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Abstract
Since December 2019, the novel coronavirus disease 2019 (COVID-19) has claimed the lives of more than 3.75million people
worldwide. Consequently, methods for accurate COVID-19 diagnosis and classification are necessary to facilitate rapid patient
care and terminate viral spread. Lung infection segmentations are useful to identify unique infection patterns that may support
rapid diagnosis, severity assessment, and patient prognosis prediction, but manual segmentations are time-consuming and
depend on radiologic expertise. Deep learning-based methods have been explored to reduce the burdens of segmentation;
however, their accuracies are limited due to the lack of large, publicly available annotated datasets that are required to establish
ground truths. For these reasons, we propose a semi-automatic, threshold-based segmentation method to generate region of
interest (ROI) segmentations of infection visible on lung computed tomography (CT) scans. Infection masks are then used to
calculate the percentage of lung abnormality (PLA) to determine COVID-19 severity and to analyze the disease progression
in follow-up CTs. Compared with other COVID-19 ROI segmentation methods, on average, the proposed method achieved
improved precision (47.49%) and specificity (98.40%) scores. Furthermore, the proposed method generated PLAs with a
difference of±3.89% from the ground-truth PLAs. The improved ROI segmentation results suggest that the proposed method
has potential to assist radiologists in assessing infection severity and analyzing disease progression in follow-up CTs.
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1 Introduction

The coronavirus disease 2019 (COVID-19), caused by severe
acute respiratory syndrome coronavirus 2, originated in
China in December 2019 and rapidly spread to 1,000 people
in only 48 days [1]. As of June 2021, there are 175 million
global cases and 3.75 million deaths spanning more than 192
countries/regions (http://coronavirus.jhu.edu/map.html).

Reverse transcription-polymerase chain reaction (RT-
PCR) is the gold standard diagnostic method for COVID-19
[2]. However, RT-PCR may take several days to generate
results [3], and in initial disease presentation and asymp-
tomatic cases [4,5], has shown relatively low sensitivity
(71%) [6]. Because of these challenges, researchers have
explored othermethods to classifyCOVID-19 patients. Chest
computed tomography (CT) plays a key role in evaluating the
extent of pulmonary involvement and prognostication [7].
Using visual inspection of 51COVID-19 patientswho under-
went chest CT and RT-PCR testing within 3 days, Fang et al.
[8] achieved classification sensitivity of 98% from chest CT.
In another study [9] of 1014 patients suspected of COVID-
19, 59%had positiveRT-PCR results, while 88%had positive
chest CT scans, determined by radiologists. The sensitivity
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of chest CT to classify COVID-19 was 97%. Thus, CT may
exhibit higher sensitivity than RT-PCR. Additionally, CT is
widely accessible and already routinely used in hospitals for
high-resolution views of lung features [10]. Given the many
advantages, CT has become a promising complementary tool
for identifying and monitoring COVID-19.

Numerous COVID-19 studies [9,11–14] have proven that
chest CT characteristics accurately correlate with patient
conditions. Some CT features detected in COVID-19 cases
are ground-glass opacities (GGO), consolidative opacities,
crazy paving pattern, linear consolidations, and reverse halo
sign. In advanced stages, the number of lesions increases
significantly with newly formed GGO and superimposed
consolidation. Also, predominant consolidation and crazy
paving patterns can be suggestive of late/advanced stages
[15] and GGOs with consolidation decrease in the recov-
ery stage. Furthermore, in severe phases infected areas may
appear in all segments of the lungs, expressing as “white
lung” [16]. Since distinct chest CT features and extent of
involvement relate to COVID-19 severity stage, quantitative
assessment of patient severity may be useful for accurate
diagnosis. However, to achieve applicable results, region of
interest (ROI) segmentationsmust be precise and easily com-
puted.

