

)
. (24)

By Remark 3.1, the quantity ∠(V, W ) is independent of the choice of representative 

forms for V and W .

The quantities ∠(V, W ) and θmax(V, W ) are related to singular values of the projection 

operator TV →W := ΠW |V : V → W . In fact, we have the identities

cos(∠(V, W )) = σ1(TV →W )σ2(TV →W ) . . . σk(TV →W ),

cos(θmax(V, W )) = σk(TV →W ).
(25)

The first identity can easily be seen to be true by computing (24) using principal vectors 

for V and W , and using the singular value characterization of principal angles; see [21]

for details. The second identity follows from (21) and (23).

Lemma 3.2. Fix η > 0. If X0 and H are subspaces of X such that |ΠHx| ≥ η|x| for all 

x ∈ X0, then dim(X0) = dim(ΠHX0) and cos(θmax(X0, ΠHX0)) ≥ η.

Proof. Condition dim(X0) = dim(ΠHX0) holds as ΠH |X0
: X0 → X is injective. As 

ΠΠH X0
= ΠH on X0, |ΠΠH X0

(x)| ≥ η|x| for x ∈ X0 by the lemma’s hypothesis. The 

bound cos(θmax(X0, ΠHX0)) ≥ η is a consequence of the definition (23). �

Lemma 3.3. Let W and V be subspaces of X of equal dimension. Then the following 

conditions are equivalent.

1. cos(θmax(V, W )) ≥ η.

2. |ΠW (v)| ≥ η|v| for all v ∈ V .

3. |ΠV (w)| ≥ η|w| for all w ∈ W .

4. cos(θmax(W, V )) ≥ η

Proof. The equivalence of conditions 1 and 2 is immediate from the definition (23). The 

equivalence of conditions 3 and 4 follows for the same reason.
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We prove the equivalence of conditions 2 and 3 by duality. Let TV →W := ΠW |V
and TW →V := ΠV |W . Condition 2 is equivalent to the claim that TV →W is invertible 

and ‖T −1
V →W ‖op ≤ η−1. Similarly, condition 3 is equivalent to the claim that TW →V is 

invertible and ‖T −1
W →V ‖op ≤ η−1. Since TV →W is the adjoint of TW →V , we obtain the 

equivalence of conditions 2 and 3. �

From the equivalence of conditions 1 and 4 of Lemma 3.3, we learn that

θmax(V, W ) = θmax(W, V ) for V, W ∈ G(k, X). (26)

See Section 2 of [22] for a proof of the following result.

Lemma 3.4. If V and W are subspaces of X of equal dimension then cos(θmax(V, W )) =

cos(θmax(V ⊥, W ⊥)).

Thanks to (25), we have the following result.

Lemma 3.5. Let V, W ∈ G(k, X). Then

cos(θmax(V, W ))k ≤ cos(∠(V, W )) ≤ cos(θmax(V, W )). (27)

3.3. Transversality

Recall that K(X) denotes the set of all closed, convex, symmetric subsets of X. Given 

Ω ∈ K(X) and a > 0, let a · Ω := {a · x : x ∈ Ω}. Given a function T : X → X, let 

T (Ω) := {T (x) : x ∈ Ω}.

We start with an elementary lemma. Given A ⊆ X and a subspace V in X, let A/V

denote the subset {a + V : a ∈ A} of the quotient space X/V = {x + V : x ∈ X}.

Lemma 3.6. Let A, B ⊆ X. Then A/V ⊆ B/V if and only if ΠV ⊥A ⊆ ΠV ⊥B.

Proof. Note that A/V ⊆ B/V if and only if for every a ∈ A there exists b ∈ B such that 

a − b ∈ V .

Suppose A/V ⊆ B/V . Fix an arbitrary x ∈ ΠV ⊥A. Let a ∈ A with x = ΠV ⊥a. 

Because A/V ⊆ B/V , there exists b ∈ B so that a − b ∈ V . Then ΠV ⊥b = ΠV ⊥a. Thus, 

x ∈ ΠV ⊥B. So, we’ve shown ΠV ⊥A ⊆ ΠV ⊥B.

Conversely, suppose ΠV ⊥A ⊆ ΠV ⊥B. Fix a ∈ A. Let x = ΠV ⊥a. Because ΠV ⊥A ⊆
ΠV ⊥B, there exists b ∈ B with x = ΠV ⊥b. But then ΠV ⊥(a − b) = x − x = 0. So, 

a − b ∈ V . This proves A/V ⊆ B/V . �

We now introduce the concept of transversality in the Hilbert space X.

Definition 3.7. Let Ω ∈ K(X), let V ⊆ X be a subspace, and let R ≥ 1. Then Ω is 

R-transverse to V if
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Ω ∩ V ⊆ R · B (28)

ΠV ⊥(Ω ∩ B) ⊇ R−1 · B ∩ V ⊥. (29)

In particular, if X = Rx, then Ω ⊆ X is R-transverse to V if and only if it is R-

transverse to V at x (see Definition 2.8).

Using Lemma 3.6, we obtain an equivalent formulation of transversality used in our 

previous work [6]. This will allow us to later borrow results from [6].

Corollary 3.8. Let Ω ∈ K(X) and let V be a subspace of X. Then Ω is R-transverse to 

V if and only if (A) Ω ∩ V ⊆ R · B, and (B) (Ω ∩ B)/V ⊇ R−1 · B/V .

The notion of transversality between a pair of subspaces (i.e., when Ω is a subspace) 

admits an equivalent formulation in terms of principal angles.

Lemma 3.9. Let W, V be subspaces of X, and R ≥ 1. Then W is R-transverse to V if 

and only if dim(W ) = dim(V ⊥) and cos(θmax(W, V ⊥)) ≥ R−1.

Proof. When Ω = W is a subspace, condition (28) is equivalent to the assertion that 

W∩V = {0}. Thus, from (28), (29), W is R-transverse to V if and only if (a) W∩V = {0}
and (b) ΠV ⊥(W ∩ B) ⊇ R−1 · B ∩ V ⊥.

Note that condition (a) implies dim(W ) ≤ dim(V ⊥).

Note that condition (b) implies that TW →V ⊥ := ΠV ⊥ |W : W → V ⊥ is surjective. 

Hence, condition (b) implies dim(W ) ≥ dim(V ⊥).

Hence, if W is R-transverse to V then dim(W ) = dim(V ⊥), and condition (b) is then 

equivalent to the inequality σk(TW →V ⊥) ≥ R−1 (see (22)), which is equivalent to the 

inequality cos(θmax(W, V ⊥)) ≥ R−1 (see (25)).

On the other hand, suppose dim(W ) = dim(V ⊥) and cos(θmax(W, V ⊥)) ≥ R−1. 

Thus, σk(TW →V ⊥) ≥ R−1, which implies condition (b) above (again, see (25) and (22)). 

In particular, TW →V ⊥ : W → V ⊥ is surjective. As dim(W ) = dim(V ⊥), we have that 

TW →V ⊥ is injective. Thus, {0} = ker(ΠV ⊥ |W ) = W ∩V , which gives condition (a) above. 

So W is R-transverse to V .

This completes the proof of the lemma. �

By Lemma 3.9 and Lemma 3.4, we have the following result.

Corollary 3.10. Let W and V be subspaces of X, and let R ≥ 1. Then W is R-transverse 

to V if and only if V is R-transverse to W .

Lemma 3.11. Let W, V be subspaces of X, and let r > 0 and R ≥ 1. If W is R-transverse 

to V then (W + rB) ∩ V ⊆ RrB.
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Proof. Fix x ∈ (W + rB) ∩ V . As x ∈ W + rB, we have |ΠW ⊥x| = dist(x, W ) ≤ r. 

Observe that |ΠW ⊥x| ≥ R−1|x| due to the condition θmax(V, W ⊥) ≥ R−1 and since 

x ∈ V . Thus, |x| ≤ Rr, so x ∈ RrB, as desired. �

Lemma 3.12. Let Ω ∈ K(X) and let V be a subspace of X. Let T : X → X be an 

invertible linear transformation satisfying either (A) |x| ≤ |Tx| ≤ M |x| for all x ∈ X, 

or (B) M−1|x| ≤ |Tx| ≤ |x| for all x ∈ X.

If Ω is R-transverse to V then T (Ω) is MR-transverse to T (V ).

Proof. We suppose Ω is R-transverse to V , so (a) Ω ∩ V ⊆ RB and (b) R−1B/V ⊆
(Ω ∩ B)/V . Here we use the formulation of transversality given in Corollary 3.8.

If T satisfies condition (A) then ‖T −1‖op ≤ 1 and ‖T‖op ≤ M , implying the set 

inclusions B ⊆ T (B) and T (B) ⊆ MB. By (a),

T (Ω) ∩ T (V ) = T (Ω ∩ V ) ⊆ T (RB) ⊆ MRB,

and (b) implies that

R−1B/T (V ) ⊆ R−1T (B)/T (V ) ⊆ T (Ω ∩ B)/T (V ) = (T (Ω) ∩ T (B))/T (V )

⊆ (T (Ω) ∩ MB)/T (V ) ⊆ M(T (Ω) ∩ B)/T (V ).

Thus, (MR)−1B/T (V ) ⊆ (T (Ω) ∩ B)/T (V )). We deduce from the previous inclusions 

that T (Ω) is MR-transverse to V .

If T satisfies condition (B) then T (B) ⊆ B and M−1B ⊆ T (B), thus by (a),

T (Ω) ∩ T (V ) = T (Ω ∩ V ) ⊆ T (RB) ⊆ RB ⊆ MRB,

and by (b),

M−1R−1B/T (V ) ⊆ R−1T (B)/T (V ) ⊆ T (Ω ∩ B)/T (V ) = (T (Ω) ∩ T (B))/T (V )

⊆ (T (Ω) ∩ B)/T (V ),

so T (Ω) is MR-transverse to T (V ). �

4. Rescaling dynamics

Let (X, 〈·, ·〉) be a real Hilbert space of finite dimension d := dim(X) < ∞. Write 

|x| =
√

〈x, x〉 for the norm of a vector x ∈ X. Let τδ be a 1-parameter family of linear 

operators on X of the following form. Fix m ≥ 1. Suppose that X admits a direct sum 

decomposition

X =
m⊕

ν=1

Xν , (30)



30 J. Carruth et al. / Advances in Mathematics 410 (2022) 108698

for pairwise orthogonal subspaces Xν ⊆ X. Let τδ : X → X satisfy

τδ|Xν
= δ−ν · id|Xν

(δ > 0). (31)

In this description of τδ we allow that Xν = {0} for certain ν.

Definition 4.1. We refer to a tuple X = (X, τδ)δ>0 satisfying (30), (31) as a Hilbert 

dilation system. A Hilbert dilation system X is said to be simple provided that dim(Xν) ∈
{0, 1} for all ν = 1, 2, . . . , m.

Definition 4.2. A subspace V ⊆ X is dilation-invariant, or DI, if τδV = V for all δ > 0. 

If V is DI then

V =
m⊕

ν=1

Vν , with Vν = V ∩ Xν ⊆ Xν .

The signature of a DI subspace V ⊆ X is the quantity

sgn(V ) =
m∑

ν=1

ν · dim(V ∩ Xν).

We note that

⎧
⎪⎪⎨
⎪⎪⎩

V dilation-invariant =⇒ V ⊥ dilation-invariant, and

sgn(V ⊥) = Σ0 − sgn(V ), Σ0 :=

m∑

ν=1

ν · dim(Xν).
(32)

We study the behavior of orbits of τδ acting on the Grassmanian G(k, X). To do so, 

we will pass to the action of τδ on the k-fold exterior product 
∧k

X.

The linear transformation τδ : X → X induces a linear transformation τ∗
δ :
∧k

X →∧k
X defined by its action on the pure tensors:

τ∗
δ (v1 ∧ v2 ∧ · · · ∧ vk) = τδ(v1) ∧ τδ(v2) ∧ · · · ∧ τδ(vk).

If V is a DI subspace of X of dimension k, and ωV ∈ ∧k
X is a representative form 

for V (i.e., ωV is the tensor product of a basis for V ), then

τ∗
δ (ωV ) = δ− sgn(V )ωV . (33)

Because all representative forms of V are equivalent up to a scalar multiple, it suffices to 

verify (33) for the form associated to a particular basis for V . Because V is DI it admits 

a basis of the form {ej}k
j=1, with ej ∈ Xij

for each j. Consider the representative form 
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ωV = e1 ∧ · · · ∧ ek for V . Note that τδ(ej) = δ−ij ej for all j, and sgn(V ) =
∑k

j=1 ij . 

Thus, by definition of τ∗
δ ,

τ∗
δ (ωV ) = τδ(e1) ∧ · · · ∧ τδ(ek) = δ− sgn(V )e1 ∧ · · · ∧ ek,

giving (33).

4.1. Quantitative stabilization for the action of a simple Hilbert dilation system on the 

Grassmanian

Let H ∈ G(k, X). The parametrized family of subspaces (τδH)δ>0 is an orbit of τδ

in G(k, X). The orbit τδH converges to a subspace H0 ∈ G(k, X) in the Grassmanian 

topology in the limit as δ → 0+, and furthermore the limit subspace H0 is dilation 

invariant (see the proof of Lemma 3.12 in [6]).

The main result of this section is a quantitative bound on the distance of the orbit 

τδH to the set of dilation invariant subspaces when δ varies in a compact interval I. 

Specifically, we have:

Proposition 4.3. Let (X, τδ)δ>0 be a simple Hilbert dilation system. Let H ∈ G(k, X), 

1 ≤ k ≤ d = dim(X). Fix η ∈ (0, 1/2) and a compact interval I ⊆ (0, ∞) with r(I)
l(I) ≥

(
2d

η

)dk+2

. There exist δ ∈ I and a dilation invariant subspace V ∈ G(k, X) satisfying 

cos(θmax(τδH, V )) ≥ 1 − η.

The rest of Section 4.1 is devoted to proving Proposition 4.3. The restriction that 

(X, τδ)δ>0 is simple (dim Xν ∈ {0, 1} ∀ν) will be in place for the rest of this section. We 

expect it is possible to prove a variant of Proposition 4.3 without this restriction, but 

the arguments are likely more involved and the constants are slightly worse. Anyway, 

the above version is sufficient for the needed application in Section 5.

We introduce notation to be used in the proof. We order the indices ν for which 

dim Xν = 1 in an increasing sequence: 1 ≤ ν1 < ν2 < · · · < νd ≤ m. For j = 1, 2, . . . , d, 

let ej ∈ X be a unit vector spanning Xνj
. Then:

X admits an orthonormal basis {e1, e2, . . . , ed} with

τδ(ej) = δ−νj ej (j = 1, 2, . . . , d, δ > 0), and

ν1, . . . , νd ∈ N, 1 ≤ ν1 < · · · < νd ≤ m.

(34)

Let [d] := {1, 2, . . . , d}. Given S ⊆ [d], let VS := span{ej : j ∈ S}. Note that a 

subspace V ⊆ X is dilation invariant if and only if V = VS for some S ⊆ [d].

For S ⊆ [d] with #(S) = k, let ωS :=
∧

j∈S ej ∈ ∧k
X be a representative form for 

VS ⊆ X. Note that {ωS : S ⊆ [d], #(S) = k} is an orthonormal basis for 
∧k

X. See 

Section 3.1 for a discussion of the Hilbert space structure on 
∧k

X.
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Given S ⊆ [d], define c(S) := (c1(S), c2(S), . . . , cd(S)) ∈ {0, 1, 2, . . . , d}d by

c�(S) := #{j ∈ S : j ≤ �} (� = 1, 2, . . . , d).

By definition,

c�(S) = dim(VS ∩ X≤�), where X≤� := span{e1, e2, . . . , e�}. (35)

Also, observe that

S �= S′ =⇒ c�(S) �= c�(S
′) for some � = 1, 2, . . . , d. (36)

Let A, B : X → X be linear operators. Then we write A ≥ B to mean that (A − B) is 

positive semidefinite.

Lemma 4.4. Let H ∈ G(k, X) for 1 ≤ k ≤ d. Suppose ε ∈ (0, 1/2), δ, δ′ > 0 and 

S, S′ ⊆ [d] satisfy #(S) = #(S′) = k, δ ≥ 1
ε2 δ′,

|〈ωτδH , ωS〉|
|ωτδH | ≥ ε, and

|〈ωτδ′ H , ωS′〉|
|ωτδ′ H | ≥ ε.

Then c�(S) ≥ c�(S
′) for � = 1, 2, . . . , d.

Proof. For sake of contradiction, let H, δ, δ′, S, S′ be as in the hypotheses of the lemma, 

and suppose that there exists � ∈ [d] with c�(S) < c�(S
′). Without loss of generality, 

δ′ = 1. Then δ ≥ 1
ε2 , |〈ωτδH , ωS〉| ≥ ε|ωτδH |, and |〈ωH , ωS′〉| ≥ ε|ωH |. Thanks to (24)

and (27), we have

cos(θmax(τδH, VS)) ≥ cos(∠(τδH, VS)) =
|〈ωτδH , ωS〉|

|ωτδH | ≥ ε, (37)

and similarly

cos(θmax(H, VS′)) ≥ ε. (38)

Consider the orthogonal subspaces

X≤� := span{ej : j ≤ �}, X>� := span{ej : j > �}.

Then X = X≤� ⊕ X>�. If � = d, by convention X>� = {0}. By (35),

dim(VS ∩ X≤�) = c�(S), (39)

dim(VS′ ∩ X≤�) = c�(S
′). (40)
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Let Π≤� := ΠX≤�
and Π>� := ΠX>�

be the orthogonal projection operators associated 

to X≤� and X>�, respectively.

From (38) and Lemma 3.3, |ΠH(x)| ≥ ε|x| for all x ∈ VS′ . Set

H̃ = ΠH(VS′ ∩ X≤�) ⊆ H.

Applying Lemma 3.2 to the subspace X0 = VS′ ∩ X≤� gives

dim(H̃) = dim(VS′ ∩ X≤�) (41)

and cos(θmax(H̃, VS′ ∩ X≤�)) ≥ ε. The prior inequality implies, by Lemma 3.3,

|Π≤�x| ≥ |ΠX≤�∩VS′ x| ≥ ε|x| for all x ∈ H̃. (42)

By the Pythagorean theorem and (42),

|Π>�x| =
√

|x|2 − |Π≤�x|2 ≤
√

1 − ε2|x| for all x ∈ H̃. (43)

By the form of τδ (see (34)) and because δ ≥ 1, we have τδ|X≤�
≥ δ−ν� · id|X≤�

and 

τδ|X>�
≤ δ−ν�−1 · id|X>�

. Therefore, for x ∈ H̃, (42) gives

|τδΠ≤�x| ≥ δ−ν� |Π≤�x| ≥ δ−ν�ε|x|,

and (43) gives

|τδΠ>�x| ≤ δ−ν�−1|Π>�x| ≤ δ−ν�−1
√

1 − ε2|x|.

Because τδ fixes X>� and X≤�, the operators τδ, Π>�, Π≤� all commute. Thus, combining 

the above inequalities gives

|Π>�τδx|
|τδx| ≤ |τδΠ>�x|

|τδΠ≤�x|
≤ 1

δ

√
1 − ε2

ε
< ε for all x ∈ H̃ \ {0}, (44)

where the last inequality uses the assumption that δ ≥ 1
ε2 .

From (39), (40), (41), and the assumption c�(S) < c�(S
′), we have that dim(H̃) >

dim(VS ∩ X≤�). Thus, we can find an x ∈ H̃ ∩ (VS ∩ X≤�)
⊥ with x �= 0. Note that 

(VS ∩X≤�)
⊥ is spanned by a subcollection of the basis {ej}, and each ej is an eigenvector 

of τδ. Thus, since x ∈ (VS ∩ X≤�)
⊥, we have τδx ∈ (VS ∩ X≤�)

⊥. Therefore, due to the 

orthogonal decomposition VS = (VS∩X≤�) ⊕(VS∩X>�), we have ΠVS
τδx = ΠVS∩X>�

τδx. 

We deduce that

|ΠVS
τδx| = |ΠVS∩X>�

τδx| ≤ |Π>�τδx|.
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Since x ∈ H̃ \{0}, (44) implies that |Π>�τδx| < ε|τδx|. Thus, |ΠVS
τδx| < ε|τδx| and τδx ∈

τδH̃ ⊆ τδH, which implies cos(θmax(τδH, VS)) < ε. This contradicts (37), completing the 

proof of Lemma 4.4. �

4.1.1. Proof of Proposition 4.3

Fix H ∈ G(k, X), η ∈ (0, 1/2).

Fix a compact interval I ⊆ (0, ∞) with r(I)
l(I) ≥

(
2d

η

)dk+2

.

For ease of notation, let Hδ = τδH and ωδ = ωHδ
= τ∗

δ ωH for δ > 0.

We aim to show that there exist δ ∈ I and a k-dimensional dilation invariant subspace 

V ⊆ X with cos(θmax(Hδ, V )) ≥ 1 − η.

Recall that every k-dimensional dilation invariant subspace V ⊆ X has the form V =

VS = span{ej : j ∈ S} for some S ⊆ [d] with #(S) = k, and that ωS =
∧

j∈S ej ∈ ∧k
X

is a representative form for VS.

By (24), (27), it is enough to show that there exists δ ∈ I such that

cos(∠(Hδ, VS)) =
|〈ωδ, ωS〉|

|ωδ|
≥ 1 − η for some S ⊆ [d], #(S) = k. (45)

Let

ε =
√

η/2d. (46)

Observe that if k = dim(H) = d then (45) is true with S = [d] for any δ ∈ I. That’s 

because 
∧d

X is one-dimensional, hence, ωδ ∈ span{ω[d]}.

We may thus assume d ≥ 2 and 1 ≤ k < d.

We will then prove (45) by contradiction. For sake of contradiction, suppose (45) fails 

for every δ ∈ I.

Recall l(I) and r(I) are the left and right endpoints of I. For j ≥ 0, let δj := ε−2j ·l(I). 

Let J be the largest positive integer such that δJ ∈ I. By assumption, r(I)/l(I) ≥(
2d

η

)dk+2

= ε−2(dk+2), thus

J ≥ dk + 2. (47)

For each j = 0, 1, . . . , J we claim that there exist distinct subsets Sj,1 and Sj,2 of [d]

of cardinality k, such that

|〈ωδj
, ωSj,μ

〉|
|ωδj

| ≥ ε (μ = 1, 2). (48)

To see this, order the subsets of [d] of cardinality k in a sequence, Sj,1, Sj,2, . . . , Sj,L, 

L =
(

d
k

)
, so that

� �→ |〈ωδj
, ωSj,�

〉| is non-increasing (for fixed j).
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Set aj,� := |〈ωδj
, ωSj,�

〉|/|ωδj
| for � = 1, . . . , L. By assumption, (45) fails for δ = δj , thus

aj,� < 1 − η for all � = 1, . . . , L.

Because {ωS : S ⊆ [d], #(S) = k} = {ωSj,�
: � = 1, . . . , L} is an orthonormal basis for ∧k

X, we have 
∑L

�=1 a2
j,� = 1. Since � �→ aj,� is non-increasing,

aj,1 ≥
√

1/L ≥
√

1/2d > ε.

Since aj,1 ≤ 1 − η, we have

L∑

�=2

a2
j,� = 1 − a2

j,1 ≥ 1 − (1 − η)2 = 2η − η2 ≥ η.

Thus, because � �→ aj,� is non-increasing, we have

aj,2 ≥
√

η/(L − 1) >
√

η/L >
√

η/2d = ε.

As aj,1, aj,2 ≥ ε, we complete the proof of (48).

Let μ0 = 1, and for 1 ≤ j ≤ J , let μj ∈ {1, 2} be such that Sj,μj
�= Sj−1,μj−1

. By 

definition, note that δj = δj−1/ε2 for j ≥ 1. Thus, using (48), we may apply Lemma 4.4

to deduce that c�(Sj,μj
) ≥ c�(Sj−1,μj−1

) for every � = 1, 2, . . . , d and j = 1, 2, . . . , J . 

