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Learning to Overcome Noise in Weak Caption
Supervision for Object Detection
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Abstract—We propose the first mechanism to train object detection models from weak supervision in the form of captions at the image
level. Language-based supervision for detection is appealing and inexpensive: many blogs with images and descriptive text written by
human users exist. However, there is significant noise in this supervision: captions do not mention all objects that are shown, and may
mention extraneous concepts. We first propose a technique to determine which image-caption pairs provide suitable signal for
supervision. We further propose several complementary mechanisms to extract image-level pseudo labels for training from the caption.
Finally, we train an iterative weakly-supervised object detection model from these image-level pseudo labels. We use captions from four
datasets (COCO, Flickr30K, MIRFlickr1M, and Conceptual Captions) whose level of noise varies. We evaluate our approach on two
object detection datasets. Weighting the labels extracted from different captions provides a boost over treating all captions equally.
Further, our primary proposed technique for inferring pseudo labels for training at the image level, outperforms alternative techniques
under a wide variety of settings. Both techniques generalize to datasets beyond the one they were trained on.

Index Terms—Language-supervised object detection, weakly-supervised object detection, vision and language

1 INTRODUCTION

EARNING to localize and classify objects in images is a fun-

damental problem in computer vision. It has a wide
range of applications, including robotics, autonomous
vehicles, intelligent video surveillance, and augmented real-
ity. Modern detectors are highly accurate [1], can run in real-
time [2] and on mobile devices [3]. Despite these achieve-
ments, most modern detectors suffer from an important limi-
tation: they are trained with expensive supervision in the
form of large quantities of bounding boxes meticulously
drawn by a large pool of human annotators. Due to the well-
known domain shift problem [4], [5] and imperfect domain
adaptation techniques, this means that when detection is to
be performed in a novel domain, the expensive annotation
procedure needs to be repeated.

Weakly supervised object detection (WSOD) techniques
aim to alleviate the burden of collecting expensive box anno-
tations. The classic WSOD formulation [6], [7], [8] treats an
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image as a bag of proposals, and learns to assign instance-
level semantics to these proposals. WSOD has shown great
potential for object detection, and recent methods have
reached 52% mAP [9] on Pascal VOC 2012.

However, we highlight two limitations of WSOD meth-
ods. First, they depend on large-scale image-level object cat-
egory labels; these require human effort that is provided in
an unnatural, crowdsourced environment. Second, they
make the assumption that the image-level label should be
precise, i.e., at least one proposal instance in the image needs
to be associated with the label. This assumption does not
hold for real-world problems and real-world supervision.

We propose mechanisms to leverage a new form of
supervision for training weakly-supervised object detectors,
namely supervision in the form of natural language descrip-
tions that web users provide when uploading their photos
to social media sites such as Instagram, or their videos to
video sharing platforms such as YouTube. There are tens of
millions of photos uploaded to Instagram every day, and a
majority have titles, tags, or descriptions. Abundant videos
with subtitles or descriptive narratives are similarly avail-
able on YouTube. These annotations are “free” in that no
user was paid to provide them; they arise out of innate needs
of users to make their content available to others.'

However, existing WSOD methods cannot use such
supervision. First, natural language descriptions are unstruc-
tured; they need to be parsed and words relevant for object
recognition to be extracted, while non-object words are
removed. Second, these descriptions are both imprecise and
non-exhaustive—they might mention content that is not in
the image (e.g., what event the user was attending or who

1. Of course, this data may be subject to license agreements limiting
uses, and not all of it can truly be used for “free.”
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Fig. 1. We propose two mechanisms to infer pseudo training labels from
captions. First (top), we determine the potential for strong object supervi-
sion signal from image-caption pairs (showing one with strong and one
with weak signal). When supervision is strong, a simple training label
extraction technique can be used. Second (bottom), we learn a mapping
function (a text classifier) from captions to labels, which compensates
for failures of exact-matching label extraction. Finally (right), we train a
weakly-supervised object detection model with these pseudo image
labels.

they met after the photo was taken), and omit content that is
in the image but is not interesting. In the bottom of Fig. 1,
many large objects—e.g., dining table and bowls—were not
mentioned in the human-provided description. Thus,
directly feeding web data to the state-of-the-art WSOD sys-
tem is infeasible, which under-utilizes the rich supervision
that language on the web can provide.

To address this issue, we propose a three-part framework to
build an object detector from images paired with accompa-
nying captions (sentences). Our model bridges human-written
free-form texts and visual objects, and generates accurate
bounding boxes over objects in an image. Our key contribu-
tions are the first two steps, with a smaller contribution in the
third step. First, we estimate which image-caption pairs can serve as
appropriate supervision for extracting pseudo image-level training
labels for training an object detector. In particular, we model
the difference between images which are visual neighbors and
those which appear with similar captions (semantic neighbors).
We prioritize extracting signal from image-caption pairs where
visual and semantic neighborhoods overlap, which indicates
that captions closely follow the image. This enables the use of
simple techniques for extracting training labels (Fig. 1 top).

Second, we devise complementary advanced techniques for
extracting pseudo image-level training labels from the caption. One
of our proposed strategies (Fig. 1 bottom) is to train a textual
classifier to map captions to discrete object labels. Unlike the
previous contribution, this classifier requires a small set of
labels, and enables us to bridge the gap between what
humans mention in a caption, and what truly is in an image.
Alternatives include learning multimodal spaces where
images and captions are projected, and using similarity in
these spaces to determine which captions are similar to object
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words in a predefined vocabulary. This contribution and the
previous have different applications: The former is fitting
when no labels are available, but if they are, the latter achieves
slightly stronger performance. Thus, we primarily focus on
evaluating these contributions separately, as shown in Fig. 1.
Both contributions generalize beyond dataset boundaries.

Third, we use the pseudo ground truth labels at the image
level (extracted in the previous step), to train a weakly super-
vised object detection method. The method we propose extracts
region proposals off-the-shelf, then for each proposal and
each class, learns both a class score and a detection score.
These scores are then refined using an iterative approach,
and combined to produce final detection results.

In our work, we first need to infer image-level pseudo
labels for training from the available captions. Only then
can we proceed to train a weakly-supervised detection
(WSOD) algorithm, using those (potentially noisy) image-
level pseudo labels. Thus, to distinguish our work from
WSOD, we refer to our methods as performing language-
supervised object detection (LSOD).

Our paper makes four main contributions. First, we pro-
pose a new task of learning from noisy caption annotations,
and set up a new benchmark. Rather than treating object cate-
gories as IDs only, we also leverage their semantics and syno-
nyms of those object names. Second, we show the impact of
multiple possible ways to map captions to image-level labels,
ranging from exactly matching the captions to object category
words, using learned image-text similarity scores, retrieving
hand-annotated or predicted synonyms to the object catego-
ries from the captions, or training a classifier. Our proposed
approach outperforms the baseline by up to 78% on noisy
datasets. Third, we demonstrate the success of explicitly
modeling which image-caption pairs provide strong signal
for supervision, using a new metric that captures how closely
the text follows the image. This alignment metric allows us to
improve performance by up to 37%. Fourth, we show cross-
domain results in datasets: we not only demonstrate competi-
tive WSOD performance by training/testing on COCO cap-
tions, but also validate the benefit of our COCO-trained text
classifier and alignment metric by applying it on Flickr30K,
and the noisy MIRFlickrlM and Conceptual Captions. We
are not aware of other work that directly extracts labels for
detection training from the latter two datasets (and only a
few works pretrain for detection on Conceptual Captions).
We leverage the resulting models and evaluate them on the
PASCAL and COCO object detection datasets.

The remainder of the paper is organized as follows. We
overview related work in Section 2. In Section 3, we discuss
how to filter or weight image-caption pairs as potential sig-
nals for supervision (Section 3.1), different ways to reduce the
gap between free-form captions and object categories (Sec-
tion 3.2), and the backbone of our WSOD model, which com-
bines prior work [8], [10] in a new way (Section 3.3). In
Section 4, we compare to upper and lower bounds, in conjunc-
tion with state-of-the-art methods. We conclude in Section 5.

2 RELATED WORK

We formulate a new variant of weakly-supervised object
detection, which we term language-supervised, where the
supervision is even more weak but less costly than in prior
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work. We leverage vision-language interactions, so we also
discuss work that finds alignment between image regions
and text and grounds language in images. We also discuss
recent work in learning visual representations from lan-
guage. Finally, we describe work that investigates what
kind of content humans describe in captions or models how
visually concrete particular words are. We are not aware of
other work that explicitly handles noise for language-supervised
object detection, as we propose.

2.1 Weakly-Supervised Object Detection
Weakly-supervised object detection (WSOD) involves local-
izing and categorizing objects without instance-level
(bounding box) supervision. Key approaches include multi-
ple-instance learning (MIL) where one or more regions are
associated with the label of interest [8], [11], and self-train-
ing, where high-scoring proposals are treated as pseudo
ground-truth [8], [12], [13]. In the multiple-instance learning
(MIL) setting, proposals of an image are treated as a bag of
candidate instances. If the image is labeled as containing an
object, at least one of the proposals will be responsible to
provide the prediction of that object. Oquab et al. [14] and
Zhou et al. [15] propose a Global Average (Max) Pooling
layer to learn class activation maps. Bilen ef al. [6] propose
Weakly Supervised Deep Detection Networks (WSDDN)
containing classification and detection data streams, where
the detection stream weighs the results of the classification
predictions. Tang et al. [8], [16] jointly train multiple refining
models together with WSDDN, and show the final model
benefits from the online iterative refinement. Diba et al. [17]
and Wei et al. [7] apply a segmentation map; Wei et al. [7]
further incorporate saliency. Wan ef al. [18] add a min-
entropy loss to reduce the randomness of the detection
results. Zeng et al. [12] jointly consider bottom-up and top-
down objectness from low-level measurement and CNN
confidences. Ren ef al. [9] aim at instance-aware self-training
where they design DropBlock to zero out the most discrimi-
native parts to avoid the part domination issue in WSOD.
Earlier (pre-deep-learning) approaches include Divvala
et al. [19] which rely on web search for an initial set of con-
cepts for which to learn detection models, prune them based
on model performance, and combine synonyms.

Our work is similar to these since we also represent the
proposals using a MIL-weighted representation. However,
prior WSOD methods require structure in the form of class
labels, and these labels require dedicated human effort. Our
contribution is enabling weakly-supervised detection with
less costly language supervision which could work without
explicit human annotations. In this project, we use both
crowdsourced captions (from the COCO and Flickr30K
datasets) and noisier ones obtained as a side product of
users uploading content on the web (MIRFlickr1M, Concep-
tual Captions). We explicitly handle the noise in the lan-
guage supervision and the misalignment between nouns
(objects) that are shown but not mentioned, or mentioned
but not shown. This distinguishes our work from both
WSOD and self-supervised methods.

2.2 \Vision-Language Tasks
Learning visual-semantic embeddings (VSE) has received
tremendous interest due to its broad applications such as
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retrieval [20], [21], captioning [22], [23], and visual question
answering [24]. VSE approaches learn a joint visual-text
space, e.g., via a triplet or contrastive loss, where the dis-
tance between embedded samples reflects their semantic
relationship, and cross-modal attention [25], [26]. As a side
experiment, we conducted a transformer-based pretraining
involving both masked language modeling and image-text
matching objectives to achieve better visual features. Still,
progress in transformers is orthogonal to our primary aim
as it does not consider how strong of a signal a caption pro-
vides for its co-occurring image.

There is also work to associate phrases in the caption to
visually depicted objects [27] but none enable training of an
independent object detector with accurate localization and
classification, as we propose. In recent work, [28] predict
masked words without localization, but use surrounding
text at test time, unlike our models.

In Thomas and Kovashka [29], we show that image-text
matching fails when the relation between an image and its
corresponding (co-occurring) text is complementary rather
than redundant. What this means for training object detec-
tion models from language supervision, is that the category
overlap between image and co-occurring text may be low.
To cope with this, our method exploits the structure of each
unimodal space (image and text), and compares those struc-
tures, to compute how relevant each caption is for each
image, and thus, whether the image-caption pair should be
used for training object detectors.