Several COVID-19 studies have usedROI segmentation to
classify COVID-19 and determine COVID-19 severity [11–
13] with deep learning (DL)-based systems [17]. Recently
introduced DL methods for classification and segmentation
have achieved outstanding results. Fan et al. [18] developed
Semi-Inf-Net, pre-trained on 1600CT imageswith pseudola-
bels and fine-tuned on 50 CT images with ground-truth (GT)
labels, to segment infected regions from chest CT, yielding
a dice similarity coefficient of 73.9% and a specificity rate
of 96.0%. MiniSeg [19], another DL method for automatic
segmentation of ROI, was evaluated on 100 COVID-19 CT
slices of 60 patients and achieved a dice similarity coefficient
of 75.91% and a specificity rate of 97.72%. Even though
these DL methods show impressive advances in artificial
intelligence-based systems, they are limited becauseGT lung
ROI segmentations are often lacking: manual annotation and
segmentation are time-consuming and expertise-dependent
tasks and are susceptible to subjectivity driven by individual
methodologies [17,20]. As a result, the analysis of COVID-
19 CT findings has been mainly limited to qualitative or
semi-quantitative evaluations [14]. In addition, DL algo-
rithms are often trained on datasets acquired by the same
CTmachine and are annotated by the same radiologists [21].
This limits the model’s usage because it becomes dataset-
specific and lacks generalizability.

For these reasons, we propose a threshold-based semi-
automatic segmentation method to generate ROI segmen-
tations from lung CT available on COVID-19 Data Archive
(COVID-ARC) (https://covid-arc.loni.usc.edu) which

curates and disseminates multimodal and longitudinal
datasets related to COVID-19 [22]. This segmentation
method is used to calculate the percentage of lung abnor-
mality (PLA) to determine COVID-19 severity and improve
analysis of disease progression in follow-up CT. It is primar-
ily based on the image segmentation method of thresholding.
Using Yen [23], IJ Isodata (ImageJ’s [24] default thresh-
olding method adapted from Ridler et al. [25]), and Region
Adjacency Graph (RAG) methods in combination with gray-
level binary thresholding, we developed an efficient image
processing pipeline for ROI segmentation in lung CT. We
compared ourmethodwith seven existing thresholdingmeth-
ods to determine the best fit methods.

2 Materials andMethods

2.1 Dataset

We applied our segmentation methodology to heteroge-
neous datasets to assess generalizability. We combined
2 datasets containing CT images of COVID-19-positive
patients and segmented ROI images which we used as GT
images to evaluate the results. These datasets were accessed
fromCOVID-ARC (https://covid-arc.loni.usc.edu/). Dataset
1 was collected by the Italian Society of Medical Radiol-
ogy and included 9 CT images, 9 lung masks, and 9 ROI
masks (http://medicalsegmentation.com/covid19). Dataset 2
was collected from Wenzhou Medical University in Wen-
zhou, China, and Netanya, Israel: 19 CT images, 19 lung
masks, and 19 ROI segmentation images [26]. Consider-
ing the two datasets, we used a total of 84 images from 28
patients: 28 CT images, 28 lung masks, and 28 ROI seg-
mentation images. There are still limited publicly available
annotations despite the drive for publicizing datasets; there-
fore, we evaluated the pipeline on a small, annotated dataset.
Additionally, all GT ROI segmentations were performed by
radiologists from each source.

2.2 Lung Segmentation and Preprocessing

Lung segmentation is an essential preprocessing step because
the thoracic tissues surrounding the lungs and other anatom-
ical structures on a CT image must be removed to allow for
accurate analysis of lung features. To generate lung segmen-
tation of each CT image, we first created lung segmentation
masks using the lungmask command line tool that provided
the trained U-net (R231CovidWeb) model [27]. The lung
masks were then used to extract the lung areas from the CT
image to process the lung segmentation. As shown in Fig. 1,
which represents the different steps to obtain ROI segmen-
tation for each image, the lung segmentation image is first
inputted into the pipeline.
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Fig. 1 Diagram of the pipeline: first a preprocessed lung segmentation
of a CT image is inputted, and then, Yen thresholding is implemented on
the preprocessed input image. After that the lung mask of the CT image
is used to generate the percentage of lung abnormality (PLA). If the
PLA is 100% then IJ Isodata thresholding is implemented on the lung

segmentation image, else if PLA is less than 100% the Yen thresholded
binary image is used for next steps. Then the Region Adjacency Graph
method and gray-level binary thresholding are implemented to finally
generate the ROI segmentation

