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EXISTENCE OF SMOOTH SOLUTIONS TO THE
LANDAU-FERMI-DIRAC EQUATION WITH COULOMB POTENTIAL*

WILLIAM GOLDING', MARIA PIA GUALDANI!, AND NICOLA ZAMPONTIS

Abstract. In this paper, we prove global-in-time existence and uniqueness of smooth solutions
to the homogeneous Landau-Fermi-Dirac equation with Coulomb potential. The initial conditions are
nonnegative, bounded and integrable. We also show that any weak solution converges towards the
steady state given by the Fermi-Dirac statistics. Furthermore, the convergence is algebraic, provided
that the initial datum is close to the steady state in a suitable weighted Lebesgue norm.
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1. Introduction
We consider the homogeneous Landau-Fermi-Dirac equation with Coulomb poten-
tial

0t = g, [ T (10 (1= f )V - F0) 1 =2 ()P0 (0] o
8 R3 |V — 4]

(1.1)

where TI(z) is the standard projection matrix

Z2®z
I(z)=1Id EER
The function f(v,t) models the distribution of velocities within a single species quantum
gas. The particles considered here are fermions (e.g. electrons) interacting in a grazing
collision regime [1]. The parameter £ quantifies the strength of the quantum effects of
the system for the particular species considered and depends on Planck’s constant, the
mass of the species, and the number of independent quantum weights of the species.
In particular, we notice that in the case ¢ =0 Equation (1.1) reduces to the classical
Landau equation. The Pauli exclusion principle implies that f satisfies the a priori
bound

0<f<t.
(3

This bound is the key ingredient in our proof. See also [21] for a discussion on the
Boltzmann equation with Fermi-Dirac statistic.
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2316 EXISTENCE OF SMOOTH SOLUTIONS

Equation (1.1) is well- understood for the cases of moderately soft and hard poten-
tials, namely when the kernel W is replaced by W for v>—2. In [2], the
authors consider the moderately soft potentials case (—2<+y<0) and show algebraic
convergence of non-degenerate solutions towards equilibrium for initial data satisfying
a suitable non-saturation condition. Existence and uniqueness of weak solution for
hard potentials (y>0) are shown in [7], regularity and smoothing effects are studied
n [14,15], and exponential convergence towards equilibrium in [4]. In [3], the authors
present fundamental properties of the entropy and entropy production functional for
hard and moderately soft potentials. The existence of nondegenerate stationary solu-
tions for any potential is shown in [§].

The Landau-Fermi-Dirac equation shares several properties with the classical Lan-
dau equation. Multiplying (1.1) by a test function ¢, integrating by parts, and applying
a straightforward symmetry argument, one obtains

v — U*
/Watfm——ﬁ/ﬂ@/w o 1290~ (L))
Vo — V| dv.dv. (1.2)

Conservation of mass, momentum and energy follows from (1.2) by choosing ¢(v) €
{1,v,]v|?}. A version of the H-theorem for (1.1) is also available: with
n (1.2), one obtains that

(et
¢ln<1—€f)
d

G0 =15 [ [ ra—enra—er)

167
I(v—w,) [ Vo f«  Vuf
lv—vi| [fi(l—cfs) [f(l—cf

2
)] dv.dv<0, (1.3)
where
1
H.[f] ::g/RsEfln(af)—k(l—af)ln(l—sf)dv

Equation (1.3) is the entropy balance equation associated to (1.1), with —H, being the
(physical) Fermi-Dirac entropy functional. The only smooth function that nullifies the
entropy production, %Hg [f]=0, is the Fermi-Dirac equilibrium distribution

ae—b|v—u|2

1+cae—blo—ul?’

M. (v):= (1.4)

which is also the only smooth minimizer of H. under the constraints of given mass,
momentum, and energy [8]. The constants a >0, b>0, and u€R? are determined by
the mass, first and second moment of the initial data

1 1 1
/ v ./\/lg(v)dv:/ v f(v,t)dv:/ v | £(0,v)dv.
B\ Jvf? B\ Jol? B\ Jol?
There are other nonsmooth distributions of the form

Fe(v) =e xq,
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with Q of R? a measurable subset, that satisfies (formally) H_[F.]= %HE [F<]=0 and
solves (1.1). These particular stationary solutions are called saturated Fermi-Dirac
states. As such, any solution to (1.1) with general initial data could approach, as time
grows, such saturated states. However, given an initial data with mass p, momentum
u and energy FE, there exists only one value of €, uniquely determined by p, v and F,
for which F¢(v) is an admissible stationary solution. For ¢ below such value, the only
steady-state is M.

Taking the formal limit e -0 in Equation (1.1), one obtains the classical Landau
equation. Furthermore, He[f]— H|[f]= [zs fInf dv as e =0 modulus a multiple of the
mass [ps f dv:

Hg[f]—(lns—l)/Rgfdv%H[f] as € —0.

The addition of a multiple of the mass to H.[f] does not change the entropy balance
Equation (1.3) nor the form of the equilibrium distribution (1.4), thanks to the conser-
vation of mass property. The equilibrium distribution M. (v) also converges towards the

classical Maxwellian distribution M (v) = ae~tlv=ul* ag e 0. Finally, strictly related to
the limits H.[f] — H[f] and M. — M is the fact that the relative entropy

B BN AN,
Hs[f|M€}'*/RSME |:M61H<M5>M5+1]

1 1—cf 1—cf l—cf
+E/Re,(1_5ME) [1—5Mgln<1—5/\/{5> a 1—€M5+1} dv

converges to the relative entropy of the classical Landau equation

H[f|M] ::/R3M L\J;ln(]\];) —]\J;—&-l} .

The next observation concerns the structure of the collision operator. For a smooth f,
the interaction term can be expressed as a second order elliptic nonlinear operator with
non-local coefficients:

divy, (A[f(1=ef)]Vf = f(1—ef)Valf]),
where the matrix A[f(1—ef)] is defined through the map

A:g— Algl,
with
1 (v —wvy) 1 / f(vs)
Algl i = — ——g(vy) duy, =— dv. 1.5
=g [ et ol o [ S a (15)
1.1. Main results. Our first result concerns existence of smooth solutions to

(1.1). Unlike in the case of the classical Landau equation, we are able to show global-
in-time existence of smooth solutions for a general class of initial datum. Our regularity
estimates depend on the quantum parameter. At the present moment, it seems out of
reach to obtain similar results uniformly with respect to . Therefore, in the rest of the
manuscript we set e=1.

THEOREM 1.1.  Suppose fi,:R® =R satisfies 0< fi,, <1, (1+|v]?) fin € L*(R®), and
Hi(fin) <0. Then, there is a solution f:[0,00) x R? =R with f € C([0,00); L*(R?)) such
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that f(0)= fin, 0< f<1, f€L>([0,00); LP(R3))NL2([0,T]; H*(R?)) for each 1 <p< oo,
and for each T >0, and ¢ € L*([0,T); H*(R?)),

[ ot arai=— [ [ (A0-DI9s-Valsls0- ) Vet (10

Moreover, f has decreasing (Fermi-Dirac) entropy and satisfies conservation of
mass, enerqgy, and momentum.

If the initial data has moments (1+ |v|™) fin € L*(R3) with m>9, the solution is
unique.

By a simple time rescaling, we obtain global-in-time existence and uniqueness for
any quantum parameter:

COROLLARY 1 1. Fir e>0 and let fi,:R®*—R satisfies 0< f;, <e~ !, (1+
[v]?) fin € LY(R3), and H.(fin)<0.  Then, there is a wunique f:[0,00)xR3>—R
with feC([0,00);L2(R?)) such that f(0)= fin, 0<f<e™!, feL>([0,00);LP(R*)N
L2([0,T); HY(R3)) for each 1<p<oo, and for each T >0, and ¢ € L*([0,T]; H*(R?)),

[ onmaa=— [ [ A0-envr-Valsis0-en) Ve

Moreover, f has decreasing (Fermi-Dirac) entropy and satisfies conservation of mass,
energy, and momentum.

Theorem 1.1 is proved in several steps. First, we approximate the problem by dis-
cretizing the time variable and adding suitable regularizing terms. The approximating
problem is well-posed thanks to suitable fixed-point arguments. We use uniform L? and
entropy inequalities to take limits as our regularizing terms vanish. A crucial ingredient
is the uniform positive lower bound for the diffusion matrix A[f(1— f)], which follows
from the boundedness of the second moment of f and a uniform negative upper bound
for the Fermi-Dirac entropy. This guarantees that Equation (1.1) remains uniformly
parabolic during the evolution of the system.

The weak solutions from Theorem 1.1 are, in fact, smooth solutions, provided the
initial data has high enough moments:

THEOREM 1.2. Let f be a weak solution as in Theorem 1.1. If the initial data f;, is,
in addition, such that (1+|v|*?) € L (R®) then f € C>((0,T];C>(R3)).

The higher regularity of the solution is obtained thanks to parabolic regularity argu-
ments, Morrey’s inequality and Schauder estimates. The parabolic regularity argument
yields estimates for f in W1 (0,T;W~1P)N L>°(0,T;W1P)) for any p€ [2,6]. Via in-
terpolation between Sobolev spaces, we obtain a bound for f in a fractional Sobolev
space. From here, we deduce, the Holder continuity of f via Morrey’s inequality. A
standard parabolic bootstrap argument yields f € C°((0,7];C>(R3?)).

Our regularity results do not hold in the limit € —0, since they heavily rely on
the bound f< % For the classical Landau equation, the Cauchy problem has been
understood only for weak solutions [1,6,18,29,35]. Recently, in [28] and [34], the au-
thors showed that, for a short time, weak solutions become instantaneously regular and
smooth. The time asymptotic for weak solutions has been studied in [13] and [12]. How-
ever, the question of whether solutions stay smooth for all time or become unbounded
after a finite time is still open. Recent research has produced several conditional re-
sults regarding this inquiry. These results show regularity properties of solutions that
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already possess some basic properties (yet to be verified). They include (i) conditional
uniqueness [16, 23], and (ii) conditional smoothness for solutions in L*(0,T, LP(R%))
with p> ¢ [28,34]. In a very recent manuscript [19], the authors studied behavior of
solutions in the space L (0,7, H'(R?)). They show that for general initial data there
exists a time T after which the weak solutions belong to L>((T*,+o0), H'(R3)). This
result agrees with the one in [25], in which the authors showed that the set of singular
times for weak solutions has Hausdorff dimension at most % In [9], the authors show
that self-similar blow-up of type I cannot occur for solutions to the Landau equation.

The second result of this paper concerns the convergence towards the steady state as
the time approaches infinity. We show that the convergence is algebraic, provided that
the initial datum f;, is close to the steady state M. in a suitable weighted Lebesgue
norm. Hereafter, we denote with M the function defined in (1.4) with e=1.

THEOREM 1.3.  Given any initial datum fi, :R3—[0,1], fin € L3, such that Hy[fi,] <0,
the solution f to the initial value problem associated to (1.1) converges strongly in L'
as t— oo to the Fermi-Dirac distribution M with same mass, momentum and energy
as fzn

Furthermore, there exists a constant £>0 such that, if

/ (fin— MM 1-M) tdv <,
]RS

/(fm—M)QM_l(l—M)_1(1+|U|Q)N/2dv<oo, for someN >1,
R3

then

A3deg(1+t)—N, £>0.

The unconditional convergence (without rate) towards the steady state is obtained
from the entropy balance equation in the following way. We integrate the balance
equation in time and use the ellipticity properties of the entropy dissipation to deduce
that f(t,) — M along a suitable sequence of time instants t,, — oco. The monotonicity
in time of the relative entropy yields that f(t) — M strongly in L! as t — co.

The algebraic convergence for initial data close to the steady state is achieved by
linearizing (1.1) around M. First, we show existence of a spectral gap for the linearized
Landau-Fermi-Dirac operator using two different weighted Lebesgue spaces. Precisely,
such relation has the structure

~(Lh,h)g, 2 AlbllE,,  heD(L)NN(L)*,

with Es not included in E;. This latter fact is the reason why we are not able to obtain
exponential convergence towards equilibrium, but only algebraic. We derive a uniform
bound for some moment of the solution to the linearized equation in a weighted Lebesgue
space. In the last step, we bound the contributions of the nonlinear corrections, and
derive a differential inequality for the weighted L?-norm of the perturbation

M
M(1-M)’
An elementary argument of ordinary differential equations’ theory yields algebraic con-

vergence to zero with rate N for ||h| 2y, provided that, at initial time, the latter is
small enough and [[A| 2 (1.4 ]2)/2) < 0.

h:=
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1.2. Notations. Here we list some of the notation conventions adopted through-
out the manuscript:

e Universal constants that may change from line to line are denoted C or C'(A, B)
if the constant is allowed to depend on the quantities A and B.

e We write A< B to mean there is a universal constant C' such that A<CB.
Similarly, we write A~ B to mean A< B and B<SA. If we write A <A B, the
implicit constant C' is allowed to depend on A.

o We write LP([0,T]; X) for T>0 and X a Banach space to denote the space of
strongly measurable X-valued functions satisfying

T
/0 1F(E) % dt < oo,

When we write LP without specifying the measure space, we mean LP(R3).

e We use the bracket notation (v):= (1+|v|?)}/2. Given p € [1,00], we denote with
LP the space of functions that have the following norm

1= [ 1700

finite. We denote with || f||z» the LP(R?) norm of f.

e Given p€[l,00] we denote with p* €[1,00] the conjugate exponent of p, p*:=
p

p—1"
In Section 2, we recall some useful estimates for the coefficients A[f], a[f] appearing
n (1.1). In Section 3, we prove Theorem 1.1. In Section 4, we prove Theorem 1.2. In
Section 5, we prove Theorem 1.3.

2. Coefficient bounds
The following standard bounds will be used throughout our proofs.

LEMMA 2.1.  Any f(v) such that 0< f(v _6,fRd (1+|v|?)=Ey, and H.[f] < Hy <0
satisfies

(Alf(1=-ef)lg,6) = €7, VEER?,

~1 +| |3
where C' depends on Ey and Hy.

