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Abstract California is expected to experience great spatial/temporal variations evaporation. These
variations arise from strong north‐south, east‐west gradients in rainfall and vegetation, strong interannual
variability in rainfall (±30%) and strong seasonal variability in the supply and demand for moisture. We
used the Breathing Earth System Simulator to evaluate the rates and sums of evaporation across California,
over the 2001–2017 period. Breathing Earth System Simulator is a bottom‐up, biophysical model that
couples subroutines that calculate the surface energy balance, photosynthesis, and stomatal conductance.
The model is forced with high‐resolution remote sensing data (1 km).The questions we address are as
follows: How much water is evaporated across the natural and managed ecosystems of California? How
much does evaporation vary during the booms and busts in annual rainfall? and Is evaporation increasing
with time due to a warming climate? Mean annual evaporation, averaged over the 2001–2017 period,
was relatively steady (393 ± 21 mm/year) given the high interannual variation in precipitation
(519 ± 140 mm/year). No significant trend in evaporation at the statewide level was detected over this time
period, despite a background of a warming climate. Irrigated agricultural crops and orchards, at 1‐km
scale, use less water than inferred estimates for individual fields. This leaves the potential for sharing water,
a scarce resource, more equitably among competing stakeholders, for example, farms, fish, people,
and ecosystems.

Plain Language Summary Many stakeholders are contending for the limited water budget that
is available to California, the world's fifth largest economy. Yet the amount of water used by natural and
managed ecosystems across the state is not well known. We produced a new, process‐oriented estimate of
statewide water use by natural and managed ecosystems using a biophysical model forced with satellite
remote sensing. Despite the booms and busts in rainfall over the 2001 to 2017 period, we find that statewide
water use is conservative, compared to the annual variability in rainfall. Nor do we detect that statewide
evaporation is increasing as the climate has warmed over this period. We find that crops use less water than
conventional wisdom because a subset of fields across a 1‐km pixel are fallow and are at peak leaf area and
maximum evaporation potential for a relatively short period. Forests, on the other hand, use more water
than conventional wisdom because they have a long growing season and absorb more energy than crops.
Our intent is to provide water managers with new information on water use to better share water among the
various stakeholders, for example, agricultural, cities, fish, ground water reservoirs, and water quality.

1. Introduction

“Whiskey is for Drink'in, Water is for Fight'in Over”, attributed to Mark Twain (Samuel Clemens).

In California, water is a relatively scarce, variable, and contentious resource that suffers from intense
competition among a diverse set of legitimate stakeholders (farms, cities, terrestrial and aquatic ecosystems,
and fish; Hanak et al., 2011). As future conditions warm, California is expected to experience high variability
in rainfall as it fluctuates between years with very dry and very wet conditions (Swain et al., 2018). The
competition for this water is expected to increase, as evaporation is expected to increase with warming
(Anderson et al., 2008).

The sustenance of California's economy, ranked fifth in the world, will depend upon how well this scarce
and variable supply of water is shared in a warming and drying world. To use and share this water
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effectively and efficiently across a state, these stakeholders will need to know how much water is lost to
evaporation from the suite of natural and managed ecosystems and the diverse microclimates that
span the state.

If water managers are to divvy up water equitably among farms, fish, forests, and cities in a changing envir-
onment (warmer, more CO2, changing land use, more fires), they need evaporation models with such fea-
tures as (1) high spatial resolution, (2) high temporal resolution, (3) large area coverage, (4) a capacity for
long‐term monitoring, and (5) high accuracy (Fisher et al., 2017; Wood et al., 2011). Ideal models should
employ biophysical principles at relatively fine time steps (days to weeks) and fine spatial (kilometer or less)
scales. The model should consider the biophysical properties of a complicated mosaic of land use, its season-
ality, and interannual variability. It is also preferable to evaluate evaporation with biophysical mathematical
model that couples water, energy, and carbon fluxes (Baldocchi & Meyers, 1998; Sellers et al., 1997).

California is a challenging test case for applying any bottom‐up, biophysical model; California's water balance
(evaporation being proportional to precipitation minus runoff minus drainage) is complicated by its diverse
geography, ecosystems, microclimates, and land use and land management. What are the key challenges?

First, a competent model must resolve the spatial‐temporal variability in meteorological forcing variables.
The temperate forests of the Pacific Northwest, the snowy Sierra Nevada, the semiarid grasslands, savannas
and chaparrals, the irrigated crops of the Central Valley, and the hot, dry deserts of the south experience vast
differences in rainfall, global and net radiation, potential evaporation, vapor pressure humidity deficits,
and temperature.

Second, the amount of precipitation varies tenfold across north‐south and west‐east transects of the state
(Iacobellis et al., 2016). We know that from hydroecological theory, there is strong scaling between water
availability, primary productivity, and water use (Budyko, 1974; Gentine et al., 2012; Rosenzweig, 1968;
Stephenson, 1998). Consequently, a highly variable spatial pattern of actual evaporation is expected to occur
across California that reflects this range of precipitation and productivity. We argue that a competent model
must resolve the natural gradients in the structure and function of the ecosystems that span the state. It
needs information on the structural and functional properties of its vegetation, like leaf area index (LAI),
stomatal conductance, and photosynthetic capacity.

Third, the evaluation of much of California's actual evaporation is complicated by the state's wet winter and
dry summer, Mediterranean‐type climate, which causes an asymmetry in the timing of water supply and
demand; water supply is greatest when evaporative demand is least, and vice versa. How native ecosystems
use this limited supply of water in a highly demanding environment depends upon howmuch leaf area they
can sustain, how long they can sustain this leaf area, how well they regulate their stomata as the soil dries,
how well they establish deeper root systems to access shallow (soil and saprolite) and deep (unsaturated
weathered rock and groundwater) pools of moisture, and whether or not they are supplied with irrigation
water. Competent biophysical models, that couple carbon, water, and energy exchange, need to consider
the seasonality in LAI and physiological capacity to integrate fluxes accurately over a year (Baldocchi &
Meyers, 1998; Wang et al., 2007).

Fourth, much year‐to‐year variability in rainfall is superimposed on this spatial gradient of precipitation and
evaporative demand. Climate analyses show that the coefficient of variation of annual rainfall (the ratio
between the standard deviation and the mean) ranges between 20% and 70% across the state, placing
California among the most variable regions on the continent (Swain et al., 2018); in contrast, the coefficient
of variation of rainfall for weather stations east of the Mississippi River is less than 20% (Dettinger et al.,
2011). This variable water budget can cause ecosystems to have surplus water during wet years, when they
are limited by energy, and evaporate near potential rates. And this variability can cause ecosystems to face
severe deficits in their water balances during dry years, forcing them to evaporate at rates much below
potential rates.

Fifth, ecosystems in California are experiencing a warmer and drier world (Diffenbaugh et al., 2015). Our
more recent heat spells and extended droughts are causing large swaths of mortality of trees in the Sierra
Nevada (Asner et al., 2015). Great fires are also occurring across the landscape. A question that remains
begging is whether, or not, California ecosystems are experiencing an increase in evaporation over decades
and if this increase is exaggerating soil water deficits.
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Whether ecosystems experience more or less evaporation with temperature depends on perspective and
scale (Jarvis & McNaughton, 1986; Monteith, 1981). From a thermodynamic and physiological perspective,
evaporation from leaves and vegetated canopies is expected to increase with warming as it increases the
saturation vapor pressure of the surface, thereby increasing the humidity gradient between land and the
atmosphere. From a meteorological perspective, warming may decrease evaporation. A warmer surface
emits more longwave radiation to the atmosphere, which reduces available energy. In addition, a warmer
surface enables more sensible heat to be transferred to the atmosphere, leaving less energy to drive latent
heat exchange. When these processes are considered together, a set of feedbacks can act to mute or inhibit
the expected positive response of water use by vegetation in a warmer world.

