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Predictions of the structures of stoichiometric, fractional, or nonstoichiometric hydrates
of organic molecular crystals are immensely challenging due to the extensive search
space of different water contents, host molecular placements throughout the crystal,
and internal molecular conformations. However, the dry frameworks of these hydrates,
especially for nonstoichiometric or isostructural dehydrates, can often be predicted
from a standard anhydrous crystal structure prediction (CSP) protocol. Inspired by
developments in the field of drug binding, we introduce an efficient data-driven and
topologically aware approach for predicting organic molecular crystal hydrate structures
through a mapping of water positions within the crystal structure. The method does
not require a priori specification of water content and can, therefore, predict stoichio-
metric, fractional, and nonstoichiometric hydrate structures. This approach, which we
term a mapping approach for crystal hydrates (MACH), establishes a set of rules for sys-
tematic determination of favorable positions for water insertion within predicted or
experimental crystal structures based on considerations of the chemical features of local
environments and void regions. The proposed approach is tested on hydrates of three
pharmaceutically relevant compounds that exhibit diverse crystal packing motifs and
void environments characteristic of hydrate structures. Overall, we show that our map-
ping approach introduces an advance in the efficient performance of hydrate CSP
through generation of stable hydrate stoichiometries at low cost and should be consid-
ered an integral component for CSP workflows.

crystal structure prediction j hydrate polymorphs

The unique polar characteristics of water allow it to form a variety of strong, directional
interactions in the solid state, including hydrogen-bonding and ion-coordinated interac-
tions. As such, organic molecules often crystallize as or convert to hydrates under humid
conditions during storage and/or downstream processing (1) through the incorporation
of water into the crystal lattice. These organic crystalline hydrates are of particular inter-
est to the pharmaceutical industry as they can significantly impact bioavailability (2),
manufacturability (3), mechanical properties (4, 5), and/or chemical stability (6) of the
active pharmaceutical ingredient (API). In fact, it is estimated that up to a third of
commercially marketed pharmaceuticals contain APIs in hydrated forms. Hydrates also
represent a very significant portion of patented solid forms of pharmaceuticals (7). In
addition, in the fields of organic electronics, understanding hydrate formation can be
essential in designing, tuning, and rationalizing the performance of luminescent materials
(8). Given the prevalence and importance of these hydrate materials, many efforts have
been made to obtain a thorough understanding of their structural patterns (9), to ratio-
nalize why and when they form, and to predict their structures (10–12) and physical and
chemical properties (13).
While computational tools, such as crystal structure prediction (CSP), have occa-

sionally been utilized to predict structures of crystal hydrates, these predictions are sig-
nificantly more computationally intensive than anhydrous CSP searches due to the
additional degrees of freedom that need to be considered when water molecules are
present (10). Without a priori knowledge of the thermodynamically stable hydrate stoi-
chiometry, hydrate CSP requires separate “brute force” searches for each plausible stoi-
chiometry or fractional stoichiometry. This inadvertently leads to high computational
overhead and still leaves the additional and nontrivial task of determining the most
stable hydrate stoichiometry.
While CSP for hydrates is often expensive, the guest-free hydrate (or solvate) frame-

work structures may often be captured via an anhydrous CSP search (14–17). However,
an inability to predict and determine potential uptake and incorporation of water in these
predicted framework structures can be a significant and costly gap in the overall under-
standing of the solid form landscape. Even when these anhydrous framework structures
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are accurately predicted, it remains nontrivial to deduce which of
these frameworks are amenable to water uptake and how many
water molecules may reside within the crystal lattice. This lack of
understanding of the water distribution in crystal hydrates can
only make it more difficult to predict and anticipate storage and
downstream processing risks due to water uptake and could even
result in patent litigation cases. As an example of the latter, con-
sider the case of Paxil for which a class-action patent litigation
ensued when a generic manufacturer marketing a hygroscopic
anhydrous polymorph was accused of infringing on a patented
hemihydrate polymorph due to a likely solid form conversion
from exposure to humidity (18, 19). Retrospectively, detailed
structural and energetic understanding of these solid forms would
have provided clearer assertions in court and more distinctly
defined the patent claims.
So far, no methods have been reported for predicting hydrates

