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1. Introduction

Fixm > 1,n > 1. We let C™(R™) denote the Banach space of all m-times continuously

differentiable functions F' : R™ — R whose partial derivatives up to order m are bounded

functions on R™. We equip C™(R"™) with a standard norm:

| Fl[cm®ny =
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Here, for a multiindex a = (o, ..., an) € N™, we write |a| := 3 _; a; to denote the order
of a. We write 0°F(x) = 0 --- 9% F(x) for the o™ partial derivative of a function
F e C2.(R™). We also define a! := [\, a;!.

The following problem goes back to Whitney [28-30]. Let E be an arbitrary subset of
R™. Given a function f : E — R, determine whether there exists a function F € C™(R")
with F'= f on E.

Whitney’s problem was solved by C. Fefferman in 2006 [16]."! In a remarkable series
of papers, Fefferman posed and solved a variety of related problems. In three of these
papers [17,19,20], two of them joint with B. Klartag, the authors connected this work to
the practical problem of computing a C"" interpolant for a given set of data.

Suppose now that F is a finite subset of R™. We define the trace norm of a function
f+E—Rby

HfHC'm(E) = inf{”F”Cm(Rn) : F = f on E}

A function F : R™ — R is an interpolant of f if FF = f on E. Given C' > 1, a function
F € C™(R™) is a C-optimal interpolant of f provided that F' = f on E and ||F||gm®n) <
C||f|lem(g)- That is, F' is an interpolant of f with C™ norm that is within a factor of C'
of the optimal value. In [17,19,20], Fefferman and Klartag proved the following theorem.

Theorem 1.1. Fizm > 1, n > 1. Let E C R"™ be a finite set with cardinality #(E) = N
and fir f : E — R. There exists an algorithm that computes a C-optimal interpolant
F € C™(R™) of f. Specifically, the algorithm takes as input (E, f,m) and performs
C1Nlog N units of one-time work, on an idealized (von Neumann) computer with CoN
units of memory. Given x € R™, the computer responds to a query by returning the
values of 0“F(x) for all a with |a| < m, where F is a C-optimal interpolant of f.
The algorithm requires Cslog N computer operations to answer a query. The constants
C,C1,C5,Cs depend only on m and n.

For details on the model of computation, including an explanation of the terms “one-
time work”, “query”, or what it means to “compute” a function on R", see [17,19,20].

We note that (1) the running time of the algorithm in Theorem 1.1 likely has optimal
dependence on N = #(F) and (2) this is the only known algorithm for solving the
C™ interpolation problem for arbitrary finite sets efficiently in N. Therefore, at least in
theory, this algorithm could have widespread practical application.

Unfortunately, the constant C' in Theorem 1.1 grows rapidly with m and n, rendering
the algorithm impractical for real-world applications. While C' is not computed explicitly
in [17,19,20], an examination of the arguments in those papers shows that one must
take C' to have order of magnitude at least exp(yD¥2P) for some real number v > 0

L The Whitney problem has a long history with contributions by many authors; below, we discuss some
of the most relevant to our work. For a more complete history see [18] and the references therein.
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and integer k > 0; here D := (m"':_l) denotes the dimension of the vector space of
polynomials in n variables of degree at most m — 1. In other words, the optimality
guarantees on the interpolant produced by this algorithm deteriorate rapidly as n and
m grow. Any practical version of Theorem 1.1 will have to address this issue. There is
considerable interest in finding such an algorithm; see [11].

The proof of Theorem 1.1 is based on a finiteness theorem for C™~1L1(R™). This
theorem is the source of the double exponential dependence on D of the constant C' in
Theorem 1.1. Next, we state this result.

We let C™ HH(R™) denote the space of all (m — 1)-times differentiable functions
F :R™ — R whose (m — 1)™' order partial derivatives are Lipschitz continuous on R".
We equip this space with a seminorm:

(0°F(x) — 0°F(y)) v

|z —yl?

||F||C7n71,1(Rn) = sup
z,yeRn”

|a]=m—1
Given a ball B C R", we write C™~11(B) for the corresponding space of C"~ 1! func-
tions F': B — R.

Theorem 1.2 (Finiteness theorem for C™~ LY (R™) — see [15]).

Let m > 2,n > 1. There exist constants k% ,C# depending on m and n such that the
following holds.

Let f : E — R, E CR" an arbitrary set. Suppose that for every finite subset S C E
with cardinality #(S) < k¥ there exists a function F¥ € C™~LL(R™) satisfying F° = f
on S and |[F¥|cm-1a®n) < 1.

Then there exists a function F € C™ VY (R™) with F = f on E and ||F||gm-1.1(rny <
C#.

The finiteness theorem was first proved in the case m = 2, n > 1 by Shvartsman [24];
in this case, it was shown that one can take k# = 3-2"~! and C# = Aexp(yn), where
A,y > 0 are absolute constants (independent of n). Further, Shvartsman [23] proves
that the value k% = 3 .27 ! is the smallest possible when m = 2. In other words, if
k# < 3-271 then the finiteness theorem fails to hold for any C# > 1.

Theorem 1.2 was conjectured to hold for any m > 2, n > 1 by Brudnyi and Shvartsman
in [5].

In [15], Fefferman proved the conjecture of Brudnyi and Shvartsman. He showed that
Theorem 1.2 holds for any m > 2, n > 1 with E#* < (D + 1)3'2D. He did not state
an explicit bound on the value of C#, but one can check that his proof gives C# <
exp(yD¥*2P) for absolute constants 7, k > 0 (independent of m,n).

Note that in the case m = 2, Fefferman’s result implies Shvartsman’s with the caveat
that Shvartman’s result holds for smaller k#, C#. Indeed, if m = 2, then D = (n + 1);
therefore Shvartsman’s result implies that the finiteness theorem holds with k# = 3.20—2
and C# = Aexp(yD).
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The constant C' in Theorem 1.1 inherits its double exponential dependence on D from
the constant C# in Theorem 1.2. This leads us to pose the following problem.

Problem 1. Is it possible to improve the dependence of the constant C# in Theorem 1.2
on D= (m+:_1)?

Progress on Problem 1 is not possible by optimizing the constants in each line of
Fefferman’s proof of Theorem 1.2. Without going into detail, his proof is by induction,
and it produces a C# which is exponential in the number of induction steps. The number
of induction steps is equal to 27, leading to the double exponential dependence of C#
on D. Thus, lowering the constant C# requires new ideas.

In a joint work [6] with B. Klartag, we gave a new proof of Theorem 1.2 which
avoided Fefferman’s induction scheme. Our proof relied on semialgebraic geometry and
compactness arguments, however, and therefore it did not give an effective bound on
C#. In this paper, we replace the qualitative arguments of [6] with quantitative ones
and improve the dependence of C# on D in Theorem 1.2 to exponential in a power of
D. Specifically, we prove the following theorem.

Theorem 1.3. There exist absolute constants v > 0 and k > 1, independent of m and
n, such that the finiteness theorem for C™ L1 (R™) (Theorem 1.2) holds with C* =
exp(yD¥) and k% = exp(yDF).

In [14], Fefferman showed that his proof of Theorem 1.2 can be modified to produce a
C#-optimal interpolant F' that depends linearly on the data f. This property is crucial
in getting from Theorem 1.2 to the algorithm in Theorem 1.1. Our proof also has this
property. Specifically, the next theorem is a byproduct of the proof of Theorem 1.3.

Given an arbitrary set E C R™ (not necessarily finite), we let C™~11(E) denote the
space of all restrictions to E of functions in C™~L1(R™), equipped with the standard
trace seminorm:

Hf”crn—l,l(E) = inf{”FHCnL—l,l(Rn) F = f on E} (f € Cmil’l(E)).

Theorem 1.4. There exist absolute constants v > 0 and k > 1, independent of m and n,
such that the following holds. Given E C R™, there exists a linear map T : C™ LY E) —
Cm=EYR™) satisfying Tf|g = f and ||Tf|lcm—1amny < C#||fl|cm-1.1(g) for all f €
Cm=LYE), where C* = exp(yDF).

While the constant C# in Theorems 1.3 and 1.4 is still too large to give rise to a
practical algorithm for C™ interpolation, this marks the first progress on Problem 1
since Fefferman’s proof of Theorem 1.2.

Theorem 1.3 shows that the constant C# in the finiteness theorem can be taken to be
exponential in a power of D. We do not know whether this is the optimal dependence—
little is known about lower bounds for C#. Trivially one has the lower bound C# > 1.
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One might hope that for any C# > 1 there exists some k# sufficiently large depending
on C# such that the Finiteness Theorem holds. This is true when m = 1 (see [12]), but
not in general. In [13], Fefferman and Klartag show that there exists a constant ¢y > 0
such that Theorem 1.2 does not hold for C# < 1 4 ¢q for any k# when m =n = 2. It
would be interesting to obtain a lower bound on C# that grows with n or m.

A loose inspection of our proof indicates that it is sufficient to take the power k = 8
in Theorem 1.3. In the case m = 2 we know that this is not sharp—Shvartsman’s work
shows that Theorem 1.3 holds with k¥ = 1 when m = 2 (see the discussion of Theorem 1.2
above).

While this paper is concerned with upper bounds on the constant C#, there is also
interest in understanding the dependence of the constant k# on m and n. Bierstone
and Milman, in [3], and Shvartsman, in [25], independently showed that the Finiteness
Theorem holds with k% = 2P and C# as in Fefferman’s proof of Theorem 1.2, i.e.
C# = exp(yD*2P) for absolute constants v, k > 0. Our proof gives k%, C# < exp(4DF)
for absolute constants ’Ay,l%. We would be interested to know whether the Finiteness
Theorem holds with k% = 2P and C# < exp(§DF) simultancously.

We remark that, by standard arguments, Theorem 1.4 implies the analogous theorem
for C™(R™) when FE is a finite subset of R™. Fefferman proved the analogue of Theo-
rem 1.4 for C™(R"™) when E is compact; the argument is significantly more complicated
(see [9]). It would be interesting to understand the norm of linear extension operators
T:C™(E)— C™(R") for E compact.

We will now sketch the proof of Theorem 1.3, highlighting the new ideas in the ar-
gument. Small modifications to this argument enable us to obtain the existence of a
linear extension operator T': C™~L1(E) — C™~L1(R™) with improved bounds on the
operator norm, as in Theorem 1.4.

By a compactness argument, it suffices to prove the finiteness theorem for a finite
set £ in R™. Note that the constants C# and k# in the finiteness theorem are to be
chosen independent of E. In the following, constants written C, C#, etc., are assumed
to depend only on m and n. We write ||| = [|¢]|gm-1.1®n) for the C™~ 11 seminorm of
a function ¢ € C™~HH(R"™).

Fix a finite set £ C R™ and function f : E — R. We assume the data (E, f) satisfies
the hypotheses of the finiteness theorem; namely, we assume the following finiteness
hypothesis is valid:

for any subset S C E with #(S) < k¥
(FH) there exists a C™ ! function F¥ : R" — R
satisfying F¥ = f on S and |[F¥| < 1.

We assume k7 in the finiteness hypothesis is a sufficiently large constant determined by
m and n.
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To prove the finiteness theorem, we will construct an F € C™~LI(R"™) satisfying
F = fon E and |F|| < C# for a constant C# determined by m and n. That is, we will
construct an interpolant F' € C™~L1(R™) of f with C™~b!-seminorm at most C7#.

Let P be the vector space of real-valued polynomials on R™ of degree < m — 1. Write
J(p) to denote the (m—1)™" order Taylor polynomial at x of a function ¢ € C™~11(R"),
defined by

Jo(@)(2) = Y (8%(x)/al)(z —a)*.

lal<m—1

We call J,(¢) € P the (m — 1)-jet of ¢ at x. We define a ring product @, on P by

defining P &, Q = J,(PQ) for P,Q € P. We write R, for the ring (P,®;).
Fefferman’s papers on the Whitney extension problem (e.g., [8-10,14-16]) introduce

and make extensive use of a family of convex subsets o(x) C P, indexed by z € E.

Informally, the set o(z) measures the freedom in choosing the (m — 1)-jet J,(F) for an
interpolant F' € C™~L1(R™) of f. Let

o(x) :={Ja(p) : 0lz =0, |lo]| <1} CP.

Note that if J,(F1) = Py and J,(Fz) = P> for two different interpolants Fy, Fs of f, and
if ||F1|| < M and ||Fy|| < M for some M > 0, then P, — P, belongs to 2Mo(x). Indeed,
¢ := Fy — F; satisfies ¢|g = 0 and ||¢|| < 2M; hence, P; — P, = J.(p) € 2Mo(x). Thus,
the (dilates) of o(x) can be used to control the freedom in the choice of J,(F) for an
interpolant F' of f on E of bounded seminorm.

A key idea in Fefferman’s proof of the finiteness theorem is to index an interpolation
problem by a label?> A which records information on the “large coordinate directions”
in the set o(z). Fefferman introduces an order relation < on labels, which can be used
to sort interpolation problems according to their “difficulty”. By a divide and conquer
approach, he decomposes an interpolation problem with a given label A into a family of
easier interpolation problems with smaller labels A’ < A. The proof is organized as an
induction on the label assigned to a given interpolation problem. For details, see [15].

In a joint work [6] with B. Klartag, we gave a coordinate-free proof of the finiteness
theorem. To accomplish this we explained how to replace the notion of a label in Fef-
ferman’s inductive scheme by the notion of a DTI subspace. We record information on
the large directions in o(z) by specifying that a DTT subspace is transverse to o(x). We
mimic Fefferman’s divide and conquer strategy. However, one crucial difference is that
our proof is organized as an induction with respect to an integer-valued quantity called
the complezity of E. Roughly speaking, the complexity of E measures how often the
geometry of the set o(z) changes dramatically as one applies a rescaling transformation
about a fixed point x € F.

2 A label is a multi-index set A = {a1,---,ar} with each o; a multiindex of order at most m — 1.
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Let V be a subspace of P. We say that V is dilation-and-translation-invariant, or
DTI, provided that (1) V is dilation-invariant, i.e., P(-/§) € V for all P € V, § > 0 and
(2) V is translation-invariant, i.e., P(-—h) € V for all P € V, h € R™. These conditions
on V can be reformulated as follows: A subspace V is dilation-invariant provided that
V= @21—01 Vi, where V; C P; := span{z® : |a| = i} is a homogeneous subspace of P,
fori=0,1,2,...,m— 1. Further, a subspace V is translation-invariant if and only if the
orthogonal complement V+ of V with respect to a natural inner product® on P satisfies
that V< is an ideal in the ring of (m — 1)-jets Ro = (P, ®g) based at = = 0. It follows
that the DTT subspaces V' are orthogonal to those ideals I in Ry which admit a direct
sum decomposition into homogeneous subspaces.

We assign a DTI label V to the set E at position x € E and scale § > 0 provided
that V' is a DTI subspace of P, while o(z) and V satisfy a quantitative transversality
condition at (x,9). Roughly speaking, the transversality condition states that the “big
directions” in o(x) do not make a small angle with V', and the intersection V N o(z) is
suitably small. Here, to make sense of angles, we equip the vector space P with a suitable
inner product (-,-); 5. See Definition 7.6 for the precise statement of the transversality
condition.

We associate to a point x € F a sequence of DTI subspaces

‘/1; V27 ) VL
and lengthscales
01 >0 >--->0p,

such that V4 is a DTI label assigned to E at position 2 and scale §; (¢ < L), and V} is
not a DTT label assigned to E at position z and scale d,11 < ¢ (¢ < L). We denote by
C(E) the supremal length of any such sequence associated to any « € E. By convention,
C(E) = 0if E = . Borrowing notation from our earlier work [6], we refer to the quantity
C(E) as the complezity of E. It is evident from the definition that complexity is locally
monotone with respect to inclusion, in the sense that C(E N B) > C(E N B’) whenever
B’ C B C R™. To construct an extension F of f of bounded C™~ 1! norm, we proceed
by induction on C(E).

The base case of the induction corresponds to the case C(F) = 0. If C(E) = 0 it easily
follows that F is the empty set, whence it is trivially true that there exists an extension
of f on E of bounded C™~ 1! seminorm.

For the induction step, we assume the induction hypothesis that the finiteness theorem
is true for any data (E, f) satisfying that C(E) < Lq for fixed Ly > 1. We then fix data
(E, f) satisfying the hypotheses of the finiteness theorem, with C(E) = Ly. To complete
the induction step we must construct an interpolant F of f with |F|| < C.

3 This claim is valid, e.g., for the inner product (P, Q)’ := Z\a\<m—1 L.9%P(0)0*Q(0) for P,Q € P; see
Lemma 3.11 of [6]. We will make use of another inner product (-,-) on P later in the paper.
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Fix a closed ball By C R™ with E C By and diam(By) = diam(E). We define a cover
of By by a family W of closed balls in R™; thus, By C (Jpyy, B. We construct the cover
W to have the following properties: First, C(E N B) < C(E) = Lg for all B € W. On the
other hand, C(E N 100B) = C(E) = Lo for all B € W. Finally, the cover W has good
geometry in the sense that for every B € W we have B N B’ # () for at most C balls
B’ € W; also, if BNB' # () for B, B’ € W then diam(B) and diam(B’) differ by a factor
of at most K. Here, C' = C(n) and K = K(n) are appropriate dimensional constants.

Evidently, it is sufficient to construct an interpolant F of f on By, satisfying
| Fllcm-1.1(B,y < C. For then, it is trivial to extend F to all of R™, while not increasing
the C™~11-seminorm by more than a constant factor.

By the induction hypothesis applied to the set E=En B, for each B € W there
exists a local interpolant F of f on EN B satisfying two conditions: (local interpolation)
Fp = fon ENB and (bounded seminorm) ||Fg|| < M for all B € W. Here, M will be
a constant determined by m, n and the induction index Lg. So {Fp}pgew is a family of
local interpolants associated to the balls in the cover W. We define

F = Z FBQB on Bo,
Bew

where {0p} e is a partition of unity on By (thus, Y 5 60p = 1 on By), while each 0p
is supported on B, 5 = 1 near the center of B, and each partition function 6p satisfies
the derivative bounds ||0%0p|| 1~ < C diam(B)~1° for |a| < m. Such a partition of unity
is guaranteed to exist by the covering and good geometry properties of W. Evidently,
since Fg = f on EN B for all B € W, we have F' = f on E. We hope to prove that
|Fllem-1.1(8s) < CM for a constant C determined by m and n. Unfortunately, there
is no reason to expect this to be true, given that the Fz were chosen independently
of one another. By following the ideas in [6] (inspired by analogous ideas in [15]), we
construct local interpolants Fp which are compatible with one another — to enforce
these compatibility conditions, we modify by a small additive correction function the Fg
specified above. We now state the extra compatibility conditions on the Fp. First we
establish the existence of a DTI subspace V that is transverse to o(z) for each x € F at
some scale § > 0. Then fix an appropriate jet Py € P (determined by the data (f, E))
and specify that J,,Fp € Py + V for every B € W; here zp is a specified point of B.
Essentially, the compatibility conditions state that J,, Fp belongs to the same coset of
V for every B € W. These are the extra conditions required of the local interpolants
Fg, beyond those stated before. For a family of local interpolants Fp satisfying the
aforementioned conditions, we can prove that |[F'llcm-1.1(5,) < C(m,n)maxp | Fg| <
C(m,n)M for the F defined before. Since F' is an interpolant of f, this completes the
induction step. As a final remark, we note that to carry out the above modification
step and prove the existence of local solutions Fp satisfying the extra compatibility
conditions, it is required to bring in the finiteness hypothesis (FH) and certain convex
sets T'y(x, f, M) (these being sometimes referred to as KC¢(z; k, M) in Fefferman’s work).
We spare the details in this sketch.
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Thus we have shown, by induction on C(E), that there exists an extension F' of f with
norm at most 5C(E), where C is a fixed constant determined by m and n. To see this,
note that the bound on the norm of the extension F' increases by a factor of c=C (m,n)
at each step of the induction proof.

To conclude the proof of the finiteness theorem, we must demonstrate that the com-
plexity C(E) is bounded uniformly for all finite subsets E C R™. We define the worst-case
complexity Lyax by

Lyax := sup C(E),
ECR™

where the supremum is over finite sets E C R™. In [6], we demonstrated that L.y is
bounded by a constant C'(D) determined by D = ("'H;;_l). Our proof used semialgebraic
geometry, resulting in poor dependence C'(D) 2 exp(exp(D)). Also in [6], we conjectured
that

Liax S pOIY(D)~ (1)

The first main technical result of this paper, Proposition 2.11, establishes the conjecture
(1). More specifically, in Section 4, we prove that L., < 4mD?.

By our discussion above, we can construct an extension F of f : F — R with
[[Fllgm-11@mny < ~CN'L"‘“ for any finite set £ C R™. Combining this with (1) gives
[[Fl|gm-11@mny < CPolY(P) Therefore to establish Theorem 1.3 it just remains to show
that

C < exp(poly(D)). (2)

Indeed, (2) follows from a careful bookkeeping of various constants appearing in the
proof, and our second main technical result, Proposition 2.9, which we prove in Section 5.

This completes our sketch of the proof of Theorem 1.3.

To establish Theorem 1.4, we show that our construction can be modified so that, for
a fixed set F, the extension F' depends linearly on the data f.

We finish the introduction by describing the content of Sections 6-10 in more detail.

Section 6 contains the statement of our main extension theorem for finite sets £ C R™.

Section 7 contains the definitions of the convex sets o(x) and their variants, and gives
results on the basic properties of these sets.

Section 8 contains additional technical results (many borrowed from [14]) needed for
the proof of Theorem 1.4.

Sections 9-10 contain the main analytic ingredients of the paper, including the Main
Decomposition Lemma (Lemma 10.2), which is the apparatus used to decompose the
extension problem for (F, f) into easier subproblems.

Finally, Section 11 contains the proof of the extension theorem for finite £, and the
proofs of the theorems from the introduction (Theorems 1.3 and 1.4).



10 J. Carruth et al. / Advances in Mathematics 410 (2022) 108698

The notation and terminology in the previous discussion is not necessarily used in the
rest of the paper. This discussion captures the spirit of the proof of our theorems, but
some of the definitions given above are simplified for ease of explanation. In particular,
the phrase “DTTI label” does not appear in the remainder of the paper, nor in our earlier
work [6]. Furthermore, the definition of complexity and the description of the properties
of the cover W are presented somewhat differently than in the main body of the paper
— for instance, certain technical constants have been obscured in the above discussion to
simplify the exposition.
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2. Notation and preliminaries

Fix m > 2, n > 1 throughout the paper (with the exception of Section 4). Let
D= (")

We write B(z,7) = {z € R" : |z — 2| < r} for the closed ball of radius  and center
in R™.

Given a ball B C R™ and A > 0, let AB denote the ball with the same center as B
and radius equal to A times the radius of B.

For any finite set S, write #(.5) to denote the number of elements of S. If S is infinite,
we put #(5) = oc.

Let M :={a = (a1,q9,...,0p) : |a] =a1 + az + -+ + a, < m — 1} be the set of all
multiindices of length n and order at most m — 1. Then #(M) = D.

2.1. Convention on constants

By an “absolute constant” we mean a numerical constant whose value is independent
of m and n.

Given quantities A, B > 0, we write A = O(B) to indicate that A < «B for an
absolute constant v > 0. We write poly(z) to denote a polynomial poly(z) = ZZ:O apz®
with coefficients a; and maximum degree d given by absolute constants. Similarly, we
write poly(z,y) to denote a polynomial in two variables with coefficients and maximum
degree given by absolute constants.

4 The first-named author acknowledges the support of AFOSR grant FA9550-19-1-0005. The third-named
author acknowledges the support of NSF grant DMS-1700404 and AFOSR grant FA9550-19-1-0005.
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We say that C' > 0 is a controlled constant if C' depends only on m, n and both
1/C and C are O(exp(poly(D))). Note that the product of O(poly(D)) many controlled
constants is again a controlled constant.

Provided m > 2, the binomial coefficient D = (m"':;_l) satisfies max{m,n} < D. So,
if both C' and 1/C are O(exp(poly(m,n))) then C is a controlled constant.

We say that two quantities X,Y > 0 are equivalent up to a controlled constant if
C~Y < X < CY for a controlled constant C.

2.2. Function spaces C™ b1 and O™

Let G C R™ be a convex domain with nonempty interior. We write C™~11(G) to
denote the space of all (m — 1)-times differentiable functions F' : G — R whose (m — 1)-
st order partial derivatives are Lipschitz continuous on G, equipped with the seminorm

1/2
(0°F(x) — 0°F(y))*

|z —y[?

(3)

[Fllgm-11(G) == sup
z,y€G

|a]=m—1

For 7 > 1, we define the space C"(G) to consist of all r-times continuously differen-
tiable functions F' : G — R whose r-th order partial derivatives are uniformly bounded
on (G, equipped with the seminorm

IF ||y = sup max |07 F (2)]. (4)
2€G |Bl=r
Let F € C™(G). Given a multiindex o with |a|] = m — 1, the Mean Value The-
orem implies that the difference quotient |0%F(z) — 0*F(y)|/|x — y| is bounded by
SUD, ¢y [VOUF(2)|, where [z,y] is the line segment connecting x and y (contained in
G). The latter quantity is bounded by /n - [|F'[|¢m (). Therefore, if F' € C™(G) then
F e C™ 1Y@G) and

[Fllem-11(6) < ClIF[l¢m(c)s (5)

for a controlled constant C.
We write C7"1(R™) to denote the space of all functions F' : R® — R such that

loc

F e C™ Y(B(0,R)) for any R > 0.
2.3. Jet space

Let P denote the vector space of all polynomials on R™ of degree at most m — 1. Then
P admits a basis of monomials, U, = {mqy(2) = (z —2)* : @ € M} for any z € R™.
In particular, dim(P) = #(M) = D.

Given z € R™ and F € O/ H(R™), let J,(F) € P denote the (m — 1)-jet of F at z,

given by
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Jo(F)(z) :== Z (0°F(z)/al) - (z — x)™.

lal<m—1

We endow P with a product ®, (“jet multiplication at z”) defined by P®,Q = J,(P-Q)
for P,Q € P. We write R, to denote the ring (P, ®,) of (m — 1)-jets at x. We write
® = @g for the jet product at z = 0.

Note that if F,G € C/""'(R") then J,(F - G) = J,(F) ®; J.(G). That is, J,

O H(R™) — R, is a ring isomorphism.

We often use the notation P and R, interchangeably. We shall use P when the ring
structure of the jet space is irrelevant to the intended application.

2.3.1. Translations and dilations

The jet space P inherits the structure of translations and dilations from R™. Specifi-
cally, we let 7" : P — P (h € R") and 7,5 : P — P (z € R", § > 0) be translation and
dilation operators defined by

m(P)(2) := P(z — h), and

o (6)
Te5(P)(2) :=0""P(x+4-(z—ux)) (PeP).