2.3 Image Thresholding

A threshold value is used to classify pixel values as either
0 or 1, and in our case, respectively, the normal lung tis-
sue or ROI. We explored the intensity pixel distributions
of the lung segmentations identifying which images had a
unimodal intensity histogram and which ones had a mul-
timodal intensity histogram. Therefore, we differentiated
the images into two groups depending on their intensity
histograms: images of type I (IM1) that have unimodal his-
tograms and images of type II (IM2) that have multimodal
histograms. To determine the best fit thresholding method
for each image type (IM1 and IM2), we evaluated seven
thresholding methods and compared the generated PLAwith
the corresponding GT PLA. The methods we evaluated are
Huang [28], Ridler [25], Li [29], Kapur [30], Otsu [31], Yen,
and IJ Isodata. These were chosen based on their outstand-
ing performances in converting gray-scale images to binary,
and more detailed information about each algorithm is dis-
cussed by Sezgin et al. [32]. In the first binarization, all seven
thresholding methods are implemented onto the image using
ImageJ. First in ImageJ,weuploaded an image in 8-bit format
(Image/Types/8-bit) and used the Process/Binary/Options
command to select Dark Background. Next to generate a
threshold-based binary image, we used the threshold tool
(Image/Adjust/Threshold) to select Black Background and
then chose a thresholding method and selected Apply to
generate the binarized image implemented with the automat-
ically generated optimal method-based threshold value.

2.4 Region Adjacency Graph

After the first binarization, segmentation of the ROI is par-
tially completed since there are other features of the lungs
present along with the ROI, which would affect the calcu-
lation of PLA or other analyses of the ROI segmentation.
To generate an accurate segmentation of only the ROI, RAG
thresholding is implemented onto the binary image. This is
a region connecting algorithm, which uses graph representa-
tion to describe relationships between different regions [33].

The graph connects different superpixels through an edge,
and each superpixel region is considered a vertex. The edges
between superpixels are colored depending on their weights
corresponding to similarities between the regions [34,35].
The regions covered with dark edges have similar pixel char-
acteristics, while others covered with light-colored edges
have different pixel characteristics. Each region Ri is char-
acterized by two parameters given by Eqs. (1,2): μi is the
mean intensity of the set of pixels in the region and σi is the
standard deviation:

μ = 1

N

N∑

i=1

xi (1)

σ =
√√√√ 1

N

N∑

i=1

(xi − μ)2 (2)

At each edge ei j corresponds to a pair of adjacent regions
(Ri ,R j ) and an intensity distance d2(Ri ,R j ), given by the
Fisher distance in Eq. (3), which is used to measure the sim-
ilarity between the intensity distributions of two regions and
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to define the weight of ei j connecting two adjacent regions.

d2(Ri , R j )= d2(−→μi,
−→μ j) = (NRi + NRj )‖−→μi ,

−→μ j‖2
NRiσ

2
i + NRjσ

2
j

if σi �= 0 and σ j �= 0 (3)

where NRi and NRj border pixels that were removed are
converted to gray-scale pixels. Since the gray-scaled image
may cause pixel miscalculations, a gray-level binarization is
used to generate accurate segmentations.

2.5 Calculations

Pixel densities are calculated using the image processing pro-
gram, ImageJ [24], which calculates pixel density without
manually segmenting the ROI. The lung mask is also used to
calculate the pixel density of the total lung. After calculat-
ing the pixel densities, we used the mathematical expression
shown in Eq. (4) to calculate COVID-19 PLA:

PLA = ROI pixel density

total lung pixel density
× 100 (4)

Using this equation, we calculated the PLA for each CT
image in the dataset.

Several evaluation metrics were computed to evaluate the
pixels correctly and not correctly classified in terms of true
positive (TP), true negative (TN), false positive (FP), and
false negative (FN), where positive pixels are the pixels
affected by the infection and negative pixels are uninfected
pixels. The Dice similarity coefficient is the overlap index
which represents the similarity between the GT and the
prediction maps [36]. The Matthews correlation coefficient
(MCC) measures the similarity of the GT PLA and the cal-
culated PLA with values between -1 and +1 [37]. Positive
values indicate strong similarities between the GT PLA and
the calculated PLA, thus corresponding to a goodmodel, and
negative values indicate weak similarities as the result of a
poor model. Precision measures the reproducibility of the
method and is the number of correct positive results divided
by the number of positive results predicted by the method.
Sensitivity is the proportion of positive pixels that are cor-
rectly considered positive with respect to all positive pixels.
Finally, specificity is the proportion of negative pixels that
are correctly considered negative with respect to all negative
pixels.