At present, few published water budgets of the state of California exist in the peer‐reviewed literature across
the spectrum of time and space scales that have been discussed so far. Water budgets for the State that exist
tend to infer evaporation as a residual of precipitation and runoff; these budgets are computed at the coarse
spatial scales of watersheds (Hanak et al., 2011). Typically, they are averaged over many years, to minimize
errors due to changes in storage (Dralle et al., 2018; Draper et al., 2003). Others have focused on the evapora-
tion from agricultural regions of the State (Burt et al., 2002; Sorooshian et al., 2011; Szilagyi & Jozsa, 2018).

Satellite remote sensing provides one way to estimate spatially and temporally integrate evaporation, at rela-
tively small spatial resolution and repeated intervals (Anderson et al., 2007; Hart et al., 2009; Ichii et al.,
2009; Jin et al., 2011; Senay et al., 2011; Zhang et al., 2016). Typically, investigators interpret surface energy
balance with measurements of thermal infrared radiation or they exploit an empirical link between vegeta-
tion indices and surface temperature (Bastiaanssen et al., 1998). There are sets of analyses that have been
applied across the nation and world (Jiang & Ryu, 2016; Jung et al., 2011; Mu et al., 2011; Zhang et al.,
2010), but none have explicitly extracted information on evaporation across California.

We take a different approach toward evaluating evaporation with biophysical forcing variables from satellite
remote sensing. Here we evaluate statewide evaporation with a biophysical model, the Breathing Earth
System Simulator (BESS). This model calculates evaporation as a balance between the supply and demand
for water by coupling submodels that compute energy, water, and carbon fluxes of the land surface (Jiang
& Ryu, 2016; Ryu et al., 2011). The model is forced with inputs from satellite remote sensing at high spatial
resolution (1 to 5 km).

The BESS model has been tested against a global network of eddy covariance measurements and applied on
the global scale against a diverse climate and ecological spaces, like those found in California (Jiang & Ryu,
2016). With its global success, we apply BESS to produce new and unprecedented information on evapora-
tive water use of California at high spatial resolution (1 km) and for nearly two decades.

Based on this background, we ask and answer the following set of questions in this paper. They are as
follows: (1) what is the amount of water evaporated across the state of California? (2) how much water is
evaporated across major climatic/ecological/agricultural regions of the state, as they experience seasonality
in rainfall or irrigation? and (3) how much has annual evaporation varied over the past 17 years, a period
that experienced booms and busts in annual rainfall?

Hypotheses we test include the following: (1) year‐to‐year variability in statewide evaporation is sensitive to
booms and busts in rainfall, (2) we are experiencing a positive temporal trend in statewide evaporation due
to a warming climate, and (3) water use of irrigated agricultural crops and orchards at 1‐km spatial scale may
differ from water use measured over individual fields due to the complex mosaic of vegetation and
its management.

2. Materials and Methods
2.1. Model Description

Fluxes of water, energy, and carbon dioxide are computed at 1‐km spatial resolution on 8‐day intervals using
the BESS. A full description of the model and its inputs are explained in papers by Ryu et al. (2011) and Jiang
and Ryu (2016). Here we provide an abbreviated overview of the model and describe the ingested
data products.

BESS relies on the coupling of state‐of‐the‐art biometeorological, physiological, and ecological theory
(Baldocchi & Meyers, 1998; Monson & Baldocchi, 2014). Evaporative demand is a function of the
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shortwave and longwave radiation balance of the surface and the humidity and temperature of the atmo-
sphere. The supply of water to the atmosphere considers the passage of vapor molecules through the stomata
and diffusion out of the soil. This supply is modulated by the surface conductance, which is a function of the
LAI of the surface, the sensitivity of stomatal conductance to soil moisture deficits, and the physiological
capacity of the vegetation (Baldocchi & Meyers, 1998; Kelliher et al., 1995).

In practice, information on energy exchange and surface temperature are used to evaluate photosynthesis
and stomatal conductance of the vegetation. And these variables feedback to evaluate evaporation rates.
BESS adopts the quadratic form of the Penman‐Monteith equation to compute evaporation (Monteith,
1965; Paw & Gao, 1988). Stomatal conductance is computed as a function of leaf photosynthesis
(Farquhar et al., 1980), carbon dioxide concentration, and relative humidity (Ball et al., 1987; Collatz
et al., 1991).

Parameters for the photosynthesis model include the maximum rates of carboxylation (Vcmax) and electron
transport (Jmax). These parameters vary seasonally due to the phenological state of the vegetation. These
parameters were evaluated seasonally and spatially using optimization theory (Wang et al., 2017).
Parameters for the conductance model include the Ball‐Berry slope and intercept. Slope is set 13 for herbac-
eous vegetation and 9.5 for woody vegetation, respectively (Miner et al., 2017) (Miner et al., 2017). Intercept

is set 0.01 umol·m−2·s−1 (Duursma et al., 2019) with a multiplicative water stress factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RHVPD=1000

p
.

The set of equations used to calculate evaporation is composed of nonlinear functions and is driven by
drivers that possess non‐Gaussian probability distributions, such as direct and diffuse solar radiation. To
evaluate the expected values of these functions correctly (Ruel & Ayres, 1999) and with fidelity, we apply
a two‐layer (vegetation/soil) and dual source (sun‐shade) model (Norman, 1982; Sinclair et al., 1976). We
do not track soil moisture budget explicitly. Alternatively, we rely on short‐ and long‐term coupling between
soil moisture deficits, the LAI of the site, the vapor pressure deficit in the boundary layer, and evaporation
rates. This assumption has been shown to work very well for producing accurate estimates of evaporation
across the United States (Fisher et al., 2008; Gentine et al., 2016; Rigden & Salvucci, 2015). At this juncture
we are disinclined to use satellite‐based information on soil moisture, from such products from the Soil
Moisture Active Passive Mission (Entekhabi et al., 2010), because it only senses a shallow layer, a few
centimeters deep. And products from the Gravity Recovery and Climate Experiment (Famiglietti et al.,
2011) are too coarse in time and space for this application.

2.2. Model Forcing Variables

This model is driven with a unique suite of land and atmospheric products that are derived from the
Moderate Imaging Spectrometer (MODIS) on the Terra and Aqua satellites. Computations of the shortwave
and longwave radiation components were forced with data from several MODIS products (MOD/
MYD04_L2 aerosol, MOD/MYD06_L2 cloud, MOD/MYD07_L2 atmosphere profile, MOD/MYD11_L2 land
surface temperature and emissivity, and MCD43D61 shortwave albedo).

Fewmodeling teams have used these separate data products in tandem because it requires one to preprocess
the data and reproject them on a common geographical grid. We stress that combining these two comple-
mentary data sets is one of the unique strengths of this modeling approach as it produces more accurate
radiation fields (Ryu et al., 2018).

