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Abstract Mice are the most commonly used model animals for itch research and for devel-
opment of anti-itch drugs. Most laboratories manually quantify mouse scratching behavior to 
assess itch intensity. This process is labor-intensive and limits large-scale genetic or drug screen-
ings. In this study, we developed a new system, Scratch-AID (Automatic Itch Detection), which 
could automatically identify and quantify mouse scratching behavior with high accuracy. Our 
system included a custom-designed videotaping box to ensure high-quality and replicable mouse 
behavior recording and a convolutional recurrent neural network trained with frame-labeled 
mouse scratching behavior videos, induced by nape injection of chloroquine. The best trained 
network achieved 97.6% recall and 96.9% precision on previously unseen test videos. Remark-
ably, Scratch-AID could reliably identify scratching behavior in other major mouse itch models, 
including the acute cheek model, the histaminergic model, and a chronic itch model. Moreover, 
our system detected significant differences in scratching behavior between control and mice 
treated with an anti-itch drug. Taken together, we have established a novel deep learning-based 
system that could replace manual quantification for mouse scratching behavior in different itch 
models and for drug screening.

Editor's evaluation
Scratch assays are the gold standard for measuring itch in rodents. However, the current limitation 
is that this is performed manually which is enormously taxing in terms of hours spent counting 
scratching bouts. The authors have developed a valuable automatic system to quantify scratch 
behavior with high accuracy and provided a valuable tool for the field. This will be resourceful for the 
greater itch biology community.
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Introduction
Itch is a disturbing symptom associated with skin diseases, immune problems, systemic diseases, and 
mental disorders (Cevikbas and Lerner, 2020; Hong et al., 2011; Kremer et al., 2020; Ständer 
et al., 2007). Chronic itch affects about 13–17% of the population (Matterne et al., 2009; Weisshaar 
and Dalgard, 2009), severely worsening the quality of life of affected patients. Unfortunately, treat-
ment options for many chronic itch conditions are still limited (Yosipovitch et al., 2018; Yu et al., 
2021).

Mice are the most widely used model animals for studying itch mechanisms and for developing 
new preclinical anti-itch drugs (Han et al., 2013; Liu et al., 2009; Solinski et al., 2019; Sun and 
Chen, 2007). Since itch is an unpleasant sensation that provokes the desire to scratch (Ikoma et al., 
2006), scratching behavior has been assessed as a proxy for itch intensity in mice (Liu et al., 2009; 
Morita et al., 2015). Till now, this quantification process has been mainly conducted by watching 
videos and manually counting scratching bouts or the total scratching time, which is tedious and time 
consuming, unavoidably introduces human errors and bias, and limits the large-scale genetic or drug 
screenings.

Given the biological importance and the obvious need, several research groups have tried different 
strategies to automate this process, including an acoustic recording method (Elliott et al., 2017), a 
method using magnetic field and metal ring to detect paw movement (Mu et al., 2017), and several 
video analysis-based approaches (Bohnslav et al., 2021; Kobayashi et al., 2021; Park et al., 2019; 
Sakamoto et  al., 2022). Nevertheless, these methods have not been widely adopted by other 
research laboratories, due to the uncertain performance of the trained models in different lab envi-
ronments, the requirement of specialized equipment, and/or inadequate evaluation of these methods 
in different mouse itch models.

In recent years, with the rapid progress in the field of artificial intelligence, deep learning has 
been applied in various scientific research areas. For example, convolutional neural networks (CNN) 
are widely used in computer visual recognition tasks (Gu et  al., 2018), whereas recurrent neural 
networks (RNN) (Graves, 2013) are developed for analyzing temporal dynamic features. Moreover, 
rapid improvement of computing power, especially in the graphics processing unit capacity, together 
with new open-source deep learning libraries, such as PyTorch (Paszke et al., 2019), Keras (Gulli and 
Pal, 2017), and Tensorflow (Abadi et al., 2016), have greatly accelerated broad applications of deep 
learning.

Animal behavior analysis is one of the research areas benefiting from the applications of deep 
learning. For example, DeepLabCut can track different body parts in freely moving animals for behavior 
analysis (Mathis et al., 2018). DeepEthogram recognizes and annotates different behaviors of mice 
and flies (Bohnslav et al., 2021). These examples support the proof-of-principle that deep-learning is 
a powerful avenue for automating animal behavior analysis. Nevertheless, for a given animal behavior, 
like mouse scratching, a designated method, which achieves high sensitivity, specificity, and general-
ization to replace human observers, still needs to be established.

To meet this challenge, we developed a new deep learning-based system, Scratch-AID (Automatic 
Itch Detection), which achieved automatic quantification of mouse scratching behavior with high accu-
racy. We first designed a videotaping box to acquire high-quality recording of mouse behavior in a 
reproducible environment from the bottom. We recorded 40 videos of 10 adult wildtype mice (5 males 
and 5 females) after nape injection of a non-histamine pruritogen, chloroquine (CQ), and manually 
labeled all video frames as the reference. We then designed a convolutional recurrent neural network 
(CRNN) by combining CNN and RNN and trained it with 32 scratching videos from 8 randomly picked 
mice. We obtained a series of prediction models using different training parameters and evaluated 
these models with test videos (eight unseen test videos from the two remaining mice). The best 
trained model achieved 97.6% recall and 96.9% precision on test videos, similar to the manual quan-
tification results. Impressively, Scratch-AID could also quantify scratching behavior from other major 
acute and chronic itch models with high accuracy. Lastly, we applied Scratch-AID in an anti-itch drug 
screening paradigm and found that it reliably detected the drug effect. In summary, we have estab-
lished a new system for accurate automatic quantification of mouse scratching behavior. Based on the 
performances, Scratch-AID could replace manual quantification for various mouse itch models and for 
drug or genetic screenings.

https://doi.org/10.7554/eLife.84042
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Results
The overall workflow
Our workflow to develop a new system for detection and quantification of mouse scratching behavior 
consists of four major steps (Figure 1A): (1) Videotape mouse scratching behavior induced by an 
acute nape itch model; (2) Manually annotate scratching frames in all videos for training and test data-
sets; (3) Design a deep learning neural network; train this network with randomly selected training 
videos and adjust different training parameters; and evaluate the performance of the trained neural 
networks on test videos; (4) Evaluate the generalization of the trained neural network in additional itch 
models and a drug screening paradigm.

