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Abstract 
In Mediterranean-type climates, asynchronicity between energy and water availability means that 
ecosystems rely heavily on the water-storing capacity of the subsurface to sustain plant water use 
over the summer dry season. The root-zone water storage capacity (Smax [L]) defines the 
maximum volume of water that can be stored in plant accessible locations in the subsurface, but is 
poorly characterized and difficult to measure at large scales. Here, we develop an ecohydrological 
modeling framework to describe how Smax mediates root zone water storage (S [L]), and thus dry 
season plant water use. The model reveals that where Smax is high relative to mean annual rainfall, S 
is not fully replenished in all years, and root-zone water storage and therefore plant water use are 
sensitive to annual rainfall. Conversely, where Smax is low, S is replenished in most years but can be 
depleted rapidly between storm events, increasing plant sensitivity to rainfall patterns at the end of 
the wet season. In contrast to both the high and low Smax cases, landscapes with intermediate Smax 
values are predicted to minimize variability in dry season evapotranspiration. These diverse plant 
behaviors enable a mapping between time variations in precipitation, evapotranspiration and Smax, 
which makes it possible to estimate Smax using remotely sensed vegetation data − that is, using 
plants as sensors. We test the model using observations of Smax in soils and weathered bedrock at 
two sites in the Northern California Coast Ranges. Accurate model performance at these sites, 
which exhibit strongly contrasting weathering profiles, demonstrates the method is robust across 
diverse plant communities, and modes of storage and runoff generation. 

1. Introduction 

Measuring and predicting spatial variations in crit-
ical zone (the CZ, Earth’s ‘dynamic skin’ (Grant and 
Dietrich 2017), extending from the vegetation can-
opy down to fresh bedrock) architecture is a chal-
lenging earth science research frontier (Riebe et al 
2017, Pelletier et al 2016, Fan et al 2019). One CZ 
property central to understanding the ecohydrolo-
gical function of landscapes is the capacity for the 
subsurface to store water that can be used by eco-
systems. This property can be quantified as the root-
zone water storage capacity, Smax [L] (de Boer-Euser 
et al 2016, Dawson et al 2020), defined as the volume 

of subsurface void space available to store water that 
can be accessed by vegetation, per unit ground area 
(Klos et al 2018). Physically, Smax is constrained by the 
depth and extent of weathering in the CZ, in conjunc-
tion with the depth of the active root zone (e.g. Hahm 
et al 2019b). 

In rain-dominated seasonally dry or drought-
prone regions, the only source of water available to 
plants during extended dry periods is that which 
is stored and available to root systems in the sub-
surface. The capacity of the subsurface to store this 
water therefore (i) regulates plant water use and pro-
ductivity, impacting the Earth’s near-surface energy 
budget and climate, and (ii) mediates water balance 
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partitioning, including runoff responses to rainfall 
during wet periods, and baseflow production dur-
ing dry periods. These outcomes have been extens-
ively explored in Mediterranean climates, where water 
delivery via precipitation and energy delivery through 
insolation are out of sync, so that dry season water use 
and productivity are almost completely constrained 
by the availability of water carried over from the 
wet season in soil, rock moisture, snowpack, and 
groundwater (Hahm et al 2019a, Graham et al 2010, 
Rempe and Dietrich 2018, Klos et al 2018, Garcia 
and Tague 2015, Hahm et al 2019b, Lewis and Burgy 
1964, Zwieniecki and Newton 1996, Arkley 1981, 
Anderson et al 1995, Rose et al 2003, Smettem et al 
2013, Eliades et al 2018, Enzminger et al 2019, Peel 
et al 2007). Given this, appropriate representations 
of the root-zone water storage capacity are urgently 
needed for use in novel large-scale modeling frame-
works (Fan et al 2019) and in the range of existing 
modeling and empirical frameworks that rely on the 
concept of root-zone water storage capacity (Porpor-
ato et al 2004, Seyfried et al 2009). However, while 
maps of near-surface soil and its water storage prop-
erties exist (Geza and McCray 2008, Entekhabi et al 
2010), information on whole-CZ subsurface proper-
ties, including water storage capacity in deep (> 2m) 
soils, saprolite and weathered bedrock, is generally 
lacking at large spatial scales. For example, soil maps 
that are widely used to parameterize land surface and 
hydrological models not only rely on interpolation 
between sparsely spaced soil pits (Natural Resources 
Conservation Service 2019), but are generally con-
fined to shallow depths (< 2m) that do not cover the 
entire root zone. 