Two snapshots are taken each day from the Terra and Aqua satellite platforms, and this information is
upscaled to daily sum of evaporation using a simple cosine function (Ryu et al., 2012). At a given pixel, 1
to 5 km, forcing variables, such as temperature, radiation, humidity, albedo, and LAI, are evaluated (Jiang
et al., 2017; Ryu, Kang, et al., 2008; Ryu et al., 2018).

Flux densities of shortwave global radiation (Rg), photosynthetically active radiation, and the diffuse compo-
nent of photosynthetically active radiation were computed using a modified version of the Forest Light
Environmental Simulator (Kobayashi & Iwabuchi, 2008). The radiative transfer model is one dimensional.
It considers the scattering and absorption effects of clouds, aerosols, atmospheric pressure, temperature,
and humidity on the transfer of photons through the atmosphere using a Monte Carlo photon tracing
scheme. Broadband radiative flux densities were computed by integrating spectral radiation components
evaluated at 20‐nm interval between 300 and 700 nm and at 100‐nm interval between 700 and 4,000 nm.
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The atmospheric radiative transfer scheme was validated with surface radiation measurements from the
Baseline Surface Radiation Network and FLUXNET flux tower networks (Ryu et al., 2018). The model
produces estimates of daily integrated flux densities of incoming radiation that are highly correlated with
surface measurements (r2 > 0.94) and show little bias with measurements (< ±2%). In addition, the mean
annual estimate of global radiation over the land surface (184 W/m2) compared identically with an indepen-
dent analysis based on land measurements (Wild et al., 2015).

MODIS, MOD15A2H, and MCD15A3H LAI products were filled and filtered using a simple time series ana-
lysis approach to minimize cloud contamination. They, along with a global dynamic clumping index maps
derived fromMODIS andMISR data (Chen et al., 2005; Wei & Fang, 2016), were used to calculate shortwave
and longwave radiation components absorbed by sunlit/shade canopy and soil. Air temperature and dew
point temperature from ERA‐Interim reanalysis data (Dee et al., 2011) were merged with data derived
from MOD/MYD07_L2 product to achieve high spatial (MODIS, 5 km) and temporal (ERA, 6‐hourly)
forcing fields.

Statewide averages of precipitation were extracted from the National Climatic Data Center, Climate at a
Glance, database (https://www.ncdc.noaa.gov/cag). Evaporation calculations produced bioregions across
the state were based on regional shapefiles that were obtained from a database created by the Interagency
Natural Areas Coordinating Committee. USGS National Gap Analysis Program raster file containing vege-
tation information of California was used to generate the oak savanna raster and polygon files used in this
project. USDA Cropland Data Layer raster files were clipped to cover the area of the state of California
and ranging from 2008 to 2017. Because Cropland Data Layers are unavailable in California prior to 2008,
we assume that the 2008 layer is representative of crop cover patterns from 2001 to 2007. This data set
was used to extract cells by specific attributes and generate raster and shape files for almonds, grapes,
pasture, and orchards.

All code and files required for the monthly extraction analysis are available in a Python Jupyter Notebook
(https://ipython.org/notebook.html), which can be obtained freely through GitHub (https://github.com/
daviddralle/CA‐ET). BESS evaporation rasters are made publicly available through the Google Earth
Engine platform (metadata at https://code.earthengine.google.com/?asset=users/daviddralle/bessv2;
Google Earth Engine asset ID users/daviddralle/bessv2).

2.3. Model Evaluation and Intercomparisons

The BESS model has been evaluated against a global network of eddy covariance flux stations (Jiang & Ryu,
2016; Ryu et al., 2012) and machine learning products of spatial evaporation (Jung et al., 2010). The BESS
evaporation products agreed well with data from 113 FLUXNET sites (R2 = 0.62, bias = 0.1 mm/day) on
eight daily scale and with the output of a machine learning product (R2 = 0.90, bias = 0.1 mm/day) on
annual scale. In addition, we compared computations of energy fluxes with eddy covariance measurements
we have made across central California, near the 38th degree parallel. These data are from amesonetwork of
Ameriflux/FLUXNET sites that consist of oak savanna, an annual grassland, agricultural crops, irrigated
pasture, and restored wetlands (Baldocchi et al., 2016; Baldocchi & Ma, 2013; Eichelmann et al., 2018;
Ryu, Baldocchi, et al., 2008). Data from these comparisons are shown in section 3.

At the state scale, we compare BESS computations of evaporation with a hierarchy of models. One model is
the MODIS evaporation product (MOD16; Mu et al., 2011; Zhang et al., 2010). This product forces an
algorithm that evaluates the Penman‐Monteith equation. It is evaluated on 8‐day intervals and at
1‐km resolution.

A second model is the Simplified Surface Energy Balance (SSEBop v4; Senay et al., 2007; Senay et al., 2011).
It determines evaporation using remotely sensed energy balance including MODIS thermal imagery
(Bastiaanssen et al., 1998). It operates at 1‐km resolution and on 10‐day intervals. Data are available at the
United States Geological Survey Early Warning web site (https://earlywarning.usgs.gov/fews/product/458).

The third model is the Max Planck Institute of Biogeochemistry's global evaporation product (Jung et al.,
2011). This product is derived from empirical upscaling of direct eddy covariance fluxes of latent heat pro-
duced by the FLUXNET network (Pastorello et al., 2016). Fluxes are computed on monthly time steps at
0.5° resolution using machine learning algorithms, gridded climate data, and remote sensing information.
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These data are available from the Max Planck Data Portal (https://www.
bgc‐jena.mpg.de/geodb/projects/Home.php).

The fourth model is based on the Noah land surface model used in the
Global Land Data Assimilation System, GLDAS,V2.1 (Rodell et al.,
2004). Evaporation estimates are produced at 3‐hr time steps and 0.25°
resolution. These data are made available on the Google Earth Engine
web site (https://developers.google.com/earth‐engine/datasets/catalog/
NASA_GLDAS_V021_NOAH_G025_T3H).

3. Results
3.1. Statewide Forcing Fields

To interpret the spatial‐temporal variations in California evaporation, we
first examine the statewide maps of variables that were used to compute,
or evaluate, maps and time series of evaporative fluxes: solar radiation, net
radiation, potential evaporation, and maximum LAI. These maps were
produced by averaging or summing data over the course of a year and then
averaging over the 2001–2017 time period.

Figure 1 shows the map of annually integrated, global solar radiation (Rg).
The annually integrated, multiyear, and statewide average, flux density of

incoming solar radiation is 7028 ± 90 MJ·m−2·year−1. Spatially, incoming solar radiation increases from
5,000 to 8,000 MJ·m−2·year−1 across the north to south, west to east gradient.

For perspective, we compared our computations from a set of measurements from our mesonetwork of flux
measurements sites that span across central California at about the 38° parallel (Eichelmann et al., 2018;
Ryu, Baldocchi, et al., 2008). Table 1 shows that we computed an incident solar load on the order of
6,700 MJ·m−2·year−1 for this latitude band, and we measured an average incident solar radiation load in
the range between 6,600 and 6,800 MJ·m−2·year−1. The agreement between measured and modeled
incoming global radiation is very strong and consistent with findings from the global test of the model
(Ryu et al., 2018).