Design a videotaping box for high-quality and reproducible recording 
of mouse scratching behavior
High-quality videos recorded from a reproducible environment are critical for stable performance 
of trained prediction models and for adoption by other research laboratories. Thus, we designed a 
mouse videotaping box for such a purpose. It consisted of two boxes with white acrylic walls joined 
by a transparent acrylic floor (Figure 1B). The top (‘mouse’) box (Length × Width × Height = 14.68 
× 14.68 × 5 cm) had a lid for mouse access. The bottom (‘camera’) box (Length × Width × Height = 
14.68 × 14.68 × 23.6 cm) had a door for access to the camera (Logitech C920e Business Webcam). 
The walls and the lid of the box were non-transparent to minimize interference from outside visual 
stimuli. Ambient light penetrated the walls and provided sufficient illumination for behavior recording. 
A mouse could freely move inside the top box, and a camera recorded mouse behavior from the 
bottom (30 frames/s). Compared to the top or side views, the bottom view can clearly capture the 
key body parts involved in scratching behavior, such as the scratching hind paw and mouth, and their 
movements in great details (Video 1). The magnification, resolution, and brightness of the video can 
be adjusted by the camera recording software (Logitech C920e Business Webcam driver and software) 
to achieve consistent video recording. In short, this customized videotaping box allows high-quality 
video recording of mouse scratching and other behaviors in a stable and reproducible environment.

Spontaneous scratching is a rare event under normal conditions in mice. Itch sensation and 
scratching are usually induced by different itch models for research. Common mouse itch models are 
classified as cheek or nape, histaminergic or non-histaminergic, and acute or chronic, based on the 
body location where itch sensation is evoked, the kind of pruritogens, and the duration of itch sensa-
tion (Ikoma et al., 2006; Liu and Dong, 2015; Shimada and LaMotte, 2008; Thurmond et al., 2008). 
We first used an acute nape itch model induced by a non-histaminergic pruritogen, CQ, because it 
triggered immediate and robust scratching behavior in mice (Liu et al., 2009). After intradermal injec-
tion of CQ (200 μg in 15 μl saline) into left or right nape of the mice, a 20-min video was recorded 
using the customized videotaping box (Figure 1C).

In response to CQ injection, mice scratched the affected skin region using their ipsilateral hind 
paw. Evoked mice displayed multiple episodes of scratching, which were separated by non-scratching 
phases. Each episode of scratching, here defined as a scratching train, usually contained four phases: 
start (lifting the scratching hind paw toward the affected skin), scratching bout (rhythmic movement of 
hind paw against the affected skin), paw licking (putting the scratching hind paw into the mouth and 
licking), and end (putting down the scratching hind paw back to the floor) (Figure 1D and Video 1). 
The cycle of scratching bout and paw licking might occur once or repeat multiple times, depending 
on the itch intensity and the internal state of the mouse. The time from the start to the end of a given 
scratching train is defined as the duration. The total scratching time is the sum of durations of all 
scratching trains, which is an effective parameter to quantify the scratching behavior and assess itch 
intensity.

Video annotation
Forty scratching videos from 10 adult wildtype C57 mice (5 males and 5 females, 2- to 3-month-old) 
were recorded (Supplementary file 1). For neural network training and testing and for comparing 
performances between trained neural networks and manual quantification, two methods were used 
to annotate mouse scratching behavior in these videos. The first method (manual annotation) was 
to watch these videos at normal (1×) speed (30 frames/s) and label the start and end time points 

https://doi.org/10.7554/eLife.84042
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Figure 1. The overall workflow and building a customized videotaping box for mouse scratching behavior recording. (A) A diagram showing the 
workflow to develop a deep learning-based system for automatic detection and quantification of mouse scratching behavior. (B) An image of the 
designed videotaping box for high-quality video recording of mouse scratching behavior. Scale bar, 5 cm. (C) A cartoon showing the acute itch model 
induced by the chloroquine (CQ) injection in the nape, followed by video recording in the customized videotaping box. (D) Representative images 
showing different phases (P1–P4) of a scratching train (upper). Red arrows indicate the scratching hind paw. A cartoon showing the dynamic movement 
of the scratching hind paw in a scratching train (bottom). The cycle of scratching bout (P2) and paw licking (P3) may repeat once or more times in 
a scratching train. Scale bar, 1 cm. (E) The total number of scratching trains in each video. (F) The distribution of scratching train duration (n = 1135 
scratching trains). The inset is the zoom-in of the red rectangle.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Dynamic and static features of scratching behavior in the chloroquine (CQ) nape acute itch model.

https://doi.org/10.7554/eLife.84042
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(converted into frame numbers for subsequent 
analysis) of each scratching train. This is consis-
tent with the field common practice for manu-
ally quantifying mouse scratching behavior. Our 
manual annotation results were produced by 10 
human observers, thus reflecting an averaged 
precision of the manual quantification process. 
The second method (reference annotation, or 
ground-truth annotation) was to accurately deter-
mine the start and end of each scratching train by 
analyzing each video frame-by-frame. The refer-
ence annotation of the 40 videos were used as 
the training and test datasets. The total number 
of scratching train in each video and the distribu-
tion of scratching train durations were quantified 
(Figure 1E, F and Supplementary file 2).