2.8.2. Inner products and norms
Let € R™. We define the inner product (P, @), of P,Q € P by

(P,Q)s:= Y 0*P2)0°Q(x)/(a)).

jal<m—1

The corresponding norm |P|, of P € P is given by

Plo:=+/(P,P)a= | >  (0°P(x))?/(a})2.

laj<m—1

The purpose of the 1/(a!)? factor in the above expressions is to ensure the monomials
M (2) := (z — ) have unit length, i.e., |mqa |, =1 for o] <m —1.

For z € R™, 6 > 0, we define the scaled inner product (P, Q). of P,Q € P by

<PaQ>:c,6 = <7_x,5(P)7Tx,5(Q)>:c
- ﬁaﬂla\*mmp(x)-a%g(m).

laj<m—1

The associated scaled norm |P|; s of P € P is

Pl = <P,P>x,5_( > @-(aa'm-aw(w)f)

lal<m—1
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The closed unit ball for the scaled norm |- |, s is denoted by

Bw,é = {P |P|w,5 < 1} cP.
For fixed = the monomial basis U, := {mq . : |a| < m — 1} is orthogonal in P, with
respect to the scaled inner product (-,-), s for any § > 0. The monomial basis U, is

orthonormal in P only for the inner product (-, )z = (-,")z1.
For any § > p > 0, and P € P,

(2)" 1Pl < 1Pl < (%) - 1Pla (7)

Therefore,

1) S\™
- B:v c B:L’, c|- BL . 8
(p) ’ ’ (p) . ®)

|Plz,s <|Pls,p, and By, € B, s for 6 > p > 0. (9)

In particular,

Observe that |P|y s = |7y,sP|s for P € P. It follows that
TZE7’I‘Bw,6 = Bz,é/r- (10)

Note that (-,-)z1 = (,)g and | - |31 = | - |z for z € R™. When = = 0, we write
(P,Q) = (P,Q)o.1 and |P| = |P|o1 for the standard inner product and norm on P. Write
B = By,1 to denote the closed unit ball for the standard norm on P.

Unless stated otherwise, we equip P by default with the standard norm and inner
product.

We write P; = span{z® : |a] = i} C P to denote the subspace of homogeneous
polynomials of degree i.

We require bounds on the norm of a product of polynomials. These bounds are some-
times referred to in the literature as Bombieri inequalities. Recall that ® is the jet
product at z = 0.

Lemma 2.1. Let Cy := (m + 1)!. Then

IPOQ|<C|Pl-1Q] (P,QeP) (11)
PoQ|>CP|-1Ql (PePi,QeP;, it+j<m). (12)

Proof. We use two inequalities from [2], stated below in (13). Our standard norm on P
is given by |P| = +/>_ 2 if P =3 coz®. In [2] this is called the 2-norm and denoted by
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|P|2. From [2] (see Proposition 1.B.3 and Theorem 1.1), the following holds: If P € P;
and @ € P; for i + j < m, then

(i + )N~ Y2P||Q| < |P - Q| < 20H)/2P||Q|. (13)

Note that P-Q = PO Q if P € P; and Q € P; for i + j < m; else, if P € P; and
Q € Pj for i +j > m then P® Q = 0. Therefore, the left-hand inequality in (13) implies
(12).

Now let P,Q € P. Write P = . Piand Q = >, Q; for P;,Q; € P;. Then
|P| = /> |Pi|? and |Q] = /> |Q:|? by orthogonality of the homogeneous subspaces P;.
Also, POQ =", viem Bi Q;. By the triangle inequality, and the right-hand inequality
in (13),

PoQ|< }jR-Qnsww2~§j|awuzhswﬂ<§jzﬂ>- S 1@l

i+j<m i+j<m i<m j<m

By Cauchy-Schwartz, >, .. |Pi| < v/my/>_,_,, |Pi|?, and similarly for the @;. Hence,

PoQl<m2™? |3 IR ST 1Qi2 = m2m2(P|Ql. (14)

i<m i<m
Observe that m2™/2 < (m + 1)!. Thus, (14) implies (11). O

Proposition 2.2 (Taylor’s theorem). Let G be a convexr domain with nonempty interior.
There exists a controlled constant Cr > 1 such that, for all F € C™ VY(G), x,y € G,
and § > |z —y|,

|Jo ' — JyFlp5 < Crl|Fllom-11(c)- (15)
Proof. Taylor’s theorem implies that if £ € C™ 11(G), 2,y € G, and |3] < m — 1 then
07 (JoF = J,F)@) < C- | Fllgm1aa) - lo -y,
for a controlled constant C'. Thus, for § > |z — y|, we obtain:
59108 (L, F — J,F)(@)] < O | Fllcm-1(6.

Now square both sides of the above inequality, divide by (3!)?, sum over 8 with |B| <
m — 1, and take the square root, to obtain (15). O
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2.3.3. The classical Whitney Extension Theorem

We make use of the classical Whitney Extension Theorem for (m — 1)-jets. We state
the result here in a convenient form for later use.

Let E C R"™. Suppose we are given a family of polynomials P, € P, indexed by = € F.
We use the notation P, : F — P to denote the polynomial-valued map P, : x — P,. We
refer to P, as a Whitney field on E. Endow the space of Whitney fields with a seminorm
| Pellp(g) = sup{| Py — Pyly|z—y| : T,y € B, x # y}. Welet P(E) :={Ps : E = P:
[ Pel|p(m) < o0}

Proposition 2.3 (Classical Whitney Extension Theorem). There exists a linear map T :
P(E) — Cm_l’l(Rn) such that ||T(P.)||Cm—1,1(Rn) < CWh||PO||P(E)7 and JJT(P.) = Pw
for all x € E, and all Py € P(E). Here, Cyy, is a controlled constant.

We refer the reader to [7], where it is proven that the classical Whitney extension
theorem holds with the constant Cyyp, = C,,n®™/2, for a constant C,,, determined by m.
The proof in [7] does not give an explicit bound on C,,, but by inspection of the proof
one can see that Cp, is a polynomial function of m!. Therefore, Cyyj, is controlled.

We now state an elementary consequence of the Whitney extension theorem: We can
extend a C™~ 1! function on a convex domain G C R™ to all of R™, with control on the
C™ L1 seminorm of the extension.

Lemma 2.4. Let G be a conver domain in R™ with nonempty interior. Let F €&
C™=L1(G). Then there exists a function F € C™ L(R") with Flg = F and
Hﬁ”cma,l(Rn) < C||F|[gm-11(@), for a controlled constant C > 1. Furthermore, F can
be taken to depend linearly on F.

Proof. Given F' € C™~11(@), define a Whitney field P, € P(G) by P, = J,F forz € G
(note that J, F' is well-defined for € G by the hypothesis that G has nonempty interior).
By Taylor’s theorem (Proposition 2.2), || Ps[lpq)y < Cr||F|lcm-11(q). Let T : P(G) —
C™=L1(R™) be as in the classical Whitney extension theorem, and set F := T(P,). Then
F depends linearly on F'. Because J,F =P, = J,F forall v € G, we have ﬁ|G =F.
Furthermore,

||ﬁHC7”71’1(R") S CWhHP.HP(G) S OWhCT”FHC”l*ll(G)
This completes the proof of the lemma with C' = CprCywyp. O
2.8.4. Graded decomposition of the jet space

Given x € R", the jet space R, ~ P admits a graded decomposition into homogeneous
vector subspaces. Specifically,

m—1
Ry = @ Ri, where RL :=span{m, (z) == (z — ) : |a| = i}.
i=0
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Note that 7, 5(P) = §"~"™P for P € R% — thus, R}, is homogeneous of order (i —m) with
respect to the dilations 7,5 (§ > 0). The subspaces R are pairwise orthogonal with
T

respect to the inner product (-,-), s (any 0 > 0). Furthermore, span(R{ ©, Rj) = R, ;
ifi+j <m,and RY ©, R = {0} ifi+j>m.

2.8.5. Dilation and translation invariant subspaces

Let V be a subspace of P. We say V is translation invariant if 7"(P) € V for all
PeV,heR"™ Let zg € R™. We say V is dilation invariant at x¢ if 74, s(P) € V for all
P €V, §>0. For the definitions of the translations 7" and dilations 7,5, see (6).

Note that V' is dilation invariant at zq if and only if V' admits a decomposition

m—1
V=@V,
i=0

for subspaces V" C R;,O (0<i<m-—1).

We say V is DTI (dilation-and-translation-invariant) if V is both translation invariant
and dilation invariant at xg for some zg € R™. If V' is DTI then V is dilation invariant
at « for all z € R”, due to the identity 7, 5 = 75707, 570~ ".

A special class of DTT subspaces arises by looking at the span of monomials in P.
Given A C M, let V4 := span{z® : « € A}.

Definition 2.5. A set A C M is monotonic provided that if a € A, 5 € M, and a+ 5 €
M, then a + 8 € A.

Lemma 2.6. Let A C M. Then the following are equivalent:

(i) A is monotonic.
(ii) V4 is an ideal in the ring Ry = (P, ®).
(iii) Vipa is a DTI subspace.

Proof. Recall that ® = @ is the “jet product at x = 0”. Note that V4 is an ideal in R
if and only if 2 ® P € V4 for every polynomial P in a basis for V4 and every 8 € M.
Thus, V4 is an ideal if and only if 2% ©® 2® € V4 for all € M and a € A. Observe that
2P ©x* = 0if || + |a| > m, and else, 2° © 2% = 28 if |a| +|B| < m — 1. Thus, V4 is
an ideal if and only if a4+ 8 € A whenever « € A, 8 € M, |a| + |8] < m — 1. Therefore,
V4 is an ideal if and only if A is monotonic, establishing the equivalence of (i) and (ii).

It remains to establish the equivalence of (i) and (iii). Evidently, V' = Viyq\ 4 is dilation
invariant at g = 0 due to the fact that V' is spanned by monomials based at x¢ = 0.
Therefore it suffices to show that V' is translation invariant if and only if 4 is monotonic.

Suppose A is monotonic. By linearity it suffices to show that 7" P € V for any element
P in the basis {27}, erna for V. Fix vy € M\ A and h € R", and use the binomial
identity to write
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] = (x - h)T = Z Criyp TR,
Y1,¥2E€EM
T+r2=y

Since A is monotonic, and v € M\ A, we have y; € M\ A if v = v; + 72. Consequently,
each term c,,,,27 A2 in the above sum belongs to V. By linearity, 7"[z7] € V for any
v € M\ A. Thus, V is translation invariant.

Next we suppose V is translation invariant and show that A is monotonic. Note the
identity 0., P = limj_,o h~1(P — 7%/ (P)) where e; € R™ is the i’th coordinate vector.
Because V is translation invariant, this identity implies that 0,, P € V for any P € V.
Therefore, 0° P € V for P € V and any multiindex (. For sake of contradiction suppose
that A is not monotonic. Then there exist a € A, § € M with a + 8 € M \ A. Thus,
x®tP € V. Consequently, 0°z2T# € V. Note that 9°2*+8 = cx® for ¢ € R, ¢ # 0. Thus,
x® € V, implying that o € M \ A, a contradiction.

This completes the proof of the lemma. O

2.3.6. Whitney convezity
A subset Q2 of a vector space is symmetric provided that v € Q@ — —v € Q.
Given x € R", we denote X ®, Y := {P©,Q: P € X, Q € Y} for subsets X, Y C R,.
The next definition plays a key role in the theory of C™~1:! extension.

Definition 2.7 (Whitney convezity). Let x € R™, and let @ C R, be a closed symmetric
convex set. We say that Q is A-Whitney convex at x if (2N By 5) Oy Bys C A0 for all
0 > 0. If Q is A-Whitney convex at x for some A < 0o, then we say that  is Whitney
convex at x.

The Whitney coefficient w,(2) of Q at x is the infimum of all A > 0 such that  is
A-Whitney convex at x. If no finite A exists, then w,(Q) := +oo.

2.4. Main technical results

Here, we state the new technical results of this paper. The second result will be used
to affirm a conjecture from the introduction of [6]. Sections 3, 4 and 5 are dedicated to
the proofs of these results.

Fix z € R™. We equip the jet space R, = (P,®,) with the inner product (),
and norm | - |,; see Section 2.3.2. Then R, is a finite-dimensional Hilbert space, with
dim(R,;) =D = (m"':_l). Let B, be the unit ball of R,. We let IIy, : R, — V denote
the orthogonal projection map on a subspace V C R,.

Definition 2.8. Let V be a subspace of R, let Q2 be a closed symmetric convex subset
of R,, and let R > 1. Say that € is R-transverse to V at =z if @ NV C RB, and
Oy (QNB,) D R1B,NVL. Here, V* is the orthogonal complement of V with respect
to the inner product (-,-), on R,.



18 J. Carruth et al. / Advances in Mathematics 410 (2022) 108698

Obviously, we can state a corresponding definition of transversality in a general finite-
dimensional Hilbert space. We do so in Definition 3.7.
‘We now note a couple of trivial properties of R-transversality for the unfamiliar reader.

e If Q is R-transverse to V, then Q is R’-transverse to V for any R’ > R.
o If Q =V, then Qis R-transverse to V for any R > 1.

Our first technical result is as follows:

Proposition 2.9. Let x € R™, A > 1, and Q C R, be given. Suppose that Q2 is A- Whitney
convex at x. Then there is a DTI subspace V- C R, such that ) is Ry-transverse to V at x.
Here, Ry is a constant determined by m, n, and A of the form Ry = exp(poly (D) log(A)).

We write {(I) < r(I) to denote the left and right endpoints of a compact interval
I C R, respectively. If I and J are compact intervals, we write I > J if [(I) > r(J). We
write I > 0if I[(I) > 0.

Definition 2.10. Let z € R™. Given a closed symmetric convex set 2 C R, § > 0, and real
numbers 1 < R < R* < oo, we define the quantity C,(Q2, R, R*, ) to be the supremum of
all integers K such that there exist subspaces Vi, C R, and compact intervals I, C (0, d]
(k=1,2,...,K) such that the following conditions hold:

o 1 > >I3>--->Ig >0

o For all k, 7, ,.(1,)§ is R-transverse to Vj at x.

o For all k, 7, (1,)§) is not R*-transverse to Vj at x.
o For all k, V} is dilation invariant at x.

We refer to C,(£2, R, R*,0) as the pointwise complexity of 2 at = at scale below ¢ with
parameters (R, R*).

If § = o0, we set C,.(, R, R*) = C,(Q, R, R*, 00), which we refer to as the pointwise
complexity of 2 at x with parameters (R, R*).

Our second technical result provides a bound on the pointwise complexity of a general
closed symmetric convex subset of R,.

Proposition 2.11. Let © € R, § > 0, R > 16, and R* > D?*PH1/2RD be given. Then
C.(Q, R, R*,5) < 4mD? for any closed symmetric convex set Q2 C R.

2.5. Elementary tools and techniques
This section contains elementary lemmas on polynomial inequalities and cutoff func-

tions. Many of these results were proven in [6] via compactness arguments. Here we give
direct proofs that yield explicit constants.
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2.5.1. Properties of polynomial norms
We present inequalities for polynomial norms used throughout the paper.

Lemma 2.12 (¢f. Lemma 2.1, part (i) in [6]). Let x,y € R™ and 6 > 0. Suppose |z —y| <
10 for 0 <n < 1. Then for any P € P,

|P|2 s < (14 Cn)|P2s
for a controlled constant C'.

Proof. By Taylor’s theorem, for any « with |o| < m — 1 we have

PG = Y L@ TP (o)

y:laty|<m
Therefore
2
9 §52(al—m) N 1o
|Ply.s = Z al 0% P(x) + Z ﬁ(a TP)(x) - (y —x)" 16
la<m ~>0: (16)
la+y|<
= |P|:2v,5 +(R)
where
§2(lal=m) R s .
R)= 3 o X @R P @) - 2)
|la]<m v1>0,72>0:
[atyi|<m
|O¢+’72\<m
§52(lal-m) N 1, 0
+ 30 TP @) Y @ TP @) y - a)”
laj<m ~>0:
latvy<m
(52(‘(1'_771) 1 a+y1 a+vy2 Y1472
<23 X @R P)@) (-
|a]<m v1>0,v2>0:
[atyi|<m
a2 |<m
Now use the trivial bound
oty (a+’7)'
0741 P(@)] < |Plas o e

and the hypothesis |y — z| < dn to get that
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§52(lal=m) (a4 y)!(a+42)! gt )
la]<m v1>0,v2>0:
|1 |[<m
|tz |<m
Using the fact that the number of multiindices appearing in each of the above sums is

bounded by D, and the hypothesis n < 1, we see that
(R)] < 2D ((m — 1))*n|P|3 ;. (17)
Combining (16) and (17) proves the lemma, with C' = 2D3 ((m —1)!)*>. O

Lemma 2.13 (¢f. Lemma 2.1, part (ii) in [6]). Let x € R™ and 0 < p < §. Then there
exists a controlled constant C' such that for any P,Q € P,

|P Oz Q|x,p < 05m|P|x,6 Q|x,p-

Proof. By translating and rescaling, we reduce matters to the case x = 0, p = 1. For
d > 1, we have §™|P|o,s > |Plo,1, by (7). Thus, it suffices to prove the bound |[P® Q|1 <
C|Po,1|Qlo,1- This inequality is a consequence of Lemma 2.1. O

Lemma 2.14 (¢f. Lemma 2.1, part (i) in [6]). Let z,y € R™ and §,p > 0. Assume that
|z —y| < p < 4. Then there exists a controlled constant C such that for any P,Q € P,

(P Oy Q) — (PO Q)|a, < CIM|P

x75|Q|x,5~

Proof. By translating and rescaling, we reduce matters to the case x = 0, § = 1. Write
| -] =-]o1 for the standard norm on P. Fix P,Q € P with |P| < 1, |@| < 1. Then
P(z) = 30 j<m-1Caz® and Q(z) = 3, <;n—1 daz®, With |cal, |da| each bounded by a
controlled constant. Our task is to show that |[P ©, Q — P ®g Q|o,, < C for |y| < p < 1.
Let B = B(0,1) be the closed unit ball in R™ of radius 1 centered at 0.
Let F(z) = P(2)Q(z). Then F is a polynomial of degree at most 2m — 2 of the form

F(z) = Z faz®, |fal < C, C controlled.

la|<2m—2

Each of the monomial functions z — 2 is in C™(B) with C" seminorm bounded by a
controlled constant. Thus, ||F||¢m ) < C” for a controlled constant C’. Using (5), we
deduce that F is in C™~"!(B) and ||F||gm-1.1(p) < C for a controlled constant C.

By Taylor’s theorem (15), we have

(P ©0 Q) — (P Oy Q)lo,p=I|JoF = JyFlo, < Cr|[F|cem-113) < CrC

for 1 > p > |y|. This completes the proof of the lemma. O
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Lemma 2.15 (cf. Lemma 2.2 of [6]). Fiz polynomials Py, Q, Ry and Py, Qy, Ry in P, for
|z —y| < p < 0. Suppose that Py, Py € MoBy s, Qz,Qy € M1Bg 5, and Ry, Ry € MyB, 5.
Also suppose that P, — Py € MoBy 5, Qv — Qy € M1B, , and R, — R, € M2B, 5. Then

|Px Og Qm Og Rz - Py ®y Qy ®y Ry|m,p S C’52"1]\4'0-]\41-]\42,
where C is a controlled constant.

Proof. This lemma is identical to Lemma 2.2 in [6] with the additional claim that the
constant C' is controlled. To see that this is true, we examine the proof of Lemma 2.2
n [6]. Note that C' is a product of a finite number (independent of D) of the constants
appearing in Lemma 2.1 in [6]. Lemmas 2.12, 2.13, and 2.14 of this paper show that we
can take these constants to be controlled. O

Lemma 2.16 (cf. equation (2.4) of [6]). If |x — y| < A& for A > 1, then for any P € P,
|[Plys < C'A" 71 Plas
for a controlled constant C'. Consequently,
B.s CC' A" 1B, 5.
Proof. Apply (7) twice and Lemma 2.12 to get:
[Plys < A™[Plyas < (1+C)A|Pleas < (1L+CON™ Py,
where C is the controlled constant from Lemma 2.12. O

2.5.2. Whitney covers and partitions of unity

Lemma 2.17. For any ball B C R™ and any 0 < r < 1 there exists a cutoff function 6 €
C™R"™) with ® =0 on R"\B, 0 =1 on (1 —7)B, [|0°0| o ®&n) < Cp1(r) diam(B)~ el

. g4m)™
for any |a| < m, where Cy1(r) == 95—,

Proof. By translating and rescaling it suffices to construct 8 supported on the unit ball
B={x:|z| <1}.

Let 1 : R — Ry be given by 1(z) = e=® 'e=(1=2)"" for z € (0,1), and ¥(z) = 0
for ¢ (0,1). Evidently, ¢ € C>(R), and " (0) = ") (1) = 0 for all k& > 0. By
the product rule, for z € (0,1), ¢¥)(z) is the sum of at most 2 terms of the form
fij(x) = %i(e’fl)%j(e’(l’xrl) with ¢ + j = k. By induction on 4, %(e’”fl) is the
sum of at most 2 terms of the form hy, . s(x) = wr25""e=% " for integers r,s with
r+s =i, and real w with |w| < (2s + r)". Using the bound t¥e~" < K* (t,K > 0),

we find |y s(2)] < Jw|(2s 4+ 7)2T7 < (25 4+ 7)2 T2 < (24)%) and thus |d‘§7¢ (e‘r71)| <
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21(24)%" = 8% for x > 0. Similarly, |d —(e=(1=2)"")| < 89% for 2 < 1. Thus, |fij(x)] <
8 max{i, j}2(+9) for x € (0,1). We deduce that ||{F)| L (r) < 288FK2F = (4k)2 for
k> 0.

Note that v := [0 ¢(t)dt > e=%/3 >

Then v(t) =0 for t <0, v(t) = 1 for t > 1, and v*) (0) = v*)(1) = 0 for k > 1. Finally,
[v®) || oo (r) < 9+ (4k)2F for k > 0; here, our convention is that 00 = 1.
For 0 < 77 < 1let ¢, : Rt — R given by ¢,(t) = v((1 —t)/(1 —n)). Then

1. @,(t)=1fort <m,
2. gp,,()—Ofort>1
k)

||<Pn HL°° ®RH <9 (( ))k for k > 0.

Define 6 : R™ — R by 0(z) := p@_r2(|z?). Note that 6(z) = 0 for |z| > 1 due
to property 2 of ¢,. Furthermore, §(z) = 1 for |z| < 1 —r, by property 1 of ¢,. By
induction on |«|, using the product and chain rules, we establish the following claim: For
0 < |a| < m, the function 9*0(z) is a sum of at most 2!*/=1 < 2™ terms of the form
hip(x) = Cj el
constants C; 5 satisfying |C} 5| < ml®l <m™. If |2| < 1 then |27| < 1. Property 3 of ¢,

T)2(|ac|2) - 2? for integers j < m, multiindices B with |3] < m, and

implies that, for |z| <1 and |a] < m:

(4m)2m - (4m)3m - 9(4m)3m '

(6% < m . m .
|8 a(x” — 2 m 9(1 _ (1 _ 7“)2)m — (27“ _ 7,.2)m - rm

(We use 2r — r2 > r.) Because 0(x) = 0 for |z| > 1, we conclude that

4m)3m

r m

§9<

(4m) (4m)rm

1070 Lo Ry < 9 2™ diam(B) 1%l <9 diam(B)~ .

This completes the proof of the lemma. 0O
Definition 2.18. A finite collection W of closed balls is a Whitney cover of a ball B CR™if
(1) Wis a cover of B, (2) the collection of third-dilates {3 B : B € W} is pairwise disjoint,

and (3) diam(B;)/ diam(B;) € [1/8,8] for all balls By, By € W with $B; N B, # 0.

Lemma 2.19 (Bounded overlap of Whitney covers). If W is a Whitney cover 0f§ then
#{BeW:xe B} <100" for allz € R".

Proof. See Lemma 2.14 of [6] for the proof. O
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Lemma 2.20 (Partitions of unity adapted to Whitney covers — cf. Lemma 2.15 of [6]).
If W is a Whitney cover of B, then for each B € W there exists a non-negative C'*°
function g : B — [0,00) such that

1. 6 =0 on g\gB
2. |0%0p(z)| < Cdiam(B)~1°l for all |a| < m and x € B.

~

3. Y gewfB=1o0nB.

Here, C is a controlled constant.

Proof. Use Lemma 2.17 to obtain a function )5 : R™ — R for each B € W satisfying (1)
supp(vp) C ¢B, (2) ¥p =1 on B, and (3) [|0°¢p| L~ < C diam(B)~1*! for all |a| < m,
for a controlled constant C.

Set W := > 5.y ¥ and define

0p(z) == vp(z)/¥(z), z¢cB. (18)

Since each point in B belongs to some B € W, ¥ > 1 on B and thus 0p is well-defined
on B. Property 1 follows from the fact that g is supported on gB. Property 3 follows
because Y- e 08 = > geyy ¥B/¥ =1 on B.

Property 2 is valid if z € §\%B since then J,(6p) = 0. Now fix x € gBOE. If g (x) #
0 for some B’, then z € ¢B’, so SBN B’ # (), and hence, diam(B)/ diam(B’) € [$, 8]
by definition of Whitney covers. By Lemma 2.19, the cardinality of W, := {B’ € W :
x € 8B’} is <100™. Therefore,

|0°W ()] < Z [0%p (z)| < Z C diam(B')~1*l < ¢’ diam(B) 1! (19)

B'eW, B'eW,

for controlled constants C, C’. Given (19) and the fact that ¥ > 1 on B, by repeated
application of the quotient rule we obtain |97 (1/%(z))| < C" diam(B)~1! for |y| < m
for a controlled constant C”. By application of the product rule to (18), we see that
|0“05(z)| is bounded above by a sum of 2/°! terms of the form

|0P 5 (x)| - 107 (1/¥(x))|, where 4~ = a.

Given |0%p(z)| < C diam(B)~!#! we conclude that |00z (x)| < C" diam(B)~1° for a
controlled constant C"”. This finishes the proof of property 2. O

Lemma 2.21 (Gluing lemma — c¢f. Lemma 2.16 of [6]). Fix a Whitney cover W of B,
a partition of unity {0p}pew as in Lemma 2.20, and points xp € gB for each B €
W. Suppose {Fg}pew is a collection of functions in C™ 11(R™) with the following
properties:
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. HFB”Cm—l,l(Rn) S M()
e Fp=fonEN %B.
o |JopEFB — Jup, FBilop diam(B) < Mo whenever gB N gB’ £ 0.

Let F' =3 pcyy0pFp. Then F' € C™=VY(B) with F = f on ENB and || F|
CMy, where C' is a controlled constant.

Cm71,1(§) S

Proof. We sketch the proof, following the proof of Lemma 2.16 in [6], which is identical
to Lemma 2.21 but without the claim that C' is a controlled constant.