efficiently that do not rely on random packing searches with an
a priori specification of a desired stoichiometry. While grand
canonical Monte Carlo methods can be used to predict inclusion
behavior through the insertion/removal/replacement of solvent
in porous organic and inorganic solids (20, 21) and protein
structures (22), these methods can have limitations in dense sys-
tems, such as molecular crystals, which exhibit highly directional
interactions due to extremely low acceptance probabilities for
both solvent insertion and removal (23, 24).
Inspired by computational methods used in drug design for

the placement of water molecules within protein structures,
including WaterMap, WScore, and other scoring or mapping
approaches (25–27), we introduce a simple, high-throughput
technique to map out likely locations of water molecules
within these framework molecular crystals that does not rely
on an energetic acceptance probability. Our approach, termed
mapping approach for crystal hydrates (MACH), involves
flooding the crystal lattice, followed by systematic removal of
water molecules located at unfavorable locations through scor-
ing approaches to determine favorable positions of water mole-
cules within the crystal lattice while allowing their positions
and interactions therein to relax. In this way, we can explicitly
consider the chemical environments of potentially accessible
voids within the crystal structure.
MACH allows access to hydrate crystal structures of varying

and plausible stoichiometry simply from a framework structure
without prior knowledge or specification of a stoichiometry of
the hydrate structure. As such, this brings the predictions of
partial stoichiometries and nonstoichiometric hydrates into
scope for CSP. Crucially, our approach accurately differentiates
between voids within the crystal structure that are likely to host
water molecules from those that are not. In so doing, we show
that favorable insertion of waters is dependent on the local
chemical environments of a crystal structure’s accessible voids.
We demonstrate the ability of MACH to successfully map out
waters and predict the stoichiometries and water positions of
hydrates of brucine, paroxetine hydrochloride, and sitagliptin
tartrate, the latter two being notable in regimens for the treat-
ment of depression and diabetes, respectively. The dry frame-
works of these pharmaceutically relevant hydrates contain void
spaces of differing volumes and chemical environments, includ-
ing open hydrophilic channels, large hydrophobic voids, and
tight hydrophilic pockets. As such, these structures serve as
excellent examples to test the ability of our approach to distin-
guish diverse chemical environments of each void space for
water insertion. Last, we discuss how combining MACH with
either standard full anhydrous CSP or evolutionary algorithm
CSP constitutes a promising direction in CSP methodology.

Water Insertion Workflow Methodology

The approach for water insertion is shown in Fig. 1 and starts
by overlaying an equilibrated water box with the crystal lattice
to sample many possible water positions. Water molecules not
within 3.2 Å of electronegative atoms (e.g., carbonyl oxygens)
of the host molecule are then deleted, ensuring that water mol-
ecules are inserted in environments where at least one direc-
tional intermolecular interaction can be formed with the host
molecule within the crystal lattice. The remaining water mole-
cules that exhibit poor contacts (as determined through an
atom-specific cutoff) or reside in hydrophobic regions (as deter-
mined through a radial symmetry function) are then deleted.
These steps are repeated with random displacements of the
original water box coordinates to sample other potential water
insertion positions within the crystal lattice. Subsequently, the
positions and geometry of the inserted water molecules are
optimized. Due to the nature of this algorithm, it is possible
for more than one water molecule to be inserted at a time if the
cutoff criteria are met. These iterative loops of water insertion
and optimization are repeated until no additional waters are
accepted. Afterward, the hydrogen bonding and interaction
network of the resulting water molecules are reassessed; waters
that do not form at least two hydrogen bonds [as defined
by Baker and Hubbard (28) and McGibbon et al. (29)] or an
ion-coordinated interaction are deleted. A short 50-ps constant
volume/constant temperature (canonical) molecular dynamics
(NVTMD) run is carried out, and minimization of the inserted
water molecules is performed to relax them into their optimal
orientations and positions. Note that the MACH workflow
could also be augmented with enhanced MD and Monte Carlo
translations and rotations to sample favorable configurational
spaces where large energetic barriers between water configura-
tions may exist. These modifications will be considered in a
future study. Last, the geometry and cell lattice are fully opti-
mized to allow for unit cell expansions and conformational
changes with the additional lattice waters. These steps can then
be performed in additional iterative loops after structural optimi-
zation to determine potential higher hydrates if further accessible
voids are generated through full structural optimization.