2.3 Learning Visual Representations From Text
Recent work [30], [31], [32], [33], [34] aims to learn visual rep-
resentations from their corresponding textual counterparts.
Gomez et al. [30] predict the text LDA topic distribution from
the image feature. Miech et al. [31] assume an MIL nature in
videos, and use Noise Contrastive Estimation (NCE) to opti-
mize the alignment between video clips and associated narra-
tions. Desai and Johnson [33] harvest visual representations
from training bidirectional captioning models and note the
importance of predicting all caption tokens to learn a good
visual representation. Radford et al. [34] optimize a classical
co-attention model but learn the feature representation on a
large dataset of 400 M image-text pairs. However, these meth-
ods do not train standalone object detectors. Bertasius et al.
[32] apply a transformer-based language model to encode the
text and match the visual feature extracted by an object detec-
tion model. They only optimize the representation to classify
objects, while we also care about the detection scores and
learn them in the unified framework since the visual pro-
posals we use (Selective Search) are not as accurate as detec-
tion results. Most related to our work is Chen et al. [35]. The
algorithm in this work discovers and localizes new objects
from documentary videos by associating subtitles to video
tracklets. They extract keywords from the subtitles using
TFIDF. However, video provides benefits we cannot leverage,
e.g., numerous frames containing nearly identical object
instances. Importantly, we show that only using words that
actually appear in the caption (as done in [35] with TFIDF)
results in suboptimal performance compared to our method.
Further, many components of Chen et al.’s method, e.g., the
restriction to animal classes and the reliance on tracking, limit
generalizability to other vocabularies and to images.
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In our preliminary work, Ye et al. [36], we show we can
successfully leverage unstructured supervision (highly
descriptive captions well-aligned with the visual modality)
but we do not explore any filtering or weighting of image-
caption pairs. This weighting allows us to bypass the need
for training a text-only classifier (which required a small
amount of class labels), replacing it with techniques that
require only image-caption pairs. In this work, we also
include results on noisier datasets (MIRFlickrIM and Con-
ceptual Captions) and without ImageNet pretraining.

2.4 \Visual Reporting Bias and Concreteness

Our results show there is a gap between what humans name
in captions, and what categorical annotations they provide.
[37] study a similar phenomenon they refer to as “human
reporting bias”. They model the presence of an object as a
latent variable, but we do the opposite—we model “what’s
in the image” by observing “what’s worth saying”. Further,
we use the resultant model as precise supervision to guide
detection model training.

Our work also measures how abstract is the connection
between an image and a co-occurring text. Prior work pre-
dicts whether image and text that co-occur have a direct or
complementary relationship [38], [39], e.g., whether the rela-
tion between image and its caption is “visible”, “story”,
“subjective” or “meta” [39]. Unlike our method which also
implicitly measures abstractness, these methods require
additional annotations, aim for a discrete rather than contin-
uous abstractness score, and are not applied in an object
detection setting. Also related is work that measures how
tightly clustered the visual companions of a word are [40]
but this approach only computes scores for individual
words, not for the relationships within image-caption pairs.
In an auxiliary task, we compute the potential of [39], [40] to
predict which captions may serve as clean supervision for
weakly-supervised object detection, and we show that our
method is equally or more promising.

3 APPROACH

We train object detectors from supervision only consisting
of noisy captions and corresponding images. In realistic sce-
narios, captions and images may contain complementary
information. We hypothesize that even for crowdsourced,
descriptive captions which closely follow the image (e.g.,
COCO), not all caption-image pairs provide equally strong
supervision, as some captions will overlap with the image
to a stronger degree. Fig. 1 (top) shows two images, the first
with high image-text alignment, where two objects
(highlighted) are both shown and mentioned. The second
image contains concepts that are visually not shown or are
visually ambiguous (e.g., display, fabrics), hence extracting
concrete nouns (objects) is more challenging. Thus, the first
step in our framework (Section 3.1) is to determine which
image-caption pairs to use as supervision: we propose two
alternative approaches, one which uses a hard cutoff over
the image-text alignment score, and another which uses all
image-caption pairs but gives them different weight.

After selecting image-caption pairs for training, we next
extract discrete labels at the image level (Section 3.2). We do
so through a variety of techniques, the simplest of which is
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looking for exact string match between nouns in the caption
and object words, and the most complex being training a
classifier which takes in a caption (without a paired image)
and maps this caption to a discrete set of labels (which may
or may not be mentioned in the caption). Finally, given
these pseudo ground-truth image-level labels, we train a
variant of a prior weakly-supervised object detection tech-
nique: it first computes initial scores for each region and
each object class, then refines these iteratively (Section 3.3).
3.1 Filtering Captions by Estimated Supervision
Purity

We propose to filter image-caption pairs that are unlikely to be
useful for training. The key idea is to estimate to what extent
an image caption and the image provide overlapping (redun-
dant) or complementary information. While complementarity
is useful in general, for detection we require redundancy, i.e.,
the same objects being both shown and mentioned in the cap-
tion. We first describe an example of how to learn a joint
image-text embedding; we do not require any particular tech-
nique for this part. We then compute homogeneity, i.e., how
visually similar semantic neighbors of an image (images
whose captions are similar in a unimodal word embedding
space) are in the learned joint, multimodal embedding space.
This homogeneity allows us to estimate the overlap of the
image-caption pair. The computation of homogeneity follows
our prior work [41], but was never used for object detection
before. The process is overviewed in Fig. 2.

3.1.1 Preliminaries

Let D= {I,T} represent a dataset of n image-text pairs,
where I = {z1,29,...,2,} and T = {y1,y2,...,yn} are the
set of images and text (captions), respectively, and y; is text
co-occurring with image z; (the two are semantically
related). To reason about the relationships of images and
text, we seek a joint manifold M. For images, a convolu-
tional network f : I — M is used to project images into the
joint space, while a recurrent network ¢ : T — M projects
text. To obtain M, we can use any cross-modal retrieval
method. We describe two possibilities, triplet loss [42] and
polysemous embedding model (PVSE) [21].
We first consider a simple triplet loss to derive M

Loip = [llai = w1l = Iles = 5113+ m) M

y HOMOGENEITY

©

B v v

2

=

©

£

(']

(%]

Joint space

Fig. 2. Image-caption weighting: Green arrows connect neighbors in the
original semantic space. Blue links show co-occurring images and text.
Images whose texts are close in semantic space, which are close in the
joint space (short red links), have high homogeneity scores [y’s in Eq. (9)].
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where z;,y; appear together, while x;,y; do not, + denotes
hinge loss, and m is a margin. Alternatively, PVSE uses a
multiple-instance variant of triplet loss (X meanings hence
K embeddings per sample), along with self-attention for
visual and text features (not shown). The similarity of image
x; and text y; is

xik'l yikQ
s(xi,yi) = max : T ‘ 2)
(ky ko) {1, K} x{1,...K} quvl Il Hy,k? Il

3.1.2 Homogeneity

To capture how well-aligned an image and its correspond-
ing caption are, we measure visual homogeneity (similarity)
of the semantic concepts that an image illustrates. In other
words, are images corresponding to semantically similar
texts, visually similar? To measure this homogeneity, we first
discover each image-text pair’s semantic neighbors in text space
Q(T). Following [29], we compute neighbors in text space”
because the text domain provides the cleanest semantic repre-
sentation of the image-text pair. Let V(Q(y;)) = {(z} , ygn)}ﬁy:l
represent the semantic nearest neighbor function over Q(T),
where {(z ,y; ) denotes the set of the N neighbors of
(i, y;) and (2, y;) € W(Q(y:)).

We next measure the homogeneity of the semantic neigh-
bors in both the image and text domains, using the f: 1 —
Mand g : T — M projections of image and text into the joint
space. Because our formulation is equivalent for both
image/text neighbors, we let s; represent a sample from
either domain but require samples s; and s; come from the
same domain. Let s} = [s] , s} ,...,s; |" denote the N x H
matrix of embeddings of the neighbors of s; found via ¥,
and U = s/s]' compute the pairwise similarities between all
semantic neighbors through cross-product. We compute the
homogeneity score a?OM for s; as follows:

o _ 1 N N U .
o; N?ZZ (r,e)»

r=1 c=1

where r, c index over the rows and columns of U = s/s.. For
the different image (s; = z;) and text (s; = y;) domains, we
compute visual homogeneity score afjP™ and text homogeneity
score (7™, respectively. Both of these scores capture how

aligned an image and its co-occurring text are; thus, higher o
scores indicate image-text captions from which supervision signal
can more reliably be extracted. We also consider the difference
of ¢{fP™ and aj9" as an indicator for supervision purity.

Note that the cost for computing homogeneity score is
neglectable in that we offline preprocessed all examples in the
training set by caching sample embeddings into a memory
bank. We only find semantic neighbors once using a pre-
trained Doc2Vec. Then, computing oHOM weights is efficient
as it only requires multiplication.

3.1.8 Scoring Captions for Homogeneity

For object detection, we prefer to train from examples in
which objects are both shown in the image and mentioned

2. Specifically, Doc2Vec [43] due to its appropriateness for longer
texts, although BERT [44] could also be used.
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in the text. Section 3.1.2 provides a way to measure the
redundancy between the image and text modalities. Here,

we describe how to use this measure.
Filtering. We hypothesize that selecting training data and
HOM 414

filtering out noisy image-caption pairs using o
ag,?M will improve the detection model training. We pro-
vide an experiment in Section 4.4, which selects the 30,000
image-caption pairs from COCO that have the highest
homogeneity scores. Our method provides significantly bet-
ter detection results than random selection (Table 5).

Weighting. Hard-cutoff filtering requires finding the right
cutoff value (e.g., top-30k), and it means discarding some
potentially useful data. Compared to the filtering strategy,
weighting does not require a hard cutoff and is more data-
efficient. It applies different weights to image-caption pairs.
For image-caption pairs that are more overlapped (i.e., high
homogeneity), weighting assigns large weight to the loss
term in that these examples will likely be useful for training
detection models. For image-caption pairs that are more
complementary, weighting assigns small weights because
the information may not well-aligned. In Eq. (9), we use
M as the heuristic weighting factor y. We provide an
ablation in Section 4.4, and Tables 6, 7 and 8 show the
impact of using the weighting factor e[

The strategy described in this section allows us to select
captions with useful supervision, thus can be coupled with
simple mechanisms to extract labels at the image level from
captions, e.g., ExactMarcH in the next subsection. We do
not expect it to improve results when a mapping function
from captions to training labels is learned with supervision.

3.2 Pseudo Training Label Inference From Text
After getting the image-caption pairs estimated to be well-
aligned, we now proceed to extract pseudo object labels
from the selected noisy captions, to benefit weakly-super-
vised object detection. The foundation of WSOD builds on
an important assumption from MIL (Eq. (7)), which sug-
gests that precise image-level labels should be provided. The
straightforward solution is to extract object labels from cap-
tions via lexical matching. However, it has limitations. Con-
sider an image with three sentence descriptions:

“a person is riding a bicycle on the side of a bridge.”

“a man is crossing the street with his bike.”

“a bicyclist peddling down a busy city street.”

Only the first sentence exactly matches the categories
“person” and “bicycle”. Even if we allow synonyms of
“man” and “person” or “bicycle” and “bike”, only the first
two precisely describe both objects, while the last one still
misses the instance of “bicycle” unintentionally. When
using these examples to train object detectors, the first two
instances may bring positive effect, but the last one will be
wastefully discarded as false negative i.e., not relevant to
the categories “person” or “bicycle”. As further examples,
in Fig. 1 (bottom-right), none of the captions (one shown)
mention the “bowls” or “spoons” that are present, and only
some mention “oven”. Finally, in Fig. 6, the caption men-
tions a “suit” worn by a speaker at a conference, but not the
“tie”, even though one is present.

This observation inspires us to amplify the supervision
signal that captions provide, and squeeze more information
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Fig. 3. Harvesting detection models from free-form text. We propose to use a pseudo training label inference module (bottom) to amplify signals in
free-form texts to supervise the learning of the multiple instance detection network (top). The detection model is refined by an online refinement mod-
ule (right) to produce the final detection results. Detection (og’j € RY) and classification (o;f]'? € R°) scores and image predictions p; € R refer to pre-

dictions for all classes.

out of them. Fig. 3 (bottom) shows the approach we use to
amplify the signal. This text-only model takes free-form
texts as input, embeds individual words to a 300D space
using GloVe [45], and projects the embedded features to a
400D latent space. We then use max-pooling to aggregate
the word-level representations. Then, we use this interme-
diate representation to predict the implied instances (e.g.,
80 classes as defined in COCO, or any other categories);
this prediction answers “what’s in the image” and serves
as pseudo image-level training labels, to be used in
Section 3.3.