Proof. 'We begin by quoting a known result (see [20] Lemma 6 and Proposition 4,
or [34] Lemma 3.2 and Lemma 3.3) that says that for any nonnegative function ¢ with
mass, second momentum and entropy bounded, for all v € R3:

II(v —v.) C
- * * H
L o] ) o= Tt

where the constant C' depends only on the quantities

Jewn [e@lPan [e@inew)d.

In light of this inequality, we need only show that

/f(l—sf)|lnf(1—5f)\dv<+oo, (2.1)
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and that there exists a strictly positive constant mg such that

/f(l—sf)demo. (2.2)

The proof of (2.1) and (2.2) can be found in [7] in Lemma 3.1. d

The previous lemma together with (1.3) show that, as long as the initial data has
strictly negative entropy, our equation is uniformly parabolic, and saturated-Fermi-
Dirac-distributions are not admissible solutions.

LEMMA 2.2 (Upper Bound on A[f]). For A[f] defined in (1.5), and for any f € LP N L4
with 1<p<3/2<q<o0, we have

IALfIlz= < C. @I F I I Il T (2.3)

€(0,1). Furthermore, V-A[f]=Valf].

11
where o = 27
qF  p*

B3

Proof. For R >0 arbitrary,

|f(y)] | f(y)]
Alfll < d d
\ [f}l/ y+/ y

z—y|<R ‘Jf—y| z—y|>R ‘Jf—y|

) 1/q* 1 1/p*
o o ) I 1 O e
lz—y|<R ‘.’B—y |z—y|>R |.’17—y|

Spa I FllLaRY T 4| fll Lo R,

provided ¢* <3 and p* >3. Optimizing in R yields R~ Hf||£f||f||fp and the bound,

3(¢—1)

e R "+ flle R

3(p—1)
P

1 _
SIAIEaN AN

sy and a=p(1-2)>0. Note that 0<a<1.

for 5=

Finally, notice that

. 1 r—y 1 f) _
leA[f]_—E R |.’L‘—y‘3f(y)dy_ﬂv - |x_y|f(y)dy_va[f]

LEMMA 2.3 (Upper Bound on Va[f]). For a[f] defined in (1.5), we have
IValflll2 <CllfllLess,

and

IVal[fllz= <Co, )T FIILa®
for any 1<p<3<qg<oo, and some a€(0,1).
Proof. The Hardy-Littlewood-Sobolev inequality (in R?) states that

1
Huf

Sa,p,q ||f||LP
La

provided 1<p,q,3 <oo and %+ % = 1+% (see [32]). The kernel K(x) for Va satisfies

K(x)~|z|~2 and the L? estimate follows immediately. The L°*-bound follows the same
steps as in Lemma 2.2. ]
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3. Existence of bounded weak solutions

In order to find weak solutions to (1.1), we first introduce an extra dissipative term
01Af to counter the degenerate ellipticity of A[f(1— f)] (see Lemma 2.1) and study the
approximating problems

O f=V-(A[fA=f)IVf=Va[fl[f(1-[))+0Af. (3.1)

We will first prove there exist solutions to (3.1), then taking d1,we recover global-in-time
weak solutions to (1.1). To this end, we introduce an auxiliary equation,

(fk:_ifl) =V - (Ap 1 Vfr—Vag_124(1=2) L +51V f) = a2 |v|" f,

A=Al fr—1(1— fr—1)] and ag—1:=a[fr—1],

(3.2)

obtained by dividing the time interval [0,7] into N subintervals, each of length T,
linearizing (3.1) around a measurable function z, and adding an additional localizing
term, do|v|™ f. In the first step of our construction, we use the Lax-Milgram Theorem
to find unique weak solutions to (3.2) and prove the following proposition:

PROPOSITION 3.1.  Let fr_1 € L' with 0< fy_1 <1, z be a measurable function, and
m>0. Then, there is a unique fr € H'NL2, that satisfies

/Mw—Vak_1z+(l—z)+ -Vepdv

T

:*/VSD'Aqufkdv*51/V<ﬂ'ka*52/|v|m90fkdv, (3.3)

for any o€ H'NL2,.

For a fixed k, Proposition 3.1 defines a solution operator ® to (3.2) via ®(z)= f.
In the second step of our construction, we seek solutions fi to the nonlinear equation:

U= Jeol) g (4, (9 fo- Ve fol— ) 400V F) 0ol fee (3.4)
for given fi_; and fixed 61,62,7,m>0. To this end, we show that ®: L% — L? is con-
tinuous and compact, and the set {z | z=t®(z), for some ¢t €[0,1]} is bounded in L?.
Therefore, we apply the Schaeffer Fixed Point Theorem to conclude the following propo-
sition:

PROPOSITION 3.2.  Suppose fo € L' with0< fo<1. Then, there is a family of functions
{fi i such that fr € L2, NH" and {fi} solve (3.4). That is, for k>1, fy satisfies that
for any o€ H'NL?,,

/M‘P—vakflfk(l_fk)'vﬁpdv

T

:—/Ak_1ka-Vgodv—él/ka-V@dv—52/|v|mfk<pdv. (3.5)

Furthermore, for each k>1, fy € L' and 0< f, <1.

In the third step of our construction, we seek a weak solution to the auxiliary
equation (3.1) on a time interval [0,T]. To this end, we divide [0,T] into N pieces of
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size Ty and from Proposition 3.2, for an initial datum f;,,, we may define

N
SN W,1) = Fin(0)x0(8) + Y Fr(0)X (1100 (D),

k=1

where {fr}o<k<n solves (3.4) with parameters T7=0,=r7,. We show propagation of
L' moments and use a variant of the Aubin-Lions Lemma to conclude the following
proposition:

PROPOSITION 3.3.  Suppose fin € L', |v|2fin €L, and 0< f;,, <1 and 6, >0. Then,
for any T >0, there is an f:[0,T] x R3 — R with 0< f <1 such that for each 1<p< oo,
JeL=([0,T}:L7), feC(0,T]:L2), f € L2(0,T);HY), feL=((0.T);L}) and f satisfies
(3.1) in the form,

/ fintp(0) dv— /0 ' foupdudt

T
/ / fa=nIvf- Va[f]f(l—f))-chdvdt—él/ Vf-Veodvdt, (3.6)
R3 o Jrs

for each o€ C°([0,T) x R3) and
/ (Ocf, @) g1 -1 dt=— / / fA=HIVf=Va|flf(1-=f)) - VOdvdt
0 RS

s / V-V dudt, (3.7)
0 R3

for each ® € L*([0,T); H'). Furthermore, f conserves mass and satisfies the bound

£l e o,r3:23) + 1 IV fll 20,77, 22) + 01110 fl| L2 (o0, 77,1y S C (| finl 23, T)-

Finally, in the fourth step of our construction, we conclude the proof of Theorem 1.1.

From Proposition 3.3, for an initial datum f;, and a sequence J,, — 0%, we obtain a
family of solutions {f,} to the Equation (3.1) with parameters ;1 =4,, on the interval
[0,T]. We show propagation of higher L' moments and an H-Theorem for the Equation
(3.1). Combined with Lemma 2.1, this implies a uniform lower bound on the coefficients
A[fn(1— fp,)], which is sufficient to gain compactness as n— 0o.

3.1. Step 1: Existence and uniqueness of solutions to (3.2). In this step,
we use the Lax-Milgram Theorem to prove Proposition 3.1. We recall that in this step,
we construct weak solutions fj to

M =V- (Ak_1ka 7vak_12’+(172)+ +51ka) 7(52|’U|mfk,

Ap_1:=Alfr—1(1— fr—1)] and ap—1:=a[frx—1],

(3.8)

where fr_1, 2z, T, 01, 02, and m are fixed.

Proof. (Proof of Proposition 3.1.)
We define

Blu,p]= /Ak,1Vu- Vo +61Vu-Vo+7  up+82|v|™up dv,



2324 EXISTENCE OF SMOOTH SOLUTIONS
L[<p]:/Tﬁlfk_1<p—|—Vak_1z+(l—z)+~Vgpdv.
Since 0< fr,_1 <1, A;p_1 >0 and we have
Blusu) > [ 61[Vuf? 471 4 Gfol " o Zo, g [l +

Therefore, Blu, ] is coercive on H' N L2 . Moreover, B is bounded on H'N L2 thanks
to Lemma 2.2 and 0< fr_1 <1 as

| Blu, ]| < (| Ak—1ll oo +01) | Vull 2| Vel 2 + 77 Jul 22 [ pll 2 + b2 |ul

L2 <P|

m

L2

m

Sov.60, 7l ferllp Il Ence lollmacz, -

Also, L is bounded on H'N L2, by the Cauchy-Schwarz Inequality and Lemma 2.3,

L) <77 fa-tll ez llollz + [ Vag-illz2llz4 (1= 2) 4|2 [ Vol 2

Srllfeoill o o5 19N H-

We conclude, using the Lax-Milgram Theorem on H'NL?Z, that there is a unique
fr€ H'N L2, satisfying the weak formulation (3.3). |

3.2. Step 2: Existence of solutions to (3.4). In this step, we use a fixed-
point argument to prove Proposition 3.2. We show that the nonlinear, semi-discretized
equation,

M:v'(A[(l_fk—l)fk—l]vfk_va[fk—l]fk(l_fk)“‘(slvfk) —Salo[™ fi,
has a solution fj, provided fi_1 is known and satisfies 0< fx_; <1 and fi_1 € L'. More-
over, we show these assumptions are propagated, so that for a fixed fy= f;,, we have
the existence of a family {fx} for k=0,1,..., N for any N.

We begin by showing the existence of solutions fj to the nonlinear weak formulation
(3.5) provided fi,_1 is known and satisfies fy_1 € L' and 0< f,_1 <1. To this end, we
fix k and define ®: X — X with ®(z) = fi, where fj, is the unique solution to (3.3) given
z (and fixed 01,02,7,m, fx—1). We also fix X to be L2 We would like to apply the
Schaeffer Fixed Point Theorem [24, Theorem 11.3] to ®: X — X to conclude that there
exists a fixed point for ® in X. To apply Schaeffer’s Theorem we need to verify the
following conditions:

e The map ® maps X into X, i.e. if z€ L?, the weak solution f} to (3.3) also
satisfies fi € L?. This is done in Lemma 3.1 via an L? estimate.

e The set of approximate fixed points,
{= ‘ z=1®(z) for some 0<t <1}

should be bounded in X. This is done in Lemma 3.2.

e The map ® is compact. This is done in Lemma 3.3 via the compact embedding
O(X)CH'NLZ — L.

e The map ®: X — X is continuous. This is done in Lemma 3.4 by showing that

if z;, — z, the corresponding weak solutions ®(z;) converge to the unique weak
solution ®(z) of (3.3).
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To this end, we have our first a priori bound:
LEMMA 3.1.  For fr_1 € L* with 0< fr_1 <1, let fi be the unique solution to (3.3).
Then, fi, € H'NL2, and satisfies the estimate
.
&1z + 781V fill72 + 2702l [0] ™2 fill 72 < || fo-1l +Cg||fk71 Z6/5- (3.9)
Proof. We test (3.3) with ¢ = fi. Using Ap_1 >0, we obtain

Tl e +81 1V fll 22 + 820l 2 fill 72 5/Tflfk—lkarVak—l(Z)Jr(l*Z)+'kadv-

We bound the first term on the right-hand side with Young’s inequality as

1 7-_1 2 T_l 2
T fk—lfkdUSTka—le‘i‘TkaHsz

and the second term via Young’s inequality and Lemma 2.3 as
_ )
[ Tauoa (@124 Vo <O i s + S fel2

Rearranging terms and combining bounds yield (3.9). 0
We note that the preceding lemma immediately implies the following result:

LEMMA 3.2 (A priori bounds on approximate fixed points). Let fi be the unique
solution to (3.3) with fe_1€ LY with 0< fr,_1 <1 and X:=L?. The map ®: X =X
defined as z— fi, is such that A:={z€ X | t®(z) =z for some 0<t<1} is a bounded
subset of X.

Proof. Suppose z € A. Then, we note by Lemma 3.1,
T
12122 < N2 ()72 < [l fe—11Z2 +Ca||fk—1||2m/s,

which completes the proof. O

LEMMA 3.3 (Compactness). For ® and X as in Lemma 3.2, ®(X) is pre-compact as
a subset of LY(R3) for any 2<q<6.

Proof.  Fix any such ¢q. Then, we note that Lemma 3.1 guarantees that ®(z)
is bounded in H'NL2,, uniformly in z measurable. We claim that L2, NH' embeds
compactly in L? for 2 <q <6 provided m > 0.

Indeed, fix g, a sequence uniformly bounded in L2, and H!, so that ||g,, 22 A <M.
Then, use Rellich-Kondrachov Theorem and a diagonalization argument to extract a
subsequence gy, for which g,, —g¢ in L*(K)NLI(K) for every K CR3 compact. We

will show g, — ¢ in L?. Fix € >0. Then, decompose the norm into two parts via,
lom =gl = [ lgn=gltdet [ g, ~gltda, (3.10)
Br(0) R3\Br(0)

The first term converges to 0 for any fixed R. For the second, we interpolate between L?
and L% and use the Sobolev embedding H' < L% to guarantee the L% norm is uniformly
bounded in k. Thus,

1/q a/2
G, —gl?dz | SM'™* / |gn, — g dzx
</R“°’\B(0,R) * B\B(0.R) (3.11)

SMITORT gy —gGs SMBTT,
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where %:%4—%, ie. a:%. So for m>0 and 2<¢<6, this converges to 0 as

R — oo uniformly in k. Thus, first pick R sufficiently large that the second term of
(3.10) is less than €/2 for all k. Then, pick k sufficiently large such that first term of
(3.10) is less than £/2. 0

LEMMA 3.4 (Continuity). Let ® be defined as in Lemma 3.2. Suppose z, — z strongly
in X. Then, ®(z,)— ®(z) strongly in X.