Some methods exist to infer root-zone water stor-
age capacity based on plant optimality principles 
(e.g. plants ‘set’ Smax so as to maximize productivity 
(Speich et al 2018, Yang et al 2016, Cabon et al 2018)), 
or variations in subsurface water storage inferred 
either through mass balance or remote sensing of 
terrestrial water storage. Storage-deficit approaches 
(Gao et al 2014, Wang-Erlandsson et al 2016) isolate 
accumulated evapotranspiration during dry periods 
to place lower bounds on Smax, although these meth-
ods typically assume vegetation themselves determine 
Smax at a value sufficient to overcome droughts with a 
specific, user-defined return interval. Other forms of 
storage-tracking approaches require data from stream 
gauging stations (Hahm et al 2019a), which are often 
too sparsely distributed to allow findings to be reli-
ably interpolated. Microwave-based satellite observa-
tions of soil moisture storage dynamics are extensive 
but coarsely resolved and limited to shallow near sur-
face soils (Entekhabi et al 2010). Space-based gravity 
observations (Swenson et al 2003) and ground-based 
surface deformation (Argus et al 2014, Enzminger 
et al 2019) are sensitive to changes in water storage, 
but only over extremely large spatial scales. These 
methods may also measure changes in water storage 

within deep aquifers which do not relate to changes 
within the root zone. 

An alternative method to infer Smax from obser-
vations is to use the plants themselves as sensors 
of water availability, and therefore as windows into 
root-zone water storage dynamics (Thompson et al 
2011, Thompson and Katul 2011). These ‘inverse 
methods’ (Wang-Erlandsson et al 2016) rely on the 
fact that plant productivity and water use are sens-
itive to both water and energy availability (Hold-
ridge 1947, Stephenson 1990). Thus, if Smax determ-
ines how much water is stored and available to veget-
ation, Smax could potentially be inferred by invert-
ing models of the rainfall-CZ-vegetation interactions 
using remotely sensed measures of vegetation activity 
and precipitation (Ichii et al 2009, Campos et al 2016, 
Kleidon 2004). In a more recent study, Hahm et al 
(2019a) demonstrated, via remote-sensing of plant 
greenness and water-balance tracking, that water stor-
age properties of the CZ could decouple dry sea-
son water availability, and thus plant productivity, 
from year-to-year rainfall variability, suggesting that 
simplified statistical measures of evapotranspiration, 
such as its coefficient of variation, might also be dia-
gnostic of root-zone water storage capacity. 

Here, we expand on this collection of approaches 
by developing a simple stochastic model for root-
zone water storage. The model introduces a sim-
plified representation of ecohydrological seasonal-
ity within existing stochastic modeling frameworks 
(Zanardo et al 2012, Dralle and Thompson 2016, 
Feng et al 2015) to explicitly examine the depend-
ence of S on intra-seasonal features of rainfall 
and Smax. We demonstrate that the model can be 
used as an inversion tool to infer Smax, given the 
basic premise that year-to-year variability in dry 
season plant water use should reflect year-to-year 
variability in root-zone water storage, manifested 
through the control of Smax on rainfall storage in the 
subsurface. 

Using a remotely sensed ET dataset and empirical 
rainfall statistics, we find that the inversion accurately 
predicts Smax at two Eel River Critical Zone Obser-
vatory (ERCZO) field sites in the Northern Califor-
nia Coast Ranges where independent hillslope- and 
catchment-scale measurements of Smax have previ-
ously been made. 

2. Methods 

To understand how Smax mediates dry season water 
availability from year to year, we rely on a stochastic 
framework to predict the end-of-wet season root-
zone water storage (S0 ∈ [0,Smax]), the key vari-
able which links wet season root-zone water stor-
age dynamics to dry season water availability (figure 
1(b)). We follow the formulations in Porporato et al 
(2004) and simulate wet season root-zone water stor-
age (S(t) [L]) using a 1-D, vertically integrated model 
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Table 1. Definition of terms used. 

Term Dimensions Definition 

S L root-zone water storage 
Smax L root-zone water storage capacity 
t T time 
P L T-1 rainfall that enters the root zone 
λ T-1 rainfall event frequency 
α L mean depth of rainfall in an event 
ET L T-1 evapotranspiration losses from the root zone 
ETdry L evapotranspiration loss from the root zone in dry 

season 
PET L T-1 wet season average potential evapotranspiration 
ETmax L T-1 maximum allowable evapotranspiration rate 

from the root zone 
D L T-1 drainage from root zone 
n - porosity 
Zr L root-zone depth 
θ - volumetric water content 
s - relative water content 
swp - relative water content at wilting point 
sfc - relative water content at field capacity 
Twet T duration of wet season 
Tdry T duration of dry season 

C2.5, C97.5 T days on which 2.5 and 97.5 percent, respectively, 
of cumulative annual rain falls in an average com-
posite year 