See the proof of Lemma 2.16 of [6] for verification that F = f on E N B.

The proof of Lemma 2.16 of [6] then goes on to show that

S (F) = Jy(F)lz jo—y) < CMo (20)

whenever z,y € B with |z — y| < Smin = o5 min{diam(B) : B € W}. By definition of
the | - |3, 6-norm, (20) implies the local Lipschitz condition:

0% F(x) — 8°F(y)| < C'Molx —y| for |a| =m —1, 2,y € B, |2 — y| < dmin-

Then by the triangle inequality, the Lipschitz constant of 0*F on all of Bis< My,
for each |a| = m — 1. Therefore, ||F||Cm_1,1(§) < C" My, as desired.

All that remains is to show that C' in (20) is a controlled constant. From the proof
in [6], we note that C' is a sum or product of finitely many (independent of m,n) of the
constants Cr (appearing in Taylor’s theorem), 100", 4™, and the constants in Lemmas
2.2, 2.15, and equation (2.4) of [6]. By Lemmas 2.15, 2.20, and 2.16 of the present paper,
we see that each of the last three of these constants is controlled. Cr is controlled by
Proposition 2.2. Thus, C is a controlled constant. O

3. Geometry in the Grassmanian

Let (X, (-,-)) be a real finite-dimensional Hilbert space, and set d := dim X . Denote
the norm on X by |- | = \/(-,), and let B = {z € X : |z| < 1} be the unit ball of X.
Write K(X) for the collection of all closed, convex, symmetric subsets of X. Recall that
a subset 2 C X is symmetric if v € Q = —v € Q.

3.1. Tools from linear and multilinear algebra

Here we present a few tools and pieces of terminology from multilinear algebra.

For 0 < k < dim(X), let /\k X be the k’'th exterior power of X. We refer to elements
of /\kX as tensors. If v1,vo,...,vx € X then v1 Avg A+ Ay € /\kX is called a pure
tensor. Every tensor is a finite linear combination of pure tensors. We specify a Hilbert
space structure on /\k X as follows. Let eq,...,eq be an orthonormal basis for X. For
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1<ip < <ipg<d, 1<j1 << jp <d,let (Nj_,ei,, Nb_y €5,) be 1if iy = j, for
all £, and 0 otherwise. We extend this inner product to all of /\k X by bilinearity. Then
{/\IZ:1 e, : 1 <iy <---<ij <d} is an orthonormal basis for A" X. Write (-,-) and |- |
for the inner product and associated norm on /\k X. This inner product can be defined
in a basis-independent manner as the unique bilinear mapping obeying the identity

k k
</\ Vi, /\ w1> = det((vi,wj>)1§,;7j§k, for all Viyeonoy Vg, W1,y ..., WE € X.

i=1 i=1

In particular, the Hilbert space structure on /\k X is independent of the choice of or-
thonormal basis for X.

Let V be a k-dimensional subspace of X, and fix a basis {v;}i1<j<i for V. We set
Wy ;= vy Avg A--- A € /\k X. We call wy a representative form for V. The next
remark implies that the representative forms associated to different choices of basis for
V are scalar multiples of one another.

Remark 3.1. If {0;}1<j<x and {v;}i<j<i are two bases for V' then 01 A9y A--- A0 =
det(A) vy Avg A+ Avg, where A = (A;;) € R¥*¥ is the change-of-basis matrix defined
by the relations 0; = Zj Ajv; (1=1,2,...,k).

The eigenvalues of a self-adjoint operator T : X — X will be written in descending
order: Ay (T) > Xo(T) > -+ > M(T) (d = dim X).

Let Xy, X7 be k-dimensional Hilbert spaces. We denote the singular values of a linear
transformation T': Xog — X1 by 01(T) > 02(T) > -+ > 0 (T) > 0. The squared singular
values of T are eigenvalues of T*T', or TT* (equivalently), i.e.,

oo(T) = \/N(T*T) = /N(TT) for £ =1,2,... k.
The extremal singular values o1(7") and oy (T") are related to the operator norms of T'
and T~ 1. First, 01 (T) = ||T||op- Also, o (T) > 0 if and only if T : X — X is invertible,
and then oy (T) = ||T~"||;,}. This implies the following description:

0,(T) =sup{n > 0: ||Tz||x, > n|zlx, for all z € Xo}. (21)

Finally, 01 (T') has a description in terms of the images of balls under 7. Let Bx, :=
{z € Xj : ||z|x, <1} be the unit ball of X; (j € {0,1}). Then

0,(T) =sup{n > 0:T(Bx,) 2 nBx, } (22)
3.2. Angles between subspaces

Let G(k, X) be the Grassmanian of k-dimensional subspaces of X (1 < k < d). Note
that G(k, X) C K(X).



26 J. Carruth et al. / Advances in Mathematics 410 (2022) 108698

Given V,W € G(k, X), the mazimum principal angle Omay(V, W) € [0, T] between V
and W is defined by

II

Omax(V, W) := arccos <inf{ | |WU| v €eViu# O}) . (23)
v

Here and below, we write Ilyy : X — W to denote the orthogonal projection operator

on a subspace W of X. Below we show that 0,.x(+, ) is symmetric. In fact, Opax (-, ) is

a metric on the Grassmanian G(k, X). For a further discussion of principal angles, see

[22] and the references therein.
Given VW € G(k, X), let

Z(V,W) = arccos (M) . (24)
|lwv |- |ww|
By Remark 3.1, the quantity Z(V,W) is independent of the choice of representative
forms for V and W.
The quantities Z(V, W) and 0.5 (V, W) are related to singular values of the projection
operator Ty ,w := Iy |y : V — W. In fact, we have the identities

cos(L(V,W)) = o1(Tvsw)o2(Tv—w) - - . ou(Tvsw),

(25)
COS(thax(M W)) = Uk(TV—)W)-

The first identity can easily be seen to be true by computing (24) using principal vectors
for V and W, and using the singular value characterization of principal angles; see [21]
for details. The second identity follows from (21) and (23).

Lemma 3.2. Fiz n > 0. If Xg and H are subspaces of X such that |Ilgz| > n|x| for all
x € Xo, then dim(Xy) = dim(ITx Xo) and cos(Omax(Xo, TuXo)) > 1.

Proof. Condition dim(Xy) = dim(IIgXy) holds as Iy|x, : Xo — X is injective. As
I, x, = Oy on Xo, My, x,(x)] > n|z| for £ € Xy by the lemma’s hypothesis. The
bound cos(Omax(Xo, Iy Xo)) > 7 is a consequence of the definition (23). O

Lemma 3.3. Let W and V' be subspaces of X of equal dimension. Then the following
conditions are equivalent.

co8(Omax(V, W)) > 1.

. w (v)| = nlv] for allv e V.
Ny (w)] > nlw| for allw € W.
co8(Omax(W, V) =1

= W

Proof. The equivalence of conditions 1 and 2 is immediate from the definition (23). The
equivalence of conditions 3 and 4 follows for the same reason.
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We prove the equivalence of conditions 2 and 3 by duality. Let Ty _,w = Hw|v
and Ty v := IIy|w. Condition 2 is equivalent to the claim that Ty _,w is invertible
and || Ty %y llop < 1. Similarly, condition 3 is equivalent to the claim that Ty is
invertible and ||TVT,1_>V||OP < n7L. Since Ty is the adjoint of Ty, we obtain the
equivalence of conditions 2 and 3. O

From the equivalence of conditions 1 and 4 of Lemma 3.3, we learn that
Omax(V, W) = Opnax (W, V) for VW € G(k, X). (26)
See Section 2 of [22] for a proof of the following result.

Lemma 3.4. If V and W are subspaces of X of equal dimension then cos(Omax(V,W)) =
c08(Omax (VE, W)).

Thanks to (25), we have the following result.
Lemma 3.5. Let V,W € G(k, X). Then
€08 (Bmax (V, W))* < cos(L(V, W) < cos(Omax (V, W)). (27)
3.8. Transversality

Recall that I(X) denotes the set of all closed, convex, symmetric subsets of X. Given
NekX)anda > 0,let a-Q:={a-z: 2z € Q}. Given a function 7' : X — X, let
T(Q) :={T(z):x € Q}.

We start with an elementary lemma. Given A C X and a subspace V in X, let A/V
denote the subset {a +V : a € A} of the quotient space X/V ={z+V :z € X}.

Lemma 3.6. Let A,B C X. Then A/V C B/V if and only if ;1 A C 1 B.

Proof. Note that A/V C B/V if and only if for every a € A there exists b € B such that
a—beV.

Suppose A/V C B/V. Fix an arbitrary @ € Iy, 1 A. Let a € A with x = Iy .a.
Because A/V C B/V, there exists b € B so that a —b € V. Then Iy, . b = Iy L a. Thus,
x € IIy,1 B. So, we’ve shown Il A C Il 1 B.

Conversely, suppose IIy,1 A C Il B. Fix a € A. Let © = II,1a. Because II,1 A C
Iy, . B, there exists b € B with « = IIy,.b. But then IIyyi(a —b) = 2 — x = 0. So,
a—b € V. This proves A/V C B/V. O

We now introduce the concept of transversality in the Hilbert space X.

Definition 3.7. Let Q € K(X), let V C X be a subspace, and let R > 1. Then Q is
R-transverse to V' if
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QNVCR-B (28)
My (QNB) DR - BNV, (29)

In particular, if X = R, then Q C X is R-transverse to V if and only if it is R-
transverse to V at x (see Definition 2.8).

Using Lemma 3.6, we obtain an equivalent formulation of transversality used in our
previous work [6]. This will allow us to later borrow results from [6].

Corollary 3.8. Let Q) € K(X) and let V' be a subspace of X. Then Q is R-transverse to
V if and only if (A) QNV C R-B, and (B) (2NB)/V D R™1.-B/V.

The notion of transversality between a pair of subspaces (i.e., when € is a subspace)
admits an equivalent formulation in terms of principal angles.

Lemma 3.9. Let W,V be subspaces of X, and R > 1. Then W is R-transverse to V if
and only if dim(W) = dim(V+) and cos(Omax (W, V1)) > R

Proof. When = W is a subspace, condition (28) is equivalent to the assertion that
WNV = {0}. Thus, from (28), (29), W is R-transverse to V if and only if (a) WNV = {0}
and (b) Iy, (WNB) DR L-BNnVL.

Note that condition (a) implies dim(W) < dim(V+).

Note that condition (b) implies that Ty o = Hyi|w : W — V4 is surjective.
Hence, condition (b) implies dim(W) > dim(V+).

Hence, if W is R-transverse to V then dim(W) = dim(V1), and condition (b) is then
equivalent to the inequality o (Tyy_ ) > R™! (see (22)), which is equivalent to the
inequality cos(fmax(W,V+)) > R™1 (see (25)).

On the other hand, suppose dim(W) = dim(V') and cos(fmax (W, V1)) > R7L
Thus, ok (Ty 1) > R™Y, which implies condition (b) above (again, see (25) and (22)).
In particular, Ty, v : W — V4 is surjective. As dim(W) = dim(V1), we have that
Tw_ v is injective. Thus, {0} = ker(Ily 1 |w) = WNV, which gives condition (a) above.
So W is R-transverse to V.

This completes the proof of the lemma. 0O

By Lemma 3.9 and Lemma 3.4, we have the following result.

Corollary 3.10. Let W and V be subspaces of X, and let R > 1. Then W is R-transverse
to V if and only if V is R-transverse to W.

Lemma 3.11. Let W,V be subspaces of X, and letr > 0 and R > 1. If W is R-transverse
toV then (W +rB)NV C RrB.
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Proof. Fix x € (W +rB)NV. As x € W + rB, we have |[IIjy.z| = dist(x, W) < 7.
Observe that |[[Iyyrz| > R™Yz| due to the condition O, (V,WL) > R~ and since
x € V. Thus, |z| < Rr, so x € RrB, as desired. O

Lemma 3.12. Let Q € K(X) and let V be a subspace of X. Let T : X — X be an
invertible linear transformation satisfying either (A) |x| < |Tz| < M|z| for all x € X,
or (B) M~|z| < |Tz| < |z| for all z € X.

If Q is R-transverse to V then T(2) is M R-transverse to T(V).

Proof. We suppose (2 is R-transverse to V, so (a) QN V C RB and (b) R™'B/V C
(2N B)/V. Here we use the formulation of transversality given in Corollary 3.8.
If T satisfies condition (A) then |[T7!,, < 1 and ||T|lo, < M, implying the set
inclusions B C T'(B) and T(B) C MB. By (a),
T(Q)NT(V)=T(QNV) C T(RB) C MRB,
and (b) implies that

R™'B/T(V) € R™'T(B)/T(V) S T(QNB)/T(V) = (T(2) NT(B))/T(V)
C(T(Q)NMB)/T(V) € M(T(2) N B)/T(V).
Thus, (MR)™'B/T(V) C (T(2) N B)/T(V)). We deduce from the previous inclusions
that T() is M R-transverse to V.
If T satisfies condition (B) then T'(B) C B and M !B C T(B), thus by (a),
T(Q)NT(V)=T(QNV)C T(RB) C RB C MRB,
and by (b),

M™*R™'B/T(V) C R'T(B)/T(V) CT(QNB)/T(V) = (T(Q)NT(B))/T(V)

so T'() is M R-transverse to T'(V). O
4. Rescaling dynamics

Let (X, (-,-)) be a real Hilbert space of finite dimension d := dim(X) < oco. Write
|z| = \/{z,z) for the norm of a vector € X. Let 75 be a 1-parameter family of linear

operators on X of the following form. Fix m > 1. Suppose that X admits a direct sum
decomposition

x=FPpx., (30)
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for pairwise orthogonal subspaces X, C X. Let 75 : X — X satisfy
7'6|XL, =67 'id‘XV (5 > O). (31)
In this description of 75 we allow that X, = {0} for certain v.

Definition 4.1. We refer to a tuple X = (X, 75)s5>0 satisfying (30), (31) as a Hilbert
dilation system. A Hilbert dilation system X’ is said to be simple provided that dim(X,) €
{0,1} forallv =1,2,...,m

Definition 4.2. A subspace V C X is dilation-invariant, or DI, if 75V =V for all § > 0.
If V is DI then

V=@V, withV,=VnXx,CX,.

v=1

The signature of a DI subspace V C X is the quantity

sgn(V) = Z v-dim(VNX,).
v=1

We note that

V dilation-invariant = V' dilation-invariant, and

i 32
sgn(V+) = 5g —sgn(V), X := Zy -dim(X,) 32)

We study the behavior of orbits of 75 acting on the Grassmanian G(k, X). To do so,
we will pass to the action of 75 on the k-fold exterior product /\k X.

The linear transformation 75 : X — X induces a linear transformation 75 : /\]C X —
/\k X defined by its action on the pure tensors:

T5(v1 Avg A Avg) = Ts(v1) ATs(va) A= A Ts(vg).

If V is a DI subspace of X of dimension k, and wy € /\k X is a representative form
for V (i.e., wy is the tensor product of a basis for V), then

7 (wy) = 07 Wy (33)

Because all representative forms of V' are equivalent up to a scalar multiple, it suffices to
verify (33) for the form associated to a particular basis for V. Because V is DI it admits

a basis of the form {e;}*_,, with e; € X;, for each j. Consider the representative form

Jj=b



J. Carruth et al. / Advances in Mathematics 410 (2022) 108698 31

wy = e A+ Aey for V. Note that 75(e;) = 6 %e; for all j, and sgn(V) = Z?:l ij.
Thus, by definition of 77,

75 (wv) = 15(e1) A+ ATs(er) = 558 Vel A et A ey,
giving (33).

4.1. Quantitative stabilization for the action of a simple Hilbert dilation system on the
Grassmanian

Let H € G(k,X). The parametrized family of subspaces (15H )s~o is an orbit of 75
in G(k, X). The orbit 7sH converges to a subspace Hy € G(k, X) in the Grassmanian
topology in the limit as § — 0%, and furthermore the limit subspace Hy is dilation
invariant (see the proof of Lemma 3.12 in [6]).

The main result of this section is a quantitative bound on the distance of the orbit
T7sH to the set of dilation invariant subspaces when § varies in a compact interval I.
Specifically, we have:

Proposition 4.3. Let (X, 75)s>0 be a simple Hilbert dilation system. Let H € G(k

, X
1<k <d=dim(X). Fizn € (0,1/2) and a compact interval I C (0,00) with ?((II))

dk+2
(2771) . There exist 6 € I and a dilation invariant subspace V € G(k,X) satisfying
cos(Omax(Ts H,V)) > 1 — 1.

):
>

The rest of Section 4.1 is devoted to proving Proposition 4.3. The restriction that
(X, 75)s>0 is simple (dim X, € {0,1} Vv) will be in place for the rest of this section. We
expect it is possible to prove a variant of Proposition 4.3 without this restriction, but
the arguments are likely more involved and the constants are slightly worse. Anyway,
the above version is sufficient for the needed application in Section 5.

We introduce notation to be used in the proof. We order the indices v for which
dim X,, = 1 in an increasing sequence: 1 <v; <y < ---<vyg<m.For j=12,...,d,
let e; € X be a unit vector spanning X,,. Then:

X admits an orthonormal basis {eq,eo,...,eq} with
Ts(e;) =0 e (j=1,2,...,d, 6 >0), and (34)
vi,...,lg €N, 1< <---<yg<m.

Let [d] := {1,2,...,d}. Given S C [d], let Vg := span{e; : j € S}. Note that a
subspace V' C X is dilation invariant if and only if V' = Vg for some S C [d].

For § C [d] with #(5) = k, let ws := N\ c5¢; € A" X be a representative form for
Vs C X. Note that {wg : S C [d], #(S) = k} is an orthonormal basis for A" X. See
Section 3.1 for a discussion of the Hilbert space structure on /\k X.
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Given S C [d], define ¢(S) := (c1(9),c2(9),...,ca(S)) € {0,1,2,...,d}* by
c(S)=#{jeS:j<{} (£=1,2,...,d).
By definition,
ce(S) = dim(Vs N X<y), where X<, := span{es, ez, ..., e} (35)
Also, observe that
S#S8 = ¢(S) # ci(S') for some £ =1,2,....d. (36)

Let A,B: X — X be linear operators. Then we write A > B to mean that (A — B) is
positive semidefinite.

Lemma 4.4. Let H € G(k,X) for 1 < k < d. Suppose € € (0,1/2), §,6' > 0 and
8,8 C [d) satisfy #(S) = #(5') =k, § > 17,

Wr, wgr
> ¢, and M>€.

‘OJT(;/Hl o

|<°‘)T5H7w5>|
‘WTaH‘

Then cg(S) > co(S') for£=1,2,...,d.

Proof. For sake of contradiction, let H,4d,¢’,.5,5’ be as in the hypotheses of the lemma,
and suppose that there exists ¢ € [d] with ¢,(S) < ¢/(S"). Without loss of generality,
§' = 1. Then § > %, [(wrym,ws)| > €lwr,m|, and [(wi,ws')| > €|lwpy|. Thanks to (24)
and (27), we have

Wrs H,WS) |

c08(Omax (15 H, Vs)) > cos(L(1sH,Vs)) = I et > e, (37)
Ts

and similarly
€08 (Omax (H, Vsr)) > e. (38)
Consider the orthogonal subspaces
X<y :=span{e; : j <}, X.¢:=spanfe;:j> (}.
Then X = X<y & X5, If £ = d, by convention X, = {0}. By (35),

dlm(VS N ng) = Cg(S), (39)
dim(VS/ N ng) = Cg(S/). (40)
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Let <y := lx_, and II, := [Ix_, be the orthogonal projection operators associated
to X<y and X4, respectively.
From (38) and Lemma 3.3, [Tl (x)| > €|z| for all z € Vg Set

H=Ty(Vs N X<)) C H.
Applying Lemma 3.2 to the subspace X¢ = Vs N X<, gives

dim(H) = dim(Vg N X <) (41)
and cos(@max(ﬁ, Vs N X<y)) > €. The prior inequality implies, by Lemma 3.3,

M<pz| > Mx_,Avy 2| > €lz| forall z € H. (42)

By the Pythagorean theorem and (42),

s px| = \/]]2 — [Hepz]? < /1 — e2|z| forall 2 € H. (43)

By the form of 75 (see (34)) and because § > 1, we have 75|x_, > =" -id|x_, and
7s|x., <677 ~!.id|x.,. Therefore, for z € H, (42) gives

|7’5H§ZIE| > 5_W|HSZ=’E| > 5_V£6|£C|,
and (43) gives
|TsTls pz| < 67 lspz| < 6777 1/1 — €2|x|.

Because 75 fixes X+ ¢ and X<y, the operators 75, I, II<, all commute. Thus, combining
the above inequalities gives

I I 1VI— & -
Moerse]  fwolloerl 1VIZ€E gz @)\ {0}, (44)
|T5.’L‘| ‘T5H§g$| 0 €

where the last inequality uses the assumption that ¢ > Eiz

From (39), (40), (41), and the assumption c¢;(S) < c,(S"), we have that dim(H) >
dim(Vs N X<¢). Thus, we can find an z € H N (Vg N X<;)L with # # 0. Note that
(VsNX<,)* is spanned by a subcollection of the basis {e;}, and each e; is an eigenvector
of 75. Thus, since z € (Vs N X<p)t, we have 752 € (Vs N X<,)t. Therefore, due to the
orthogonal decomposition Vg = (VeNX<,)®(VsNXsy), we have Iy, 750 = ynx., 52
We deduce that

My Tsz| = [Mysnx., msz| < [Tse7s].
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Since z € H\{0}, (44) implies that |IIs 52| < €|7sz|. Thus, |y, 52| < €|7s52| and 752 €
17sH C 75H, which implies cos(Omax (75 H, Vs)) < €. This contradicts (37), completing the
proof of Lemma 4.4. 0O

4.1.1. Proof of Proposition /.3
Fix H € G(k,X), n € (0,1/2).
() 5

Fix a compact interval I C (0, 00) with 775 > (% .

For ease of notation, let Hs = 75 H and ws = wy, = 7jwg for 6 > 0.

We aim to show that there exist § € I and a k-dimensional dilation invariant subspace
V C X with cos(Omax(Hs,V)) > 1—1.

Recall that every k-dimensional dilation invariant subspace V' C X has the form V =
Vs = span{e; : j € S} for some S C [d] with #(S) =k, and that ws = A;cq¢; € N X
is a representative form for Vg.

By (24), (27), it is enough to show that there exists ¢ € I such that

o dk+2

w§aws>|

cos(£(Hs,Vs)) = I il >1—n for some S C [d], #(S) = k. (45)

Let
e=1/n/2%. (46)

Observe that if k¥ = dim(H) = d then (45) is true with S = [d] for any 6 € I. That’s
because /\dX is one-dimensional, hence, ws € span{wg }.

We may thus assume d > 2 and 1 < k < d.

We will then prove (45) by contradiction. For sake of contradiction, suppose (45) fails
for every § € I.

Recall [(I) and 7(I) are the left and right endpoints of I. For j > 0, let &; := e~27-1(I).
Let J be the largest positive integer such that §; € I. By assumption, r(I)/I(I) >

dk+2
(277—d) = ¢ 2(dk+2) thyg

J > dk+2. (47)

For each j = 0,1,...,J we claim that there exist distinct subsets S;1 and S, 2 of [d]
of cardinality k, such that

Ws.,Ws.
[ws;, ws, ) >e  (u=1,2). (48)
|ws, |
To see this, order the subsets of [d] of cardinality k in a sequence, S;1,S;2,...,5;L,

L= (g), so that

{1 [{ws,,ws, ,)| is non-increasing (for fixed j).
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Set aj ¢ := [{ws;,ws; ,)|/|ws;| for £=1,..., L. By assumption, (45) fails for § = d;, thus
aje<1—mn foralll=1,...,L.

Because {wgs : S C [d], #(S) = k} = {ws,, : £ =1,...,L} is an orthonormal basis for

k L . . . .
A" X, we have 7, a3, = 1. Since £ — a;¢ is non-increasing,

aj,lz\/l/LZ 1/2d>6.

Since a; 1 <1 —1n, we have

L
2 2 2 2
Zaj,tzzl_aj,l >1-(1-n)=2n—n"=n.
£=2
Thus, because ¢ — a; ¢ is non-increasing, we have

ajo>\/n/(L—1)>+/n/L>\/n/2¢ =e.
As aj1,a;2 > €, we complete the proof of (48).
Let po = 1, and for 1 < j < J, let p; € {1,2} be such that S;,, # Sj_1,, ,.- By

definition, note that §; = 6;_1/€? for j > 1. Thus, using (48), we may apply Lemma 4.4
to deduce that c¢(Sj,.;) > co(Sj—1,,_,) for every £ = 1,2,...,d and j = 1,2,...,J.

Further, since S ., # Sj_1,4,_,, for each j this inequality is strict for some ¢ (see (36)).
It follows that

d
V= colSin,) >t ((=1,2,...,J). (49)
=1

But note that
0<c(S)=#{jeS:j<} <k
forall £=1,2,...,d and all S C [d] with #(S5) = k. Thus,
0<¢;<dk  (j=1,2,...,J).

From this and (49) we deduce that J < dk+ 1. But this contradicts (47). This completes
the proof of (45) and finishes the proof of Proposition 4.3.

4.2. Monotonicity of the orbits of a Hilbert dilation system on the Grassmanian

Fix a Hilbert dilation system X = (X, 7s)s>0. We drop the assumption that X is
simple. Thus, X = @), X, and 75 : X — X has the form 75|x, = §~"-id|x, , as in (30),
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(31). Our next result describes a qualitative property of the functions § — Z(75H, V') (for
fixed H, V) that will enter into the proof of Proposition 2.11. See (24) for the definition
of the quantity Z(V, W).

Lemma 4.5. Let H,V C X be subspaces with dim(H) = dim(V) > 1, such that V is
dilation invariant. Then the map f(6) = cos(ZL(1sH, V) is unimodal: if a < b < ¢ and

f(0) < f(c), then f(a) < f(b).

Proof. Let [ = dim(H) = dim(V)) > 1. Fix representative forms wy,wy € A' X for H,
V, respectively, with unit norm, |wg| = |wy| = 1. Then 7fwy is a representative form
for 7 H. So we have

f((;) _ COS(Z(T(;H, V)) _ |<TngawV>| _ ‘<wHaT§wv>‘

— = 50
rrwnllov] — rwn] (50)

Since V is dilation invariant, 77wy = 6~ %" (V)wy (see (33)). So the numerator of (50) is

Kwm, Tswyv)| = - 6_Sgn(v), for o := |[{(wpg,wy)| > 0. (51)

To compute the denominator of (50), we fix a basis for /\l X. Fix a family of dilation
invariant subspaces Uj,Us,...,Uys, such that the associated unit-norm representative
forms wy,,we,, . .. ,wy,, give an orthonormal basis for A' X (M = (‘li)) Then 7wy, =
55Uy by (33). So the denominator of (50) is

M M
riwn| = | > _(Thwm,wu,)? = || Y (wn, Tiwn,)?
i=1 i=1
(52)
M dm
= Sy =[5 5o
i=1 p=1
for constants
ap = Z (wi,we,)? >0, 1 <p<dm.

i€[M],sgn(U;)=p

Here, we used that 1 < sgn(U) < dm for any dilation invariant subspace U C X
with dim(U) > 1. Not all of the coefficients «, are equal to zero, because {wy,} is an
orthonormal basis for A° X. Combining (51) and (52), we have

ad™ sgn(V)
f0) = ——— (53)
> apd2P

p=1
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If & = 0 then f = 0, and we obtain the desired conclusion because constant functions
are unimodal.