Proof. Suppose z, — z in X = L2. Combining the a priori bound from Lemma 3.1
and compactness from Lemma 3.2, ®(z,,) is uniformly bounded in L2, N H' and compact
in X = L2. Therefore, by extracting subsequences, it suffices to show that if z, = z in X
and ®(z,) =y in X and ®(z,)—yin H'N L2, then y=®(z). Finally, since Proposition
3.1 guarantees uniqueness of solutions to (3.3), it suffices to show

/M@—Vak_lz+(lfz)+~Vgodv
:—/ch'Ak,1Vydv—51/ch-Vy+52\v|m<pydv. (3.12)
Since ®(z,,) solves (3.3) with coefficients z,, we know
/%gpdv:/V%_l(znﬁ(l—znﬁ-Vgo—V(p-Ak_lV(I)(zn) dv
751/V@-th)(zn)+52\v|m<pfb(zn)dv.

The weak convergence ®(z,)—y in L2, N H! is sufficient to pass to the limit n— oo in
each term, except in the term containing (z,)+ (1 — 2, )+. For this term, we first observe
that

/ () (1= 20) 4 — 2 (1= 2)4] Va1 - Vig| dv

1/2
Sl Vel [1Gs0-n)-s-au ) .

Since the function ¢(x) =z (1 —2z)4 is Lipschitz, we get

1/2
(/<zn)+<1—zn)+—z+<1—z>+de) <o — 2]l =0,

since z, — z in X. Therefore, we obtain (3.12) and the proof is complete. |

The following lemma states that any fixed point fi of ® is also a solution to (3.5).
Note, this is not immediate because (3.5) does not contain any positive part operators,
while (3.3) does.

LEMMA 3.5.  Suppose fr € H*N L2, satisfies ®(fi) = fr with fr_1 €L and 0< fr._1 <
1. Then, 0< fr <1 and consequently fi solves (3.5).

Proof.  The idea is to test the weak formulation (3.3) with (fx)- and (1— fx)—
and show that both are identically 0:

T—l/ ff—fk,lfkdwr/ ka-(Ak,lwkwlwk)dv+52/ lo|™ f2 dv=0.
{fx<0} {fr<0} {fr<0}
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Since each term is positive, all are 0 and we conclude fr =0 on {fx <0}, i.e. fr>0.
Similarly,

! / (i i) (L= fi)do— / V fi- (A V fi 43V ) do
{fr>1} {fx>1}

+62/ o™ fi(1— fi) dvo=
{fL>1}

Now, because fr—1 <1, (fx—fe—1)X{s>13 > (fe =1)X{f.>13 >0. Thus, each term is
negative and we conclude fi <1. |

Next, we show the assumption that f,_; € L' is propagated. That is, if fr_, € L',
then f, € L' and therefore, we may iterate the fixed-point argument to construct a
family {fx} solving (3.5).

LEMMA 3.6. Suppose fr € H'N L2, satisfies fr =®(fy) with fx_1 €L and 0< fr._1 <
1. Then, fi satisfies the estimate
[fellor 4702 felv[™ L =l fr—1llz2- (3.13)
Proof. Let pr(v) be a cutoff function in C°(R?) such that

0 S PR S 1a

pr(v)=1 if |v|<R,

Pr(v)= 0 if |v|>2R,

IVer|< %, |VZor|< %

Then, we test (3.3) with ¢r to obtain
/ [(fk fura) +52|U|mfk] prdv

f/Ak_1ka~V¢Rdv—/Vak_1fk(1ffk)ngoRdvfcil/ka-V@Rdv
2311—|—12+13.

First, we claim that the right-hand side converges to 0 as R—oo. Indeed, we bound
each term separately, beginning with I3 as,

1

s
51/ka-wRdvs—2/ fudv
R? Jir<iv|<2r}

C’51

Co
< X fell 2R < ol 2R < 8

- R1/2
Next, we bound Is using 0< f; <1 and Lemma 2.3 to obtain

CliVar—llzzllfillz _ Cllfs-rllzoss]| fill 2
R - R '

/(Vakflfk(l —f1)) Vordv <

For I, we integrate by parts to obtain

—/Ak_1ka'V(,ORd’U:/fk(V-Ak_l)-V(de’U—/V'(Ak_lfk)-V(de’U

— [ 1T ) Fondvt [ n(fidir Vo) do

=1 +1}{.
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Now, I} vanishes by a similar estimate, using Lemma 2.2. Finally I? vanishes by the
estimate

/ e (fr o1 V20r) do < [ A e | full 22 V20 2
< Cll fr—1llzr | frll 2
- R1/2 '

Thus, piecing together all the above estimates, we conclude that I3 + I3+ I3 vanishes
as R—o00. Second, taking R, — oo sufficiently fast so that ¢r, are increasing to 1, the
monotone convergence theorem yields

[tvrrts [ g o= [ gicsan

By Lemma 3.5, 0< fi <1 and the proof is complete. 0

Proof. (Proof of Proposition 3.2.) Fix fo= f;, as in the statement of Proposi-
tion 3.2. Suppose moreover that fi, fs,..., fxr—1 have been constructed so that 0 < f; <1
and f; € L' for 0<i<k—1and {f;}*=] satisfies (3.5). We will now construct fi. Indeed,
fix X =L? and ® the solution map to (3.3) with f_; fixed.

As stated at the beginning of this step, the role of Lemmas 3.1, 3.2, 3.3 and 3.4 is
to verify the hypotheses of the Schaeffer Fixed Point Theorem for ®: X — X.

e Lemma 3.1 implies ® maps X to itself;

e Lemma 3.2 implies that approximate fixed points of ® are bounded in X;
e Lemma 3.3 implies ® is a compact map;

e Lemma 3.4 implies ®: X — X is a continuous (nonlinear) map.

Therefore, the Schaeffer Fixed Point Theorem (see [24, Theorem 11.3] for a precise
statement) yields a (not necessarily unique) fixed point fj of the map z— ®(z). Because
O(X)C L2 NHY, fre H'NL2,. As ®(fx)= fx, fr solves

/MgofVak_l(fk)Jr(lffk)Jr~V<pdv:f/Ak_1ka~Vgadv

-
—51/ka-V<pdv—52/|v|mfk<pdv.

However, since 0< fy_1 <1 by Lemma 3.5, 0 < fi <1, and we may remove the positive
parts to conclude fj, solves the desired weak formulation, namely (3.5). Finally, Lemma
3.6 implies f, € L'. By induction, the proof is complete. 0

3.3. Step 3: Existence of solutions to (3.1). In this step we construct weak
solutions f:[0,7] x R3— R to the nonlinear, continuous time equation,

hf=V-(Alf(A=NIVf=Valflf(1-f))+0Af, (3.14)

on an arbitrary fixed time interval [0,7] for any fixed §; >0 and for fixed initial data
fin, where fi, € L' and 0< f;,, <1. We first prove uniform in 7 (the time mesh) and §»
(the strength of the added localization) estimates on solutions to Equation (3.4). For
all T>0, let N= % Define the piecewise interpolant of {fx} as

N
FE (@,6) = fin(@)X0(8) + > Fr(0) Xty 0] ()5 (3.15)
k=1
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and the backward finite difference operator D, as

)= f(t=7)

T

D, f(t):=
We also introduce the shift operator
on(fIN ()= fro1 for t€ (tg_1,t]-

With this new notation, we can rewrite (3.5) as
T
| [Dero-Fax s 0= 1) Voduas
0

T
:_/ / ANV N Vo= 5,V f N Vg bafo]™ f M p dudt, (3.16)
0
where
AN:A[O'N(f(N))(lff(N))} and aN:a[O'N(f(N))}

For strong compactness, we need propagation of moments (shown in Lemma 3.8) in the
form of

||f(N) ||Loo([0,T];L§) Sr ||meL§7

and a variation of the Aubin-Lions Lemma for piecewise constant functions, which
requires an estimate (shown in Lemma 3.9) of the form

.

pecomn, TNy S fnll .

We begin with L' and L? estimates, which are continuous-time analogous of Lemma
3.6 and Lemma 3.1, respectively.

LEMMA 3.7 (L' and L? Estimates).  Suppose fi, € L* and 0< f;,, <1. Then, the
following estimates hold:

3/2
1w osryany + 280 IV LN o ey < il + TSl (317)

and

1O oo to.77:21) < || fimll - (3.18)

Proof. Inequality (3.18) follows by iterating Lemma 3.6. Next, we estimate the L?
norm of f(N) by testing (3.5) with fi, using Young’s inequality and Aj_; >0 to obtain

1 1
§||fk||2L2 +781 |V fll7 < §||fk—1||2L2 +T/Vak—1fk(1 = Jr)-V frdv.
For the last integral, we integrate by parts, using —Aag_1 = fr—1 and get

2/Vak,1fk(1—fk)-kadv:2/Vak,1-V {;fz—;f}:] d’U

:2/fk—1 B(fk)Q;(fk)ﬂ dv.



2330 EXISTENCE OF SMOOTH SOLUTIONS

Since 0< fr <1, [4(fx)>— 5(fx)?] 0. Therefore, using 0< fz_1 <1, the interpolation

1/4) 3/4

inequality [|g|| > <|lgll;5 ll9]l/5 , and Young’s inequality, we have

2 .
2 [ Vs L= ) 9 fedo <l - S1AE
2
<||fk|\”2|\fk||3/2—gnfkuis

<l

Using Lemma 3.6, we obtain

1fillZz +278u 1V fillFe < L fiallZ + 7l fema 1727,

which implies, recursively,

k

3/2
sup £l +260 | 3TVl <||fm||Lz+TZ||f]||/
SIS

Jj=1

3/2
<||fm||L2+rZ||me :
7=0

3/2
< fonll 22 +ET]| fin| 357

Taking k= N and recalling the definition of f(¥) in (3.15) finish the proof of the lemma.
d

LEMMA 3.8 (Propagation of Moments).  Suppose fin, € L3 and 0< f;,, <1. Then, the
following estimates hold:

| f) 2o o, 77:21) < N finll 1 +C (| finll £2) T, (3.19)
and
| f) 2o o0, 77:28) < I finll Ly +C | finll )T (3.20)

where the implicit constants are independent of T, 61, and 5.

Proof. Let pr € C°(R3) be as in Lemma 3.6. Then, we test (3.5) with (v)pr(v)
to obtain

/<pR<v>fkdv—|—7'(52/<p3<v>|v\mfkdv
_/</7R<U>fk—1 dU—T/Ak_1ka~V(<v><pR)dv
47 [ Vorafull= 1)V ()en) do =781 [ Vhi-T((whgn)do

::/¢R<v>fk,1 dv—T(I1—12+61]3).

We bound I3 using |A({(v)pr)| < C to obtain

Ifal‘/fk v)er) dv| <[|A(W)eR) L[ frllr Sl el
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For I we use Lemma 2.3, 0< f;, <1, and |V((v)pRr)|<C:

1Ll <[IVar—illzell fill IV} er) Lo S U fa—1llor + [ foallzoe) [ frll 21

For I, we integrate by parts twice to get

L= / Ve (Ax 1 fi) - V(0)pr)— (V- Ap 1) fi- V((0)or) dv

:_/tf(AkflkaQ(@)wR))dv—/(V'Akfl)fk'V(<U>¢R)d”
=: 7[1717[172.

Lemma 2.2 and |V2((v)pr)| < C yield

Tl < N Ak—1ll o | fill 2 V2 ((0) or) | Lo
S UMfe—allzr + 1 fe—allee) | foll 2o

Lemma 2.3 and |V({(v)pr)| <C yield

|12 <[V - Agpallzee | fell 22 IV ()R ) (| Lo
S U=l + 1 fe—tlle) | el

Combining all above estimates we obtain

k
sup / or(v) f;dv< / or(0) fin do+CS T (If5 1l + 151121

0<j<k =

< [ (0 findo-+ Chr (il + 1 fnlF).

Now, taking k=N, recalling the definition of &) in (3.15) and letting R — oo, the
monotone convergence theorem implies (3.19).
The proof of (3.20) proceeds nearly identically after testing with (v)2pg. |

The bounds in Lemmas 3.7 and 3.8 are sufficient for weak or weak star compactness.
For strong compactness, we will use the version of the Aubin-Lions Lemma for piecewise
constant functions [22, Theorem 1].

LEMMA 3.9. For any T>0, fin€L}, and 0< fi, <1, for f&) defined above with
0<m<l,
1D f ™ 20,1700 < C | fimll 3, T 61)- (3.21)

Moreover, the family {f™)} is compact in L*([0,T];L9), provided 1 <q<6.

Proof.  Let us define the triple X :=LINH' Y:=LINL% and Z:=H! for a
fixed 1 <g< 6. Following the proof of Lemma 3.3, the embedding X — Y is compact for
1<¢<6. Certainly, Y < Z continuously for this range of ¢q. Moreover, we have shown
in Lemmas 3.7 and 3.8,

Hf(N)HH([o,T];X) SC(517 ||finHL1a||fiﬂ||L27T)7 (3'22)
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where the constant on the right-hand side is independent of d2 and 7. To obtain (3.21)
we first consider

T
/ D, fM™ o dudt
o Jr3

T T
g/ /ANVf(N)-Vgodvdt +/ Van fN (1= fMN) . Ve dodt
0 R3 0 R3

T
/ / FM oo™ dvdt
0 JR3

For o€ L?([0,T]; H'), thanks to Lemma 2.2, one gets

401 +d9 =1+..+14

T
/ VW .V dudt
0o Jrs

T
L< / Lol 19 N | A e dt
0

Slellzzo,r |V &) Iz2(0,1522) (I finll 2 +1),

and, using Lemma 2.3,

T
B [ el |7 0= ) o Va2
0

Sllellzz o 1 M w20 7075

Finally,

I3 Sl o0,m;m) [V f) |20, 7:22)

and, since 2m < 2,
I, S ||<P||L2(0,T;L2)||f(N)||L1(o,T;L;m) <C(T, fin)llell 20,122

using Lemma 3.8. We note HVf(N)||L2([07T];L2)7 ||f(N)||LoC([07T];L1), and

||f(N)||Lm([07T];L5) are uniformly bounded in d; and N (but not in ;) by Lemmas 3.7
and 3.8. Thus (3.21) follows. Theorem 1 in [22], (3.21) and (3.22) yield the desired
compactness. 0

We are now ready to prove Proposition 3.3:

Proof. (Proof of Proposition 3.3.) Let d, =7, fix some 0 <m < 1, and {f")} yen
be the corresponding sequence of piecewise constant solutions to (3.16). Thanks to the
estimates from Lemma 3.7, Lemma 3.8, and Lemma 3.9, we may assume that f(V)
converges to f, as 7—0, in the following topologies:

e Weak star in L>([0,T] x R3),

e Weakly in L2([0,T];H'),

e Weak star in L>°([0,77]; L?),

e Strongly in LP([0,T];L?) for 1 <p<2 and 1<¢<6.
Moreover, by taking a further subsequence, we will also have that f(N) — f pointwise
almost everywhere. Therefore, thanks to Fatou’s lemma

11l o o, 73523) + 011V fll 20, 77:22) < C (Nl finll Ly, T)-
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All these convergences are enough to pass to the limit N — +oo in (3.16). We briefly
highlight the convergence in the nonlinear terms. Let us first consider ¢ € C2°([0,T") x
R3). We have

[wNﬂM(l—f(M)—Vamfu—f)} ~V<Pdvdt’
R3

(Van = Val[f]) fN (1~ f™)-Vpdvdt
RB

[ valf a5 -0 10 Viedudt
0o Jrs

:Sjl+.[2.