The atomic Van der Waals radii of the crystal host atoms
and atom-specific probe radii for water molecules (SI Appendix,
Table S1) are included to define generalizable atom-specific
cutoff distances for step 3. This approach is analogous to those
employed for mapping protein solvent accessible surfaces (30)
and describes the directional interactions of water (i.e., hydro-
gen bonding) with certain atom types.

As a further refinement and confirmation of the validity of
these cutoff distances, we analyzed over 10,000 organic hydrate
crystal structures deposited in the Cambridge Crystallographic
Database (CCDC) using criteria described in Computational
Methods. In so doing, we created histograms of atomic distances
between the water oxygens and the different atom types of the
host crystal structure, showing that the cutoff distances appear
at the tails of these distributions (SI Appendix, Fig. S1 and
Table S2) and confirming that they both are physically realistic
and allow us to capture most hydrate structures.

In addition, we hypothesized that water molecules are unlikely
to reside in highly hydrophobic voids within the crystal structure.
To study the chemical environments of experimental hydrates
within the CCDC database, we have determined the number
and distances of neighboring hydrophobic heavy atoms for each
water molecule. These hydrophobic atoms are defined as nonion-
ized heavy atoms excluding nitrogen and oxygen. Such atoms do
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not typically participate in directional interactions with water. In
order to quantify the local hydrophobic environment of each
water molecule, we utilize a single radial symmetry function (31).
The calculation is performed for each lattice water molecule,
where the penalty score contribution, denoted PðrijÞ, of each
individual neighboring hydrophobic atom (Eq. 1) is summed to
determine an environmentally descriptive scoring function, GiðrÞ,
where r denotes the set of N � 1 atomic coordinates, excluding
those of atom i. The resulting GiðrÞ value of each individual
water is then used to quantify the hydrophobicity of the water’s
surrounding environment.

GiðrÞ = ∑
N

j≠i
PijðrijÞ

= ∑
N

j≠i
e�ηðjrij j�RsÞ2 1

2
cos

jrij j � RS

rmax � RS

� �
π + 1

� �
: [1]

Here GiðrÞ is calculated for each water molecule i, rij denotes
the distance between the center of mass of water molecule i and
the neighboring atoms indexed as j, RS denotes the atom-
specific cutoff distances defined earlier, and rmax denotes the

maximum distance considered for neighboring atoms. Lengths
are input into Eq. 1 (assuming angstrom units) with η as a
constant, set as 1 Å

�2
. The function GiðrÞ assigns a higher pen-

alty for hydrophobic atoms that are closer to the water molecule
of interest. The Gaussian function provides a smooth decrease
as a function of increasing interatomic distance, and the cosine
function serves as a cutoff function (Fig. 2A).

The GiðrÞ values were calculated for each hydrate crystal
structure within the CCDC database, with rmax = RS + 1:0 Å,
where 99% of the hydrate waters exhibit GiðrÞ of less than 4.0
(Fig. 2B). Thus, within our workflow, water molecules with
GiðrÞ greater than 4.0 are considered unfavorable and not con-
sidered for insertion.

Results and Discussion

We first test MACH on the experimentally dehydrated brucine
dihydrate structure (Fig. 3) to investigate how our approach per-
forms on a channel hydrate that exhibits large, connected voids.
The dihydrate crystal retains its framework structure once dehy-
drated (15, 32), and the energetic stability of the guest-free
framework structure is confirmed through a CSP study by

Fig. 1. Schematic representation and description for MACH, illustrating each of the main steps.