Table 1 Comparison of thresholding methods using ImageJ

Image type Method Threshold
value

PLA (%) differ-
ence from GT

Image type I Huang 6 65.73

Ridler 87 1.95

Li 14 65.73

Kapur 97 1.606

Otsu 87 1.95

Yen 86 1.53

IJ Isodata 117 2.04

Image type II Huang 11 28.35

Ridler 51 28.35

Li 13 28.35

Kapur 162 28.35

Otsu 51 28.35

Yen 1 28.35

IJ Isodata 90 3.24

3 Results

3.1 Evaluation of Best Fit ImageJ Thresholding
Methods

Table 1 shows the optimal thresholds for accurate binariza-
tion results and the corresponding PLA difference from GT
for the different thresholding methods and for the two types
of images (IM1 and IM2) analyzed in this study. As shown
in Fig. 2, when only observing the generated ROI segmen-
tations, five distinct methods (Ridler, Kapur, Otsu, Yen, and
IJ Isodata) seem to give images with indistinguishable phys-
ical characteristics from the others, as a result of the similar
threshold values for IM1s. Indeed, as listed in Table 1, both
Ridler and Otsu shared a threshold value of 87, while Kapur
generated 97,Yenwas 86, and IJ Isodata generated 117.After
comparing the calculated PLA with the GT PLA for each
method, we found that out of the seven methods, the Yen
thresholding method generated the most accurate segmenta-
tions for IM1 images with a difference of 1.53% from the
GT segmentations and IJ Isodata generated the most accu-
rate segmentations for IM2 imageswith a difference of 3.24%
from the GT segmentations. Therefore, to generate the initial
binary images in the proposed method, Yen for IM1 images
and IJ Isodata for IM2 images are the best fit methods gen-
erating the most accurate threshold value.

3.2 Quantitative Segmentation Results

To evaluate the performance of our method, we compared
our segmentation method with three commonly used seg-
mentation methods based on three different deep neural
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Fig. 2 Illustration of the performance of seven thresholding methods
on image types I and II with threshold-based binary images in the first
row and ROI segmentation images in the second row. On the far right
column is the corresponding ground truth ROI segmentation

Table 2 Evaluation metrics (%)

Methods Evaluation metrics(%)

Dice MCC Prec. Sen. Spec.

Inf-Net 37.5 38.32 37.85 43.61 97.09

Semi-Inf-Net 40.01 75.99 42.47 41.19 97.88

MiniSeg 39.58 40.34 36.80 51.25 96.00

nCoVSegNet 30.30 32.57 36.91 31.20 98.37

Oulefki 48.16 51.59 46.90 55.25 98.27

Our Method 46.28 47.53 47.49 53.13 98.4

network-based models: Inf-Net [18], Semi-Inf-Net [18],
MiniSeg [19], nCoVSegNet [38], and Oulefki [39]. Table 2
shows the statistics of the evaluations. Oulefki was only eval-
uated with 19 CT images from the dataset, and the other four
methodswere evaluated on all images from the dataset. Com-
pared with the five models, the proposed method achieved
the highest precision (47.49%) and specificity (98.40%)
scores.

3.3 Qualitative Segmentation Results

To further evaluate the performance of our method, we com-
pared the qualitative ROI segmentation results of our method
to the three other DL methods. Figure 3 shows six repre-
sentative examples of segmentation results, and our method
consistently generates results that outperformotherDLmeth-
ods’.