We estimate I; using Holder’s inequality and || f™) (1— (V)| g <1:
T
1< [ [9alons™ - 2 Veel o de
0

T
< / low £ = £l oso IV 12 dt 50,

thanks to the strong convergence, and, similarly, using Lemma 2.3,

T
B<2 [ 9l - 2| Vel de—o.
0

Next, we handle the nonlinear term involving Ay, which we decompose as

[ANVf“V) —Alf(1- f)]Vf} Vo dvdt‘
RS

(Av—A[f1=H) VN - Vpdudt

R3

ATA3A[f(1—f)] (V= V™).V dvdt

The term .J5 converges to zero thanks to the weak convergence of f() in H*(R?) and
Lemma 2.2. For Jj, we use Holder’s inequality, Lemma 2.2, estimate (3.17) and the
strong convergence in L?([0,T]; L?) to obtain .J; — 0, since

J1 SNV e o,y 02 191 oo (0,772
4/3 2/3
Non (FN) = A2 oo lon (PO = FI 750 722

We treat the left-hand side of (3.16) by integrating by parts,

T T—T
/ DTf(N)godvdt——/ D_ofMN(t) dvdt
0 R3

/ / TN () p(t) dvodt — = / / FN () (t+7) dvdt.
T—71JR3 —7JR3
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For N sufficiently large,

T
[ rweve=o,
TJr—7JR3

as ¢ is compactly supported in [0,7") x R3. Moreover, for 0<t <7, f(N)(t) = f;, so that
1 1

= / FN ) p(t+7) dvdt == / finp(t+7) dvdt.

TJ_+JRr3 T

—rJR3

Since ¢ is smooth, the right-hand side converges to f]RS ©(0,v) fin(v) as N — co. Finally,
since ¢ is smooth and f(N) are uniformly bounded in L?([0,77];L?), we have

T—T1 T
—/ D_ofM(t) dvdt—)—/ f(v,8)0pp(v,t) dodt. (3.23)
0 0 R3

This concludes the proof of (3.6). Lemma 3.9 implies that, for some g€ L?([0,T]; H 1),

T T
/ DTf(N)godvdt—>/ / g dudt,
0o Jr3 o Jr3

for every p € L%([0,T]; H'). Hence, (3.23) yields g=0; f. The distributional formulation
implies

| womandi== [ [ (alr0 =195 -Valflsa-)-Ved

T
—51/ / Vf-Vedudt,
o Jrs

for each € C°([0,T)xR?). Now, fix ®€ L*([0,T]); H') and let . € C([0,T) x R?)
such that ||®—.||12(j0,77;m1) <e. Then, substituting ¢. into the above weak formula-
tion, and passing to the limit € — 0, we obtain (3.7).

Finally, we note that because fe€L?([0,T];H') and 0,f€ L?([0,T);H '), fe
C([0,T); L?) and therefore (3.7) implies f(t) — fin strongly in L? as t —0%. Moreover,
repeating the proof of Lemma 3.6, the additional ds]| f|v|™|/z: term disappears thanks
to the uniform bound from Lemma 3.8, and we obtain conservation of mass. a

3.4. Step 4: Proof of Theorem 1.1.  We conclude the proof of Theorem 1.1
by showing compactness in §; for solutions to (3.1). We already have uniform in §;
bounds of the form,

I fsu [l o< jo,m;23) + 1 o1 | oo (0, 7 xr3) S C I finll 3, T)- (3.24)

Thus, to gain strong compactness as §; — 0, we will show (in Lemma 3.12) the estimate

I foullz2 o,y +10e for Iz o, my:m-1) < C (| fs | e o, 77:21), 1), (3.25)

by leveraging the degenerate dissipation present in (1.1) (see Lemma 2.1), which up to
this point, we have neglected. However, we do not have control over L} and therefore,
we also show propagation of higher moments in Lemma 3.10.
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To this end, we recall the dependence of our solutions on the parameter §;. Through-
out this section, we will write f5:[0,7] x R* =R to denote the solution fs5 to (3.1) on
[0,T] constructed in Proposition 3.3 with parameter 6; =4§. Let us begin with a propa-
gation of higher moments estimate that is uniform in 9:

LEMMA 3.10.  Suppose fin, € L for some s>2 and T >0. Then, the family {fs}o<s<1
satisfies the uniform in § estimate,

15l zos to.73:L1) < Ol finll 1, T)- (3.26)

Proof. 'We note that the propagation of moments for 0 < s <2 follows directly from
Proposition 3.3. We will prove the rest of them by induction on the integer part of s.
Indeed, fix some 2<n <s<n+1 and suppose that (3.26) holds for any 0 <s<n. Then,
we will test (3.7) with ¥ (v,t) =g (v)|v|*X[0,4)(t) Where g € C°(R?) is as in Lemma
3.6. We obtain

/ (fs(to) — fin)orlel® do=— / ° / Alfs(1— f2)]V fs - V(o] or) dvdt
R3 0 R3

+/0 0/R3(V@[f6]f6(1—f5)—5Vf5).v(|v|s<pR)dvdt.

We estimate the right-hand side by decomposing into multiple parts:
/“’/RS (A[fcs(lfa)]VfaVa[f(;}f(;(lf5)+5vf5>,v(|vs(pR)dvdt
/to /R Alfs(1—fs)lfs) - V(Iv[*¢r) dvdt
w5 A 1) Vo) e

to
//Vafsfal 1s))- (IvlssﬂR)dvdt—5/ /Vf5~V(\v|SsoR>dvdt
R3 0 R3
L+ I+ 15 —5,.

For I, after integrating by parts, thanks to Lemma 2.2 and |V?(|v[*¢Rr)| < C|v[*~2 we
obtain

1111 S (sllerqo.rizos + sl qo,zyizn) 1Hfolvl 2l o.riszy
SC(”fm”L;_Qv )

where in the last line we used the induction hypothesis. For Iy, we use Lemma 2.2 and
IV(Jv|*er)| < Clv|*~! to obtain

(L] < | fsV(|[vI*er)l Lo o,r,0) IV - Alfs (1= fs)lll Lr o, 77;000) S C N finll L2, T).
Similarly, for I3, we use Lemma 2.3 and 0 < fs <1 to obtain
3| < (| fsV([vI*er)l Lo o, I Valfs]ll L1 o, mys0) S CUl finllza_ T
Finally, for I, integration by parts yields

(L] < TN fA(vI*er)l Lo (0,732 SC[| finllz2_,,T).



2336 EXISTENCE OF SMOOTH SOLUTIONS

Combining all above estimates, we prove (3.26) for any s€ (n,n+1]. The proof is
complete. 0

The following lemma, combined with Lemma 2.1, gives a quantitative lower bound
on the ellipticity of A[fs(1— f5)]. This will allow us to gain some control over V fs
uniformly in 6.

LEMMA 3.11.  Suppose 0< fi, <1, fin €LY, Hi(fin) <0, and T>0. Then, fs has
decreasing entropy, i.e. for almost every 0 <ty <to <T,

Hi(f5(t2)) < Ha(fs(th))- (3.27)
Moreover, the dissipative coefficients A[fs(1— f5)] are bounded uniformly from below:

C(”finHLéaHl(fin)’T)'

Alfs(1— > 3.28
[f5( f5)]— 1—|—|U‘3 ( )

Proof. By Lemma 2.1, (3.28) is a consequence of (3.27) and
sy <C(ll finllzy), for allt>0. (3.29)

The energy bound (3.29) is shown in Lemma 3.10. It remains to estimate the entropy
and obtain (3.27). We test (3.7) with

Yy :=log(fs+n)—log(n) —log(1— fs+n)+log(l+n), n>0.
‘We have

/ [ ongsaeai=— | [, V- Alfs(1= 159 Sy

t
12

12
—I—/ . an~Va[f5](f5)(1—f5)dvdt—6 V(/)n'Vfg dudt
t1 3

t; JR3
=:—I1(n)+I2(n)—I3(n).

We now take n— 0%. For the left-hand side, we use conservation of mass from Propo-
sition 3.3 to obtain:

to
lim / Oy fs dvdt = hm / log(fs+m)0fs —log(1— f5+n)0:fs dvdt
R3 R3

n—=0%J4, 0%
:Hl(f(;(tg)) *Hl(fﬁ(tl))'

By the monotone convergence theorem,

lim Il / ; f§ 1 f5>_1] Vf(;A[f(;(l —f5)]Vf5 dvdt
t1 3

n—0t

:/t 2 RSV[log(fé)—log(l—fé)] CAlfs(1— f5)]V f5 dudt.

Next, for I3, we decompose further as

/ 2 / (F5+0) " + (1= fs+m) Y 9 f5-Valfs](£5) (1 — f5) dvdt
—(1+21) / |, Vs Valfsl vt

to
n(l— n/ / (fs+m) 4+ (1= fs+n) "' Vis-Va[fs] dvdt

=L (n)+15(n
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For I3, we integrate by parts to obtain
to
lim 75 () = / f3 dvdt.
6—0 t, JR3
For 12, we use 0 < fs <1 with fse€ L>([0,T]; L") and nlogn—0 as n— 07" to obtain

| =n1=n)| [ [ fsDo(fs+n) ~log(1 = fy+)) dvc

12
<2[log(n)|n(1—n) / / Fs dvdt -0,
t1 R3

Finally, we note for I3 that

to
77):5\/1& R3 [(f5+7])71+(17f5+77)71]‘Vf5|2dvdt20

Thus, combining our estimates, we have shown

Hy(fs(t2)) — Hy(fs(t1)) / ) / Vllog(f5/(1— f5))]- Alfs(1— f5)IV f5 — f2) dudt.

We conclude by noticing that

_/t 2/R?) (V[log(fé)—log(l—f(;)] 'A[fé(l—fé)]Vfg—f(?) dvdt

—3 [ [ [asa-ma-s

X( \vv le {f T f<1v—ff)Hf*<Yi*f*>f(lvfﬁD dudvrr

<0.

d
The next lemma contains the coercive estimate we need to pass to the limit § — 0.

LEMMA 3.12 (L? Estimate). Suppose fi, € L3 with Hi(fin) <0 and T >0. Then, the
family {fs}o<s<1 satisfies the estimate

10¢ foll 20,1y, -1) + || fsl Los o, 73;28) H IV fsll L2 o,rysz2) S C | finll 2y Hi(fin), T).

Proof. We test (3.7), with ¥(v,t) =f5(v,t)<PR(U)<v>3X[o,t0] (t) where pr € C°(R3?)
is a cutoff function as in Lemma 3.6. We obtain,

/Rs fg(to)¢R<v>3—ffn<pR<v>3 dv
7/0 /R (Alfs(1— £5)]V 5 —Valfs]fs(1— f5))- VU dvdt

to
—5/ Vs VU dvdt.
0 R3



2338 EXISTENCE OF SMOOTH SOLUTIONS

We expand the right-hand side as

_/0/ (A[f(S(l—f&)]Vf&—Va[fé]fﬁ(l—fa))-V\I/dvdt—(S/O Vs VU dudt
0 R3 ; g
to
/ / pr() Alfs(1=f5)IV f5-V f5 dvdt
R3
—/0 /RS f5A[f6(1_f6)]Vf5~V((pR<U>3) dvdt
to
+/ va[f5]f5(1_f6)'f5V((pR<1)>3) dodt
0 R3
+/0 OASVQ[fé](fé—fg)'<,0R<’U>3Vf6dvdt

to . to .
—5/ /Vf5~f5V(<pR<v>d)dvdt—5/ /Vf5-<p3<v>‘3Vf5dvdt
0 R3 0 R3
21—11—12+13+I4—5I5—516.