Deep learning neural network 
design and model training
Mouse scratching behavior displayed unique 
dynamic (temporal) and static (spatial) features, 

which were highlighted by tracking the key body parts using DeepLabCut (Mathis et  al., 2018; 
Figure  1—figure supplement 1; Video  2). One of the most obvious dynamic features was the 
rhythmic movement of the scratching hind paw (Figure 1—figure supplement 1A, B). Some unique 
static features included the relative positional relationships between the scratching hind paw and 
other body parts (Figure 1—figure supplement 1C–F). To fully capture these dynamic and static 
features, we designed a CRNN to take advantage of the different strengths of CNN and RNN 
(Figure 2A and Figure 2—figure supplement 1A). The CRNN contained a CNN (ResNet-18 He et al., 
2016; Figure 2—figure supplement 1B) that extracts static features, such as the relative position of 
different body parts, an RNN (two-layer bidirectional gated recurrent unit [GRU]; Dey and Salem, 
2017; Figure 2—figure supplement 1C) that extracts dynamic features, such as the rhythmic move-
ment of the scratching hind paw in consecutive frames, and a fully connected layer (the classifier) to 
combine the features extracted by both CNN and RNN and generate the prediction output.

The 40 videos were randomly split into two parts, 80% of them (32 videos from 8 mice) were assigned 
to the training dataset and 20% of them (8 videos 
from 2 mice) to the test dataset (Figure 2C). Each 
video was converted into individual frames, and 
each frame was classified as ‘scratching’ (within 
a scratching train) or ‘non-scratching’ (out of a 
scratching train) based on the reference anno-
tation. For the training dataset preparation, N 
consecutive frames (a parameter adjusted for 
optimal model performance) were selected as 
one input to capture the dynamic features of 
scratching (Figure  2B). To avoid large sets of 
redundancy in the training dataset, two adja-
cent inputs were apart between 4 and 10 frames 
(Figure 2B). An input was labeled as ‘scratching’ 
(class 1) if more than half of frames (N/2) in the 
input were scratching frames; otherwise labeled 
as ‘non-scratching’ (class 0) (Figure 2B).

Since the dynamic features of scratching 
behavior spanned multiple frames, the input 
length (N frames) would be a critical training 
parameter. In CQ triggered acute nape itch 

Video 2. Key body parts tracked by DeepLabCut 
showing the dynamic and static features of mouse 
scratching behavior.

https://elifesciences.org/articles/84042/figures#video2

Video 1. An example of a mouse scratching train 
recorded by the designed videotaping box.

https://elifesciences.org/articles/84042/figures#video1

https://doi.org/10.7554/eLife.84042
https://elifesciences.org/articles/84042/figures#video2
https://elifesciences.org/articles/84042/figures#video1
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model, the average duration of one cycle of scratching bout and paw licking was around 30 frames 
(Figure 2—figure supplement 2A, B). Thus, we tested a range of input length from 3 to 45 frames 
for model training. During the training process, the loss (discrepancy between model prediction and 
reference annotation) decreased, and the prediction accuracy (correct prediction of both scratching 
and non-scratching frames/all frames) increased (Figure 2D, E). After 10 epochs (one epoch means 
the training covers the complete training dataset for one round), the accuracy reached a plateau 
(Figure 2E). The prediction accuracies were more than 0.98 for all input length, improving slightly 
with the increase of the input length (Figure 2E). These results demonstrate that the designed CRNN 

Figure 2. Deep learning neural network design and training. (A) Cartoon showing the architecture of designed 
deep learning neural network consisting of the combination of convolutional neural networks (CNN), recurrent 
neural networks (RNN), and classifier. (B) Cartoon showing the preparation of inputs for the training dataset. 
Consecutive N frames were selected as one input for training. The interval between two adjacent inputs in a video 
was 4–10 frames. (C) The information of a sample training and test datasets. The training loss decreased (D) while 
the accuracy increased (E) during the training process with different input length (N = 3, 5, 7, 13, 23, 45 frames). 
The inset is the zoom-in of part of the figure.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The architecture of deep learning neural network.

Figure supplement 2. Distribution of durations of scratching bout and paw licking in the chloroquine (CQ) nape 
acute itch model.

https://doi.org/10.7554/eLife.84042
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network works very efficiently to capture the scratching features and recognize scratching behavior in 
the training dataset.

Model evaluation on test datasets
We evaluated the performance of the trained prediction models on eight unseen test videos. First, 
similar to what described above, each test video was converted into inputs with ‘N’ frames (the same 
‘N’ was used for training and test), except that the two adjacent inputs were only 1 frame apart. 
Second, the trained neural network predicted each input to be ‘scratching’ or ‘non-scratching’. Third, 
to convert the prediction from one input (containing N frames) into the prediction for each individual 
frame, we used the following rule: the prediction of the middle frame of each input would be the 
same as that of the input. For example, if an input was predicted as ‘scratching’, then the middle 
frame of this input would be a ‘scratching’ frame. This conversion predicted each frame of tested 
videos as ‘scratching’ or ‘non-scratching’ expect for the few frames at the beginning or at the end 
of a video (see method for the missing data interpretation). Fourth, recall (the number of correctly 
predicted scratching frames/the number of reference scratching frames), precision (the number of 
correctly predicted scratching frames/the number of all predicted scratching frames), and F1 score 
(2*recall*precision/(recall + precision)) were calculated. Compared to the overall accuracy (correct 
prediction of both scratching and non-scratching frames/all frames), the recall, precision, and F1 score 
give a more precise and in depth evaluation of a model’s performance (Powers, 2020), especially 
when scratching is a relative rare event in a video.

To rule out the possibility that the good performance of our models was due to a specific combi-
nation of the training and test datasets, we rotated the training and test videos for cross-validation. 
For all different combination of training and test videos, F1 scores were all above 0.9 (Figure 3—
figure supplement 1A, B), supporting the stable and high performance of our prediction models. In 
addition, the prediction model performed better with the increased input length (Figure 3—figure 
supplement 1C). The best model, the one trained with videos 1–32 with the input length of 45 (N = 
45), was selected for additional analyses and tests.