Further, since Sj,μj
�= Sj−1,μj−1

, for each j this inequality is strict for some � (see (36)). 

It follows that

ψj :=

d∑

�=1

c�(Sj,μj
) > ψj−1 (j = 1, 2, . . . , J). (49)

But note that

0 ≤ c�(S) = #{j ∈ S : j ≤ �} ≤ k

for all � = 1, 2, . . . , d and all S ⊆ [d] with #(S) = k. Thus,

0 ≤ ψj ≤ dk (j = 1, 2, . . . , J).

From this and (49) we deduce that J ≤ dk +1. But this contradicts (47). This completes 

the proof of (45) and finishes the proof of Proposition 4.3.

4.2. Monotonicity of the orbits of a Hilbert dilation system on the Grassmanian

Fix a Hilbert dilation system X = (X, τδ)δ>0. We drop the assumption that X is 

simple. Thus, X =
⊕m

ν=1 Xν and τδ : X → X has the form τδ|Xν
= δ−ν ·id|Xν

, as in (30), 
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(31). Our next result describes a qualitative property of the functions δ �→ ∠(τδH, V ) (for 

fixed H, V ) that will enter into the proof of Proposition 2.11. See (24) for the definition 

of the quantity ∠(V, W ).

Lemma 4.5. Let H, V ⊆ X be subspaces with dim(H) = dim(V ) ≥ 1, such that V is 

dilation invariant. Then the map f(δ) = cos(∠(τδH, V )) is unimodal: if a < b < c and 

f(b) < f(c), then f(a) < f(b).

Proof. Let l = dim(H) = dim(V ) ≥ 1. Fix representative forms ωH , ωV ∈ ∧l
X for H, 

V , respectively, with unit norm, |ωH | = |ωV | = 1. Then τ∗
δ ωH is a representative form 

for τδH. So we have

f(δ) = cos(∠(τδH, V )) =
|〈τ∗

δ ωH , ωV 〉|
|τ∗

δ ωH ||ωV | =
|〈ωH , τ∗

δ ωV 〉|
|τ∗

δ ωH | . (50)

Since V is dilation invariant, τ∗
δ ωV = δ− sgn(V )ωV (see (33)). So the numerator of (50) is

|〈ωH , τ∗
δ ωV 〉| = α · δ− sgn(V ), for α := |〈ωH , ωV 〉| ≥ 0. (51)

To compute the denominator of (50), we fix a basis for 
∧l

X. Fix a family of dilation 

invariant subspaces U1, U2, . . . , UM , such that the associated unit-norm representative 

forms ωU1
, ωU2

, . . . , ωUM
give an orthonormal basis for 

∧l
X (M =

(
d
l

)
). Then τ∗

δ ωUi
=

δ− sgn(Ui)ωUi
by (33). So the denominator of (50) is

|τ∗
δ ωH | =

√√√√
M∑

i=1

〈τ∗
δ ωH , ωUi

〉2 =

√√√√
M∑

i=1

〈ωH , τ∗
δ ωUi

〉2

=

√√√√
M∑

i=1

〈ωH , ωUi
〉2δ−2 sgn(Ui) =

√√√√
dm∑

p=1

αpδ−2p

(52)

for constants

αp =
∑

i∈[M ],sgn(Ui)=p

〈ωH , ωUi
〉2 ≥ 0, 1 ≤ p ≤ dm.

Here, we used that 1 ≤ sgn(U) ≤ dm for any dilation invariant subspace U ⊆ X

with dim(U) ≥ 1. Not all of the coefficients αp are equal to zero, because {ωUi
} is an 

orthonormal basis for 
∧�

X. Combining (51) and (52), we have

f(δ) =
αδ− sgn(V )

√
dm∑
p=1

αpδ−2p

. (53)
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If α = 0 then f = 0, and we obtain the desired conclusion because constant functions 

are unimodal.

Now suppose α > 0, so that f(δ) > 0 for all δ. Define g(δ) = log(f(δ−1)). Then 

compute

g′(δ) = sgn(V )
1

δ
−

dm∑
p=1

pαpδ2p−1

dm∑
p=1

αpδ2p

=
P (δ)

dm∑
p=1

αpδ2p

,

P (δ) =

dm∑

p=1

αp(sgn(V ) − p)δ2p−1.

We now split the proof into two cases.

Case 1: αp = 0 for all p �= sgn(V ). Then from the above identities, P ≡ 0, and so 

g′ ≡ 0. So g is constant, and thus f is constant, giving the desired result.

Case 2: αp �= 0 for some p �= sgn(V ). If there exist r, q with αr > 0, αq > 0, 

r < sgn(V ) < q, then the signs of the coefficients of P (δ) change exactly once; otherwise 

they change 0 times. By Descartes’ rule of signs, there is at most one value of δ > 0 with 

P (δ) = 0, so at most one value of δ > 0 with g′(δ) = 0. This leaves three options: g is 

monotone, g has one interior maximum and no interior minima, and g has one interior 

minimum and no interior maxima. The first two options imply that g is unimodal, hence 

f is unimodal. The third option is impossible. To see this, we exploit the assumption 

that αp �= 0 for some p �= sgn(V ). Therefore, from (53), either limδ→∞ f(δ) = 0 or 

limδ→0 f(δ) = 0. Therefore, g(δ) → −∞ for at least one of δ → 0 or δ → ∞, ruling out 

that g has one interior minimum and no interior maxima.

This completes the proof of Lemma 4.5. �

4.3. Rescaling dynamics on the space of ellipsoids

We present further preparatory results to be used in the proofs of Propositions 2.9

and 2.11.

Let (X, τδ)δ>0 be a Hilbert dilation system. So, X is a real Hilbert space of dimension 

d and τδ : X → X are linear operators of the form (30), (31).

Given a set Ω ⊆ X and T : X → X, we denote TΩ = {T (x) : x ∈ Ω}.

A (centered) ellipsoid E ⊆ X is a set of the form

E =

{
d∑

i=1

ciσivi :
d∑

i=1

c2
i ≤ 1

}
, (54)

where σ1 ≥ · · · ≥ σd ≥ 0 and {v1, . . . , vd} is an orthonormal basis for X. We call 

v1, . . . , vd (normalized) principal axis directions of E , and σ1, . . . , σd the principal axis 
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lengths of E . Denote σj(E) = σj for the j’th principal axis length of E . Principal axis 

lengths (but not directions) are uniquely determined by E .

Note that the intersection of an ellipsoid and a subspace is also an ellipsoid. Further, 

the image of an ellipsoid under a linear transformation is an ellipsoid.

Let B be the closed unit ball of X. If A : X → X is a linear transformation then AB
is an ellipsoid in X. Let σ1 ≥ · · · ≥ σd ≥ 0 be the singular values of A, let {v1, . . . , vd}
be left singular vectors of A, and let {w1, . . . , wd} be right singular vectors of A. That 

is, {vi} and {wi} are orthonormal bases for X, and Awi = σivi for all i. We express B
in the form {∑i ciwi :

∑
i c2

i ≤ 1}. Then

AB =

{
d∑

i=1

ciσivi :

d∑

i=1

c2
i ≤ 1

}
. (55)

So, the principal axis lengths of AB are the singular values of A, and the principal axis 

directions of AB are corresponding left singular vectors of A.

In particular, every ellipsoid E can be written as E = AB for some linear transforma-

tion A : X → X.

Given an ellipsoid E ⊆ X, let Eδ := τδE for δ > 0. Then (Eδ)δ>0 is an orbit of τδ

in the space of ellipsoids. Our next result, Lemma 4.7, states that this orbit can be 

approximated by an orbit in the Grassmanian G(k, X) if a condition on the Eδ is met.

Definition 4.6. Let ε ∈ (0, 1/2), and let E ⊆ X be an ellipsoid. Say that E is ε-degenerate 

if σj(E) /∈ [ε, ε−1] for all j. In other words, E is ε-degenerate if the length of every principal 

axis of E is either less than ε or greater than ε−1.

Lemma 4.7. Let E be an ellipsoid in X, let ε ∈ (0, 1/2), and let I ⊆ (0, ∞) be a compact 

interval. Let Eδ := τδE for δ > 0. Suppose that Eδ is ε-degenerate for all δ ∈ I. Then 

there exists a subspace H ⊆ X such that, for all δ ∈ I,

(a) Eδ ⊆ τδH + εB, and

(b) τδH ∩ ( 1
2εB) ⊆ Eδ.

Proof. By rescaling, we may assume that I has the form I = [1, T ] for T ≥ 1. Write 

E = AB for a linear transformation A : X → X. Then Eδ = AδB, with Aδ := τδA. For 

δ > 0, consider the singular values of Aδ:

σ1(δ) ≥ σ2(δ) ≥ · · · ≥ σd(δ) ≥ 0, (56)

and let {v1(δ), . . . , vd(δ)} be the associated left singular vectors of Aδ, which form an 

orthonormal basis for X. By (55),

Eδ =

{
d∑

i=1

ciσi(δ)vi(δ) :

d∑

i=1

c2
i ≤ 1

}
. (57)
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The singular values of Aδ are the square roots of eigenvalues of AδA∗
δ :

σj(δ) =
√

λj(AδA∗
δ) =

√
λj(τδAA∗τδ).

The ordered tuple of eigenvalues (λ1(B), . . . , λd(B)) ∈ R
d of a symmetric matrix B ∈

R
d×d is a continuous function of the entries of B. It follows that δ �→ σj(δ) is continuous 

for each j. By the intermediate value theorem, and the assumption that Eδ is ε-degenerate 

for each δ ∈ I, there exists k ∈ {0, 1, . . . , d} so that

σj(δ) > ε−1 for 1 ≤ j ≤ k, (58)

σj(δ) < ε for k < j ≤ d (all δ ∈ I). (59)

Let H = span{vj(1) : 1 ≤ j ≤ k}. Thus, H ∈ G(k, X) is spanned by the k longest 

principle axes of E1, and H⊥ = span{vj(1) : k < j ≤ d} is spanned by the (d − k)

shortest principal axes of E1.

Evidently, by (57), ΠHE1 = E1 ∩ H and ΠH⊥E1 = E1 ∩ H⊥. By the second identity, a 

general element x of ΠH⊥E1 has the form x =
∑

i>k ciσi(1)vi(1), for coefficients ci with ∑
i c2

i ≤ 1. By (59) for δ = 1, the fact that |vj(1)| = 1 for all j, and the Pythagorean 

theorem, we deduce that |x| ≤ ε for any x ∈ ΠH⊥E1. Thus, ΠH⊥E1 ⊆ εB. Thus, given 

that E = E1, we obtain

E ⊆ ΠHE + ΠH⊥E = (E ∩ H) + (E ∩ H⊥) ⊆ (E ∩ H) + εB.

Thus, for δ ≥ 1,

τδE ⊆ τδ((E ∩ H) + εB) = τδE ∩ τδH + ετδB ⊆ τδE ∩ τδH + εB, (60)

where the last inclusion uses that ‖τδ‖op ≤ 1 for δ ≥ 1.

Note that (60) implies τδE ⊆ τδH + εB for δ ≥ 1. This implies (a).

We next establish (b). For contradiction, suppose there exists δ ∈ [1, T ] with

τδH ∩
(
(2ε)−1B

)
� τδE . (61)

We regard τδE ∩ τδH as an ellipsoid in the vector space τδH. Let σ ≥ 0 be the shortest 

principal axis length of τδE ∩ τδH in τδH, and let v ∈ τδH be an associated unit-

norm principal axis direction. Then ±σv ∈ τδE ∩ τδH, and by (61), σ < 1
2ε . Thus, if 

U := τδH ∩ v⊥, then τδE ∩ τδH ⊆ U + 1
2εB. By (60),

τδE ⊆ (τδE ∩ τδH) + εB ⊆ U +
(
(2ε)−1 + ε

)
B ⊆ U + (3/4)ε−1B. (62)

Given dim(τδH) = k, and U has codimension 1 in τδH, then dim(U) = k − 1. From 

(57) and (58), τδE contains a k-dimensional disk of radius ε−1. Together with (62), these 

remarks lead to a contradiction. �
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Let E be an ellipsoid in X. The next lemma guarantees that τδE is ε-degenerate for 

“most” δ ∈ (0, ∞). We write r(I) and l(I) for the right and left endpoints of an interval 

I ⊆ (0, ∞), respectively.

Lemma 4.8. Let d = dim X. Let E ⊆ X be an ellipsoid and let ε ∈ (0, 1/2). There exists 

a collection of closed intervals J1, J2, . . . , Jd ⊆ (0, ∞) such that τδE is ε-degenerate for 

all δ /∈ ⋃d
p=1 Jp, and such that r(Jp)/l(Jp) ≤ 1

ε2 for all p.

Proof. Write E = AB for a linear transformation A : X → X. For δ > 0, let Eδ = τδE =

AδB, with Aδ = τδA. Let σ1(δ) ≥ σ2(δ) ≥ · · · ≥ σd(δ) ≥ 0 be the principal axis lengths 

of Eδ, given by the singular values of Aδ.

The j-th singular value σj(δ) of Aδ is given by σj(δ) =
√

λj(δ), where λj(δ) is the 

j-th eigenvalue of AδA∗
δ , i.e.,

λj(δ) = λj(τδAA∗τδ).

Here, we write the eigenvalues of AδA∗
δ in decreasing order, λ1(δ) ≥ λ2(δ) ≥ · · · ≥

λd(δ) ≥ 0, for each δ. Let δ∗ > 0. We claim that

λj(δ) ≤ (δ∗/δ)
2 · λj(δ∗) for j = 1, 2, . . . , d, δ ≥ δ∗. (63)

Using that Aδ = (Aδ∗
)δ/δ∗

, we make the substitution A ← Aδ∗
and δ ← δ/δ∗ and reduce 

the proof of (63) to the case δ∗ = 1. By the min-max characterization of eigenvalues, for 

any δ ≥ 1, with B = AA∗, we have

λj(δ) = sup
V ∈G(j,X)

inf
x∈V \{0}

〈τδBτδx, x〉
|x|2

= sup
V ∈G(j,X)

inf
x∈V \{0}

|τδx|2
|x|2

〈Bτδx, τδx〉
|τδx|2

= sup
V̂ ∈G(j,X)

inf
x̂∈V̂ \{0}

|x̂|2
|τδ−1 x̂|2

〈Bx̂, x̂〉
|x̂|2 ≤ δ−2λj(1).

The last equality above makes use of the substitution V̂ = τδV and x̂ = τδx. The last 

inequality holds because |τay| ≥ a−1|y| for a ≤ 1, and by the min-max characterization 

of the eigenvalue λj(1) = λj(B). We have proven (63).

Let Jp be the closure of the set {δ ∈ (0, ∞) : σp(δ) ∈ [ε, ε−1]} for p = 1, 2, . . . , d. 

From (63) and σp(δ) =
√

λp(δ), we have σp(δ) ≤ (δ∗/δ)σp(δ∗) for δ ≥ δ∗. Thus, σp is a 

decreasing function of δ, and if δ > ε−2δ∗ then σp(δ) < ε2σp(δ∗). It follows that Jp is an 

interval and r(Jp)/l(Jp) ≤ ε−2.

Finally, note, for δ /∈ ⋃p Jp, that σp(δ) /∈ [ε, ε−1] for all p (by definition of the intervals 

Jp), thus, τδE is ε-degenerate. �
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4.4. Complexity

Given a Hilbert space X, we let K(X) denote the collection of all closed, convex, 

symmetric subsets of X. Let B ∈ K(X) denote the unit ball of X. Given Ω ∈ K(X), V

a subspace of X, and R ≥ 1, recall that Ω is R-transverse to V if (a) Ω ∩ V ⊆ RB, and 

(b) ΠV ⊥(Ω ∩ B) ⊇ R−1B ∩ V ⊥ (see Definition 3.7).

For an interval I, let l(I) and r(I) denote the left and right endpoints of I, respectively. 

We say I > J if l(I) > r(J), and I > 0 if l(I) > 0.

Definition 4.9. Let X = (X, τδ)δ>0 be a Hilbert dilation system. For Ω ∈ K(X), R ∈
[1, ∞), R∗ ∈ (R, ∞), the complexity of Ω with respect to X with parameters (R, R∗), 

written CX (Ω, R, R∗) = C(Ω, R, R∗), is the largest positive integer K such that there exist 

compact intervals I1 > I2 > · · · > IK > 0 in (0, ∞) and dilation invariant subspaces 

V1, V2, . . . , VK ⊆ X such that, for every j, τr(Ij)Ω is R-transverse to Vj , and τl(Ij)Ω is 

not R∗-transverse to Vj .

Fix a Hilbert dilation system (X, τδ)δ>0. Thus, X =
⊕m

ν=1 Xν and τδ : X → X is 

given by τδ|Xν
= δ−ν id|Xν

. Let d := dim(X). Let V be a dilation-invariant (DI) subspace 

of X (see Definition 4.2). Then V has the form

V =
m⊕

ν=1

V ∩ Xν .

Recall that the signature of V is defined by sgn(V ) =
m∑

ν=1
ν · dim(V ∩ Xν). Note that 

0 ≤ sgn(V ) ≤ md for any dilation-invariant subspace V .

If Ω1, Ω2 ∈ K(X) satisfy λ−1Ω2 ⊆ Ω1 ⊆ λΩ2 for λ ≥ 1 then we say that Ω1 and Ω2

are λ-equivalent, and we write Ω1 ∼λ Ω2.

We now rephrase a classical theorem of F. John (see [1]) in terms of the definitions 

just provided.

Proposition 4.10 (John’s theorem). Given a compact Ω ∈ K(X), there exists an ellipsoid 

E ⊆ X such that Ω and E are 
√

d-equivalent.

Remark 4.11. If Ω1 is R-transverse to V and Ω1 ∼λ Ω2 then Ω2 is λR-transverse to V . It 

follows that if Ω1 ∼λ Ω2 then C(Ω1, R, R∗) ≤ C(Ω2, λR, λ−1R∗) provided that R∗ > λ2R

so the right-hand-side is well-defined.

Lemma 4.12. Fix ξ > R ≥ 1. Suppose Ω1 is R-transverse to V and Ω1 ∩ ξB = Ω2 ∩ ξB. 

Then Ω2 is R-transverse to V .

Proof. Given that Ω1 is R-transverse to V and Ω1 ∩ ξB = Ω2 ∩ ξB, we have

Ω2 ∩ V ∩ ξB = Ω1 ∩ V ∩ ξB ⊆ RB.
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Since ξ > R, we deduce that Ω2 ∩ V ⊆ RB.

Since Ω1 ∩ ξB = Ω2 ∩ ξB for ξ > 1, we have Ω1 ∩ B = Ω2 ∩ B, thus

R−1B ∩ V ⊥ ⊆ ΠV ⊥(Ω1 ∩ B) = ΠV ⊥(Ω2 ∩ B).

So, Ω2 is R-transverse to V . �

The remainder of this section is devoted to the proof of the next result.

Proposition 4.13. For any Ω ∈ K(X), C(Ω, R1, R2) ≤ 4md2 provided that R1 ≥ 16 and 

R2 ≥ max{(
√

d)4m+1R4m
1 , (

√
d)3d+1R3d

1 }.

Using John’s theorem, we shall reduce Proposition 4.13 to the following:

Proposition 4.14. For any ellipsoid E ⊆ X, R ≥ 16 and R∗ ≥ max{R4m, R3d},

C(E , R, R∗) ≤ 4md2.

We will later give details on the reduction of Proposition 4.13 to Proposition 4.14. 

Next we make preparations for the proof of Proposition 4.14. Fix R, R∗ and ε > 0 such 

that

16 ≤ R ≤ max{R3d, R4m} ≤ R∗,

ε ≤ 1/(4R) and R/R∗ ≤ ε2m.
(64)

Note (64) is satisfied if ε = 1
4R , as then R

R∗ ≤ R1−4m ≤ R−3m ≤ (4R)−2m = ε2m.

The following result is the key ingredient in the proof of Proposition 4.14.

Proposition 4.15. Let R, R∗, ε be as in (64). Let E be an ellipsoid in X, and let I =

[δmin, δmax] ⊆ (0, ∞). Suppose that τδE is ε-degenerate for all δ ∈ I.

If there exist δ∗ ∈ I and dilation invariant subspaces V, W ⊆ X such that

1. τδmax
E is R-transverse to V ,

2. τδ∗
E is not R∗-transverse to V , and

3. τδmin
E is R-transverse to W ,

then sgn(V ) > sgn(W ).

Before the proof of Proposition 4.15, we present two preparatory lemmas.

Lemma 4.16. If A, K, T ∈ K(X), and K ⊆ T , then (A + K) ∩ T ⊆ (A ∩ 2T ) + K.

Proof. Fix x ∈ (A + K) ∩ T . Then x = a + k for a ∈ A, k ∈ K. Note that a = x − k ∈
T + K ⊆ 2T . Hence, x = a + k ∈ (A ∩ 2T ) + K. �
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Lemma 4.17. Under the hypotheses of Proposition 4.15, there exists a subspace H ⊆ X

such that Conditions 1,2,3 of Proposition 4.15 hold with H and 4R in place of E and R, 

respectively.

Proof of Lemma 4.17. By Lemma 4.7, there exists a subspace H ⊆ X such that for all 

δ ∈ I,

(a) τδE ⊆ τδH + εB
(b) τδH ∩ ( 1

2εB) ⊆ τδE .

Using (b) for δ = δmax, the inequality R ≤ 1
4ε (see (64)), and the condition that τδmax

E
is R-transverse to V ,

(τδmax
H ∩ (2RB)) ∩ V ⊆ τδmax

E ∩ V ⊆ RB,

which implies that τδmax
H ∩ V ⊆ RB.

Using the condition that τδmax
E is R-transverse to V , and (a) for δ = δmax,

R−1B ∩ V ⊥ ⊆ ΠV ⊥(τδmax
E ∩ B))

⊆ ΠV ⊥((τδmax
H + εB) ∩ B))

⊆ ΠV ⊥(2(τδmax
H ∩ B) + εB),

where we used Lemma 4.16 for the last inclusion. Because ε ≤ 1
2R and ΠV ⊥B = B ∩ V ⊥, 

it follows that

R−1B ∩ V ⊥ ⊆ 2ΠV ⊥(τδmax
H ∩ B) + (1/2)R−1B ∩ V ⊥.

We deduce that 1
4R−1B ∩ V ⊥ ⊆ ΠV ⊥(τδmax

H ∩ B).

Therefore, we see that τδmax
H is 4R-transverse to V .

Repeating the previous argument, using that τδmin
E is R-transverse to W , and (a), 

(b) for δ = δmin, we see that τδmin
H is 4R-transverse to W .

Assume for sake of contradiction that τδ∗
H is R∗-transverse to V . By Lemma 3.11, 

(τδ∗
H + εB) ∩ V ⊆ R∗εB ⊆ R∗B. Thus, by condition (a) for δ = δ∗,

τδ∗
E ∩ V ⊆ (τδ∗

H + εB) ∩ V ⊆ R∗B.

Condition (b) for δ = δ∗ implies that τδ∗
H ∩ B ⊆ τδ∗

E ∩ B. Thus,

(R∗)−1B ∩ V ⊥ ⊆ ΠV ⊥(τδ∗
H ∩ B) ⊆ ΠV ⊥(τδ∗

E ∩ B),

where the first inclusion uses the assumption that τδ∗
H is R∗-transverse to V . Thus, 

τδ∗
E is R∗-transverse to V , contradicting the hypotheses on E and V . �
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Proof of Proposition 4.15. By Lemma 4.17, there exists a subspace H ⊆ X such that 

τδmax
H is 4R-transverse to V , τδ∗

H is not R∗-transverse to V , and τδmin
H is 4R-

transverse to W , where δmin ≤ δ∗ ≤ δmax. According to Lemma 3.9,

cos(θmax(τδmax
H, V ⊥)) ≥ (4R)−1

cos(θmax(τδ∗
H, V ⊥)) ≤ (R∗)−1,

cos(θmax(τδmin
H, W ⊥)) ≥ (4R)−1,

with dim(V ⊥) = dim(W ⊥) = �, where � := dim(H).