We bound I for 2<j <5 using the propagation of moments from Lemma 3.10 and the
upper bounds on the coefficients A and Va from Lemmas 2.2 and 2.3. We will lower
bound I; using Lemma 3.11. We begin to bound I by decomposing further:

_1/0/ Alfs(L= )1V 3 -V (or(v)?) dvdt
/O/Rd Alfs(1=f5)13) -V (pr(v)®) dvdt

3 [ A - D Vo) v
=1 -I2.
For I}, integration by parts, Lemma 2.2, and [V2(pz(v)?)| < (v) imply
|13 <AL (1= f3)ll oo qo.11xm9) | fs V2 (0 R (0 | L1 o710 3) S C | fimll 21, T)-
For I2, obtain by Lemma 2.2, and |V (pr(0)?)| < (v)?,
|I22|§||V'A[f6(1—f6)||L°°([o,T]xR3)||f6V(<PR<U>3)HL1([0,T} r?) SC( finllzy,T)-

Piecing together, we obtain
| <C([| finll £y, T)-

For I3, we directly use the estimates from Lemmas 3.10, 2.2, and 2.3 and |V (¢g(v)*)| <
(v)? to obtain

13| <1IValf5l L o myxe) 1 £5V (07 (0) )| 21 0.11:21) < Cl fonll 23, T)-
Next, for I, we integrate by parts and recall —Aa[f]= f to decompose further:

14:/% Va[f(;}.@RWv(fé fé)ddt
0 R3

[ ] valsst-Fonto?) (-2 avar [ [ onier® (- L) dvar

=11+ 17



W. GOLDING, M.P. GUALDANI, AND N. ZAMPONI 2339
We bound I} using Lemma 2.3 and |V (pg(v)(0)?)| < (v)?, to obtain
131 < IVal 5l o o.11x29) 1 f5V (2R (0) ) L 0.7y xk3) < Cl| finll 23 T)-
For L%, we bound using 0< f5 <1 so that

1131 <l () foll L qo.m1xme) 15 /2 = £3/3]| e 0.1y xy < C( finl 23, T)-

Hence,
1] <Ol finllzs. ).
Using |V2(pr(v)(0)®)| < (v) , integration by parts yields

15| <[ £5 | oo o1 k) | £5 V2 (0 R (0) (0)) |1 0.7y ) < C (| fim I 23, T)-

Finally, we note Is >0 and by Lemma 3.11,

to v 3
12l HaG)T) [ [ ZICMNLI
0 R3 1+|U|

Summarizing, we obtain

to
[ ot fstt0) o+ Cllanley a5 T) [ [ ol fsP o
R3 0 R3
< [ or) findo+Cl1 iy, D).
]Rf}

Letting R — oo, applying the monotone convergence theorem, and taking a supremum
over tg € [0,T] yield the desired bound on V fs.

Next, we test (3.7) with an arbitrary test function ® € L2([0,7]; H') and, by duality,
obtain a bound on 0, f. In particular, we have

T
||3tf5||L2([o,T];H—1)=Sup/0 /]R3 (Alfs(1— f5)IV fs = Va[fs]fs(1— f5) +6V f5)- VO dudt,

where the supremum is taken over all the functions ® such that ||®| 520, rp;m1) <1
Since

T
/ Alfs(1— f5)|V f5- VO dvdt
o Jr3
< HA[f(;(]- - f5)] ||L°°([0,T]><]R3) . ||vf||L2([O,T];L2) HVCPHLz([O,T];L?)»

and

T
| [ walsalssta o)V dvde < [Falfsll o myan [T oo
0 R

we conclude

|atf5||L2([O,T];H*1) SC(HmeLl) sup ||fHL2([o,T];H1)HV‘b”L?([o,T];L?)

Pl 20,71y 1

SO(|‘fzn||L§7H1(fln)7T)
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This completes the proof. 0

In the next lemma we state a weighted L? estimate, proved via a slight modification
to the L?-estimate in Lemma 3.12.

LEMMA 3.13.  Let f be any weak solution to (1.6) as in Theorem 1.1 with initial data
fin as described above. Then, for every m >3,

T
sup /() s, + [ IVSOIRs |, de<Clfinm. ).
(0,7) 0 m

Proof.  'We test (1.6) with ¢=(v)™ f, and estimate the resulting terms as in the
proof of Lemma 3.12. O

Proof. (Proof of Theorem 1.1.) Fix T>0, fi, with 0< f;,, <1, and f;, € L} and
fix some sequence &, — 0" and let f,(v,t) be the solutions with §=4,, constructed in
Proposition 3.3. Then, the uniform-in-§ estimates from Lemma 3.10 and Lemma 3.12
together with Aubin-Lions Lemma imply that we may assume that f, — f for some
limit f in the following topologies:

e Weak star in L>°([0,7] x R3),
Weakly in L2([0,T); H'),
Weak star in L>([0,77]; L?),
Strongly in LP([0,T];L9) for any 1<p<2 and 1<¢<6.
Furthermore, we may also assume f,, — f pointwise almost everywhere on [0,7] x R3.
Therefore, by Fatou’s lemma, it follows that for almost every ¢ € [0,7T7,

IF @Oy <C finllzy,T)- (3.30)

Note also that the weak star convergence in L is sufficient to guarantee 0 < f <1.
Next, since each f, solves (3.1) on the time interval [0,7], for any ® € C>°([0,T) x
R3), we have

T
/ fnatq)dvdt—/ fin®(0)dv
0 JR3 R3

T
*/O /]R (Alfn(1= F)IV fr = Va[ful fu(1= fn) + 6,V ) - VE dvdt.

We conclude the proof of existence by following the same steps as in the proof of
Proposition 3.3.

To show uniqueness of solution, we assume by contradiction that there exist two
solutions f and g. Their difference

w::f_ga

is identically zero at t=0 and solves the following weak formulation:

T
/ (¢, 0pw) 1 g1 dt
/ / f—=HVw- VgadvdtJr/ / [fw+(g—1Dw]Vg-Vedudt
R3 R3

—|—/ f(l—f)Va[w]-chdvdt—/ (fw+(g—1)w)Valg]- Ve dudt.
0o Jrs 0

R3
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We consider ¢ =w(v)?™ for some m > 2, and get
%/ 2 ()2 dv=— / /RS f(1=HVw-V(w{v)>™) dvdt
—|—/ /RzA[fw+(g—1)w}Vg~V(w<v>2m)dvdt
/ [ 10~ 1)Valu]- V(o)) dvde

/ /R (fw+(g—1)w)Valg]- V(w(v)?™) dvdt
—.Il+IQ+I3+I4.

The term I is estimated with Young’s inequality:

T AP g
/O/Re, oy |V dvdt

T M vam. UQm'U
+/0 /R3 (v)2m Vw(v)™™ - V{v)™™ dvdt
Ly [ ALO=D] G

(1 5)/0 /]R3 Yo |Vw(v)?™|? dvdt

T
C(m765f7n)/ |w|2<U>2m dudt.
0 R3

Similarly,

I, <C(fin) / w]Vg-Vw(v)*™ dvdt

2m2 1 T
<5// sz | ddf+*//<v>2’"(1+\v|)3|A[w]\2|vg|2dvdt
g3 (v)2™ 1+| [)3 5

Alf
<5/ 4] )H|v (v)?™ 2 dvdt 4 = / ||w||L2 /(1+\v|)3+27"\vg|2dudt,
R3 ’U (5 3

using the bound from below for A[-] and the bound from above in Lemma 2.2:
3
JARB|~ < CIBIZE 1B < Clblsy, . for allm> 3.

Holder and Hardy-Littlewood-Sobolev inequalities applied to I3 lead to

r
I < / |V afuw]] 2o ( / f6/5|Vw<v>2mI6/5dv> it
0 R3

1 /T ) /T ( / o MR V(o)
<= wl|f2 dt+6 1+ [0])¥/2H3m gy / ——————— dvdt
5 o || ||L 0 ]R?’f( | |) R <’U>2m(1+|’l)|)3

e < (T Af(—
Sg/o ||w||igmdt—|—5/0 /RL;WWMWMFMCI@

using Lemma 3.13 to bound the 9 / 2+ 3m moments of f (uniformly in time). Similarly,

3/2 2m |vw 2m|2
< f||Va[ 1(1+1v]) ||L dvdt+(5 e (Ao 5 dvdt.
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We briefly show how the term ||Va[g](1+ |U|)3/2H%oct is uniformly bounded. Let |v| be
large enough. For s> 3, Holder inequality yields: ’

|VavHsA;|f<)2dy

1/s
1
[ody + iz 1z ey
A| | (o)) ‘U|2

o] = Vs
su+wpw/“f1+wndy + ol a

with %+ % =1 and s’ <3/2. The choice of A so that 3:—[5/ — % = —2 leads to the desired
estimate.
Combining the estimates for I1,...,I4 and choosing § small enough, one gets

1 T
3 [t ase [Coly (1 [ )il i) a
RS 0 2m RS

Since fOT Jgs (L4 [0])3+2™|Vg|? dvdt < C' thanks to Lemma 3.13, Gronwall’s inequality
implies that w(t) =0 for all ¢>0. This concludes the proof of the theorem. a0

4. Regularity of weak solutions

In this section, we prove Theorem 1.2. Throughout this section we consider initial
data f;, such that 0< f;, <1, Hfin”leL?n < oo for a general m >3, and Hy(f;,)<0.
The exact value of m needed for Theorem 1.2 is determined in Lemma 4.3.

As a first step, we use Lemma 3.13 to show that weak solutions of (1.1) instanta-
neously regularize and belong to weighted L>(¢,T,H') and weighted L?(¢,T,H?) for
any t>0.

LEMMA 4.1.  Let f be any weak solution to (1.6) as in Theorem 1.1. For any t>0
and m >3, we have

T 1
aup VSO, + [ IV2 @, ds<Ctra) (1+7).

t,T t
Proof. Fix i=1,2,3 arbitrary. We first recall the notation for divided differences,

~ v+e;h)—g(v
fugi= SN =0l0)
for which the following discrete product formula holds,

On(f9)=9On [ + fOng+hOnfong.
We test (1.6) with ¢(v,t)= _X[tl,tz](t)é—h ((v)m(:ﬂhf) and obtain

. / ” o fé_h(<v>m5h f) dvdt

[ A;va. 0)"81f) (AL (L= DIV S = ValfLf (1 £) dud.

On the left-hand side, we perform a discrete integration by parts:

_/:) - O fon (<v>m5hf) dvdt = ;/: /R3 (v)™ 0, {5hf]2 duvdt

= 1" f@)Fs — 5V (1)
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We decompose the right-hand side as

RHS== [ [ 000t AlF 0= 1900 f ~ (0)" 900 f - (8.AL Q= )V F) v

to
f/ / "N f -
t1 JR3

(AW ALF (L= DIVORS) ) +(0) "V f - 5nVal f1f (1~ f) dvdt
/tz/RS "Vonf- (Va 1on(f(1—f )))+(v)mvéhf-héhVa[f]éh[f(l—f)]dvdt

—+

- / ’ [ )3 (8. A0 PIVF) = V(o) B0 ALF (= 1]V 90 f v
—/2 V()" Onf - (hahA[f (1—1) ]vahf)+v< VO f - OnValf]f(1— f) dvdt
t1 JR3

+/t2 V() Y8 f - (Valf)dn(f )))+V(v)m5hf-h5hVa[f]5h(f(1—f))dvdt

For I; we use Lemma 2.1 to obtain

ta _
L <—C(fin) / / ()" =3|V 8, f 2 dudt.
t1 R3

Next, for any § >0, we upper bound Iy using [|[VA[f(1— f)| L~ <C(fin) and Young’s
inequality,

tz - t2
|12\§5/ /<v>m*3\vahf|2dudt+5*1/ /<u>m+3|Vf|2dvdt
t1 R3 t1 R3

to N
[ 08 v+ 5,

In the same way, we bound I3. We bound I, using |V2a[f]||Lr S| f]lze for 1<p<oo,
by the Calderén-Zygmund Lemma (Chapter 9.4 in [24]), and Young’s inequality:

ta - to 5
|14\55/ / (v)m’3\V8hf|2dvdt+6’1/ / (0313, Val ]2 f2 dvdt
tq1 R3 th R3
to B
/<v>m*3\vahf|2dvdt
R3
t2 ~ 2(m+6 2(m+6
e / / (18RVal )5 4 £ 5555 )74 ) dudt
t1 R3

<6/ / )V O 12 dodt 46 1132, a1

m«H}).

For 6 >0, we bound I5, using Young’s inequality and Lemma 2.3, as
t2 - t2 -
15| <0 / ()" 3|V f1? dvdt+6" / (V)™ 310, f (1= £)|? dvdt
ty JRS t; JRS

to 5 B
Sé/t /RS <,U>m—3|vahf|2d’l}dt—‘y-(s—l”ahf”%?([tl taliL2,,5)"
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Again, we bound I in a similar manner to Iy and I5. For I7, we use |[V(v)™)| < (v)™~1,

Lemma 2.2, and ||5hf||L$n SV Lz, (via a simple modification to Proposition IX.9(iii)
in [10]), to obtain

ta
|17\5/ /(v)m_1|Vf|2dvdt.
t1 R3

Next, for Ig, we integrate by parts and use Lemma 2.2 and |VZpg(|v]){(v)™| < (v)™ 2
to obtain

18:*% / | V™A= 1)V (Onf)? dvdt
:;/tl2 RsV(’u)m.(V.A)[f(l_f)](éhf)Q dvdt
1 [t

- 5/ i V)™ A[f (1= £)](Onf)? dvdt
t1 3
SIVAZ 2y arizz, ) TIV A2 g2,y

We bound Iy in a similar manner to I7 and Ig. For I, we use Young’s inequality and
the Calderon-Zygmund inequality, to obtain

ta }
110l S ||8hf||%2([t1,t2];[,?n71) +/t /]R3 ()™= OnVa[f]|? f? dvdt
1

S ||éhf||2L2([tl,t2};L2 )T Hf||2L2([t1,t2];L$n)~

m—1

For I11, we use Va[f] € L>([0,T] x R?) from Lemma 2.3 to obtain

to 5 ~
|111|5/ /H%3<v>m71|ahf|2dvdt§ 100 F113 e iz -
t1 .

Finally, 112 is bounded similarly to 1o and I1;. Thus, we have shown (using once more
that [|0nfllL2 SV Fllz2)),

m

[ et [Bustea? = dus 7] dor©=8) [ [ orlol)e)™ 139 12 dus
R3 th R3

SO+6) (V1 aginz, e

m—2

2
3) + HfHLQ([tl?t?]?L%nmLfnJra)) 9

1+

where the implicit constants depend only on f;,, T, and m. Now, taking § <C/2 and
taking h— 0%, R— oo, we see V f is weakly differentiable and

[ st [ [ e v

S [V SOR dot (IV 1o, e

2
o Mg,

Next, taking a supremum over t5 in [t,T] and an average over ¢, € [0,t], and applying
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Lemma 3.13, we get
T
sup VIO + [ IV, ds
(t,T) t m
1
S’;C(‘fin’T’m)+||Vf||%2([O,T];L20L$n+3) + ||fH2LZ([0,T];L2ﬂL?n+6)
1
<C(finTm) (1+t> |

This concludes the proof of the lemma. 0
Next, we show how to control the L>(¢,T, H?)N L?(t,T, H?)-regularity of f:

LEMMA 4.2. Let f be any weak solution to (1.6) as in Theorem 1.1 with initial data
as described at the beginning of this section. For any t>0 and m >3, we have

T
1
sup [V Ol + [ IV, ds<Ctgn) (145 ).
(t,T) moJe mes t
Proof. Thanks to Lemma 4.1, we can take
d)(vvt);:X[thtz]é—ha’w (<U>m5hfvz> )
as test function for (1.6), and obtain

to B -
/ 8, f 00,0, (<v>mah f) dvdt
t1 R3

:_/t 2 [ V00 (0B fo. ) -(ALF (L= DIV f = Valf1f(1— f)) dvdt.