(illustrated in figure 1), where the governing mass 
balance can be expressed as: 

dS 
= P(t) − ET[S(t)] − D[S(t),P(t)]. (1)

dt 

P [L/T] is rainfall entering the root zone, ET 
[L/T] represents evapotranspiration losses from the 
root zone, and D [L/T] represents drainage from 
the root zone. S is defined as the volume of water 
(expressed as a depth of liquid water) stored in the 
root zone that is accessible to vegetation, which ranges 
from 0, representing a wilting point, to Smax, the 
previously defined root-zone water storage capacity. 
Evapotranspiration increases linearly from zero at 
S = 0 to a maximum allowable evapotranspiration 
(ETmax, which we approximate with potential evapo-
transpiration, PET) at S = Smax. PET is assumed to 
be constant and equal to its average value during the 
rainy season. On daily timescales, rainfall volumes 
entering the root zone that would increase storage 
above Smax are instantaneously removed by drainage 
(D), so that S is always less than or equal to Smax. We 
note that S and Smax can be expressed in terms of typ-
ical parameters in simple soil moisture models (e.g. 
Porporato et al 2004): a relative soil moisture (s) equal 
to volumetric water content (θ) divided by porosity 
(n), a root-zone depth (Zr), a field capacity sfc, and a 
wilting point swp, such that Smax = nZr(sfc − swp) and 
S = nZr(s − swp). Although mathematically equival-
ent to the model presented by Porporato et al (2004), 
the formulation here is expressed in terms of S (as 
opposed to a relative soil moisture, s) to highlight the 

fact that plant accessible water need not be restric-
ted to soils; S may include storage within unsaturated 
saprolite and weathered bedrock. Vegetation access to 
water in the saturated zone is not considered within 
this framework. 

2.0.1. Seasonal rainfall as a stochastic process 
Wet season rainfall is modeled as a stochastic Pois-
son process (Milly 1993, Porporato et al 2004, Good 
et al 2017), assuming rainfall events occur at random 
with frequency λ [T−1]. Due to the properties of Pois-
son processes, the inter-arrival times between rainfall 
events can be described with an exponential prob-
ability density function with mean 1/λ [T]. Upon 
the occurrence of a rainfall event, the event depth 
(volume of fallen rain per unit area) is also described 
using an exponential distribution with mean α [L]. 
The average seasonal rainfall is therefore equal to the 
product of α, λ, and the length of the wet season, Twet . 
Rainfall seasonality is assumed to be binary, with no 
rainfall during the dry season, and stationary hydro-
climatic features (constant α, λ, and ETmax) during 
the wet season. 

2.0.2. Seasonality and running the model 
Porporato et al (2004) found a steady-state solution 
for equation (1) under stationary climate conditions, 
and showed that the root-zone water storage follows a 
truncated gamma probability distribution (such that 
S is greater than zero and less than or equal to Smax). 
However, to our knowledge, unsteady, stochastic for-
mulations of equation (1), such as the model formu-
lated here, cannot be solved in closed form. Other 
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Figure 1. Stochastic root-zone storage model. 1-D root-zone box model (a) with the water balance equation and relevant fluxes. A 
single illustrative wet season (b) root-zone water storage trace is shown (dark blue line). Storage rises rapidly in response to rain 
events (light blue vertical lines on upper axis) and declines slowly due to evapotranspiration in between rain events. The realized 
end-of-wet season water storage, S0 (filled blue circle), is one of many possibilities, whose mean and standard deviation are 
represented by the probability density function p(S0). S0 determines (and is assumed to be directly proportional to) the amount 
of dry season evapotranspiration (filled green circle). 

authors have found approximate solutions for cer-
tain types of seasonality (Feng et al 2015), but to 
avoid error potentially associated with such approx-
imations, we opt to solve the governing equation 
using Monte Carlo simulations (for implementation 
details, see code availability statement). 

2.1. Role of dry season evapotranspiration (ETdry) for 
predicting Smax 
We wish to infer root-zone water storage capacity, 
Smax, as a function of hydroclimate and vegetation 
water use. The model takes values of Smax to map 
wet season hydroclimate to S0, which is not eas-
ily measured or observed. We therefore exploit the 
fact that in winter-wet summer-dry climates, the 
more readily observable magnitude of ETdry typ-
ically will scale linearly with S0 (Feng et al 2017). 
That is, dry season water use will increase propor-
tionally with the storage condition at the end of the 
wet season. While we do not explicitly model ETdry, 
it will equal S0 − S0 exp(−S/Smax · ETmax · Tdry) = ( )
S0 1 − exp(−S/Smax · ETmax · Tdry) , where Tdry is 
the duration of the dry season (365 - Twet ). The final 
equality shows that the volume of water evapotran-
spired during the dry season is proportional to dry 
season initial storage (S0), which in turn is set by the 
stochastic realization of that year’s wet season rain-
fall. This relationship between observable plant water 
use and root-zone storage dynamics is a key link-
age that we leverage in the following section to infer 
subsurface CZ storage properties. 

As a simplifying assumption, the model uses a 
zero root-zone storage condition (S = 0) at the start of 
the wet season. This is reasonable if dry season rainfall 
is negligible, and if root-zone water storage declines 
exponentially over the dry season as described 
above, such that end of summer S is small relative 
to S0. 