By Lemma 3.5, we then have

cos(∠(τδmax
H, V ⊥)) ≥ (4R)−� (65)

cos(∠(τδ∗
H, V ⊥)) ≤ (R∗)−1, (66)

cos(∠(τδmin
H, W ⊥)) ≥ (4R)−�. (67)

Suppose for contradiction that sgn(V ) ≤ sgn(W ). Then, by (32), we have sgn(V ⊥) ≥
sgn(W ⊥). Now, let α(δ) = cos(∠(τδH,V ⊥))

cos(∠(τδH,W ⊥))
. Let ωH , ωV ⊥ , ωW ⊥ be representative forms 

for H, V ⊥, and W ⊥, respectively. We then write

α(δ) =
|ωW ⊥ | · |〈τ∗

δ ωH , ωV ⊥〉|
|ωV ⊥ | · |〈τ∗

δ ωH , ωW ⊥〉|

=
|ωW ⊥ | · |〈ωH , τ∗

δ ωV ⊥〉|
|ωV ⊥ | · |〈ωH , τ∗

δ ωW ⊥〉| =
|ωW ⊥ | · |〈ωH , ωV ⊥〉| · δ− sgn(V ⊥)

|ωV ⊥ | · |〈ωH , ωW ⊥〉| · δ− sgn(W ⊥)
.

By assumption, sgn(W ⊥) ≤ sgn(V ⊥), so δ �→ α(δ) is non-increasing.

By (65) and cos(∠(τδmax
H, W ⊥)) ≤ 1, we have α(δmax) ≥ (4R)−�. Because δ �→ α(δ)

is non-increasing, α(δmin) ≥ α(δmax) ≥ (4R)−�.

From (65) and (66), we have cos(∠(τδ∗
H, V ⊥)) ≤ cos(∠(τδmax

H, V ⊥)), so long as 

R∗ ≥ (4R)�. Thus, by Lemma 4.5, we have

cos(∠(τδmin
H, V ⊥)) ≤ cos(∠(τδ∗

H, V ⊥)) ≤ (R∗)−1.

Thus, using (67), α(δmin) ≤ (4R)�

R∗ . This yields a contradiction for R∗ > (4R)2�, which is 

implied by our assumptions R∗ ≥ R3d and R ≥ 16 (see (64)). �

Proof of Proposition 4.14. Let E be an ellipsoid in X, let R ≥ 16 and R∗ ≥
max{R4m, R3d}. Recall that we have chosen a constant ε ∈ (0, 1/4R] with R/R∗ < ε2m; 

see (64). To prove the result that C(E , R, R∗) ≤ 4md2 we will show that, for δ in the 

complement of a controlled number of intervals, the principal axis lengths of τδE avoid 

values ∼ 1, and within a connected component of this complementary region we may 
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apply Proposition 4.15 to prove monotonicity of the sequence of signatures of the DI 

subspaces that arise in the definition of the complexity of E .

To prove that C(E , R, R∗) ≤ 4md2, we must demonstrate that K ≤ 4md2 whenever 

{Ik}K
k=1 is a sequence of intervals and {Vk}K

k=1 is a sequence of DI subspaces such that

τr(Ik)E is R-transverse to Vk, and (68)

τl(Ik)E is not R∗-transverse to Vk for every k. (69)

By the form of τδ in (30), (31), we have |x| ≤ |τax| ≤ a−m|x| for a < 1. Note 

that τl(Ik)E = τak
τr(Ik)E with ak = l(Ik)/r(Ik) < 1. Note Vk is dilation invariant, 

so τak
Vk = Vk. By Lemma 3.12 and (68), we deduce that τl(Ik)E is (r(Ik)/l(Ik))mR-

transverse to Vk. Thus, by (69), (r(Ik)/l(Ik))mR ≥ R∗, hence

r(Ik)/l(Ik) ≥ (R∗/R)1/m ≥ ε−2 (k = 1, 2, . . . , K). (70)

Here we use that R∗

R ≥ ε−2m (see (64)).

Apply Lemma 4.8 to E and ε to find intervals J1, . . . , Jd ⊆ (0, ∞) such that τδE
is ε-degenerate for all δ /∈ ∪d

p=1Jp and such that r(Jp)/l(Jp) ≤ 1
ε2 for all p. Given 

the Ik are disjoint, and by (70), at most two of the Ik can intersect each Jp. Thus, 

#{k : Ik ∩ Jp �= ∅ for some p = 1, 2, . . . , d} ≤ 2d. If L is a component interval of 

(0, ∞) \
d⋃

p=1
Jp then τδE is ε-degenerate for all δ ∈ L, by Lemma 4.8. Thus, by (68)

and (69), Proposition 4.15 implies that the number of Ik contained in L is at most the 

number of signatures of subspaces of the same dimension. It is easily checked that this 

number is at most md +1. Furthermore, the number of component intervals L is at most 

d + 1. Putting this together, we learn that K ≤ 2d + (md + 1)(d + 1). If m ≥ 2 and d ≥ 1

or m ≥ 1 and d ≥ 2, then K ≤ 4md2, as desired. Else, if m = d = 1 then it is easily 

verified that C(E , R, R∗) ≤ 2 for all ellipsoids E ⊆ X � R. �

Proof of Proposition 4.13. Our task is to show that C(Ω, R1, R2) ≤ 4md2 whenever 

Ω ∈ K(X), and

R1 ≥ 16, R2 ≥ max{(
√

d)4m+1R4m
1 , (

√
d)3d+1R3d

1 }. (71)

We claim it is sufficient to show that C(Ω′, R1, R2) ≤ 4md2 for all compact Ω′ ∈ K(X). 

We check that this result implies Proposition 4.13, by contrapositive. Suppose that there 

exists Ω ∈ K(X) such that C(Ω, R1, R2) > 4md2. Then, for K = 4md2 + 1, there exist 

compact intervals {Ij}K
j=1 and dilation invariant subspaces {Vj}K

j=1 such that

• Ij > Ij+1 > 0 for each j < K,

• Tr(Ij)Ω is R1-transverse to Vj for each j ≤ K, and

• Tl(Ij)Ω is not R2-transverse to Vj for each j ≤ K.
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We may assume without loss of generality that r(I1) = 1. To obtain this reduction we 

make the substitutions Ω ← τr(I1)Ω and Ij ← r(I1)−1Ij .

Now fix ξ > R2 and set

Ω̂ = Ω ∩ ξB.

Note that Ω̂ ∈ K(X) is compact. Furthermore, τδΩ̂ = τδΩ ∩ ξτδB. By the form of τδ, we 

have τδB ⊇ B for δ ≤ 1. Thus,

τδΩ̂ ∩ ξB = (τδΩ ∩ ξτδB) ∩ ξB = τδΩ ∩ ξB (δ ≤ 1).

So, by Lemma 4.12, and by the second bullet point above, since R1 ≤ R2 < ξ, we have 

that Ω̂ is R1-transverse to Vj for j ≤ K. Further, if τl(Ij)Ω̂ were R2-transverse to Vj , we 

would have that τl(Ij)Ω is R2-transverse to Vj , contradicting our choice of Vj in the third 

bullet point above. Thus, τl(Ij)Ω̂ is not R2-transverse to Vj for each j ≤ K. We deduce 

that C(Ω̂, R1, R2) ≥ K > 4md2.

We reduced the proof of Proposition 4.13 to the claim that C(Ω, R1, R2) ≤ 4md2 for all 

compact Ω ∈ K(X). Fix a compact set Ω ∈ K(X). By John’s theorem (Proposition 4.10), 

there exists an ellipsoid E such that E and Ω are 
√

d-equivalent. By Remark 4.11, 

C(Ω, R1, R2) ≤ C(E , 
√

dR1, R2/
√

d).

We set R =
√

dR1 and R∗ = R2/
√

d. According to (71) we have R ≥ 16 and R∗ ≥
max{R4m, R3d}. By Proposition 4.14, we have C(E , R, R∗) ≤ 4md2. This completes the 

proof of Proposition 4.13.

4.5. Proof of Proposition 2.11

Fix x ∈ R
n and let m ≥ 2 be as in Section 2. Consider the Hilbert space Px given by 

the vector space P equipped with the inner product 〈·, ·〉x. Define the dilation operators, 

τx,δ : Px → Px, given by τx,δ(P )(z) = δ−mP (δ(z − x) + x) for δ > 0. Consider the 

Hilbert dilation system Xx = (Px, τx,δ)δ>0, which satisfies the hypotheses of Section 4, 

with d = dim(Px) = D, and for the choice of subspaces

Xν := span{mα(z) = (z − x)α : |α| = m − ν} ⊆ Px for ν = 1, . . . , m,

so that τx,δ|Xν
= δ−ν id|Xν

.

Pointwise complexity given in Definition 2.10 satisfies

Cx(Ω, R, R∗, δ) ≤ Cx(Ω, R, R∗,∞) = Cx(Ω, R, R∗).

Thus, it is sufficient to prove that Cx(Ω, R, R∗) ≤ 4mD2. Note that Cx(Ω, R, R∗) is 

identical to the complexity CXx
(Ω, R, R∗) of Ω with parameters (R, R∗) with respect to 

the Hilbert dilation system Xx; see Definition 4.9.
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According to Proposition 4.13, if R ≥ 16 and

R∗ ≥ max{(
√

D)4m+1R4m, (
√

D)3D+1R3D} (72)

then Cx(Ω, R, R∗) ≤ 4mD2. Note D ≥ m. So the inequality (72) is implied by R∗ ≥
D2D+1/2R4D, as assumed in the statement of Proposition 2.11.

This completes the proof of Proposition 2.11. �

5. Whitney convexity and ideals in the ring of jets

We study the relationship between ideals and Whitney convex sets in the ring of jets. 

Our goal is to give a proof of Proposition 2.9. By translation, it suffices to prove this 

result for the jet space at x = 0.

We first set the notation to be used in the rest of this section.

Throughout this section we write P to denote the vector space of polynomials on 

R
n of degree at most m − 1. We write 	 to denote the “jet product” on P defined by 

P 	 Q = J0(P · Q). We set R = (P, 	). We refer to R as the “the ring of (m − 1)-jets 

at x = 0”.

We will work with subspaces of R spanned by monomials. Let M be the set of 

multiindices of length n and order at most m − 1. For A ⊆ M, let VA := span{xα : α ∈
A}.

Let D = dimR = #M.

For δ > 0, let τδ : R → R be the dilation operator τ0,δ defined in Section 2, charac-

terized by its action on monomials: τδ(xα) = δ|α|−mxα (α ∈ M).

Write | · | and 〈·, ·〉 to denote the standard norm and inner product on R, for which 

the monomials {xα : α ∈ M} are an orthonormal basis for R. Thus,

〈P, Q〉 =
∑

|α|≤m−1

∂αP (0) · ∂αQ(0)/(α!)2,

|P | =
√

〈P, P 〉 (P, Q ∈ R).

(73)

We obtain an orthogonal decomposition R =
⊕m−1

i=0 Ri by setting Ri := span{xα : |α| =
i} (the space of homogeneous polynomials of degree i).

Recall the Bombieri-type inequality (see Lemma 2.1): For any P, Q ∈ R,

|P 	 Q| ≤ Cb|P ||Q|, Cb = (m + 1)!. (74)

5.1. Renormalization lemma

Let ζ = (ζ1, ζ2, . . . , ζn) ∈ [1, ∞)n. Define a mapping Tζ : R → R by

Tζ(P )(x) = P (ζ1x1, ζ2x2, . . . , ζnxn) (P ∈ R, x = (x1, x2, . . . , xn) ∈ R
n). (75)
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Observe that Tζ : R → R is a ring isomorphism, i.e., Tζ(P 	 Q) = Tζ(P ) 	 Tζ(Q) for 

P, Q ∈ R. Also,

|P | ≤ |Tζ(P )| ≤ Λm−1 · |P | (P ∈ R, ζ ∈ [1, Λ]n). (76)

We first verify (76) for a monomial P = mα, mα(x) = xα (|α| ≤ m − 1). Note 

that Tζ(mα) = ζαmα, where we use multiindex notation: if ζ = (ζ1, . . . , ζn) and 

α = (α1, . . . , αn) then ζα =
∏n

i=1 ζαi

i . So mα is an eigenvector of Tζ with eigenvalue 

ζα. Observe that |ζα| ∈ [1, Λm−1] if ζ ∈ [1, Λ]n and |α| ≤ m − 1, proving (76) for 

P = mα. The full inequality (76) then follows by orthogonality of the monomial basis 

{mα} in R.

Lemma 5.1 (Renormalization lemma). Let ε ∈
(
0, 1

2

)
, and D = dimR. Set Λ(ε) :=

(2D/ε)3D4

. Given a subspace H ⊆ R, there exist a multiindex set A ⊆ M and ζ ∈
[1, Λ(ε)]n with

cos(θmax(Tζ(H), VA)) > 1 − ε. (77)

Proof. The Euclidean inner product of p, q ∈ R
n is denoted by 〈p, q〉 =

∑
i piqi. An 

n-tuple p = (p1, p2, . . . , pn) ∈ N
n is said to be admissible if

〈p, α〉 �= 〈p, α′〉 for all distinct α, α′ ∈ M. (78)

An application of the pigeonhole principle shows that there exists an admissible p ∈
N

n with

‖p‖∞ = max
i

pi ≤
(

D

2

)
+ 1. (79)

Indeed, let K :=
(

D
2

)
+ 1. We want to show that there exists an admissible p ∈

{1, 2, . . . , K}n. For each pair of distinct multiindices α, α′ ∈ M, the number of p ∈
{1, 2, . . . , K}n such that 〈p, α − α′〉 = 0 is at most Kn−1. There are 

(
D
2

)
many pairs of 

distinct multiindices (α, α′) ∈ M × M (recall: D = #M). Since Kn >
(

D
2

)
Kn−1, there 

exists an admissible p ∈ {1, 2, . . . , K}n.

Fix an admissible p = (p1, p2, . . . , pn) ∈ N
n satisfying (79).

Let ψα := 1 + 〈p, α〉 ∈ N for α ∈ M, and let M := mD2. Thanks to (79),

1 ≤ ψα ≤ 1 + |α| · ‖p‖∞

≤ 1 + (m − 1) ·
((

D

2

)
+ 1

)
≤ M (α ∈ M).

(80)

Let PM be the vector space of univariate polynomials p(t) of degree at most M . We 

define an injective linear map Φ : R → PM , given by
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Φ(P ) = h, where h(t) = t · P (tp1 , tp2 , . . . , tpn).

Observe that Φ sends the monomial mα(x) = xα in R (α ∈ M) to the monomial 

kα(t) := tψα = t1+〈p,α〉. Note that kα is in PM , and thus Φ : R �→ PM is well-defined, 

thanks to (80). To see that Φ : R �→ PM is injective, recall that p is admissible, thus, 

ψα �= ψα′ for distinct α, α′ ∈ M.

Let Y = Φ(R) = span{kα : α ∈ M} ⊆ PM . We equip Y with an inner product so 

that {kα : α ∈ M} is an orthonormal basis for Y .

Therefore, Φ : R → Y is an isometry, because Φ maps the orthonormal basis {mα :

α ∈ M} for R to an orthonormal basis for Y .

Define a linear map τY
δ : Y → Y by τY

δ (f)(t) = f(t/δ) for f ∈ Y (δ > 0). The 

basis {kα : α ∈ M} diagonalizes the map τY
δ ; in fact, τY

δ (kα) = δ−ψαkα. We have 

Y =
⊕

α∈M span{kα}. These remarks and (80) imply that Y = (Y, τY
δ )δ>0 is a Hilbert 

dilation system satisfying the hypotheses of Section 4 for m = M and d = dim Y = D. 

Further, the Hilbert dilation system Y is simple (see Definition 4.1) because ψα �= ψα′

for α �= α′.
Let H be a k-dimensional subspace of R, and let ε ∈

(
0, 1

2

)
. Set δ0 :=

(
ε/2D

)Dk+2
. 

We apply Proposition 4.3 to the Hilbert dilation system Y, subspace Φ(H) ⊆ Y , and 

interval I = [δ0, 1]. We obtain a subspace Ŷ ⊆ Y and a number δ̂ such that

0 < δ0 ≤ δ̂ ≤ 1, (81)

Ŷ is invariant under τY
δ for all δ > 0, (82)

cos(θmax(Ŷ , τY
δ̂

Φ(H))) > 1 − ε. (83)

If δ > 0 and ζ = (δ−p1 , δ−p2 , . . . , δ−pn) then τY
δ ◦ Φ = δ−1Φ ◦ Tζ . In particular, 

τY
δ (Φ(V )) = Φ(Tζ(V )) for any subspace V ⊆ R. Thus, (83) implies that

cos(θmax(Ŷ , Φ(Tζ̂H))) > 1 − ε, where ζ̂ := (δ̂−p1 , δ̂−p2 , . . . , δ̂−pn). (84)

From (82) and the definition of τY
δ , we see that Ŷ is the span of univariate monomials. 

Because Φ is injective and Φ maps the monomials mα to monomials kα, we deduce that 

Φ−1(Ŷ ) is the span of monomials; that is, Φ−1(Ŷ ) = VA for some A ⊆ M. Because Φ is 

an isometry, we learn from (84) that

cos(θmax(VA, Tζ̂H)) > 1 − ε.

Thus we have proven condition (77) for ζ = ζ̂ and the A determined above.

Using (79), (81), and the definition of δ0, we see that ζ̂ = (ζ̂1, . . . , ζ̂n) =

(δ̂−p1 , . . . , ̂δ−pn) satisfies ζ̂i ≥ 1 and

ζ̂i ≤ δ−D2

0 =

(
2D

ε

)(Dk+2)·D2

≤
(

2D

ε

)3D4

= Λ(ε) (i = 1, 2, . . . , n).
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Therefore, ζ̂ ∈ [1, Λ(ε)]n, and the lemma is proven. �

5.2. Whitney convexity and quasiideals

We recall the definition of Whitney convexity. We take x = 0 in Definition 2.7. We 

write Ω is A-Whitney convex to mean that Ω is A-Whitney convex at x = 0. Define 

X 	 Y := {P 	 Q : P ∈ X, Q ∈ Y } for subsets X, Y ⊆ R. Let Bδ ⊆ R be the unit ball 

with respect to the | · |0,δ-norm on R, and let B = B1 be the unit ball with respect to the 

standard norm | · | = | · |0,1 on R. A closed symmetric convex set Ω ⊆ R is A-Whitney 

convex provided that (Ω ∩Bδ) 	Bδ ⊆ AδmΩ for all δ > 0. By specializing this condition 

to δ = 1, we obtain: If Ω ⊆ R is A-Whitney convex then

P ∈ Ω ∩ B and Q ∈ B =⇒ P 	 Q ∈ AΩ. (85)

We note that these conditions are a quantitative relaxation of the notion of an ideal in 

R. Indeed, any ideal is an A-Whitney convex set for any A > 0.

Our next lemma gives the most basic properties of Whitney convexity. Given Ω, Ω′ ⊆
R, we write Ω ∼λ Ω′ (Ω and Ω′ are λ-equivalent) for λ ≥ 1 to mean that λ−1Ω ⊆ Ω′ ⊆
λΩ.

Lemma 5.2. Let A ≥ 1. The following properties hold:

1. The unit ball B ⊆ R is Cb-Whitney convex, for Cb = (m + 1)!.

2. If Ω1 ∼λ Ω2 and Ω1 is A-Whitney convex then Ω2 is λ2A-Whitney convex.

3. If Ω1 and Ω2 are A-Whitney convex then Ω1 ∩ Ω2 is A-Whitney convex.

4. If Ω is A-Whitney convex then τδΩ is A-Whitney convex for any δ > 0.

5. If Ω is A-Whitney convex and ξ ≥ 1 then ξΩ is A-Whitney convex.

Proof. Recall τδ : R → R is the dilation operator τ0,δ defined in Section 2. Recall our 

notation that Bδ = B0,δ and B = B0,1 = B1. Then identity (10) states that τρBδ = Bδ/ρ

for ρ, δ > 0. In particular, for ρ = δ, we have Bδ = τδ−1B.

We make use of additional set inclusions in the proof. Note that τδ satisfies the identity 

τδ(P 	 Q) = δmτδ(P ) 	 τδ(Q) for P, Q ∈ R. Thus, τδ(X 	 Y ) = δmτδ(X) 	 τδ(Y ) for 

X, Y ⊆ R. We also make use of the inclusion (X ∩ Y ) 	 Z ⊆ (X 	 Z) ∩ (Y 	 Z) for 

X, Y, Z ⊆ R.

Proof of property 1: If δ ≥ 1 then B ⊆ Bδ ⊆ δmB (see (8)), so

(B ∩ Bδ) 	 (Bδ) = B 	 Bδ ⊆ δm(B 	 B) ⊆ CbδmB,

where the last inclusion is a consequence of (74).
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If δ < 1 then Bδ ⊆ B (see (9)), and so

(B ∩ Bδ) 	 Bδ = Bδ 	 Bδ = τδ−1B 	 τδ−1B
= δmτδ−1(B 	 B) ⊆ δmτδ−1(CbB) = CbδmBδ ⊆ CbδmB.

Thus, (B∩Bδ) 	Bδ ⊆ CbδmB in both cases δ ≥ 1 and δ < 1. Therefore, B is Cb-Whitney 

convex.

Proof of property 2: Suppose Ω1 is A-Whitney convex. Then for any δ > 0, (Ω1 ∩
Bδ) 	 Bδ ⊆ AδmΩ1. If Ω1 ∼λ Ω2, we have λ−1(Ω2 ∩ Bδ) 	 Bδ ⊆ AδmλΩ2, thus, Ω2 is 

Aλ2-Whitney convex.

Proof of property 3: Suppose that Ω1 and Ω2 are A-Whitney convex. Then, for any 

δ > 0

((Ω1 ∩ Ω2) ∩ Bδ) 	 Bδ ⊆ ((Ω1 ∩ Bδ) 	 Bδ) ∩ ((Ω2 ∩ Bδ) 	 Bδ)

⊆ AδmΩ1 ∩ AδmΩ2 = Aδm(Ω1 ∩ Ω2).

So, Ω1 ∩ Ω2 is A-Whitney convex.

Proof of property 4: Suppose Ω is A-Whitney convex, i.e., (Ω ∩Bρ) 	Bρ ⊆ AρmΩ for 

any ρ > 0. Note, for any δ > 0,

τδ((Ω ∩ Bρ) 	 Bρ) = δm(τδΩ ∩ τδBρ) 	 τδBρ.

Thus, applying τδ to both sides of the A-Whitney convexity condition, we learn that

δm(τδΩ ∩ τδBρ) 	 τδBρ ⊆ AρmτδΩ (ρ, δ > 0).

But τδBρ = Bρ/δ. By making the substitution ρ ← ρ/δ, we learn that

(τδΩ ∩ Bρ) 	 Bρ ⊆ AρmτδΩ (ρ, δ > 0).

Thus, τδΩ is A-Whitney convex for any δ > 0.

Proof of property 5: Suppose Ω is A-Whitney convex. Then for any δ > 0, (Ω ∩Bδ) 	
Bδ ⊆ AδmΩ. Thus, (ξΩ ∩ ξBδ) 	 Bδ ⊆ AδmξΩ. As ξ ≥ 1, we have Bδ ⊆ ξBδ, thus,

(ξΩ ∩ Bδ) 	 Bδ ⊆ AδmξΩ.

So, ξΩ is A-Whitney convex. �

Next we introduce a concept relating the ring structure of R = (P, 	) and the geo-

metric structure of R.