There exists a subtle balance when using pseudo labels to
train object detectors. Admittedly, our strategy increases the
recall rates thus more data could be utilized. However, with
the increased recall, precision will drop inevitably thus the
fundamental assumption in MIL is threatened. Specifically,
the precise label assumption makes the model very sensitive
to false positive cases: when inappropriate labels are given
where none of the proposals have a good response, the
model gets confused, resulting in non-optimal detections.
Thus, we adopt a two-step procedure: first we look for an
exact match of object labels from captions, following the
intuition that explicitly mentioned objects should be significant
and obvious enough in the image; second, when no object
can be matched, we use our label inference model to predict
labels as unspoken intended objects to guide the object detec-
tion. We show our method TextCLsF outperforms several
strong alternatives that also infer pseudo labels.

Alternative Strategies. We also experiment with alternative
multiple pseudo-label generation techniques when lexical
matching (ExactTMartch) fails to find a match. First, we con-
sider a manually constructed, hence expensive COCO synonym
vocabulary list (ExTENDVocaB) which maps 413 words to 80
categories [46]. Another variant, GLOVE, takes advantage of
GloVe word embeddings [47], assigning pseudo-labels for a
sentence by looking for the category that has the smallest
embedding distance to any word in the sentence. We also
finetune the GloVe word embeddings on COCO using a

visual-text ranking loss, and use the pseudo labels retrieved
by the resultant text embedding, resulting in LEARNEDGLOVE.

Discussion. Our text classifier relies on both captions and
category labels. Once the bridge between captions and
labels is established, it generalizes to other datasets, as we
show in Table 1. Importantly, we only need a small fraction
of labels to train this text classifier; as we show in Fig. 5, pre-
cision has a small range (between 89% and 92%) when we
use between only 5% and 100% of the COCO data, while
recall is stable at 62%. Thus, our text model could learn
from a single source dataset with a few labels, then it could
transfer the knowledge to other target datasets, requiring
only free-form text as supervision. If no labels are available,
the caption weighting strategy (Section 3.1) can be paired
with ExactMAtcH or other alternatives to TexTCLsr. How-
ever, TExTCLSF performs slightly better overall.

3.3 Detection From Inferred Pseudo Image Labels
We next describe how we use the inferred pseudo labels at
the image level, to train an object detection model. As shown
in Fig. 3 (top), we first extract proposals with accompanying
features. An image is fed into randomly initialized or
pretrained (on ImageNet [47]) convolutional layers. Then,
ROIAlign is used for cropping the proposals (at most 500
boxes per image) generated by Selective Search [48], resulting
in fixed-sized convolutional feature maps. Finally, a box fea-
ture extractor is applied. If {r; ;}", are the m proposals of a
given image x;, this process results in proposal feature vec-
tors {¢(r;;)}j-, where each ¢(r; ;) € R?. Note that even when
our model is pretrained on ImageNet, it does not leverage any
image labels on the datasets on which we train and evaluate
our detection models (PASCAL and COCO).

3.3.1 Initial Detection Scores

We next introduce the prediction of image-level labels p; .
(ce{1,...,C} for the i-th image, where C is the number of
classes) and of detection scores. If not noted otherwise, we
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use ¢ to index training examples, j to index region proposals
within an image, and ¢ to index class labels. The method
described in this section follows prior work, i.e., Bilen et al.
[6], but labels used for training are potentially noisy as they
come from our pseudo label inference module, Section 3.2.
First, we feed the proposal features ¢(r; ;) into two paral-
lel fully-connected layers to compute the detection scores
of, € R' (top branch in the green MIL module in Fig. 3)
and classification scores o . € R" (bottom branch), in which
both scores are related to a spec1f1c class ¢ and the j-th pro-
posal of image x;

1 ol det det
og_’js,‘c = wP(r; ;) + b5, oi;’C = wiM(r; ;) + b 4

We convert these scores into: (1) p{", the probability that
object ¢ presents in the j-th proposal; and () p!, the proba-
bility that the j-th proposal is important for predicting
image-level label y; .

exp (o<t
__ exp(ofj) 5

3" °1. 1
o8 =o(0f8,) p;,ej?v Zm . exp(o det )
j= Oije

ng( - ,5,¢/°

Finally, the aggregated image-level prediction is com-
puted as follows, where greater values of p;. € [0,1] mean
higher likelihood that c is present in the image «;

—o ( > ot ;l;c) ©)

Assuming the label y; . = 1 if and only if class c is present
in the input image x;, the multiple instance detection loss
used for training the model is defined as

C
Lnud xzayt - Z |:yt clngL(,

c=1

yi,(;)log (1 - f)t,c):| .
(7)

The weakly supervised detection score given both pro-

posal r; ; and class c is the product of p$®  and pi', which is

g i

further refined as described in Section 3.3.2.

3.3.2 Online Instance Classifier Refinement

The third component of our WSOD model is Online Instance
Classifier Refinement (OICR), as proposed by Tang et al. [8].
Given a ground-truth class label, the top-scoring proposal,
as well as proposals highly overlapping with it, are selected
as references. These proposals are treated as positives for
training the box classifier of this class while others are treated
as negatives. The initial top-scoring proposal may only par-
tially cover the object, so allowing highly-overlapped pro-
posals to be treated as positives gives them a second chance
to be considered as containing an object, in the subsequent
model refinement. This reduces the chance of propagating
incorrect predictions. In addition, sharing the convolutional
features between the original and refining models makes
training more robust.

Following [8], we stack multiple refining classifiers and
use the output of the previous one to generate instance-level
supervision to train the successor. The detection score at
the O-th iteration is computed using 57((? =pis . Pl (c €
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{1, C}), s; /C .1 =0 (where C+1 is the background
class) Given the detection score sf . at the k-th iteration, we
use the image-level label to get the instance-level superv151on

f’;tl) at the (k+ 1)-th iteration. Assume that ¢’ is a label
attached to image ay, we first look for the top scoring box

iy () = argmax; 9( '») responsible to predict ¢’. We then let
yfkﬁl 1,Vje {]l]OU(T”,?”H) > threshold}. When k > 0,

s\¥) is inferred using a (C' + 1)-way FC layer, as in Eq. (4).
The OICR training loss is defined in Eq. (8)

L](‘

m C+1

Zzyz]clogsikjc, k:].,,K

jlr*

k
Loicr(‘r’h yl =

®)

Unlike the original OICR, our WSOD module aggregates
logits instead of probability scores, which in our experience
stabilizes training. We also removed the reweighing of
untrustworthy signals emphasized in [8] since we found it
did not contribute significantly.

The final loss we optimize is Eq. (9), where y; is the per-
example weighting factor. y; = 1 for all ¢ if we are not apply-
ing homogeneity weighting. If we use hard filtering based on
i o}, then y; =1 for samples included in training,
and y; = 0O for others. If using image-caption weighting, y;, =
a(i'. We refine our model 3 times (K = 3) if not mentioned

otherw1se

K
L(l’i, yz) =VYi (Lmid(xi’ yi) + Z Lﬁicl'(wi7 yé)) . (©))
=1

3.4 Implementation Details
We first obtain a joint image-caption embedding space, by
training a triplet loss model [42] (with margin m set to 0.5)
or PVSE [21] model (with K =3 embeddings per sample
and margin 0.1, using the COCO validation set). We use
this model to infer image-text joint embeddings. Then we
use Eq. (3) to infer the homogeneity scores. We use ResNet-
50 [49] initialized randomly or with ImageNet features for
images (both types of results shown in Table 8). Images are
scaled to 224 x 224 and augmented with random horizontal
flipping. For text, we use GRU [50] with hidden state size
512, initialized with 200D word embeddings learned on the
COCO dataset, using [51]'s implementation of Doc2Vec,
distributed memory [43], 20 epochs with window size of 20,
and ignoring words that appear less than 20 times. We use
Xavier initialization [52], the Adam optimizer [53] with min-
ibatch size of 32, learning rate 1.0e-4 (decayed by 10x after
every 5 epochs of no decrease in val loss), and weight decay
le-5. We use [54] to efficiently compute approximate nearest
neighbors for ¥ and use NV = 200 nearest neighbors.

For the text classifier which predicts the pseudo image-
level labels, we adopt a multi-layer perceptron (see Fig. 3 bot-
tom). We first embed word tokens to 300D GloVe embed-
dings and project them to a 400D latent space. We use max-
pooling to aggregate these word-level representations to get
the fixed-length 400D caption representation. Next, we use
this max-pooled intermediate representation to predict the
implied instances (e.g., 80 classes in COCO). The object labels
are used to supervise the text classifier learning (cross-
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entropy loss). We use the AdaGrad optimizer [55], learning
rate of 0.1, and batch size of 20.

To train the weakly supervised object detection model, we
first use Selective Search [48] from OpenCV [56] to extract at
most 500 proposals for each image. We follow the “Selective
search quality” parameter settings in [48]. We use Selective
Search because it is a generic, dataset-independent proposal
generation procedure, as opposed to other CNN-based alter-
natives which are trained end-to-end from a specific dataset
in a supervised fashion. We use TensorFlow [57] as our train-
ing framework. To compute the proposal feature vectors, we
use the layers (“Conv2d_la_7x7” to “Mixed_4e”) from
Inception-V2 [10] to get the conv feature map, and the layers
(“Mixed_5a” to “Mixed_5c”) from the same model to extract
the proposal feature vectors after the ROIAlign operation.
The Inception-V2 model is either randomly initialized, or
pretrained on ImageNet [47]; the supervised detector coun-
terpart of our model, using this architecture, was explored
by [58]. To augment the training data, we resize the image
randomly to one of the four scales {400, 600, 800,1200}. We
also randomly flip the image left to right at training time. At
test time, we average the proposal scores from the different
resolution inputs. We set the number of refinements to 3 for
the OICR since it gives the best performance. For post-proc-
essing, we use non-maximum-suppression with IoU thresh-
old of 0.4. We use the AdaGrad optimizer [55], a learning
rate of 0.01, and a batch size of 2 as commonly used in WSOD
methods [8], [16]. The models are usually trained for 100K
iterations on Pascal VOC (roughly 40 epochs on VOC2007
and 17 epochs on VOC2012) and 500K on COCO (8.5 epochs),
using a validation set to pick the best model. Our implemen-
tation is available at https://github.com/yekeren/
Cap2Det.

4 EXPERIMENTS AND RESULTS

First, we present our experimental settings (Section 4.1). Sec-
ond, we compare the accuracy of alternative strategies on
pseudo image-level training label extraction from captions (Sec-
tion 4.2). Third, we show that our approach achieves strong
detection performance using supervision from captions (Sec-
tion 4.3). By training on COCO captions, we achieve close to
state-of-the-art results on weakly supervised detection on
PASCAL, even though the supervision we leverage is weaker
than competitor methods. Importantly, our text classifier
trained on COCO generalizes to other datasets, and allows us
to use Flickr30K and the noisier datasets MIRFlickriM and
Conceptual Captions which do not feature clean, descriptive
captions. In all settings, our primary pseudo label inference
method, EM+TexTCLsF, outperforms the alternative techni-
ques, including the ExactMATcH baseline. Fourth, we show
the improvements achieved by filtering and scoring noisy
image-caption examples (Section 4.4). We conclude that the
redundancy between image and text is key to train a success-
ful weakly-supervised detection model. Finally, as a sanity
check, we show our approach performs competitively to
prior methods on the task of learning from clean, ground-truth
image-level labels (Section 4.5).

Note that in all experiments, we focus on evaluating the
impact of a single component of our model, focusing on the
caption weighting and pseudo label inference. For most
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experiments, we determine success by comparing to an
upper bound (e.g., ground-truth labels) and/or a lower
bound (e.g., naive training label extraction, unweighted loss
using captions equally). We show our methods” advantages
persist when we replace Section 3.3 with alternative state-
of-the-art techniques, e.g., Ren et al. [9].

4.1 Datasets and Metrics
Our experiments involve the datasets COCO, PASCAL
VOC, Hlickr30K, MIRFlickr1M, and Conceptual Captions.