On the left-hand side, we perform one discrete integration by parts and one standard
integration by parts and get

1 to B 2 1 ~ 1 ~
LHS= / / )"0y [On ] dvdt =310 G fo (E2)][F2 = 51 0) " Fnfo (1)

We also perform discrete and standard integration by parts to decompose the right-hand
side as

rRis—— [ /R ("B foy - ALF (L= )]V fo, e
(8 ALF (L= 1)V fu +0u, ALF (1= DIV £ ) dudt
[ [0Vt (0,840 = IV )+ ) VS - (100,alf) 1 ) v
[ ] @Vt (0, alf184(7(1 - £)+8,5alf10,, (F(1 - 1)) doc
70 Ian g (Falfion Al f 0 1)) =000 (A= D] S.,) o

(B A= DT o+ 00, AL (1= DIOWV ) dvdt
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_ /t t 5 V()™ B fo, - (a,,iéhA[f(l —f)]Vf) + YV (V)™ On fo, - (éhaviva[f} F1— f)> dvdt
+/ft [ 07301 (0, Vel (£ = 1))+ BuVal 01, (F(1 1)) dui
+/tlt2 R3V<U>m5hfvi-(Va[f]aviéh[f(l—f)]) dvdt+&

12
::ZIJ- +¢&,
j=1

where £ denotes the error terms, which originate from the discrepancy between the
product rules for 05 and 9,,. These terms are bounded identically to the others and so
we omit the bound on £. For I, our coercive term, we use Lemma 2.1 to obtain

to _
hE-Cn) [ [ @m1vans
t1 R3
For I3, when two derivatives land on the kernel A[f], we use Young’s inequality, Holder’s

inequality in space, the Sobolev embedding H'(R?®)— LS(R?), and the Calderén-
Zygmund Lemma, to obtain for any J >0, the estimate

ta B B
I <6 / / (0)™ 318y for >+ 67 (0) ™30, On ALF (L — )2V £ dudt
11 R3

to ~
<5 / 0y 3V
t1 R3

to
2 dudt 451 / 1 lloa o)™ 5 £12 o dt
t1

m+3

to _ ta
6 [ [ wan g P dvdtr s [0 Ve
t; JR3 t1

ta -
56/ / (V)™ 3|V O fo, | dvdt
t1 R3

t2
_ m+1 m+3
+07 [ (I Ve + ) F V2132 ) at

ty

to -
<5 / / (Y3 V ) fo, 2 dudt
t1 R3

-1 2 2 £02
+4 (||Vf||L2([t17t2];L3”+1) + ||V fHLz([tl,tQ];LQ )) .

m—+3

Similarly, for I, when two derivatives land on the kernel Va[f], we use Young’s in-
equality, Holder’s inequality, the Calderén-Zygmund Lemma, Lebesgue interpolation,
the Sobolev embedding H'(R3)— L5(R?), and Lemma 3.13 to obtain for any § >0, the
estimate

to ~ ta ~
I8 [ [ o Vaup Pavder [ 0 100,0, Val IR s
tq1 R3 th R3

to 5
5[] v,
11 R3

7

1" ~
2dvdt+g/ 1180, Onal¥ f1[ s || £ ()™ 42| Lo/ dt
t1

. - A 1 f2 a m+3
N /RB<U>m 3‘Vahfvi|2dvdt+5/ 100, 0na[V |26l f (v) 3 12, dt
t1 t
2 m—3 3 2 1 t2 2 m+3 m+3
SO [ | TVl dvdtt g | IVAIT S 0) 5 sl 0) 5 e at
t1 3 t
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v (1007

V£l

m—+3

dt

1 [t
* dvd + / V2 £ 1220 F ez,

t2 .
<6 / (V)™ 3|V fo,
t, JR3

L2

1 flg )t

m-+3

to 3 _ 1 to
o[ [ i Pavde s [ I3
ty 3 t1

to - 1
55/ /1;3<’U>m73‘vahfm|2dvdt—"S”vzf”%ﬁ([tl,tg];L%(”vf||L°°([t1,t2];Lfn+3)+1)'
t1

To bound the remaining terms I and I5,---, 12, we modify the arguments from Lemma
4.1 in a similar fashion, using the additional tool of the Sobolev embedding as necessary,
to obtain

~ t2 ~
/<v>m|8hfvi(t2)|2dv+(C—5)/ /(v)m*3|vahfvi|2dvdt
R t1 JR3

3

m|a 2 —1 4 2 r14
§1+/Rs<v> |Oh fo, |7 dv+ (146 )(||vf||L°°([t1,t2];Lfn+6)+||v fHLQ([thtﬂ;Lgm)).

Thus, taking § sufficiently small and taking the limit A — 0%, we conclude that V2f is
weakly differentiable and we obtain

ta
IV Aty + [ I9°FIR,  ds

ty

S1+ ||V2f(t1)|ﬁ:gn + “ani""([tl,tg];Lan) + ”V2f||i2([t1,t2];Lﬁz+3)-

Taking a supremum over ¢, € [2¢,T] and an average over t; € [¢,2t], and applying Lemma
4.1, we obtain

T
sup V2703 + IV, ds
(2t,T) 2t

3

1 T T 2 2
3 [ I s [IVEAIR, ds) (s oA
t ¢ m t m+3 (t,T) m+6
1
<(1+3).
0

REMARK 4.1. From Lemma 4.2, one can continue to bootstrap spatial regularity,
and obtain the corresponding higher regularity estimates, that provided fi, € L2, 4,
for each 0 <ty < T, V¥ f € L>([ty,T];L?,), and moreover,

to<t<T

T 1/2 1\ F/2
swp 95Ol + ([ IV ds) S (145)
0

If fi,, is rapidly decaying, i.e. f;, € L2, for each m >0, then f is Schwartz class in space.
That is, f € L*([t,T);S(R?)) for each ¢ > 0.

Instead of bootstrapping spatial regularity and deducing the corresponding time
regularity from the equation, we use Lemma 4.2 to conclude Hélder regularity of f.
Combined with the parabolic divergence structure of (1.1), we deduce spatial and tem-
poral regularity simultaneously via classical Schauder estimates. As the initial step, we
have the following lemma:
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LEMMA 4.3. Let f be any weak solution to (1.6) as in Theorem 1.1, with fi, €
LINL%*(12). Then, f€C*/?((0,T);C*(R?)) for some a€(0,1).

Proof. By Lemma 4.2, we conclude f € L>((0,T];W1P) for each 2<p<6. There-
fore, by a duality argument, 9, f belongs to L>((0,T];W~1P) for 2<p<6. By a (real)
interpolation of the Sobolev spaces L>((0,7);W1?) and W ((0,T);W~1P), we ob-
tain f € Wsr:6((0,T);W#2:6) for sy strictly less, but as close as one wishes, than 1— 26,
and s strictly less, but as close as one wishes, than 6, for any 6 € (0,1) (see Theorem 3.1
in [5]). Hence, choosing § < %, Morrey’s inequality implies f € C%*/2((0,T);C%*(R?)),
for some a > 0. |

Now, we are ready to apply a standard bootstrapping argument and conclude f is
smooth:

Proof. (Proof of Theorem 1.2.) By Lemma 4.3, we conclude f&C*/2((0,T);
C%(R3)) for some a € (0,1) and f solves the divergence form parabolic equation,

Orf=V-(Alf(1= NIV =ValfI(1=1)]), (4.1)

in the weak sense. Hence, Lemma 4.7 in [27] shows that Va[f] and A[f(1— f)] belong to
COn/2((0,T];C%"). Thus, f satisfies a divergence-form parabolic equation with Holder
continuous coefficients. By Theorem 12.1 from Chapter 3 in [31], we conclude f¢€
CLH/2((0,T);C™*). Bootstrapping the argument, we obtain higher regularity of the
coefficients A[f(1— f)] and Va[f], from which f € C*((0,7];C) follows, as desired. O

5. Long time behavior

In this section we prove Theorem. 1.3. Without loss of generality, we can assume
that e=1. We first rewrite the initial value problem associated to (1.1) in the following
compact form

{6tf+T[f]:O veR3, t>0, (5.1)

f00)=fin  vERS,
where the Landau-Fermi-Dirac operator is defined by

RO (p 1 )9 s = 10— V)
r3 |v—v¥|

==V-(A[fA=HIVf = A= f)Va[f]), (5-2)

and the quantities A[-], a[-] are defined in (1.5).
We first show unconditional convergence without rate towards the steady state for
(1.1), which is the first part of Theorem 1.3.

TIfl(v)==V-

PROPOSITION 5.1 (Convergence to the steady state).  Given any initial datum f, :
—10,1], fin € L3, such that Hy[fin] <0, the solution f to (5.1) tends to the Fermi-
Dirac distribution M with same mass, momentum and energy as fi, when t— oo.

Proof. We recall that f satisfies a bound in L'NL* uniformly in time, and
therefore sup,~q ||f(t)||r2 <oo. In what follows we will often make use of this relation
without mentioning it.

Integrating the entropy balance equation in time yields

[ (8)] + / DU (dr <Hilful, >0,
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with
Alfa-1)]
re f(1—f)

Since D[f(-)] € L'(0,00), there exists a sequence t,, — oo such that D[f(t,)] —0 as n—
oo. Define f,, = f(t,). Given the lower bound for A we deduce

D[f]= Vf~Vfdv—87r/ f2dv>0.
RS

[vnbw s [ AIls opag [ paenisn g
R3 R3 fn(l_fn) R3

Therefore (v)~3/2V f,, is bounded in L?. However f,V(v)~3/2 is bounded in L?, so the
product f,,(v)~3/2 is bounded in H'. Furthermore £, (v)? is bounded in L'. We deduce
via Sobolev embedding that f,, is relatively compact in L?, and more in general (via
the L bounds and the bound on the second moment of f,) in L? for every p€ [1,00).
Let us denote with f, its limit. We have that (v)~%/2V f,, — (v)3/2V f., weakly in L.
This is enough to deduce via a generalized Fatou argument [11, Lemma A.4] that

Ds[foo] <liminf Ds[f,,] <liminf D[f,] =0,
n—oo n—o0
with

Alfa-=1)]
Biyys J(A=f)+9

and § >0 is arbitrary. Via monotone convergence we deduce

Ds[f]:= Vf~Vfdv—87r/RSf2dv,

OSD[foo}:%i_{%Dé[foo]So-

It follows that D|fo]=0. Since we know that [os fr(1— fr)dv>c>0, it follows [8] that
foo =M. This means that f, = f(t,)— M strongly in L? for p€[l,00). In particu-
lar the relative Fermi-Dirac entropy Hi[f(t,)|M]=Hi[f(tn)]— H1[M]—0 as n— occ.
On the other hand, we know that ¢— Hy[f(t)|M] is non-increasing, so it must hold
limy_, oo H1[f(¢)]M]=0. This easily implies the strong convergence f(t) — M as t — oo
in L'. This finishes the proof. ]

Our next goal is to prove exponential convergence of the solution f(¢) to (1.1)
towards the steady state M in case the initial datum f;, is close enough to M in the
norm L?(m). This is in the second part of Theorem 1.3. We linearize our equation
around the steady state M. We will work in weighted Lebesgue spaces with weight m
defined by

m:=M(1-M), (5.3)
where M is the Fermi-Dirac distribution defined in (1.4). Writing
- 1
him % and —T(f]=: Lh+Tafh, ] + T, b, ] (5.4)

it defines the linearized operator L and the quadratic and cubic perturbations I's, I's,
respectively.
Via straightforward computations [4] one finds

m(v*)m(v)

(LR)() = —— V-

m(v) R3 |u—v¥|

II(v—v*)(Vh(v) = Vh(v"))dv", (5.5)
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Ty [h, ] (v) = #v)v- (A[(1 —2M)mA]V (mh) — Alm*h?] VM (5.6)

—(1—2M)mhVa[mh] +m*h?Va[M))

Tylh, h, h] (0) = %v- (= A[m?h)]V (mh) + m*h>Va[mh]) (5.7)

Define the spaces
L*(m):=L*(R* m(v)dv), H'(m):=H"(R®m(v)dv),

and recall that (v) = (14 |v|?)/2.

Our goal is to prove a spectral gap estimate for the linearized operator L. We will
apply [17, Lemma 10]. In order to do so, we adapt the latter result’s framework and
therefore define for k>0 the following Hilbert spaces

Mg =L2(m(v)* ),
HE = {heH’g E1Rl3e = 1050 +/Rg Vh-Alm]Vh (v)kmdv<oo}.
Clearly H* < H} with continuous embedding.

We split then the linearized operator L into two contributions, in the following
fashion:

L=Kp—Ay, (5.8)
—__1 G mU)m) b e ;
AR L e e T T T
—87rm(v)h(v)—|—£/ mh(v)*dv, (5.9)
Keh)(0) e — — . [ T )nz(v)ﬂ(v—v*)Vh(v*)dv*
m(’v) Re 0=
—8mm(v —I—f/ mh(v)*do, (5.10)

where £ >0 is an arbitrary constant, to be specified later. We also recall the definition
of the Maxwellian M:

M(v):e_blv_“lz7 vER3,
and point out that M ~m (via direct computations).

We prove now the following coercivity estimate for Ay.