Definition 5.3. Let ε > 0, and let H be a subspace of R. Say that H is an ε-quasiideal if 

for all P ∈ H, Q ∈ R there exists P̂ ∈ H such that
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|P̂ − P 	 Q| ≤ ε|P | · |Q|.

Equivalently, H is an ε-quasiideal if

(H ∩ B) 	 B ⊆ H + εB.

Much like Whitney convexity, the notion of a quasiideal is a quantitative relaxation 

of the notion of an ideal in R. Indeed, one easily checks that a subspace H of R is an 

ideal if and only if H is an ε-quasiideal for all ε > 0. By (74), any subspace of R is an 

ε-quasiideal for ε = Cb = (m + 1)!.

Lemma 5.4. Let A > 0 and ε ∈ (0, 1), let H be a subspace of R, and let Ω be a closed sym-

metric convex subset of R. Suppose that Ω is A-Whitney convex. Suppose the following 

conditions are met.

(i) Ω ⊇ H ∩ B.

(ii) Ω ⊆ H + εB.

Then H is an A · ε-quasiideal.

Proof. We have to demonstrate that (H ∩B) 	B ⊆ H + εAB. Let P ∈ H ∩B and Q ∈ B.

Condition (i) implies that H ∩ B ⊆ Ω ∩ B. Thus, P ∈ Ω ∩ B and Q ∈ B. Applying 

condition (85), we have P 	 Q ∈ AΩ.

Thus, by condition (ii), P 	 Q ∈ A(H + εB) = H + εAB. Since P ∈ H ∩B and Q ∈ B
are arbitrary, this completes the proof. �

A continuity argument shows that every ε-quasiideal is within distance C(ε) of an 

ideal, with limε→0 C(ε) = 0 (here distance refers to the distance between subspaces; see 

Section 3.2). In the next lemma we establish a weaker statement, with explicit constants, 

which is sufficient for our purposes: If an ε-quasiideal I is close enough to a subspace of 

the form VA = span{xα : α ∈ A}, then the multiindex set A ⊆ M is monotonic. (For the 

definition of monotonic sets, see Definition 2.5.) Further, if A is monotonic then VA is 

an ideal (see Lemma 2.6). Consequently, if an ε-quasiideal is close enough to a subspace 

spanned by monomials then it is also close to an ideal.

We view the next lemma as a robust version of the property that A is monotonic if 

VA is an ideal (see Lemma 2.6).

Lemma 5.5. Let Cb = (m + 1)!. Let η ≤ 1
32C2

b

and ε ≤ 1
8 . Let I be an ε-quasiideal in R, 

and let A ⊆ M satisfy

cos(θmax(I, VA)) > 1 − η. (86)

Then A is monotonic.
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Proof. Recall that the monomials mα(x) := xα (α ∈ M) form an orthonormal basis for 

R, and recall that VA = span{mα : α ∈ A}.

By definition of the maximum principal angle, condition (86) ensures that

|ΠVA
(q)| ≥ (1 − η)|q| for all q ∈ I. (87)

On the other hand, by symmetry we have cos(θmax(VA, I)) > 1 − η, which implies

|ΠI(y)| ≥ (1 − η)|y| for all y ∈ VA. (88)

Fix α ∈ A (arbitrary) and consider the monomial mα ∈ VA. Set yα = ΠImα. By (88),

|yα| ≥ (1 − η)|mα| = 1 − η.

Thus, by orthogonality of yα and yα − mα, and the Pythagorean theorem,

|yα − mα| =
√

|mα|2 − |yα|2 ≤
√

1 − (1 − η)2 ≤
√

2η.

Of course, also

|yα| ≤ |mα| = 1.

Now fix β ∈ M with β + α ∈ M (arbitrary). Then mβ 	mα = mα+β . By the Bombieri-

type inequality (74),

|yα 	 mβ − mα+β | = |(yα − mα) 	 mβ | ≤ Cb|yα − mα| · |mβ |
≤
√

2ηCb.
(89)

Because I is an ε-quasiideal, and yα ∈ I, there exists qαβ ∈ I such that

|qαβ − yα 	 mβ | ≤ ε · |yα| · |mβ | ≤ ε. (90)

By the inequalities (89), (90), η ≤ 1
32C2

b

, and ε ≤ 1
8 , we have

|qαβ − mα+β | ≤
√

2ηCb + ε ≤ (4Cb)−1Cb + ε < 1/2. (91)

In particular,

|qαβ | ≤ |mα+β | + 1/2 ≤ 2.

Set q̂αβ = ΠVA
qαβ ∈ VA. By (87), and given that qαβ ∈ I,

|q̂αβ | ≥ (1 − η)|qαβ |.
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Thus, by orthogonality of q̂αβ and qαβ − q̂αβ , and the Pythagorean theorem,

|qαβ − q̂αβ | =
√

|qαβ |2 − |q̂αβ |2 ≤
√

1 − (1 − η)2|qαβ |

≤
√

2η|qαβ | ≤
√

2η · 2 ≤ 1/2,

where the last inequality uses that η ≤ 1
32C2

b

≤ 1
32 . Therefore, from (91),

|q̂αβ − mα+β | < 1. (92)

Because the monomials {mγ : γ ∈ M} form an orthonormal basis for R, and because 

q̂αβ ∈ VA = span{mγ : γ ∈ A}, we see that (92) implies that α + β ∈ A.

We have shown that α + β ∈ A for arbitrary multiindices α ∈ A, β ∈ M such that 

β + α ∈ M. Thus, A is monotonic. �

Lemma 5.6. There exist controlled constants ε0 ∈ (0, 1/8) and R0 ≥ 1 such that the 

following holds.

Let H ⊆ R be an ε-quasiideal for 0 < ε ≤ ε0.

Then H is R0-transverse to V ⊥
A for some monotonic set A ⊆ M.

Proof. Let η := 1
32C2

b

= 1
32((m+1)!)2 < 1

2 . Then η is a controlled constant. We apply the 

Renormalization lemma (Lemma 5.1) to the subspace H ⊆ R with ε in the statement 

of this lemma taken equal to η. Set Λ = (2D/η)3D4

, which is a controlled constant. Also 

set ε0 := 1
8Λ1−m and R0 := 2Λm−1, which are controlled constants.

By the Renormalization lemma there exist a multiindex set A ⊆ M and a vector 

ζ = (ζ1, . . . , ζn) ∈ [1, Λ]n satisfying

cos(θmax(TζH, VA)) > 1 − η. (93)

(See (75) for the definition of the mapping Tζ : R → R.)

Using ζ ∈ [1, Λ]n and (76), we have

B ⊆ Tζ(B) ⊆ Λm−1B. (94)

By assumption, H is an ε-quasiideal in the ring R for ε ≤ ε0. Thus,

(H ∩ B) 	 B ⊆ H + εB. (95)

Since Tζ : R → R is a ring isomorphism, we have

Tζ((H ∩ B) 	 B) = (Tζ(H) ∩ Tζ(B)) 	 Tζ(B).

Thus, applying Tζ to both sides of (95), and using (94), we obtain
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(Tζ(H) ∩ B) 	 B ⊆ Tζ(H) + εΛm−1B.

Therefore, TζH is an ε′-quasiideal in R, with ε′ = Λm−1ε ≤ Λm−1ε0 = 1
8 . Combining 

this with (93), we apply Lemma 5.5 to deduce that A is monotonic.

Now, (93) holds with η < 1
2 . So, cos(θmax(TζH, VA)) > 1/2. By Lemma 3.9, we deduce 

that TζH is 2-transverse to V ⊥
A . By (76), we have Λ1−m|P | ≤ |T −1

ζ (P )| ≤ |P | for P ∈ R. 

Thus, by Lemma 3.12, we learn that H is 2Λm−1-transverse to T −1
ζ V ⊥

A . Finally note 

that V ⊥
A is spanned by monomials, and each monomial is an eigenvector of T −1

ζ , thus 

T −1
ζ V ⊥

A = V ⊥
A . Therefore, H is 2Λm−1-transverse to V ⊥

A . This concludes the proof of the 

lemma. �

5.3. Proof of Proposition 2.9

By translation invariance it suffices to prove Proposition 2.9 for the case x = 0. Thus, 

we work in the ring R = (P, 	) of (m − 1)-jets at x = 0.

Let A ≥ 1. We first prove Proposition 2.9 under the assumption that Ω = E ⊆ R is an 

ellipsoid that is A-Whitney convex (at x = 0). We then extend the result to an arbitrary 

convex set Ω ⊆ R that is A-Whitney convex (at x = 0).

Let ε0 ∈ (0, 1/8) and R0 ≥ 1 be the controlled constants in Lemma 5.6. Set ε = ε0/A ∈
(0, 1).

Let E ⊆ R be an ellipsoid that is A-Whitney convex. We claim there exists δ ∈ [δ0, 1], 

for δ0 := 1
2ε2D, such that τδE is ε-degenerate. To see this, let J1, . . . , JD be intervals as 

in Lemma 4.8. Given that r(Jp)/l(Ip) ≤ ε−2 for all p, there exists δ ∈ [δ0, 1] \⋃p Jp. This 

δ is as required, by Lemma 4.8. Note that

δ0 = O(exp(poly(D)))A−2D. (96)

By Lemma 4.7 (applied for I = {δ}), there is a subspace H ⊆ R with

τδE ⊇ H ∩ (2ε)−1B, (97)

τδE ⊆ H + εB. (98)

In particular, from (97),

τδE ⊇ H ∩ B. (99)

By property 4 of Lemma 5.2, and because E is A-Whitney convex, we have that

τδE is A-Whitney convex. (100)

Using (98)–(100) and the fact ε0 = εA, we apply Lemma 5.4 to deduce that H is an 

ε0-quasiideal. Thus, by Lemma 5.6, there exists a monotonic set A ⊆ M such that, for 

W = V ⊥
A ,
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H is R0-transverse to W. (101)

Note that W = V ⊥
A = VM\A is a DTI subspace because A is monotonic – see Lemma 2.6.

From (98), (101), and Lemma 3.11, we have

τδE ∩ W ⊆ (H + εB) ∩ W ⊆ εR0B ⊆ R0B,

and from (99), (101), we have

R−1
0 B ∩ W ⊥ ⊆ ΠW ⊥(H ∩ B) ⊆ ΠW ⊥(τδE ∩ B).

Therefore, τδE is R0-transverse to W .

Recall δ ∈ [δ0, 1], and so δm
0 |P | ≤ |τ−1

δ (P )| ≤ |P | for P ∈ R. Also, τ−1
δ W = W , 

since W = VA⊥ is spanned by monomials. By Lemma 3.12, E is Z-transverse to W , for 

Z = Z(A) := R0δ−m
0 ≥ 1. Note that Z = O(exp(poly(D)))A2mD, since R0 is a controlled 

constant and by the form of δ0 in (96).

Thus, if E is an A-Whitney convex ellipsoid, we have produced Z = Z(A) ≥ 1 and a 

DTI subspace W such that E is Z-transverse to W . This establishes Proposition 2.9 for 

ellipsoids.

Now suppose Ω ⊆ R is A-Whitney convex. Set Ω̂ = Ω ∩ξB, for ξ ≥ 1 to be determined 

below. By John’s theorem (Proposition 4.10) there is an ellipsoid E that is 
√

D-equivalent 

to Ω̂.

From properties 1, 3, and 5 in Lemma 5.2, Ω̂ is A∗-Whitney convex for A∗ =

max{A, Cb}. From property 2 in Lemma 5.2, E is DA∗-Whitney convex.

By the established case of Proposition 2.9 for ellipsoids, there exists Z ≥ 1 and a DTI 

subspace W ⊆ R such that E is Z-transverse to W , where

Z = O(exp(poly(D)))(DA∗)2mD = O(exp(poly(D)))A2mD.

Because Ω̂ ∼√
D E , we have that Ω̂ is ZD-transverse to W – see Remark 4.11.

Recall that Ω̂ = Ω ∩ ξB. We now fix ξ > ZD. Then Ω is ZD-transverse to W , by 

Lemma 4.12. We note that ZD = O(exp(poly(D)))A2mD.

We take R0 in Proposition 2.9 of the form R0 = exp(poly(D) log(A)) satisfying R0 ≥
ZD. This completes the proof of Proposition 2.9.

6. Main extension theorem for finite sets

In the previous sections we proved the main technical results, Propositions 2.9 and 

2.11.

We return to the task of proving the main theorems from the introduction. We first 

state Theorem 6.1, our extension theorem for finite E ⊆ R
n. We develop additional 

analytical tools in the next few sections. We prove Theorem 6.1 in Section 11.1, and we 

prove Theorems 1.3 and 1.4 from the introduction in Section 11.2.
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Given a set E ⊆ R
n, function f : E → R, integer k# ≥ 1, and M > 0, we consider 

the following hypothesis on f :

FH(k#, M)

⎧
⎪⎪⎨
⎪⎪⎩

For all S ⊆ E with #(S) ≤ k#

there exists F S ∈ Cm−1,1(Rn)

with F S = f on S and ‖F S‖Cm−1,1(Rn) ≤ M.

(102)

We refer to FH(k#, M) as a finiteness hypothesis on f with finiteness constant k# and 

finiteness norm M .

For E finite, let C(E) denote the space of all real-valued functions on E.

Theorem 6.1. For m, n ≥ 1, there exist constants C# ≥ 1 and k# ∈ N with C# =

O(exp(poly(D))) and k# = O(exp(poly(D))) such that the following holds. Let E ⊆ R
n

be finite.

(A) If f ∈ C(E) satisfies FH(k#, M) then ‖f‖Cm−1,1(E) ≤ C#M .

(B) There exists a linear map T : C(E) → Cm−1,1(Rn) satisfying that Tf = f on E

and ‖Tf‖Cm−1,1(Rn) ≤ C#‖f‖Cm−1,1(E) for all f ∈ C(E).

7. The basic convex sets

In this section we introduce indexed families of convex subsets of P that lie at the 

heart of the proof of Theorem 6.1.

Below, the seminorm of ϕ ∈ Cm−1,1(Rn) is denoted by ‖ϕ‖ := ‖ϕ‖Cm−1,1(Rn).

Fix a finite set E ⊆ R
n and function f : E → R.

Given S ⊆ E, x ∈ R
n, and M > 0, let

σS(x) := {Jxϕ : ϕ ∈ Cm−1,1(Rn), ‖ϕ‖ ≤ 1, ϕ = 0 on S},

ΓS(x, f, M) := {JxF : F ∈ Cm−1,1(Rn), ‖F‖ ≤ M, F = f on S}.
(103)

Note that σS(x) is a symmetric convex set in P, while ΓS(x, f, M) is merely convex. By a 

compactness argument using the Arzela-Ascoli theorem, we see that σS(x), ΓS(x, f, M)

are closed. When S = E, we abbreviate the notation by setting σ(x) := σE(x) and 

Γ(x, f, M) := ΓE(x, f, M).

We define variants of the above convex sets indexed by an integer parameter � rather 

than a subset S ⊆ E. Given x ∈ R
n and � ≥ 0, let

σ�(x) :=
⋂

S⊆E
#(S)≤(D+1)�

σS(x).

Given also M > 0, let
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Γ�(x, f, M) :=
⋂

S⊆E
#(S)≤(D+1)�

ΓS(x, f, M).

A more explicit description of Γ�(x, f, M) is given by:

Γ�(x, f, M) = {P ∈ P : ∀S ⊆ E, #(S) ≤ (D + 1)�, ∃F S ∈ Cm−1,1(Rn)

s.t. F S = f on S, JxF S = P, ‖F S‖ ≤ M}.
(104)

Evidently, σ�(x) is a closed, symmetric, convex set, whereas Γ�(x, f, M) is closed and 

convex.

The σ-sets arise from the Γ-sets by taking f ≡ 0|E and M = 1; that is,

σS(x) = ΓS(x, 0|E , 1),

σ�(x) = Γ�(x, 0|E , 1).

Next we state the important properties of these sets that will be used in the ensuing 

proof of Theorem 6.1. Many of these results are borrowed from [6]. In many cases we 

point the reader to [6] for proofs.

The following standard result on convex sets is a key ingredient in our proofs. See 

Lemma 8.1 for a related version.

Lemma 7.1 (Helly’s theorem (see, e.g., [27])). Let J be a finite family of convex subsets 

of Rd, any d + 1 of which have non–empty intersection. Then the whole family J has 

non–empty intersection.

Lemma 7.2. For any � ≥ 0 and M1, M2 > 0,

Γ�(x, f, M1) + M2 · σ�(x) ⊆ Γ�(x, f, M1 + M2), and

Γ�(x, f, M1) − Γ�(x, f, M2) ⊆ (M1 + M2)σ�(x).

Similarly, for any S ⊆ E and M1, M2 > 0,

ΓS(x, f, M1) + M2 · σS(x) ⊆ ΓS(x, f, M1 + M2), and

ΓS(x, f, M1) − ΓS(x, f, M2) ⊆ (M1 + M2)σS(x).

Proof. The proof is immediate from the definitions and the triangle inequality in 

Cm−1,1(Rn). �

Remark 7.3. Lemma 7.2 implies the following property: If Γ�(x, f, M/2) �= ∅ then Px +
M
2 · σ�(x) ⊆ Γ�(x, f, M) ⊆ Px + 2M · σ�(x) for any Px ∈ Γ�(x, f, M/2). Thus, the convex 

set Γ�(x, f, M) is essentially a translate of a scalar multiple of the symmetric convex set 

σ�(x).
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Similarly, the convex set ΓS(x, f, M) is essentially a translate of a scalar multiple of 

the symmetric convex set σS(x).

Proposition 7.4 (cf. Lemma 2.11 of [6]). There exists a controlled constant A0 ≥ 1 such 

that for any S ⊆ E and z ∈ R
n, the set σS(z) ⊆ P is A0-Whitney convex at z.

Proof. We follow the proof of Lemma 2.11 in [6], which gives the desired result for a 

constant A0 determined by m, n. The proof uses the existence of a cutoff function θ ∈
Cm−1,1(Rn), with supp(θ) ⊆ B(z, δ/2), θ ≡ 1 on a neighborhood of z, and ‖θ‖ ≤ Cθδ−m. 

Following the proof in [6], we learn that A0 is bounded by the product of a finite number 

(independent of m, n) of the constants Cθ, C in Lemma 2.2 of [6], and CT in Taylor’s 

theorem. By Proposition 2.2 and Lemmas 2.15, 2.17 of the present paper, these constants 

may be taken to be controlled constants. Thus, A0 is a controlled constant. �

Our next result relates the finiteness hypothesis FH(k#, M) on f (see (102)) to the 

convex sets Γ�(x, f, M), and establishes a “quasicontinuity property” of the indexed 

families Γ� and σ�.

Lemma 7.5 (cf. Lemma 2.6 in [6], and Lemmas 10.1, 10.2 in [15]). If x ∈ R
n, (D +

1)�+1 ≤ k#, and M > 0, then

f satisfies FH(k#, M) =⇒ Γ�(x, f, M) �= ∅.

Furthermore, if x, y ∈ R
n, � ≥ 1, δ ≥ |x − y|, and M > 0, then

Γ�(x, f, M) ⊆ Γ�−1(y, f, M) + CT M · Bx,δ

σ�(x) ⊆ σ�−1(y) + CT · Bx,δ,
(105)

where Bx,δ is the closed unit ball in the | · |x,δ-norm on P.

Proof. Note that Γ�(x, f, M) �= ∅ ⇐⇒ Γ�(x, f/M, 1) �= ∅. Further, f satisfies 

FH(k#, M) ⇐⇒ f/M satisfies FH(k#) := FH(k#, 1). Thus, for the first part of 

the lemma, we reduce matters to the case M = 1. This result is stated in Lemma 2.6 of 

[6]. The proof is a straightforward application of Helly’s theorem.

The second part of the lemma is stated in Lemma 2.6 of [6]. We refer the reader there 

for the proof, also using Helly’s theorem. �

We define a notion of transversality in P with respect to the 〈·, ·〉x,δ inner product.

Definition 7.6. Given a closed, symmetric, convex set Ω ⊆ P, a subspace V ⊆ P, R ≥ 1, 

x ∈ R
n, and δ > 0, we say that Ω is (x, δ, R)-transverse to V if (1) Bx,δ/V ⊆ R · (Ω ∩

Bx,δ)/V , and (2) Ω ∩ V ⊆ R · Bx,δ.
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Remark 7.7. We note that Ω is (x, δ, R)-transverse to V if Ω is R-transverse to V with 

respect to the Hilbert space structure (P, 〈·, ·〉x,δ). To see this, we use the formulation of 

transversality in a Hilbert space given in Corollary 3.8.

We note that Ω is R-transverse to V at x (in the notation of Definition 2.8) if and 

only if Ω is (x, 1, R)-transverse to V . Again, see Corollary 3.8.

Lemma 7.8 (cf. Lemma 3.7 in [6]). If Ω is (x, δ, R)-transverse to V , then the following 

holds.

• τx,r(Ω) is (x, δ/r, R)-transverse to τx,r(V ).

• If δ′ ∈ [κ−1δ, κδ] for some κ ≥ 1, then Ω is (x, δ′, κmR)-transverse to V .

Proof. For the first bullet point: Apply τx,r to both sides of (1) and (2) in Definition 7.6

and use the scaling relation (10) which states that τx,rBx,δ = Bx,δ/r.

For the second bullet point: In conditions (1) and (2) in Definition 7.6, use the in-

clusions Bx,δ ⊆ max{1, (δ/δ′)m}Bx,δ′ and Bx,δ′ ⊆ max{1, (δ′/δ)m}Bx,δ from (8), and the 

property that A ∩ rB ⊆ r(A ∩ B) if A, B are symmetric convex sets and r ≥ 1. �

Lemma 7.9 (cf. Lemma 3.8 in [6]). There exists a controlled constant 0 < c1 < 1 such 

that the following holds. Let V ⊆ P be a subspace, x, y ∈ R
n, δ > 0, and R ≥ 1. If σE(x)

is (x, δ, R)-transverse to V and |x − y| ≤ c1
δ
R , then σE(y) is (y, δ, 8R)-transverse to V .

Proof. The proof of Lemma 3.8 in [6] gives the desired result for a constant c1 determined 

by m, n. This proof uses two conditions on c1: First, that c1 < 1
4CT

, with CT the 

controlled constant in Taylor’s theorem. Second, the following claim is used: If |x − y| ≤
c1δ and c1 is sufficiently small then 9

10Bx,δ ⊆ By,δ ⊆ 10
9 Bx,δ. To verify this claim, we 

apply Lemma 2.12. We learn that if c1 < 1
9C2.12

, with C2.12 the controlled constant C in 

Lemma 2.12, then |P |x,δ and |P |y,δ differ by a factor of at most 10
9 for |x −y| ≤ c1δ. This 

implies the desired inclusions for the unit balls Bx,δ and By,δ. We choose the controlled 

constant c1 < min{ 1
4CT

, 1
9C2.12

} so as to satisfy the conditions for this proof. �

Lemma 7.10 (cf. Lemma 2.9 of [6]). There exists a controlled constant C0 ≥ 1 so that, 

for any ball B ⊆ R
n and z ∈ 1

2B, we have

σE∩B(z) ∩ Bz,diam(B) ⊆ C0 · σE(z).

Proof. The proof of Lemma 2.9 in [6] gives the desired inclusion for a constant C0

determined by m, n. This proof uses the existence of a cutoff function ϕ ∈ Cm−1,1(Rn), 

with supp(ϕ) ⊆ B, ϕ ≡ 1 on a neighborhood of z, and ‖ϕ‖ ≤ Cϕδ−m (for δ = diam(B)). 

Following this proof, we learn that C0 is bounded by the product of a finite number 

(independent of m, n) of the constants Cϕ, C in Lemma 2.2 of [6], and CT in Taylor’s 

theorem. By Proposition 2.2 and Lemmas 2.15, 2.17 of this paper, these constants may 

be taken to be controlled constants. Thus, C0 is a controlled constant. �
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Lemma 7.11. Let S ⊆ E, for E ⊆ R
n finite.