The average recall and precision of the best model were 97.6% and 96.9%, respectively, for the 
eight test videos (Figure 3A), and the recall and precision for individual videos were above 95% in 
most cases (Figure 3B). This performance was similar to or even slightly better than that of manual 
annotation, which had an average recall and precision of 95.1% and 94.2%, respectively (Figure 3C, 
D). When comparing the total scratching time to the reference annotation, the average discrepancy of 
the model prediction was 1.9% whereas that of manual annotation was 2.1% (Figure 3E). The correla-
tion between the model prediction and the reference annotation was 0.98, similar to the manual 
annotation results (Figure 3F). When examining the probability traces of model prediction and the 
reference annotation (one example shown in Figure 3G), we found that the model successfully recog-
nized almost all the scratching trains in test videos, and that the prediction of the start and end of 
each scratching train aligned well with the reference annotation (Figure 3H). Taken together, these 
results demonstrate the high reliability and accuracy of our model to recognize and quantify mouse 
scratching behavior of new videos.

The trained neural network model focused on the scratching hind paw 
to recognize mouse scratching behavior
How did the trained neural network model recognize mouse scratching behavior and distinguish them 
from other behaviors? Although deep learning neural networks are processed as a black box, saliency 
maps can give some hints (Selvaraju et al., 2017), because they plot which parts of each frame (pixels) 
were mainly used during model prediction. The most salient parts were centered around the scratching 
hind paw in the scratching frames (Figure 4A, B and Figure 4—figure supplement 1A), suggesting 
that the prediction model focused on the features of the scratching hind paw. In some scratching 
frames, other body parts were also highlighted, such as the two front paws (Figure 4B), suggesting the 
model also utilized the positional relationship of these body parts to recognize scratching behavior. 
In contrast, for other ‘non-scratching’ mouse behaviors, such as wiping, grooming, rearing, and loco-
motion, the ‘salient’ parts showed no clear association with particular mouse body parts (Figure 4C–F 
and Figure 4—figure supplement 1B–E). Together, these saliency maps indicate that the trained 

https://doi.org/10.7554/eLife.84042
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Figure 3. Performance of the best model on test videos. The recall, precision, and F1 score of the best model on 
average (A) or in individual videos (B). The recall, precision, and F1 score of manual annotation on average (C) or 
in individual videos (D). (E) The comparison among model prediction, manual quantification, and the reference 
annotation. The reference annotation is normalized to 100% shown as the red line. (F) The correlations between 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.84042
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neural network learns to focus on the dynamic and static features of scratching for the prediction of 
mouse scratching behavior.

Model prediction error analysis
To further understand the performance of the best trained neural network model, we systematically 
analyzed its prediction errors in eight test videos (Figure 3—figure supplement 2) and compared to 
those from the manual quantification (Figure 3—figure supplement 3) and other trained models. We 
classified the prediction errors into five categories: Type 1, false positive (non-scratching region was 
predicted as a scratching train); Type 2, false negative (a real scratching train was not recognized); 
Type 3, blurred boundary (the prediction of the start or end of a scratching train was shifted); Type 
4, missed interval (two or more adjacent scratching trains were predicted as one scratching train); 
and Type 5 split scratching train (one scratching train was predicted as two or more scratching trains) 
(Figure 3—figure supplement 2A). We found that the dominant prediction error of the trained neural 
network model was Type 3 error, accounting for around 3% of the total scratching frames, followed by 
Type 2 and 5 errors accounting for around 1% (Figure 3—figure supplement 2B). For manual quanti-
fication, the major errors came from Types 3 and 4, accounting for 10% and 8% of the total scratching 
frames, respectively (Figure 3—figure supplement 3A).

For Type 1 error of the model prediction (Figure 3—figure supplement 2C1–C3), the durations of 
all false positive scratching trains were shorter than 10 frames (0.3 s) (Figure 3—figure supplement 
2C2) and temporarily close to a real scratching train (within 30 frames, <1 s) (Figure 3—figure supple-
ment 2C3). They were not caused by confusion with other behaviors, such as wiping, grooming, 
rearing, locomotion, and resting (Figure 3—figure supplement 4). Type 1 error was also rare for 
manual annotation (Figure 3—figure supplement 3B).

The models might miss short scratching trains, hence caused the Type 2 error. Indeed, all missed 
scratching trains were shorter than 40 frames (<1.3 s) (Figure 3—figure supplement 2D1, D2). For 
all scratching trains lasting less than 30 frames (<1  s), 18.5% of them were missed by the model 
prediction. This number decreased to 2.7% for scratching trains spanning between 30 and 60 frames 
(1–2 s). No scratching train was missed if they were longer than 60 frames (>2 s) (Figure 3—figure 
supplement 2D3). The Type 2 error positively correlated with the input length (N) of prediction 
models. It became zero or close to zero when models trained with shorter input lengths (3, 13, and 23 
frames) (Figure 3—figure supplement 5A–C). For manual annotation, Type 2 error was not common 
(Figure 3—figure supplement 3C1, C2).

Type 3 error (Figure 3—figure supplement 2E1–E3) was dominant among all five type errors. The 
average start and end frame shift of the model prediction were 2.2 and 7.0 frames (Figure 3—figure 
supplement 2E3), while those of the manual annotation were 11.5 and 12.8 frames (Figure 3—figure 
supplement 3D1, D2). The start and end frame shift of the manual quantification was similar (~350 
ms), which likely reflected the temporal delay of the real time human visual system processing. For the 
model prediction, which was an off-line frame by frame process, the temporal shifts were less than the 
human visual processing. In addition, the start of a scratching train was more accurately recognized by 
the model than the end of a scratching train (Figure 3—figure supplement 2E3). This might reflect 
the feature of scratching trains. It was relatively clear to determine the start of a scratching train when 

model prediction or manual quantification and reference annotation. R2, Pearson correlation coefficient. (G) An 
example scratching probability trace (red curve) predicted by the model and aligned with the reference annotation 
(green bar). (H) The two zoom-ins from (G) showing the nice alignment between the model prediction and the 
reference annotation.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Cross-validation and parameter optimization of the prediction models.

Figure supplement 2. Error analysis of the best prediction model.

Figure supplement 3. Error analysis of the manual quantification.

Figure supplement 4. Other mouse behaviors were not recognized as scratching behavior.

Figure supplement 5. Relationship between prediction errors and the input length or the scratching train 
duration.