LEMMA 5.1. Aj:HF — (HF) is bounded and (Agh,h)p2(meysy 2 |05 for every
heHE, provided that &€ >0 is large enough.

Proof.  From (5.9) and the Definition (1.5) of A it follows, via an integration by
parts,

m(v*)

(Akhl,hg)Lz(m<v>k) = RBV(<v>kh2(1})) . ( - |U_U*|H(U—'U*)d’u*) Vhl(v)m(v)dv

—87r/R3h1h2<v>km2du+5 (/R3h1<v)kmdv> </R h2<v>kmdu>
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=8 . Vha(v)- A[m]Vhy (v) (v)m(v)dv

+8!€7T/R3 (0)*2hy(v)v- Alm]Vhy (v)m(v)dv

—87T/Rsh1h2m2<v>kdv+£(/Rshlm<v>kdv> (/Rs h2m<v>kdv>,

(5.11)

for hy,he €H*. Since A[m](v) is symmetric and positive definite for v € R3, Cauchy-
Schwartz yields

‘(Akhth)LZ«wkm)‘

S / (Vha(v)- A[m]Vha(v)? (Vhy(v) - Alm]Vhi (v))"? (v)*m(v)dv

~

1/2

+/ (Vhi (0)- Alm] Vi (0)) 2 (ha(v)? (v)~*0- Alm]o) = (0)Fm(v)do
R3

+ 1Rl 172|940

< ( g Vha-Alm]Vhy <v>’fmdv>é (

Vhy - Alm]Vhy (v)kmdv>
R3

2

+ < /R 3vm(v)-A[m]wu(v)<v>’<fm(v)dv>é ( /}R 3 hg(v)2<v>k4v~A[m]vmdv>

+ 1Al 12l

Therefore
|(Akh1,h2) L2y | S lage [P ]l3x-

Via a duality argument it follows that A is bounded as an operator H* — (HF)'.
Choosing hy =hg =h in (5.11) yields

(Akhyh) 12 (m (o) =870 3Vh~A[m]Vh<v>kmdv
R

— 87 /Rs RE(w)rm?dv + ¢ (/IRs h<v>kmdv)2

+8k7r/ (WY =2h(v)v- A[m]Vh(v)m(v)dv. (5.12)
R3
The last integral can be estimated via the Cauchy-Schwarz inequality:

(Akhyh) 12 (m oy = 47r/ Vh- A[m]Vh (v)*mdv
R3

—SW/RS h2 (v)rm2dv+ ¢ </R h<v>kmdv)2

—C [ W) Smdo. (5.13)
R3

Let us focus on the first integral on the right-hand side of (5.13). Lemma 2.1 and the
fact that H1[M] <0 lead to

Vh-A[m]Vh (v)*mdv > / |Vh|2m(v)(v)*3dv.
R3 R3



2352 EXISTENCE OF SMOOTH SOLUTIONS

For every R >0, since m(v)(v)*~2 is uniformly positive on Br (with an R—dependent
lower bound), it follows via (the standard) Sobolev’s embedding and Poincaré’s Lemma

2

1
/Vh~A[m]Vh(v>kmdvch/ |Vh|[*dv>cgr||h hdv
R3 B

" |Br| /B,

2
>%Mﬁmm—%(éhw>
R

ZCR“h”%G(BR)_C/II{‘/B h2d’U.
R

LS%(Br)

From (5.13) and the above inequality we deduce

(Akh)h)L2(m(’U>k) 2/

Vh-A[m]Vh(v)kmdv—FCRHhHis(BR) - c’é/ h2dv
R3 Br

— 8 h2(v>km2dv—87r/

Br R3\Bg

2
h2<v>km2dv+§( h(v)’%ndv)
R3
—C | R Pmdv—C R% (W) Pmdy
Br Rg\BR

> || Ve A V) vt enlbl g — K 1A s

—87r/ h2<v>km2dv+§éR||hH%1(BR)—C’/ h? (v)*Smdv.
R3\ Br R3\ Br
(5.14)

Let us now consider
I = [ B2 oS [ @S2 02 ()
0 R3 R3
Young’s inequality with the convex conjugated functions s+ %log% -5 sr>no el

(with 1> 0 arbitrary and 6 > 0 fixed small enough such that [, e‘5|”‘2M(v)dv < 00) leads
to

1713 5/ 671 (0)" > h?log(n ™ (0)" 2 h?) =67 (0) " 2% M (v)dv
0 R3
+17571/ 65<”>2M(v)dv.
R3

By defining u= (v)*~3)/2] and rescaling 7+ ||u\|%2(c)77, the above inequality can be
rewritten as
2

u
M (v)dv — c|[u]| 720 (1+1ogn) +nllwll 72 s -

I 5 [ o
Ho R3 ”UH%z(M)

By employing the log-Sobolev’s inequality with Gaussian weight [26] one obtains

1255 SVl Zaany + el Z2 ar) (n— ¢ — clogn).
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Replacing u with (v)*=3)/2h and choosing >0 the minimum point of 7—c— clogn,
one finds

||h||;gg/Rg|Vh|2<v>k—3M(v)dv+/ B2(0) R M (v)do. (5.15)

R3

Lemma 2.1, relation m~ M and (5.15) yield

\|h||%ﬂog/st-A[m]vmv)kde/ R () 3mdu. (5.16)

R3

At this point, (5.14) and (5.16) yield
(AP ) L2 i 0y )N”h”’;{k+/3Vh'A[m]Vh<v>kmdv+cR”h”%6(BR) ca IRl (5,)
—87r/ h2<v>km2dv+£53||h||%1(BR)—C/ R (v) 3 mdu
R3\Bp R3

fC/ R ()" Pmdv,
R3\Bg

which implies, given that m < (v) =3,

(Akh,h) L2 (moye) Hh||Hk+/ Vh~A[m]Vh<v)kmdv—C/ R m(v)*~3dv

R3\Br
7R Le (B +ECRIRIT (- (5.17)

+erl|hliosg) — R

Choosing R >0, we absorb the third integral on the right-hand side of (5.17) via |[h||3,,,
yielding

(Akh,h)m(m@mZl\hllifr/ﬂ{s Vh-Alm]Vh(v)*mdo
Jr||h\|%6(13,,-£)*K||h”2L2(BR)JFthH%l(BR)- (5.18)

By interpolating L? between L' and L% and applying Young’s inequality one finds
4/5 6/5
KAl < KR 5 1]ty < 5§||h||L1(BR + 5K5/35 23136 (5)-

Therefore, for £>0 large enough, it holds Hh”:});fi(BR)*K”h”%%BR)+§||h”%1(BR) >0.
We conclude

(Ao g2 n gy 2l + [ Ve Al Vo) o =

This finishes the proof. O
Concerning Ky, we are going to prove the following result:

LEMMA 5.2. For k>0 it holds

Vm(v)

m(v)

(Kih)(v) =

: (/6* (hVm) — VK * (hm)) FVE*(AVm)+€ [ mh(v)dv, (5.19)

R3
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with

K (v) = HISI))

Furthermore Ky, : HE — HE is a compact operator and the following bound holds for k>0
kP h) L2 oy | SIPNT 2 (o g0y 29 - (5.20)

Proof. Integration by parts yields

() () = — YU /R M) 1y — o) V(o )d*

m(v) s [v—v*|

v [ ) R~ srm(en) 6 [ mbo)do
g3 [ —v*| R3
Vm(v) Vm(v*)

= ) e To— o II(v—v*)h(v*)dv*

LN /R (Y Ve {H(”_”)} dv*

m(v) |v—v*
h(v*)

r3 [V — V¥

+V-

*

—v- [ B o e ot —sem(n(o)+¢ [ mnte)*a.
r3 |u—v R3

Since
MOV G pnyav =snf(w)  ¥feCx(®),

we deduce that (5.19) holds.
Let now (A, )nen be a bounded sequence in HE = L?(m(v)*~1). For 1<p<2, s€R,
we have

Ty [ P19t )= o) [ o).
Holder’s inequality yields
| V|| Lo 3y Sl 22 (m ()9 1<p<2, seR. (5.21)
In a similar way, one shows
[Pl Le@s) S [BnllL2(m@)s),  1<p<2, seR. (5.22)

This means that h,, Vm, h,m are bounded in LP(R3) for 1 <p<2. Let us now consider,
for R> 0 arbitrary,

VK # (hyVim) = (15, VK)* (h, Vi) + (1gs\ g, VK) * (h, Vim).

Given that VK € L'(Bg), from [10, Corollary 4.28] it follows that (1, VK) * (h,Vm) is
relatively compact in L?(€2) for every measurable set Q with finite measure. A Cantor
diagonal argument yields the existence of a subsequence of h, (not relabeled) such
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that (lBRVIé) *(h,,Vm) is strongly convergent in L?(B,) for every r €N. Given that
fR3 v)*~1dv < 00, it is easily seen that

(1BRVI€) s (hnVm) — (15, VK)*(hVm)  strongly in L?(m(v)*~1)=HE.  (5.23)

On the other hand, Young’s inequality for convolutions yields

[(Xes\ 5, VK) * (hn V)| L2 @3y < VK| Lo\ Br) | on VI Lo (39,

N W

1 1 6
=—+-,1<p< 2.
P q 5
Since ¢>3/2 then ||VK||pags\ gy — 0 as R— oo, while ||, Vm||prs) S1 for 1<p<
6/5. From this fact and (5.23) we obtain
VK % (h,Vm) — VK (hVm) strongly in HE. (5.24)
In a similar way one shows that

% VK (hy, m)—)v— VK (hm)  strongly in HE. (5.25)

Let us now deal with K * (h,Vm). One can prove, via a similar argument as the one
employed to show (5.23), that (up to subsequences)

(1p,K)* (h,Vm)— (15,K)*(hVm) strongly in HE. (5.26)
On the other hand, for ¢ € (0,1),
|(Lrs\ 5 K) % (B V) (0) | S RC|(| 17 % [ Vi) (0)],  veR?,
so Hardy-Littlewood-Sobolev’s inequality yields

- 3 1-¢
1((Lge\ 5 K) * (7 Vim)) | Loy S R ™[I Vin| o ge), 5

1
q

D=

This means that

lim sup||(1Rs\BRlC) (hnVm)|| La(rsy=0.

R—o0y,

Putting the above relation and (5.26) together yields the strong convergence of K *
(hoVm) in H§. Finally, [, mh,dv is obviously relatively compact in Ho. Thus Kj:
HE —HE is a compact operator for every k>0. Bound (5.20) is a straightforward
byproduct of the previous computations and of estimates (5.21), (5.22). This finishes
the proof. 0

We now want to prove the following theorem:

THEOREM 5.1 (Spectral gap for L). There exists a constant Cp, >0 such that

—(Lh,h) g2 > Cl, (/ Alm)Vh-Vhmdo+ |12 0 - )), Vhe D(L)NN(L)*.
(5.27)
Proof. From [8] we know that for all h € H°

(Lh7 h)L2 (m) <0,
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and equality holds if and only if h€ N(L). This fact, Lemmas 5.1, 5.2, and [17, Lemma
10] yield (5.27). O

REMARK 5.1.  The constant Cj, appearing in the statement of Theorem 5.1 is not
explicit. It is a consequence of [17, Lemma 10], whose proof is non-constructive. A
similar estimate already appeared in [30,33] for the classical Landau equation.

Next, we show some bounds for A and Va. Define preliminarily for p,¢>1 and
g:R3 =R arbitrary measurable function

e (/ ’ 'wp'g(w)'pd“’) g ( L |w|q|9(w)|qdw) "
ot (| o) ] o)

Epald] =€ ql9)+E) 9],

Epaly (/ |g(w Ipdw>l/p (/ ot |’1dw)1/q
o Loaweae) (o)
S~ o [ ottswrpan) o [ o)’
(o) e ([ jwttlgtwpra) -

Ep.alg) =€ ] +ED 9]
The following result holds.
LEMMA 5.3 (Bounds for A). For every p,q€[l,00), p< % <q, and every z €R3,

1

£ Il
o Alg)(0)2 Sy 2L 2 P+ ‘S”’jﬁ,ﬂ 1P SpaEpalols- Almlw)z, (5:28)

() Valg]| S & Lol o] ‘||

&l lgllv] =2, (5.29)

Npq pq

with 2l =|v|~2(v-2)v, 2 ,

L =22 =TI(v)z, for every g€ L*(R?) such that Exqlgl <o
Enalg) <00, E,lg) <00, Englg] < oo,

Proof.  The upper bound in (5.28) is already known since m can be estimated
from below via the Maxwell-Boltzmann distribution. Therefore we only prove the lower
bound.

We first observe that it is enough to prove the statement for z =zl and z =21, since
via Cauchy-Schwarz and Young’s inequalities it holds (remember that A[g] is symmetric
and positive definite)

1/2

ZJ__A[g]ZH < (ZJ‘-A[g]zJ->1/2 (z”-A[ 2 H) < ;ZL.A[Q}ZLJF%ZH,A[Q]ZH

Let us now deal with the case z=zl. We start by considering z=wv. It holds

U-A[g](v)v:/]R 9(w) v-TI(v —w)vdw

s [v—wl



W. GOLDING, M.P. GUALDANI, AND N. ZAMPONI 2357

:/ 9(w) w-I(v—w)wdw
r3 |v—w|

Let us now consider

2 2
o [ P [ (o 0,
r3  |v—w| RS v—w

Since
)

3 3
|w| \g(w)\dw:/ |w] |g(w)|dw+/ Jw] w
rs  |v—w] Bi(v) |V—w] RS\ By (v) |V~ W]

Holder’s inequality yields

wl3g(w 1
[P0 41y <, g 11 Bollsases + - Pollsja—rar V>0, Ve (0,1].
rs  |v—w| 2
It follows
v v 3
— - Alg)(0) = Spa €N gl 072, 1<p<S<q
|v] o] ~P TR 2

Let us now consider, for z=z1, |z| =1,

[v|z- Alg](v)z = . ||1;|g(z|)z-ﬂ(v—w)zdw
pllo@)l , [ wlle)]
< J s f oo [ SR

1
Sovca Lol +I1 gl + - lllsjamss, 20, Vize (0],
It follows

_ 3
2 Alg)(v)z Spg Epglal 0] l<p<3<q.