For z ∈ R
n, let Iz := {P ∈ P : P (z) = 0} be the codimension 1 subspace of P

consisting of polynomials vanishing at z.

If z ∈ R
n \ S then σS(z) has non-empty interior in P.

If z ∈ S then σS(z) ⊆ Iz and σS(z) has non-empty (relative) interior in Iz.

Proof. By translation invariance, it suffices to assume z = 0.

Suppose z = 0 /∈ S. Consider the basis {mα(x) = xα}α∈M for P. We shall demonstrate 

there exists ε > 0 so that ±εmα ∈ σS(0) for all α ∈ M. Given that 0 ∈ R
n \ S, there 

exists δ > 0 so that B(0, δ) is disjoint from S. Let θ : R
n → R be a C∞ cutoff function 

satisfying θ ≡ 1 in a neighborhood of 0, and supp(θ) ⊆ B(0, δ). For α ∈ M and ε > 0, 

let ϕ±
α (x) := ±εmα(x)θ(x). If ε > 0 is picked small enough then ‖ϕ±

α‖Cm−1,1(Rn) ≤ 1. 

Note that ϕ±
α vanishes on S, because θ vanishes on S. Finally, we have J0(ϕ±

α ) = ±εmα. 

Thus, ±εmα ∈ σS(0) for all α ∈ M. Therefore, 0 ∈ P is an interior point of σS(0).

Suppose z = 0 ∈ S. Let I0 = {P ∈ P : P (0) = 0}. Any function ϕ ∈ Cm−1,1(Rn) of 

seminorm ≤ 1 that vanishes on S must satisfy ϕ(0) = 0, hence, Jz(ϕ) ∈ I0. We deduce 

that σS(0) ⊆ I0. Consider the basis {mα(z) = xα}α∈M+ for I0, where M+ := M \{0} is 

the set of all nonzero multiindices of order at most m −1. Fix δ > 0 so that B(0, δ) ∩S =

{0}. Let θ : R
n → R be a C∞ cutoff function satisfying θ ≡ 1 in a neighborhood of 0, 

and supp(θ) ⊆ B(0, δ). Evidently, θ vanishes on S \ {0}. For α ∈ M+ and ε > 0, let 

ϕ±
α (x) := ±εmα(x)θ(x). If ε > 0 is picked small enough then ‖ϕ±

α‖Cm−1,1(Rn) ≤ 1. We 

check that ϕ±
α = 0 on S. Indeed, ϕ±

α (0) = 0 because mα(0) = 0 for α ∈ M+; meanwhile, 

ϕ±
α vanishes on S \ {0} because θ vanishes on S \ {0}. Finally, we have J0(ϕ±

α ) = ±εmα. 

Therefore, ±εmα ∈ σS(0) for all α ∈ M+. We deduce that 0 ∈ I0 is an interior point of 

σS(0) in I0. �

We finish the section by proving a version of Lemma 8.3 in [6] with controlled con-

stants.

Lemma 7.12 (cf. Lemma 8.3 of [6]). Let C0 ≥ 1 and �0 ∈ N. Let W be a Whitney cover 

(see Definition 2.18) of a ball B̂ ⊆ R
n, and let N := #W < ∞. Suppose the following 

condition is valid for every B ∈ W:

Γ�0
(x, f, M) ⊆ ΓE∩ 6

5
B(x, f, C0M), for all x ∈ (6/5)B, M > 0. (106)

Then a corresponding condition is valid on B̂:

Γ�1
(x0, f, M) ⊆ ΓE∩B̂(x0, f, C1M), for all x0 ∈ B̂, M > 0. (107)

The constants C1, �1 in (107) are given by C1 := C ′C0 and �1 := �0 +  log(D·N+1)
log(D+1) !, for a 

controlled constant C ′. In particular, C1 is independent of the cardinality N of the cover 

W.
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Proof. Let f : E → R and M > 0. Fix a point x0 ∈ B̂. Our goal is to prove (107) for 

C1 ≥ 1 to be determined below.

For each B ∈ W, we fix xB ∈ (6/5)B satisfying

xB = x0 ⇐⇒ x0 ∈ (6/5)B. (108)

(If x0 /∈ (6/5)B then we take xB to be an arbitrary element of (6/5)B.)

Fix an arbitrary P ∈ Γ�1
(x0, f, M). We will prove that P ∈ ΓE∩B̂(x0, f, C1M). To do 

so, we define a family of auxiliary convex sets to which we apply Helly’s theorem and 

obtain the conclusion. These convex sets will belong to the vector space PW consisting 

of tuples of (m −1)-st order Taylor polynomials indexed by elements of the cover W. The 

vector space PW has dimension J := dim(PW) = N ·D. For each S ⊆ E, the convex set 

K(f,P )(S, M) ⊆ PW is defined by

K(f,P )(S, M) := {(JxB
F )B∈W : F ∈ Cm−1,1(Rn), ‖F‖ ≤ M,

F = f on S, Jx0
F = P}.

If #(S) ≤ (D + 1)�1 then P ∈ Γ�1
(x0, f, M) ⊆ ΓS(x0, f, M). Therefore, there exists 

F ∈ Cm−1,1(Rn) with ‖F‖ ≤ M , F = f on S, and Jx0
F = P . Hence, (JxB

F )B∈W ∈
K(f,P )(S, M). Thus, K(f,P )(S, M) �= ∅ if #(S) ≤ (D + 1)�1 .

If S1, · · · , SJ+1 ⊆ E, then

J+1⋂

j=1

K(f,P )(Sj , M) ⊇ K(f,P )(S, M), for S = S1 ∪ · · · ∪ SJ .

If also #(Sj) ≤ (D + 1)�0 for all j, then #(S) ≤ J(D + 1)�0 ≤ (D + 1)�1 , by definition 

of �1. Consequently, by the previous remark, K(f,P )(S, M) �= ∅. Thus, given subsets 

S1, · · · , SJ+1 ⊆ E, with #(Sj) ≤ (D + 1)�0 for all j, we have

J+1⋂

j=1

K(f,P )(Sj , M) �= ∅.

Therefore, since dim(PW) = J , by Helly’s theorem,

K :=
⋂

S⊆E
#(S)≤(D+1)�0

K(f,P )(S, M) �= ∅.

Fix (PB)B∈W in K. By definition of the sets K(f,P )(S, M), the following condition holds:

For any S ⊆ E with #(S) ≤ (D + 1)�0 , there exists a function

F S ∈ Cm−1,1(Rn) with ‖F S‖ ≤ M, F S = f on S, Jx0
F S = P,

and JxB
F S = PB for all B ∈ W.

⎫
⎪⎪⎬
⎪⎪⎭

(∗)
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Using Condition (∗) we establish the following properties: For all B, B′ ∈ W,

(a) PB = P if x0 ∈ 6
5B.

(b) |PB − PB′ |xB ,diam(B) ≤ C1M if 6
5B ∩ 6

5B′ �= ∅, for the controlled constant C1 :=

11mCT .

(c) There exists FB ∈ Cm−1,1(Rn) such that ‖FB‖ ≤ C0M , FB = f on E ∩ 6
5B, and 

JxB
FB = PB .

For the proofs of (a) and (b), consider the function F ∅ arising in (∗) for S = ∅. For 

the proof of (a), fix B ∈ W with x0 ∈ 6
5B. Then xB = x0 by (108), and PB = JxB

F ∅ =

Jx0
F ∅ = P by (∗), which yields (a). For the proof of (b), suppose 6

5B ∩ 6
5B′ �= ∅

for B, B′ ∈ W. Note that xB ∈ 6
5B, xB′ ∈ 6

5B′, and by the definition of a Whitney 

cover, diam(B) and diam(B′) differ by a factor of at most 8. Therefore, |xB − xB′ | ≤
6
5 diam(B) + 6

5 diam(B′) ≤ 11 diam(B). Thus, by (7), Taylor’s theorem (rendered in the 

form (15)), and (∗),

|PB − PB′ |xB ,diam(B) ≤ 11m|PB − PB′ |xB ,11 diam(B)

= 11m|JxB
F ∅ − JxB′ F

∅|xB ,11 diam(B)

≤ 11mCT ‖F ∅‖ ≤ C1M.

For the proof of (c), note that (∗) implies PB ∈ Γ�0
(xB , f, M) for all B ∈ W. Thus, 

by assumption (106), PB ∈ ΓE∩ 6
5

B(xB , f, C0M) for each B ∈ W. Then, by definition of 

the set ΓS in (103), we complete the proof of (c).

Let {θB} be a partition of unity adapted to the Whitney cover W, as in Lemma 2.20, 

and set F :=
∑

B∈W θBFB . We refer the reader to Lemma 2.20 for the conditions on 

{θB} used below. By properties (b), (c), and Lemma 2.21, we have (A) F = f on E ∩ B̂

and (B) ‖F‖Cm−1,1(B̂) ≤ CC1C0M ≤ C ′C0M for controlled constants C, C ′. Since 

supp θB ⊆ 6
5B, Jx0

θB = 0 if x0 /∈ 6
5B; on the other hand, Jx0

FB = JxB
FB = PB = P if 

x0 ∈ 6
5B by (108) and properties (a), (c). Therefore, by a term-by-term comparison of 

sums we obtain the identity

Jx0
F =

∑

B∈W
Jx0

θB 	x0
Jx0

FB =
∑

B∈W
Jx0

θB 	x0
P.

Recall that 
∑

B∈W θB = 1 on B̂ and x0 ∈ B̂. Thus, 
∑

B∈W Jx0
θB = Jx0

(1) = 1. 

Therefore, (C) Jx0
F = P .

By an outcome of the classical Whitney extension theorem (see Lemma 2.4), we extend 

F ∈ Cm−1,1(B̂) to F0 ∈ Cm−1,1(Rn) satisfying F0 = F on B̂ and

‖F0‖Cm−1,1(Rn) ≤ C‖F‖Cm−1,1(B̂) ≤ CC ′C0M,

for a controlled constant C ≥ 1. Then ‖F0‖Cm−1,1(Rn) ≤ C ′′C0M for C ′′ := CC ′ a 

controlled constant. Because F0 = F on B̂, properties (A) and (C) of F imply that 
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F0 = f on E ∩ B̂ and Jx0
F0 = P . Since ‖F0‖Cm−1,1(Rn) ≤ C ′′C0M , we deduce that 

P ∈ ΓE∩B̂(x0, f, C ′′C0M). This proves (107) with C1 = C ′′C0. �

8. Making linear selections

Fix a finite set E ⊆ R
n. This section contains additional properties of the sets 

Γ�(x, f, M) and σ�(x), defined in Section 7, that will be used in the construction of 

the linear extension operator T in Theorem 6.1.

Below, the seminorm of ϕ ∈ Cm−1,1(Rn) is denoted by ‖ϕ‖ := ‖ϕ‖Cm−1,1(Rn).

Lemma 8.1 (Theorem 1.3 of [4]). Let F be a finite collection of symmetric convex sets 

in Rd. Suppose 0 is an interior point of each K ∈ F . Then there exist K1, . . . , K2d ∈ F , 

with

K1 ∩ · · · ∩ K2d ⊆ 2
√

d

(
⋂

K∈F
K
)

.

Lemma 8.2. Fix � ∈ N. For each y ∈ R
n there exists a set Sy ⊆ E such that #(Sy) ≤

2D(D + 1)� and σSy (y) ⊆ 2
√

Dσ�(y).

Proof. Recall that

σ�(y) =
⋂{

σS(y) : S ⊆ E, #(S) ≤ (D + 1)�
}

. (109)

Suppose first that y /∈ E. Then y /∈ S for all S ⊆ E. By Lemma 7.11 the sets 

σS(y) have nonempty interior in the D-dimensional vector space P. Thus we can apply 

Lemma 8.1 to the collection of sets σS(y) ⊆ P for S ⊆ E with #(S) ≤ (D + 1)� to get 

S1, . . . , S2D ⊆ E such that #(Si) ≤ (D +1)� for each i and the following inclusion holds:

2D⋂

i=1

σSi
(y) ⊆ 2

√
D · σ�(y).

Let Sy = S1 ∪ · · · ∪ S2D. Then σSy (y) ⊆ σSi
(y) for each i and so

σSy (y) ⊆ 2
√

D · σ�(y).

Furthermore, #(Sy) ≤ 2D(D + 1)�, as claimed.

Suppose instead that y ∈ E. Then y ∈ S0 for some S0 ⊆ E with #(S0) ≤ (D +1)�. By 

Lemma 7.11, the set σS0
(y) is contained in the (D − 1)-dimensional subspace Iy = {P ∈

P : P (y) = 0} of P. But σ�(y) ⊆ σS0
(y), so σ�(y) is contained in Iy. Set σS(y) = σS(y) ∩Iy

for S ⊆ E. Intersecting both sides of (109) with Iy, we have

σ�(y) =
⋂{

σS(y) : S ⊆ E, #(S) ≤ (D + 1)�
}

.
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By Lemma 7.11, for each S ⊆ E either σS(y) has nonempty interior in P (if y /∈ S) or 

σS(y) has nonempty interior in Iy (if y ∈ S). Therefore, σS(y) has nonempty interior in 

Iy for all S ⊆ E. Thus we can apply Lemma 8.1 to the collection of sets σS(y) ⊆ Iy for 

S ⊆ E with #(S) ≤ (D + 1)� to get S1, . . . , S2(D−1) ⊆ E such that #(Si) ≤ (D + 1)� for 

each i and the following inclusion holds:

2(D−1)⋂

i=1

σSi
(y) ⊆ 2

√
D · σ�(y). (110)

Since σS0
(y) ⊆ Iy, we have

2(D−1)⋂

i=1

σSi
(y) = Iy ∩

⎛
⎝

2(D−1)⋂

i=1

σSi
(y)

⎞
⎠ ⊇

2(D−1)⋂

i=0

σSi
(y). (111)

Let Sy = S0 ∪ S1 ∪ · · · ∪ S2(D−1). Then σSy (y) ⊆ σSi
(y) for each i = 0, 1, . . . , 2(D − 1)

and so, combining (110) and (111),

σSy (y) ⊆ 2
√

D · σ�(y).

Furthermore, #(Sy) ≤ (2(D − 1) + 1)(D + 1)� ≤ 2D(D + 1)�, as claimed. �

Lemma 8.3. Fix y ∈ R
n and � ∈ N. There exists a linear map P y

� : C(E) → P such 

that if f ∈ C(E) satisfies FH(k#, M) for some k# ≥ (D + 1)�+3 and M > 0, then 

P y
� (f) ∈ Γ�(y, C�M). Here, C� = C ′(D + 1)� for a controlled constant C ′.

Proof. By Lemma 8.2, there exists Sy ⊆ E with #(Sy) ≤ 2D(D + 1)� such that

σSy (y) ⊆ 2
√

D · σ�(y). (112)

Let Sy ∪ {y} = {x1, . . . , xN}, with xN = y. Then

N = #(Sy ∪ {y}) ≤ 2D(D + 1)� + 1 ≤ (D + 1)�+2. (113)

Introduce the vector space PN of all

�P = (Pμ)1≤μ≤N with Pμ ∈ P for all μ.

We define a quadratic function Q on PN by

Q( �P ) :=
∑

μ�=ν

∑

|β|≤m−1

|∂β(Pμ − Pν)(xμ)|2
(β!)2|xμ − xν |2(m−|β|) =

∑

μ�=ν

|Pμ − Pν |2xμ,|xμ−xν |. (114)



66 J. Carruth et al. / Advances in Mathematics 410 (2022) 108698

Given a function f ∈ C(E), we define Wf to be the subspace of PN consisting of �P ∈ PN

satisfying Pμ(xμ) = f(xμ) for all 1 ≤ μ ≤ N − 1 and PN (xN ) = f(xN ) if xN = y ∈ E. 

Note that Q achieves a minimum on Wf at some point �P (f, y) ∈ Wf that depends 

linearly on f for fixed y. Letting Pμ(f, y) ∈ P denote the μ-th component of �P (f, y), we 

define

P y
� (f) := PN (f, y).

We’ve constructed a linear map P y
� : C(E) → P; it remains to show that P y

� (f) ∈
Γ�(y, f, C�M), with C� as in the statement of the lemma, whenever f satisfies FH(k#, M)

for some k# ≥ (D + 1)�+3 and M > 0.

To this end, suppose f satisfies FH(k#, M) for k# ≥ (D + 1)�+3 and M > 0. We will 

demonstrate that there exists a function F̃ ∈ Cm−1,1(Rn) satisfying

‖F̃‖ ≤ C ′ · (D + 1)�M, (115)

F̃ = f on Sy, and (116)

Jy(F̃ ) = P y
� (f) (117)

for a controlled constant C ′.

First, we claim that Q( �P (f, y)) ≤ C2
T (D+1)2�+4M2. By (113), #(Sy∪{y}) = N ≤ k#. 

By assumption, f satisfies FH(k#, M), so there exists a function F̂ satisfying

‖F̂‖ ≤ M, (118)

F̂ = f on Sy, and (119)

F̂ (y) = f(y) if y ∈ E. (120)

Define �R := (Rμ)1≤μ≤N where Rμ := Jxμ
(F̂ ) and {xμ}1≤μ≤N = Sy∪{y}. Then �R ∈ Wf , 

due to (119) and (120). By Taylor’s theorem (see (15)), �R satisfies

|Rμ − Rν |xμ,|xμ−xν | ≤ CT ‖F‖ ≤ CT M for all μ �= ν. (121)

We use (114) and (121), and then (113), to get

Q( �R) ≤ N2 · (CT M)2 ≤ C2
T (D + 1)2�+4M2.

Since �P (f, y) was chosen to minimize Q on Wf , we have

Q( �P (f, y)) ≤ C2
T (D + 1)2�+4M2, (122)

as claimed.
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From (122) we have

|∂β(Pμ(f, y) − Pν(f, y))(xμ)| ≤ C(D + 1)�M |xμ − xν |m−|β|

for μ �= ν, |β| ≤ m − 1,
(123)

for a controlled constant C. Since (123) holds, the classical Whitney extension theorem 

(see Proposition 2.3) guarantees the existence of a function F̃ ∈ Cm−1,1(Rn) satisfying 

Jxμ
F̃ = Pμ(f, y) for μ = 1, 2, . . . , N , and ‖F̃‖Cm−1,1(Rn) ≤ CW hC(D + 1)�M . Here, 

CW h is a controlled constant. Thus, the function F̃ satisfies (115). Furthermore, (116)

follows because Jxμ
F̃ = Pμ(f, y) for all μ, and �P (f, y) = (Pμ(f, y))1≤μ≤N ∈ Wf . Finally, 

(117) follows because Jy(F̃ ) = JxN
(F̃ ) = PN (f, y) = P y

� (f). This completes the proof of 

(115)-(117).

Given that f satisfies FH(k#, M) for k# ≥ (D+1)�+3, we apply Lemma 7.5 to deduce 

that Γ�+2(y, f, M) �= ∅.

Fix P y
0 ∈ Γ�+2(y, f, M). Given that #(Sy) ≤ (D + 1)�+2 (see (113)), we have P y

0 ∈
ΓSy (y, f, M).

From (115)-(117), we have that P y
� (f) ∈ ΓSy (y, f, C ′(D + 1)�M). By Lemma 7.2 we 

deduce that P y
0 − P y

� (f) ∈ C ′′(D + 1)�MσSy (y) for a controlled constant C ′′ = C ′ + 1.

By (112), P y
0 − P y

� (f) ∈ Ĉ(D + 1)�Mσ�(y) for a controlled constant Ĉ.

But P y
0 ∈ Γ�+2(y, f, M) ⊆ Γ�(y, f, M). By Lemma 7.2, we deduce that

P y
� (f) = P y

0 + (P y
� (f) − P y

0 ) ∈ Γ�(y, f, M) + Ĉ(D + 1)�Mσ�(y)

⊆ Γ�(y, f, C(D + 1)�M),

for a controlled constant C = Ĉ + 1. This proves the lemma with C� = C(D + 1)�. �

Lemma 8.4. Suppose X is a d-dimensional Hilbert space with norm | · |. Let B denote the 

unit ball of X. Let V be a subspace of X and let Ω ∈ K(X) be a symmetric convex set 

in X. Suppose that B/V ⊆ R(Ω ∩B)/V . Then there exists a linear mapping T : X → X

such that ‖T‖op ≤ dR, x − Tx ∈ V and Tx ∈ dR|x|(Ω ∩ B) for all x ∈ X.

Proof. Let {ej : 1 ≤ j ≤ d} be an orthonormal basis for X. Given that B/V ⊆ R(Ω ∩
B)/V , for each ej ∈ B we can find ωj ∈ R(Ω ∩ B) such that ej − ωj ∈ V . In particular, 

|ωj | ≤ R for all j.

Given x ∈ X, write x =
∑

j cjej for cj = 〈x, ej〉 and define Tx :=
∑

j cjωj . Note 

maxj |cj | ≤ (
∑

j c2
j )1/2 = |x|.

We have x − Tx =
∑

j cj(ej − ωj) ∈ V . Also, by the triangle inequality,

|Tx| ≤ max
j

|cj | ·
d∑

j=1

|ωj | ≤ Rd|x|.
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Thus, ‖T‖op ≤ Rd, as desired. Using that ωj ∈ R(Ω ∩ B) and |cj | ≤ |x| for all j, and by 

symmetry and convexity of Ω ∩ B,

Tx =

d∑

j=1

cjωj ∈
d∑

j=1

|cj | · R(Ω ∩ B) ⊆ dR|x|(Ω ∩ B).

This completes the proof. �

Lemma 8.5. Fix x, y ∈ R
d, � ∈ N, R ≥ 1, C1 ≥ 1, δ ≥ |x −y|, and a DTI subspace V ⊆ P

such that σ(x) is (x, C1δ, R)-transverse to V . Suppose that f satisfies FH(k#, M) for 

k# ≥ (D + 1)�+2 and M > 0. Let P0 ∈ Γ�(y, f, M). Then there exists a constant Ĉ� ≥ 1

and P ′ ∈ Γ�−1(x, f, Ĉ�M) such that

1. P ′ − P0 ∈ V ,

2. P ′ − P0 ∈ Ĉ�MBx,δ,

3. P ′ depends linearly on f and P0,

4. Ĉ� = (RD + 2) · Cm
1

√
C2

T + 4DC2
�−1, where C�−1 = C ′(D + 1)�−1 is the constant 

arising in Lemma 8.3.

Proof. We apply Lemma 8.3 to find a linear map P y
�−1 : C(E) → P. Given that f

satisfies FH(k#, M) for k# ≥ (D + 1)�+2, we have P x
�−1(f) ∈ Γ�−1(x, f, C�−1M).

By Lemma 7.5, and δ ≥ |x − y|, Γ�(y, f, M) ⊆ Γ�−1(x, f, M) + CT MBx,δ. Thus, given 

that P0 ∈ Γ�(y, f, M), there exists Q ∈ Γ�−1(x, f, M) with

|P0 − Q|x,δ ≤ CT M. (124)

By Lemma 7.2,

Q − P x
�−1(f) ∈ (C�−1 + 1)Mσ�−1(x) ⊆ 2C�−1Mσ�−1(x). (125)

Since σ�−1(x) is a closed symmetric convex set, there exists a vector subspace V x
�−1 ⊆ P

and a quadratic form qx
�−1 on V x

�−1 such that E := {x ∈ V x
�−1 : qx

�−1 ≤ 1} satisfies 

E ⊆ σ�−1(x) ⊆
√

D · E . This is a consequence of the John ellipsoid theorem (see Proposi-

tion 4.10). Here, V x
�−1 is the linear span of σ�−1(x), and E is the John ellipsoid of σ�−1(x)

in V x
�−1. By (125),

Q − P x
�−1(f) ∈ V x

�−1,

qx
�−1(Q − P x

�−1(f)) ≤ 4DC2
�−1M2.