Evaporation is a function of the net radiation balance of the surface (Monteith, 1981). Figure 2 shows the
map of annually integrated net radiation (Rn), where net radiation is the difference between incoming
and outgoing shortwave and longwave radiation. Net radiation ranged between 2,000 and 4,000 MJ·m−2

year−1, relative to a statewide average of 3,140 MJ·m−2 year−1. The agricultural fields in the Central
Valley, shrubland sites in the northeast, snow fields of the high Sierra Nevada mountains, and desert
vegetation in the south experienced the lowest values of net radiation. This observation occurred because

Figure 1. Map of global radiation (Rg) across California that is integrated
over a year and averaged over the time series. Units are megaJoules per
square meters per year.

Table 1
A Comparison of BESS Model Computations of Annually Integrated Global Radiation (Rg), Net Radiation (Rn), and evaporation (E) From 2001 to 2017 With
Ecosystem Scale Observations Across a Network of Sites Near the 38th Parallel of California

Vaira
Rg (MJ·m−2·

year−1)

Tonzi
Rg (MJ·m−2·

year−1)

Delta
Rg (MJ·m−2·

year−1)

Vaira
Rn (MJ·m−2·

year−1)

Tonzi
Rn (MJ·m−2·

year−1)

Delta
Rn (MJ·m−2·

year−1)
Vaira

E (mm/year)
Tonzi

E (mm/year)
Delta

E (mm/year)

BESS computations
Mean sum 6,775 6,787 6,714 2,967 2,956 3,256 468 476 717
Standard deviation 161 161 169 48 47 80 45 44 47

AmeriFlux measurements
Mean sum 6,873 6,694 6,830 2,405 3,335 3,248 299 371 738
Standard deviation 286 178 299 262 272 490 40 60 125

Note. Field observations come from an oak savanna at the Tonzi Ranch (https://doi.org/10.17190/AMF/1245971), an annual grassland at the Vaira Ranch
(https://doi.org/10.17190/AMF/1245984), and a pasture (https://doi.org/10.17190/AMF/1246094), corn (https://doi.org/10.17190/AMF/1246148), and alfalfa
(https://doi.org/10.17190/AMF/1246149) field in the Sacramento‐San Joaquin Delta. Data were gap filled and distributed with the FLUXNET 2015 data release.
BESS = Breathing Earth System Simulator.
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they possess higher albedoes and/or surface temperatures. Conversely,
evergreen forests that ring the Central Valley and reside on the coastal,
Cascade, and Sierra Nevada mountain ranges possess the greatest net
radiation budgets because they have relatively low albedos and surface
temperatures (maps of albedo and surface temperature are shown in
supporting information Figures S1 and S2, and a map of major vegetation
groups of the State is shown in Figure S3.).

Our ability to model the net radiation field was good (Table 1). Across our
central California mesonetwork of flux sites near the 38th degree latitude
band, we modeled annual sums of net radiation flux densities that are on
the order of 2,900 to 3,200 MJ·m−2·year−1. Over farm fields in the Delta,
we typically measured a net radiation balance near 3,200 MJ·m−2·year−1

and over the oak savanna on the Sierra Nevada foothills we measured
net radiation that summed to about 3,300 MJ·m−2·year−1. Given, issues
of spatial alignment between flux towers and satellite pixels, the agree-
ment is favorable.

Potential evaporation sets the upper limit of water use by a landscape and
is a value reached by well‐watered vegetation with high LAIs. Figure 3
shows the map of annually integrated potential evaporation (PET).
This variable was computed using the Priestley‐Taylor equation

(Priestley & Taylor, 1972), where PET = 1.26 (s/(s + γ)) Rn/λ, s is the slope of the saturation vapor
pressure‐temperature relation, γ is the psychrometric constant, and λ is latent heat of energy. The
Priestley‐Taylor equation is preferred as a measure of potential evaporation because it represents the eva-
poration from a freely evaporating surface and it incorporates feedbacks with the planetary boundary layer
and its humidity (McNaughton & Spriggs, 1986); Figure S4, in supporting information, shows the theoretical
response between latent heat exchange, normalized by its equilibrium rate, λEeq, and the surface conduc-
tance (Gs); this normalized rate of evaporation approaches the value of the Priestley‐Taylor constant, 1.26,
when surface conductance exceeds 20 mm/s.

Wide swaths of the state are subject to potential evaporation demand that exceed a meter of water per year,
on an area basis; the statewide average potential evaporation is 1,082 mm/year. This value, for state wide

potential evaporation, is considerably lower than the previously published
value of 1,344 mm/year; that value is referenced to evaporation from a
well‐watered grass according to the modified Penman equation (Hidalgo
et al., 2005). It is noteworthy that the spatial fields of potential evaporation
across the Central Valley, which consider the energy balance of the actual
landscape, are lower than values of potential evaporation derived from
functions that refer to evaporation from a reference field of green grass
(Burt et al., 2002; Hidalgo et al., 2005). The biophysical features of these
land use cover types and their management are reflected in the calcula-
tions of net radiation and potential evaporation presented here. Many of
these fields are fallow or deciduous a significant fraction of the year,
giving them higher albedos and surface temperatures than would be
experienced over a reference green grass, when evaluated on an annual
time scale (supporting information Figures S1 and S2). The BESS model
also shows that the seasonally snow‐covered regions of the Sierra
Nevada mountains, with high albedo and a relatively short growing sea-
son, have the lowest values of potential evaporation.

The source strength of evaporation scales with LAI. Consequently,
regions with greater LAI are expected to experience greater amounts of
evaporation. Conversely, regions with deficit rainfall are expected to sus-
tain lower values of LAI and experience lower values of evaporative water
use. Figure 4 shows the map of maximum LAI. Forests growing in wetter

Figure 2. Map of net radiation (Rn) budget across California that is inte-
grated over a year and averaged over the time series. Units are megaJoules
per square meters per year.

Figure 3. Map of annually integrated potential evaporation across
California, computed with the Priestly‐Taylor equation. Units are milli-
meter per year.
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climates of the Pacific north coast and subalpine elevations of the Sierra
Nevada mountains and irrigated orchards in the Central Valley achieve
closed canopies and LAIs up to 5 m2/m2. The drier landscapes of the state
are occupied by sparser vegetation, having LAIs between 1 and 2 m2/m2.
Maximum values of LAIs for many irrigated crops in the Central Valley
are less than 3 m2/m2. This may seem lower than expected, given that
these fields are intensively managed. However, farmers need to have
spacing between plants to cultivate the fields, so moderate values of LAI
(less than 3) are common for key perennial crops like grapes (Johnson
et al., 2003; Kustas et al., 2018), walnuts (Patton et al., 2011), and almonds
(Falk et al., 2013; Zarate‐Valdez et al., 2012). Furthermore, the data in
Figure 4 resemble spatial patterns and magnitudes of LAI derived from
an independent study based on the simple ratio and the Advanced Very
High Resolution Radiometer (Nikolov & Zeller, 2006).

3.2. Spatial‐Temporal Evaporation Fields

Figure 5 shows the space and time‐averaged map of annual evaporation
computed across California by BESS for the MODIS observation period,
2001–2017. The statewide spatial and multiyear average of the annual
sum of evaporation, determined pixel by pixel, is 393 ± 48 mm/year.
The histogram of statewide, annual evaporation is bimodal and positively

skewed, yielding a median of 359 mm/year (see supporting information Figure S5). These sums are 36% of
potential evaporation.