Figure 3 continued

https://doi.org/10.7554/eLife.84042


 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Yu, Xiong et al. eLife 2022;11:e84042. DOI: https://​doi.​org/​10.​7554/​eLife.​84042 � 10 of 21

a mouse lifted its hind paw, but more ambiguous to determine when a mouse put its hind paw back 
onto the floor to complete a scratching train. The start and end shift did not correlate with the length 
of a scratching train (Figure 3—figure supplement 5D). Thus, the relative error (percentage of error 
frames) would decrease when the duration of a scratching train increases. Indeed, the prediction 

Figure 4. The prediction model focused on the scratching hind paw for scratching behavior recognition. (A, B) 
Saliency map showing the gradient value of each pixel of scratching frames during mouse scratching behavior 
prediction by the best model. The model focused on the scratching hind paw (A, B) and other body parts, such as 
front paws (B).Scale bar, 2 cm. Saliency map showing the gradient value of each pixel of wiping (C), grooming (D), 
rearing (E), and locomotion (F) frames during mouse scratching behavior prediction by the model.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Saliency map of mouse scratching and other behaviors during the prediction.

https://doi.org/10.7554/eLife.84042
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accuracy (as indicated by the F1 score) positively correlated (R2 = 0.5723) with the average scratching 
train duration in a video (Figure 3—figure supplement 5E).

Type 4 error was caused when two adjacent scratching trains were too close to each other and were 
predicted as one scratching train (Figure 3—figure supplement 2F1–F3). All missed intervals were 
shorter than 30 frames (<1 s) (Figure 3—figure supplement 2F2). Conversely, 51.4% of intervals less 
than 30 frames between the two adjacent scratching trains were not recognized. All intervals longer 
than 30 frames were recognized (Figure 3—figure supplement 2F3). Type 4 error was more common 
in manual annotation than in the model prediction (Figure 3—figure supplement 3E1, E2).

Type 5 error occurred when one scratching train was predicted as two or more scratching trains, 
separated by mispredicted intervals. The average lengths of these mispredicted intervals were around 
10 frames by model prediction and around 40 frames by manual annotation (Figure 3—figure supple-
ment 2G1, G2 and Figure 3—figure supplement 3F). When reviewing these intervals, we found 
that more than 80% of them were within or partially overlapped with a paw licking phase (Figure 3—
figure supplement 2G3), especially when the duration of the paw licking was more than 30 frames 
(Figure 3—figure supplement 5F). Thus, it seems likely that the model predicted some long licking 
frames within a scratching train as ‘non-scratching’. Type 4 and 5 errors reflect the intrinsic complexity 
of scratching behavior. Human definitions and field consensus, such as using ‘2s’ as the threshold 
between two adjacent scratching trains (Darmani and Pandya, 2000), would help to reduce these 
types of errors.

In summary, we have established a novel system combining a customized videotaping box and a 
well-trained CRNN neural network to automatically identify and quantify mouse scratching behavior 
with high accuracy. We named it as the Scratch-AID system.

Performance of the Scratch-AID system on other major acute itch 
models
In addition to the nape, the other commonly used body location to induce mouse itch sensation is the 
cheek (Shimada and LaMotte, 2008). To test whether the Scratch-AID system trained by the nape 
CQ model could also recognize and quantify scratching behavior of the cheek model, we injected CQ 
(200 μg in 15 μl saline) into the cheek of five wildtype mice (three males and two females) and recorded 
seven videos (Figure 5A). We compared the scratching behavior quantification by the Scratch-AID and 
manual annotation. The Scratch-AID prediction had 93.4% recall, 94.8% precision, and 0.941 F1 score 
(Figure 5B), while those of manual quantification were 96.0%, 88.6%, and 0.919 (Figure 5C). The 
correlation between the Scratch-AID prediction and reference annotation was 0.9926, and that of the 
manual quantification was 0.9876 (Figure 5D, E). The total scratching time in individual videos from 
both model prediction and manual annotation were close to the reference annotation (Figure 5F). 
These results demonstrate that the Scratch-AID system can reliably identify and quantify scratching 
behavior triggered by acute itch sensation in the cheek.

Different pruritogens administrated at the same body location trigger scratching behavior with 
different dynamic features (Wimalasena et al., 2021). Thus, we tested whether the Scratch-AID system 
trained by CQ injection could recognize scratching behavior triggered by a different pruritogen, hista-
mine. 100 μg histamine (in 15 μl saline) was intradermally injected into the nape and four videos were 
recorded (Figure 5G). The recall, precision, and F1 score from the Scratch-AID prediction were 96.6%, 
90.91%, and 0.936 (Figure 5H), while those of the manual annotation were 96.3%, 80.5%, and 0.877 
(Figure 5I). The correlation between the Scratch-AID prediction and reference annotation is 0.9707, 
and that of the manual quantification is 0.9895 (Figure 5J, K). The total scratching time in individual 
videos from both model prediction and manual annotation was similar to those of reference annota-
tion (Figure 5L). Taken together, these data show that our Scratch-AID system, although only trained 
with the CQ nape acute itch model, can recognize and quantify scratching behavior of acute itch 
models induced at different skin locations or triggered by different pruritogens, and that the predic-
tion accuracy of Scratch-AID is comparable to that of the manual annotation.