Now suppose a > 0, so that f(§) > 0 for all §. Define g(§) = log(f(6=1)). Then
compute

dm
pap62p—1
1 =1 P(6
g6) = sn(v); — b= PO
apd2p ap02P
p=1 p=1

dm
P(§) = Zap(sgn(V) —p)o¥PL,

We now split the proof into two cases.

Case 1: o, = 0 for all p # sgn(V). Then from the above identities, P = 0, and so
¢’ = 0. So g is constant, and thus f is constant, giving the desired result.

Case 2: o, # 0 for some p # sgn(V). If there exist r,¢ with o, > 0, @y > 0,
r < sgn(V) < g, then the signs of the coefficients of P(d) change exactly once; otherwise
they change 0 times. By Descartes’ rule of signs, there is at most one value of § > 0 with
P(d) = 0, so at most one value of 6 > 0 with ¢’(§) = 0. This leaves three options: g is
monotone, g has one interior maximum and no interior minima, and g has one interior
minimum and no interior maxima. The first two options imply that ¢ is unimodal, hence
f is unimodal. The third option is impossible. To see this, we exploit the assumption
that o, # 0 for some p # sgn(V'). Therefore, from (53), either lims_,o, f(6) = O or
lims_,0 f(0) = 0. Therefore, g(d) — —oo for at least one of & — 0 or 6 — oo, ruling out
that ¢ has one interior minimum and no interior maxima.

This completes the proof of Lemma 4.5. O

4.8. Rescaling dynamics on the space of ellipsoids

We present further preparatory results to be used in the proofs of Propositions 2.9
and 2.11.

Let (X, 75)s>0 be a Hilbert dilation system. So, X is a real Hilbert space of dimension
d and 75 : X — X are linear operators of the form (30), (31).

Given aset Q C X and T : X — X, we denote TQ = {T'(z) : x € Q}.

A (centered) ellipsoid £ C X is a set of the form

d d
EZ{ZCiUﬂ}iZZC?<1}, (54)
i=1 i=1

where o0y > -+ > 04 > 0 and {vy,...,v4} is an orthonormal basis for X. We call
v1,...,vq (normalized) principal axis directions of £, and oy, ..., 04 the principal axis
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lengths of £. Denote ¢;(£) = o; for the j'th principal axis length of £. Principal axis
lengths (but not directions) are uniquely determined by £.

Note that the intersection of an ellipsoid and a subspace is also an ellipsoid. Further,
the image of an ellipsoid under a linear transformation is an ellipsoid.

Let B be the closed unit ball of X. If A: X — X is a linear transformation then AB
is an ellipsoid in X. Let o1 > --- > 04 > 0 be the singular values of A, let {vy,...,v4}
be left singular vectors of A, and let {wy,...,wq} be right singular vectors of A. That
is, {v;} and {w;} are orthonormal bases for X, and Aw; = o;v; for all i. We express B
in the form {3, c;w; : 3, ¢? < 1}. Then

d d
i=1 i=1

So, the principal axis lengths of AB are the singular values of A, and the principal axis
directions of AB are corresponding left singular vectors of A.

In particular, every ellipsoid £ can be written as £ = AB for some linear transforma-
tion A: X — X.

Given an ellipsoid £ C X, let & := 75& for 6 > 0. Then (&s)s>0 is an orbit of 75
in the space of ellipsoids. Our next result, Lemma 4.7, states that this orbit can be
approximated by an orbit in the Grassmanian G(k, X) if a condition on the &; is met.

Definition 4.6. Let € € (0,1/2), and let £ C X be an ellipsoid. Say that £ is e-degenerate
if0;(€) ¢ [e,e 1] for all j. In other words, € is e-degenerate if the length of every principal
axis of £ is either less than e or greater than ¢!

Lemma 4.7. Let £ be an ellipsoid in X, let € € (0,1/2), and let I C (0,00) be a compact
interval. Let & = 15& for § > 0. Suppose that Es is e-degenerate for all § € I. Then
there exists a subspace H C X such that, for all 6 € I,

(a) & C 15H + eB, and
(b) sH N (5-B) C &s.

Proof. By rescaling, we may assume that I has the form I = [1,T] for T > 1. Write
& = AB for a linear transformation A : X — X. Then & = AsB, with As := 75A. For
0 > 0, consider the singular values of As:

01(0) > 02(8) > -+ > 04(8) >0, (56)

and let {v1(d),...,v4(0)} be the associated left singular vectors of As, which form an
orthonormal basis for X. By (55),

d
& = {Zcioi(é)vi(é) > < 1}. (57)

i=1
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The singular values of As are the square roots of eigenvalues of A;Aj:

0j(6) = \/)\j(AaA?E) = \/)\j(’T(SAA*T(;).

The ordered tuple of eigenvalues (A1(B),...,\q(B)) € R? of a symmetric matrix B €
R4 i5 a continuous function of the entries of B. It follows that & — ¢;(8) is continuous
for each j. By the intermediate value theorem, and the assumption that &s is e-degenerate

for each 0 € I, there exists k € {0,1,...,d} so that

oi(6) > et for 1 <j <k, (58)
oj(0) <efork<j<d (alld€el). (59)

Let H = span{v;(1) : 1 < j < k}. Thus, H € G(k,X) is spanned by the k longest
principle axes of £, and H+ = span{v;(1) : k < j < d} is spanned by the (d — k)
shortest principal axes of &;.
Evidently, by (57), & =& NH and I & = & N H*. By the second identity, a
general element x of Il & has the form x =, ¢;0:(1)v;(1), for coefficients ¢; with
;c? < 1. By (59) for § = 1, the fact that |v;(1)] = 1 for all j, and the Pythagorean
theorem, we deduce that |z| < e for any = € T &;. Thus, [ & C €. Thus, given

that £ = &1, we obtain
ECHyE+TN &= (ENH)+(ENHY) C(ENH) +eB.
Thus, for § > 1,
75E Cs((ENH)+eB) =1sENTsH + esB C 75 N5 H + €85, (60)
where the last inclusion uses that ||7s]/op < 1 for § > 1.
Note that (60) implies 75€ C 75H + €8 for § > 1. This implies (a).
We next establish (b). For contradiction, suppose there exists § € [1,T] with

TsH N ((2€)7'B) ¢ 7s€. (61)

We regard 75€ N 75 H as an ellipsoid in the vector space 7sH. Let o > 0 be the shortest
principal axis length of 7€ N 7sH in 75H, and let v € 7sH be an associated unit-
norm principal axis direction. Then +ov € 75 N75H, and by (61), o < i Thus, if
U:=1HNv*, then sENTH C U + %GB. By (60),

7€ C(sE€NTsH) +eBC U+ ((2¢) " +€) BC U + (3/4)e™'B. (62)
Given dim(rsH) = k, and U has codimension 1 in 75H, then dim(U) = k — 1. From

(57) and (58), 7s€ contains a k-dimensional disk of radius e~!. Together with (62), these
remarks lead to a contradiction. O
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Let € be an ellipsoid in X. The next lemma guarantees that 75 is e-degenerate for
“most” ¢ € (0,00). We write r(I) and I(I) for the right and left endpoints of an interval
I C (0,00), respectively.

Lemma 4.8. Let d = dim X. Let £ C X be an ellipsoid and let € € (0,1/2). There exists
a collection of closed intervals Ji, Ja,...,Jq C (0,00) such that 75 is e-degenerate for
all o ¢ UZ:I Jp, and such that r(J,)/1(Jp) < & for all p.

Proof. Write £ = AB for a linear transformation A : X — X. For 6 > 0, let & = 75& =
AsB, with A5 = 75A. Let 01(d) > 02(0) > -+ > 04(d) > 0 be the principal axis lengths
of &, given by the singular values of As.

The j-th singular value o;(J) of As is given by 0;(6) = /A;(9), where \;(d) is the
j-th eigenvalue of AsAj3, i.e.,

Aj(0) = Aj (s AA™Ts).

Here, we write the eigenvalues of As;Aj} in decreasing order, Ai(6) > Aa(6) > -+ >
Aa(0) > 0, for each 0. Let 0, > 0. We claim that

A;(0) < (8./8)%-A;(6.) forj=1,2,...,d, §> .. (63)

Using that As = (As, )s/s., we make the substitution A <— As, and ¢ < 0/0. and reduce
the proof of (63) to the case d, = 1. By the min-max characterization of eigenvalues, for
any 0 > 1, with B = AA*, we have

B
Aj(6) = sup inf Lﬁf’@
VeG(j,x)x€V\{0} |z

75| (Brsw, Ty)

= sup
VeG(j,x) x€V\{0} || 5|2
2> (Bz,%)

< 6T().

= sup inf

Vea(x)seV\{oy [Ts-1 2> |Z]

The last equality above makes use of the substitution V= sV and T = 7sx. The last
inequality holds because |7,y| > a~!|y| for a < 1, and by the min-max characterization
of the eigenvalue \;(1) = A;(B). We have proven (63).

Let J, be the closure of the set {§ € (0,00) : 0,(0) € [e,e ]} for p = 1,2,...,d.
From (63) and 0,(0) = \/A,(0), we have ¢,(0) < (d./9)0,(0s) for § > §,. Thus, o, is a
decreasing function of 6, and if § > €724, then 0,(8) < €20,(d.). It follows that J, is an
interval and r(Jp)/1(J,) < €2

Finally, note, for 6 ¢ (J,, Jp, that 0,(5) € [e, ¢~ 1] for all p (by definition of the intervals
Jp), thus, 75€ is e-degenerate. O
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4.4. Complexity

Given a Hilbert space X, we let K(X) denote the collection of all closed, convex,
symmetric subsets of X. Let B € K(X) denote the unit ball of X. Given Q € K(X), V
a subspace of X, and R > 1, recall that Q is R-transverse to V if (a) QN V C RB, and
(b) My (2N B) 2 R71BN VL (see Definition 3.7).

For an interval I, let {(I) and r(I) denote the left and right endpoints of I, respectively.
We say I > Jif [(I) > r(J),and I > 01if I[(I) > 0.

Definition 4.9. Let X = (X, 75)s5>0 be a Hilbert dilation system. For Q € K(X), R €
[1,00), R* € (R,00), the complexity of ) with respect to X with parameters (R, R*),
written Cx (2, R, R*) = C(Q2, R, R*), is the largest positive integer K such that there exist
compact intervals Iy > Iy > --- > I > 0 in (0,00) and dilation invariant subspaces
Vi, Va, ..., Vk C X such that, for every j, 7,(1,)€2 is R-transverse to Vj, and 7y(7,){2 is
not R*-transverse to V.

Fix a Hilbert dilation system (X, 7s)s>0. Thus, X = @/, X, and 75 : X — X is
given by 75]x, = 6 ”id|x, . Let d := dim(X). Let V be a dilation-invariant (DI) subspace
of X (see Definition 4.2). Then V has the form

VzéVﬂX,,.
v=1

Recall that the signature of V' is defined by sgn(V) = fj v -dim(V N X,). Note that
0 < sgn(V) < md for any dilation-invariant subspace V.V '

If Q1,0 € K(X) satisfy A71Qs C Q1 € M2y for A > 1 then we say that Q; and Qs
are A-equivalent, and we write 1 ~) Q.

We now rephrase a classical theorem of F. John (see [1]) in terms of the definitions
just provided.

Proposition 4.10 (John’s theorem). Given a compact Q2 € K(X), there exists an ellipsoid
E C X such that Q and £ are ﬂ—equivalent.

Remark 4.11. If ) is R-transverse to V and 2 ~ 25 then )5 is AR-transverse to V. It
follows that if Q5 ~y Qo then C(Q, R, R*) < C(Q2, AR, A" ' R*) provided that R* > A\’R
so the right-hand-side is well-defined.

Lemma 4.12. Fiz £ > R > 1. Suppose 1 is R-transverse to V and Q1 NEB = Qo NEB.
Then Qg is R-transverse to V.

Proof. Given that €2y is R-transverse to V and Q1 N&EB = Qs NEB, we have

WLNVNEB=0,NVNEBC RB.
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Since £ > R, we deduce that Qo NV C RB.
Since Q1 NEB = QN EB for € > 1, we have Q1 N B = Qs N B, thus

RIBNVL CIl, (0 NB) =1I,.(Q N B).
So, 25 is R-transverse to V. O
The remainder of this section is devoted to the proof of the next result.

Proposition 4.13. For any Q € K(X), C(Q, Ry, Ry) < 4md? provided that Ry > 16 and
Ry > l,nax{(\/8)4m-‘,-1]%411m7 (\/8)3d+1R:13d}.

Using John’s theorem, we shall reduce Proposition 4.13 to the following:
Proposition 4.14. For any ellipsoid € C X, R > 16 and R* > max{R*™ R3?},
C(E, R, R*) < 4md>.

We will later give details on the reduction of Proposition 4.13 to Proposition 4.14.
Next we make preparations for the proof of Proposition 4.14. Fix R, R* and € > 0 such
that

16 < R < max{R3?, R*™} < R*,

(64)
e <1/(4R) and R/R* < ™.

Note (64) is satisfied if € = ;, as then % < RITAM < RT3M < (4R)72M = 2m

The following result is the key ingredient in the proof of Proposition 4.14.

Proposition 4.15. Let R, R*, € be as in (64). Let £ be an ellipsoid in X, and let I =
[Omin, Omax] C (0,00). Suppose that 175& is e-degenerate for all 6 € I.
If there exist 0, € I and dilation invariant subspaces V,W C X such that

1. 75 & is R-transverse to V,

max

2. 715,€ is not R*-transverse to V, and

3. 75... & is R-transverse to W,

then sgn(V) > sgn(W).
Before the proof of Proposition 4.15, we present two preparatory lemmas.

Lemma 4.16. If A, K, T € K(X), and K CT, then (A+ K)NT C (AN2T)+ K.

Proof. Fix t € (A+ K)NT. Thenz =a+ k fora € A, k € K. Note that a =z — k €
T+ K C2T. Hence, z =a+ke(AN2TN+ K. O
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Lemma 4.17. Under the hypotheses of Proposition /.15, there exists a subspace H C X
such that Conditions 1,2,3 of Proposition /.15 hold with H and 4R in place of £ and R,
respectively.

Proof of Lemma 4.17. By Lemma 4.7, there exists a subspace H C X such that for all
o€l

(a) 75€ C7sH + eB
(b) TsH N (iB) C 75€.

Using (b) for § = dyax, the inequality R < L (see (64)), and the condition that 75, €
is R-transverse to V,

(75,0 HN(2RB))NV C 75, . . ENV C RB,

max

which implies that 75, H NV C RB.
Using the condition that 75, . & is R-transverse to V, and (a) for § = dmax,

R1BNV: CIlyu(rs, ENDB))
C Iy o ((s,, H +eB)NB))
Clly. (2(7’5maxH n B) + EB),

where we used Lemma 4.16 for the last inclusion. Because € < ﬁ and Iy, . B= BNV,
it follows that

RBNVt Cally.(rs, HNB)+ (1/2)R'BNVL.

We deduce that $R™'BNV+ C Iy (75, H N B).

Therefore, we see that 75, H is 4R-transverse to V.

Repeating the previous argument, using that 75, £ is R-transverse to W, and (a),
(b) for 0 = dmin, we see that 75 . H is 4R-transverse to W.

Assume for sake of contradiction that 75, H is R*-transverse to V. By Lemma 3.11,
(15,H+ eB)NV C R*eB C R*B. Thus, by condition (a) for § = J.,

min

175, ENV C(15,H+eB)NV C R*B.
Condition (b) for 6 = J, implies that 75, H N B C 75, N B. Thus,
(R)™'BNVE Cllyi(rs, HNB) CHy 1 (15,£ N B),

where the first inclusion uses the assumption that 75, H is R*-transverse to V. Thus,
75, € is R*-transverse to V, contradicting the hypotheses on £ and V. O
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Proof of Proposition 4.15. By Lemma 4.17, there exists a subspace H C X such that
H is 4R-transverse to V, 75, H is not R*-transverse to V, and 75_, H is 4R-

min

7s

max

transverse to W, where dpin < 0x < dpax- According to Lemma 3.9,

COS(GmaX(T5maX Ha Vl)) ( R)il
08 (Omax (15, H, V) < (R*) !
€08 (Ormasc (75,1, H, W) > (4R>

with dim(V+) = dim(W+=) = ¢, where ¢ := dim(H).
By Lemma 3.5, we then have

cos(£(t5,. H, V1)) > (4R)~* (65)
cos(£L(rs, H, V1)) < (R*) ™ (66)
cos(ZL(t5, H W) > (4R) (67)

Suppose for contradiction that sgn(V) < sgn(W). Then, by (32), we have sgn(V+) >
) i
segn(W+). Now, let a(8) = % Let wy, wy 1, wy o be representative forms
for H, VX, and W, respectively. We then write

(5) — o (g wy )
oy 2] s, o)

)

)

e [{wa, @y )] - 6758V

|lww | - [(wr, 75wy )| _
| v Hwm, wypa)| - 0 =W

lwy i [wr, 75w

By assumption, sgn(W+) < sgn(V+1), so § = a(§) is non-increasing.

By (65) and cos(Z(7s,,., H,W*)) < 1, we have a(bmax) > (4R)~*. Because § — a(9)
is non-increasing, a(dmin) > (dmax) > (4R) ¢

From (65) and (66), we have cos(Z/(1s, H,V1)) < cos(£(7s
R* > (4R)*. Thus, by Lemma 4.5, we have

H,V1)), so long as

max

cos(£ (s, H,V*)) < cos(£L (15, H,V*)) < (R*)™!

Om

Thus, using (67), a(dmin) < (4R) . This yields a contradiction for R* > (4R)?‘, which is
implied by our assumptions R* > R3% and R > 16 (see (64)). O

Proof of Proposition 4.14. Let £ be an ellipsoid in X, let R > 16 and R* >
max{R*™ R3?}. Recall that we have chosen a constant ¢ € (0,1/4R] with R/R* < €*™;
see (64). To prove the result that C(€, R, R*) < 4md? we will show that, for § in the
complement of a controlled number of intervals, the principal axis lengths of 75€ avoid
values ~ 1, and within a connected component of this complementary region we may
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apply Proposition 4.15 to prove monotonicity of the sequence of signatures of the DI
subspaces that arise in the definition of the complexity of £.

To prove that C(€, R, R*) < 4md?, we must demonstrate that K < 4md? whenever
{Ix}£ | is a sequence of intervals and {Vj}X_, is a sequence of DI subspaces such that

Tr(1,)€ 18 R-transverse to Vi, and (68)

Ty(1,)€ is not R*-transverse to Vj, for every k. (69)

By the form of 75 in (30), (31), we have |z| < |r,2z| < a ™|z| for a < 1. Note
that 7)€ = Ta, Tr(1)€ Wwith ar = [(Ix)/r(Ix) < 1. Note V} is dilation invariant,
80 T4, Vie = V. By Lemma 3.12 and (68), we deduce that 7y;,)& is (r(Ix)/l(Ix))" R-
transverse to Vj.. Thus, by (69), (r(Ix)/l(Ix))™ R > R*, hence

r(Ix)/I(I;) > (R*JR)Y/™ > 2 (k=1,2,...,K). (70)

Here we use that & > 2™ (see (64)).

Apply Lemma 4.8 to £ and € to find intervals Jy,...,J; C (0,00) such that 75&
is e-degenerate for all § ¢ UZ_,J, and such that r(J,)/l(J,) < % for all p. Given
the Ij are disjoint, and by (70), at most two of the Ij can intersect each J,. Thus,
#{k : IyNJ, # 0forsomep = 1,2,...,d} < 2d. If L is a component interval of

d

(0,00) \ U Jp then 75 is e-degenerate for all § € L, by Lemma 4.8. Thus, by (68)
p=1

and (69), Proposition 4.15 implies that the number of I contained in L is at most the

number of signatures of subspaces of the same dimension. It is easily checked that this
number is at most md+ 1. Furthermore, the number of component intervals L is at most
d+ 1. Putting this together, we learn that K < 2d+ (md+1)(d+1). If m >2and d > 1
orm >1andd > 2, then K < 4md?, as desired. Else, if m = d = 1 then it is easily
verified that C(£, R, R*) < 2 for all ellipsoids £ C X ~R. O

Proof of Proposition 4.13. Our task is to show that C(Q, Ry, Ry) < 4md?® whenever
Qe K(X), and

Ry >16, Ry > max{(Vd)*"'R{™, (Vd)* ™ R}"}. (71)

We claim it is sufficient to show that C(Q', Ry, Ra) < 4md? for all compact Q' € K(X).
We check that this result implies Proposition 4.13, by contrapositive. Suppose that there
exists ) € K(X) such that C(Q, Ry, R2) > 4md?. Then, for K = 4md? + 1, there exist
compact intervals {I;}1<, and dilation invariant subspaces {V;}/<, such that

o I; > I;41 >0 for each j < K,
o 11, is Ry-transverse to Vj for each j < K, and
o Ty Ij)Q is not Ry-transverse to V; for each j < K.
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We may assume without loss of generality that r(I;) = 1. To obtain this reduction we
make the substitutions Q < 7,(7,)Q and I; < r(I;)"'1;.
Now fix £ > Ry and set

Q=0Qn¢B.

Note that Q € K(X) is compact. Furthermore, 7'5@ = 15Q N ErsB. By the form of 75, we
have 7B D B for § < 1. Thus,

ONEB = (sQNEsB) NEB=1sQNEB (5 < 1).

So, by Lemma 4.12; and by the second bullet point above, since R; < Ry < &, we have
that Q is Ri-transverse to V; for j < K. Further, if Tl(I].)fAZ were Rp-transverse to V;, we
would have that 7;( Ij)Q is Ro-transverse to Vj, contradicting our choice of V; in the third
bullet point above. Thus, 7 Ij)ﬁ is not Ra-transverse to V; for each j < K. We deduce
that C(Q, R1, Rs) > K > 4md=.

We reduced the proof of Proposition 4.13 to the claim that C(Q, Ry, Re) < 4md? for all
compact 2 € K(X). Fix a compact set Q € K£(X). By John’s theorem (Proposition 4.10),
there exists an ellipsoid € such that £ and Q are v/d-equivalent. By Remark 4.11,
C( Ri, R2) < C(E,VdRy, Ry /Vd).

We set R = v/dR; and R* = Ry/v/d. According to (71) we have R > 16 and R* >
max{R*™, R3?}. By Proposition 4.14, we have C(&, R, R*) < 4md?. This completes the
proof of Proposition 4.13.

4.5. Proof of Proposition 2.11

Fix x € R™ and let m > 2 be as in Section 2. Consider the Hilbert space P, given by
the vector space P equipped with the inner product (-, -),.. Define the dilation operators,
Tes @ Py — Py, given by 7, 5(P)(2) = 6 -™P(d(z — z) + ) for 6 > 0. Consider the
Hilbert dilation system X, = (Py, 7s,6)s>0, which satisfies the hypotheses of Section 4,
with d = dim(P,) = D, and for the choice of subspaces

X, :=span{my(2) = (z—2)%:|la|=m—-v} C P, forv=1,...,m,

so that 7, 5|x, = 07"id|x, .
Pointwise complexity given in Definition 2.10 satisfies

Co(Q, R, R*,6) < Co(Q, R, R*, 00) = C(Q, R, RY).

Thus, it is sufficient to prove that C.(Q, R, R*) < 4mD?. Note that C.(Q, R, R*) is
identical to the complexity Cx, (2, R, R*) of 2 with parameters (R, R*) with respect to
the Hilbert dilation system X ; see Definition 4.9.
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According to Proposition 4.13, if R > 16 and
R* > max{(vVD)*""'R*" (VD)* ' R*P} (72)

then C.(Q, R, R*) < 4mD?. Note D > m. So the inequality (72) is implied by R* >
D2D+1/2RAD a5 assumed in the statement of Proposition 2.11.
This completes the proof of Proposition 2.11. O

5. Whitney convexity and ideals in the ring of jets

We study the relationship between ideals and Whitney convex sets in the ring of jets.
Our goal is to give a proof of Proposition 2.9. By translation, it suffices to prove this
result for the jet space at = 0.

We first set the notation to be used in the rest of this section.

Throughout this section we write P to denote the vector space of polynomials on
R™ of degree at most m — 1. We write ® to denote the “jet product” on P defined by
PoQ=Jy(P- Q). Weset R =(P,0). We refer to R as the “the ring of (m — 1)-jets
at © = 0"

We will work with subspaces of R spanned by monomials. Let M be the set of
multiindices of length n and order at most m — 1. For A C M, let V4 := span{z®: a €
A}

Let D =dimR = #M.

For > 0, let 75 : R — R be the dilation operator 79 s defined in Section 2, charac-
terized by its action on monomials: 75(z®) = §1*I="z* (o € M).

Write |- | and (-, -) to denote the standard norm and inner product on R, for which
the monomials {x : @« € M} are an orthonormal basis for R. Thus,

(P,Q)=Y_ 0*P(0)-9°Q(0)/(a!)?,
la|<m—1 (73)

|P| = (P, P) (P.Q €R).
We obtain an orthogonal decomposition R = @;161 R; by setting R; := span{z® : |a| =
1} (the space of homogeneous polynomials of degree 7).
Recall the Bombieri-type inequality (see Lemma 2.1): For any P,Q € R,
1P OQI<CIPIQ], Cb=(m+1)L (74)
5.1. Renormalization lemma

Let ¢ = (¢1,C2,-..,¢n) € [1,00)™. Define a mapping T¢ : R — R by

Tc(P)(x) = P(Cll‘l,CQZ‘Q, .. ,Cn])n) (P ER, z= (1‘1,1‘2, . ,l‘n) S Rn) (75)
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Observe that T¢ : R — R is a ring isomorphism, i.e., T, (P ® Q) = T¢(P) ® T¢(Q) for
P,Q € R. Also,

[Pl < |Te(P)| < A™71- [P (PER, Ce[LA). (76)
We first verify (76) for a monomial P = m,, mq(x) = 2% (Ja] < m — 1). Note
that Ty (mqa) = (“mq, where we use multiindex notation: if ¢( = (¢1,...,¢,) and
a = (ai,...,a,) then ¢* =[], (. So m, is an eigenvector of T; with eigenvalue

¢*. Observe that |¢*| € [1,A™71] if ¢ € [1,A]" and |a| < m — 1, proving (76) for
P = my. The full inequality (76) then follows by orthogonality of the monomial basis
{mq} in R.