Annual sums of evaporation experience strong west to east longitudinal, north to south latitudinal, and
low to high elevation gradients in annual evaporative water use. In general, pixels with the highest eva-
poration, above 700 mm/year, are concentrated along the central and northwest coasts, which is home to
the tall and evergreen temperate rain forests, across the subalpine forests of the northern and southern
Sierra Nevada, the wine growing regions of the coast range, and in specific agricultural sectors of the
Delta, in the middle Central Valley. Within the agricultural regions are fields that use 800 to
1,000 mm/year (Baldocchi et al., 2016; Drexler et al., 2008; Eichelmann et al., 2018; Kochendorfer et al.,
2011). The ring of grasslands and oak savanna around the Central Valley evaporates 300 to 400 mm/year,
which is on par with eddy covariance measurements over oak savanna and annual grasslands in this

region (Baldocchi et al., 2004). Semiarid shrublands evaporate less than
200 mm/year. Deserts evaporate less than 100 mm/year. The hot, irri-
gated Imperial Valley, near the Mexican border, was detected to use less
than 300 mm/year, when averaged over pixels 1 km in dimension. The
complex mosaic of crops, their crop calendar, the physiological stress
imposed by hot summer temperatures, and the fraction of land that
may be fallow any given year contributed to a marked difference in
the amount of evaporation for a given crop versus that for a wider
agricultural region.

In Table 2 we report integrated averages and sums of annual water use
for broad geographic regions in the state; monthly sums are shown in
supporting information Figure S6. The lowest annual water use,
under 200 mm/year, occurs over the Mojave and Colorado deserts.
The highest regional water use occurs over the forests of the Klamath/
North Coast (596 ± 13 mm/year) and the irrigated agriculture of the
Delta and Bay Area (590 ± 20 mm/year). The irrigated agricultural
fields in the Sacramento Valley, where water is relatively plentiful, and
fields are flooded during the winter for water fowl, lost on average
421 ± 30 mm/year to evaporation. In contrast, the irrigated agriculture
fields in the San Joaquin Valley, which are subject to restrictions in water
delivery during droughts, evaporate less, for example, 374 ± 37 mm/year.

Figure 4. Map of maximum leaf area index across California. LAI = leaf
area index.

Figure 5. Map of annual evaporation (mm/year) across California, averaged
over the period between the 2001 and 2017 calendar years. The x axis is
degrees longitude, and the y axis is degrees longitude.
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The integrated amount of evaporation across the Sierra Nevada moun-
tains is 396 ± 24. Eddy covariance measurements across the upper King
River Basin of the southern range of the Sierra Nevada mountains are
comparable; they were on the order of 429 mm/year (Goulden
et al., 2012).

Irrigated agriculture is one of the largest users of water in California
(Hanak et al., 2011). Howmuchwater is used by specific crops across wide
areas? To better understand the spatial‐temporal variation in evaporation
across California, we parsed the statewide evaporation map into domi-
nant climate and ecological regions using the Cropland Data Layer
(Table 3).

Mean crop water use ranged between 400 and 584 mm/year, which was
less than 53% of potential evaporation. Corn, a highly productive C4, crop,
used the most water on an area basis (584 ± 29 mm/year), followed by
walnuts (509 mm/year) and almonds (481 ± 37 mm/year). Monthly varia-
bility of evaporation tended to be out of phase with potential evaporation,
as hot, dry summer months hindered actual evaporation (supporting
information Figure S7).

The year‐to‐year variability in annual evaporation and precipitation, averaged across the state, is shown in
Figure 6. One key finding is the fact that the interannual variability in statewide evaporation is relatively
small (±5%) and buffered from the high interannual variability in precipitation (±28%). This buffered
response occurred despite the occurrence of extreme droughts (Seager et al., 2015) during this observation
period. This finding is an indicator that native vegetation is well adapted to the booms and busts in rainfall
and maintains a conservative posture in water use. It is only during extreme and prolonged drought when
elevated plant mortality occurs.

Nor did we observe a time trend in annual evaporation or precipitation that was significantly different from
zero. The linear regression between evaporation and time yielded a slope of −0.453 mm/year2, r2 equal to
0.0134, and P equal to 0.6402. The linear regression between precipitation and time yielded a slope of
−1.533 mm/year2, r2 equal to 0.110, and P equal to 0.185.

Given that the standard deviation in state wide evaporation equals 48 mm/year, the 95% confidence interval
of the slope of the time trends of evaporation must exceed 0.179 mm/year2 or 1.79 mm/year per decade, to be
significantly different than trends due to the propagation of random errors in computing the time series (see
supporting information Figures S8 and S9).

Another notable feature of Figure 6 is the fact that evaporation exceeded precipitation during the driest
calendar year, 2013. This is inferential evidence that many ecosystems were able to survive during this exces-
sively dry period, in the short term, by tapping deeper sources of water. And those that did not experience

elevated mortality the following years (Asner et al., 2015). We add that
if we examine these results by water year, we do not see as much as an
imbalance in 2013–2014.

3.3. Sensitivity of Evaporation to Forcing Variables

Numerous climate projections expect more evaporative water use by
vegetation with a warming climate on the assumption that saturation
vapor pressure of the surface will increase and force a stronger gradient
with the atmosphere (Hayhoe et al., 2004). The BESS model considers
feedbacks between demand and supply.

To examine why are we not experiencing temporal trends in evaporation
across California, we compared the time series of key drivers of evapora-
tion, precipitation, air temperature, and LAI (Figure 7). To facilitate inter-
comparison, these climate data were reported relative to the mean over
the 1895 to 2017 time period and normalized by their standard

Table 2
Mean Annual Sums of Evaporation for Selected Geographic Regions; Regions
Are Delimited in Supporting Information Figure S5

Regions
Mean

Standard
deviation

mm/year mm/year km3/year Area (km2)

Bay area/delta 590 20 15 25,430
Central Coast 494 41 16 32,333
Colorado Desert 177 20 4.9 27,654
Klamath/North Coast 596 13 34.7 58,161
Modoc 370 14 12.5 33,718
Mojave 217 27 17.6 81,305
Sacramento Valley 421 30 6.7 15,987
San Joaquin Valley 374 37 12.5 33,322
Sierra Nevada 396 24 29.4 74,193
South Coast 396 35 11.4 28,713
Total 160.8 423,970

Potential evaporation 1,087 14 460.8 423,970

Table 3
Mean Annual Sums of Evaporation for Selected Crops, Orchards,
and Ecosystems

Crops
Mean

(mm/year)
Standard deviation

(mm/year)

Alfalfa 440 25
Almonds 484 32
Corn 587 21
Grapes 446 28
Grass 401 31
Walnuts 512 26
Oak savanna 399 54

Potential evaporation 1,087 14
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deviation. The slopes of the trends for normalized deviations in precipita-
tion, maximumLAI, and evaporation were not significantly different from
zero (precipitation: slope = −0.0118, P = 0.821; ET: slope = 0.0894;
P = 0.765; LAI: slope = −0.0400; P = 0.4374). Only the trend in tempera-
ture was significantly greater than zero (slope = −0.0155; P = 0.0379).

4. Discussion
4.1. Hypothesis Tests

Hypothesis 1 postulated that year‐to‐year variability in statewide evapora-
tion is sensitive to booms and busts in rainfall. We found that the year‐to‐
year variability in statewide evaporation was relatively insensitive to
booms and busts in rainfall; the slope of the linear regression between
annual precipitation and evaporation is on the order of 0.08. This relative
insensitivity occurred in part because native ecosystems have adapted
their structural and functional attributes to a highly variable rainfall
regime. Many native plants are resilient to frequent drought because they

are able to extract water from deeper sources in the water column. And where tree mortality occurred, juve-
niles and other understory vegetation resumed evaporation once rains returned.