Performance of the Scratch-AID system on a chronic itch model
Chronic itch is a devastating symptom and severely affects the quality of patients’ life (Yosipovitch 
and Fleischer, 2003; Yu et  al., 2021). Investigating the underlying mechanisms using the mouse 
model is important for developing novel therapies for treating chronic itch in various conditions. To 

https://doi.org/10.7554/eLife.84042
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Figure 5. The Scratch-AID (Automatic Itch Detection) performance on other acute itch models. (A) A cartoon showing an acute itch model induced 
by chloroquine (CQ) injection in the mouse cheek. The average recall, precision, and F1 score of Scratch-AID (B) or manual annotation (C). Error bar, 
standard error of the mean (SEM). The correlation between model prediction (D) or manual quantification (E) and reference annotation. R2, Pearson 
correlation coefficient. (F) The comparison among model prediction, manual quantification, and reference annotation. The reference annotation is 
normalized to 100% shown as the red line. (G) A cartoon showing an acute itch model induced by histamine injection in the mouse nape. The average 
recall, precision and F1 score of Scratch-AID (H) or manual annotation (I). Error bar, SEM. The correlation between model prediction (J) or manual 
quantification (K) and reference annotation. R2, Pearson correlation coefficient. (L) The comparison among model prediction, manual quantification, and 
reference annotation. The reference annotation is normalized to 100% shown as the red line.

https://doi.org/10.7554/eLife.84042
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test whether the Scratch-AID system could be used to study mouse chronic itch models, we generated 
a squaric acid dibutylester (SADBE) induced contact dermatitis chronic itch model (Beattie et al., 
2022; Qu et al., 2015) and recorded nine videos from three wildtype mice (Figure 6A). Affected 
mice displayed spontaneous scratching toward the nape and/or head. Noticeably, dynamic features 
of spontaneous scratching behavior under this chronic itch condition were different from those exhib-
ited by the CQ acute itch model: the total scratching time was less for the same given period of 
time (20 min) (Figure 6—figure supplement 1A), and the average duration of the scratching trains 
was shorter (53 frames on average) than the acute scratching behavior induced by CQ (280 frames 
on average) (Figure 6—figure supplement 1B and Figure 1F). Despite these considerable differ-
ences, the recall, precision, and F1 score of the Scratch-AID prediction were 84.1%, 88.5%, and 0.862, 
respectively, compared to 84.1%, 66.3%, and 0.740 of manual annotation (Figure 6B, C). A likely 
reason for the decreased recall and precision of both model prediction and manual annotation was 

Figure 6. The Scratch-AID performance on a chronic itch model. (A) A cartoon showing a squaric acid dibutylester (SADBE) induced chronic itch model. 
The average recall, precision, and F1 score of Scratch-AID (B) or manual annotation (C). Error bar, standard error of the mean (SEM). The correlation 
between model prediction (D) or manual quantification (E) and reference annotation. R2, Pearson correlation coefficient. (F) The comparison among 
model prediction, manual quantification, and reference annotation. The reference annotation is normalized to 100% shown as the red line. (G) An 
example scratching probability trace (red curve) predicted by the model and aligned with the reference annotation (green bar) (left). Zoom-in (right 
panel) of the blue square part showing nice alignment of the model prediction with the reference annotation.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Different dynamic features of chronic and acute itch models.

https://doi.org/10.7554/eLife.84042
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the dominant short scratching trains in this chronic itch model (Figure 6—figure supplement 1B). The 
correlation between the model prediction and reference annotation was 0.9845 (Figure 6D), which 
was comparable to the manual annotation 0.9887 (Figure 6E). The total scratching time quantified by 
the model was slightly more accurate than the manual annotation (Figure 6F). From the prediction 
traces (an example shown in Figure 6G), the Scratch-AID system was capable to capture the low-
frequency short scratching trains.

Application of the Scratch-AID system in anti-itch drug screening
Finally, we tested whether the Scratch-AID system could be applied for anti-itch drug screening. Here, 
we used the histaminergic acute itch nape model and the pretreatment of Benadryl (Loew et al., 
1946), an FDA approved anti-histaminergic itch cream, as a proof-of-principle example. Benadryl 
or control cream was topically applied onto the mouse nape skin 1 hr before the intradermal injec-
tion of histamine (200 μg in 15 μl saline). Scratching behavior was then recorded for 20 min from six 
C57 wildtype mice (two males, four females) in the Benardryl treated group and seven C57 wild-
type mice (two males, five females) in the control group (Figure  7A). Quantification of the total 
scratching time (frames) using the Scratch-AID showed a significant reduction with Benardryl treat-
ment (Figure 7B). Similar results were found by manual annotation (Figure 7C). These results suggest 
that the Scratch-AID system is sensitive to detect the change of scratching behavior after an anti-itch 
drug treatment, which highlights the potential use of the Scratch-AID system in high-throughput and 
large-scale anti-itch drug screenings.

Discussion
Scratching is an itch-specific behavior, and the mouse is the major model animal to study itch mech-
anisms and to develop novel anti-itch drugs. In this study, we developed a new system, Scratch-AID, 
which combined a customized videotaping box and a well-trained neural network, for automatic 
quantification of mouse scratching behavior with high accuracy. Its performance is comparable to 
the manual annotation on major itch models and an anti-itch drug screening paradigm. As far as we 
are aware, this is the first deep learning-based system that can achieve such high accuracy and broad 
generalization.

Figure 7. Application of the Scratch-AID (Automatic Itch Detection) system in a drug screening paradigm. (A) A 
diagram showing the experimental design of an anti-itch drug test. Quantification of scratching behavior in anti-
itch cream treated group or control group by Scratch-AID (B) or manual annotation (C). Error bar, standard error of 
the mean (SEM). Differences between the two groups were analyzed using unpaired two-tailed Student’s t-test, ** 
p < 0.01.

https://doi.org/10.7554/eLife.84042


 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Yu, Xiong et al. eLife 2022;11:e84042. DOI: https://​doi.​org/​10.​7554/​eLife.​84042 � 15 of 21

It is remarkable that a model trained with 
CQ induced acute nape itch videos could reli-
ably recognize scratching behavior in other itch 
models, even when the body sites (nape vs. 
cheek) or the dynamics of scratching behavior 
(e.g., acute vs. chronic itch, different pruritogens) 
were different. The impressive performance and 
generalization of the Scratch-AID system are 
likely attributed to the high-quality and repro-
ducible video recording; a large amount of 
high-quality training datasets with the frame-by-
frame annotation; efficient CRNN deep learning 
neural network design; and training parameter 
optimizations.