2.2. Model inversion for estimating Smax 
Given the four hydroclimate parameters (Twet , α, 
ETmax, λ), Monte Carlo simulations can be used 
to obtain wet season root-zone storage dynamics, 
including a distribution for S0, for a range of values 
of Smax. This yields a function which maps the range 
of Smax to variability in S0: 

CV[S0] = f(Smax). (2) 

Using the proportionality between ETdry and S0 
described in the previous section (ETdry ∝ S0), we 
can use simple statistical properties to link remotely 
observable evapotranspiration to model predictions 
of S0 for a given Smax and hydroclimate. Specifically, 
linear proportionality between two random variables 
implies that their coefficients of variation are equal: 
CV[ETdry] = CV[S0], where CV is the coefficient 
of variation, equal to the standard deviation divided 
by the mean. This implies that the two coefficients 
of variation can be used interchangeably to estim-
ate relative variability in the other. This provides a 
method for using remotely sensed measures of dry 
season vegetation water use (ETdry) as an indicator of 
subsurface storage dynamics. Specifically, an estimate 
of CV[ETdry] from satellite remote-sensing data can 
be substituted into equation (2) for CV[S0], which is 
more difficult to observe directly. An estimate of Smax 
can be obtained by inverting this relationship: 

CV[S0] = CV[ETdry] = f(Smax) 
⇒ Smax = f−1(CV[ETdry]). (3) 

This method for estimating storage is more widely 
applicable than the flux-tracking methodology 
presented in Hahm et al (2019a), because it does not 
rely on closure of the water budget, and thus can be 
applied even where stream gauging is unavailable or 
stream hydrology is modified. 
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2.3. Case studies: model application and inversion 
at well-characterized field sites 
To parameterize the stochastic model, we rely on 
hydroclimatic records from two study watersheds 
within the Eel River Critical Zone Observatory: Elder 
Creek (16.9 km2) and Dry Creek (3.5 km2). Intens-
ive hillslope monitoring of hillslope hydrology, plant 
dynamics, and stream runoff has been ongoing at 
Elder Creek for roughly a decade (Salve et al 2012, 
Link et al 2014, Oshun et al 2016, Kim et al 2014, 
Hahm et al 2019b, Lovill et al 2018, Rempe and Diet-
rich 2018), and at Dry Creek since 2015 (Hahm et al 
2018, Dralle et al 2018, Lovill et al 2018). The regional 
Mediterranean climate here has a warm summer dry 
season, followed by cool winter wet season (Peel et al 
2007). Elder Creek receives approximately 2000 mm 
of annual precipitation, and Dry Creek approximately 
1800 mm (PRISM Climate Group 2004), almost all 
of which falls as rain, primarily between November 
and April. Although it rains more at Elder Creek, the 
greater canopy cover (see below) results in more inter-
ception, and the amount of throughfall at both sites 
is similar (Hahm et al 2019b). 

Both sites lie within the Franciscan Formation, 
an exhumed subduction complex that is locally com-
prised of three coast-parallel (roughly north-south) 
belts (Blake Jr and Jones 1974). The Elder Creek 
watershed is located in the westernmost Coastal Belt, 
which is comprised mostly of shale (argillite), with 
lesser components of sandstone and conglomerate 
(Jayko et al 1989, Salve et al 2012, Lovill et al 2018). 
The Dry Creek watershed is about 20 km to the south-
east and is underlain by the Central Belt, which con-
sists of mélange with an intensely sheared, primar-
ily argillaceous matrix with coherent blocks of vari-
ous lithologies, dominated by sandstone (Blake Jr and 
Jones 1974, Lovill et al 2018). 

Despite the proximity and similar climates of the 
sites, their contrasting lithologies lead to dramatic dif-
ferences in the depth of weathering and structure of 
the critical zone, and corresponding large differences 
in storage dynamics (Hahm et al 2019b). Hahm et al 
(2019b) demonstrate that lithologically-controlled 
differences in subsurface water storage explain the 
contrasting vegetation communities between the two 
sites: the limited depth of weathering at Dry Creek 
results in low root-zone water storage capacity, and 
correspondingly an oak savanna plant community 
typically associated with much lower rainfall climates, 
while the thick subsurface CZ at Elder Creek sea-
sonally stores enough water to support dense ever-
green forest. Dralle et al (2018) develop a mass-
balance based approach to estimate volumes of sea-
sonally dynamic water storage in the subsurface that 
do not generate pressure gradients that drive stream-
flow generation, and suggest that these water volumes 
may be representative of root-zone water storage. 
Rempe and Dietrich (2018) measure unsaturated, 
root-zone water storage in weathered, fractured rock 

and saprolite at the Elder Creek site, demonstrating 
that this rock moisture supplies the vast majority (up 
to 300 mm) of transpiration water during the pro-
tracted dry season. Collectively, these studies provide 
multiple independent estimates of Smax (100-200 mm 
at Dry Creek, and 300-400 mm at Elder Creek; mostly 
within weathered bedrock below soils) that can be 
used to evaluate the results of the stochastic model-
ing framework. 