(126)

We let Q∗ ∈ P be the minimizer of the quadratic function

q0(R) := qx
�−1(R − P x

�−1(f)) + |P0 − R|2x,δ,



J. Carruth et al. / Advances in Mathematics 410 (2022) 108698 69

for R ∈ P ranging in the affine subspace P x
�−1(f) + V x

�−1. Then Q∗ depends linearly on 

P0 and f , and Q∗ ∈ P x
�−1(f) + V x

�−1. Due to (124) and (126),

q0(Q) ≤ 4DC2
�−1M2 + C2

T M2 = C̄2
� M2,

with C̄� =
√

4DC2
�−1 + C2

T , and Q ∈ P x
�−1(f) + V x

�−1. Thus, by definition of Q∗ as the 

minimizer of q0 on P x
�−1(f) + V x

�−1, q0(Q∗) ≤ q0(Q) ≤ C̄2
� M2, and thus

qx
�−1(Q∗ − P x

�−1(f)) ≤ C̄2
� M2 and |P0 − Q∗|x,δ ≤ C̄�M.

These inequalities imply Q∗ − P x
�−1(f) ∈ C̄�Mσ�−1(x) and P0 − Q∗ ∈ C̄�MBx,δ. By 

Lemma 7.2,

Q∗ = P x
�−1(f) + (Q∗ − P x

�−1(f)) ∈ Γ�−1(x, f, C�−1M) + C̄�Mσ�−1(x)

⊆ Γ�−1(x, f, 2C̄�M)
(127)

(we’ve used that C̄� =
√

4DC2
�−1 + C2

T > C�−1). We’ve succeeded in producing Q∗ ∈
Γ�−1(x, f, 2C̄�M) satisfying P0 − Q∗ ∈ C̄�MBx,δ and Q∗ depends linearly on (P0, f). It 

remains to modify Q∗ to obtain a polynomial P ′ such that P ′ satisfies the same properties 

(potentially for larger constants) and P ′ − P0 ∈ V .

Since σ(x) is (x, C1δ, R)-transverse to V and σ(x) ⊆ σ�−1(x),

Bx,C1δ/V ⊆ R(σ(x) ∩ Bx,C1δ)/V ⊆ R(σ�−1(x) ∩ Bx,C1δ)/V.

We equip the vector space P with the inner product 〈·, ·〉x,C1δ. Then Bx,C1δ is the cor-

responding unit ball of X. By the above inclusion and Lemma 8.4 there exists a linear 

map T : P → P satisfying

|T P̃ |x,C1δ ≤ RD|P̃ |x,C1δ, (128)

T P̃ ∈ RD|P̃ |x,C1δ(σ�−1(x) ∩ Bx,C1δ), (129)

T P̃ − P̃ ∈ V for all P̃ ∈ P. (130)

Given that P0 − Q∗ ∈ C̄�MBx,δ, we find that

|P0 − Q∗|x,C1δ ≤ |P0 − Q∗|x,δ ≤ C̄�M. (131)

We set P ′ = Q∗ + T (P0 − Q∗). Then P ′ depends linearly on (P0, f). By (128) and 

(131), we have |T (P0 − Q∗)|x,C1δ ≤ RDC̄�M . Thus,

|P ′ − P0|x,C1δ ≤ |Q∗ − P0|x,C1δ + |T (P0 − Q∗)|x,C1δ ≤ C̄�M + RDC̄�M.

Therefore,
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P ′ − P0 ∈ (RD + 1)C̄�MBx,C1δ ⊆ Ĉ�MBx,δ

with Ĉ� := (2 + RD)C̄�C
m
1 . Here, the last set inclusion uses (8).

By (130), we have

P ′ − P0 = (Q∗ − P0) − T (Q∗ − P0) ∈ V.

Finally, by (127), (129), and (131), we have

P ′ = Q∗ + T (P0 − Q∗) ∈ Γ�−1(x, f, 2C̄�M) + RD|P0 − Q∗|x,C1δσ�−1(x)

⊆ Γ�−1(x, f, 2C̄�M) + RDC̄�Mσ�−1(x)

⊆ Γ�−1(x, f, (2C̄� + RDC̄�)M) ⊆ Γ�−1(x, f, Ĉ�M),

where the second to last inclusion uses Lemma 7.2.

This completes the proof of the lemma. �

9. The local main lemma

Let E ⊆ R
n be a finite set. By Proposition 7.4, σ(z) := σE(z) is A0-Whitney convex 

at z for all z ∈ R
n. Here, A0 ≥ 1 is a controlled constant. By Proposition 2.9 with 

A = A0 we find a constant R0 = O(exp(poly(D) log(A0))) such that

if Ω ⊆ Rx is A0-Whitney convex at x ∈ R
n

then there exists a DTI subspace V ⊆ Rx

such that Ω is R0-transverse to V at x.

(132)

The constant A0 is controlled, so log(A0) = O(poly(D)), thus R0 = O(exp(poly(D)), 

so R0 is also controlled. Let c1 be the controlled constant from Lemma 7.9. Define new 

controlled constants R4 ≥ R3 ≥ R2 ≥ R1 ≥ R0 and C̄ as follows.

R1 := 8R0, R2 := D2D+1/2R4D
1 , R3 := 10mR2, R4 := 8m+1R3

C̄ = 100c−1
1 R3

(133)

Lemma 9.1. Let B be a closed ball in Rn. There exists a DTI subspace V ⊆ P such that 

σ(z) is (z, C̄ diam(B), R1)-transverse to V for all z ∈ 100B.

Proof. Let x0 be the center of B. We shall use the following property: If Ω ⊆ P is 

A-Whitney convex at x0, then τx0,δ(Ω) is A-Whitney convex at x0. (See Lemma 5.2

for the corresponding property when x0 = 0.) By Proposition 7.4, σ(x0) is A0-Whitney 

convex at x0, thus, τx0,(C̄ diam(B))−1(σ(x0)) is A0-Whitney convex at x0. Thanks to (132), 

there is a DTI subspace V such that τx0,(C̄ diam(B))−1(σ(x0)) is R0-transverse to V at x0. 

Thus, τx0,(C̄ diam(B))−1(σ(x0)) is (x0, 1, R0)-transverse to V . Therefore, by Lemma 7.8, 
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σ(x0) is (x0, C̄ diam(B), R0)-transverse to τx0,C̄ diam(B)(V ) = V , where the set equality 

holds because V is DTI (in particular, V is dilation invariant at x0). Given z ∈ 100B

(arbitrary), we have |z − x0| ≤ 100 diam(B) ≤ c1
C̄ diam(B)

R0
(observe that 100 = c1

C̄
R3

≤
c1

C̄
R0

). By Lemma 7.9, we conclude that σ(z) is (z, C̄ diam(B), 8R0)-transverse to V . 

This completes the proof of the lemma. �

Definition 9.2. Given a ball B ⊆ R
n and finite set E ⊆ R

n, the local complexity of E on 

B is the integer quantity

C(E|B) = sup
x∈B

Cx(σ(x), R1, R2, C̄ diam(B)).

See Definition 2.10 for the definition of the pointwise complexity Cx(Ω, R, R∗, δ) of a 

symmetric convex set Ω ⊆ Rx at x at scale below δ. Evidently, pointwise complexity is 

monotone in δ in the sense that Cx(Ω, R, R∗, δ) ≤ Cx(Ω, R, R∗, δ′) for δ ≤ δ′. This implies 

the following monotonicity property of local complexity.

Corollary 9.3. If B1 ⊆ B2, then C(E|B1) ≤ C(E|B2).

Due to the relation R2 = D2D+1/2R4D
1 and inequality R1 ≥ 16 (see (133)), we can 

apply Proposition 2.11 to deduce the following result:

Corollary 9.4. For any ball B ⊆ R
n and finite set E ⊆ R

n, C(E|B) ≤ 4mD2.

We provide an equivalent formulation of complexity in the next result.

Lemma 9.5. Let E ⊆ R
n (finite), a ball B ⊆ R

n, and an integer J ≥ 1 be given. Then 

C(E|B) ≥ J if and only if there exists x ∈ B, and there exist subspaces Vj ⊆ P and 

intervals Ij ⊆ (0, diam(B)] (j = 1, 2, . . . , J), such that the following conditions hold.

• I1 > I2 > · · · > IJ > 0.

• τx,r(Ij)σ(x) is (x, C̄, R1)-transverse to Vj.

• τx,l(Ij)σ(x) is not (x, C̄, R2)-transverse to Vj.

• Vj is dilation invariant at x.

Proof. Evidently, C(E|B) ≥ J if and only if Cx(σ(x), R1, R2, C̄ diam(B)) ≥ J for some 

x ∈ B. By Definition 2.10, the second inequality is equivalent to the assertion: There 

exist subspaces V1, . . . , VJ ⊆ P and intervals Ĩ1 > · · · > ĨJ > 0 satisfying that, for all j,

• τx,r(Ĩj)σ(x) is (x, 1, R1)-transverse to Vj .

• τx,l(Ĩj)σ(x) is not (x, 1, R2)-transverse to Vj .

• Ĩj ⊆ (0, C̄ diam(B)].

• Vj is dilation invariant at x.
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Here, in the application of Definition 2.10, we use that a convex set Ω is (x, 1, R)-

transverse to V if and only if Ω is R-transverse to V at x (see Remark 7.7).

We apply the first conclusion of Lemma 7.8 (for r = C̄−1) to the first two bullet points 

above. We learn that these conditions are respectively equivalent to the following:

• τx,r(Ĩj)/C̄σ(x) is (x, C̄, R1)-transverse to τx,C̄−1Vj .

• τx,l(Ĩj)/C̄σ(x) is not (x, C̄, R2)-transverse to τx,C̄−1Vj .

Because Vj is dilation invariant at x, we have τx,C̄−1Vj = Vj . Let Ij := {δ/C̄ : δ ∈ Ĩj}, so 

that l(Ij) = l(Ĩj)/C̄ and r(Ij) = r(Ĩj)/C̄. Then I1 > · · · > IJ > 0, and Ij ⊆ (0, diam(B)]

for all j. The previous two bullet points are equivalent to the assertion that τx,r(Ij)σ(x)

is (x, C̄, R1)-transverse to Vj , and τx,l(Ij)σ(x) is not (x, C̄, R2)-transverse to Vj . This 

completes the proof of the lemma. �

We will see that Theorem 6.1 is a consequence of the following:

Lemma 9.6 (Local main lemma for K). Let K ∈ Z with K ≥ −1. There exist constants 

C# = C#(K) ≥ 1 and �# = �#(K) ∈ Z≥0, depending only on K, m, n, with the following 

properties.

Fix a finite set E ⊆ R
n, a closed ball B0 ⊆ R

n, and a point x0 ∈ B0.

Suppose C(E|5B0) ≤ K. Then there exists a linear map T : C(E) ×P → Cm−1,1(Rn)

such that the following holds:

Suppose (f, P0) ∈ C(E) × P and M > 0 satisfy that P0 ∈ Γ�#(x0, f, M), or equiva-

lently, by (104), the following condition holds: For all S ⊆ E with #(S) ≤ (D+1)�#

there 

exists F S ∈ Cm−1,1(Rn) with F S = f on S, Jx0
F S = P0, and ‖F S‖Cm−1,1(Rn) ≤ M .

Then T (f, P0) = f on E∩B0, Jx0
(T (f, P0)) = P0, and ‖T (f, P0)‖Cm−1,1(Rn) ≤ C#M .

Here, C#(K) = Λ(K+1)2+1 and �#(K) = χ · (K + 1) for all K ≥ −1, where Λ ≥ 1 is 

a controlled constant (O(exp(poly(D)))) and χ ∈ N is O(poly(D)).

Remark 9.7. The conclusion of the Local Main Lemma for K implies that P0 ∈
ΓE∩B0

(x0, f, C#M) as long as C(E|5B0) ≤ K and P0 ∈ Γ�#(x0, f, M). To see this, 

take F = T (f, P0) in the definition of ΓE∩B0
(· · · ). Thus, we derive the following as a 

consequence of the Local Main Lemma for K: If C(E|5B0) ≤ K then for any f ∈ C(E)

and M > 0,

Γ�#(x0, f, M) ⊆ ΓE∩B0
(x0, f, C#M) for any x0 ∈ B0.

In particular, by taking f = 0 and M = 1,

σ�#(x0) ⊆ C# · σE∩B0
(x0) for any x0 ∈ B0.

Here, C# = C#(K) and �# = �#(K) are as in the Main Lemma for K.
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The layout of the rest of the paper is as follows.

In Section 10 we give the proof of Lemma 9.6 by induction on K. Then, in Section 11, 

we apply Lemma 9.6 to prove the main extension theorems: Theorem 6.1 (for finite E) 

and Theorems 1.3 and 1.4 (for arbitrary E).

10. The main induction argument

We prove Lemma 9.6 by induction on K ∈ {−1, 0, · · · , K0}. Here K0 = 4mD2 is a 

universal upper bound on the local complexity C(E|B); see Corollary 9.4. In this section, 

we write the seminorm of ϕ ∈ Cm−1,1(Rn) as ‖ϕ‖ := ‖ϕ‖Cm−1,1(Rn).

10.1. Setup

Because C(E|B) ≥ 0 for any E and B, the Local Main Lemma for K = −1 is true 

vacuously; we take C#(−1) = Λ and �#(−1) = 0 when K = −1. This establishes the 

base case of the induction.

For the induction step, fix K ∈ {0, 1, · · · , K0}. Let E ⊆ R
n be finite. We assume the 

inductive hypothesis that the Local Main Lemma for K −1 is true. Let �old := �#(K −1)

and Cold := C#(K − 1) be the finiteness constants arising in the Local Main Lemma for 

K − 1. Given any ball B in Rn, we apply the Local Main Lemma for K − 1 to the ball 

(6/5)B to obtain:

If x ∈ (6/5)B and C(E|6B) ≤ K − 1 then

there exists a linear map TB : C(E) × P → Cm−1,1(Rn)

such that if P ∈ Γ�old
(x, f, M), then TB(f, P ) = f on E ∩ (6/5)B,

JxTB(f, P ) = P, and ‖TB(f, P )‖ ≤ ColdM.

(134)

We refer to conclusion (134) as the induction hypothesis.

To prove the Main Lemma for K, we fix a ball B0 ⊆ R
n with C(E|5B0) ≤ K and a 

point x0 ∈ B0. Our task is to construct a linear map T : C(E) ×P → Cm−1,1(Rn) such 

that, for the finiteness constants C# = C#(K) and �# = �#(K) defined in the Local 

Main Lemma for K, the following holds:

P0 ∈ Γ�#(x0, f, M) =⇒

⎧
⎪⎪⎨
⎪⎪⎩

T (f, P0) = f on E ∩ B0

Jx0
T (f, P0) = P0

‖T (f, P0)‖ ≤ C#M.

(135)

From the Local Main Lemma for K − 1 and K, the constants �old, Cold, �#, and C# will 

have the following form:
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�old = χ · K, Cold = ΛK2+1

�# = χ · (K + 1), C# = Λ(K+1)2+1,
(136)

where χ = O(poly(D)) and Λ = O(exp(poly(D))) are suitably chosen constants, de-

pending only on m and n, determined in the proof of (135). In particular, χ and Λ will 

be chosen independently of the induction parameter K. We assume that χ ≥ 5, so that 

�# ≥ 5. Later we will consider the sets Γ�#−j for 0 ≤ j ≤ 4; this assumption ensures 

that these sets are well-defined.

Proposition 10.1. Given a ball B ⊆ R
n with #(B∩E) ≤ 1, and given x ∈ 6

5B, there exists 

a linear map T : C(E) × P → Cm−1,1(Rn) satisfying the following: If P ∈ Γ0(x, f, M)

then

1. T (f, P ) = f on B ∩ E.

2. JxT (f, P ) = P .

3. ‖T (f, P )‖ ≤ CM .

Here, C is a controlled constant.

Proof. If B ∩ E = ∅ or if B ∩ E = {x}, we define T (f, P ) = P . Conditions 2 and 3 are 

obviously true. If B ∩ E = {x} then P ∈ Γ0(x, f, M) implies that P (x) = f(x), hence 

condition 1 of T is implied by condition 2 of T in this case. Else if B ∩ E = ∅, then 

condition 1 is vacuously true.

On the other hand, suppose B ∩ E = {z} and x �= z. Let P ∈ Γ0(x, f, M) and let 

B̂ = B(z, 12 |z − x|). We apply Lemma 2.17 to find a Cm cutoff function θ with θ ≡ 1 on 

(1/2)B̂, θ ≡ 0 on Rn \ B̂, and ‖∂αθ‖L∞(Rn) ≤ C|z − x|−|α| for |α| ≤ m, for a controlled 

constant C.

Define Pz ∈ P by the conditions Pz(z) = f(z) and ∂αPz(z) = ∂αPx(z) for all |α| ≥ 1. 

Then set

T (f, P ) = θPz + (1 − θ)P = P + θ(Pz − P ).

Note that Jxθ = 0 because x /∈ B̂ and θ is supported on B̂. Thus, JxT (f, P ) = P . Also, 

θ ≡ 1 in a neighborhood of z, so T (f, P ) = f at the unique point z ∈ E ∩ B.

We now seek to control

‖T (f, P )‖Ċm(Rn) = sup
y∈Rn

max
|β|=m

|∂βT (f, P )(y)|.

Note that T (f, P ) agrees with the (m − 1)’st degree polynomial P on R
n \ B̂. Thus, 

∂βT (f, P )(y) = 0 for |β| = m and y /∈ B̂. For y ∈ B̂ and |β| = m, ∂βT (f, P )(y) =

∂β(θ(Pz − P ))(y). By applying the product rule, and the derivative bounds for θ, we 

learn that
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‖T (f, P )‖Ċm(Rn) = sup
y∈B̂

max
|β|=m

|∂βT (f, P )(y)|

≤ C sup
y∈B̂

∑

|α|≤m−1

|∂α(Pz − P )(y)| · |x − z||α|−m

≤ C ′ sup
y∈B̂

|Pz − P |y,|x−z|.

By Lemma 2.12, and because |y − z| ≤ |x − z| for y ∈ B̂ (by definition of B̂), we have 

|Pz − P |y,|x−z| ≤ C|Pz − P |z,|x−z| for y ∈ B̂. Thus,

‖T (f, P )‖Ċm(Rn) ≤ C|Pz − P |z,|x−z|

= C

⎛
⎝ ∑

|α|≤m−1

(α!)−2|∂αPz(z) − ∂αP (z)|2 · |x − z|2(|α|−m)

⎞
⎠

1/2

= C|f(z) − P (z)|,

where we have used that ∂αPz(z) = ∂αP (z) for |α| ≥ 1 and Pz(z) = f(z). Thus, using 

(5), for a controlled constant C ′ we have

‖T (f, P )‖Cm−1,1(Rn) ≤ C ′|f(z) − P (z)|. (137)

Recall that P ∈ Γ0(x, f, M). Thus, by definition, for any S ⊆ E with #(S) ≤ (D +

1)0 = 1 there exists F S with F S = f on S, JxF S = P , and ‖F S‖ ≤ M . Apply this 

condition with S = {z}. Then, there exists F with F (z) = f(z), JxF = P and ‖F‖ ≤ M . 

By Taylor’s theorem (see (15)),

|JzF − P |z,|x−z| = |JzF − JxF |z,|x−z| ≤ CT M.

In particular, |f(z) − P (z)| = |(JzF − P )(z)| ≤ |JzF − P |z,|x−z| ≤ CT M . Using this 

inequality in (137), we deduce that ‖T (f, P )‖Cm−1,1(Rn) ≤ CM for a controlled constant 

C. This completes the proof of Proposition 10.1. �

We assume the parameter Λ in Lemma 9.6 is chosen to satisfy

Λ ≥ C, for the controlled constant C in Proposition 10.1. (138)

Then C# = Λ(K+1)2+1 ≥ C. If #(B0 ∩ E) ≤ 1, we apply Proposition 10.1 to the ball 

B = B0 and point x0 ∈ B0, to obtain a linear map T : C(E) × P → Cm−1,1(Rn). If 

P0 ∈ Γ�#(x0, f, M) then P0 ∈ Γ0(x0, f, M), so the map T satisfies conditions 1,2,3 in 

Proposition 10.1, implying (135), for C# ≥ C.

Having given the construction of T and proof of (135) in the case #(B0 ∩ E) ≤ 1, we 

now assume that
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#(B0 ∩ E) ≥ 2. (139)

Under the assumption (139), in the remainder of Section 10 we will explain how to 

construct a linear map T : C(E) × P → Cm−1,1(Rn) and prove it satisfies (135).

10.2. The main decomposition lemma

Recall the constant C̄, defined in (133), arises in Lemma 9.1 and in the definition of lo-

cal complexity C(E|B). Write R1 ≤ R2 ≤ R3 ≤ R4 for the controlled constants defined in 

(133). We continue in the setting of Section 10.1, and fix data (B0, x0, E, K, f, �#, M, P0). 

Suppose P0 ∈ Γ�#(x0, f, M) as in (135).

In the next lemma we introduce a cover of the ball 2B0 that will be used to decompose 

the local extension problem on B0 into a family of easier subproblems associated to the 

elements of the cover.

Lemma 10.2 (Main decomposition lemma). Given (B0, x0, E, K, f, �#, M, P0) satisfying 

#(B0 ∩ E) ≥ 2, C(E|5B0) ≤ K, x0 ∈ B0, and P0 ∈ Γ�#(x0, f, M), there exist a DTI 

subspace V ⊆ P, a Whitney cover W of 2B0, and collections of polynomials {PB}B∈W ⊆
P and points {zB}B∈W such that

1. σ(x) is (x, C̄ diam(B0), R1)-transverse to V for all x ∈ 100B0.

2. B ⊆ 100B0 and diam(B) ≤ 1
2 diam(B0) for all B ∈ W.

3. σ(x) is (x, C̄δ, R4)-transverse to V for all x ∈ 8B, δ ∈ [diam(B), diam(B0)], B ∈ W.

4. Either #(6B ∩ E) ≤ 1 or C(E|6B) < K for all B ∈ W.

5. zB ∈ 6
5B ∩ 2B0 for all B ∈ W; if x0 ∈ 6

5B then zB = x0.

6. PB ∈ Γ�#−3(zB , f, C̄�#M) and P0 − PB ∈ C̄�#MBzB ,diam(B0) for all B ∈ W; if 

x0 ∈ 6
5B then PB = P0. Here, C̄�# = C(D + 1)�#

for a controlled constant C ≥ 1.

7. P0 − PB ∈ V for all B ∈ W.

8. PB depends linearly on (f, P0) for every B ∈ W.

Furthermore, the Whitney cover W, the subspace V , and the point set {zB}B∈W depend 

only on the data (B0, x0, E, K, �#) and the parameters m, n – in particular, these objects 

are independent of (f, P0) and M > 0.

Using the inductive hypothesis and Proposition 10.1, we obtain a local extension 

theorem on the elements of the cover W.

Lemma 10.3. For any B ∈ W and x ∈ 6
5B there exists a linear map TB : C(E) × P →

Cm−1,1(Rn) satisfying the following conditions: If P ∈ Γ�old
(x, f, M) for M > 0 then

1. TB(f, P ) = f on E ∩ (6/5)B.

2. JxTB(f, P ) = P .
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3. ‖TB(f, P )‖ ≤ ColdM .

In particular,

Γ�old
(x, f, M) ⊆ ΓE∩ 6

5
B(x, f, ColdM). (140)

Proof. Condition 4 of Lemma 10.2 states that either C(E|6B) < K or #(E ∩ 6B) ≤ 1. 

If C(E|6B) < K, the result follows from (134). Else if #(E ∩ 6B) ≤ 1, the result follows 

from Proposition 10.1. Here, we take Λ ≥ C so that Cold = ΛK2+1 ≥ C for the controlled 

constant C in Proposition 10.1. (See (138).) �

10.3. Proof of the main decomposition lemma

By Lemma 9.1, there exists a DTI subspace V ⊆ P such that

σ(x) is (x, C̄ diam(B0), R1)-transverse to V for all x ∈ 100B0. (141)

This proves condition 1 in the Main Decomposition Lemma.