Lemma 5.1 (Renormalization lemma). Let € € (0,1), and D = dimR. Set A(e) :=
(2D/e)3D4. Given a subspace H C R, there exist a multiindex set A C M and ( €
[1, A(e)]™ with

coS(Omax(T¢(H),Va)) > 1 —e. (77)

Proof. The Euclidean inner product of p,q € R™ is denoted by (p,q) = >, pigi- An
n-tuple p = (p1,p2,--.,Pn) € N™ is said to be admissible if

(p,a) # (p,a’) for all distinct a, o’ € M. (78)

An application of the pigeonhole principle shows that there exists an admissible p €
N™ with

D
ol =i < (5 ) 1 (79)

Indeed, let K := (?) 4+ 1. We want to show that there exists an admissible p €
{1,2,...,K}". For each pair of distinct multiindices o, o’ € M, the number of p €
{1,2,..., K}" such that (p,a — /) = 0 is at most K"~!. There are (?) many pairs of
distinct multiindices (o, o) € M x M (recall: D = #M). Since K™ > (?)K”fl7 there
exists an admissible p € {1,2,..., K}".

Fix an admissible p = (p1,p2, ..., pn) € N™ satisfying (79).

Let 1o := 1+ (p,a) € N for « € M, and let M := mD?. Thanks to (79),

1< 9o <1+ af - [plleo

§1+(m—1).(<§)+1>§M (v e M). (80)

Let PM be the vector space of univariate polynomials p(t) of degree at most M. We
define an injective linear map ® : R — PM, given by
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®(P)=h, where h(t) =t  P(t", P2 ... tP").

Observe that ® sends the monomial my(z) = z® in R (o« € M) to the monomial
ko(t) := t¥= = t1+{Pa) Note that k, is in PM, and thus ® : R + PM is well-defined,
thanks to (80). To see that ® : R — P is injective, recall that p is admissible, thus,
Yo # Yo for distinet o, o/ € M.

Let Y = ®(R) = span{k, : a« € M} C PM. We equip Y with an inner product so
that {k, : @ € M} is an orthonormal basis for Y.

Therefore, ® : R — Y is an isometry, because ® maps the orthonormal basis {m,, :
a € M} for R to an orthonormal basis for Y.

Define a linear map 73 : Y — Y by 7Y (f)(t) = f(t/6) for f € Y (6§ > 0). The
basis {k, : @ € M} diagonalizes the map 7¥; in fact, 7) (ky) = 6 ¥ok,. We have
Y = @, crspan{ka}. These remarks and (80) imply that Y = (Y, 7} )s>0 is a Hilbert
dilation system satisfying the hypotheses of Section 4 for m = M and d = dimY = D.
Further, the Hilbert dilation system Y is simple (see Definition 4.1) because 1, # 1y
for a #£ o'

Let H be a k-dimensional subspace of R, and let € € (O7 %) Set g := (e/QD)
We apply Proposition 4.3 to the Hilbert dilation system ), subspace ®(H) C Y, and
interval I = [do, 1]. We obtain a subspace ¥ C Y and a number 4 such that

DE+2

0<dy<bd<1, (81)
Y is invariant under 7 for all § > 0, (82)
c08(Omax (Y, 7} ©(H))) > 1 —e. (83)

If § >0and ¢ = (67P1,67P2,...,07P") then 77 0o ® = §71® o T;. In particular,
7Y (®(V)) = ®(T¢(V)) for any subspace V C R. Thus, (83) implies that

N

€08 (Omax (V, ®(T:H))) > 1 —€, where ¢ = (677,0772,...,077"). (84)

From (82) and the definition of 7}, we see that Y is the span of univariate monomials.
Because @ is injective and ¢ maps the monomials m, to monomials k,, we deduce that
®~1(Y) is the span of monomials; that is, ®~(Y") = V4 for some A C M. Because ® is
an isometry, we learn from (84) that

co8(Omax(Va, T H)) > 1 —e.

Thus we have proven condition (77) for ¢ = ¢ and the A determined above.
Using (79), (81), and the definition of Jy, we see that (= (fl, .. ,fn) =
(6=P1,...,67P») satisfies {; > 1 and

) oD (Dk+2)-D? oD 3D*
&< b5 :(_) <<_) SAQ  (i=12....n)

€ €
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Therefore, € [1,A(e)]”, and the lemma is proven. 0
5.2. Whitney convexity and quasiideals

We recall the definition of Whitney convexity. We take z = 0 in Definition 2.7. We
write {2 is A-Whitney convex to mean that € is A-Whitney convex at z = 0. Define
XoY ={PoQ:PeX, QeY} for subsets X, Y C R. Let Bs C R be the unit ball
with respect to the |- |p s-norm on R, and let B = By be the unit ball with respect to the
standard norm |- | =|-]p,1 on R. A closed symmetric convex set 2 C R is A-Whitney
convex provided that (2N Bs) ©® Bs € Ad™Q for all § > 0. By specializing this condition
to 6 = 1, we obtain: If 2 C R is A-Whitney convex then

PeQnNnBandQeB = POQ e AQ. (85)

We note that these conditions are a quantitative relaxation of the notion of an ideal in
R. Indeed, any ideal is an A-Whitney convex set for any A > 0.

Our next lemma gives the most basic properties of Whitney convexity. Given 2, Q' C
R, we write Q ~, Q' (Q and Q" are A-equivalent) for A > 1 to mean that A= C Q' C
AQ.

Lemma 5.2. Let A > 1. The following properties hold:

The unit ball B C R is Cy-Whitney convex, for Cy, = (m + 1)L

If Q1 ~x Qo and Q1 is A-Whitney convex then Qa is A2 A- Whitney convex.
If Q1 and Qs are A-Whitney convex then Q1 N Qs is A-Whitney convex.
If Q is A-Whitney convez then 159 is A-Whitney convex for any § > 0.
If Q is A-Whitney convex and & > 1 then £Q is A-Whitney convex.

cL e

Proof. Recall 75 : R — R is the dilation operator 79 s defined in Section 2. Recall our
notation that Bs = By s and B = By,1 = Bi. Then identity (10) states that 7,85 = Bs/,
for p,§ > 0. In particular, for p = §, we have Bs = 75-1 5.

‘We make use of additional set inclusions in the proof. Note that 75 satisfies the identity
75(P ® Q) = d™75(P) ® 75(Q) for P,Q € R. Thus, 75(X ©Y) = 6"75(X) ® 75(Y) for
X, Y C R. We also make use of the inclusion (X NY)0Z C (X0 Z)n (Y © Z) for
XY, ZCR.

Proof of property 1: If § > 1 then B C Bs C 6™B (see (8)), so

(BN Bs)® (Bs) =B Bs C6™(B& B) C Cyo™B,

where the last inclusion is a consequence of (74).
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If § < 1 then Bs C B (see (9)), and so

(BNBs) ®Bs =Bs ©Bs =15-1B6 15-18
=0"75-1(BOB) C 6"75-1(CpB) = Cpd"Bs € Cpd™B.

Thus, (BNBs)©Bs C Cpd™B in both cases 6 > 1 and ¢ < 1. Therefore, B is C,-Whitney
convex.

Proof of property 2: Suppose €y is A-Whitney convex. Then for any ¢ > 0, (2; N
Bs) ® Bs € A§™Qy. If Q1 ~y Qa, we have A™1(Qo N Bs) © Bs € A6y, thus, Q is
AX2-Whitney convex.

Proof of property 3: Suppose that ; and Q5 are A-Whitney convex. Then, for any
0>0

((Ql n Qg) N 65) o Bs C ((Ql n 85) ® 85> n ((Qg N B(;) ® 65)
C A NAIQ = AS™(Q1 N Qg).

So, 1 N Qy is A-Whitney convex.
Proof of property 4: Suppose {2 is A-Whitney convex, i.e., (RNB,) © B, C Ap™ for
any p > 0. Note, for any d > 0,
75((Q2NB,) @ B,) =" (1sQ N 158,) © 158,
Thus, applying 7s to both sides of the A-Whitney convexity condition, we learn that
0" (msQNT5B,) © 158, € Ap™TsQ (p, 6 >0).
But 758, = B,/s. By making the substitution p <- p/d, we learn that

(152N B,) © B, € Ap™ 150 (p,6 > 0).

Thus, 75 is A-Whitney convex for any § > 0.
Proof of property 5: Suppose 2 is A-Whitney convex. Then for any § > 0, (2N Bs) ©
Bs C Ad™Q. Thus, (EQNEBs) © Bs € Ad™EN. As € > 1, we have Bs C £Bs, thus,

(EQNBs) ©Bs T AS™EQ.
So, £ is A-Whitney convex. 0O

Next we introduce a concept relating the ring structure of R = (P, ®) and the geo-
metric structure of R.

Definition 5.3. Let € > 0, and let H be a subspace of R. Say that H is an e-quasiideal if
for all P € H,(Q € R there exists P € H such that
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P—PoQ<dP|-|Ql.
Equivalently, H is an e-quasiideal if
(HNB)®BC H + €B.

Much like Whitney convexity, the notion of a quasiideal is a quantitative relaxation
of the notion of an ideal in R. Indeed, one easily checks that a subspace H of R is an
ideal if and only if H is an e-quasiideal for all e > 0. By (74), any subspace of R is an
e-quasiideal for e = C, = (m + 1)!.

Lemma 5.4. Let A > 0 and e € (0, 1), let H be a subspace of R, and let Q be a closed sym-
metric convex subset of R. Suppose that Q is A-Whitney convex. Suppose the following
conditions are met.

(i) QD HNB.
(i) Q C H + €B.

Then H is an A - e-quasiideal.

Proof. We have to demonstrate that (HNB)®B C H+¢e¢AB. Let P € HNB and Q € B.
Condition (i) implies that HN B C QN B. Thus, P € QN B and Q € B. Applying
condition (85), we have P ® @Q € AQ.
Thus, by condition (ii), PO Q € A(H +eB) = H+¢AB. Since P HNB and Q € B
are arbitrary, this completes the proof. O

A continuity argument shows that every e-quasiideal is within distance C(e) of an
ideal, with lim._,o C'(¢) = 0 (here distance refers to the distance between subspaces; see
Section 3.2). In the next lemma we establish a weaker statement, with explicit constants,
which is sufficient for our purposes: If an e-quasiideal I is close enough to a subspace of
the form V4 = span{z® : @ € A}, then the multiindex set A C M is monotonic. (For the
definition of monotonic sets, see Definition 2.5.) Further, if 4 is monotonic then V4 is
an ideal (see Lemma 2.6). Consequently, if an e-quasiideal is close enough to a subspace
spanned by monomials then it is also close to an ideal.

We view the next lemma as a robust version of the property that A is monotonic if
V4 is an ideal (see Lemma 2.6).

Lemma 5.5. Let Cp, = (m + 1)!. Let n < # and € < %. Let I be an e-quasiideal in R,
b
and let A C M satisfy

coS(Omax (I, V4)) > 1—n. (86)

Then A is monotonic.
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Proof. Recall that the monomials m, (x) := 2® (o € M) form an orthonormal basis for
R, and recall that V4 = span{m,, : a« € A}.
By definition of the maximum principal angle, condition (86) ensures that
My, (g)] = (1 —n)lg| for all g € 1. (87)
On the other hand, by symmetry we have cos(0max(Va,I)) > 1 —n, which implies
Iz (y)l = (1 —n)ly| for all y € Vaa. (88)
Fix a € A (arbitrary) and consider the monomial m,, € V4. Set y, = IIym,. By (88),
|ya| > (1 - n)'ma| =1-n.

Thus, by orthogonality of y, and y, — m., and the Pythagorean theorem,

‘ya - ma‘ = \/|ma|2 - ‘ya|2 < \/1 - (1 - 77)2 < V 277'
Of course, also
Yol < [mal=1.

Now fix § € M with §+ a € M (arbitrary). Then mg © my = Mma+p. By the Bombieri-
type inequality (74),

|ya ©mg _ma+ﬁ| = |(yoc _ma) ®m5| < Cb|ya _ma| ) |m,3|

(89)
< \/%Ob
Because I is an e-quasiideal, and y, € I, there exists go3 € I such that
Gap — Yo ©mp| < € |yal - [mg| < e. (90)
By the inequalities (89), (90), n < ﬁ, and € < %, we have
b
1Gap — Matps| < V/20Ch +€ < (4C,) 10y + € < 1/2. (91)

In particular,
|Gasl < [Matpl +1/2<2.
Set Gug = v, qap € Va. By (87), and given that gup € I,

|a\a5| > (1 - 77)|Qa5|'
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Thus, by orthogonality of Gos and gag — s, and the Pythagorean theorem,

908 = Gasl = \/1dapl® = [@apl* < V1 = (1 =n0)?|gas]
< V20|qap| < v20-2 <1/2,

where the last inequality uses that n < 3216‘3 < 3% Therefore, from (91),

|Gap — Ma+p| < 1. (92)

Because the monomials {m, : v € M} form an orthonormal basis for R, and because
Jop € Va4 =span{m,, : v € A}, we see that (92) implies that o + 5 € A.

We have shown that o + 8 € A for arbitrary multiindices o € A, 8 € M such that
B+ a € M. Thus, A is monotonic. O

Lemma 5.6. There exist controlled constants ¢y € (0,1/8) and Ry > 1 such that the
following holds.

Let H C R be an e-quasiideal for 0 < € < €.

Then H is Ry-transverse to VAl for some monotonic set A C M.

Proof. Let n:= 32102
b
Renormalization lemma (Lemma 5.1) to the subspace H C R with ¢ in the statement

= 32((m1+1)!)2 < % Then 7 is a controlled constant. We apply the
of this lemma taken equal to 1. Set A = (2 /n)3P *, which is a controlled constant. Also
set €g := %Alfm and Ry := 2A™~1, which are controlled constants.

By the Renormalization lemma there exist a multiindex set A C M and a vector
¢ =(C1,---,Cn) € [1,A]" satisfying

€0S(Omax (TcH,VA)) > 1 — . (93)

(See (75) for the definition of the mapping T¢ : R — R.)
Using ¢ € [1, A]™ and (76), we have

BC T (B) C A" 'B. (94)
By assumption, H is an e-quasiideal in the ring R for € < ¢y. Thus,
(HNB)®BC H +eB. (95)
Since Ty : R — R is a ring isomorphism, we have
T((H N B) © B) = (Te(H) N T,(B)) © Te(B).

Thus, applying T, to both sides of (95), and using (94), we obtain
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(Te(H)NB)©BC Te(H) +eA™'B
Therefore, T¢H is an €¢’-quasiideal in R, with ¢ = A" 'e < A™ ¢, = §. Combining
this with (93), we apply Lemma 5.5 to deduce that A is monotonic.

Now, (93) holds with n < %. So, coS(0max(T¢ H, V4)) > 1/2. By Lemma 3.9, we deduce
that T¢ H is 2-transverse to V1. By (76), we have A'=™|P| < \T{l(P)| < |P| for P € R.
Thus, by Lemma 3.12, we learn that H is 2A™ !-transverse to T{ IVj(. Finally note
that Vj is spanned by monomials, and each monomial is an eigenvector of T{ 1 thus
T{le = Vj. Therefore, H is 2A™~'-transverse to Vj. This concludes the proof of the

lemma. 0O
5.8. Proof of Proposition 2.9

By translation invariance it suffices to prove Proposition 2.9 for the case x = 0. Thus,
we work in the ring R = (P, ®) of (m — 1)-jets at = = 0.

Let A > 1. We first prove Proposition 2.9 under the assumption that = & C R is an
ellipsoid that is A-Whitney convex (at = 0). We then extend the result to an arbitrary
convex set 2 C R that is A-Whitney convex (at = 0).

Let €y € (0,1/8) and Ry > 1 be the controlled constants in Lemma 5.6. Set e = €9 /A €
(0,1).

Let £ C R be an ellipsoid that is A-Whitney convex. We claim there exists 6 € [dg, 1],
for ¢ := %GQD, such that 75€ is e-degenerate. To see this, let Jy,...,Jp be intervals as
in Lemma 4.8. Given that r(J,)/I(I,) < €2 for all p, there exists § € [Jo, 1]\, Jp- This

0 is as required, by Lemma 4.8. Note that
8o = O(exp(poly(D)))A~2P. (96)

By Lemma 4.7 (applied for I = {¢}), there is a subspace H C R with

75 D HN (2) '8, (97)
7€ C H + €B. (98)

In particular, from (97),
7€ D HNB. (99)

By property 4 of Lemma 5.2, and because £ is A-Whitney convex, we have that
75€ is A-Whitney convex. (100)

Using (98)—(100) and the fact ¢y = €A, we apply Lemma 5.4 to deduce that H is an
€o-quasiideal. Thus, by Lemma 5.6, there exists a monotonic set A C M such that, for
W =Vj%,
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H is Ro-transverse to W. (101)

Note that W = Vj{ = Vg4 is a DTT subspace because A is monotonic — see Lemma 2.6.
From (98), (101), and Lemma 3.11, we have

TsENW C(H +eB)NW C eRoB C RoB,
and from (99), (101), we have
Ry'BAWL CTly . (HNB) C Iy (156 N B).

Therefore, 75€ is Ry-transverse to W.

Recall § € [, 1], and so 65*|P| < |75 '(P)| < |P| for P € R. Also, 7, 'W = W,
since W = V4. is spanned by monomials. By Lemma 3.12, £ is Z-transverse to W, for
Z = Z(A) := Rod;™ > 1. Note that Z = O(exp(poly(D)))A*™P  since Ry is a controlled
constant and by the form of §y in (96).

Thus, if £ is an A-Whitney convex ellipsoid, we have produced Z = Z(A) > 1 and a
DTI subspace W such that £ is Z-transverse to W. This establishes Proposition 2.9 for
ellipsoids.

Now suppose §2 C R is A-Whitney convex. Set Q= QNEB, for € > 1 to be determined
below. By John’s theorem (Proposition 4.10) there is an ellipsoid £ that is v/ D-equivalent
to €.

From properties 1, 3, and 5 in Lemma 5.2, Q is A,-Whitney convex for A, =
max{A, Cy}. From property 2 in Lemma 5.2, £ is DA,-Whitney convex.

By the established case of Proposition 2.9 for ellipsoids, there exists Z > 1 and a DTI
subspace W C R such that £ is Z-transverse to W, where

Z = O(exp(poly(D))) (DAL)*™ = O(exp(poly(D))) A>"P.

Because ~p €, we have that Q is ZD-transverse to W — see Remark 4.11.

Recall that Q = QN &EB. We now fix & > ZD. Then Q) is ZD-transverse to W, by
Lemma 4.12. We note that ZD = O(exp(poly(D)))A2™P.

We take Ry in Proposition 2.9 of the form Ry = exp(poly(D)log(A)) satisfying Ry >
ZD. This completes the proof of Proposition 2.9.

6. Main extension theorem for finite sets

In the previous sections we proved the main technical results, Propositions 2.9 and
2.11.

We return to the task of proving the main theorems from the introduction. We first
state Theorem 6.1, our extension theorem for finite £ C R™. We develop additional
analytical tools in the next few sections. We prove Theorem 6.1 in Section 11.1, and we
prove Theorems 1.3 and 1.4 from the introduction in Section 11.2.
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Given a set E C R”, function f : E — R, integer k# > 1, and M > 0, we consider
the following hypothesis on f:

For all S C E with #(S) < k#
FH(E?, M) there exists F¥ € C™~L1(R") (102)
with F¥ = f on S and [|F¥||gm-1.1(®n) < M.

We refer to FH(k¥, M) as a finiteness hypothesis on f with finiteness constant k¥ and
finiteness norm M.
For F finite, let C'(F) denote the space of all real-valued functions on E.

Theorem 6.1. For m,n > 1, there exist constants C#* > 1 and k% € N with C# =
O(exp(poly(D))) and k#* = O(exp(poly(D))) such that the following holds. Let E C R"
be finite.

(A) If f € C(E) satisfies FH(k#, M) then || f|cm-1.1(5) < C*M.
(B) There exists a linear map T : C(E) — C™~LY(R™) satisfying that Tf = f on E
and ||TfHCm—l,1(Rn) < C#”fHCm—l,l(E) forall f € C(E).

7. The basic convex sets

In this section we introduce indexed families of convex subsets of P that lie at the
heart of the proof of Theorem 6.1.

Below, the seminorm of ¢ € C™~H1(R") is denoted by ||| := [|¢||cm—1.1®n)-

Fix a finite set £ C R™ and function f : E — R.

Given S C E, x € R™, and M > 0, let

os(x) :={Jzp:p€ cmbLR™), lell <1, ¢ =0 on S},

Ts(x, f,M):={J,F:FecC™ " (R"), |F| <M, F=fonS} (103)
Note that og(x) is a symmetric convex set in P, while I's(z, f, M) is merely convex. By a
compactness argument using the Arzela-Ascoli theorem, we see that og(z), I's(x, f, M)
are closed. When S = E, we abbreviate the notation by setting o(z) := og(z) and
D(x, f,M) :=Tg(z, f,M).
We define variants of the above convex sets indexed by an integer parameter £ rather
than a subset S C E. Given z € R™ and £ > 0, let

oe(z) == m os(x).
SCE
#(S)<(D+1)*

Given also M > 0, let
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Pg(fE,f7M) = m F3<£L',f,M).
SCE
#(S)<(D+1)*

A more explicit description of T'y(z, f, M) is given by:

Ty(x, f,M)={P € P:VSCE, #(S) < (D + 1), 3F¥ ¢ c™ L(R")

(104)
st. FS = fon S, JLFS =P, |[F¥| < M}.

Evidently, o/(x) is a closed, symmetric, convex set, whereas I'y(z, f, M) is closed and
convex.
The o-sets arise from the I'-sets by taking f = 0|g and M = 1; that is,

os(z) =Ts(z,0g, 1),
0@(1’) = Fg(.%‘, 0|E7 1).
Next we state the important properties of these sets that will be used in the ensuing
proof of Theorem 6.1. Many of these results are borrowed from [6]. In many cases we
point the reader to [6] for proofs.

The following standard result on convex sets is a key ingredient in our proofs. See
Lemma 8.1 for a related version.

Lemma 7.1 (Helly’s theorem (see, e.g., [27])). Let J be a finite family of convexr subsets
of R, any d + 1 of which have non—empty intersection. Then the whole family J has
non—-empty intersection.

Lemma 7.2. For any ¢ > 0 and My, My > 0,

Lo(z, f, My) + My - o¢(x) C Ty(z, f, My + Mz), and
F@(Iafa Ml) - F[(l‘,f, MQ) C (Ml + M2)U@(x)'

Similarly, for any S C E and My, My > 0,

FS<m7faM1)+M2'O-S<m)grs(x7f7M1+M2>7 and
Fs(xafa Ml) - Fs(xafa M?) C (Ml + M2)05($).

Proof. The proof is immediate from the definitions and the triangle inequality in
cmLYR™). O

Remark 7.3. Lemma 7.2 implies the following property: If Ty(x, f, M/2) # 0 then P, +
M. oy(x) CTy(x, f, M) C Py +2M - 04(z) for any P, € Iy(z, f, M/2). Thus, the convex
set Ty(z, f, M) is essentially a translate of a scalar multiple of the symmetric convex set

oe(x).
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Similarly, the convex set I's(z, f, M) is essentially a translate of a scalar multiple of
the symmetric convex set og(z).

Proposition 7.4 (cf. Lemma 2.11 of [6]). There exists a controlled constant Ag > 1 such
that for any S C E and z € R", the set og(z) C P is Ag- Whitney convez at z.

Proof. We follow the proof of Lemma 2.11 in [6], which gives the desired result for a
constant Ay determined by m, n. The proof uses the existence of a cutoff function 6 €
C™m=LYR™), with supp(6) C B(z,d/2), = 1 on a neighborhood of z, and ||8]| < Cpé~™.
Following the proof in [6], we learn that Ag is bounded by the product of a finite number
(independent of m,n) of the constants Cy, C' in Lemma 2.2 of [6], and Cr in Taylor’s
theorem. By Proposition 2.2 and Lemmas 2.15, 2.17 of the present paper, these constants
may be taken to be controlled constants. Thus, Ag is a controlled constant. O

Our next result relates the finiteness hypothesis FH (k#, M) on f (see (102)) to the
convex sets T'y(z, f, M), and establishes a “quasicontinuity property” of the indexed
families I'y and oy.

Lemma 7.5 (c¢f. Lemma 2.6 in [6], and Lemmas 10.1, 10.2 in [15]). If x € R™, (D +
DY < k%, and M > 0, then

f satisfies FH(k? , M) = Ty(x, f, M) # 0.
Furthermore, if x,y € R™", £ >1,§ > |z —y|, and M > 0, then

F@(xv.ﬂM) g Fffl(yv.ﬂM) +CTM 'Bz,5

(105)
oe(x) Coe-1(y) + Cr - By s,

where By 5 is the closed unit ball in the | - |4 5-norm on P.

Proof. Note that Ty(z, f,M) # 0 <= Ty(x,f/M,1) # 0. Further, f satisfies
FH(k#* M) <= f/M satisfies FH(k¥#) := FH(k#,1). Thus, for the first part of
the lemma, we reduce matters to the case M = 1. This result is stated in Lemma 2.6 of
[6]. The proof is a straightforward application of Helly’s theorem.

The second part of the lemma is stated in Lemma 2.6 of [6]. We refer the reader there
for the proof, also using Helly’s theorem. 0O

We define a notion of transversality in P with respect to the (-, -), s inner product.
Definition 7.6. Given a closed, symmetric, convex set 2 C P, a subspace V C P, R > 1,

x € R", and § > 0, we say that Q is (z,d, R)-transverse to V if (1) B,s/V C R- (2N
B.s)/V,and (2) QNV C R- B, s.



60 J. Carruth et al. / Advances in Mathematics 410 (2022) 108698

Remark 7.7. We note that Q is (z,d, R)-transverse to V if Q is R-transverse to V with
respect to the Hilbert space structure (P, (-, -),.5). To see this, we use the formulation of
transversality in a Hilbert space given in Corollary 3.8.

We note that € is R-transverse to V at z (in the notation of Definition 2.8) if and
only if Q is (x, 1, R)-transverse to V. Again, see Corollary 3.8.

Lemma 7.8 (¢f. Lemma 3.7 in [6]). If Q is (x,d, R)-transverse to V, then the following
holds.

o Tur(Q) is (x,d/r, R)-transverse to 1,,.(V).
o Ifd' € [k10, K] for some k > 1, then Q is (z,0', K™ R)-transverse to V.