PASCAL Visual Object Classes (VOC) [59] is a standard
image dataset for object class recognition. It focuses on a
limited number of classes (20 objects). We use it to evaluate
our learned object detection models (4,952 and 10,991 test
examples in VOC07 and VOC12, respectively).

Common Objects in Context (COCO) [60] is a large-scale
object detection, segmentation, and captioning dataset. We
use: (1) its image-caption data to train the triplet and PVSE
models necessary to infer image-caption homogeneity (Sec-
tion 3.1); (2) its caption-label data to train our pseudo label
inference module (Section 3.2) and test it on three other
datasets; (3) its 118K training images, each paired with 5
captions, to train our detection model (Section 3.3) using
591,435 COCO [61] captions paired to the 118,287 train2017
images. ExactMartcH fails to extract any label for roughly
15K train2017 instances. Since COCO is fully annotated with
instance-level boxes, we use its evaluation server to mea-
sure performance of the resulting object detection models.

Flickr30K and MIRFlickrIM. We use the Flickr data to
prove that our weakly-supervised object detection models
can generalize to alternative datasets. Flickr30K [62] (30K
images, each paired with 5 captions) contains crowdsourced
captions. However, we also use 200K examples from the 1M
noisy data in MIRFlickr1M [63] (subset for computational
reasons). The dataset pairs images with user-generated con-
tent, which is not guaranteed to describe the content of the
images in an exhaustive or precise manner. ExacTMATCH

Caption: Running Out of Time

UGC tags: night, london, england, uk,
tripod, bigben, time, trails, lights, cars,
clock

Caption: children 's choir at a market

* | Caption: person comforting one of the
younger horses who was tired on his

# | first big excursion with the herd and
riders.

Caption: Swan's world - Standing
= | UGC tags: nature, river, water, swan,
cygne, animal, bird, day, light, schwan

Caption: When Cookies and Brownies

Love Each Other Very Much.s Caption: furniture built this bed from

reclaimed oak and finished with
decorative paint by person in fiber
and graphite with dark wax.

UGC tags: food, junkfood, sugar,
dessert, chocolate, brownies, cookies,
baked, bakery, ...

Caption: Van Persie Scores!

UGC tags: arsenalvseverton, arsenal,
gunners, everton, ashburtongrove,
emiratesstadium, emirates, stadium,
ashburton, grove, london, football, ...

Caption: person enjoys a good cup of
tea.

Caption: What flower are you? | think
this one sort of describes me.

UGC tags: stopdown, girl, flower, Caption: orange cat in the road
portrait, kylee, littlegirl, child, blur,
50mm, pink, explore, explored, ...

Bl | Caption: CLK DTM
UGC tags: dtm, clkdtm, benz,
¥ | mercedes, amg

Caption: a sign at the entrance warns
visitors that swimmer 's itch is active
photo by person

Fig. 4. Example image-caption pairs from MIRFlickriM and Conceptual
Caption datasets. For MIRFlickr1M, captions and tags are written by the
uploader and website users. For ConcCap, captions are parsed from the
alt-text HTML attribute associated with web images. Both datasets did
not crowdsource i.e., pay workers to label the images. Note how often
“person” is mentioned on the right but not visible.
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fails to extract labels on roughly 113K of those. We use cap-
tions from these datasets to train our detection models.
Fig. 4 shows examples.

Conceptual Captions [64] contains 3.3M images annotated
with captions. The captions are from the web, and illustrate
the noisy web data environment. We conduct an experiment
that tries to benefit from the large corpus via vision-lan-
guage pretraining. We also directly train object detectors on
Conceptual Captions. To keep results comparable to those
when using COCO Captions, we extract a 118K subset from
Conceptual Captions. ExacTMATCH fails to extract any label
on roughly 54K samples in that subset. Conceptual Cap-
tions includes alt-text for images. Alt-texts are preprocessed
with hypernimization to replace named entities (e.g.,
architect’s name) with object names (e.g., “person”). As can
be seen from Fig. 4 (right), this alt-text is not descriptive of
the images in the same way that COCO captions are
descriptive. For example, the third caption mentions
“person”, but this person likely refers to whoever made the
decorative paint; this person is not visible in the image. Simi-
larly, the “person enjoying tea” (fourth caption) is also not
visible. Conversely, the persons in the first example are not
explicitly mentioned, and neither is the car in the bottom
example. This makes straightforward techniques for extract-
ing labels (e.g., EXACTMATCH) prone to failure due to missed
or incorrect labels.

Evaluation Protocols. We follow the standard protocols
used in VOC and COCO to fairly compare to other methods.
On VOC, we report the mean Average Precision (AP) at IoU
>0.5 and we also report the per-class AP. On COCO,
we report the same AP@IoU0.5 as in VOC, and the mean
Average Precision across different IoU thresholds, i.e.,
mAP@IoU.5:.05:.95. We also include the full metrics in
COCO such as AP of differently-sized objects. We submit
our results to the VOC and COCO evaluation servers to get
the VOC07 and COCO testing results.

4.2 Accuracy of Pseudo Image Label Inference

We first test the generalizing power of our pseudo image-
level label inference module (Section 3.2). Our results show
that without using too much data, one can train a reason-
ably good text classifier inferring accurate image-level labels
from paired captions.

In Fig. 5 we show the precision and recall of these label
inference methods evaluated directly on the COCO image-
level labels (5,000 examples of the val2017 set). We observe
that EM+ExTENDVoOCAB, which uses the hand-crafted word-
synonyms dictionary, provides the best recall (60.6%) among

TEXTCLSF 100% DATA
P922%R617% g
= TEXTCLSF 5% DATA
= P 89.4% R 62.3%
5 LEARNEDGLOVE
‘s P84.7%R28.9% EXACTMATCH
§ o .P 83.1% R 40.6% EXTENDVOCAB
a GLOVE P 81.1% R 60.6%
P84.5% R 28.9% [
Recall (%)

Fig. 5. Analysis of different text supervision. We compare the pseudo
labels (Section 3.2) to COCO val ground-truth.
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all methods but the worst precision of 81.1%. The word-
embedding-based top-scoring matching methods of EM
+GLOVE and EM+LEARNEDGLOVE provide precise predictions
(84.5% and 84.7% respectively, which are the highest). How-
ever, our EM+TextCLsF achieves significantly improved pre-
cision compared to these. We would like to point out that
while in Tables 1 and 2, our method uses the full COCO
training set (118,287 concatenated captions), it achieves very
similar performance with even a small fraction of the data.
With 5% of the data (6,000 caption-label pairs), the method
achieves 89% precision (versus 92% precision with 100% of
the data), both of which are much higher than any other base-
lines; recall is about 62% for both 5% and 100% training data.
Thus, it is sufficient to use a small portion of precise text
labels to train a generalizable label inference classifier, and
the knowledge can transfer to other datasets as we show in
Table 1.

To better understand the generated labels, we show two
qualitative examples in Fig. 6. The image on the right shows
that our model infers “tie” from the observation of “presenter”,
“conference” and “suit”, while all other methods fail to extract
this object category for visual detection.

It is also interesting to measure this performance per
class, as we show in Fig. 7. The lexical matching method
ExactMATcH performs similarly to EM+TextCLsF in terms
of precision (not shown). For both ExactMaTcH and EM
+TexTCLSF, recall is very low for bottle, car, and chair, indi-
cating these are common objects which however are usually
not mentioned in captions. In contrast, other common objects
(e.g., cat) have high recall because they are usually men-
tioned when present in the image. However, for classes
such as boat, cow, and person, ExactMatcH has much lower
recall rate than EM+TExTCLsF. We thus quantitatively explain
why EM+TEXTCLSF is better than ExactTMATcH for these clas-
ses (Table 1 B, boat 29.9% versus 25.9% or 13.3% versus
9.6%; cow 61.2% versus 49.0% or 47.4% versus 28.0%; per-
son 16.9% versus 10.4% or 10.7% versus 4.0%). By explicitly
handling the noise in the captions (the lack of mentions of
objects that do appear), we cope with the “human reporting
bias” [37].

4.3 Comparing Label Inference Strategies for
Detection

We compare our pseudo label inference module (Section 3.2)
with alternative strategies to extract object labels from cap-
tions. All of these strategies are upper-bounded in terms of
performance by using ground-truth image-level labels GT-
LaBeL. Note that apart from the strategy used to mine
image-level labels for training, these strategies all use the
same architecture and WSOD approach as our method (Sec-
tion 3.3). We show combinations of the exact match strategy
with these methods (when exact match fails), resulting in
EM+GLoVE, EM+LEARNEDGLOVE, EM+ExTENDVOCAB and EM
+TexTCLSF. We examine how well these strategies leverage
captions from COCO, Flickr30K, MIRFlickr1M, and Concep-
tual Captions for detection.

Training With COCO Captions. Table 1, segments (A) and
(B), show the results on PASCAL VOC 2007. At the top (A)
are two upper-bound methods that train on ground-truth
image-level labels, while methods in (B) train on labels
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TABLE 1
Average Precision (in %) on the VOC 2007 Test Set (Learning From COCO, Flickr30K,
MIRFlickr1M, and Conceptual Captions Captions)
Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv = mean
(A) Training on different datasets using ground-truth labels:
GT-LaBeL VOC 68.7 49.7 533 276 141 643 581 760 23.6 598 50.7 574 481 63.0 155 184 49.7 550 484 678 485
GT-LaBeL COCO 65.3 503 532 253 162 68.0 548 65.5 20.7 625 51.6 456 48.6 62.3 7.2 246 496 346 51.1 693 463
(B) Training on COCO dataset using captions:
ExactMatcH (EM) 63.0 503 50.7 259 141 645 508 334 172 490 482 46.7 442 59.2 10.4 143 498 377 215 476 399
EM + GLOVE 66.6 437 533 294 13.6 653 51.6 337 156 50.7 46.6 454 476 621 8.0 15.7 486 463 306 364 405
EM + LEarNeDGLOVE  64.1 499 58.6 249 132 669 492 269 131 577 52.8 426 53.2 586 143 150 452 503 341 435 417
EM + ExTENDVOCAB 65.0 449 492 306 136 64.1 508 28.0 17.8 59.8 455 56.1 494 59.1 16.8 152 511 57.8 140 618 425
EM + TexTCLSF 63.8 426 504 299 121 612 461 41.6 166 61.2 483 551 515 59.7 16.9 152 505 532 382 482 43.1
(C) Training on COCO dataset without ImageNet pretraining:
GT-LaseL COCO 40.7 172 57 08 0.0 319 214 306 03 310 260 305 239 438 13.8 70 255 27 153 349 2015
ExactMarcH (EM) 438 139 6.0 08 0.0 396 31.0 342 03 206 288 256 252 359 49 33 273 3.0 99 151 1846
EM + GLOVE 446 134 91 14 01 363 297 307 02 172 212 293 251 36.9 5.9 2.6 6.7 27 87 168 1693
EM + ExTENDVOCAB 449 128 83 1.1 00 355 316 270 04 257 271 271 220 34.8 10.3 0.2 296 41 117 26.8 19.05
EM + TexTCLSF 445 184 6.7 1.5 03 356 276 322 02 257 280 283 26.0 38.8 6.2 0.1 284 27 9 258 19.30
(D) Training on Flickr30K dataset using captions:
ExactMartcH (EM) 46.6 429 420 96 7.7 316 448 532 131 280 39.1 432 319 525 4.0 51 380 287 158 41.1 31.0
EM + ExTENDVOCAB 378 376 355 11.0 103 18.0 479 513 17.7 255 37.0 479 352 46.1 15.2 0.8 278 356 58 420 293
EM + TexTCLSF 241 388 445 133 62 389 499 604 124 474 392 593 348 48.1 10.7 0.3 424 394 141 473 33.6
(E) Training on Flickr30K dataset using captions, without ImageNet pretraining:
ExactMatcH (EM) 14 145 24 07 0.0 94 192 35 02 35 92 11.0 100 23.0 1.6 0.0 0.4 2.1 28 28 59
EM + ExTENDVOCAB 09 150 29 06 00 10 112 40 02 03 13.0 108 109 216 2.7 0.1 06 39 08 66 54
EM + TextCLSF 1.8 210 19 0.7 0.0 54 206 5.7 0.2 21 124 110 104 24.7 3.4 0.1 1.0 14 37 41 6.6
(F) Training on MIRFlickrIM (200k subset) using captions, without ImageNet pretraining:
ExactMatcH (EM) 76 75 85 05 0.1 130 189 152 04 29 26 66 3.7 219 3.3 0.2 24 23 14 162 6.8
EM + Tex1CLSF 31.7 105 89 0.8 03 155 289 281 0.6 63 6.5 205 129 26.6 15.1 0.6 4.1 1.0 35 191 121
(G) Training on Conceptual Captions (118k subset):
ExactMatcH (EM) 261 212 170 100 77 191 311 152 7.0 223 359 326 13.1 25.5 3.5 4.6 341 120 11.8 122 181
EM + TexTCLSF 609 36.5 35.7 214 89 283 20.1 262 44 348 175 41.7 228 51.2 11.3 0.3 424 293 213 284 272
(H) Training on Conceptual Captions (118k subset), without ImageNet pretraining:
ExactMatcH (EM) 1.1 16 07 03 00 31 104 142 02 03 12 70 09 2.7 1.8 0.1 05 07 06 02 238
EM + TextCLsF 14 16 05 03 00 39 70 135 02 04 34 88 17 8.9 2.9 0.1 03 06 41 01 3.02

We evaluate on only the overlapping 20 VOC objects. Best method per column (except GT methods) in bold. Our proposed EM+TexTCLsF achieves 93-96% of
GT-LapeL COCO, and exceeds ExactMarcH (EM) by 8% with COCO captions and 27-78% with noisy captions (MIRFlickr1M and Conceptual Captions).

extracted from image-level captions. ExactMarcu (EM) per-
forms the worst probably due to its low data utilization rate,
as evidenced by the fact that all methods incorporating
pseudo labels improve performance notably. Specifically,
EM+GLovE uses knowledge of the pre-trained GloVe

A man is in a kitchen making pizzas .