2.3.1. Data 
Daily rainfall volumes are measured with tipping 
bucket rain gauges at the ERCZO weather sta-
tions, and are corrected for wind-induced undercatch 
and interception (see Dralle et al 2018 for details). 
Although the Poisson rainfall model assumes that 
rainfall event occurrences are independent in time, 
rainfall events are often temporally autocorrelated 
along the California coast (Müller et al 2014). There-
fore, we define a rainfall event as any consecutive 
period of days with non-zero rainfall, with a total 
event depth equal to the sum of rainfall over the 
consecutive period, and an occurrence date marked 
halfway through the event. Rainfall frequency λ is cal-
culated as the total number of events divided by the 
length of the wet season (Twet , calculated as described 
below), and α is calculated as the average of all event 
depths. ETmax is set equal to average daily potential 
evapotranspiration (PET) over the wet season. We 
compute daily PET (the same at both sites) using Eel 
River CZO weather station data and the Hargreaves 
equation (Hargreaves and Samani 1985): 

ETmax = PET = 0.0023 · (Tmean 

+17.8)(Tmax − Tmin)
0.5 · 0.408 · Rext, (4) 

where Tmax, Tmin, Tmean are the daily max, min, and 
mean air temperatures, and Rext is extraterrestrial 
solar radiation computed from latitude and day of 
year following (Allen et al 1998). We choose this par-
ticular model for PET due to its simplicity and its 
previous successful application at the two study sites 
(Dralle et al 2018). 

We implement a new method to determine the 
length (Twet ) and boundaries of the wet season. First, 
we add the rain on each day of the year across all 
years (2001 to 2017) to collapse the rainfall record 
into a single composite representative year. Begin-
ning in the heart of the dry season (August 1), we 
define the start of the wet season (C2.5) as the day on 
which 2.5 percent of the cumulative rain has fallen 
in the composite representative year, and the end of 
the wet season (C97.5) as the day on which 97.5 per-
cent of the cumulative rain has fallen. The number 
of days between these dates ((C97.5 − C2.5) defines 
Twet . The selected cutoff values are subjective, and 
other definitions and methods for estimating wet sea-
son length yield similar results (e.g. Müller et al 2014, 
Dralle and Thompson 2016). The proposed method, 
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however, is advantageous for three reasons: 1) The 
slope of the cumulative rainfall distribution between 
the thresholds that emerges based on this definition 
is approximately linear (see acknowledgements for 
repository with supporting plots), consistent with the 
model requirement of stationary rainfall statistics, 2) 
This method allows the wet season length to vary on 
a site-by-site basis depending on local climatology, 
and 3) The algorithm is simple and readily applicable 
across large spatial scales. The four model parameters 
(λ, α, Twet , and ETmax) are reported in table 2. 

During the dry season months of June, July, and 
August, negligible rain falls, and therefore variabil-
ity in ET is likely attributable to variations in stor-
age conditions. Estimates of actual evapotranspir-
ation during these months are therefore used to 
compute CV[ETdry] to predict Smax. ETdry estim-
ates are obtained from a biophysical evapotran-
spiration model (Breathing Earth System Simulator, 
BESS) that has been evaluated across California and 
FLUXNET sites globally (Ryu et al 2011, Baldoc-
chi et al 2019, Jiang and Ryu 2016). The ET data-
set used here is available from 2001 to 2017. Sim-
ilar results were obtained using other ET datasets that 
are available at larger scales, such as the NASA/EOS 
MODIS global evapotranspiration product (Mu et al 
2013). All 17 years of the Baldocchi et al (2019) ET 
dataset used in this study are freely available, and 
provided with the code required to replicate results 
at https://github.com/daviddralle/storage_cvs/. 

2.3.2. Simulation exercises 
We perform two simulation exercises; one to illus-
trate model output for a fixed climate and different 
Smax, and a second to infer Smax from CV[ETdry] and 
explore the potential effects of changing rainfall stat-
istics at the two case study sites. 

2.3.2.1. Simulation exercise 1 
In the first simulation exercise we use the model to 
illustrate seasonal patterns of wetting for three dif-
ferent values of Smax, holding wet season length and 
climate statistics constant. Thirty years are simulated 
for each case to illustrate controls on S0 and its inter-
annual variability. This reveals how S0 and its relative 
variability (CV[S0]) depend on Smax and the specific 
occurrence and depth of rainfall events. 

2.3.2.2. Simulation exercise 2 
The second simulation first computes CV[S0] across 
a range of values of Smax for the hydroclimatic para-
meters in table 2. We use the resulting relationship 
between CV[S0] and Smax (CV[S0] = f(Smax)) out-
lined in section 2.2, along with estimates of dry sea-
son evapotranspiration variability, to predict Smax at 
the two study sites. This procedure is equivalent to 
finding the mathematical inverse of the function f. 
We then compare these predictions to independently 

Table 2. Empirical model parameters calculated for the study sites. 
The same parameters are used at both Dry Creek and Elder Creek 
(see Site Descriptions). 