3.4 Quantitative Validation

To validate the performance, we compared the PLA of the
single-slice dataset computed from the GT-infected region
masks and the ROI segmentations generated by the proposed
method. In Fig. 4, the PLA of the GT images and our seg-
mentation images are displayed for each patient. On average,

Fig. 3 Comparison of ROI segmentation results

Dataset (Patients)

Lu
ng

 A
bn

or
m

al
ity

 (%
)

0

10

20

30

40

50

60

70

0 5 10 15 20 25

Ground Truth Our Method

Percentage of Lung Abnormality Results Comparison

Fig. 4 Graph with percentage of lung abnormality computed with
ground truth segmentation images (blue) and segmentation images gen-
erated using the proposed method (orange) (Color figure online)

Fig. 5 Display of three representative patients from the dataset. The
first column shows a lung CT image and the second column shows the
lung segmentations used to generate the ROI segmentations in the third
column
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the percentage difference between the PLA obtained with the
proposed method and the PLA obtained with GT images is
±3.89%.

Additionally, throughout the dataset IM1s tended to have
lower PLAs and IM2s had higher PLAs. To demonstrate the
method’s effectiveness in analysis of severity, Fig. 5 shows
a diagram of three cases of COVID-19 patients: Fig. 5a IM1
with a low PLA of 3.33%, Fig. 5b IM1 with a medium PLA
of 11.64%, and Fig. 5c IM2 with a high PLA of 67.96%.
Beginning with the first column, each axial lung CT image
of a COVID-19 patient from the dataset is followed by its
lung mask in the second column. Lastly, in the third column,
the ROI segmentations generated by our method showing the
increasing progression of the infection are highlighted in red.

4 Discussion

In this study, we proposed a method for the quantifica-
tion of lung abnormalities from COVID-19-patients CT
images. Based on our analysis, the proposed method is
highly effective in calculating accurate PLA for most cases
of COVID-19-positive patients. On average, the proposed
method generated infection rates within ±3.89% precision
from the GT PLAs. As of our knowledge, this study is the
first to specifically validate a thresholding method to gener-
ate precise ROI segmentations for COVID-19 CT images. In
this work, by evaluating seven thresholdingmethods: Huang,
Ridler, Li, Kapur, Otsu, Yen, and IJ Isodata, we found that the
Yen thresholding method generates the most accurate results
compared with the other seven methods for IM1 images. In
other words, the Yenmethod performed exceedingly well for
the IM1 images by yielding infection rates with the lowest
difference of 1.53% from the GT infection rate out of all
the evaluated methods. Additionally, we found that IJ Iso-
data yields the best segmentations for IM2 images which
generate multimodal intensity histograms. The fact that we
obtain higher PLA for the IM2 images and lower PLA for the
IM1 images may suggest that the two types of pixel intensity
distributions (unimodal and multimodal) correspond to two
different severity levels of COVID-19 infection. In this view,
while the IJ Isodata method seems to be more appropriate for
severe infection cases, the Yen method appears to be more
appropriate for mild cases. However, further clinical investi-
gations must be done to assess whether different image types
correspond to different infection severity rates.

Several methods performed poorly due to large pixel
intensities and physical variances of the ROIs. Since the
cross-entropies of the images are not convex, Li gener-
ated under-segmentations. Ridler and Otsu are cluster-based
methods that distinguish natural clusters, and the sharp val-
ley of the gray-level histogram degrades when applied to the
dataset. Huang generated several local maximas that resulted

in under-segmentations. Kapur did not generate the best
threshold value due to the large intensity differences of ROI
and background and presence of outlying pixels. Conversely,
Yen used the entropic correlation to obtain the maximizing
threshold and IJ Isodata used a variation of the iterative inter-
means method to compute the best thresholding values.

Additionally, to design a consistent pipeline to apply to
both types of COVID-19 CT images we included a system
to effectively implement either Yen or IJ Isodata threshold-
ing on a lung segmentation image, as shown in Fig. 1. Yen
thresholding mostly applies to mild cases and generates only
lungmasks, which corresponds to a PLAof 100,when imple-
mented on IM2, as shown in Fig. 2. For this reason the user
must first implement Yen thresholding and then either con-
tinue to the next step or implement RAG on the binary image
if the calculated PLA is less than 100 or implement IJ Iso-
data thresholding on the lung segmentation CT image if PLA
is equal to 100. This system ensures an objective technique
to choose between implementing either Yen or IJ Isodata
thresholding methods on lung CT images.