Variable video recording condition is a major 
barrier that has prevented the adoption of a 
trained neural network by different laboratories. 
The trained models usually do not perform well 
with videos recorded under different conditions 
(illumination, field size, image resolution, magni-
fication of mice, image angle, backgrounds, etc.). 
Thus, we built a customized videotaping box to 
provide a reproducible and high-quality recording environment (Figure 1B). This helps to standardize 
the videotaping process, reduce the noise, and facilitate the stable performance and generalization of 
the trained deep learning models. Meanwhile, this video recording box is easy to be set up, scaled up, 
and adopted. Combined with the well-trained prediction model that has a comparable performance 
as manual quantification, the Scratch-AID system is ready to replace the manual quantification.

The amount and quality of training datasets are important to train a high accurate and generalized 
model. In general, the performance of a prediction model positively corelates with the size of the 
training dataset. In this study, we recorded 40 scratching videos in total and chose the CQ induced 
acute nape itch model, which triggered robust scratching behavior in mice, for model training and 
testing. The large number of scratching videos and the high amount of incidence of targeted behavior 
in each video provided a high-quality training dataset. In addition, the clear definition of scratching 
train and accurate annotation of videos, as conducted frame by frame, were also critical for training, 
testing, and error analysis.

CRNN is the classical deep learning neural network for analysis of animal behaviors. Here, we used 
ResNet (He et al., 2016) for the CNN part, which simplifies the neural network model by constructing 
a residual learning block through a shortcut connection of identity mapping (Figure  2—figure 
supplement 1B). GRU was used for the RNN part for extracting dynamic features (Figure 2—figure 
supplement 1C). Our study shows that ResNet and GRU make a good combination of deep learning 
architecture for analyzing animal behaviors. In addition, our network design is highly efficient that the 
accuracy plateau was achieved after only 10 epochs of training.

There is still some room to improve the performance of our predication models. To increase the 
capability of Scratch-AID to capture short scratching trains, we could train the CRNN neural network 
with scratching videos from chronic itch models. In addition, optimization of training parameters could 
also help with the improvement of prediction accuracy. For example, different error types varied 
when changing the input length (Figure 3—figure supplement 2B and Figure 3—figure supplement 
5A–C). The Type 2 and 4 errors increased when the input length increased, while Type 1, 3, and 5 
errors decreased when the input length increased. Thus, it is a trade-off to optimize and select the 
best input length for different itch models. Increasing the size of the training dataset may also help 
to get better prediction models. When checking the videos with relatively low prediction accuracy, 
for example, the video number 5 (V5) in the chronic itch model (Figure 6F), we found that the missed 
scratching frames could be due to a rare posture during scratching behavior, in which the scratching 
hind paw was partially occluded by the tail (Video 3). Thus, with more training videos containing some 

Video 3. An example of a rare posture during the 
scratching behavior with scratching hind paw partially 
occluded by the tail.

https://elifesciences.org/articles/84042/figures#video3

https://doi.org/10.7554/eLife.84042
https://elifesciences.org/articles/84042/figures#video3
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rare scratching postures, the trained neural network models could be more ‘knowledgeable’ for the 
diversity of scratching behavior.

Quantification of animal behaviors is critical for understanding the underlying molecular, cellular, 
and circuit mechanisms. Compared to manual analysis, the deep learning-based automatic analysis 
will not only improve efficiency and accuracy, but also reduce human bias and errors. Along this direc-
tion, we developed the Scratch-AID system to achieve automatic quantification of mouse scratching 
behavior. Our study also provides useful insights for developing new deep learning neural network 
models to achieve automatic analysis of other animal behaviors.

Materials and methods
Mouse lines and treatments
Mice (C57BL/6J purchased from The Jackson Laboratory, RRID: IMSR_JAX:000664) were housed in the 
John Morgan animal facility at the University of Pennsylvania. All animal treatments were conducted 
in accordance with protocols approved by the Institutional Animal Care and Use Committee and the 
guidelines of the National Institutes of Health (Protocol No. 804886).

Acute itch model
Acute itch models were conducted as previously described (Cui et al., 2022). Mouse cheeks or napes 
were shaved 3 days prior to experiments, and mice were placed in the videotaping box for acclimation 
(15 min/day for 3 days). At the day of experiment, mice were first acclimated to the videotaping box 
for 5  min, CQ (Sigma, C6628) (200 µg in 15 μl saline) or histamine (Sigma, H7250) (100 µg in 15 μl 
saline) was then intradermally injected into either the cheek or the nape, and scratching behavior was 
recorded for 20 min.

Behavior recording
The mouse scratching behavior was recorded using a Microsoft laptop (Windows 10 Pro, purchased 
from Amazon) connecting to a web camera (Logitech C920e Business Webcam, purchased from 
Amazon). Logitech Capture 2.06.12 Software was used to adjust the following recording parameters: 
brightness 170, contrast 0, resolution 720 × 720, frame rate 30 fps. The brightness and contrast could 
be adjusted according to ambient light to achieve consistent illumination.

Annotation of mouse scratching behavior
The start of a scratching train was defined as when the mouse started to lift up its hind paw and 
prepared to scratch at the beginning of a scratching train. For the end of a scratching train, there 
were two cases. If the mouse did not lick its hind paw after last scratching bout, the end frame would 
be when the mouse put its hind paw back onto the ground; if the mouse licked its hind paw after last 
scratching bout, the end frame would be when the mouse put its hind paw into the mouth. For the 
manual annotation, each video was manually watched at the normal (1×) speed (30 frames/s). The start 
and end time point of each scratching train was manually annotated, the time point was converted 
into the frame number (30 frames/s) for downstream analysis. For the reference annotation, each 
video was first converted into individual frames using python package OpenCV (Bradski, 2000). Then 
the start and end of each scratching train was determined frame by frame. Frames within a scratching 
train were defined as ‘scratching’ frames, otherwise defined as ‘non-scratching’ frames. For CQ cheek 
acute itch video number 2 (Figure 5F V2) and SADBE chronic itch video number 5 (Figure 6F V5), long 
lickings (>60 frames) during scratching trains were annotated as non-scratching frames for the model 
evaluation. For group comparison, the annotation was performed in a double-blind manner.