Proof. For the first bullet point: Apply 7, , to both sides of (1) and (2) in Definition 7.6
and use the scaling relation (10) which states that 7, B, s = By 5/

For the second bullet point: In conditions (1) and (2) in Definition 7.6, use the in-
clusions B, 5 C max{1, (6/0")™ }Bg,s and By s C max{1, (6'/6)"} B, s from (8), and the
property that ANrB C r(AN B) if A, B are symmetric convex sets and r > 1. O

Lemma 7.9 (¢f. Lemma 3.8 in [6]). There exists a controlled constant 0 < ¢; < 1 such
that the following holds. Let V C P be a subspace, z,y € R™, § >0, and R > 1. If og(x)
is (x,6, R)-transverse to V and |z — y| < c1 2, then o(y) is (y,d,8R)-transverse to V.

Proof. The proof of Lemma 3.8 in [6] gives the desired result for a constant ¢; determined
ﬁ, with Cr the
controlled constant in Taylor’s theorem. Second, the following claim is used: If | — y| <

by m, n. This proof uses two conditions on ¢;: First, that ¢; <
c10 and ¢ is sufficiently small then %Bm; C Bys C %Ba:,é' To verify this claim, we
apply Lemma 2.12. We learn that if ¢; < ﬁ, with C5 15 the controlled constant C' in
Lemma 2.12, then |P|, s and |P|, s differ by a factor of at most 4 for |z —y| < ¢16. This
implies the desired inclusions for the unit balls B, s and B, s. We choose the controlled
constant ¢; < min{zd—, 55-—} s0 as to satisfy the conditions for this proof. 0O

Lemma 7.10 (cf. Lemma 2.9 of [6]). There exists a controlled constant C° > 1 so that,
for any ball B C R™ and z € %B, we have

opnB(2) N B, giamp) € C° - op(2).

Proof. The proof of Lemma 2.9 in [6] gives the desired inclusion for a constant C°
determined by m, n. This proof uses the existence of a cutoff function ¢ € C™~1L1(R"),
with supp(y) C B, ¢ = 1 on a neighborhood of z, and ||¢|| < C,6~™ (for § = diam(B)).
Following this proof, we learn that C is bounded by the product of a finite number
(independent of m,n) of the constants C,,, C' in Lemma 2.2 of [6], and Cr in Taylor’s
theorem. By Proposition 2.2 and Lemmas 2.15, 2.17 of this paper, these constants may
be taken to be controlled constants. Thus, C? is a controlled constant. O
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Lemma 7.11. Let S C E, for E C R" finite.

For z € R", let I, := {P € P : P(z) = 0} be the codimension 1 subspace of P
consisting of polynomials vanishing at z.

If z € R™\ S then os(z) has non-empty interior in P.

If z € S then 0g(z) C I, and o5(z) has non-empty (relative) interior in I,.

Proof. By translation invariance, it suffices to assume z = 0.

Suppose z = 0 ¢ S. Consider the basis {mq(x) = %} e m for P. We shall demonstrate
there exists € > 0 so that tem, € 05(0) for all & € M. Given that 0 € R™ \ S, there
exists § > 0 so that B(0,¢) is disjoint from S. Let 6 : R™ — R be a C'* cutoff function
satisfying # = 1 in a neighborhood of 0, and supp(d) C B(0,6). For & € M and € > 0,
let o (x) := femq(x)0(x). If € > 0 is picked small enough then ||oE||cm-1.1gn) < 1.
Note that gpﬁ vanishes on S, because 0 vanishes on S. Finally, we have Jo(cpi) = Femy,.
Thus, tem, € 05(0) for all & € M. Therefore, 0 € P is an interior point of og(0).

Suppose z =0 € S. Let Iy = {P € P : P(0) = 0}. Any function p € C"™"LY(R"™) of
seminorm < 1 that vanishes on S must satisfy ¢(0) = 0, hence, J,(¢) € Iy. We deduce
that og(0) C Iy. Consider the basis {mq(z) = 2*}4em+ for Iy, where MT := M\ {0} is
the set of all nonzero multiindices of order at most m — 1. Fix § > 0 so that B(0,d)NS =
{0}. Let 8 : R™ — R be a C* cutoff function satisfying § = 1 in a neighborhood of 0,
and supp(f) C B(0,6). Evidently, 6 vanishes on S\ {0}. For « € M™ and € > 0, let
¢E(x) := temqa(z)0(z). If € > 0 is picked small enough then [[pE||cm-11(gn) < 1. We
check that ¢ = 0 on S. Indeed, ¢ (0) = 0 because m,(0) = 0 for a € M*; meanwhile,
¢E vanishes on S\ {0} because 6§ vanishes on S\ {0}. Finally, we have Jo(pE) = tem,,.
Therefore, +em,, € o5(0) for all &« € M*. We deduce that 0 € I is an interior point of
05(0)in Iy. O

We finish the section by proving a version of Lemma 8.3 in [6] with controlled con-
stants.

Lemma 7.12 (¢f. Lemma 8.3 of [6]). Let Cy > 1 and ¢y € N. Let W be a Whitney cover
(see Definition 2.18) of a ball B C R™, and let N := #W < co. Suppose the following
condition is valid for every B € W:

Loo(z, fy,M) CTpnsp(x, f,CoM), forall x € (6/5)B, M > 0. (106)
Then a corresponding condition is valid on B:
Ty, (o, f, M) C Ty 5(x0, f,C1M),  for all z € B, M > 0. (107)

The constants C1, £y in (107) are given by Cy := C'Cy and €y := by + [%], for a

controlled constant C'. In particular, Cy is independent of the cardinality N of the cover

W.
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Proof. Let f: E — R and M > 0. Fix a point zo € B. Our goal is to prove (107) for
C1 > 1 to be determined below.
For each B € W, we fix zp € (6/5)B satisfying

xp =x9 < x0 € (6/5)B. (108)

(If o ¢ (6/5)B then we take xp to be an arbitrary element of (6/5)B.)

Fix an arbitrary P € I'y, (2o, f, M). We will prove that P € ', 5(2o, f, C1M). To do
so, we define a family of auxiliary convex sets to which we apply Helly’s theorem and
obtain the conclusion. These convex sets will belong to the vector space PV consisting
of tuples of (m — 1)-st order Taylor polynomials indexed by elements of the cover W. The
vector space P has dimension J := dim(P") = N - D. For each S C E, the convex set

Ks.py(S, M) C PW is defined by
K.p) (S, M) == {(Jup F)pew : F € C"" MY R"), |F|| < M,
F=fonS,J, F =P}
If #(S) < (D + 1) then P € Ty, (zo, f, M) C Ts(zo, f, M). Therefore, there exists
F e ¢ LY R™) with |F|] < M, F = fon S, and J,,F = P. Hence, (J,, F)pew €

IC(f,p)(S, M) Thus, IC(ﬁp)(S, M) 7& @ if #(S) < (D + 1)21.
If Sl, tee ,S!]+1 Q E, then

J+1
ﬂ K,p)(S;, M) 2 Ks,p)(S,M), for S =5, U---US;.

=1

If also #(S;) < (D + 1)% for all j, then #(S) < J(D + 1)% < (D + 1)*1, by definition
of £1. Consequently, by the previous remark, (s py(S,M) # (. Thus, given subsets
Sty Syp1 C B, with #(S;) < (D + 1)% for all j, we have

J+1

() Kir.p)(Ss, M) # 0.

j=1
Therefore, since dim(P"V) = J, by Helly’s theorem,

K= ﬂ ,C(ﬁp)(S,M)#@.
SCE
#(S)<(D+1)%0

Fix (Pp)pew in K. By definition of the sets ks p)(S, M), the following condition holds:
For any S C E with #(S) < (D + 1), there exists a function

F3 ¢ ¢ LYR™) with ||F¥|| < M,F% = f on S, JIOFS =P, (%)
and J$BFS = Pp for all B e W.



J. Carruth et al. / Advances in Mathematics 410 (2022) 108698 63

Using Condition () we establish the following properties: For all B, B’ € W,

(a) Pp=Pifz € ¢B.

(b) |Pp — Ppilyy.diamz) < C*M if BN EB’ # 0, for the controlled constant C! :=
11™Crp.

(c) There exists Fg € C™ H1(R") such that ||Fg|| < CoM, Fg = f on EN ¢B, and
JacBFB = Pg.

For the proofs of (a) and (b), consider the function F? arising in (+) for S = . For
the proof of (a), fix B € W with zo € ¢B. Then 25 = zg by (108), and Pp = J,, F? =
JoeF? = P by (), which yields (a). For the proof of (b), suppose $B N EB" # 0
for B, B’ € W. Note that xp € gB, Tp € gB’, and by the definition of a Whitney
cover, diam(B) and diam(B’) differ by a factor of at most 8. Therefore, |zp — xp/| <
S diam(B) + & diam(B’) < 11 diam(B). Thus, by (7), Taylor’s theorem (rendered in the
form (15)), and (*),

|PB — Pp|op diam(B) < 11™|Pp — Pprlop 11 diam(B)
=10"| T, F* — T, FO diam(B)
< 11™Cp||F)| < C' M.

For the proof of (c), note that (+) implies P € I'y,(zp, f, M) for all B € W. Thus,
by assumption (106), Pp € I'gqe (2, f, CoM) for each B € W. Then, by definition of
the set I's in (103), we complete the proof of (c).

Let {0} be a partition of unity adapted to the Whitney cover W, as in Lemma 2.20,
and set I := ZBGW 0pFp. We refer the reader to Lemma 2.20 for the conditions on
{65} used below. By properties (b), (c), and Lemma 2.21, we have (A) F = f on EN B
and (B) |\F||Cm,1,1(§) < CC'CyM < C'CoM for controlled constants C, C’. Since
suppblp C gB, Juo0p = 01if 2o ¢ gB; on the other hand, J,; Fp = J;,Fp = Pgp = P if
Tg € gB by (108) and properties (a), (c¢). Therefore, by a term-by-term comparison of
sums we obtain the identity

JeoF =" Juy0B Ouy JagFz =Y Juy0p O, P.
Bew Bew

Recall that > 5.y, 05 = 1 on B and zo € B. Thus, Y oew JzlB = Jo(1) = 1.
Therefore, (C) J,,F = P.

By an outcome of the classical Whitney extension theorem (see Lemma 2.4), we extend
F e Cm_l’l(é) to Fy € C™~LY(R™) satisfying Fy = F on B and

||F0||C"”*1’1(]R") < CHF”Cm—Ll(g) < C’C’/C(Qj\f7

for a controlled constant C' > 1. Then ||Fyl|gm-11rn) < C"CoM for C" := CC" a
controlled constant. Because Fy = F on B, properties (A) and (C) of F imply that
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Fy = f on ENDB and J,,Fy, = P. Since [Follem-11@®ny < C"CoM, we deduce that

P el 5(wo, f,C"CoM). This proves (107) with C; = C"Cy. O

8. Making linear selections

Fix a finite set £ C R". This section contains additional properties of the sets
Ty(x, f, M) and o¢(x), defined in Section 7, that will be used in the construction of
the linear extension operator T" in Theorem 6.1.

Below, the seminorm of ¢ € C™~1(R") is denoted by ||| := [|¢||cm—1.1(rn)-

Lemma 8.1 (Theorem 1.3 of [4]). Let F be a finite collection of symmetric convex sets
in RY. Suppose 0 is an interior point of each K € F. Then there exist Ky, ...,Kaq € F,
with

/cm---mcgdgz\/a(ﬂ IC).
KeF

Lemma 8.2. Fiz £ € N. For each y € R"™ there exists a set SY C E such that #(5Y) <
2D(D +1)* and 054 (y) € 2v/Doy(y).

Proof. Recall that
ou(y) = ({osy) : S CE, #(5) < (D+1)'}. (109)

Suppose first that y ¢ E. Then y ¢ S for all S C E. By Lemma 7.11 the sets
05 (y) have nonempty interior in the D-dimensional vector space P. Thus we can apply
Lemma 8.1 to the collection of sets og(y) C P for S C E with #(S5) < (D + 1)* to get
S1,...,S2p C E such that #(S;) < (D +1)* for each i and the following inclusion holds:

2D
ﬂ 0s,(y) C2VD - ay(y).

Let SY =51 U---USsp. Then ogy(y) C og,(y) for each i and so
osv(y) C2VD - oy(y).

Furthermore, #(SY) < 2D(D + 1)*, as claimed.

Suppose instead that y € E. Then y € Sy for some Sy C E with #(Sp) < (D+1)*. By
Lemma 7.11, the set og,(y) is contained in the (D — 1)-dimensional subspace I, = {P €
P :P(y) =0} of P. But o¢(y) C 0s,(y), so o¢(y) is contained in I,,. Set T5(y) = os(y)NI,
for S C E. Intersecting both sides of (109) with I, we have

ouly) = ({Fs) : S € B, #(S) < (D+ 1)}
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By Lemma 7.11, for each S C FE either og(y) has nonempty interior in P (if y ¢ S) or
os(y) has nonempty interior in I, (if y € S). Therefore, Ts(y) has nonempty interior in
I, for all S C E. Thus we can apply Lemma 8.1 to the collection of sets og(y) C I, for
S C E with #(S5) < (D+1)" to get S1,...,S2p-1) € E such that #(S;) < (D +1)" for
each i and the following inclusion holds:

2(D-1)
() @s.(y) S2VD - ou(y). (110)
i=1
Since og,(y) C I, we have
2(D—-1) 2(D—-1) 2(D—-1)
N as.=Ln| () os@®]2 (] o5 (111)
i=1 i=1 =0

Let S¥ = So U S1 U---USyp_1). Then oss(y) C 0g,(y) for each i = 0,1,...,2(D — 1)
and so, combining (110) and (111),

asu(y) € 2VD - ou(y).
Furthermore, #(SY) < (2(D — 1) + 1)(D + 1)* < 2D(D + 1)*, as claimed. O
Lemma 8.3. Fiz y € R™ and ¢ € N. There exists a linear map P} : C(E) — P such
that if f € C(E) satisfies FH(k¥, M) for some k#* > (D + 1)*3 and M > 0, then
PY(f) € Te(y,CeM). Here, Co = C'(D + 1)* for a controlled constant C'.
Proof. By Lemma 8.2, there exists SY C E with #(SY) < 2D(D + 1)¢ such that

osu(y) € 2VD - ou(y). (112)
Let SY U{y} ={z1,...,2n}, with xy = y. Then

N =#(SYU{y}) <2D(D+1)" +1 < (D + 1) (113)
Introduce the vector space P of all
P=(P,)1<u<n with P, € P for all p.

We define a quadratic function Q on PV by

0°(P, — P,)
=2 Z B2z, — x |2(m IBI) =D 1P = Pl (114)

p#v|B|<m—1 uFY
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Given a function f € C(E), we define W to be the subspace of P consisting of PepN
satisfying P,(z,) = f(z,) forall 1 < p < N —1and Py(zy) = f(zn) f ay =y € E.
Note that Q achieves a minimum on Wy at some point 13( f,y) € Wy that depends
linearly on f for fixed y. Letting P,(f,y) € P denote the yu-th component of P(f,y), we
define

Pey(f) = Pn(f,y).

We've constructed a linear map P/ : C(E) — P; it remains to show that P/(f) €
Te(y, f,CeM), with Cy as in the statement of the lemma, whenever f satisfies FH (k#, M)
for some k% > (D + 1)**3 and M > 0.

To this end, suppose f satisfies FH (k¥ , M) for k% > (D +1)**3 and M > 0. We will
demonstrate that there exists a function F € Cm~L1(R™) satisfying

|F|| <C"(D+1)"M, (115)
F= fon SY, and (116)
Jy(F) = P{(f) (117)

for a controlled constant C’.
First, we claim that Q(P(f,y)) < C2(D+1)%+4M2. By (113), #(S¥U{y}) = N < k*.

~

By assumption, f satisfies FH(k¥, M), so there exists a function F' satisfying

IF| < M, (118)
F=fonSY and (119)
Fy)=f(y) ifyekb. (120)

Define R := (R,,)1<,<n where R, := un(ﬁ) and {z, h<u<ny = SYU{y}. Then Re Wy,
due to (119) and (120). By Taylor’s theorem (see (15)), R satisfies

|Ry — Rula, 2, —a,) < Or||F|| < CrM - for all p# v. (121)
We use (114) and (121), and then (113), to get
Q(R) < N2 (CrM)? < C3(D + 1)*+* M2,
Since P(f,y) was chosen to minimize Q on Wy, we have
Q(P(f,y)) < C3(D +1)* M2, (122)

as claimed.
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From (122) we have

0°(Pu(f.y) = Po(f,9) ()] < C(D + 1) Mz, — [V

(123)
for £ v, 18] <m—1,

for a controlled constant C. Since (123) holds, the classical Whitney extension theorem
(see Proposition 2.3) guarantees the existence of a function F € C™~11(R") satisfying
unl*: = P,(f,y) for p = 1,2,...,N, and ||ﬁ||cmf1,1(Rn) < CwnC(D + 1)*M. Here,
Cywh is a controlled constant. Thus, the function F satisfies (115). Furthermore, (116)
follows because Jw“ﬁ = P,(f,y) for all u, and P(f,y) = (Pu(f,y))1<p<n € Wy. Finally,
(117) follows because Jy(ﬁ) = Jou(F) = Py(f,y) = P/(f). This completes the proof of
(115)-(117).

Given that f satisfies FH (k% , M) for k# > (D+1)**3, we apply Lemma 7.5 to deduce
that Fg+2 (y, f, M) 75 0.

Fix Py € Tyya(y, f, M). Given that #(SY) < (D + 1)**2 (see (113)), we have Py €
Lsu(y, f, M).

From (115)-(117), we have that P}(f) € T'sy(y, f,C'(D + 1)*M). By Lemma 7.2 we
deduce that P§ — P/(f) € C"(D + 1)*Mosy(y) for a controlled constant C” = C” + 1.

By (112), Py — P/(f) € C(D +1)*May(y) for a controlled constant C.

But PY € Tyta(y, f, M) C Ty(y, f, M). By Lemma 7.2, we deduce that

PY(f) = Py + (PY(f) — BY) € Tely, £, M) + C(D + 1) Moy(y)
g Ff(ya f?U(D + 1)ZM>7

for a controlled constant C = C + 1. This proves the lemma with C, = C(D +1)%. O

Lemma 8.4. Suppose X is a d-dimensional Hilbert space with norm |-|. Let B denote the
unit ball of X. Let V' be a subspace of X and let Q € K(X) be a symmetric convez set
in X. Suppose that B/V C R(QNB)/V. Then there exists a linear mapping T : X — X
such that ||T|lop < dR, v —Tx € V and Tx € dR|x|(QN B) for all x € X.

Proof. Let {e; : 1 < j < d} be an orthonormal basis for X. Given that B/V C R(QN
B)/V, for each e; € B we can find w; € R(2 N B) such that e; —w; € V. In particular,
|w;| < R for all j.

Given z € X, write z = ), ¢cje; for ¢; = (z,¢;) and define Tz := 3, cjw;. Note
mas; ;| < (5, )V = Jal.

We have v — T'x = 3 cj(ej —w;) € V. Also, by the triangle inequality,

d
|Tx| < max el - Z lw;| < Rd|x|.

=1
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Thus, ||T]|op < Rd, as desired. Using that w; € R(Q2N B) and |¢;| < |z| for all j, and by
symmetry and convexity of Q N B,

d d
Tz=>Y cjw; €Y || R(ANB) C dRJz|(QN B).
j=1 j=1

This completes the proof. 0O

Lemma 8.5. Fizz,y € R, L€ N, R>1,Cy > 1,8 > |x—vy|, and a DTI subspace V C P
such that o(x) is (x, 010, R)-transverse to V. Suppose that f satisfies FH(k#, M) for
k#* > (D+1)"*2 and M > 0. Let Py € T'¢(y, f, M). Then there exists a constant Co>1
and P' € Ty_1(z, f,CoM) such that

Pr-—PeV,

P' — Py € C;MB,.s,

P’ depends linearly on f and Py,

Ci = (RD +2) - Cm\/C2 4+ 4DC? |, where Cy—q = C'(D + 1)*~! is the constant
arising in Lemma 8.5.

- =

Proof. We apply Lemma 8.3 to find a linear map P} , : C(E) — P. Given that f
satisfies FH (k#, M) for k# > (D + 1)*2, we have P? ,(f) € Ty_1(z, f,Co_1M).

By Lemma 7.5, and 6 > |z —y|, Te(y, f, M) C Ty_1(z, f, M) + Cr M B, 5. Thus, given
that Py € Ty(y, f, M), there exists Q € T'y_1(z, f, M) with

|[Po — Qls,s < CrM. (124)

By Lemma 7.2,
Q — P@w_l(f) S (lel -+ 1)M0’g,1(l’) g QCE,1M04,1($). (125)
Since oy_1(z) is a closed symmetric convex set, there exists a vector subspace V% ; C P
and a quadratic form ¢7 ; on V¥, such that & := {z € Ve, s qi < 1} satisfies
ECop_1(x) C VD -E. This is a consequence of the John ellipsoid theorem (see Proposi-

tion 4.10). Here, V7, is the linear span of oy_1(z), and & is the John ellipsoid of oy_1 (z)
in V¥ ;. By (125),

Q - Pffl(f) € ‘/foh

126
4/_1(Q — Pf_1(f)) <4DC}_  M?>. 120

We let Q* € P be the minimizer of the quadratic function

q0(R) = qi_1(R = P4 (f)) + [P0 — RI3 5,
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for R € P ranging in the affine subspace P} (f) + V;* ;. Then Q* depends linearly on
Py and f, and Q* € PP ,(f)+ V;",. Due to (124) and (126),

q0(Q) < 4DC? | M? + CAM?* = Ci M?,

with Cy = /4DC? | + C2, and Q € P¥ ,(f) + V& ,. Thus, by definition of Q* as the
minimizer of gy on PZ | (f) + V&1, ¢0(Q*) < qo(Q) < C2M?, and thus

7 1(Q" = PLy(f)) < CIM? and [Py — Q"|z6 < CoM.

These inequalities imply Q* — Pf | (f) € C¢Moy_1(z) and Py — Q* € C/MB, 5. By
Lemma 7.2,

Q" = P{(f) +(Q" = PFy(f) € Dema(a, f, Coma M) + CeMoy—y (2) a27)
Q F[_l(,fﬁ, f, QCgM)
(we've used that Cp = /4DC? | + C2% > C,_;1). We've succeeded in producing Q* €
To_1(x, f,2C, M) satisfying Py — Q* € égMBw)g and Q* depends linearly on (Pp, f). It
remains to modify Q* to obtain a polynomial P’ such that P’ satisfies the same properties
(potentially for larger constants) and P’ — Py € V.
Since o(x) is (x, C10, R)-transverse to V and o(x) C o4—1(x),

B:.cys/V € R(o(z) N Br,cys)/V S R(oe—1(x) N Bz cys5)/V.

We equip the vector space P with the inner product (-, ); ¢,s5. Then B, ¢, is the cor-
responding unit ball of X. By the above inclusion and Lemma 8.4 there exists a linear
map 1" : P — P satisfying

TP|s.c,5 < RD|P|s.0,5, (128)
TP € RD|P|,.c,5(00-1(z) N Ba.cys), (129)
TP—-PeV foral PeP. (130)

Given that Py — Q* € C’gMBw,g, we find that
1Py — Q*|u,chs < |Po — Q|us < CoM. (131)

We set P’ = Q* + T(Py — Q*). Then P’ depends linearly on (P, f). By (128) and
(131), we have |T(Py — Q*)|..c,s < RDC¢M. Thus,

|P' — Pole.cys < 1QF — Polu.cys + |T(Po — Q)|w.cys < CoM + RDCyM.

Therefore,
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P —-P € (RD + 1)C_'zMBm’clg - GEMBL(;

with Cp := (2 4+ RD)C,CI". Here, the last set inclusion uses (8).
By (130), we have

P'—Py=(Q —P) -T(Q —P)eV.
Finally, by (127), (129), and (131), we have

P =Q*+T(Py— Q") € Ly_1(z, f,2C;M) + RD|Py — Q*|4,c1500—1()
- Fg_l(’x, 1, QCgM) + RDC’@MO'g_l(SC)
- Féfl(xu fa (2éf + RDC_’Z)M) c ].—‘[71(.%, fv 62M>7

where the second to last inclusion uses Lemma 7.2.
This completes the proof of the lemma. O

9. The local main lemma

Let E C R™ be a finite set. By Proposition 7.4, o(z) := og(z) is Ap-Whitney convex
at z for all z € R™. Here, Ay > 1 is a controlled constant. By Proposition 2.9 with
A = Ap we find a constant Ry = O(exp(poly(D)log(Ay))) such that

if Q@ C R, is Ap-Whitney convex at x € R™
then there exists a DTI subspace V C R, (132)

such that € is Ry-transverse to V at x.

The constant Ag is controlled, so log(Ay) = O(poly(D)), thus Ry = O(exp(poly(D)),
so Ry is also controlled. Let ¢; be the controlled constant from Lemma 7.9. Define new
controlled constants Ry > Rs > Ry > Ry > Ry and C as follows.

Ry =8Rg, Ry:=D?PT2RIP Ry:=10mR,, Ry:=8""'Ry

B (133)
C =100c; ' R3

Lemma 9.1. Let B be a closed ball in R™. There exists a DTI subspace V- C P such that
o(2) is (z,C diam(B), Ry)-transverse to V for all z € 100B.

Proof. Let xy be the center of B. We shall use the following property: If Q2 C P is
A-Whitney convex at zp, then 7, s(€2) is A-Whitney convex at x¢. (See Lemma 5.2
for the corresponding property when o = 0.) By Proposition 7.4, o(xg) is Ag-Whitney
convex at o, thus, 7, (& diam(p))-1 (0(20)) is Ao-Whitney convex at zo. Thanks to (132),
there is a DTT subspace V' such that 7, & giam(s))-1(0(20)) is Ro-transverse to V' at xo.

Thus, 7, (& diam(B))-1(0(20)) 18 (20, 1, Ro)-transverse to V. Therefore, by Lemma 7.8,
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o(zo) is (wg, C diam(B), Ry)-transverse to Tuo,C diam(p) (V) = V', where the set equality
holds because V' is DTT (in particular, V' is dilation invariant at o). Given z € 1008
(arl?itrary), we have |z — zo| < 100diam(B) < clcd+l§(3) (observe that 100 = Clh‘% <
clR%). By Lemma 7.9, we conclude that o(z) is (z,C diam(B), 8Ry)-transverse to V.

This completes the proof of the lemma. O

Definition 9.2. Given a ball B C R™ and finite set £ C R”, the local complexity of E on
B is the integer quantity

C(E|B) = sup C,(o(x), R, Ry, C diam(B)).
€D

See Definition 2.10 for the definition of the pointwise complexity C.(Q, R, R*,d) of a
symmetric convex set 2 C R, at = at scale below §. Evidently, pointwise complexity is
monotone in § in the sense that C,(Q, R, R*,§) < C,(Q, R, R*,§’) for § < §’. This implies
the following monotonicity property of local complexity.