Particularly, we were interested to develop an unsuper-
vised, image processingmethod to facilitate rapidCOVID-19
diagnosis. Since annotatedmedical images of lung segmenta-
tion are lacking, unsupervised and semi-supervised methods
are in high demand for COVID-19 studies [17]. After further
analysis of the method’s potential, as discussed in introduc-
tion and results sections, we found that it is also effective in
quantitatively analyzing the progression of the disease with
information available in lung CT. To further explain, in addi-
tion to assisting medical professionals in the rapid diagnosis
of COVID-19-positive patients, the proposed method has the
potential to facilitate radiologists to quantify severity and
visualize disease progression or remission.

A number of studies have established scoring systems use-
ful for the diagnosis and follow-up of COVID-19 patients.
For example, Li et al. [12] reviewed the clinical and
CT features of 58 mild/ordinary COVID-19 cases and
25 severe/critical cases using a 0–5 thin-section CT scor-
ing system for infection region involvement in each lobe.
They found that a common CT finding associated with
severe/critical patients has significantly more frequent con-
solidation compared with mild/ordinary groups. This results
in the CT scores of severe/critical patients to be significantly
higher than those of mild/ordinary patients. In essence, since
the severity rate computed from a chest CT accurately corre-
sponds to the patients’ condition, it may be useful in assisting
level-of-care decisions for COVID-19 positive patients.

Additionally, Lessmann et al. [11] developed and vali-
dated an Artificial Intelligence algorithm (CORADS-AI) to
score the likelihood and extent of COVID-19 on chest CT
scans using the COVID-19 Reporting and Data System (CO-
RADS) [40] and CT severity score (CTSS). The assigned
standardized scores of 367 patients were found to be in good
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agreement with eight independent observers and generalized
well to external data. In another study, Lieveld et al. [13]
validated CO-RADS and evaluated its corresponding CTSS
with 741 adult patients suspected COVID-19 positive from
two tertiary centers in The Netherlands. Since there was a
significant association between CTSS and hospital admis-
sion (stage 1), ICU admission (stage 2), and 30-daymortality
(stage 3), the study findings support the use ofCTSS in triage,
diagnosis, and management decisions of potential COVID-
19-positive patients at hospital emergency departments.

As proven by these studies, the quantified severity of
COVID-19 lung abnormalities based on chest CT accurately
correlates to patient conditions; therefore, the PLA estimated
by our proposed method can potentially help in evaluating
the prognosis and assessing treatmentmethods for rapid care.
Indeed, our method gives outstanding performance in gen-
erating precise segmentations of lung abnormalities due to
COVID-19 that correlate well with the GT PLA. As proven
by various studies [12,13], COVID-19 lung infection sever-
ity correlates with the patient condition; similarly, in our
study eachPLAdirectly describes theROI segmentation.Our
method could also be used to quantify follow-up CT images
of patients since it generates precise PLA from accurate ROI
segmentation. Also, when compared with other state-of-the-
art methods, the proposed method performed significantly
better to generate ROI segmentations. The method produced
the highest precision and specificity scores.

Even though the proposed method achieved promising
results, there are limitations to this study. First, the lack of
COVID-19 datasets includingROI segmentation to use asGT
restricted us from further validating this method on a variety
of datasets instead of computing data-specific results varying
two datasets. Second, since patient demographic information
was not provided for either dataset, we were not aware of any
underlying conditions which might have contributed to the
patients’ lung CT characteristics. Finally, as future work, we
consider extending this pipeline to quantify other types of
pneumonia lung infections.

5 Conclusion

In this study, we proposed a semi-automatic threshold-based
segmentation method to generate lung ROI segmentations
from COVID-19 positive patients’ lung CT images. Our
results demonstrated the method’ effectiveness in generat-
ing accurate ROI segmentations, hence calculating precise
PLA to determine COVID-19 severity. Also, given the accu-
rate ROI segmentations obtained, the proposed method may
potentially be useful to assess the severity of pneumonia
in initial imaging and disease progression or remission in
follow-up CT which could assist medical professionals with
patient management and prognosis of the disease course. In

future experiments, thismethod could be utilized to develop a
fully automatic model with advanced features to assist med-
ical professionals in rapid patient care.
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