Hypothesis 2 postulated that a positive temporal trend in statewide evaporation should be observed due to a
warming climate. We falsified this hypothesis because we did not calculate a temporal trend in statewide
evaporation over 17 years that was significantly different from zero. In a warmer and drier world partial sto-
matal closure, more radiative loss of energy by the surface and reduction in LAI may counteract against an
expected gradient in humidity that is predicted with simpler land surface models, embedded into climate
simulations (Monteith, 1981); we discuss these feedbacks in more detail below. Our study does not remove
the possibility of a positive trend in evaporation being detected in the future, with more warming.

Hypothesis 3 postulated that agricultural crops water use is closely related to the amount defined as potential
evaporation and vastly exceeds amounts evaporated by native species. Our computations of agricultural eva-
poration, at 1‐km scale, were nearly half of potential evaporation. But can we truly conclude we falsified
this hypothesis?

One study estimated evaporative water use of crops as a fraction of poten-
tial evaporation from a well‐watered grass or evaporation pan times a
seasonally varying crop coefficients (Allen, 2000; Burt et al., 2005;
Snyder et al., 2005). They estimated that agricultural evaporative water
use in California was on the order of 825 mm/year; this area‐based
estimate was based on 30.8 km3 (25 million acre‐feet) used by 3.75 million
ha (9.3 million acres; Burt et al., 2002).

A second study inferred that gross and net water use by irrigated agricul-
ture is on the order of 1,143 and 935 mm/year, respectively (Hanak et al.,
2011); these calculations are based on 40.7 km3 (33 million acre‐feet) of
gross water, and 33.2 km3 (27 million acre‐feet) of net water use is distrib-
uted across 3.56 million ha (8.80 million acre) of irrigated farmland.

These older literature values may be biased high. First, they refer to water
use by individual fields, not the mosaic of fields that comprise a 1‐km
pixel. Second, they are tied to estimates of reference evaporation fromwell
water grass which is on the order of 1,344 ± 70 mm/year (Hidalgo et al.,
2005). In comparison, our estimates of potential evaporation, using the
Priestley‐Taylor equation and explicit computations of net radiation, are
on the order of 1,080 mm/year. And it is known that farmers may apply
more water than is needed by the plants and soil, because excess water
is needed to push salts through the root system or it is captured as water
runoff (Hanak et al., 2017).

Figure 6. Year‐to‐year variation in annual evaporation and precipitation,
for the calendar year across California.

Figure 7. Trends in precipitation, temperature, maximum leaf area index,
and evaporation across California. The climate data were reported relative
to the mean over the 1895 to 2017 time period. Trends were computed for
the 2001 to 2017 time period. The slopes of the trends for precipitation,
maximum leaf area index, and evaporation were not significant from zero.
The trend in temperature was significantly greater than zero.
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We also acknowledge that our calculated sums of evaporation from
orchards are lower than eddy covariance measurements (1036 mm/year)
and simulations (900 to 1,100mm/year) based on the ACASA‐WRFmodel
(Falk et al., 2013); ACASA is a higher‐order closure model that considers
wind, turbulence, and radiation fields within a multilayered canopy
and uses similar coupled carbon, water, and energy flux algorithms, as
applied here.

On the other hand, a new and independent study of evaporation across
the irrigated crops of the Central Valley, using Morton's complementary
evaporation method (Morton, 1983), estimates that annual evaporation
is on the order of 369 ± 62 mm/year (Szilagyi & Jozsa, 2018), which is
close to our calculations. It is also consistent with regional estimates of
evaporation across the Central Valley computed with GLDAS
(406 ± 50 mm/year) and SSEB (489 ± 51 mm/year; see Supporting
Information Figures S10, S11, and S12). And the computations of evapora-
tion over crops in the Sacramento‐San Joaquin Delta are in general agree-
ment with the eddy covariance fluxes we have measured (Eichelmann
et al., 2018).

Based on the results from the literature and multiple models, we conclude
that evaporation evaluated at relatively large (1 km) pixel scales is less
than maximum evaporation from individual fields in that pixel, thereby
falsifying Hypothesis 3.

4.2. Comparisons of Statewide Evaporation With Other Metrics

There is no perfect way to test the performance of model calculations at annual and statewide scales
(Oreskes et al., 1994). Yet it is instructive to compare our statewide calculations of annual evaporation with
other measures to bound random and systematic bias errors.

One statewide water budget, based on the CALVIN model, distributes 246 km3 of mean annual statewide
precipitation into 102 km3 of gross water use, 78.9 km3 of net water use, and 86.3 km3 of unimpaired water
availability (e.g., discharge and infiltration; Hanak et al., 2011). Given that the area of the state is
423,970 km2, this volumetric sum translates to an area‐averaged annual gross water flux of 241 mm/year,
a value mostly attributed to evaporation. In comparison, BESS estimates that 161 km3 of water is evaporated
across the State on an annual basis (Table 2).

Figure 8 shows a comparison of statewide averages of evaporation between BESS and a hierarchy of land‐
atmosphere models. MPI model estimates mean, statewide annual evaporation to be 392 ± 19 mm/year.
MPI method fits flux measurement from a global network of towers to interpolate evaporation in time
and space (Jung et al., 2011). The estimate of statewide evaporation with the NASAMODIS Evaporation pro-
duct (Mu et al., 2011; Zhang et al., 2010) equals 284 ± 19 mm/year. An extraction of annual sums of evapora-
tion from the Simple Energy Balance Model (Senay et al., 2011) yields a mean of 399 ± 34 mm/year. And
evaporation derived from GLDAS is 371 ± 45 mm/year; it is also noteworthy that the GLDAS evaporation
product showed no trend in evaporation.

We find that the mechanistic BESS model matches the estimates of evaporation at the state scale that were
produced by the machine learning model and the land surface model within 7%. On the other hand, the
NASA MODIS evaporation and water‐budget evaporation products greatly underestimated (by about
100 mm/year), while the SSEB model agrees with BESS within a millimeter per year. This comparison gives
us confidence that BESS is performing as well as other models used by the community.

One has to be careful about achieving “the right answer for the wrong reason”. Wemust remember that each
model scheme has strengths and weaknesses. The Noah‐WRFmodel in the GLADAS data set is operating at
coarse space scales and does not consider coupling between carbon and water fluxes. A recent paper
compared the Noah‐WRF model with eddy flux measurements from the Vaira Ranch in California
(Chang et al., 2018), and this paper reported severe errors in Noah‐WRF's ability to simulate measured
values of sensible and latent heat.

Figure 8. Validation of the BESS model with the Max Planck Institute
(MPI) product, which is based on networks of flux towers and machine
learning methods to produce gridded fluxes (Jung et al., 2011), the MODIS
evaporation product (Zhang et al., 2010), the Simple Surface Energy
Balance Model, SSEBv4 (Senay et al., 2011), and Global Land Data
Assimilation System, GLDAS‐2.1 (Rodell et al., 2004). BESS = Breathing
Earth System Simulator.
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Inspection of the evaporation map produced by SSEB (supporting
information Figure S11) shows strong regional differences with BESS.
The developers of SSEB warn on their web site:

“despite the improved accuracy, the ET product is still more reliable
in a relative sense as in anomalies for drought. The absolute accu-
racy can vary from region‐to region; thus users are encouraged to
evaluate and determine a one‐time bias correction for water
budget applications.”We leave this section on the note that BESS
evaporation products are consistent with a range of sums produced
by a hierarchy of models at the state scale. On the other hand, there
remains much uncertainty and variability among models on how
much water is evaporated across representative climate and ecolo-
gical zones.