Parameter Value 

Twet [days] 
ETmax, wet season [mm/day] 
λ, wet season [1/day] 
α, wet season [mm] 

224 (Oct 4 to May 15) 
1.88 
0.11 
71.0 

determined field-based estimates of Smax. We addi-
tionally illustrate how changes in rainfall frequency 
(λ) and intensity (α) might alter the relationship 
between Smax and CV[S0]. 

3. Results 

3.1. Simulation exercise 1 
Figure 2 depicts Monte Carlo simulation of wet sea-
son root-zone water storage for different values of 
Smax using the parameters in table 2. Note that in all 
three panels an equivalent absolute moisture loss from 
the root zone results in different relative declines in S 
because Smax varies in each case. 

In figure 2(a), because the root-zone storage capa-
city is small relative to the mean annual rainfall, 
S reaches Smax early in the season (grey line traces 
of individual yearly simulations reach the top of 
the plot). However, for the same reason, wet season 
evapotranspiration between rain events rapidly draws 
down the limited storage, causing S to deviate from 
and return to Smax many times throughout the wet 
season. These deviations, relative to the mean value 
of S0, are large in this first case. The value of S0 in any 
given year is most sensitive to the timing and mag-
nitude of late wet season rainfall events, as demon-
strated by the red and blue traces, where a late pulse 
of rainfall accounts for elevated S0 in the blue trace 
relative to the red trace. 

In contrast, in figure 2(c), Smax is large relat-
ive to the mean annual rainfall. Moreover, S does 
not reach Smax in many simulated years, resulting in 
highly variable S0. However, because evapotranspir-
ation depletes the large storage reservoir more slowly 
than in figure 2(a) (smaller inter-event declines in S), 
S0 variability is controlled by total wet season rain-
fall rather than the pattern and properties of rainfall 
events at the end of the wet season. 

Figure 2(b) reveals an intermediate case, in which 
Smax is small enough relative to rainfall so that Smax is 
reached in almost all years, but large enough that S is 
not significantly reduced (in a relative sense) during 
rainless periods. This leads to a low value for CV[S0], 
and the annual value of S0 being relatively insensitive 
to both the total amount of wet season rainfall and the 
timing and magnitude of rain events toward the end 
of the wet season. 
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Figure 2. Root-zone water storage dynamics for increasing Smax (illustrated with the horizontal dashed line; 100 mm (a), 500 mm 
(b), and 1000 mm (c)). Note absolute differences in vertical scales. Thirty Monte Carlo realizations of model storage output are 
plotted in light gray traces for each case. The seasonal progression of the ensemble mean is denoted with a bold black line, with a 
start-of-dry season value (the mean of S0) shown with a black point. Light blue envelopes represent plus or minus one standard 
deviation about the mean. Red and blue traces in (a) demonstrate that for small Smax, high S0 variability is largely explained by 
rainfall patterns toward the end of the wet season, not total annual rainfall. 

3.2. Simulation exercise 2 
In the second exercise, we run Monte Carlo simula-
tions of the model with ERCZO hydroclimatic para-
meters (table 2) to obtain theoretical estimates of 
CV[S0] (that is, the CV of the end of wet season 
root-zone storage in the simulations in figure 2) for 
values of Smax ranging from 0 to 1000 mm (figure 
3(a)). Note that the CV values differ slightly between 
figures 2 and 3(a) for values of Smax equal to 100, 
500, and 1000 mm. This is because the number of 
simulated years in figure 2 is limited to 30 for illus-
trative purposes, and so the estimated value of CV 
has not converged to the theoretical, limiting value 
presented in figure 3(a). As described in Methods (see 
section 2.2), figure 3(a) also graphically depicts the 
inversion procedure used to estimate Smax, with pre-
dicted values of 184 mm at Dry Creek, and 303 mm 

at Elder Creek. Inferred volumes of root-zone water 
storage capacity compare well with direct, independ-
ent estimates from the two sites. Using downhole 
neutron probes and soil time domain reflectometry, 
Rempe and Dietrich (2018) estimate that the sea-
sonal change in vadose zone water content (which we 
interpret as Smax) at Elder Creek is between 300 and 
400 mm. Dralle et al (2018) used wells to estimate 
Smax at Dry Creek between 120 and 200 mm. 

Whereas figure 3(a) plots CV[S0] for single, con-
stant values of α and λ representative of the ERCZO, 
figure 3(b) illustrates how the relationship between 
Smax and CV[S0] would change for shifts in the fre-
quency and magnitude of rainfall events. Increases or 
decreases in α and λ have different effects on this rela-
tionship. A 50% decrease in storm frequency (λ−50%) 
or intensity (α−50%) leads to a universal increase in 
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CV[S0]. The magnitude of increase is much greater 
for larger values of Smax, and the increase is glob-
ally more sensitive to decreases in λ than decreases 
in α. Similarly, increases in storm frequency (λ+50%) 
lead to a larger drop in CV[S0] compared to increases 
in intensity (α+50%). As with α−50% and λ−50%, 
increases in frequency or magnitude have a greater 
effect for larger values of Smax. 