Man in apron standing on front of oven with pans and
bakeware .

A baker is working in the kitchen rolling dough .

A person standing by a stove in a kitchen .

A table with pies being made and a person standing
near a wall with pots and pans hanging on the wall .

A presenter projected on a large screen at a conference
People watching an on screen presentation of a
gentleman in a suit .

People watch a man delivering a lecture on a screen .

A large screen showing a person wearing a suit

An audience is looking at an film of a man taking that is
projected onto a wall .

GROUNDTRUTH: dining table, oven, person, bottle,
bowl, broccoli, carrot, cup, knife, sink, spoon
EXACTMATCH: dining table, oven, person
EXTENDVOCAB: dining table, oven, person, pizza
GLOVEPSEUDO: oven

LEARNEDGLOVE: dining table

TEXTCLSF: person, oven, bowl, dining table, bottle,
cup, spoon, knife, chair, refrigerator, pizza

GROUNDTRUTH: person, tie, bottle

EXACTMATCH: person

EXTENDVOCAB: person

GLOVEPSEUDO: person

LEARNEDGLOVE: person

TEXTCLSF: person, tie, chair, handbag, tv

Fig. 6. Demonstration of different pseudo labels. Our method fills the gap
between what is present and what is mentioned, by making inferences
on the semantic level. Matches to the ground truth are shown in blue.

embeddings. It alleviates the synonyms problem to a certain
extent, thus it improves the mAP by 2% compared to Exacrt-
MatcH. However, the GloVe embedding is not optimized for
the specific visual-captions, resulting in noisy knowledge
transformation. EM+LEARNEDGLOVE learns dataset-specific
word embeddings. Its performance, as expected, is 3% better
than EM+GLOVE. The strongest baseline is EM+EXTENDVO-
caB, as the manually picked vocabulary list covers most fre-
quent occurrences. However, collecting such vocabulary
requires human effort, and is not a scalable and transferable
strategy. Our EM+TEexTCLsF outperforms this expensive base-
line, especially for categories “cat”, “cow”, “horse”, and
“train”. Finally, despite the noisy supervision, our EM
+TexTCLsF almost bridges the gap to the GT-Lase. COCO
upper bound in Table 1 (A).

Recall(%)
§

oy
cow table dog horse mbike person plant sheep sofa train v

W EXACTMATCH ® EM+TEXTCLSF

Fig. 7. Recall of PASCAL labels. We evaluate the recall of the COCO-
learned text classifier, but we show only the overlapped 20 PASCAL
VOC classes.

aeo bke bid boat botle bus car cat chair
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TABLE 2
COCO Test-Dev Results (Learning From COCO Captions), Measured by COCO Eval Server

Methods Avg. Precision, IoU Avg. Precision, Area Avg. Recall, #Dets Avg. Recall, Area
0.5:0.95 0.5 0.75 S M L 1 10 100 S M L
GT-LABEL 10.6 23.4 8.7 3.2 12.1 18.1 13.6 209 21.4 4.5 23.1 39.3
ExactMartcH (EM) 8.9 19.7 7.1 2.3 10.1 16.3 12.6 19.3 19.8 3.4 20.3 37.4
EM + GLOVE 8.6 19.0 6.9 2.2 10.0 16.0 12.2 18.7 18.9 2.9 19.0 37.6
EM + LEARNEDGLOVE 8.9 19.7 7.2 2.5 10.4 16.6 12.3 19.1 19.6 3.5 20.0 37.7
EM + ExTENDVOCAB 8.8 19.4 7.1 2.3 10.5 16.1 12.1 19.0 19.5 34 20.3 37.5
EM + TextCLsF 9.1 20.2 7.3 2.6 10.8 16.6 12.5 19.3 19.8 3.5 20.6 37.8

Best method in bold. Our EM+TextCLsF achieves 86% of the GT-LABEL performance, and improves upon ExactMarcH (EM) by 2.5%.

For the results on COCO (Table 2), the gaps in perfor-
mance between the different methods are smaller, but as
before, our proposed EM+TExTCLsF shows the best perfor-
mance. We believe the smaller gaps are because many of
the COCO objects are not described precisely via natural
language, and the dataset itself is more challenging than
PASCAL thus gain may be diluted by tough examples.

Training With Flickr30K Captions. We also train our model
on the Flickr30K [62] dataset, which contains 31,783 images
and 158,915 descriptive captions. Training on Flickr30K is
more challenging: on one hand, it includes less data com-
pared to COCO; on the other hand, we observe that the
recall rate of the captions is only 48.9% with ExacTMATCH
which means only half of the data can be matched to some
class names. In Table 1 (D), we observe that due to the lim-
ited training size, the detection models trained on Flickr30K
captions achieve weaker performance than those trained on
COCO captions. However, given the “free” supervision, the
33.6% mAP is still very encouraging. Importantly, we
observe that even though our text classifier is trained on
COCO captions and labels, it generalizes well to Flickr30K
captions, as evidenced by the gap between EM+TExTCLSF
and EM+EXTENDVOCAB.

Results Without Pretraining on ImageNet. For our experi-
ments thus far, we pretrain our visual backbone on Image-
Net. This is a realistic setting consistent with WSOD
because while ImageNet contains clean labels at the image
level, no labels are available at the box level. However, to
reduce the potential interference from those labels, we also
test in a setting where no image-level labels are used to
learn the visual representations. The results are shown in
Table 1 (C, E). We observe that the advantage of our EM
+TexTCLsF method remains. In particular, EM+TEXTCLSF
achieves 96% (=19.30/20.15) of the GT-LaseL COCO perfor-
mance, which is comparable to (even higher than) the 93%
achieved when pretraining on ImageNet was used (Table 1
A, B). Further, EM+TexTCLsF achieves a 5% gain (=19.30/
18.46-1) over ExactMaTtcH in Table 1 (C), versus 8% in (B).
On Hlickr30K, the gain of EM+TExXTCLSF over EXACTMATCH is
12% without pretraining (E), greater than 8% with pretrain-
ing (D).

Training on Noisier Data: MIRFlickr1M and Conceptual Cap-
tions. The ultimate goal of our work is to enable training of
object detection models from widely-available language
data, e.g., user-generated content or narratives. The results
thus far meet some of the challenges of working with lan-
guage dataset as supervision, but rely on relatively clean

datasets. Thus, we next extend our evaluation to two noisier
datasets, MIRFlickrIM and Conceptual Captions. Examples
from these datasets are shown in Figs. 4 and 11. Due to the
noise in these datasets (see Figs. 4 and 11), performance is
significantly lower when training on captions from them,
compared to the cleaner COCO and Flickr30K. However,
we observe that our EM+TexTCLsF still significantly
improves upon the naive ExacTtMATcH for both datasets, in
Table 1 (F-H). In particular, EM+TextCLsF improves upon
ExactMAaTcH by 78% on MIRFlickr1M (subset), and 27-50% on
Conceptual Captions (without/with ImageNet pretraining, G-H).
These are both much higher than the 8% gain of EM
+TexTCLSF over ExactMATcH, in segment Table 1 (B). We
note the difference in performance when using a clean
(COCO) versus noisy dataset (ConcCap). EM+TEXTCLSF's
performance on the latter is reduced by 37% compared to
the former (27.2 mAP in G versus 43.1 in B), using the same
amount of captions.

Our text classifier inferred reasonable image-level labels
on noisier captions, even though it was trained on much
cleaner data (COCO). For example, on Conceptual Captions,
it was able infer ‘person’, ‘cup’, ‘chair’ and ‘dining table’
from the caption “front view of a young couple of college stu-
dents drinking coffee and studying in a cafe”, and “person’,
‘tie’, ‘bottle’, ‘wine glass” and ‘cup’ from the caption “group
of business people raising a toast with champagne at office”.
On MIRFlickr1M, it inferred ‘tie” from the caption “For G.
aaron kilt wedding whitby dunsleyhall”, and ‘knife’, ‘bowl’,
‘broccoli’, ‘carrot’ from the caption “Roasted Veggies! cauli-
flower asparagus limes roasted food cooking kitchen vegeta-
bles dinner suppertime eating healthy explore”. Thus, EM
+TexTCLSF can infer labels that are implied but not stated,
and leverage them for training.

Contribution of Pseudo Label Inference Using Alternative
WSOD Method. For all of our experiments thus far, we have
used OICR [8] as our WSOD method. In other words, once
pseudo labels for the training set are inferred at the image
level by one of the method alternatives, these labels are
used to train a WSOD model, using OICR. Here, we experi-
ment with replacing OICR with a more recent WSOD tech-
nique, namely Ren et al. [9]. We compare the performance
of two label inference techniques, ExactMarcH and EM
+TextCLsF, against using ground-truth labels at the image
level (GT-LaBEL). We show the results in Table 3, where all
methods rely on Ren et al.’s WSOD method. We see that our
proposed EM+TExTCLsF achieves 96% of the GT perfor-
mance (using IoU 0.5), and a 4% boost over EXACTMATCH.
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TABLE 3
Evaluation of Our Pseudo Label Inference, Using Ren et al. [9]
as Our WSOD Method, on COC02017-Val

Methods Avg. Precision, IoU
0.5:0.95 0.5
GT-LaseL COCO 11.2 22.8
Exact MaTtcH (EM) 10.0 21.1
EM + TextCLsF 10.4 22.0

These results are even better than Table 2 where our method
achieved 86% of the ground-truth performance, and 2.5%
gain over EXACTMATCH.

Data versus Performance. We show the potential of our
model using Flickr30K and MIRFlickr1M [63]. For the latter,
we concatenate the title and all user-generated content tags
to form caption annotation. We then use our text classifier
learned on COCO to rule out examples unlikely to mention
our target classes. This filtering results in a dataset with
around 20% of the original data, and we refer to it as
Flickr200K. We use 10%, 20%, 50%, 100% data from both
datasets, and report average precision on VOC 2007. We see
from Fig. 9 that as training data increases, mAP increases
accordingly. To estimate model potential, we fit a square
root function to the rightmost four points in the figure and
use it to estimate 54.4 mAP at 1 million samples.

Qualitative Results on COCO. We provide qualitative exam-
ples on the COCO wval set, in Figs. 6 and 8. We compare ExacT-
MatcH and our EM+TExTCLSF side-by-side in Fig. 8. Our
proposed method EM+TexTCLsF provides better detection
results than the baseline ExactMaTcH. Thus, we conclude
that it has squeezed more useful and precise information
than the ExacTMATCH baseline.