4.3. Sources of Variability

What is the sensitivity of statewide evaporation to changes in dominant
environmental drivers we can assess or measure? Figure 9 shows the
dependency of interannual variation in evaporation on maximum LAI,
precipitation, and gross primary productivity. First, we find that 64% of
interannual variability in evaporation is explained by LAI, which varies
year to year due to the amount of rain, fires, and planting decisions.
Second, we find that 83% of the variability in evaporation is explained
by gross primary productivity. This metric reflects the role of atmospheric
humidity deficits on stomatal conductance and integrates the impact of
LAI. Third, 53% of the variation in evaporation is directly explained by
hydrological year precipitation, and the coupling, defined by the slope,
is only 0.083; only 24% of the variation in evaporation was explained by
variations in calendar year precipitation. The low year‐to‐year variability
in modeled evaporation rates is consistent with values we have measured
over annual grasslands (Ryu, Baldocchi, et al., 2008) and over an oak
savanna Ameriflux site in California (Baldocchi & Ma, 2013). This beha-
vior is also a common feature of Mediterranean‐type vegetation (Joffre
& Rambal, 1993), as they are not able to increase transpiring leaf area fast
enough during the wet years and are adapted to frequent water deficits by
establishing a sparse canopy with relatively low LAI.

We also mapped the sensitivity of evaporation (dE) to a suite of environ-
mental variables, vapor pressure deficit (VPD), temperature (T), solar
radiation (Rg), and LAI.

dE ¼ c1⋅dVPDþ c2⋅dT þ c3⋅dRgþ c4⋅dLAI

We analyzed the multivariate regression pixel by pixel with a partial least
squares regression on four variables, removed trends, and normalized
each pixel by the standard deviation of its multiyear population. All vari-
ables were normalized (z scored) so they are unitless and comparable.
Figure 10 shows the maps the sensitivity coefficients (c1 … c4) for each
respective variable and the r2 for the multivariate linear regression.

Across most of the state, these four variables explained most of the variation in evaporation. This sensitivity
analysis helps explain how and why feedbacks among these drivers dampen the response of evaporation
over time to temperature. We see that the effects of incremental increases in temperature were countered
by incremental decreases in vapor pressure deficits. The sunny deserts of the south were relatively insensi-
tive to solar radiation, while the cloudy and wetter north showed positive sensitivity to solar radiation.
Evaporation for most pixels across the state responded positively to increases in LAI.

Figure 9. The dependence of annual evaporation on maximum leaf area
index (top), annual precipitation (middle), and gross primary production
(bottom).
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The BESS model can simulate the impacts of wet and dry climates on evaporation through its simulation of
the surface conductance. Surface conductance is modulated by such factors as LAI, vapor pressure deficits,
photosynthesis, and photosynthetic capacity, which in turn scale with leaf nitrogen and soil moisture
(Kelliher et al., 1995). How surface conductance varies across California is shown in supporting
information Figure S13. The annual mean value of surface conductance ranges between 1 and 10 mm/s.
The low values of surface conductance, superimposed on the response function shown in supporting
information Figure S4, help explain why evaporation across much of the state is much below potential
evaporation on an annual time scale. As inferred from supporting information Figure S4, the ratio between
λE/λEeq will range between 0.2 and 1 as surface conductance ranges between 1 and 10 mm/s.

Figure 10. Sensitivity of evaporation to variations in driving variables based on an analysis of a mulivariate regression for
each pixel. (a) Vapor pressure deficit, (b) air temperature, (c) solar radiation, (d) leaf area index, and (e) coefficient of
determination. VPD = vapor pressure deficit; LAI = leaf area index.
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This mechanistic BESS model also informed us that the highest evaporation totals occurred along the North
Coast, despite the fact that this region experiences more fog, clouds, and rain than other parts of the state.
While its potential evaporationmay be relatively lower than sunnier regions (1,100 vs. 1.300mm/year), these
ecosystems were able to achieve higher sums of actual evaporation, compared to vegetation in the more xeric
regions of the state, because they are more effective absorbers of solar radiation (they are optically darker
and maintain high LAIs), they experience a long growing season, they achieve the highest surface
conductances (supporting information Figure S13), and they had access to deep, unsaturated stores of water
in fractured weathered bedrock keeps stomata open (Rempe & Dietrich, 2018). It is possible that an
underestimation of evaporation from the temperate rain forests in the northwest may account for some of
the discrepancy between our statewide residual water budgets and past published results.

This long‐term analysis also gives us some insight as to how evaporation across the state responded to the
severe 2013 drought (Griffin & Anchukaitis, 2014), when statewide precipitation was 201 or 331 mm below
the 17‐year ensemble mean. Our analysis shows a lag or legacy effect as we observed the lowest rates of
evaporation during 2014 (358 mm/year). During 2014, both annual evaporation and LAI were 9% lower than
the long‐term means (393 mm/year). One contribution to lower water use in 2014 was the decision to put
121 kha in fallow across the San Joaquin Valley (Hanak et al., 2017). Another factor was the loss of
104 kha of forest from the Tuolumne Rim Fire, near Yosemite during the autumn of 2013.

4.4. Sources of Uncertainty

Models like BESS possess a set of uncertainties and random and systematic errors that depend upon time and
space scales. Some errors may be additive and others compensating.

First, there are errors and uncertainties associated with the model structure and complexity (Medlyn et al.,
2005). BESS has the positive attribute that it captures the coupling between photosynthesis, stomatal con-
ductance, and surface energy balance using a set of nonlinear functions. It is necessary to compute the
expected value of a nonlinear function rather than the function of the mean value of the independent vari-
able (Ruel & Ayres, 1999). BESS minimizes this type of error by adopting a dual source (sun/shade), coupled
photosynthesis/energy balance model, as has been advocated in the literature (Norman, 1982; Sinclair
et al., 1976).

We recognize that our computations may experience some error during the dry season because we omitted
information on soil moisture, but there is evidence that information on vapor pressure deficits can compen-
sate (Rigden & Salvucci, 2015; Stocker et al., 2018). Other errors that may arise stem from the assumption
that the canopy is a sun/shade big leaf. We know that multilayer, higher‐order closure Eulerian and random
walk Lagrangian models, that treat the canopy microclimate in more detail, are more accurate (Baldocchi,
1992; Falk et al., 2013; Vogel et al., 1995). But differences between computations of evaporation that do
and do not consider vertical variations of humidity in the canopy are small (Baldocchi, 1992; Chang
et al., 2018).

Second, there are errors and uncertainties associated with the meteorological drivers (light, temperature,
and humidity), LAI, plant functional types (Medlyn et al., 2005), their representativeness at 1‐km space scale
(Raupach, 1991), and from a single midday acquisition (Ryu et al., 2012). For example, 0.5 m2/m2 uncer-
tainty in statewide average LAI can alter annual statewide evaporation by 108 mm/year.