Hence (5.28) holds.
Let us now prove (5.29). Using a Young’s inequality for convolutions, we get

[v—w|+|w|

ol Valglo) < | ot gw)law

[ Lol [ el

s |[v—wl rs |U—w|?
<& .lql,
while
o] v (v—w)-v
Y Valql| = wZwrvy
o |1 alal| =l | | o) =0
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low)lhu]
d
<l '/| o '/ To—wp @

2
< [ Jotwauz [ 00l [ bl
R3 RS |U—w|

rs [v—w]?
ngqu[g].

This finishes the proof. ]
The next lemma deals with the nonlinear contributions I's and I's.

LEMMA 5.4 (Bounds for nonlinear terms). For every p,q>1, p< % <q, k>0 it holds
el 2/3 4/3 -
(T, 1), ) 220 (00%) S [P(Epalmh]+Ep glmh]) +pllm™ 2B + pllm 213 + 57

( A[m]Vh-Vh(v)*mdv + h2<v>k1mdv> , (5.30)
R3

R3

(F3 [hv h7 h]7h’)L2(m<v>k)
Spia P(Ep,g[mh] +gp7q[mh]) </R

—&-p_l/WA[m}Vh-Vh(v)kmdv, (5.31)

A[m]Vh.Vh<v>kmdu+/

R3

h? (v)klmdv)

3

for every p>0.
Proof. Let us first consider the contribution of the quadratic terms.
(T2 (), 1) 12 g0y :7/ (V)*Vh- (A[(1—2M)mh]V (mh) — Aim*h*|V M
R3
—(1=2M)mhVa[mh]+m*h*Va[M]) dv
AV (0)F - (A[(1 —2M)mh]V (mh) — A[m*h*]V M
R3

—(1=2M)mhVa[mh]+m*h*Va[M]) dv,

that can be rewritten as

<F2(h h L2(m) *ZI +Z

I :=— RsA[(l—2M)mh]Vh-Vh<v>kmdv,
I:=— RgA[(l—2M)mh]Vh-Vm<v>’“hdv,
Iy:=+ R3Vh-A[m2h2}VM<v>kdu
Iy:=+ R3Vh-(1—2M)tha[mh] (v)*dv,
Is:=— | Vh-m*h*Va[M]()*dv,

R3
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I:=— [ A[(1—=2M)mh]Vh-V(v)F hmdv,
R3

Ié::f/ A[(1—=2M)mh|V (v)*-Vmh?dv,
R3

I:=+ [ V()" A[m2*h?|VMhdv,
R3

Ifl::+/ V(v)k - (1—2M)mhVa[mh]hdv,
R3
IL:=— | V{)* - m?r*VaM]dv,

R3
For every 1 <p< % < ¢, thanks to (5.28), we get
I Sp.g Ep g[mh] , Alm]Vh-Vhm{v)*dv,
R

while Cauchy-Schwarz inequality and Young’s inequalities lead to
I 5/ A[|mh|Wh-Vh<v>kmdv+/ A[|lmh||Vlogm - Viogmh®(v)*mdv.
R3 R3

However, it is easy to see (via direct computation) that
1— aefb|u7v|2/2

v),

so, using (5.28), we obtain
Allmh||[Viogm-Viogm <, 4 Ep.qglmh](v) ™1,

which implies
<, / A[/mh||Vh-Vh(v)*mdv+&, ,[mh] / R2 (W) tmdv.
R3 R3
Applying (5.28) once again leads to

12 Spiq Epglmh] ( / Alm]Vh-Vh(v)mdv+ /
RB)

h? (v)k'_lmdv) .
R3

Let us now consider, for arbitrary p>0,

I3<p / Alm*h*Vh-Vh(v)*mdv
R3

M M
+pt Am2h% V1o < )-Vlo () vY*emdo
L [m”h7Vlog { 1 el = )

=p [ Am*h?Vh-Vh@)*mdv+p~ 6% [ Am*h?](u—v)- (u—v) () mdv.
R3 R3

It is quite easy to see that

m(v)|u—vl?

/RSA[mQhQ](u—v)-(u—v)(v>kmdv§ m?(w)h?(w) (v)*dvdw

R3 R3 |v—w|
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< | mPh?dvS [ mh2(v) v,

~

R3 R3
while, on the other hand,

A[m2h?|Vh-Vh(v)mdv <, 4 Epq[m?h?] / Alm]Vh-Vh(v)*mdv.

R3 R3

Since |mh|=|f—M| <1, it follows
L<pqap . mh? ()L dv + p€, ,[mh] /RBA[m]Vth(v)kmdv.
Let us now deal with I;. Young’s inequality yields
I,= » Vh-(1—2M)mhVa[mh] (v)*dv
:/]RS I(v)Vh-(1—2M)mhIl(v)Va[mh] (v)*dv

VRV

BE Valmh] (v)*dv

+/ VY G h (1= 2M)mh
R3

|v]?

1
§; |H(U)Vh|2<v>k_1mdv+p/ R2|TI(v) Val[mh]|* (v)* mdv
R3 R3
1 2 2
+*/ @Vh’ <v>k_3mdv—|—p/ h? U®2UVa[mh] ()3 mdo.
pJrs | |v| R® |v]
From (5.28), (5.29) it follows
L;f/l A[m]Vh~Vh(v)kmdv—l—pgp,q[mh]/ mh?(v)*dv.
P JRr3 R3
Finally, let us consider, for a generic 0 <n<1/3,
Is=— [ Vh-m2?h?Va[M](v)*dv

R3

5/ m/2H|\h|m3/271 | h|? (v)*dv

R3

5/ m1/2+"|Vh|m7/6_"|h\5/3(U>kdv,
R3

where the last inequality holds because |mh|'/?=|f—-M|/3<1. Tt follows via the
Cauchy-Schwarz inequality

s 1 A e P 1O e e A Y R 0]

The Gagliardo-Nirenberg inequality leads to
I5 S| (0) B3 2m 2| T ||/ 10302 32|V (mT 10305 ) |
Sall(w) &2 m 2 T ||l lm 107 5 5/

. (||m7/10—3n/BVhH2 + Hhv(m7/10—3n/5)”2)
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_ _ 5 2/3
Sl () B3 2 2|7 |3 T/ 10=30/5 | 3

+ [[(0) =32 2 T ||}/ 10732 R| |3 [ n /1035 Tog .

Choosing n=1/6 yields

Is S| (w) #3212 |[3]|m /2R3
+ [ () F=3 22| ||| (0) B D 2m A 2R m 2R
2/3 4/3 _ = _ _
Sp(ImY2h|[37 + [m2h]l5 %) || (0) =3 2m 2|3+ p~ || (o) B D/ 2m 2 3.

From (5.28) we conclude
I 5p(||m1/2h||§/3—|—||m1/2h|\3/3)/ A[m]Vh-Vh(v)kmdv—i—p_l/ R (v)* mdu.
RS RS

Since |V(v)¥| <(v)*~1 the terms I},...,I} can be estimated in a similar way as the
terms Iy,...,I5. Therefore we deduce that (5.30) holds.
Next, we deal with the contributions from the cubic terms:

(T3[h, b, B, B) 12 () = /R ) Vh- (Am*h?|V (mh) —m>h*Va[mh]) (v)*dv

+ [ V{)* (A[m?h?]V (mh) —m>h*Va[mh]) hdv
R3

=Is+I;+ g+ I+ I+ I,
16::/]1%3 Vh-Alm*h?Vh(v)*mdo,
17;:Ath.A[mth]vm<v>khdu,
IS::f/RSthztha[mh](v)kdv,
Ié::/Rsv<v>k~A[m2h2]thmdv,
L= [ V) Am*h?|Vmhdv,

R3

I:=— [ V) -m2h3Va[mh]dv.
R3

From (5.28) and relation |mh|<1 it follows

I Sp,qu,q[mh]/ A[m]Vh-Vh@)kmdv.
R3

The term I7 can be estimated like I> to obtain

A[m]Vh-Vh(v)*mdv+ /

h? (v)k_lmdv) .
R3

17 Sp.q Ep.glmh] (
R3

The term Ig can be estimated like I4 to obtain

1 ~
Ig Sf/ A[m]Vh-Vh(v)kmdv—i—pé’p,q[mh]/ m3ht (v)* 1 dv,
P Jrs3 R3
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but, given that m2h2 <1, it follows
1 ~
Is S [ Alm]Vh-Vh(v)mdv+p&, g [mh] | mh?()*~dv.
P Jrs R3

Finally, since |V (v)¥| < (v)*~1, the terms I§,...,I4 can be estimated in a similar way as
the terms Ig,...,Is. Therefore we deduce that (5.31) holds. This finishes the proof. 0O

We are now ready to prove the conditional algebraic convergence result, thereby
concluding the proof of Theorem 1.3.

LEMMA 5.5 (Algebraic rate of convergence for initial data close to equilibrium).
There exists a constant >0 such that, if [oo(fin—M)*m™ dv <, and if [p(fin—
M)2()Nm~tdv < oo for some N >1, then

[ G-mpmawsasg o0
R3

Proof.  From (1.1), (5.4) it follows that the perturbation h=(f— M)/m satisfies
the equation

Oth=Lh+T3[h,h]|+T3lh,h,h]. (5.32)
Testing the above equation against h in the sense of L?(m) yields
d1
73 h*mdv = (Lh,h) 12 (m) + (Ta[h, B, h) 12 (my + (Dslh, by B B) L2 () -
R3
From (5.27), (5.30), (5.31) it follows that a suitable constant C(p,q) >0 exists such that

a1
dt 2 Jps
4/3

< [PC 0.0 Epalimh] + Byl + plm HIZ 4 pl 14 51— €

h2mdv

. ( Am]Vh-Vhmdv+ h2m<v)_1dv> .
R3

R3

We are now going to prove that
Jar>0: & qlmh] +gp,q[mh] Spa p 24 p™ ||m1/2h\|2. (5.33)

Indeed, the left-hand side of (5.33) is a sum of terms having the form

1/s
D= ([ poltmipan) L kzo, sz
RS

If s>2 then from the property |mh| <1 and the fact that |v|*y/m(v) is bounded in R?
for every k>0 it follows immediately that

1/s 1/s
Jp,s < </ v’“mh|2dv> <k ( mhzdv) ,
R3 R3

so via Young’s inequality

Tis Ssp p 24 p 2 ||m 2Rl
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If 1 <s<2, it suffices to notice that

s =m*/h]

L (R3,Jv[km/2 (v)dv)-
Since |v|*m*/? € L' N L (R3), Jensen’s inequality yields
Tiss Seys 112 1288 o Eme /2 (0)dw) Shos M 2.

Therefore (5.33) holds. We therefore conclude that, for some suitable constant C’(p,q) >
0and a>1,

d _
a4 / W <O (p.0) (0% *hl}3 +p )~ O |
R3

dt
(/ A[m]Vh-thdv+/ h2m(0>1dv),
R3 R3

for every p>1. We point out that

C'(p.a) (o™ [m 2R3+ p~) = Co =C"(p,)p” (I *hIZ = (p) )

l(p)= (CY,((J;)L,q) - p‘l) pe.

The maximum of £(p) is achieved for p= %C’ (p,q). Choosing p in this way yields

a4 h2mdugc“(p,q)[||m1/2h|\§—e] </ A[mNh~thdv+/
R3 R

h*m{v)~'d
i Js m(v) v),

3

for " (p,q) = (12) " C'(p.)+* and

b=t (o 009) =(chg) e

Since |[m'/2h(-,0)||3—¢<0 by assumption on the initial data, we deduce that
[m/2h(-,t)||2 < ||m'/2h(-,0)||2 for all £>0. It follows that, for some A >0,

d
7/ R mdv < —\ A[m}Vh-thvar/ h?m(v) " tdv ). (5.34)
dt Jgps R3 RS
Integrating (5.34) in time yields
sup/ h2mdv+)\/ / h2m<v>*1dudt§/ h(-,0)*mdv. (5.35)
>0 JR3 0o Jr? R3
We will now show that sup,~ f]R3 h2m(v)Ndv < co. We proceed iteratively, proving that
sup/ h2m<v>jdv+/ / h2m(v) dvdt < oo, (5.36)
t>0 Jrs 0o Jr?

for j=0,...,|N|]. We argue by induction on j. Estimate (5.35) and the assumption
on the initial datum imply that (5.36) holds for j=0. Let us now assume that (5.36)
holds for j=0,...,k—1, 1<k <|N] generic. By testing (5.32) against h in the sense of
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L?(m(v)*), exploiting Lemma 5.1 and bound (5.20) and proceeding like in the proof of
(5.34) one finds

d

a Jo, <>kd”5_Ak< A[m]Vh-Vh{v)*mdv+ h2m<v>k1dv>

R3 R3

+,Uk/ RAm(v)k~2dv, (5.37)
R3

for some Ag, ur > 0. By integrating (5.37) in time we get

sup h2 (v >kdv—|—/\k/ h2m vy~ dvdt
t>0 0 R3

<Nk/ / h2m(v)k— 2dvdt—|—/ h(-,0)%m(v)*dv. (5.38)
R3 R3

From the assumption that [y, h(-,0)*m(v)¥dv<oco for k<N as well as the inductive
hypothesis it follows that the right-hand side of (5.38) is finite, meaning that (5.36)
holds for j=k. Via the induction principle we deduce that (5.36) holds for j=0,...,| N].
Choosing k=N in (5.38) and exploiting (5.36) for j=|N| yields (5.36) for k=N. In
particular

sup/ R m(v)N dv < co.
t>0 JR3

Therefore via Holder’s inequality

N 1 N

/Rs h2mdv < (/R3 h2m<v>‘1dv> o (/Rs h2m<v>Ndv> e (/Rs h2m<v>_1dv> o

so from (5.34) it follows

N+41

d thdv< A /A[m]Vh.thdv+ /thdv
dt R3 R3

This (via Gronwall’s inequality) finishes the proof of the lemma, and of Theorem 1.3. O
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