Corollary 9.3. If By C Bs, then C(E|B;) < C(E|Bs).

Due to the relation Ry = D?*P+Y/2R4P and inequality R; > 16 (see (133)), we can
apply Proposition 2.11 to deduce the following result:

Corollary 9.4. For any ball B C R™ and finite set E C R", C(E|B) < 4mD?.
We provide an equivalent formulation of complexity in the next result.

Lemma 9.5. Let E C R™ (finite), a ball B C R™, and an integer J > 1 be given. Then
C(E|B) > J if and only if there exists x € B, and there exist subspaces V; C P and
intervals I; C (0,diam(B)] (7 =1,2,...,J), such that the following conditions hold.

o 1y >I1r>--->1;>0.

o Tun,)0(T) is (x,C, Ry)-transverse to Vj.

. ’7'17[([].)0(1') is not (z,C, Ry)-transverse to V.
o V; is dilation invariant at x.

Proof. Evidently, C(E|B) > J if and only if C,(co(z), Ry, Re, C diam(B)) > J for some
x € B. By Definition 2.10, the second inequality is equivalent to the assertion: There
exist subspaces Vi,...,V; C P and intervals I; > --- > I; > 0 satisfying that, for all j,

. Tmyr(fj)a(:c) is (z,1, Rq)-transverse to V.

. Tx,l(fj)g(z) is not (x,1, Re)-transverse to Vj.
« I; C (0,C diam(B)].

o V; is dilation invariant at x.
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Here, in the application of Definition 2.10, we use that a convex set Q is (x,1, R)-
transverse to V if and only if Q is R-transverse to V at = (see Remark 7.7).

We apply the first conclusion of Lemma 7.8 (for r = C~!) to the first two bullet points
above. We learn that these conditions are respectively equivalent to the following:

. Tzvr(fj)/éa(:c) is (x,C, Ry)-transverse to T, -1V

.« T, l(fj)/éa(x) is not (x, C, Ry)-transverse to Tp.0-1Vj-

Because Vj is dilation invariant at z, we have 7, 51 V; = V;. Let I; := {6/C : § € I;}, 50
that I(I;) = I(I;)/C and r(I;) = r(I;)/C. Then I; > --- > I; > 0, and I; C (0, diam(B)]
for all j. The previous two bullet points are equivalent to the assertion that 7, ()0 ()
is (z,C, Ry)-transverse to Vj, and 7, 1,y0(z) is not (x,C, Ry)-transverse to V;. This
completes the proof of the lemma. O

We will see that Theorem 6.1 is a consequence of the following:

Lemma 9.6 (Local main lemma for K ). Let K € Z with K > —1. There exist constants
C# = C#(K) > 1 and ¢* = (#(K) € Z>o, depending only on K, m,n, with the following
properties.

Fix a finite set E CR"™, a closed ball By C R™, and a point xy € By.

Suppose C(E|5By) < K. Then there exists a linear map T : C(E) x P — C™~L1(R")
such that the following holds:

Suppose (f, Py) € C(E) x P and M > 0 satisfy that Py € Tz (xo, f, M), or equiva-
lently, by (104), the following condition holds: For all S C E with #(S) < (D—|—1)£# there
exists F'¥ € O™~ LY R™) with F¥ = f on S, J,,F° = Py, and || F¥|

Then T(f7 PO) = f on EﬂBo, J{L’(] (T(f7 PO)) = P(), and HT(f, Po)Hcm—l,l(Rn) < C#M

Here, C*#(K) = AE+D*+1 gnd (#(K) =X - (K + 1) for all K > —1, where A > 1 is
a controlled constant (O(exp(poly(D)))) and X € N is O(poly(D)).

cm—1,1(Rn) <M.

Remark 9.7. The conclusion of the Local Main Lemma for K implies that Py, €
T EnB, (7o, f,C* M) as long as C(E[5By) < K and Py € T'px(xo, f, M). To see this,
take F' = T(f, Py) in the definition of T'gnp,(---). Thus, we derive the following as a
consequence of the Local Main Lemma for K: If C(E|5B) < K then for any f € C(E)
and M > 0,

Ty# (2o, f, M) € Tgap, (0, f,C* M) for any o € By.
In particular, by taking f =0 and M =1,
o (29) C c# - 0EnB,(To) for any xy € By.

Here, C# = C#(K) and (# = (#(K) are as in the Main Lemma for K.
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The layout of the rest of the paper is as follows.

In Section 10 we give the proof of Lemma 9.6 by induction on K. Then, in Section 11,
we apply Lemma 9.6 to prove the main extension theorems: Theorem 6.1 (for finite E)
and Theorems 1.3 and 1.4 (for arbitrary E).

10. The main induction argument

We prove Lemma 9.6 by induction on K € {—1,0,--- ,Ky}. Here Ky = 4mD? is a
universal upper bound on the local complexity C(E|B); see Corollary 9.4. In this section,
we write the seminorm of ¢ € C™ 1 (R™) as ||| := [[¢l|cm-1.1®n)-

10.1. Setup

Because C(E|B) > 0 for any F and B, the Local Main Lemma for K = —1 is true
vacuously; we take C#(—1) = A and ¢#(—1) = 0 when K = —1. This establishes the
base case of the induction.

For the induction step, fix K € {0,1,---, Ky}. Let E C R™ be finite. We assume the
inductive hypothesis that the Local Main Lemma for K — 1 is true. Let £oq := ¢# (K —1)
and C,q := C# (K —1) be the finiteness constants arising in the Local Main Lemma for
K — 1. Given any ball B in R", we apply the Local Main Lemma for K — 1 to the ball
(6/5)B to obtain:

If x € (6/5)B and C(E|6B) < K — 1 then

there exists a linear map Tz : C(E) x P — C™ bHH(R™)

such that if P € 'y, (z, f, M), then Tg(f,P) = f on EN(6/5)B,
JoTp(f, P) = P, and || Tp(f, P)|| < ColaM.

(134)

We refer to conclusion (134) as the induction hypothesis.

To prove the Main Lemma for K, we fix a ball By C R™ with C(E|5By) < K and a
point zg € By. Our task is to construct a linear map T : C(E) x P — C™~11(R") such
that, for the finiteness constants C# = C#(K) and (# = ¢(#(K) defined in the Local
Main Lemma for K, the following holds:

T(f,Po) = fon EN By
POEFZ#(:L'Oava) g JZEOT(f7P0):PO (135)
IT(f, Po)ll < C* M.

From the Local Main Lemma for K — 1 and K, the constants £,1q, Coia, £#, and C# will
have the following form:
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loa =X K, Coa = AR
136
#* =x (K +1), C* = AK+*+1 150

where ¥ = O(poly(D)) and A = O(exp(poly(D))) are suitably chosen constants, de-
pending only on m and n, determined in the proof of (135). In particular, ¥ and A will
be chosen independently of the induction parameter K. We assume that Y > 5, so that
¢# > 5. Later we will consider the sets [Ly#_; for 0 < j < 4; this assumption ensures
that these sets are well-defined.

Proposition 10.1. Given a ball B C R™ with #(BNE) < 1, and given x € gB, there exists
a linear map T : C(E) x P — C™~LY(R"™) satisfying the following: If P € To(z, f, M)
then

1. T(f,P)=f on BNE.
2. J,T(f,P)=P.
3.T(f, P < CM.

Here, C' is a controlled constant.

Proof. If BNE =0 or if BN E = {x}, we define T(f, P) = P. Conditions 2 and 3 are
obviously true. If BN E = {z} then P € T'g(x, f, M) implies that P(z) = f(x), hence
condition 1 of T is implied by condition 2 of T' in this case. Else if BN E = (), then
condition 1 is vacuously true.

On the other hand, suppose BN E = {z} and = # z. Let P € Ty(z, f, M) and let
B =B(z, 3|z — z|). We apply Lemma 2.17 to find a C™ cutoff function 6 with § = 1 on
(1/2)B, =0 on R™ \ B, and [0%0] oo Ry < C|z — x| 71 for |a| < m, for a controlled
constant C.

Define P, € P by the conditions P,(z) = f(z) and 0*P,(z) = 0*P,(z) for all |a| > 1.
Then set

T(f,P)=0P,+(1—6)P=P+06(P, — P).

Note that J.6 = 0 because x ¢ B and 6 is supported on B. Thus, J.T(f,P) = P. Also,
6 =1 in a neighborhood of z, so T(f, P) = f at the unique point z € E N B.
We now seek to control

IT(f, P)ll¢om gy = sup max [0°T(f, P)(y)|-
yeRn |Bl=m
Note that T(f, P) agrees with the (m — 1)’st degree polynomial P on R™ \ B. Thus,
PT(f,P)(y) = 0 for || = m and y ¢ B. For y € B and || = m, °T(f, P)(y) =
0°(9(P, — P))(y). By applying the product rule, and the derivative bounds for 6, we
learn that
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IT(f, Pl ey = sup max [0°T(f, P)(y)|
yeB 1Bl=m

< Csup Z 0%(P. = P)(y)| - & — z[l*I=™
YEB |a|<m—1

<C'sup|P,—P
yeB

ylz—z|-

By Lemma 2.12, and because |y — z| < |& — z| for y € B (by definition of B), we have
|P. — Pl s—2) < C|P, — P|, |, for y € B. Thus,

IT(f, P

C'vm(Rn) S C‘Pz - P

z,|lz—z]|
1/2
=C| Y. (a)70"P.(2) — 0°P(2) - |w — 22l
o] <m—1

= Clf(2) = P(2)];

where we have used that 0*P,(z) = 90*P(z) for |a| > 1 and P,(z) = f(z). Thus, using
(5), for a controlled constant C’ we have

|T(f, P)l|cm-1.1@ny < C'|f(2) = P(2)]. (137)

Recall that P € Tg(z, f, M). Thus, by definition, for any S C E with #(5) < (D +
1)° = 1 there exists F°¥ with ¥ = f on S, J,F® = P, and |F®|| < M. Apply this
condition with S = {z}. Then, there exists F' with F'(z) = f(z), J,F = Pand ||F| < M.
By Taylor’s theorem (see (15)),

|JZF_P|Z,\1—Z\ = |JZF_ JxF|z,\w—z\ < CrM.
In particular, |f(z) — P(2)| = |(J.F — P)(2)| < |J.F — P|,|s—. < CrM. Using this

inequality in (137), we deduce that |T'(f, P)|
C'. This completes the proof of Proposition 10.1. O

cm-1,1(Rn) < CM for a controlled constant

We assume the parameter A in Lemma 9.6 is chosen to satisfy
A > C, for the controlled constant C' in Proposition 10.1. (138)

Then C# = AK+D*+1 > o [f #(Bo N E) < 1, we apply Proposition 10.1 to the ball
B = By and point 7y € By, to obtain a linear map T : C(E) x P — C™ LL(R"). If
Py € Ty (xo, f, M) then Py € Tg(xo, f, M), so the map T satisfies conditions 1,2,3 in
Proposition 10.1, implying (135), for C# > C.

Having given the construction of T and proof of (135) in the case #(ByNE) < 1, we
now assume that
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#(Bo N E) > 2. (139)

Under the assumption (139), in the remainder of Section 10 we will explain how to
construct a linear map 7 : C(E) x P — C™~L1(R™) and prove it satisfies (135).

10.2. The main decomposition lemma

Recall the constant C, defined in (133), arises in Lemma 9.1 and in the definition of lo-
cal complexity C(F|B). Write Ry < R < R < Ry for the controlled constants defined in
(133). We continue in the setting of Section 10.1, and fix data (B, zo, E, K, f, (%, M, P).
Suppose Py € Tpx (2o, f, M) as in (135).

In the next lemma we introduce a cover of the ball 2B that will be used to decompose
the local extension problem on By into a family of easier subproblems associated to the
elements of the cover.

Lemma 10.2 (Main decomposition lemma). Given (By,xo, E, K, f,¢%, M, Py) satisfying
#(BoNE) > 2, C(E5By) < K, z9 € By, and Py € Typx(xo, f, M), there exist a DTI
subspace V. C P, a Whitney cover W of 2By, and collections of polynomials {Pg}pew C
P and points {zg}Bew such that

o(z) is (z,C diam(By), Ry)-transverse to V for all x € 100By.

B C 100By and diam(B) < 1 diam(By) for all B € W.

o(z) is (x,00, Ry)-transverse to V for allx € 8B, § € [diam(B), diam(By)], B € W.
Fither #(6BNE) <1 or C(E|6B) < K for all B W.

zZB € gB N 2By for all B € W; if xg € gB then zp = xg.

Pp € Tys_s(zB, f,Cox M) and Py — Pp € C’Z#MBZB,diam(Bo) for all B € W; if
To € gB then Pg = Py. Here, Cps = C(D + 1)£# for a controlled constant C' > 1.
Py—Pg eV forall BeW.

8. Pp depends linearly on (f, Py) for every B € W.

S Ot W

~

Furthermore, the Whitney cover W, the subspace V', and the point set {zp}pew depend
only on the data (By, zo, E, K, (%) and the parameters m,n — in particular, these objects
are independent of (f, Po) and M > 0.

Using the inductive hypothesis and Proposition 10.1, we obtain a local extension
theorem on the elements of the cover W.

Lemma 10.3. For any B € W and = € %B there exists a linear map Tp : C(E) x P —
C™m=LY(R™) satisfying the following conditions: If P € Ly, (2, f, M) for M >0 then

1. Tp(f,P)=f on EN(6/5)B.
2. J,Ts(f,P) = P.
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3. HTB(f7 P)H < CoaM.
In particular,
Lo,z f, M) C FEﬂgB(x7f,CDZdM)~ (140)

Proof. Condition 4 of Lemma 10.2 states that either C(F|6B) < K or #(EN6B) < 1.
If C(E|6B) < K, the result follows from (134). Else if #(E N6B) < 1, the result follows
from Proposition 10.1. Here, we take A > C so that Cy 4 = AR+ > C for the controlled
constant C' in Proposition 10.1. (See (138).) O

10.3. Proof of the main decomposition lemma
By Lemma 9.1, there exists a DTI subspace V' C P such that
o(x) is (z,C diam(By), Ry)-transverse to V for all € 100By. (141)

This proves condition 1 in the Main Decomposition Lemma.
The construction of W is based on the following definition:

Definition 10.4. A ball B C 1008, is OK if #(B N E) > 2 and if there exists z € B such
that o(2) is (2, 06, R3)-transverse to V for all § € [diam(B), diam(By)].

The OK property is inclusion monotone in the sense that if B C B’ C 1008y and B
is OK then B’ is OK.
For each x € 2By, we define

r(z) :=inf{r > 0: B(z,r) C 100By, B(x,r) is OK}
Also set
A :=min{|z —y|: z,y € E,x # y}.
Since F is finite, A > 0.
Lemma 10.5. For all x € 2By, we have 0 < A/2 < r(z) < 3 diam(By).

Proof. Let # € 2By, and set 7o = 2 diam(By). Then By C B(z,rg) € 100B,. Since
#(By N E) > 2, we obtain #(B(x,ro) N E) > 2. Further, diam(B(x,rg)) = 2r9 >
diam(By), so the transversality condition in Definition 10.4 holds vacuously for B =
B(z,rp). Consequently, B(z,79) is OK, and the infimum in the definition of r(z) is over
a set containing r = r¢. Thus, r(z) < ro.

If B(x,r) is OK then #(B(z,r) N E) > 2, which implies > A/2 by definition of A.
Thus, r(z) > A/2>0. O
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Define the ball B, := B(, 2r(x)) for # € 2By. By Lemma 10.5, we have
70B, = B(z,10r(x)) C 100By, for z € 2B,. (142)
Define the cover W* = {By }se2p, of 2By.
Lemma 10.6. If B € W* then 8B is OK, and 6B is not OK.

Proof. Write B = B, = B(x, +r(x)) for € 2By. According to (142), 6B C 8B C 100B,.
By definition of r(z) as an infimum and the inclusion monotonicity of the OK property,
the result follows. O

We recall the Vitali covering lemma (see, for example, [26]).

Lemma 10.7 (Vitali covering lemma). Let El, .. .,E_] be any finite collection of balls
contained in R™. Then there exists a subcollection Bj , Bj,,...,B;, of these balls which
is pairwise disjoint and satisfies

J _ k N
U B < |J3B;.
j=1 i=1

Because diam(B,) = 2r(z) > A/7 > 0 for all # € 2By (see Lemma 10.5), there exists
Jo1
= =13
the Vitali covering lemma to the collection {B; = %sz :j=1,---,J}, we identify a
finite subsequence x;,,--- ,x;, such that 2B, C Ule By, and {%B% ci=1,--- ,k}is
pairwise disjoint. Thus we have found a finite subcover W:={B,, 1i=1,--- ,k} CW*

a finite sequence of points x1,---,2; € 2By such that 2B, C |J B,,. Applying

of 2By such that the family of third-dilates {%B }Bew is pairwise disjoint.
Lemma 10.8. W is a Whitney cover of 2By.

Proof. We only have to verify the third condition in Definition 2.18. Suppose for sake of
contradiction that there exist balls B; = B(z;,r;) € W for j = 1,2, with gBl N ng #0
and 1 < %7"2. Since gBl N gBQ # (), we have |z1 — x| < %rl + grg. If z € 8B, then
|z — 21| < 8r1, and therefore

6 6 3 6
|z — 22| < |z — x| + |21 — 22| §8r1+gr1—|—gr2 <r2+%r2+gr2 < 6ry.

Hence, 8B; C 6B>. By Lemma 10.6, 8 B; is OK. By inclusion monotonicity, 6B5 is OK.
But this contradicts Lemma 10.6, finishing the proof of the lemma. O

We now establish conditions 2—8 in the Main Decomposition Lemma.
Fix a ball B € W. Because 6B is not OK, while 6B C 100B, (a consequence of (142)),
by negation of the OK property we have:
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If #(6B N E) > 2 then for all x € 6B
there exists ¢, € [6diam(B), diam(By)] (143)

so that o(z) is not (z,Cé,, R3)-transverse to V.

Proof of condition 2: Just above (143) we noted that B C 100B,. Write B =
B(z, 1r(x)) for x € 2By. By Lemma 10.5, diam(B) = 2r(z) < 1 diam(B).
Proof of condition 3: Let « € 8B. Since 8B is OK, there exists z € 8B such that o(z) is
(2,08, R3)-transverse to V for all § € [8 diam(B), diam(By)]. By definition of C in (133),
we have

|z — 2| < 8diam(B) < § < ;—1 (C8) (5 € [8diam(B), diam(By)]).
3
So, by Lemma 7.9,
o(x) is (x,C6, 8 R3)-transverse to V (6 € [8diam(B), diam(By)]). (144)

First suppose diam(B) < £ diam(By). Then the interval [8diam(B),diam(By)] is
nonempty. Any number in [diam(B),diam(By)] differs from a number in [8 diam(B),
diam(Byp)] by a factor of at most 8. Hence, by (144) and the second bullet point
of Lemma 7.8 (for k = 8), o(z) is (x,Cd,8™ ! Ry)-transverse to V for all § €
[diam(B), diam(Bp)]. Since Ry = 8™T1R3 (see (133)), we obtain condition 3 in this
case.

Suppose instead that diam(B) > §diam(By). We cannot use (144), because
[8 diam(B), diam(By)] is empty. Instead we use (141). Note € 8B C 100By. By (141),
o(x) is (z, C diam(By), Ry )-transverse to V. Any number in [diam(B), diam(By)] differs
from diam(By) by a factor of at most 8. So, by Lemma 7.8, o(z) is (z,Cd,8™Ry)-
transverse to V for all § € [diam(B),diam(By)]. Since Ry = 8™T1R3 > 8™R,, this
completes the proof of condition 3.

Proof of condition 4: Suppose that #(6B N E) > 2 and set J := C(E|6B). According
to the definition of complexity (see the formulation given in Lemma 9.5), there exists
a point z € 6B, and there exist intervals Iy > Iy > --- > I; > 0 in (0,6 diam(B)] and
subspaces V1, Vo, -+, V; C P, such that, for all j,

(A) 7.0(1,)(0(2)) is (z,C, Ry)-transverse to V;,
(B) 7.u(1;)(0(2)) is not (z, C, Ry)-transverse to V;, and
(C) Vj is invariant under the mappings 7,5 : P — P (§ > 0).

Because the center of B is contained in 2B and the radius of B is at most half the
radius of By (see condition 2) it follows that 6B C 5By. Hence, z € 5B,.
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Condition (143) implies the existence of ¢, € [6 diam(B), diam(By)] so that
o(2) is not (2,06, R3)-transverse to V. (145)

Define an interval I := [d,, diam(By)], with endpoints I(Iy) = ¢, and r(Iy) = diam(By),
and define a subspace Vy := V. We will next demonstrate that (A) and (B) hold for
J = 0. Since V' is a DTI subspace, 7, (1,)V = 7.,r1,)V = V. Therefore, by rescaling
(145),

T21(1o)(0(2)) is not (2, C, R3)-transverse to V. (146)

(Here we use the first bullet point of Lemma 7.8.) Recall (141) states that o(z) is
(z,C diam(By), Ry)-transverse to V. By rescaling,

Tor(1)(0(2)) is (z,C, Ry)-transverse to V. (147)

Conditions (146) and (147) imply (A) and (B) for j = 0 (recall R3 > Rj). Note that
Vo =V is DTI, so V; is dilation invariant at z. Thus, (C) holds for j = 0.

Observe that r(I;) < 6diam(B) < ¢, = I(ly), thus Iy < Iy. Therefore, Iy > I; >
.-+ > Iy are subintervals of (0,diam(By)].

We produced intervals Iy > Iy > --- > I; in (0,5diam(By)] and subspaces
Vo, ++,Vy C P, so that (A), (B), and (C) hold for j = 0,1,---,J. Since z € 5By,
by the definition of complexity (see Lemma 9.5), we have C(E|5By) > J + 1. Since
C(E|5By) < K and J = C(F|6B), this completes the proof of condition 4.

Next we define a collection of points {zp}peyw C R™ and polynomials {Pg}gewy C P
and prove conditions 5-8.

To verify condition 5, fix any family {zp}pew satistying zp € gB N2By and zp = xg
if zg € gB

Proofs of conditions 6-8: If B € W satisfies zg € gB then set Pg = Py. Note zp = xg.
Conditions 7 and 8 are trivially true. The first containment in condition 6 is true
because Py € T'px(xo, f, M) by hypothesis, and T'px(zo, f, M) C Tps_q(z0, f, M) C
Los_1(20, f,Cpr M) = Tys_1 (25, f, Cy# M) for any choice of Cyp# > 1. The second con-
tainment in condition 6 is trivially satisfied.

Suppose now B € W and z( ¢ %B. Note that zg € gBm2BO, and thus |zg — zg| < dp
for &g := 2diam(By).

We prepare to verify the hypotheses of Lemma 8.5 for the choice of parameters y = x,
r=z2p R=Ry,C, =C/2,6 =20y, and £ = (# — 2.

By (141), o(zp) is (25, géo,Rl)-transverse to V.

Given that Py € T'y%(xo, f, M), we have the following condition (see (104)): For every
S C E with #(S) < (D + 1)5# there exists F¥ € C™~L1(R") satisfying F¥ = f on S,
JooFS = Py, and ||FS|| < M. In particular, f satisfies FH(k#, M) for k#* = (D + 1)"
(see (102)).
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Because T'p# (xo, f, M) C Ty _o(x0, f, M), we have Py € Ty _o(x0, f, M).

By Lemma 8.5, given that Py € T'p#_s(xo, f, M), we produce a polynomial Pg €
Tys_s(25, f,Cps_oM) such that Pg — Py € V, Pg — Py € Cys_oMB., s,, and Pp
depends linearly on (f, Py), verifying conditions 7 and 8. Here,

Co_g = (R1D +2)- (6/2)nl\/c%+4—%,’

with Cps_3 = C’~(D+1)e#*3 the constant arising in Lemma 8.3, for a controlled constant
C'. Recall that Ry, C,Cyp, and D are controlled constants. Hence, C’\[#_Q <C-(D+ 1)4#
for a controlled constant C.

Recalling §p = 2diam(By), we apply (8) to obtain

Pgp— P € ae#—zMBzB,ao c 6@#—22mMBzB,diam(Bo)~

Note Cps_p2™m < C” - (D + 1)5# for a controlled constant C”. We set Cpu = C" -
(D + 1)5#, so that P — Py € C_‘Z#MBZ&diam(Bo). Given that Cys_o < Cyx, we have
Pp € Tys_5(2p, f,Cosr_oM) C Ty _5(2p, f,Cps M), completing the proof of condition
6.

This finishes the proof of the Main Decomposition Lemma (Lemma 10.2).

10.4. Upper bounds on the sets op(x)

We continue in the setting of Section 10.1.

We fix data (By, o, E, K, f, (%, M, Py) satistying #(By N E) > 2, C(E|5B,) < K,
xg € By, and Py € Ty (x0, f, M).

We apply the Main Decomposition Lemma (Lemma 10.2) to this data and obtain a
Whitney cover W of 2By, a DTI subspace V' C P, and collections {Pg}peyy C P and
{zB}Bew C R", satisfying conditions 1-8 of Lemma 10.2.

Introduce a Whitney cover Wy of By by setting

Wo:={BEW:BNBy#0} CW. (148)

Our next result provides geometric information on the sets oy(x) for £ > £,4. Recall
that zp € %B for B e W.

Lemma 10.9. There exist constants ey € (0,1), x > 1, and C > 1, determined by m,n,
satisfying the following. Suppose there exists a ball B € Wy satisfying diam(B) < € -
diam(By). Then for any B € Wy, € 3B, and £ > L4+ X,

(O-Z-l-l(x) + BZB,diam(B)) nv c CcoldeB,diam(B)-

Here, ey and C are controlled constants, and x = O(poly(D)).
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Note that the constant C, )y = C# (K —1) in Lemma 10.9 is not a controlled constant
because it depends on K.

10.4.1. Proof of Lemma 10.9
We define constants A > 10 and € € (0,1/300] as follows:

A=2C"-C™ Ry, e =1/(304%). (149)

Here, C° is the controlled constant in Lemma 7.10, and C, Ry are controlled constants
defined in (133). Clearly, both A and ¢ are controlled constants.
We define

x = [log(D - (1804)™ + 1)/ log(D + 1)]. (150)
Since A = O(exp(poly(D))) and n < D, we have that x = O(poly(D)).

Definition 10.10. A ball B# € W is keystone if diam(B) >  diam(B#) for every B € W
with B N AB# # (). Let W# C W be the set of all keystone balls.

Any ball B € W of minimal radius is a keystone ball. Because W is finite, there exists
a ball of minimal radius in W. So W# is nonempty.