4.4 Impact of Filtering Noisy Captions

Not all nouns in captions are object words, and not all object
words are mentioned in the caption: for example, an image
with caption “guests are sitting at a table during a wedding”
will show object “table”, no object “wedding”, and additional
objects (e.g., plates). The purpose of Section 3.1 is to determine
which image-caption pairs contain significant alignment that
would allow us to extract quality pseudo training labels at the
image level. As discussed in Section 1, this is an alternative to
our EM+TEexTCLsF (Section 3.2). The motivation for this alter-
native is that it does not require labels for training the text

EXACTMATCH

EM + TEXTCLSF EXACTMATCH

u'-!

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 4, APRIL 2023

* Flickr30K - Flickr200K

5 _p 40.4
o 40 .

g 33.633.634 A

<4 5 A x A

5 30 25.8

£ 25 X

o 17.

T 20 176 164

B 10K 20¢ 40K 60K

# Training Examples

Fig. 9. Data versus Performance. Our text classifier learned on COCO
generalized well on Flickr30K and the noisier Flickr200K data (subset of
MIRFlickr1M) formed by user-generated content tags.

classifier. Thus, our goal is for homogeneity scoring to improve our
detection results with ExactMATcH, EM+ExTENDVOCAB or EM
+GLOVE, not with EM+TextCLsF. Results with weighting on
top of EM+TExTCLsF are still shown, but marked with gray
shading, in Tables 5, 6,7, and 8.

Ranking Captions by Potential Purity of Objects Mentions.
We test to what extent homogeneity can be used to esti-
mate if a caption contains clean labels. We use both cap-
tions and labels in COCO to compute a ground-truth
ranking of images by the overlap between caption and object
label words. We use the ExactMaTtcH and EXTENDEDMATCH
methods to compute the overlap, and rank images by pre-
cision (fraction of caption nouns that are also object labels).
We then use our method to also compute an approximate
ranking of images by the «#°M scores, calculated individu-
ally for image and paired captions (Eq. (3)), as well as their
difference. Finally, we compute the correlation between
ground-truth rankings and our methods’ rankings, using
Kendall’s T and Spearman’s p. If the correlation is high,
our method is a good indicator of how well-aligned a cap-
tion and object labels are, thus how likely it is that weakly-
supervised detection will succeed if we extract labels from
this particular caption.

We also compute approximate ranks using two baselines.
HesseL [40] computes visual concreteness for a word using
the purity of images co-occurring with this word. We rank
images by the average concreteness of nouns in their paired
captions. ALIKHANI [39] collects annotations for the type of
relation between an image and its caption, including
“visible” (the most direct relation) and other less direct ones
(e.g., “story”). We train a classifier using image and captions
and the annotations from [39]. It outputs the probability of a
caption being visible, and we sort images by their captions’
average visibility.

EM + TEXTCLSF

EXACTMATCH
i 4 :

EM + TEXTCLSF

Fig. 8. Visualization of our Cap2Det model results on COCO val set. We show boxes with confidence scores >5%. Green boxes denote correct
detection results (IoU > 0.5) while red boxes indicate incorrect ones. Best viewed with 300% zoom-in.
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TABLE 4
Ranking Images and Object Categories by how Well Captions
Overlap With the True Image-Level Labels
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TABLE 5
Comparing the Filtering Strategies With the Random Sampling
Baseline, Using AP (in %) on VOC 2007 Test

GT Ranking  Pred Ranking Image Label Im-cap scoring Label inferencelpy 1o\ pVoCAB GLOVE  TEXTCLSF
14 T p T Random (30K) 36.7 38.6 40.4
HOM-IMAGE (30K) 40.1 413 40.5
HesseL 0.100 0.067 0.293 0.182 HoM-TEXT (30K) 40.4 40.8 39.9
ALIKHANI -0.081 -0.054 0.348 0.229 . - -
ExacTMATcH  HoM-IMAGE 0.088 0058 0382 0.230 Both filtering mechanisms improve results under for ExTeNDVOCAB and
GLOVE pseudo label inference. Gray cells indicate we do not intend or expect
How-Texr 0.058  0.038 0326 0.212 improvement compared to no filtering.
Howm-Drirr -0.003 -0.003 0.003 -0.001
HEssEL 0.043  0.029 0229 0.142 TABLE 6
ALIKHANI -0.009 -0.007 0.376 0.251 Evaluating the Caption Weighting Strategy,
ExtENDMaTcH  Howm-IMAGE 0.130 0.086 0.388 0.225 Using AP (in %) on VOC 2007 Test
Howm-Text 0179 0.120 0.341 0.223 Tabel inference
Howm-Drrr 0.177 0.118 0.053 0.037 Im-cap scoring EXTENDVOCABGLOVE  TEXTCLSF
Higher correlations are better. The best number per GT ranking is bolded. ngilﬁk::}:gv(\}elizﬁging (118K) igg igz ig;

Howm-IMAGE is the best performer overall.

We also rank object categories: by their concreteness scores for
HesseL, by average visibility of images containing this category
for ALKHANI, and by average aOM values of images containing
this category for our methods. In ground-truth rankings Exacr-
MatcH and EXTENDEDMATCH, accuracy of category prediction
(i.e., fraction of images where category c is correctly predicted)
is used.

We show the results in Table 4. Hom-IMAGE is the best
performer overall, outperforming the alternatives in 3 cases
(versus 2 for HoMm-TEexT, 2 for HesseL, and 1 for ALIKHANI). We
observe that the image ranking obtained by HEsseL is more
correlated with the ground-truth ranking acquired by
ExactMaTcH. However, it fails to sustain its performance
when ground-truth image ranking is EXTENDMATCH, proba-
bly due to not being able to capture visual concreteness for
synonyms of object categories. In this setting, Hom-TExT is
the best. In the label ranking task, Hom-IMAGE is the most
correlated ranking overall.

Detection Results Using Image-Caption Filtering. We use a
limited 30,000 image-caption subset from COCO train2017
split for training, assuming a setting of restricted computa-
tion resources and training time. We keep the most useful
examples while removing the others. We use the metric of
homogeneity (Section 3.1.2) to measure the image-caption rel-
evance. The higher this metric, the better alignment between
the both modalities, and more likely the captions describe
the visual objects in detail. Hom-IMAGE and Hom-TExT use
a5 and o ({0 to filter examples, respectively. We use ran-
dom sampling of 30K examples as a baseline.

Table 5 shows the results. We see the performances of
ExtenDVocaB and GLOVE are improved using the filtered
training data. If we use a random selection of 30K examples,
the performances are 36.7% and 38.6% respectively. Using
image homogeneity score (Hom-Imace, afOM) for filtering
improved these methods by 9% (40.1% versus 36.7%) and
7% (41.3% versus 38.6%). The TexTCLsF column is shaded in
gray because we do not expect a boost in performance from
filtering. TexTCLsF had already explained the gap between
the image and text thus is not sensitive to the improved fil-
tered training data. However, this text classifier requires a
small number of ground-truth labels. In contrast, Hom-
ImMace and Howm-Text with GLOVE achieve competitive

results to TExtCLsF with Random, but do not require any
labels. Thus, homogeneity can be used to determine which
captions provide strong supervision for object detection,
without the need for any ground-truth labels. We omit Hes-
seL, ALIKHANI and Hom-Dirr in Table 5 because their overall
performance in Table 4 does not exceed Hom-Imacg, while
ALIKHANI also requires image-caption relation labels.

Results Using Image-Caption Weighting. One weakness of
the filtering approach is that it requires a hard cutoff of the
dataset examples. In comparison, weighting applies a soft
“cutoff” to the data. It never drops data, thus is data-effi-
cient. We use a(;)" as the per-example weighting factor y
to weigh the pseudo image-level labels extracted from dif-
ferent image-caption pairs in Eq. (9).

Comparing Tables 6 to 5, we see that even with a good
filtering strategy, e.g., Hom-IMAGE Filtering (30K), using 30K
“clean” training examples is still inferior than training on
the full COCO dataset (No weighting 118K)), for two of the
three label inference methods (columns). However, if we
apply the HoM-IMAGE weighting on the loss, the performance
(Hom-Imace Weighting 118K)) is improved (43.5% versus
42.5%, 42.6% versus 40.5%, ie., 2-5% gain), except for
TextCLsF which requires annotations. This is an important
finding with important ramifications for multimodal learning.
Approaches to learn visual representations have benefited
greatly from widely available web/video data, and our
method suggests how the useful signal and noise in such data can
be distinguished to boost the quality of the learned representations,
without requiring annotations. We note that ExtenpVocas
with weighting is comparable (only 1% better) to TExTCLsF
with no weighting.

Results Using Large Corpus Pretraining. We conduct a
study on the impact of vision-language pretraining, which
has gained popularity for both VQA and cross-modal
retrieval [25], [26]. However, no previous study had shown
where such pre-trained models can also improve fully- or
weakly-supervised object detection (except Zareian et al.
[65] which use bounding boxes for some object categories).
Our pre-training pipeline is shown in Fig. 10. We evenly
distribute anchor boxes (different in scales and locations)
across the image and treat each anchored visual region as a
visual token. We then concatenate the visual tokens to the
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match/not match? missing token?
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‘ BERT-Tiny (2 layer, 128 units)
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TABLE 7
The Impact of Large Corpus Pretraining, Measuring
AP (in %) on VOC 2007 Test

BRI B B T H = H AU B I ‘ __ Label inferencelp, 1o\ pvocaB GLOVE  TEXTCLSF
‘B H | e [ En [ o e Emb o | Eem Im-cap scoring
™ No weighting, no pretraining 42.5 40.5 43.1
+Weighting 43.5 42.6 422
t « g ealpEp e +Pretraining 43.9 415 43.6
o features +Pretraining, +weighting 42.5 42.0 42.6

Fig. 10. Vision-language pretraining for weakly-supervised object
detection. The inputs to the BERT-Tiny model are positional embed-
dings (Eq, E1,...) and token embeddings (proposal features (Ejqq,
Eirveyy, - - -) and word embeddings (Eiyping: Eons - - -))-

caption tokens, forming a sequence: “[CLS] [v1] [v2] ... [SEP]
[t1] [#2] ... [SEP]”, where the “[v]” and “[t]” are the visual
and textual tokens, respectively. “[SEP]” is a special token
to separate sequences, and “[CLS]” is the special classifica-
tion token. We use the FastRCNN features and word
embeddings to represent visual and text token embeddings,
respectively. Then, we contextualize the sequence features
using two self-attention layers (each with 128 hidden units).
Finally, we add a linear classification layer on top of the
“[CLS]” representation to predict a 0/1 value denoting if
the image implies the caption’s semantic meaning (match-
ing). Besides the image-caption matching modeling, we also
process the masked language modeling optimization. We
randomly (with a probability of 15%) replace a text token
with “[MASK]” and require the model to reconstruct the
token, given the visual and text contexts. The visual model
is the same as Section 3.4, while we use BERT-Tiny to initial-
ize the text token embeddings and the self-attention layers.
We use the Adam optimizer [53] with a batch size of 5, a
learning rate of 1le-5, a weight decay of le-8, and we trim
the maximum gradient norm to 1.0. Based on the above pre-
training setting, we trained for 600K steps, roughly 1 epoch
on the Conceptual Captions dataset. The training costs
around 44 hours on 5 GeForce GTX1080Ti GPUs, using Ten-
sorflow distributed training [57]. After pretraining the
model using Conceptual Captions, we process the weakly
supervised object detection training using the COCO
images and texts and evaluate on the VOCO7.

Table 7 shows the results. We see that pretraining
improved the baseline by 3% (43.9% versus 42.5%), 2%
(41.5% versus 40.5%), 1% (43.6% versus 43.1%). In the only
pseudo label inference setting that requires neither a hand-
defined vocabulary of synonyms, nor object labels, namely
GLOVE, our weighting achieves stronger results than pretraining.
For ExTeENDVocCAB, pretraining and weighting achieve com-
parable results. Pretraining can be seen as a state-of-the-art
method akin to Zareian et al. [65], as a way to use vision-lan-
guage data, which could be alternative to our EM+TExTCLSF.
However, pretraining uses the external and large 3.3M Con-
ceptual Captions dataset, while our EM+TEexTCLsF only uses
the 118K COCO captions. Given inconclusive gains from
pretraining over weighting (sometimes worse, sometimes
better), and its large cost, it is not warranted in our setting.
Applying both pretraining and weighting did not further
boost results.