3.3. Resolving the non-uniqueness in the inversion 
procedure 
Values of Smax computed through the inversion pro-
cedure are not unique in figure 3 because the theoret-
ical curve CV[S0] vs. Smax is not monotonic. Figure 2 
reveals graphically why this non-monotonic behavior 
arises: CV[S0] is minimized at an intermediate value 
of Smax. The minimum is also clearly identified in fig-
ure 3 near Smax ≈ 600 mm. Far left of this minimum, 
Smax is small and so CV[S0] increases because late wet 
season ET can rapidly deplete S, which may or may 
not be replenished by rainfall in the final weeks of the 
wet season. Far right of the minimum, CV[S0] begins 
to increase because larger Smax increases sensitivity of 
S0 to variations in total wet season precipitation. This 
suggests that if ETdry is insensitive to total wet season 
rainfall, the inversion procedure should map to the 
left of the minimum on the modeled curve in figure 
3. To verify the figure 3 inversions, we regress ETdry 
at both sites onto wet season precipitation (figure 
4), finding statistically insignificant (p values greater 
than 0.05) slopes of 0.002 at Dry Creek and -0.016 
at Elder Creek (that is, 100 mm of additional rain-
fall would result in 0.2 mm and -1.6 mm change in 
dry season evapotranspiration at Dry Creek and Elder 
Creek, respectively), consistent with the findings of 
Hahm et al (2019a). We therefore conclude the two 
sites likely fall to the left of the minimum in figure 3, 
mapping to smaller values of Smax that are in agree-
ment with independent field estimates. 

4. Discussion 

A reduced complexity stochastic model for root-zone 
water storage dynamics in Mediterranean climates 
demonstrates that plant response to climatic variab-
ility can be used to estimate root-zone water storage 
capacity in the critical zone. At two rain-dominated 
sites in Northern California with strongly contrasting 
weathering profiles, model predictions closely match 
direct measurements of storage capacity in shallow 
soils and underlying weathered bedrock. 

4.1. Limitations of the modeling approach 
A novel contribution of this paper is the devel-
opment and validation of a relatively simple and 
widely applicable method in Mediterranean climates 
to determine root-zone water storage capacity, a key 
ecohydrological parameter. However, the method is 
only strictly valid in rain-dominated Mediterranean 

regions, and where fixed properties of the CZ (such 
as porosity profiles), rather than potentially plastic 
properties (such as highly variable root zone extents), 
determine Smax. Future work will focus on develop-
ment of more general methods that can be applied to 
more diverse climates. 

A second limitation of the method is the reli-
ance on remotely sensed measures of vegetation water 
use. We used a biophysical evapotransipiration model 
(Breathing Earth System Simulator) for evapotran-
spiration, presented for California in Baldocchi et al 
(2019), which importantly does not include any spe-
cific representation of the subsurface. Other evapo-
transpiration models which explicitly incorporate soil 
water balance modeling for ET estimation should not 
be used for the method presented here (Martens et al 
2017), because they make assumptions regarding the 
size of Smax, which this approach estimates. By using 
ET data (Baldocchi et al 2019) that relies primarily 
on remotely sensed spectral signatures, this method 
may struggle in places where plant functional group 
phenology undergoes minimal change across a range 
of transpiration rates. This should be explored fur-
ther, but we note that at the sites we studied, as is 
the case in much of California, there is large sea-
sonal phenological variation (Hahm et al 2019a). One 
other potentially confounding factor in our analysis 
is the extent to which year-to-year variation in sum-
mer energy supply might impact dry season plant 
water use. Because plants across California are typ-
ically water-limited rather than energy-limited in the 
summer dry season (i.e. PET greatly exceeds ET), this 
is unlikely to matter, as Hahm et al (2019a) found. 

Finally, the model representation of subsurface 
water runoff and storage dynamics is highly simpli-
fied. All rainfall is assumed to infiltrate, such that 
no Horton overland flow occurs, limiting the scope 
of the model’s applicability. We are also uncertain 
as to whether deeper root profiles, such as those 
observed in the Elder Creek watershed (from previ-
ous drilling and neutron probe campaigns (Salve et al 
2012, Rempe and Dietrich 2018, Hahm et al 2019b)), 
can be usefully modeled within a framework that 
treats the entire vadose zone as a homogeneous reser-
voir. Within riparian areas or low-lying areas, or in 
areas with shallow root depths or thin subsurface crit-
ical zones, water table dynamics in the near surface 
may play an important role in setting Smax. Although 
plants do not explicitly use water from the satur-
ated zone in the model, the Dry Creek catchment 
provides some evidence that where field capacity does 
not greatly differ from saturation (Dralle et al 2018), 
the model still may be useful, and likely still improves 
estimates of root-zone water storage capacity relative 
to existing soil datasets. 