Training sample preparation and preprocessing
In the training procedure, 40 videos from 10 mice were first randomly split into 32 training videos 
from 8 mice (V1–V32), and 8 test videos from 2 mice (V33–V40). For cross-validation, training and test 
videos were rotated. Test videos were V1–V8, V9–V16, V17–V24, V25–V32, or V33–V40, and the rest 
of videos were used as training videos. For the model training, input was prepared by the following 
procedure: First, each video was converted into frames; then, consecutive N frames (N = 3, 5, 7, 13, 
23, or 45) were selected as one input with an interval of 4–10 frames between two adjacent inputs. 

https://doi.org/10.7554/eLife.84042
https://identifiers.org/RRID/RRID:IMSR_JAX:000664
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Then each input was annotated as ‘scratching’ (class 1) if more than N/2 frames were scratching 
frames, otherwise labeled as ‘non-scratching’ (class 0).

All frames in each input were first converted into gray scale images and resized to 300 × 300. Then 
a random square crop with size ranging from 288 × 288 to 300 × 300 was applied and followed by a 
random horizontal and vertical flip with probability of 0.5. Finally, these frames were resized to 256 × 
256 and fed into the CRNN network.

CRNN architecture
Our CRNN model (Figure 2A and Figure 2—figure supplement 1) consisted of a CNN part, an RNN 
part, and a full connection (FC) part. The CNN was modified from ResNet-18 (He et al., 2016 ) by 
changing the final FC layer into an FC layer with embedding size 256. The RNN consisted of two bidi-
rectional GRU layers with hidden vector size 512. The FC part consisted of two FC layers with embed-
ding size 256 and ReLu activation, and embedding size 2 for the final prediction. The prediction results 
were transformed into maximum value in the final output vector.

Model training and predication
The model was trained by PyTorch (version 1.10.2, RRID:SCR_018536) (Paszke et  al., 2019). For 
model training hyperparameters, batch size was set as 16 or 32 depending on the input size. The max 
epoch was set as 20. ADAM optimizer was used with initial learning rate 10−4 and the learning rate 
reduced by multiplying factor 0.3 every 5 epochs. The binary cross entropy was used as loss function. 
Dropout rate of FC layer was set as 0.2. The model was trained on a customized desktop with Intel 
i9-10900k CPU (purchased from Newegg), 64 GB RAM (CORSAIR Vengeance LPX 64 GB, purchased 
from Newegg), and NVIDIA GeForce RTX 3090 with 24 GB memory (purchased from Amazon).

For model prediction on new videos, the input preparation was similar to the training dataset, 
except that the adjacent inputs were only 1 frame apart. Each individual frame was predicted as 
‘scratching’ or ‘non-scratching’ based on the following rule: the prediction of the middle frame of 
each input would be the same as the input prediction. For the few frames at the beginning or at the 
end of each video (depending on the input length N) that could not be the middle frame of an input, 
they were predicted as ‘scratching’ or ‘non-scratching’ based on the first input or last input prediction.

Saliency map
To obtain the saliency map, we first calculated gradient value of each pixel and kept the only positive 
gradients, then rescaled into range 0–1 based on a previous published paper (Selvaraju et al., 2017). 
Then we generated the heatmap based on the gradient values (<0.1 transparent, 0.1–0.6 light blue to 
dark blue, >0.6 dark blue) and stacked the heatmap onto the original frame.

SADBE chronic itch model
Mice (8–12 weeks) were singly housed before starting the behavior experiment. In day 1, mice were 
individually anesthetized in chamber using isoflurane until they did not move and showed decreased 
respiration rates. Mice were continued for anesthesia with a nose cone to allow access to the body 
of the mouse. After ensuring a mouse was fully anesthetized, the abdominal skin was shaved. In day 
4, after anesthesia similar in day 1, 25 µl 1% SADBE in acetone (Sigma, 3339792) was applied to the 
shaved area of the abdominal skin. After application of SADBE, anesthesia continued for 3 more 
minutes to ensure SADBE fully absorbed before putting then back in the home cage. In days 9–12, 
mice were habituated in the videotaping box for 1 hr and 15 min. In day 11, the nape was shaved after 
habituation. In days 13–18, mice were habituated in the videotaping box for 1 hr and 15 min, then 
25 µl of 1% SADBE was applied to the nape. In day 18, after 1% SADBE application, each mouse was 
put back into the videotaping box and recorded for three videos.

Anti-itch drug experiment
The nape of mice (8–12 weeks, two males, five females) was shaved 3 days prior to experiments. Mice 
were placed in the videotaping box for acclimation (15 min per day for 3 days). At the day of exper-
iment, mice were randomly selected and acclimated in the videotaping box for 5 min. Then, 0.2 g 
anti-itch cream (Benadryl, Johnson & Johnson Consumer Inc, purchased from CVS) or control cream 
(Neutrogena, Johnson Consumer Inc, purchased from CVS) was applied into the nape. One hour later, 

https://doi.org/10.7554/eLife.84042
https://identifiers.org/RRID/RRID:SCR_018536
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histamine (200 µg in 15 µl saline) was intradermally injected into the nape, and scratching behavior 
was recorded for 20 min. The experimenter who did the histamine injection was blind to anti-itch 
cream or control cream.

Illustration drawing
Cartoons with mice were made partially in BioRender (BioRender, 2022, RRID:SCR_018361).

Statistical analysis
Data and statistical analyses were performed using Prism 6.0 (GraphPad Software, RRID:SCR_002798). 
The criteria for significance were: ns (not significant) p ≥ 0.05, *p < 0.05, **p < 0.01, ***p < 0.001. 
Differences in means between two groups were analyzed using unpaired two-tailed Student’s t-test.
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Data availability
The training and test videos generated during the current study can be downloaded from 
DRYAD (https://doi.org/10.5061/dryad.mw6m9060s). The codes for model training and test can 
be downloaded from GitHub (https://github.com/taimeimiaole/Scratch-AID, copy archived at 
swh:1:rev:d8a1e6b94e54be2c857285d74623e495a6bd47bf).
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