Generalization of Weighting on Conceptual Captions. The
results described thus far in this subsection all apply filtering
or weighting over COCO captions. The weighting model

Both pretraining and weighting help, but weighting uses no external data.

TABLE 8
Weighting on Conceptual Captions,
Using AP (in %) on VOC 2007 Test Set

Label inference

Im—cap scoring EXACTMATCH TEXTCLSF
(A) ImageNet pretraining in detection:
No weighting 18.1 27.2

HoOM-IMAGE Weighting (Triplet w/ IN PT) 24.7 18.8
HOM-IMAGE Weighting (Triplet) 24.0 25.5
(B) No ImageNet pretraining in detection:

No weighting 2.38 3.02
HoOM-IMAGE Weighting (Triplet) 2.99 2.75

Triplet models are trained on the COCO dataset. Weighting improves results
across dataset boundaries. Gray cells indicate we do not intend or expect
improvement compared to no weighting.

was trained on COCO, so in this part, we test the generaliza-
tion of the weighting model, by applying it on the Concep-
tual Captions subset described in Section 4.1. Note that when
applying weights to the captions, the gradient magnitude is
reduced. Thus, rather than retuning the learning rate, we
apply scaling to the weights such that the sum of weights
over all samples remains the same as in the unweighted ver-
sion. We include the result in Table 8. Part (A) uses ImageNet
pretraining in extracting visual features for detection (Sec-
tion 3.3), while part (B) does not. The second and third rows
in (A) differ in the use of an ImageNet-trained backbone for
the image-text model (trained with triplet loss). As before,
our focus is on weighting improving the performance of the
ExactMaTcH method. We observe that our weighting model
does generalize to Conceptual Captions. On ExacTMATCH,
we achieve a 33-37% boost in performance when using
weighting (compared to no weighting) in (A), and 26% in
(B). Thus, on Conceptual Captions, the impact of weighting
is even more significant than in Table 6. TExTCLsF is 10% bet-
ter than ExactMartcn with weighting (=27.2/24.7-1) but
requires some labels.

Simplified Computation of Weights. The results in Table 8
replace the use of PVSE [21] to compute an image-text joint
embedding, with a much simpler model trained with triplet
loss and no attention. Thus, the gains from weighting that
we achieve are not due to the complexity of PVSE.

Image-Caption Pairs With High/Low Scores. In Fig. 11, we
show examples of image-caption pairs from each of COCO,
Conceptual Captions, and MIRFlickr1M, that achieved high
or low homogeneity scores. Among COCO samples, images
with low homogeneity scores are usually more complex than
ones with high scores, and mentioned concepts may be
abstract (“symbols”, “stop and go”, “display”, “fabrics”). On
Conceptual Captions, high-scoring pairs describe the content
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cat dog shelter death kill
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srikant jothi christmas 2007 mckees

Fig. 11. Image-caption pairs with high homogeneity scores on the top, and low scores on the bottom.

MIRFlickrIM

karmannghia volkswagen car
automobile chrome vintage retro

rocks img8687 diabetes diabetes365 S1gnage logo font typography red shiny

TABLE 9
Average Precision (in %) on the Pascal VOC Test Set Using Ground-Truth Image-Level Labels
[=]
kS - ° v Y B o [o} ; o
g £ 2 8§ E g - . ®§ ¥ - ® £ B £ § § & £ 5
Methods g ¥ 5 8 8 2 8 § § 8 8 8 2 E & & % § £ z|E¢
VOC 2007 results:
OICR VGG16 [8] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 253 37.8 655 157 24.1 41.7 469 64.3 62.6|41.2
PCL-OB-G VGGI16 [16] 544 69.0 39.3 192 15.7 629 644 30.0 25.1 52.5 444 19.6 39.3 67.7 17.8 22.9 46.6 57.5 58.6 63.0|43.5
TS2C [7] 59.3 57.5 437 27.3 135 63.9 61.7 59.9 24.1 46.9 36.7 45.6 39.9 62.6 10.3 23.6 41.7 52.4 58.7 56.6|44.3
OICR Ens.+FRCNN [8] 655 672 472 21.6 221 68.0 685 359 57 63.1 495 303 64.7 66.1 13.0 25.6 50.0 57.1 60.2 59.0|47.0
PCL-OB-G Ens.+FRCNN [16] | 63.2 69.9 47.9 22.6 27.3 71.0 69.1 49.6 12.0 60.1 51.5 37.3 63.3 63.9 158 23.6 48.8 55.3 61.2 62.1|48.8
Ours 68.7 49.7 53.3 27.6 14.1 643 58.1 76.0 23.6 59.8 50.7 57.4 48.1 63.0 155 18.4 49.7 55.0 48.4 67.8|48.5
VOC 2012 results:
OICR VGG16 [8] 67.7 61.2 41.5 256 22.2 54.6 49.7 254 199 47.0 18.1 26.0 389 67.7 2.0 22.6 41.1 343 379 553|379
PCL-OB-G VGG16 [16] 582 66.0 41.8 24.8 27.2 55.7 55.2 285 16.6 51.0 17.5 28.6 49.7 70.5 7.1 25.7 47.5 36.6 44.1 59.2|40.6
TS2C [7] 67.4 57.0 37.7 237 152 56.9 49.1 64.8 15.1 39.4 19.3 484 445 672 2.1 233 35.1 40.2 46.6 45.8|40.0
OICR Ens.+FRCNN [8] 714 69.4 55.1 29.8 28.1 55.0 57.9 244 172 59.1 21.8 266 57.8 713 1.0 23.1 52.7 375 335 56,6425
PCL-OB-G Ens.+FRCNN [16] | 69.0 71.3 56.1 30.3 27.3 552 57.6 30.1 8.6 56.6 18.4 43.9 64.6 71.8 7.5 23.0 46.0 44.1 42.6 58.8|44.2
Ours 742 49.8 56.0 32.5 22.0 55.1 49.8 73.4 20.4 47.8 32.0 39.7 48.0 62.6 8.6 23.7 52.1 52.5 42.9 59.1|45.1

The top shows VOC 2007 and the bottom shows VOC 2012 results. The best single model is in bold, and best ensemble in italics.

in a literal fashion, and many objects are mentioned. In low-
scoring pairs, mentioned objects are not present (e.g., “man”)
or present objects are not mentioned (e.g., the bed). On MIR-
Flickr1M, the high-scoring images mention object categories,
while the low-scoring ones are significantly more abstract or
non-object-like. Thus, we qualitatively showed that the
homogeneity scores measure the relevance and redundancy
between the image and text modalities, in terms of ability to
extract object labels. Homogeneity helps to rule out less use-
ful examples to better train a detector.

4.5 Verifying WSOD With Ground-Truth Image
Labels

We finally show the performance of our method in the clas-
sic WSOD setting where clean image-level labels for training
are available and do not need to be inferred. These results
validate the method component in Section 3.3. Our goal is
not to exceed the very latest WSOD models, but to perform
on par with recent ones. Note that all methods tested in this
section, including ours, use ground-truth image-level labels,
but differ in terms of architectures and WSOD techniques.
We refer to our method here as a WSOD variant, to distin-
guish it from the main focus of our work on using language
supervision (which is not utilized here). Also note that the
multi-scale training and test time augmentation mentioned

in our Section 3.4 are widely adopted in WSOD. We verified
that all baseline methods in this section use them. Thus, our
comparisons to the SOTA methods in this section are fair.

Results on PASCAL VOC. For each image, we extract object
categories from all the ground-truth bounding boxes, and
only keep these image-level labels for training, discarding box
information. For VOC 2007 and 2012, we train on 5,011 and
11,540 trainval images respectively and evaluate on 4,952 and
10,991 test images. We report mean Average Precision (mAP)
at IoU > 0.5, and compare against multiple strong WSOD
baselines, in Table 9. The WSOD variant of our model per-
forms on par with or better than the baselines on both VOC
2007 and 2012.

50 | = OICR ¢ Ours 70 ‘ = OICR + Ours
45 ‘ ~65
e, | g
2 40 §60
E3* /v—‘ ‘655
‘ 3]
30 50
0 1 2 3 0 1 2 3

Refinement times Refinement times

Fig. 12. Analysis of our basic network and OICR components on VOC
2007. Comparison of the performance of our model and OICR VGG_M
after iterative refinement.
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TABLE 10
COCO Detection Using Ground-Truth Image Labels, With
Supervised Models at the Top, Best WSOD in bold

Methods Avg. Precision, IoU
0.5:0.95 0.5
Faster RCNN [1] 219 42.7
Faster Inception-V2 [59] 28.0 -
PCL-OB-G VGG16 [16] 8.5 19.4
PCL-OB-G Ens.+FRCNN [16] 9.2 19.6
Ours 10.6 23.4

Effects of the Basic Network and OICR. The performance
gain of our model comes from two aspects: (1) a more
advanced detection model backbone architecture and (2) the
online instance classifier refinement (OICR). Fig. 12 shows the
performance of the WSOD variant of our method and that of
Tang [8] (OICR VGG_M), both refining for 0, 1, 2, 3 times.
With no (0) refinement, our basic network architecture out-
performs the VGG_M backbone of Tang et al. by 27% in mAP.
But the basic architecture improvement is not sufficient to
achieve top results. If we use OICR to refine the models 1, 2,
or 3 times, we gain 24%, 29%, and 30% respectively while
Tang achieve smaller improvement (22%, 28%, and 29%
gains).

Results on COCO. We train the WSOD variant of our
model on the 118,287 train2017 images, using the image-level
ground truth labels. We report mAP at IoU=.50:.05:.95 and
mAP@Q.5, on the 20,288 test-dev2017 images. We compare to
a representative fully-supervised detection model [1];
“Faster Inception-V2” [58] which is our WSOD variant’s
supervised detection counterpart (using bounding-box
annotations), and a recent WSOD model, PCL-OB-G Ens +
FRCNN [16]. As demonstrated in Table 10, our model out-
performs the WSOD model by 15% in terms of mAP, but as
expected, the gap between with the supervised method is
still large due to the disparate supervision strength.

5 CONCLUSION

We showed how we can successfully leverage naturally aris-
ing, weak supervision in the form of captions. We amplify
the signal that captions provide by learning to bridge the gap
between what human annotators mention, and what is pres-
entin the image. We also learn how to weigh the contribution
of different captions as supervision, based on the expected
alignment between the image and caption. In the future, we
will extend our method to incorporate raw supervision in
the form of spoken descriptions in video.

REFERENCES

[1] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” in
Proc. Int. Conf. Neural Inf. Process. Syst., 2015, pp. 91-99.

[2] J.Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2016, pp. 779-788.

[3] K. Ye, A. Kovashka, M. Sandler, M. Zhu, A. Howard, and M. For-
noni, “SpotPatch: Parameter-efficient transfer learning for mobile
object detection,” in Proc. Asian Conf. Comput. Vis., 2020, pp. 636—640.

[4] Y. Chen, W. Li, C. Sakaridis, D. Dai, and L. Van Gool, “Domain
adaptive faster R-CNN for object detection in the wild,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 3339-3348.

[5]

(6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 4, APRIL 2023

C. Thomas and A. Kovashka, “Artistic object recognition by unsu-
pervised style adaptation,” in Proc. Asian Conf. Comput. Vis., 2018,
pp- 460-476.

H. Bilen and A. Vedaldi, “Weakly supervised deep detection
networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp- 2846-2854.

Y. Wei et al., “Ts2c: Tight box mining with surrounding segmenta-
tion context for weakly supervised object detection,” in Proc. Eur.
Conf. Comput. Vis., 2018, pp. 434-450.

P. Tang, X. Wang, X. Bai, and W. Liu, “Multiple instance detection
network with online instance classifier refinement,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2017, pp. 3059-3067.

Z. Ren et al., “Instance-aware, context-focused, and memory-effi-
cient weakly supervised object detection,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2020, pp. 10 595-10 604.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp- 2818-2826.

F. Wan, C. Liu, W. Ke, X. Ji, ]. Jiao, and Q. Ye, “C-MIL: Continua-
tion multiple instance learning for weakly supervised object
detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019,
pp- 2194-2203.