4.2. Ecosystem sensitivity to climate 
Understanding drivers of ecosystem sensitivity 
to climate is important for understanding the 
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Figure 3. A graphical demonstration of the procedure used to estimate Smax at the study locations. In (a) Smax is inferred from dry 
season ET variability (CV[ETdry]), based on the relationship between Smax and CV[S0]. The inference is made possible by 
equating the more readily measurable CV[ETdry] with CV[S0]. Measured values of CV[ETdry] ( = CV[S0]) are plotted for Elder 
(blue) and Dry Creek (red) on the y-axis. The dashed lines with arrows graphically depict the inversion procedure, whereby Smax 
is estimated via intersection with the x-axis. Inferred values of Smax agree well with independently measured Smax for these sites. 
(b) Illustration of changes in the relationship CV[S0] and Smax for 50% decreases or increases in storm frequency (λ−50% and 
λ+50%, respectively) or storm intensity (α−50% and α+50%, respectively). 

Figure 4. Dry season evapotranspiration plotted against wet season precipitation on equal scale axes for the Elder Creek and Dry 
Creek catchments. 

impacts of climate change on global hydrologic 
and biogeochemical cycles. Here, we focused on 
how Smax might control dry season water availab-
ility and hence productivity. We demonstrate that 
dependence of water use on root-zone water stor-
age capacity is more nuanced than is traditionally 
assumed. Too large or too small Smax − relative 
to annual rainfall − tends to increase the sensit-
ivity of ETdry to rainfall variability, with sensitiv-
ity minimized at intermediate values of Smax. This 
Goldilocks-like result differs from other modeled 
findings, which suggest increasing Smax monoton-
ically increases plant water stress due to chronic-
ally low water content in the vadose zone (Porpor-
ato et al 2004, Zanardo et al 2012). These studies, 
however, did not consider the transient effects of 
seasonality. 

Globally, rainfall patterns in many Mediterranean 
climate zones are predicted to change dramatically 
(Swain et al 2018, Valdes-Abellan et al 2017, Viola 
et al 2016, Feng et al 2019), though in distinct ways in 
different regions. In California for example, although 
mean annual rainfall is not predicted to change sig-
nificantly, precipitation variability and event mag-
nitudes are expected to increase (Swain et al 2018). 
In contrast, mean annual rainfall totals are predicted 
to decrease significantly throughout the European 
Mediterranean climate region (Gao and Giorgi 2008). 
The model presented here suggests that root-zone 
storage capacity plays an important role in determ-
ining how vegetation might respond to these varied 
trends. For example, the thin grey line traces in figure 
2(a) show that at locations with low Smax relative to 
annual rainfall totals, late wet season rainfall patterns 
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seem to control annual variations in ETdry, and thus 
presumably productivity. In such watersheds, shifts 
in intra-seasonal rainfall patterns, such as increased 
event magnitudes, may significantly alter dry season 
water availability. In contrast, the model predicts that 
relatively large values of Smax increase vegetation sens-
itivity to total rather than intra-seasonal dynamics of 
precipitation (figure 2(c)). Locations with intermedi-
ately sized Smax (relative to typical values of annual 
rainfall) may be least sensitive to increases in rainfall 
volatility (figure 2(b)). Figure 3(b) further illustrates 
these nuances, demonstrating that decreases in total 
rainfall (either through decreases in λ or α) may uni-
versally increase variability in productivity, likely due 
to the more frequent occurrence of years where S is 
not constrained by Smax; that is, the effective size of 
Smax relative to typical annual rainfall totals increases. 
This is supported by the observation that CV[S0] is 
more sensitive to rainfall decreases for larger values 
of root-zone storage capacity. Generally, vegetation in 
the present modeling framework is more sensitive to 
changes in rainfall frequency (λ) than to changes in 
the intensity of events (α), especially in the case where 
rainfall decreases (λ−50% or α−50%). This finding sug-
gests that resolving whether projected decreases in 
rainfall are due to changes in frequency or intens-
ity may be particularly important for predicting plant 
response to climate in drying regions. 

5. Conclusion 

We developed an ecohydrological model for Mediter-
ranean climates that elucidates how root-zone water 
storage capacity and intra-annual rainfall patterns 
determine the sensitivity of plant water use to rainfall 
variability. By assuming that dry season plant water 
use, measured using a biophysical evapotranspira-
tion model forced with remote sensing data (Ryu et al 
2011, Baldocchi et al 2019), scales with the amount 
of root-zone water storage at the end of the wet 
season, we predict root-zone water storage capacity, 
an important yet presently challenging parameter to 
map. We validated the predictions with independ-
ent field-based estimates of Smax at two sites in the 
Northern California Coast Ranges. Our work demon-
strates the potential for using remotely sensed eco-
hydrologic datasets paired with simple, process-based 
ecohydrological models to infer properties about the 
critical zone, including deeper weathered bedrock 
below shallow soils. Future efforts will be most fruit-
ful if they can be validated with hillslope-scale sub-
surface observations, motivating greater observatory-
style exploration of the critical zone across lithologic, 
climatic, and tectonic gradients. 
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