Lemma 10.11. For each ball B € W there exists a keystone ball B¥ € W# satisfying
B# C 3AB, dist(B, B¥) < 2Adiam(B), and diam(B#) < diam(B).

Proof. We produce a sequence of balls By, Bs,- -, By € W, starting with By = B, such
that B; N AB;_1 # 0, diam(B;) < 1 diam(B;_,) for all j > 2, and By is keystone. If B
is keystone, simply take a length-1 sequence with By = B. Otherwise, let B; = B. Since
Bj is not keystone there exists By € W with BoNAB;y # 0 and diam(Bs) < % diam(By).
If B5 is keystone we conclude the process. Otherwise, if By is not keystone there exists
B3 € W with BsNAB; # () and diam(Bs) < 3 diam(Bs). We continue this process until,
at some step, we find a keystone ball. The process will terminate after finitely many steps
because W is finite, and diam(Bj) is decreasing in j.
As Bj N AB;_1 # () we have dist(B;_1, B;) < 4 diam(B;_1). Now estimate

J J—1 J
dist(B1,B;) <> _dist(Bj_1,B;) + »_ diam(B;) < (4/2+1) ) _ diam(B;)
J=2 j=2 j=1

< (A + 2)diam(B;) < 2A diam(By).

Since diam(By) < diam(B;), we deduce from the previous inequality that By C (24 +
6)B; C 3AB;. Set B¥ = Bj to finish the proof. O
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We prepare to define a mapping & : Wy — W#. By hypothesis of Lemma 10.9, there
exists a ball B € W, with diam(B) < egdiam(Byp). By Lemma 10.11, we can associate
to B a keystone ball B# satisfying

B# C 3AB and diam(ﬁ#) < diam(B\). (151)
To define k, we proceed as follows: For each B € W,

e If diam(B) > o diam(By) (B is medium-sized), set r(B) := B¥#.

o If diam(B) < ¢pdiam(By) (B is small-sized), Lemma 10.11 yields a keystone ball
B# with B# C 3AB, dist(B, B¥) < 2Adiam(B), and diam(B#*) < diam(B); set
k(B) := B,

We record a simple geometrical result that will be used in the analysis of k.
Lemma 10.12. If B € W, and diam(B) < €g diam(By), then 3A?B C 2By.
Proof. Since B € Wy, we have BN By # (). Thus, 342B N By # . Also,

diam(3A%B) < 3A%¢ diam(By) = (1/10) diam(By).

Therefore, 3A2B C 2B,. O
Lemma 10.13 (Properties of k). The mapping r : Wy — W¥ satisfies the following: For
any B € Wy, (a) dist(B,k(B)) < Cydiam(B), (b) diam(x(B)) < diam(B), and (c)
A-k(B) C2By. Here, Cy is a controlled constant.

Proof. Set C; = 810A3, which is a controlled constant. Recall that ¢y = ﬁ.
There exists a ball B € Wy with diam(B) < epdiam(By), by hypothesis of
Lemma 10.9. By Lemma 10.12,

3A%B C 2B,. (152)

We split the proof into cases depending on whether B € W, is medium-sized or
small-sized.

Case 1: Suppose B € W is medium-sized, i.e., diam(B) > ¢ diam(By) and BNBy # 0.
Then 9(ep) 1B D 2B, D B; furthermore, by (151), B# C 3AB. Thus,

B#* C 27(e) "' AB = 8104°B = C,B.

Therefore, the distance from the center of k(B) = B# to the center of B is at most

C, diam(B), which implies property (a). Also, from (151),

diam(B#) < diam(B) < ¢y diam(By) < diam(B),
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which establishes property (b). By (152), (151), we have AB# C 342B C 2By, which
gives (c).

Case 2: Suppose B € W is small-sized, i.e., diam(B) < ¢y diam(Bg) and B N By # 0.
By Lemma 10.12, 342B C 2By. In this case, k(B) = B#, where B# and B are related
via Lemma 10.11. In particular,

dist(B, B*) < 2A diam(B) < C, diam(B) and diam(B#) < diam(B),

yielding properties (a) and (b). Furthermore, B# C 3AB. Thus, AB# C 3A42B C 2B,.
Thus, we have established property (¢). O

This concludes our description of x : Wy — W#. We will use the mapping  later, in
the proof of Lemma 10.9. Next we establish two lemmas describing the geometry of the
sets o(x). The first lemma gives a stronger form of (140).

Lemma 10.14. Let B# € W be a keystone ball. Suppose that AB# C 2By. Let x be
defined as in (150), and let £ € N with £ > £,4+ x. Then

FZ(I7 f7 M) C 1—‘E’ﬂAB# (33, fa COoldM) fO?" all x € AB#7 M > 07
for a controlled constant C. In particular, by taking f =0|g and M =1,
o0(2) C CCoyognaps(x) for any x € AB¥. (153)

Proof. Let W(B#) be the set of all balls in W that intersect AB#. Since W is a Whitney
cover of 2By and AB# C 2By, we have that W(B#) is a Whitney cover of AB#. From
(140) we have the inclusion

Ty (x, f, M) CTprep(z, f,CoaM) for all B € W(B¥), z € (6/5)B.

We apply Lemma 7.12 to the Whitney cover W(B#) of AB# with £y = £,,q and Cy =
Coia- We deduce that

Ffl (Ia fa M) g 1_\EFTAB# (:E7 fv ClM)

for the constants C; = C'-Cyq and 1 = £oq + [%], where N = #W(B#); here,
C is a controlled constant.

We prepare to estimate N = #WW(B#) using a volume comparison bound.

For any B € W(B*#), we have diam(B) > § diam(B¥) by definition of keystone balls
— furthermore, we claim that diam(B) < 104 diam(B#). We proceed by contradiction:
Suppose diam(B) > 104 diam(B#) for some B € W(B#). We have BN AB# # ()

by definition of W(B#). The previous conditions yield that $B N B# # (. Then
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diam(B) < 8diam(B#) by the properties of the Whitney cover W (see Definition 2.18).
This completes the proof by contradiction.

For any B € W(B#) we have BN AB# # () and diam(B) < 104 diam(B¥), and
therefore B C 30AB#.

We estimate the volume of  := ey 54 1B in two ways. First, note that Vol(€2) <
Vol(30AB#) = (30A4)"Vol(B#). Since {%B}Bew is pairwise disjoint (by properties of
the Whitney cover W), N = #W(B#), and diam(B) > 1 diam(B¥#) for B € W(B¥),

we have

Vol(Q) = 37"Vol(B) > N6 "Vol(B¥).
BeW(B#)

Thus, N < (1804)". By definition of x in (150), €1 = loiq + [SELFED] < g +x < L.

Hence,
Fé(xmfa M) g Fh(mvfa M) g FEﬂAB#('rafa ClM)a
as desired. O

Lemma 10.15. If ¢ > £, + X, and if B¥* € W is a keystone ball satisfying AB# C 2By,
then

UZ(ZB#) nv C CCUIdeB#,diam(B#)' (154)
Here, the constant x > 1 is defined in (150), and C' > 1 is a controlled constant.

Proof. Let Cy be the constant C in Lemma 10.14, and C° the constant in Lemma 7.10.
Note that zp# € $B#* C 1AB# (since A > 10). By condition (153) in Lemma 10.14,
and Lemma 7.10 (applied for B = AB# and x = z54),

oe(2p#) N CoCoaB. . Adiam(B#)
C CoCoa(0pnap#(2p#) N BzB#,A diam(B#)) (155)
C C%yCoq - o(2p#) for £ > Ly + X-

Apply condition 3 of Lemma 10.2 to B = B¥, x = zp#, and § = diam(B¥),
giving that o(zp+) is (z,C diam(B#), Ry)-transverse to V. By Lemma 7.8, o(zp+)

is (z,diam(B#), R)-transverse to V for R = C™Ry. Therefore, o(zps) NV C
RBZB 4 diam(B#)- Applying this inclusion and taking the intersection with V' on each

side of (155), we obtain
oe(zp#) NV N (CoCaaB._, adiam(p#)) S C°CoColaRB. _, diam(5#)-

From (8), AB. , diam(B#) € B._, Adiam(B#) (vecall A > 1). Thus,
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oe(zp#) NV N (CoCoaAB, _, diam(B#)) © COOOColdﬁBzB#,diam(B#)' (156)
By definition of A in (149), A = 2C°C™ Ry = 2C°R. Therefore, (156) reads as
(UK(ZB#) n V) n (2COCOCold§BzB#,diam(B#)) - COCOColdj%BzB#,diam(B#)'

Note that QN 2rB C rB = Q C rB, valid when Q is a symmetric convex subset of a
Hilbert space X with unit ball B, and r» > 0. By this fact and the above inclusion, we
have

oo(2p#) NV C COCoCoaRB. _, diam(n#)-
This completes the proof of (154) for the controlled constant C' = CO°CoR. O
We require one last lemma before the proof of our main result.

Lemma 10.16. Let R, Z > 1 and X\ > 1 be given. If Q is a symmetric closed convex set
in a Hilbert space X, B is the closed unit ball of X, and V C X 1is a subspace, satisfying
(i) BI[VCR-(QNB)/V and (i) QNV C ZB, then

(Q+AB)NV C Z-(3RA+1)B. (157)

Proof. Fix P € (Q+ AB)NV. Write P = Py + P; with Py € Q and P; € A\B. Since
Py, € A\B, there exists P, € RA(Q N B) with P, — P, € V by condition (i). Define
P:=P—(PL—P) €V.As P = Py+ P, with P, € Q and P, € R) - Q, we have
P € (R\+1)Q. Thus, by condition (ii),

Pe(RA\+1)-(QNV)C (RA+1)-ZB.
Therefore,
P=P+P —P,c(R\+1)ZB+ B+ R\BC (3R\+1)ZB. O
We finish this section with the proof of Lemma 10.9.

Proof of Lemma 10.9. Fix the constants A, €y, and x as in (149), (150).

Let B € Wy, * € 3B, and £ > l,q + x. Set B¥ = k(B) € W, as defined in
Lemma 10.13. Thus, diam(B#) < diam(B), AB# C 2By, and dist(B#, B) < C, diam(B)
for a controlled constant Cy. By Lemma 10.15 and (9),

UZ(ZB#) nvc C(C(oldls’zB#Aiam(B#) - CColdeB# ,diam(B)- (158)

Note that diam(B) < 3diam(By) (see condition 2 of Lemma 10.2). We ap-
ply condition 3 of Lemma 10.2, with B¥ € W, ¢ = zp# € gB#, and 0 =
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diam(B) € [diam(B#), diam(By)]. Thus, o(z) is (2p#,C diam(B), Ry)-transverse to V.
By Lemma 7.8, o(z) is (zp#,diam(B), R)-transverse to V, for R = C™Ry4. Hence,

BzB#,diam(B)/V c E ’ (U(ZB#) N BZB#,diam(B))/V'

By the inclusion o(zp#) C o¢(zp#), we obtain

BZB#,diam(B)/v c E : (UZ(ZB#) N BZB#,diam(B))/V' (159)
Since zg# € gB# and = € 3B, we have
|z2p# — x| < dist(B*, B) + 3diam(B) + (6/5) diam(B™)

< Cydiam(B) + 3diam(B) + (6/5) diam(B) (160)
< Cs diam(B),

for a controlled constant Cs.
By Lemma 7.5 and (160), opy1(z) C ou(zp#) + CrB._, c;s diam(p)- Then by (8),

oo+1(x) Coe(zpr) + CrCy' B, diam(B)- Therefore,

0'[+1(I) + BZB#,diarn(B) g O-Z(ZB#) + 5BZB#,diam(B)a (161)
where C = CrCI' + 1 is a controlled constant.
We apply Lemma 10.16 to the convex set 0 = oy(zp#) in the Hilbert space X =

(P, (s )z s diam(B))- We take A = C in Lemma 10.16. Inclusions (158), (159) imply
hypotheses (i), (ii) of Lemma 10.16 with R = E, 7 = CCyy. So,

(UZ(ZB#) + 6823#7d1am(3)> NV CCCLg4 - (3&6 + 1)823#7(11&1“(3). (162)
From (161) and (162),

(0’[+1($) + BZB#,diam(B)) nv g CV/C’old : BZB#,diam(B)u (163)

for a controlled constant C".

Finally,Anote that C—1 - B. . diam(B) € BZB#,diam(B) C C - B., diam(B) for a controlled
constant C; these inclusions follow from Lemma 2.16 and the estimate |zp — zp#| <
Cdiam(B) (let = zp in (160)). Therefore, (163) implies that

(O’e+1($) + BzB,diam(B)) nv c CCold . BzB,diam(B)7

for a controlled constant C', as desired. This finishes the proof of Lemma 10.9. O
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10.5. Compatibility of the jets (Pg)Bew,
Our next result states that the polynomials (Pg)pewy, are pairwise compatible.

Lemma 10.17. There exist constants ¥ > 5 and C > 1, determined by m and n, such that
the following holds. Let (Pg)peyy, £%, and Cy% be as in the statement of Lemma 10.2,
and suppose 0# > 0,,,+X. Then Pg — Pg: € CC,1,Cyx MB.,, diam(B) for any B, B" € Wy
with ($)BN (2)B’ # 0. Furthermore, X = O(poly(D)) and C = O(exp(poly(D))).

Proof of Lemma 10.17. We fix the constants €y and x via Lemma 10.9, and let ¥ = x+5.
Suppose (# € N is picked so that {# > (.4 + X, and B, B’ € W, satisfy BN 2B’ # 0.

Consider the following two cases for the Whitney cover Wy C W.

Case 1: diam(B) > ¢y diam(By) for all B € W),.

Case 2: There exists B € W, with diam(B) < €y diam(By).

Suppose W, is as in Case 1. By the second containment in condition 6 of Lemma 10.2,
we obtain

S OE#MBzB,diam(Bg) + CE#MBzB/,diam(Bo)'

Because zp,zp € 2By, we have |z — zp/| < 2diam(By). So by Lemma 2.16, for a
controlled constant C|

B.,, diam(Bo) € C2™ ' B., diam(Bo)- (165)
By (8), because diam(B) > ey diam(By), we conclude that
B, diam(Be) € (€0) "By diam(B)- (166)
When put together, (164), (165), (166) give that
Pg — Ppi € Cpx M(€9) ™ C2™ B, diam(B)-

Note that C' = (e9)™C2™ is a controlled constant. We obtain the conclusion of
Lemma 10.17 in Case 1, for any choice of C > C".
Now suppose W is as in Case 2. By condition 7 in Lemma 10.2,

Py — Pgr = (PB—P0)+(P0—PB/) eV.
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By the first part of condition 6 of Lemma 10.2, Pg: € Ty#_3(2p, f,Cpx M). Because
zp € $B, zp € B/, $BN B’ # 0, and diam(B’) < 8diam(B) (see condition (3) in
Definition 2.18 of a Whitney cover) we have

|zp — zp/| < 16diam(B).

There exists Pg € Lo _4(2B, f, Cor M) with Pp—Pp € CTC_'e#MBzB,m diam(B), thanks

to Lemma 7.5. By (8), Pg — Pps € 16mCTC_'¢#MBZB,diam(B).
By condition 6 in Lemma 10.2,

Pp € Ty _3(zB, f,Cor M) C Tys_y(2B, f, Cox M),
so, because Py e Ty _a(2p, f,Cps M), by Lemma 7.2,

Pp — Pp €204 M - 4% _4(2p).

Thus,
Pg — P = (Pg — Pg) + (Pg — Pg/)
€20 M - oy _4(28) + 16" CrCpt M - B, diam(B)
C CCw# M - (0p# _4(2B) + By diam(B))»
and hence

Pp — Ppi € CCyp# M - (0% _4(28) + B, diam(s)) NV,

for a controlled constant C.
Note that ¢# — 5> 0,4 + X — 5 = lo1q + X, by definition of Y. We apply Lemma 10.9
(with ¢ = ¢# —5) to deduce that

(Ué#—4(zB) + BzB,diam(B)) nvc CColdeB,diam(B)~

Therefore, Pg — P € C"C.1qaCys M ‘B, diam(B) for a controlled constant C”. We obtain
the conclusion of Lemma 10.17 in Case 2, for any choice of C' > C”. This concludes the
proof of Lemma 10.17. O

10.6. Completing the main induction argument

We complete the induction argument started in Section 10.1 by proving the Main
Lemma for K. Thus, we fix data (By, o, E, K, f,{#, M, Py). In Section 10.1 we gave
a proof of the Main Lemma for K under the assumption #(E N By) < 1. Thus, we
may assume #(F N By) > 2. See (139). Recall our task is to construct a linear map
T:C(E) x P — C™ LYR™) and prove it satisfies (135).
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The constant  in the Main Lemma for K is taken to be ¥ in Lemma 10.17. Note that
X > 5 is a constant determined by m and n, and X = O(poly(D)). Let £#, C# satisfy
(136) for X defined above and A to be defined momentarily.

Given Py € T'px (o, f, M), we apply the Main Decomposition Lemma (Lemma 10.2) to
the data (Bo, o, E, K, f, (%, M, Py) to obtain a Whitney cover W of 2By, a DTI subspace
V C P, and families {Pg}pew and {zg}pew. We defined in (148) the subfamily Wy =
{BeW:BnNBy#0} of W, so that W, is a Whitney cover of By.

We apply Lemma 10.3 with = zp € (6/5)B for B € W. Thus, there exists a linear
map T : C(E)xP — C™~L1(R") satisfying conditions 1,2,3 of Lemma 10.3, for z = 2.

Lemma 10.2 (condition 6) asserts that Pg € I'yx_3(2p, f, Cox M) for B € W. Because
(% —3 > 0% — X = {4, we have Pg € Ly q(2B, f, Cy#M). Thus, by Lemma 10.3, the
function Fg := Tg(f, Pg) € C™ 11(R") satisfies

(BeWw). (167)

Fp=fon EN(6/5)B,
J.y Fp = Pp, and | Fp|| < CyaCee M

Since ¢# > £,,4 + X, we can apply Lemma 10.17 to conclude that

], Fp —J

zZg!

FB/|ZB,diam(B) = ‘PB - PB’|zB,diam(B) < é;C'oldc_v[# M7 (168)

for B, B' € W, with (6/5)B N (6/5)B’ # 0, and a controlled constant C.
Let {0} Bew, be a partition of unity on By adapted to the Whitney cover W of By,
satisfying the properties in Lemma 2.20. Define F' : By — R by

F= Z Fplg on By.
BeW,y

We describe the basic properties of the function F'. By Lemma 2.21 and the conditions
(167), (168), F € C™~11(By) satisfies || F||cm-11(p,) < CCoaCp#M and F = f on
E N By, where C'is a controlled constant.

Because each Fp depends linearly on (f, Pg), and each Pp depends linearly on (f, Py)
(see condition 8 in Lemma 10.2), F' depends linearly on (f, Pp).

By conditions 5 and 6 in Lemma 10.2, z5 = z¢ and Pg = Py if 29 € (6/5)B. By
the support properties of 0p (see Lemma 2.20), J,,0p # 0 = 1z € (6/5)B. Thus,
JzoFB = Py if J;,0p # 0. Therefore, using that ZBEWO 0 =1 on By,

TeeF' = Y L(Fls)= Y. JeFB O, Juy0B

BGWO:mOGgB BGWO:IOE%B

= > PyOuyJufp =P Os 1 =P
BGW():Z’()EgB
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We extend F' : By — R to all of R™ using Lemma 2.4 (an outcome of the classical Whit-
ney extension theorem). This guarantees the existence of a function F' € C™~L1(R"),
depending linearly on F', with F|p, = F', and

1]

cm=1,1(Rn) < C”F”Cmfl,l(BO) < C’Cold@#M.

Here, C,C" are controlled constants. By the properties of F, stated above, and since
F|p, = F, we deduce that F = F = f on EN By and J, F = J;,F = Py (recall
Zo € By). Therefore, we have shown:

F= fon EN DBy
oo F' = Py (169)
”F\”C’mfl«l(Rn) S C/Coldég#M.

We choose A in (136), now, to ensure the inequality C# > C'C,qCp#. From
Lemma 10.2 recall that Cyps = C- (D + 1)5# for a controlled constant C' > 1. From (136),
Coa = C#(K — 1), £# = (#(K), and C* = C#(K) have the form (# = Y- (K + 1),
C# = ANE+D*+1 and O,y = AK+1, Thus, the desired inequality is equivalent to

C#

~ A2K+1 > Cl .C - (D + 1)?-([(—}-1).
Cold -

Fix a controlled constant A satisfying the earlier condition (138), in addition to A >
C'C(D + 1)X so that the preceding inequality is valid, and C# > C'CyqC#. Therefore,
(169) implies

[ F][cm-11gny < C* M,

Because F depends linearly on F' and F' depends linearly on (f, Py), we have that F=
T(f, Py) for some linear map T : C(E) x P — C™~LY(R").

Thus we have defined a linear map T : C(E) x P — C™ L1(R") and verified the
conditions in (135) (see (169)). This completes the proof of the Main Lemma for K
(Lemma 9.6).

11. Proofs of the main results
11.1. Proof of Theorem 6.1

We give the proof of Theorem 6.1. Recall that Lemma 9.6 specifies a family of constants
(#(K) and C#(K) (K € {-1,0,...}).

Let E C R"™ be finite. Fix a closed ball By C R" containing F, and a point xy € By.
Set Kg := 4mD?, (# .= (#(K,), and C* := C#(Kj).
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By Corollary 9.4, we have C(E|5B)) < Ky. Lemma 9.6 guarantees the existence of a
linear mapping T : C(E) x P — C™~LL(R") satisfying, for any (f, P) € C(E) x P, if
P e Tys(xo, f, M) then

1. T(f,P)=f on E.
2. Jo T(f, P) = P.
3. I T(f, P)llgm-11®n) < CFM.

For the proof of part (A) of Theorem 6.1, set k% := (D + I)Z#Jr?’. We are given that f
satisfies the finiteness hypothesis FH (k*, M) for some M > 0. According to Lemma 7.5,
Dy (xo, fyM) # 0. Let P € Tys (g, f, M). Set F = T(f, P). According to the above
conditions, F = f on E and ||F|cm-1.1@n) < C*M. Thus, || f|lcmn-1.1(p) < C# M. This
establishes part (A) of Theorem 6.1.

We next prove part (B) of Theorem 6.1. By Lemma 8.3 there exists a linear map
P2 : C(E) — P such that if f satisfies FH(k*, M) then P72 (f) € Ty (w0, Cor M),
with Cpx = C'(D + 1)5# for a controlled constant C".

Define a linear map 7' : C(E) — C™~ (R by T(f) := T(/, P2(f))-

Suppose f € C(E) and let M > | f|gm-1.1(x). Evidently, f satisfies FH(k#, M).
Hence, P, (f) € I'y# (w0, Cp» M). By property 3 of T,

IT(f)l| -1 ®ny = T, P ()l om-11@®ny < CFCoeM = CF M

with C¥ = C#Cus. Since M > ||f]|cm- 1L1(p) s arbitrary, IT(f Mem-11@mny <
C | fllcm-1.1(E), as desired. By property 1 of T', we have T(f) f on E. This completes
the proof of part (B) of Theorem 6.1.

We remark at last on the form of the constants. Recall that C#* = C#(K,) =
A(K0+1)2+1, A is a controlled constant, and K, = 4mD?. Thus, C# is a controlled
constant. Similarly, since ¢# = (#(Ky) = X - (Ko + 1) with ¥ = O(poly(D)), we have
(# = O(poly(D)), and thus, Cypx = C'(D + 1)*  is a controlled constant. Therefore,
k#* = (D + 1)1“7#+1 and C# C#Cy# are controlled constants. This completes the proof
of Theorem 6.1.

11.2. Proofs of Theorem 1.3 and 1./

Let E C R™ be an arbitrary set, and let f: E — R. We claim that

[fllem-11(m) = _ sup ||f|EHcm—1.,1(E)- (170)
ECE finite

To prove (170), we use a compactness argument adapted from the proof of Lemma 18.2
of [15].
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First note that if E C E then I fllem-—11(m) > Hf|]§||cm,1,1(]§), by definition of the
trace seminorm. Therefore, the left-hand side of (170) is greater than or equal to the
right-hand side of (170).

For the reverse inequality, it suffices to demonstrate that

Hf|]§||cm,1,1(]§) < 1 for all finite E CFE

(171)
— f [S Cm_l’l(E) and ||f‘ Ccm—11(E) <1.
Let > 0 be arbitrary. The hypothesis in (171) implies the following:
For all finite £ C E there exists FzeCcm VLR (172)

satisfying F'z = f on E and | Fallem-11@mny < 141.
We define
D={FeC" "' R"): |Fllem-1irn) <1+n},
equipped with the local C™~! topology defined by the family of seminorms

pr(F):= sup max [|0%F(x)] (R >0).

|| <R lal<m—1

We define
D(z) ={F € D: F(z) = f(x)} for each x € E.

Then (172) implies that (), .z D(z) # 0 for any finite subset ECE.

On the other hand, each D(z) is a closed subset of D, and D is compact by the Arzela-
Ascoli theorem. Therefore, the intersection of D(x) over all € F is nonempty. Thus,
there exists F' € C™~11(R") satisfying F = f on E and ||F||cm-1.1(gny < 1+ 7. Since
n > 0 is arbitrary, by definition of the trace seminorm we have || f||cm-1.1(g) < 1.

This completes the proof of (171). With this, (170) is established.

We take C# > 1 and k% € N as in Theorem 6.1. Note that the constants C#,
k# in Theorem 6.1 satisfy C# = O(exp(poly(D))) and k# = O(exp(poly(D))). Thus,
C# k% < exp(yD¥) for absolute constants v,k > 0 (independent of m,n, E).

We first prove Theorem 1.3. Let E C R™ be arbitrary, and let E C E be a finite
subset. By hypothesis of Theorem 1.3, we are given f : E — R satisfying: For all
S C E with #(S) < k# there exists FS € O™ L1(R") satisfying FS = f on S and
|FS||gm-11@ny < 1. Then f|z : E — R satisfies the finiteness hypothesis FH(k#,1)
(see (102)). Part (A) of Theorem 6.1 ensures that ||f|E||Cm*1«1(E) < C#. We deduce
that f € C™ LYE) and || fl|cm-1.1(5) < C# by (170). This completes the proof of
Theorem 1.3.
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We will prove Theorem 1.4 for finite E. The general case of Theorem 1.4 then follows
by a standard argument using Banach limits. See Section 17 of [14].

For E C R" finite, we write C(E) to denote the set of all real-valued functions on
E. Note that C(E) = C™ L1(E) because E is finite. By part (B) of Theorem 6.1,
there exists a linear map T : C(E) — C™ L1(R") satisfying Tf = f on E and
T fllem-11@®ny < C#||fl|gm-1.1(g) for all f € C(E). This completes the proof of Theo-
rem 1.4 for finite E.
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