The construction of W is based on the following definition:

Definition 10.4. A ball B ⊆ 100B0 is OK if #(B ∩ E) ≥ 2 and if there exists z ∈ B such 

that σ(z) is (z, C̄δ, R3)-transverse to V for all δ ∈ [diam(B), diam(B0)].

The OK property is inclusion monotone in the sense that if B ⊆ B′ ⊆ 100B0 and B

is OK then B′ is OK.

For each x ∈ 2B0, we define

r(x) := inf{r > 0 : B(x, r) ⊆ 100B0, B(x, r) is OK}

Also set

∆ := min{|x − y| : x, y ∈ E, x �= y}.

Since E is finite, ∆ > 0.

Lemma 10.5. For all x ∈ 2B0, we have 0 < ∆/2 ≤ r(x) ≤ 3
2 diam(B0).

Proof. Let x ∈ 2B0, and set r0 = 3
2 diam(B0). Then B0 ⊆ B(x, r0) ⊆ 100B0. Since 

#(B0 ∩ E) ≥ 2, we obtain #(B(x, r0) ∩ E) ≥ 2. Further, diam(B(x, r0)) = 2r0 >

diam(B0), so the transversality condition in Definition 10.4 holds vacuously for B =

B(x, r0). Consequently, B(x, r0) is OK, and the infimum in the definition of r(x) is over 

a set containing r = r0. Thus, r(x) ≤ r0.

If B(x, r) is OK then #(B(x, r) ∩ E) ≥ 2, which implies r ≥ ∆/2 by definition of ∆. 

Thus, r(x) ≥ ∆/2 > 0. �
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Define the ball Bx := B(x, 17r(x)) for x ∈ 2B0. By Lemma 10.5, we have

70Bx = B(x, 10r(x)) ⊆ 100B0, for x ∈ 2B0. (142)

Define the cover W∗ = {Bx}x∈2B0
of 2B0.

Lemma 10.6. If B ∈ W∗ then 8B is OK, and 6B is not OK.

Proof. Write B = Bx = B(x, 17r(x)) for x ∈ 2B0. According to (142), 6B ⊆ 8B ⊆ 100B0. 

By definition of r(x) as an infimum and the inclusion monotonicity of the OK property, 

the result follows. �

We recall the Vitali covering lemma (see, for example, [26]).

Lemma 10.7 (Vitali covering lemma). Let B̃1, . . . , B̃J be any finite collection of balls 

contained in Rn. Then there exists a subcollection B̃j1
, B̃j2

, . . . , B̃jk
of these balls which 

is pairwise disjoint and satisfies

J⋃

j=1

B̃j ⊆
k⋃

i=1

3B̃ji
.

Because diam(Bx) = 2
7r(x) ≥ ∆/7 > 0 for all x ∈ 2B0 (see Lemma 10.5), there exists 

a finite sequence of points x1, · · · , xJ ∈ 2B0 such that 2B0 ⊆ ⋃J
j=1

1
3Bxj

. Applying 

the Vitali covering lemma to the collection {B̃j = 1
3Bxj

: j = 1, · · · , J}, we identify a 

finite subsequence xj1
, · · · , xjk

such that 2B0 ⊆ ⋃k
i=1 Bxji

and {1
3Bxji

: i = 1, · · · , k} is 

pairwise disjoint. Thus we have found a finite subcover W := {Bxji
: i = 1, · · · , k} ⊆ W∗

of 2B0 such that the family of third-dilates {1
3B}B∈W is pairwise disjoint.

Lemma 10.8. W is a Whitney cover of 2B0.

Proof. We only have to verify the third condition in Definition 2.18. Suppose for sake of 

contradiction that there exist balls Bj = B(xj , rj) ∈ W for j = 1, 2, with 6
5B1 ∩ 6

5B2 �= ∅
and r1 < 1

8r2. Since 6
5B1 ∩ 6

5B2 �= ∅, we have |x1 − x2| ≤ 6
5r1 + 6

5r2. If z ∈ 8B1 then 

|z − x1| ≤ 8r1, and therefore

|z − x2| ≤ |z − x1| + |x1 − x2| ≤ 8r1 +
6

5
r1 +

6

5
r2 < r2 +

3

20
r2 +

6

5
r2 ≤ 6r2.

Hence, 8B1 ⊆ 6B2. By Lemma 10.6, 8B1 is OK. By inclusion monotonicity, 6B2 is OK. 

But this contradicts Lemma 10.6, finishing the proof of the lemma. �

We now establish conditions 2–8 in the Main Decomposition Lemma.

Fix a ball B ∈ W. Because 6B is not OK, while 6B ⊆ 100B0 (a consequence of (142)), 

by negation of the OK property we have:
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If #(6B ∩ E) ≥ 2 then for all x ∈ 6B

there exists δx ∈ [6 diam(B), diam(B0)]

so that σ(x) is not (x, C̄δx, R3)-transverse to V.

(143)

Proof of condition 2: Just above (143) we noted that B ⊆ 100B0. Write B =

B(x, 17r(x)) for x ∈ 2B0. By Lemma 10.5, diam(B) = 2
7r(x) ≤ 1

2 diam(B0).

Proof of condition 3: Let x ∈ 8B. Since 8B is OK, there exists z ∈ 8B such that σ(z) is 

(z, C̄δ, R3)-transverse to V for all δ ∈ [8 diam(B), diam(B0)]. By definition of C̄ in (133), 

we have

|x − z| ≤ 8 diam(B) ≤ δ ≤ c1

R3
· (C̄δ) (δ ∈ [8 diam(B), diam(B0)]).

So, by Lemma 7.9,

σ(x) is (x, C̄δ, 8R3)-transverse to V (δ ∈ [8 diam(B), diam(B0)]). (144)

First suppose diam(B) ≤ 1
8 diam(B0). Then the interval [8 diam(B), diam(B0)] is 

nonempty. Any number in [diam(B), diam(B0)] differs from a number in [8 diam(B),

diam(B0)] by a factor of at most 8. Hence, by (144) and the second bullet point 

of Lemma 7.8 (for κ = 8), σ(x) is (x, C̄δ, 8m+1R3)-transverse to V for all δ ∈
[diam(B), diam(B0)]. Since R4 = 8m+1R3 (see (133)), we obtain condition 3 in this 

case.

Suppose instead that diam(B) > 1
8 diam(B0). We cannot use (144), because 

[8 diam(B), diam(B0)] is empty. Instead we use (141). Note x ∈ 8B ⊆ 100B0. By (141), 

σ(x) is (x, C̄ diam(B0), R1)-transverse to V . Any number in [diam(B), diam(B0)] differs 

from diam(B0) by a factor of at most 8. So, by Lemma 7.8, σ(x) is (x, C̄δ, 8mR1)-

transverse to V for all δ ∈ [diam(B), diam(B0)]. Since R4 = 8m+1R3 ≥ 8mR1, this 

completes the proof of condition 3.

Proof of condition 4: Suppose that #(6B ∩ E) ≥ 2 and set J := C(E|6B). According 

to the definition of complexity (see the formulation given in Lemma 9.5), there exists 

a point z ∈ 6B, and there exist intervals I1 > I2 > · · · > IJ > 0 in (0, 6 diam(B)] and 

subspaces V1, V2, · · · , VJ ⊆ P, such that, for all j,

(A) τz,r(Ij)(σ(z)) is (z, C̄, R1)-transverse to Vj ,

(B) τz,l(Ij)(σ(z)) is not (z, C̄, R2)-transverse to Vj , and

(C) Vj is invariant under the mappings τz,δ : P → P (δ > 0).

Because the center of B is contained in 2B0 and the radius of B is at most half the 

radius of B0 (see condition 2) it follows that 6B ⊆ 5B0. Hence, z ∈ 5B0.
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Condition (143) implies the existence of δz ∈ [6 diam(B), diam(B0)] so that

σ(z) is not (z, C̄δz, R3)-transverse to V. (145)

Define an interval I0 := [δz, diam(B0)], with endpoints l(I0) = δz and r(I0) = diam(B0), 

and define a subspace V0 := V . We will next demonstrate that (A) and (B) hold for 

j = 0. Since V is a DTI subspace, τz,l(I0)V = τz,r(I0)V = V . Therefore, by rescaling 

(145),

τz,l(I0)(σ(z)) is not (z, C̄, R3)-transverse to V. (146)

(Here we use the first bullet point of Lemma 7.8.) Recall (141) states that σ(z) is 

(z, C̄ diam(B0), R1)-transverse to V . By rescaling,

τz,r(I0)(σ(z)) is (z, C̄, R1)-transverse to V. (147)

Conditions (146) and (147) imply (A) and (B) for j = 0 (recall R3 ≥ R2). Note that 

V0 = V is DTI, so V0 is dilation invariant at z. Thus, (C) holds for j = 0.

Observe that r(I1) ≤ 6 diam(B) ≤ δz = l(I0), thus I1 < I0. Therefore, I0 > I1 >

· · · > IJ are subintervals of (0, diam(B0)].

We produced intervals I0 > I1 > · · · > IJ in (0, 5 diam(B0)] and subspaces 

V0, · · · , VJ ⊆ P, so that (A), (B), and (C) hold for j = 0, 1, · · · , J . Since z ∈ 5B0, 

by the definition of complexity (see Lemma 9.5), we have C(E|5B0) ≥ J + 1. Since 

C(E|5B0) ≤ K and J = C(E|6B), this completes the proof of condition 4.

Next we define a collection of points {zB}B∈W ⊆ R
n and polynomials {PB}B∈W ⊆ P

and prove conditions 5–8.

To verify condition 5, fix any family {zB}B∈W satisfying zB ∈ 6
5B ∩ 2B0 and zB = x0

if x0 ∈ 6
5B.

Proofs of conditions 6–8: If B ∈ W satisfies x0 ∈ 6
5B then set PB = P0. Note zB = x0. 

Conditions 7 and 8 are trivially true. The first containment in condition 6 is true 

because P0 ∈ Γ�#(x0, f, M) by hypothesis, and Γ�#(x0, f, M) ⊆ Γ�#−1(x0, f, M) ⊆
Γ�#−1(x0, f, C̄�#M) = Γ�#−1(zB , f, C̄�#M) for any choice of C̄�# ≥ 1. The second con-

tainment in condition 6 is trivially satisfied.

Suppose now B ∈ W and x0 /∈ 6
5B. Note that zB ∈ 6

5B ∩2B0, and thus |x0 −zB | ≤ δ0

for δ0 := 2 diam(B0).

We prepare to verify the hypotheses of Lemma 8.5 for the choice of parameters y = x0, 

x = zB , R = R1, C1 = C̄/2, δ = δ0, and � = �# − 2.

By (141), σ(zB) is (zB , C̄2 δ0, R1)-transverse to V .

Given that P0 ∈ Γ�#(x0, f, M), we have the following condition (see (104)): For every 

S ⊆ E with #(S) ≤ (D + 1)�#

there exists F S ∈ Cm−1,1(Rn) satisfying F S = f on S, 

Jx0
F S = P0, and ‖F S‖ ≤ M . In particular, f satisfies FH(k#, M) for k# = (D + 1)�#

(see (102)).
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Because Γ�#(x0, f, M) ⊆ Γ�#−2(x0, f, M), we have P0 ∈ Γ�#−2(x0, f, M).

By Lemma 8.5, given that P0 ∈ Γ�#−2(x0, f, M), we produce a polynomial PB ∈
Γ�#−3(zB , f, Ĉ�#−2M) such that PB − P0 ∈ V , PB − P0 ∈ Ĉ�#−2MBzB ,δ0

, and PB

depends linearly on (f, P0), verifying conditions 7 and 8. Here,

Ĉ�#−2 = (R1D + 2) · (C̄/2)m
√

C2
T + 4DC2

�#−3
,

with C�#−3 = C ′·(D+1)�#−3 the constant arising in Lemma 8.3, for a controlled constant 

C ′. Recall that R1, C̄, CT , and D are controlled constants. Hence, Ĉ�#−2 ≤ C · (D + 1)�#

for a controlled constant C.

Recalling δ0 = 2 diam(B0), we apply (8) to obtain

PB − P0 ∈ Ĉ�#−2MBzB ,δ0
⊆ Ĉ�#−22mMBzB ,diam(B0).

Note Ĉ�#−22m ≤ C ′′ · (D + 1)�#

for a controlled constant C ′′. We set C̄�# = C ′′ ·
(D + 1)�#

, so that PB − P0 ∈ C̄�#MBzB ,diam(B0). Given that Ĉ�#−2 ≤ C̄�# , we have 

PB ∈ Γ�#−3(zB , f, Ĉ�#−2M) ⊆ Γ�#−3(zB , f, C̄�#M), completing the proof of condition 

6.

This finishes the proof of the Main Decomposition Lemma (Lemma 10.2).

10.4. Upper bounds on the sets σ�(x)

We continue in the setting of Section 10.1.

We fix data (B0, x0, E, K, f, �#, M, P0) satisfying #(B0 ∩ E) ≥ 2, C(E|5B0) ≤ K, 

x0 ∈ B0, and P0 ∈ Γ�#(x0, f, M).

We apply the Main Decomposition Lemma (Lemma 10.2) to this data and obtain a 

Whitney cover W of 2B0, a DTI subspace V ⊆ P, and collections {PB}B∈W ⊆ P and 

{zB}B∈W ⊆ R
n, satisfying conditions 1–8 of Lemma 10.2.

Introduce a Whitney cover W0 of B0 by setting

W0 := {B ∈ W : B ∩ B0 �= ∅} ⊆ W. (148)

Our next result provides geometric information on the sets σ�(x) for � # �old. Recall 

that zB ∈ 6
5B for B ∈ W.

Lemma 10.9. There exist constants ε0 ∈ (0, 1), χ ≥ 1, and C ≥ 1, determined by m, n, 

satisfying the following. Suppose there exists a ball B̂ ∈ W0 satisfying diam(B̂) ≤ ε0 ·
diam(B0). Then for any B ∈ W0, x ∈ 3B, and � ≥ �old + χ,

(σ�+1(x) + BzB ,diam(B)) ∩ V ⊆ CColdBzB ,diam(B).

Here, ε0 and C are controlled constants, and χ = O(poly(D)).
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Note that the constant Cold = C#(K − 1) in Lemma 10.9 is not a controlled constant 

because it depends on K.

10.4.1. Proof of Lemma 10.9

We define constants A ≥ 10 and ε0 ∈ (0, 1/300] as follows:

A = 2C0 · C̄m · R4, ε0 = 1/(30A2). (149)

Here, C0 is the controlled constant in Lemma 7.10, and C̄, R4 are controlled constants 

defined in (133). Clearly, both A and ε0 are controlled constants.

We define

χ =  log(D · (180A)n + 1)/ log(D + 1)!. (150)

Since A = O(exp(poly(D))) and n ≤ D, we have that χ = O(poly(D)).

Definition 10.10. A ball B# ∈ W is keystone if diam(B) ≥ 1
2 diam(B#) for every B ∈ W

with B ∩ AB# �= ∅. Let W# ⊆ W be the set of all keystone balls.

Any ball B ∈ W of minimal radius is a keystone ball. Because W is finite, there exists 

a ball of minimal radius in W. So W# is nonempty.

Lemma 10.11. For each ball B ∈ W there exists a keystone ball B# ∈ W# satisfying 

B# ⊆ 3AB, dist(B, B#) ≤ 2A diam(B), and diam(B#) ≤ diam(B).

Proof. We produce a sequence of balls B1, B2, · · · , BJ ∈ W, starting with B1 = B, such 

that Bj ∩ ABj−1 �= ∅, diam(Bj) < 1
2 diam(Bj−1) for all j ≥ 2, and BJ is keystone. If B

is keystone, simply take a length-1 sequence with B1 = B. Otherwise, let B1 = B. Since 

B1 is not keystone there exists B2 ∈ W with B2 ∩AB1 �= ∅ and diam(B2) < 1
2 diam(B1). 

If B2 is keystone we conclude the process. Otherwise, if B2 is not keystone there exists 

B3 ∈ W with B3∩AB2 �= ∅ and diam(B3) < 1
2 diam(B2). We continue this process until, 

at some step, we find a keystone ball. The process will terminate after finitely many steps 

because W is finite, and diam(Bj) is decreasing in j.

As Bj ∩ ABj−1 �= ∅ we have dist(Bj−1, Bj) ≤ A
2 diam(Bj−1). Now estimate

dist(B1, BJ) ≤
J∑

j=2

dist(Bj−1, Bj) +

J−1∑

j=2

diam(Bj) ≤ (A/2 + 1)

J∑

j=1

diam(Bj)

≤ (A + 2) diam(B1) ≤ 2A diam(B1).

Since diam(BJ ) ≤ diam(B1), we deduce from the previous inequality that BJ ⊆ (2A +

6)B1 ⊆ 3AB1. Set B# = BJ to finish the proof. �
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We prepare to define a mapping κ : W0 → W#. By hypothesis of Lemma 10.9, there 

exists a ball B̂ ∈ W0 with diam(B̂) ≤ ε0 diam(B0). By Lemma 10.11, we can associate 

to B̂ a keystone ball B̂# satisfying

B̂# ⊆ 3AB̂ and diam(B̂#) ≤ diam(B̂). (151)

To define κ, we proceed as follows: For each B ∈ W0,

• If diam(B) > ε0 diam(B0) (B is medium-sized), set κ(B) := B̂#.

• If diam(B) ≤ ε0 diam(B0) (B is small-sized), Lemma 10.11 yields a keystone ball 

B# with B# ⊆ 3AB, dist(B, B#) ≤ 2A diam(B), and diam(B#) ≤ diam(B); set 

κ(B) := B#.

We record a simple geometrical result that will be used in the analysis of κ.

Lemma 10.12. If B ∈ W0 and diam(B) ≤ ε0 diam(B0), then 3A2B ⊆ 2B0.

Proof. Since B ∈ W0, we have B ∩ B0 �= ∅. Thus, 3A2B ∩ B0 �= ∅. Also,

diam(3A2B) ≤ 3A2ε0 diam(B0) = (1/10) diam(B0).

Therefore, 3A2B ⊆ 2B0. �

Lemma 10.13 (Properties of κ). The mapping κ : W0 → W# satisfies the following: For 

any B ∈ W0, (a) dist(B, κ(B)) ≤ C4 diam(B), (b) diam(κ(B)) ≤ diam(B), and (c) 

A · κ(B) ⊆ 2B0. Here, C4 is a controlled constant.

Proof. Set C4 = 810A3, which is a controlled constant. Recall that ε0 = 1
30A2 .

There exists a ball B̂ ∈ W0 with diam(B̂) ≤ ε0 diam(B0), by hypothesis of 

Lemma 10.9. By Lemma 10.12,

3A2B̂ ⊆ 2B0. (152)

We split the proof into cases depending on whether B ∈ W0 is medium-sized or 

small-sized.

Case 1: Suppose B ∈ W0 is medium-sized, i.e., diam(B) > ε0 diam(B0) and B∩B0 �= ∅. 

Then 9(ε0)−1B ⊇ 2B0 ⊇ B̂; furthermore, by (151), B̂# ⊆ 3AB̂. Thus,

B̂# ⊆ 27(ε0)−1AB = 810A3B = C4B.

Therefore, the distance from the center of κ(B) = B̂# to the center of B is at most 

C4 diam(B), which implies property (a). Also, from (151),

diam(B̂#) ≤ diam(B̂) ≤ ε0 diam(B0) < diam(B),
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which establishes property (b). By (152), (151), we have AB̂# ⊆ 3A2B̂ ⊆ 2B0, which 

gives (c).

Case 2: Suppose B ∈ W0 is small-sized, i.e., diam(B) ≤ ε0 diam(B0) and B ∩ B0 �= ∅. 

By Lemma 10.12, 3A2B ⊆ 2B0. In this case, κ(B) = B#, where B# and B are related 

via Lemma 10.11. In particular,

dist(B, B#) ≤ 2A diam(B) ≤ C4 diam(B) and diam(B#) ≤ diam(B),

yielding properties (a) and (b). Furthermore, B# ⊆ 3AB. Thus, AB# ⊆ 3A2B ⊆ 2B0. 

Thus, we have established property (c). �

This concludes our description of κ : W0 → W#. We will use the mapping κ later, in 

the proof of Lemma 10.9. Next we establish two lemmas describing the geometry of the 

sets σ�(x). The first lemma gives a stronger form of (140).

Lemma 10.14. Let B# ∈ W be a keystone ball. Suppose that AB# ⊆ 2B0. Let χ be 

defined as in (150), and let � ∈ N with � ≥ �old + χ. Then

Γ�(x, f, M) ⊆ ΓE∩AB#(x, f, CColdM) for all x ∈ AB#, M > 0,

for a controlled constant C. In particular, by taking f ≡ 0|E and M = 1,

σ�(x) ⊆ CColdσE∩AB#(x) for any x ∈ AB#. (153)

Proof. Let W(B#) be the set of all balls in W that intersect AB#. Since W is a Whitney 

cover of 2B0 and AB# ⊆ 2B0, we have that W(B#) is a Whitney cover of AB#. From 

(140) we have the inclusion

Γ�old
(x, f, M) ⊆ ΓE∩ 6

5
B(x, f, ColdM) for all B ∈ W(B#), x ∈ (6/5)B.

We apply Lemma 7.12 to the Whitney cover W(B#) of AB#, with �0 = �old and C0 =

Cold. We deduce that

Γ�1
(x, f, M) ⊆ ΓE∩AB#(x, f, C1M)

for the constants C1 = C ·Cold and �1 = �old +  log(D·N+1)
log(D+1) !, where N = #W(B#); here, 

C is a controlled constant.

We prepare to estimate N = #W(B#) using a volume comparison bound.

For any B ∈ W(B#), we have diam(B) ≥ 1
2 diam(B#) by definition of keystone balls 

– furthermore, we claim that diam(B) ≤ 10A diam(B#). We proceed by contradiction: 

Suppose diam(B) > 10A diam(B#) for some B ∈ W(B#). We have B ∩ AB# �= ∅
by definition of W(B#). The previous conditions yield that 6

5B ∩ B# �= ∅. Then 
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diam(B) ≤ 8 diam(B#) by the properties of the Whitney cover W (see Definition 2.18). 

This completes the proof by contradiction.

For any B ∈ W(B#) we have B ∩ AB# �= ∅ and diam(B) ≤ 10A diam(B#), and 

therefore B ⊆ 30AB#.

We estimate the volume of Ω :=
⋃

B∈W(B#)
1
3B in two ways. First, note that Vol(Ω) ≤

Vol(30AB#) = (30A)nVol(B#). Since {1
3B}B∈W is pairwise disjoint (by properties of 

the Whitney cover W), N = #W(B#), and diam(B) ≥ 1
2 diam(B#) for B ∈ W(B#), 

we have

Vol(Ω) =
∑

B∈W(B#)

3−nVol(B) ≥ N6−nVol(B#).

Thus, N ≤ (180A)n. By definition of χ in (150), �1 = �old +  log(D·N+1)
log(D+1) ! ≤ �old + χ ≤ �. 

Hence,

Γ�(x, f, M) ⊆ Γ�1
(x, f, M) ⊆ ΓE∩AB#(x, f, C1M),

as desired. �

Lemma 10.15. If � ≥ �old + χ, and if B# ∈ W is a keystone ball satisfying AB# ⊆ 2B0, 

then

σ�(zB#) ∩ V ⊆ CColdBz
B# ,diam(B#). (154)

Here, the constant χ ≥ 1 is defined in (150), and C ≥ 1 is a controlled constant.

Proof. Let C0 be the constant C in Lemma 10.14, and C0 the constant in Lemma 7.10. 

Note that zB# ∈ 6
5B# ⊆ 1

2AB# (since A ≥ 10). By condition (153) in Lemma 10.14, 

and Lemma 7.10 (applied for B = AB# and x = zB#),

σ�(zB#) ∩ C0ColdBz
B# ,A diam(B#)

⊆ C0Cold(σE∩AB#(zB#) ∩ Bz
B# ,A diam(B#))

⊆ C0C0Cold · σ(zB#) for � ≥ �old + χ.