Z.Zeng, B. Liu, J. Fu, H. Chao, and L. Zhang, “WSOD2: Learning
bottom-up and top-down objectness distillation for weakly-super-
vised object detection,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.,
2019, pp. 8291-8299.

Z. Ren et al., “Instance-aware, context-focused, and memory-effi-
cient weakly supervised object detection,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2020, pp. 10595-10604.

M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Is object localization
for free? - Weakly-supervised learning with convolutional neural
networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015,
pp. 685-694.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba,
“Learning deep features for discriminative localization,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 2921-2929.

P. Tang et al., “PCL: Proposal cluster learning for weakly super-
vised object detection,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 42, no. 1, pp. 176-191, Jan. 2020.

A. Diba, V. Sharma, A. Pazandeh, H. Pirsiavash, and L. Van
Gool, “Weakly supervised cascaded convolutional networks,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp- 5131-5139.

F. Wan, P. Wei, J. Jiao, Z. Han, and Q. Ye, “Min-entropy latent
model for weakly supervised object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 1297-1306.

S. K. Divvala, A. Farhadi, and C. Guestrin, “Learning every-
thing about anything: Webly-supervised visual concept
learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2014, pp. 3270-3277.

M. Carvalho, R. Cadene, D. Picard, L. Soulier, N. Thome, and M.
Cord, “Cross-modal retrieval in the cooking context: Learning
semantic text-image embeddings,” in Proc. Int. ACM SIGIR Conf.
Res. Develop. Inf. Retrieval, 2018, pp. 35-44.

Y. Song and M. Soleymani, “Polysemous visual-semantic embed-
ding for cross-modal retrieval,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2019, pp. 1979-1988.

A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for
generating image descriptions,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2015, pp. 3128-3137.

K. Xu et al., “Show, attend and tell: Neural image caption genera-
tion with visual attention,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 2048-2057.

H. Xu and K. Saenko, “Ask, attend and answer: Exploring ques-
tion-guided spatial attention for visual question answering,” in
Proc. Eur. Conf. Comput. Vis., 2016, pp. 451-466.

J. Lu, D. Batra, D. Parikh, and S. Lee, “ViLBERT: Pretraining task-
agnostic visiolinguistic representations for vision-and-language
tasks,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2019, pp. 13-23.
H. Tan and M. Bansal, “LXMERT: Learning cross-modality
encoder representations from transformers,” in Proc. Conf. Empir.
Methods Natural Lang. Process. 9th Int. Joint Conf. Natural Lang. Pro-
cess., 2019, pp. 5100-5111.

A. Rohrbach, M. Rohrbach, R. Hu, T. Darrell, and B. Schiele,
“Grounding of textual phrases in images by reconstruction,” in
Proc. Eur. Conf. Comput. Vis., 2016, pp. 817-834.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 15,2023 at 02:01:05 UTC from IEEE Xplore. Restrictions apply.



UNAL ETAL.: LEARNING TO OVERCOME NOISE IN WEAK CAPTION SUPERVISION FOR OBJECT DETECTION

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

D. Suris, D. Epstein, H. Ji, S.-F. Chang, and C. Vondrick, “Learning
to learn words from visual scenes,” in Proc. Eur. Conf. Comput.
Vis., 2020, pp. 434-452.

C. Thomas and A. Kovashka, “Preserving semantic neighbor-
hoods for robust cross-modal retrieval,” in Proc. Eur. Conf. Com-
put. Vis., 2020, pp. 317-335.

L. Gomez, Y. Patel, M. Rusinol, D. Karatzas, and C. V. Jawahar,
“Self-supervised learning of visual features through embedding
images into text topic spaces,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit., 2017, pp. 2017-2026.

A. Miech, J.-B. Alayrac, L. Smaira, I. Laptev, J. Sivic, and A. Zisser-
man, “End-to-end learning of visual representations from uncu-
rated instructional videos,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2020, pp. 9876-9886.

G. Bertasius and L. Torresani, “COBE: Contextualized object
embeddings from narrated instructional video,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2020, Art. no. 1269.

K. Desai and J. Johnson, “VirTex: Learning visual representations
from textual annotations,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2021, pp. 11157-11168.

A. Radford et al., “Learning transferable visual models from natu-
ral language supervision,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 8748-8763.

K. Chen, H. Song, C. C. Loy, and D. Lin, “Discover and learn new
objects from documentaries,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit., 2017, pp. 1111-1120.

K. Ye, M. Zhang, A. Kovashka, W. Li, D. Qin, and J. Berent,
“Cap2Det: Learning to amplify weak caption supervision for object
detection,” in Proc. Int. Conf. Comput. Vis., 2019, pp. 9685-9694.

I. Misra, C. L. Zitnick, M. Mitchell, and R. Girshick, “Seeing
through the human reporting bias: Visual classifiers from noisy
human-centric labels,” in Proc. IEEE Conf. Comput. Vis. Pattern Rec-
ognit., 2016, pp. 2930-2939.

M. Zhang, R. Hwa, and A. Kovashka, “Equal but not the same:
Understanding the implicit relationship between persuasive
images and text,” in Proc. Brit. Mach. Vis. Conf., 2018, Art. no. 8.

M. Alikhani, P. Sharma, S. Li, R. Soricut, and M. Stone, “Clue:
Cross-modal coherence modeling for caption generation,” in Proc.
Annu. Meeting Assoc. Comput. Linguistics, 2020, pp. 6525-6535.

J. Hessel, D. Mimno, and L. Lee, “Quantifying the visual concrete-
ness of words and topics in multimodal datasets,” in Proc. Conf.
North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Tech-
nol., 2018, pp. 2194-2205.

C. Thomas and A. Kovashka, “Emphasizing complementary sam-
ples for non-literal cross-modal retrieval,” in Proc. Multimodal
Learn. Appl. Workshop, 2022.

F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified
embedding for face recognition and clustering,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 815-823.

Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proc. Int. Conf. Mach. Learn., 2014, pp. 1188-1196.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language under-
standing,” in Proc. Conf. North Amer. Chapter Assoc. Comput. Lin-
guistics: Hum. Lang. Technol., 2019, pp. 4171-4186.

J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors
for word representation,” in Proc. Conf. Empir. Methods Natural
Lang. Process., 2014, pp. 1532-1543.

J. Ly, J. Yang, D. Batra, and D. Parikh, “Neural baby talk,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 7219-7228.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248-255.

J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders,
“Selective search for object recognition,” Int. |. Comput. Vis.,
vol. 104, no. 2, pp. 154-171, 2013.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770-778.

K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder
approaches,” in Proc. 8th Workshop Syntax Semantics Struct. Statist.
Transl., 2014, pp. 103-111.

R. Rehufek and P. Sojka, “Software framework for topic model-
ling with large corpora,” in Proc. LREC Workshop New Challenges
NLP Frameworks, 2010, pp. 45-50. [Online]. Available: http://is.
muni.cz/publication /884893 /en

[52]

[53]

[54]

[55]

[56]

[571]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

4913

X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proc. 13th Int. Conf. Artif.
Intell. Statist., 2010, pp. 249-256.

D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in Proc. Int. Conf. Learn. Representations, 2015.

Y. A. Malkov and D. A. Yashunin, “Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable small
world graphs,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42,
no. 4, pp. 824-836, Apr. 2020.

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn.
Res., vol. 12, pp. 2121-2159, 2011.

G. Bradski, “The openCV library,” Dr. Dobb’s |. Softw. Tools,
vol. 25, pp. 120-123, 2000.

M. Abadi et al., “Tensorflow: A system for large-scale machine
learning,” in Proc. USENIX Conf. Operating Syst. Des. Implementa-
tion, 2016, pp. 265-283.

J. Huang et al., “Speed/accuracy trade-offs for modern convolu-
tional object detectors,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2017, pp. 3296-3297.

M. Everingham, L. Van Gool, C. K. Williams, ]. Winn, and A. Zis-
serman, “The pascal visual object classes (VOC) challenge,” Int. |.
Comput. Vis., vol. 88, no. 2, pp. 303-338, 2010.

T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in
Proc. Eur. Conf. Comput. Vis., 2014, pp. 740-755.

X. Chen et al., “Microsoft COCO captions: Data collection and
evaluation server,” 2015, arXiv:1504.00325.

P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, “From image
descriptions to visual denotations: New similarity metrics for
semantic inference over event descriptions,” Trans. Assoc. Comput.
Linguistics, vol. 2, pp. 67-78, 2014.

M. J. Huiskes, B. Thomee, and M. S. Lew, “New trends and ideas in
visual concept detection: The MIR flickr retrieval evaluation initia-
tive,” in Proc. Int. Conf. Multimedia Inf. Retrieval, 2010, pp. 527-536.

P. Sharma, N. Ding, S. Goodman, and R. Soricut, “Conceptual cap-
tions: A cleaned, hypernymed, image alt-text dataset for automatic
image captioning,” in Proc. 56th Annu. Meeting Assoc. Comput. Lin-
guistics, 2018, pp. 2556-2565.

A. Zareian, K. D. Rosa, D. H. Hu, and S.-F. Chang, “Open-vocabu-
lary object detection using captions,” in Proc. IEEE/CVF Conf. Com-
put. Vis. Pattern Recognit., 2021, pp. 14 39314 402.

Mesut Erhan Unal received the BSc degree in
computer science and engineering from Hacet-
tepe University, Turkey. He is currently working
toward the PhD degree in computer science with
the University of Pittsburgh (Pitt). Before starting
his PhD at Pitt, he worked for Jotform as a soft-
ware engineer for two years. The goal of his
research is to better understand, interpret and
manipulate visual data using natural language
supervision and contextual information.

Keren Ye received the bachelors and master's
degrees from Beihang University, China, in 2004-
2011, and the PhD degree in computer science
from the University of Pittsburgh, in August 2021.
He is now a senior applied research scientist with
Cruise, San Francisco. His research interests
include object detection, multi-modal learning, and
knowledge representation. Before studying at Pitt,
he worked as a software engineer with Baidu Inc. for
five years.

Mingda Zhang received the BSc degree in chemi-
cal biology from Peking University, China, in 2013,
and the PhD degree in computer science from the
University of Pittsburgh, in December 2021. He is
currently a software engineer with Google
Research, New York. His research interests
include the intersection of computer vision and
natural language processing. He has completed
research internships in Google Al, Seattle.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 15,2023 at 02:01:05 UTC from IEEE Xplore. Restrictions apply.


http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 4, APRIL 2023

Christopher Thomas received the PhD degree in
computer science from the University of Pittsburgh,
in August 2020. He is currently an assistant profes-
sor in computer science with Virginia Tech. Previ-
ously, he was a postdoctoral researcher with
Columbia University, mentored by Prof. Shih-Fu
Chang and working as part of the DARPA SemaFor
program. His research interests include semantic
and pragmatic image understanding, structured,
weak, and unsupervised learning, vision and lan-
guage, and image generation.

Adriana Kovashka received the PhD degree from
the University of Texas at Austin, in August 2014.
She is currently an associate professor in computer
science with the University of Pittsburgh. Her work
has been published in CVPR, ICCV, ECCV, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, International Journal of Computer
Vision, NeurlPS, AAAI, and ACL, and has been
funded by NSF, Google, Amazon, and Adobe. She
is the recipient of a NSF CAREER Award in 2021.
She served as area chair for CVPR 2018-2021,
and will serve as ICCV 2025 program co-chair.

Wei Li received the bachelor's degree from
Tsinghua University, and the master's degree
from CUHK. He is a research scientist with News-
Break Seattle. His current research focus is on
video understanding, editing, and synthesis. His
work has been published at CVPR, ICCV, IEEE
Transactions on Pattern Analysis and Machine
Intelligence and etc.

Danfeng Qin received the PhD degree from the
Computer Vision Lab, ETH Zurich. She is cur-
rently a software engineer with Google Al. Her
research interests include label efficient learning
with web data.

Jesse Berent received the master's degree in
microengineering from the EPFL, Switzerland, and
the PhD degree in communications and signal
processing from Imperial College London, in 2008.
He is currently a research scientist and tech lead
manager with Google Al Zurich. His group focuses
onimage and video analysis, digital ink recognition,
and machine learning. Prior to joining Google in
2009, he was a postdoctoral researcher with Impe-
rial College London focusing on multi-view image
analysis.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 15,2023 at 02:01:05 UTC from IEEE Xplore. Restrictions apply.