Third, there are errors associated with the grid scale and spatial abstraction of the land surface. By operating
at 1‐km pixel resolution, we attempt to address nonlinearities that are associated with coarser (10‐ to 50‐km
resolution) scale land surface models like Noah (Ek et al., 2003; Rodell et al., 2004). In practice, we lose data
when clouds are present. Consequently, additional biases and errors can arise by the need interpolate and
gap fill to compute daily and annual sums (Ryu et al., 2012). We also assume a flat Earth, which may affect
the radiation balance on complex topography of the Sierra Nevada, Cascade, and Coastal mountains.

Fourth, there are errors associated with the specification of structural and functional information. It is well
known that LAI, detected from remote sensing, saturates when LAI is high (Sellers, 1985). There is also error
in designating plant functional types as C3 and C4 crops and due to the year‐to‐year variation in vegetation
fields from farming practices, land use change, and fires. We know many fields (over 240, 000 hectares) are
corn, a C4 plant, and this effect is ignored.
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Fifth, model algorithms are sensitive to errors in the choice of parameters. Parameters for photosynthetic
capacity, for example, will differ on leaves at the top and bottom of a canopy. They will also vary with time
of year (Osuna et al., 2015). Scaling photosynthetic parameters with leaf traits is a new and improved way to
assign them for a given pixel (Van Bodegom et al., 2012).

4.5. Impacts on Water Decisions and Management

From an operational perspective, the water budget of the California is very much out of balance and uncer-
tain. There is more demand for water from its natural and human stakeholders than is available (Hanak
et al., 2011). This has led to several negative environmental problems or unintended consequences. First,
the excessive drafting of ground water in Central Valley has caused large‐scale soil subsidence
(Famiglietti et al., 2011; Faunt et al., 2016). Second, the redistribution of water from the north to the south
has caused declines in water quality and fish population (Hanak et al., 2011). Subsidies to water, which have
enabled interior desert valleys to bloom, have also led to inefficient practices such as the production of low‐
value irrigated forage crops and placement of golf courses where potential evaporation is extreme (Hanak
et al., 2011). Furthermore, irrigation of soils in the Central Valley causes salts to accumulate (Schoups
et al., 2005). And insufficient supplies of water during drought have forced many farmers to fallow their
farmland; over 136 kha of farm land was in fallow across the San Joaquin Valley in 2014 (Hanak et al., 2017).

The intent of this model computation and spatial‐temporal analysis on actual evaporation from natural and
managed landscapes is to give water managers better information on how to share water among legitimate
stakeholders during wet and dry years, using a high‐resolution, bottom‐up, mechanistic, biophysical model,
as opposed to the top‐down, large‐scale, residual analysis that is often used. One key finding is that annual
water use across California is steadier than the highly variable inputs of water from rainfall would infer.
Access to water stored in soil, saprolite, and bedrock helps buffer this temporal variability in annual evapora-
tion of native forests in some portions of the State (Garcia & Tague, 2015; Miller et al., 2010; Rempe &
Dietrich, 2018). Another key finding is a new, hopefully, and better estimate of statewide and regional eva-
poration which policy makers can use to make decisions. At present, they make decisions on the basis of a
large‐scale, top‐down water budget that infer net (78.9 km3/year) and gross (102 km3/year) water use across
the state on an annual basis (Hanak et al., 2011); gross water use is the sum of evaporation and return flow;
net water use is the sum of evaporation and nonrecoverable flow. We can compare our results with these
metrics by multiplying the mean flux densities of precipitation and evaporation that we computed by land
area. Over the 2001–2017 period, we estimate that the state receives on average about 219 km3/year of water
as precipitation and it evaporates 161 km3/year of water. This leaves a residual of 58 km3, which would be
lost as by runoff to the ocean, lakes, and reservoirs from the rivers and infiltration to aquifers. This implies
that more water is being lost statewide by evaporation, than has been estimated, so there may be less residual
water available for other ecosystem and public services.

With regard to the agricultural regions of the state, our model estimates suggest that the crops are using less
water than has been assumed. This analysis shows that spatial‐temporal integration of evaporation across
many of the irrigated regions of California does not reach the extremely high sums of potential evaporation
(1,000 to 1,400 mm/year; Hidalgo et al., 2005). If true, at 1‐km scale, this is relatively good news given the
scarce amount and multiple demands for this water.

It is our assessment that many agricultural fields do not meet potential evaporation on an annual basis for a
variety of reasons. They are fallow for a sizable fraction of the year; they only attain full canopy cover for a
short period, they suffer physiological heat and soil moisture stress during the extremely hot summer, and
maximum rates of evaporation occur for only short periods during their growing season. For example, our
direct eddy covariance measurements over irrigated alfalfa show that extreme heat of the later summer
Central Valley causes the system to experience stomatal closure and reduced actual evaporation, despite
the high potential evaporation rates (Eichelmann et al., 2018). Wewould expect this summer time heat stress
effect to be even greater for the vast amounts of alfalfa grown in the much hotter Imperial Valley. Therefore,
we ask: Are we overirrigating our crops on a landscape basis, given the complicated mosaic of land use and a
variable crop calendar, which alters phenology?

Inefficiencies in the application of water, via flood, furrow, and sprinkler irrigation, leakage and evaporative
losses across the canal transmission systems, access to cheap and subsidized water, losses by soil
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evaporation, and the need to flush the root zone for salts may be some reasons why conventional water use
by crops has been relatively high, up to now. Conventional estimates of potential evaporation seem biased
high, too, compared to our estimates of potential evaporation. Further work is needed to determine if
farmers can apply less water, through drip irrigation, without incurring deleterious effects. If true, this could
provide energy and water savings by reducing pumping, the amount of water applied. It could also have
benefits by providing more water to ecosystem services and refilling aquifers.

4.6. Future Directions

We concede that the BESSmodel is based on a certain set of assumptions, in order to execute themodel using
satellite remote sensing. From our experience conducting this case study, we can identify several features
that are needed to improve and refine the BESS model for improved and routine application in California.
Better radiation fields could be computed if the model considers topography. Higher spatial resolution infor-
mation of land use will give us better information on cropmanagement mosaics. For example, in the Central
Valley we need better information on where C4 crops like corn and sorghum exist, as this affects computa-
tions of photosynthesis and stomatal conductance. Future versions of the model could be improved with
incorporating information on soil moisture and vapor pressure deficit fields and information on rooting
depth. Future analyses on the integrative effects of large fires on the water budget of the State are
warranted, too.

5. Conclusion

We used a biophysical model driven by satellite remote sensing to produce a new multiyear map of annual
evaporation sums across California. We find that annual sums of evaporation are relatively steady (±5%)
given the high interannual variation in precipitation (±27%). We also compute lower sums of evaporative
water use for the Central Valley than prior estimates that are tied to potential evaporation, due to the com-
plex spatial mosaic and seasonality of crop management.

Overall, we find that potential evaporation is about 300 mm/year less than conventional than past assess-
ments and that crops are using between 100 and 200 mm less water per year than anticipated from past
studies that inferred water use from estimates of potential evaporation of well‐watered grass. On the other
hand, statewide, we find that more water is being evaporated compared to past assessments that estimate
net and gross water use from the residual of the water balance or use simpler models driven with satellite
information. Hence, as a statewide level there may be less residual water than previously assumed.

This new information may help water managers to plan and share water use among cities, ecosystems, and
agriculture better and more equitably during series of wet and dry years.
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