(155)

Apply condition 3 of Lemma 10.2 to B = B#, x = zB# , and δ = diam(B#), 

giving that σ(zB#) is (x, C̄ diam(B#), R4)-transverse to V . By Lemma 7.8, σ(zB#)

is (x, diam(B#), R̂)-transverse to V for R̂ = C̄mR4. Therefore, σ(zB#) ∩ V ⊆
R̂Bz

B# ,diam(B#). Applying this inclusion and taking the intersection with V on each 

side of (155), we obtain

σ�(zB#) ∩ V ∩ (C0ColdBz
B# ,A diam(B#)) ⊆ C0C0ColdR̂Bz

B# ,diam(B#).

From (8), ABz
B# ,diam(B#) ⊆ Bz

B# ,A diam(B#) (recall A ≥ 1). Thus,
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σ�(zB#) ∩ V ∩ (C0ColdABz
B# ,diam(B#)) ⊆ C0C0ColdR̂Bz

B# ,diam(B#). (156)

By definition of A in (149), A = 2C0C̄mR4 = 2C0R̂. Therefore, (156) reads as

(σ�(zB#) ∩ V ) ∩ (2C0C0ColdR̂Bz
B# ,diam(B#)) ⊆ C0C0ColdR̂Bz

B# ,diam(B#).

Note that Ω ∩ 2rB ⊆ rB =⇒ Ω ⊆ rB, valid when Ω is a symmetric convex subset of a 

Hilbert space X with unit ball B, and r > 0. By this fact and the above inclusion, we 

have

σ�(zB#) ∩ V ⊆ C0C0ColdR̂Bz
B# ,diam(B#).

This completes the proof of (154) for the controlled constant C = C0C0R̂. �

We require one last lemma before the proof of our main result.

Lemma 10.16. Let R, Z ≥ 1 and λ ≥ 1 be given. If Ω is a symmetric closed convex set 

in a Hilbert space X, B is the closed unit ball of X, and V ⊆ X is a subspace, satisfying 

(i) B/V ⊆ R · (Ω ∩ B)/V and (ii) Ω ∩ V ⊆ ZB, then

(Ω + λB) ∩ V ⊆ Z · (3Rλ + 1)B. (157)

Proof. Fix P ∈ (Ω + λB) ∩ V . Write P = P0 + P1 with P0 ∈ Ω and P1 ∈ λB. Since 

P1 ∈ λB, there exists P2 ∈ Rλ(Ω ∩ B) with P1 − P2 ∈ V by condition (i). Define 

P̃ := P − (P1 − P2) ∈ V . As P̃ = P0 + P2, with P0 ∈ Ω and P2 ∈ Rλ · Ω, we have 

P̃ ∈ (Rλ + 1)Ω. Thus, by condition (ii),

P̃ ∈ (Rλ + 1) · (Ω ∩ V ) ⊆ (Rλ + 1) · ZB.

Therefore,

P = P̃ + P1 − P2 ∈ (Rλ + 1)ZB + λB + RλB ⊆ (3Rλ + 1)ZB. �

We finish this section with the proof of Lemma 10.9.

Proof of Lemma 10.9. Fix the constants A, ε0, and χ as in (149), (150).

Let B ∈ W0, x ∈ 3B, and � ≥ �old + χ. Set B# = κ(B) ∈ W, as defined in 

Lemma 10.13. Thus, diam(B#) ≤ diam(B), AB# ⊆ 2B0, and dist(B#, B) ≤ C4 diam(B)

for a controlled constant C4. By Lemma 10.15 and (9),

σ�(zB#) ∩ V ⊆ CColdBz
B# ,diam(B#) ⊆ CColdBz

B# ,diam(B). (158)

Note that diam(B) ≤ 1
2 diam(B0) (see condition 2 of Lemma 10.2). We ap-

ply condition 3 of Lemma 10.2, with B# ∈ W, x = zB# ∈ 6
5B#, and δ =
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diam(B) ∈ [diam(B#), diam(B0)]. Thus, σ(x) is (zB# , C̄ diam(B), R4)-transverse to V . 

By Lemma 7.8, σ(x) is (zB# , diam(B), R̂)-transverse to V , for R̂ = C̄mR4. Hence,

Bz
B# ,diam(B)/V ⊆ R̂ · (σ(zB#) ∩ Bz

B# ,diam(B))/V.

By the inclusion σ(zB#) ⊆ σ�(zB#), we obtain

Bz
B# ,diam(B)/V ⊆ R̂ · (σ�(zB#) ∩ Bz

B# ,diam(B))/V. (159)

Since zB# ∈ 6
5B# and x ∈ 3B, we have

|zB# − x| ≤ dist(B#, B) + 3 diam(B) + (6/5) diam(B#)

≤ C4 diam(B) + 3 diam(B) + (6/5) diam(B)

≤ C5 diam(B),

(160)

for a controlled constant C5.

By Lemma 7.5 and (160), σ�+1(x) ⊆ σ�(zB#) + CTBz
B# ,C5 diam(B). Then by (8), 

σ�+1(x) ⊆ σ�(zB#) + CT Cm
5 Bz

B# ,diam(B). Therefore,

σ�+1(x) + Bz
B# ,diam(B) ⊆ σ�(zB#) + C̃Bz

B# ,diam(B), (161)

where C̃ = CT Cm
5 + 1 is a controlled constant.

We apply Lemma 10.16 to the convex set Ω = σ�(zB#) in the Hilbert space X =

(P, 〈·, ·〉z
B# ,diam(B)). We take λ = C̃ in Lemma 10.16. Inclusions (158), (159) imply 

hypotheses (i), (ii) of Lemma 10.16 with R = R̂, Z = CCold. So,

(
σ�(zB#) + C̃Bz

B# ,diam(B)

)
∩ V ⊆ CCold · (3R̂C̃ + 1)Bz

B# ,diam(B). (162)

From (161) and (162),

(σ�+1(x) + Bz
B# ,diam(B)) ∩ V ⊆ C ′Cold · Bz

B# ,diam(B), (163)

for a controlled constant C ′.

Finally, note that Ĉ−1 · BzB ,diam(B) ⊆ Bz
B# ,diam(B) ⊆ Ĉ · BzB ,diam(B) for a controlled 

constant Ĉ; these inclusions follow from Lemma 2.16 and the estimate |zB − zB# | ≤
C diam(B) (let x = zB in (160)). Therefore, (163) implies that

(σ�+1(x) + BzB ,diam(B)) ∩ V ⊆ CCold · BzB ,diam(B),

for a controlled constant C, as desired. This finishes the proof of Lemma 10.9. �
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10.5. Compatibility of the jets (PB)B∈W0

Our next result states that the polynomials (PB)B∈W0
are pairwise compatible.

Lemma 10.17. There exist constants χ ≥ 5 and C̃ ≥ 1, determined by m and n, such that 

the following holds. Let (PB)B∈W , �#, and C̄�# be as in the statement of Lemma 10.2, 

and suppose �# ≥ �old +χ. Then PB −PB′ ∈ C̃ColdC̄�#MBzB ,diam(B) for any B, B′ ∈ W0

with (6
5)B ∩ ( 6

5)B′ �= ∅. Furthermore, χ = O(poly(D)) and C̃ = O(exp(poly(D))).

Proof of Lemma 10.17. We fix the constants ε0 and χ via Lemma 10.9, and let χ = χ +5. 

Suppose �# ∈ N is picked so that �# ≥ �old + χ, and B, B′ ∈ W0 satisfy 6
5B ∩ 6

5B′ �= ∅.

Consider the following two cases for the Whitney cover W0 ⊆ W.

Case 1: diam(B) > ε0 diam(B0) for all B ∈ W0.

Case 2: There exists B̂ ∈ W0 with diam(B̂) ≤ ε0 diam(B0).

Suppose W0 is as in Case 1. By the second containment in condition 6 of Lemma 10.2, 

we obtain

PB − PB′ = (PB − P0) + (P0 − PB′)

∈ C̄�#MBzB ,diam(B0) + C̄�#MBzB′ ,diam(B0).
(164)

Because zB , zB′ ∈ 2B0, we have |zB − zB′ | ≤ 2 diam(B0). So by Lemma 2.16, for a 

controlled constant C,

BzB′ ,diam(B0) ⊆ C2m−1BzB ,diam(B0). (165)

By (8), because diam(B) > ε0 diam(B0), we conclude that

BzB ,diam(B0) ⊆ (ε0)−mBzB ,diam(B). (166)

When put together, (164), (165), (166) give that

PB − PB′ ∈ C̄�#M(ε0)−mC2mBzB ,diam(B).

Note that C ′ = (ε0)−mC2m is a controlled constant. We obtain the conclusion of 

Lemma 10.17 in Case 1, for any choice of C̃ ≥ C ′.

Now suppose W0 is as in Case 2. By condition 7 in Lemma 10.2,

PB − PB′ = (PB − P0) + (P0 − PB′) ∈ V.
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By the first part of condition 6 of Lemma 10.2, PB′ ∈ Γ�#−3(zB′ , f, C̄�#M). Because 

zB ∈ 6
5B, zB′ ∈ 6

5B′, 6
5B ∩ 6

5B′ �= ∅, and diam(B′) ≤ 8 diam(B) (see condition (3) in 

Definition 2.18 of a Whitney cover) we have

|zB − zB′ | ≤ 16 diam(B).

There exists P̃B ∈ Γ�#−4(zB , f, C̄�#M) with P̃B −PB′ ∈ CT C̄�#MBzB ,16 diam(B), thanks 

to Lemma 7.5. By (8), P̃B − PB′ ∈ 16mCT C̄�#MBzB ,diam(B).

By condition 6 in Lemma 10.2,

PB ∈ Γ�#−3(zB , f, C̄�#M) ⊆ Γ�#−4(zB , f, C̄�#M),

so, because P̃B ∈ Γ�#−4(zB , f, C̄�#M), by Lemma 7.2,

P̃B − PB ∈ 2C̄�#M · σ�#−4(zB).

Thus,

PB − PB′ = (PB − P̃B) + (P̃B − PB′)

∈ 2C̄�#M · σ�#−4(zB) + 16mCT C̄�#M · BzB ,diam(B)

⊆ CC̄�#M · (σ�#−4(zB) + BzB ,diam(B)),

and hence

PB − PB′ ∈ CC̄�#M · (σ�#−4(zB) + BzB ,diam(B)) ∩ V,

for a controlled constant C.

Note that �# − 5 ≥ �old + χ − 5 = �old + χ, by definition of χ. We apply Lemma 10.9

(with � = �# − 5) to deduce that

(σ�#−4(zB) + BzB ,diam(B)) ∩ V ⊆ CColdBzB ,diam(B).

Therefore, PB−PB′ ∈ C ′′ColdC̄�#M ·BzB ,diam(B) for a controlled constant C ′′. We obtain 

the conclusion of Lemma 10.17 in Case 2, for any choice of C̃ ≥ C ′′. This concludes the 

proof of Lemma 10.17. �

10.6. Completing the main induction argument

We complete the induction argument started in Section 10.1 by proving the Main 

Lemma for K. Thus, we fix data (B0, x0, E, K, f, �#, M, P0). In Section 10.1 we gave 

a proof of the Main Lemma for K under the assumption #(E ∩ B0) ≤ 1. Thus, we 

may assume #(E ∩ B0) ≥ 2. See (139). Recall our task is to construct a linear map 

T : C(E) × P → Cm−1,1(Rn) and prove it satisfies (135).
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The constant χ in the Main Lemma for K is taken to be χ in Lemma 10.17. Note that 

χ ≥ 5 is a constant determined by m and n, and χ = O(poly(D)). Let �#, C# satisfy 

(136) for χ defined above and Λ to be defined momentarily.

Given P0 ∈ Γ�#(x0, f, M), we apply the Main Decomposition Lemma (Lemma 10.2) to 

the data (B0, x0, E, K, f, �#, M, P0) to obtain a Whitney cover W of 2B0, a DTI subspace 

V ⊆ P, and families {PB}B∈W and {zB}B∈W . We defined in (148) the subfamily W0 =

{B ∈ W : B ∩ B0 �= ∅} of W, so that W0 is a Whitney cover of B0.

We apply Lemma 10.3 with x = zB ∈ (6/5)B for B ∈ W. Thus, there exists a linear 

map TB : C(E) ×P → Cm−1,1(Rn) satisfying conditions 1,2,3 of Lemma 10.3, for x = zB .

Lemma 10.2 (condition 6) asserts that PB ∈ Γ�#−3(zB , f, C̄�#M) for B ∈ W. Because 

�# − 3 ≥ �# − χ = �old, we have PB ∈ Γ�old
(zB , f, C̄�#M). Thus, by Lemma 10.3, the 

function FB := TB(f, PB) ∈ Cm−1,1(Rn) satisfies

{
FB = f on E ∩ (6/5)B,

JzB
FB = PB , and ‖FB‖ ≤ ColdC̄�#M

(B ∈ W). (167)

Since �# ≥ �old + χ, we can apply Lemma 10.17 to conclude that

|JzB
FB − JzB′ FB′ |zB ,diam(B) = |PB − PB′ |zB ,diam(B) ≤ C̃ColdC̄�#M, (168)

for B, B′ ∈ W0 with (6/5)B ∩ (6/5)B′ �= ∅, and a controlled constant C̃.

Let {θB}B∈W0
be a partition of unity on B0 adapted to the Whitney cover W0 of B0, 

satisfying the properties in Lemma 2.20. Define F : B0 → R by

F =
∑

B∈W0

FBθB on B0.

We describe the basic properties of the function F . By Lemma 2.21 and the conditions 

(167), (168), F ∈ Cm−1,1(B0) satisfies ‖F‖Cm−1,1(B0) ≤ CColdC̄�#M and F = f on 

E ∩ B0, where C is a controlled constant.

Because each FB depends linearly on (f, PB), and each PB depends linearly on (f, P0)

(see condition 8 in Lemma 10.2), F depends linearly on (f, P0).

By conditions 5 and 6 in Lemma 10.2, zB = x0 and PB = P0 if x0 ∈ (6/5)B. By 

the support properties of θB (see Lemma 2.20), Jx0
θB �= 0 =⇒ x0 ∈ (6/5)B. Thus, 

Jx0
FB = P0 if Jx0

θB �= 0. Therefore, using that 
∑

B∈W0
θB = 1 on B0,

Jx0
F =

∑

B∈W0:x0∈ 6
5

B

Jx0
(FBθB) =

∑

B∈W0:x0∈ 6
5

B

Jx0
FB 	x0

Jx0
θB

=
∑

B∈W0:x0∈ 6
5

B

P0 	x0
Jx0

θB = P0 	x0
1 = P0.
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We extend F : B0 → R to all of Rn using Lemma 2.4 (an outcome of the classical Whit-

ney extension theorem). This guarantees the existence of a function F̂ ∈ Cm−1,1(Rn), 

depending linearly on F , with F̂ |B0
= F , and

‖F̂‖Cm−1,1(Rn) ≤ C‖F‖Cm−1,1(B0) ≤ C ′ColdC̄�#M.

Here, C, C ′ are controlled constants. By the properties of F , stated above, and since 

F̂ |B0
= F , we deduce that F̂ = F = f on E ∩ B0 and Jx0

F̂ = Jx0
F = P0 (recall 

x0 ∈ B0). Therefore, we have shown:

⎧
⎪⎪⎨
⎪⎪⎩

F̂ = f on E ∩ B0

Jx0
F̂ = P0

‖F̂‖Cm−1,1(Rn) ≤ C ′ColdC̄�#M.

(169)

We choose Λ in (136), now, to ensure the inequality C# ≥ C ′ColdC̄�# . From 

Lemma 10.2 recall that C̄�# = C · (D +1)�#

for a controlled constant C ≥ 1. From (136), 

Cold = C#(K − 1), �# = �#(K), and C# = C#(K) have the form �# = χ · (K + 1), 

C# = Λ(K+1)2+1 and Cold = ΛK2+1. Thus, the desired inequality is equivalent to

C#

Cold

= Λ2K+1 ≥ C ′ · C · (D + 1)χ·(K+1).

Fix a controlled constant Λ satisfying the earlier condition (138), in addition to Λ ≥
C ′C(D + 1)χ so that the preceding inequality is valid, and C# ≥ C ′ColdC̄�# . Therefore, 

(169) implies

‖F̂‖Cm−1,1(Rn) ≤ C#M.

Because F̂ depends linearly on F and F depends linearly on (f, P0), we have that F̂ =

T (f, P0) for some linear map T : C(E) × P → Cm−1,1(Rn).

Thus we have defined a linear map T : C(E) × P → Cm−1,1(Rn) and verified the 

conditions in (135) (see (169)). This completes the proof of the Main Lemma for K

(Lemma 9.6).

11. Proofs of the main results

11.1. Proof of Theorem 6.1

We give the proof of Theorem 6.1. Recall that Lemma 9.6 specifies a family of constants 

�#(K) and C#(K) (K ∈ {−1, 0, . . . }).

Let E ⊆ R
n be finite. Fix a closed ball B0 ⊆ R

n containing E, and a point x0 ∈ B0. 

Set K0 := 4mD2, �# := �#(K0), and C# := C#(K0).
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By Corollary 9.4, we have C(E|5B0) ≤ K0. Lemma 9.6 guarantees the existence of a 

linear mapping T : C(E) × P → Cm−1,1(Rn) satisfying, for any (f, P ) ∈ C(E) × P, if 

P ∈ Γ�#(x0, f, M) then

1. T (f, P ) = f on E.

2. Jx0
T (f, P ) = P .

3. ‖T (f, P )‖Cm−1,1(Rn) ≤ C#M .

For the proof of part (A) of Theorem 6.1, set k# := (D + 1)�#+3. We are given that f

satisfies the finiteness hypothesis FH(k#, M) for some M > 0. According to Lemma 7.5, 

Γ�#(x0, f, M) �= ∅. Let P ∈ Γ�#(x0, f, M). Set F = T (f, P ). According to the above 

conditions, F = f on E and ‖F‖Cm−1,1(Rn) ≤ C#M . Thus, ‖f‖Cm−1,1(E) ≤ C#M . This 

establishes part (A) of Theorem 6.1.

We next prove part (B) of Theorem 6.1. By Lemma 8.3 there exists a linear map 

P x0

�# : C(E) → P such that if f satisfies FH(k#, M) then P x0

�# (f) ∈ Γ�#(x0, C�#M), 

with C�# = C ′(D + 1)�#

for a controlled constant C ′.

Define a linear map T̂ : C(E) → Cm−1,1(Rn) by T̂ (f) := T (f, P x0

�# (f)).

Suppose f ∈ C(E) and let M > ‖f‖Cm−1,1(E). Evidently, f satisfies FH(k#, M). 

Hence, P x0

�# (f) ∈ Γ�#(x0, C�#M). By property 3 of T ,

‖T̂ (f)‖Cm−1,1(Rn) = ‖T (f, P x0

�# (f))‖Cm−1,1(Rn) ≤ C#C�#M = C#
0 M,

with C#
0 := C#C�# . Since M > ‖f‖Cm−1,1(E) is arbitrary, ‖T̂ (f)‖Cm−1,1(Rn) ≤

C#
0 ‖f‖Cm−1,1(E), as desired. By property 1 of T , we have T̂ (f) = f on E. This completes 

the proof of part (B) of Theorem 6.1.

We remark at last on the form of the constants. Recall that C# = C#(K0) =

Λ(K0+1)2+1, Λ is a controlled constant, and K0 = 4mD2. Thus, C# is a controlled 

constant. Similarly, since �# = �#(K0) = χ · (K0 + 1) with χ = O(poly(D)), we have 

�# = O(poly(D)), and thus, C�# = C ′(D + 1)�#

is a controlled constant. Therefore, 

k# = (D + 1)�#+1 and C#
0 = C#C�# are controlled constants. This completes the proof 

of Theorem 6.1.

11.2. Proofs of Theorem 1.3 and 1.4

Let E ⊆ R
n be an arbitrary set, and let f : E → R. We claim that

‖f‖Cm−1,1(E) = sup
Ê⊆E finite

‖f |Ê‖Cm−1,1(Ê). (170)

To prove (170), we use a compactness argument adapted from the proof of Lemma 18.2 

of [15].
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First note that if Ê ⊆ E then ‖f‖Cm−1,1(E) ≥ ‖f |Ê‖Cm−1,1(Ê), by definition of the 

trace seminorm. Therefore, the left-hand side of (170) is greater than or equal to the 

right-hand side of (170).

For the reverse inequality, it suffices to demonstrate that

‖f |Ê‖Cm−1,1(Ê) ≤ 1 for all finite Ê ⊆ E

=⇒ f ∈ Cm−1,1(E) and ‖f‖Cm−1,1(E) ≤ 1.
(171)

Let η > 0 be arbitrary. The hypothesis in (171) implies the following:

For all finite Ê ⊆ E there exists FÊ ∈ Cm−1,1(Rn)

satisfying FÊ = f on Ê and ‖FÊ‖Cm−1,1(Rn) ≤ 1 + η.
(172)

We define

D = {F ∈ Cm−1,1(Rn) : ‖F‖Cm−1,1(Rn) ≤ 1 + η},

equipped with the local Cm−1 topology defined by the family of seminorms

ρR(F ) := sup
|x|≤R

max
|α|≤m−1

|∂αF (x)| (R > 0).

We define

D(x) = {F ∈ D : F (x) = f(x)} for each x ∈ E.

Then (172) implies that 
⋂

x∈Ê D(x) �= ∅ for any finite subset Ê ⊆ E.

On the other hand, each D(x) is a closed subset of D, and D is compact by the Arzela-

Ascoli theorem. Therefore, the intersection of D(x) over all x ∈ E is nonempty. Thus, 

there exists F ∈ Cm−1,1(Rn) satisfying F = f on E and ‖F‖Cm−1,1(Rn) ≤ 1 + η. Since 

η > 0 is arbitrary, by definition of the trace seminorm we have ‖f‖Cm−1,1(E) ≤ 1.

This completes the proof of (171). With this, (170) is established.

We take C# ≥ 1 and k# ∈ N as in Theorem 6.1. Note that the constants C#, 

k# in Theorem 6.1 satisfy C# = O(exp(poly(D))) and k# = O(exp(poly(D))). Thus, 

C#, k# ≤ exp(γDk) for absolute constants γ, k > 0 (independent of m, n, E).

We first prove Theorem 1.3. Let E ⊆ R
n be arbitrary, and let Ê ⊆ E be a finite 

subset. By hypothesis of Theorem 1.3, we are given f : E → R satisfying: For all 

S ⊆ Ê with #(S) ≤ k# there exists F S ∈ Cm−1,1(Rn) satisfying F S = f on S and 

‖F S‖Cm−1,1(Rn) ≤ 1. Then f |Ê : Ê → R satisfies the finiteness hypothesis FH(k#, 1)

(see (102)). Part (A) of Theorem 6.1 ensures that ‖f |Ê‖Cm−1,1(Ê) ≤ C#. We deduce 

that f ∈ Cm−1,1(E) and ‖f‖Cm−1,1(E) ≤ C# by (170). This completes the proof of 

Theorem 1.3.
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We will prove Theorem 1.4 for finite E. The general case of Theorem 1.4 then follows 

by a standard argument using Banach limits. See Section 17 of [14].

For E ⊆ R
n finite, we write C(E) to denote the set of all real-valued functions on 

E. Note that C(E) = Cm−1,1(E) because E is finite. By part (B) of Theorem 6.1, 

there exists a linear map T : C(E) → Cm−1,1(Rn) satisfying Tf = f on E and 

‖Tf‖Cm−1,1(Rn) ≤ C#‖f‖Cm−1,1(E) for all f ∈ C(E). This completes the proof of Theo-

rem 1.4 for finite E.
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