A B

Fig. 2. (A) PðrijÞ for neighboring carbon atoms within 1.0 Å beyond the cutoff RS . (B) Histogram of all GiðrÞ values from the CCDC hydrate structures. Water
positions with GiðrÞ greater than 4.0 (as shown in red) are considered unfavorable for insertion in our approach.
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Braun et al. (9), where this structure falls within 20 kJ/mol of
the global minimum (SI Appendix, Fig. S2). In addition, upon
dispersion-corrected density functional theory (DFT-D) minimi-
zation of the dehydrated structure, the framework is main-
tained, with an overall rmsd of 0.10 Å when compared to the
fully hydrated framework (SI Appendix, Fig. S3). The abun-
dance of open channels and the availablility of hydrogen-bond
acceptor groups suggests this framework structure can clearly
incorporate water. However, without experimental data, the
water distribution within the lattice and its maximum water
stoichiometry cannot be deduced.
Using the MACH protocol, we iteratively insert waters to

completion, which correctly identifies the maximum stoichiom-
etry and positions of water. The first water molecule inserted in
the unit cell is placed within proximity of the exposed carbonyl
oxygen, satisfying the criterion defined by step 2 of our work-
flow (Fig. 3B). The inserted water is then optimized, where it
relaxes to its optimal position and orientation for forming a
hydrogen bond to the host molecule. Through further itera-
tions, subsequent water molecules are then inserted within
proximity of the first water molecule as waters can also hydro-
gen bond to each other within the crystal structure. After 1,000
insertion attempts (steps 1 to 3) and their subsequent

optimization and MD steps (steps 4 to 8 of Fig. 1), this
approach was able to insert waters into the brucine structure
closely matching their experimental positions, with an average
deviation in the water positions of 0.34 Å from the experimental
structure and 0.19 Å from the DFT-D optimized experimental
structure (SI Appendix, Fig. S5). Ultimately capturing the brucine
dihydrate structure (Fig. 3A) at its maximum water stoichiome-
try. The central processing unit (CPU) times of each of these
steps are provided in SI Appendix, Table S3. However, it is
important to note here that these timings will depend on the sys-
tem being studied and the hardware, software, and algorithms
utilized for the minimization and MD stages.

We note that due to the random nature of the positioning
and displacements of the initial water box, variability may be
observed with repeated runs in the final positions of the waters
of up to 0.63 Å (SI Appendix, Fig. S6). However, this may
be reflective of thermal variations in water positioning due to
the dynamic nature of the water molecules as observed by the
experimental thermal ellipsoids (SI Appendix, Fig. S4) and the
fact that the observed experimental structures can often also be
a dynamic ensemble of predicted structures (33, 34). To cap-
ture these potential variations, an ensemble average of the water
positions generated from multiple MACH runs can be used. In

A

C

B

Fig. 3. (A) View of brucine dihydrate down the b axis showing channel-like voids. The blue contact surfaces represent accessible volume through a spherical
probe radius of 1.2 Å. (B) Stepwise water insertion for brucine showing 1) the first water (green) being placed near a hydrogen bond acceptor, 2) geometry
optimization of the inserted water, 3) insertion of the second water (blue) within proximity of the first water, 4) geometry optimization of both inserted
waters, 5) total inserted waters from steps 1 to 4, and 6) final water positions and orientations after a short NVTMD and minimization. (C) Comparison of
the final structure from this protocol (green) with the experimental crystal structure (magenta) showing the comparison of the water positions and orienta-
tions. (While the predicted water orientations do not exactly match the experimental orientations, it is likely that at finite temperatures, water molecules are
mobile, and hydrogen atom positions are may not be exactly resolved experimentally.)
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the case of brucine, we observed that the average positions of
water centers from multiple MACH run repeats matched well
with experimental positions, with an average deviation in water
positions of 0.24 Å (SI Appendix, Fig. S6).
To predict the brucine dihydrate structure de novo through

traditional hydrate CSP, extensive structure searches with three
individual components (one brucine and two water), involving
potentially hundreds to thousands of CPU hours (35), would be
required. However, when provided a framework structure from
an existing anhydrous CSP landscape, MACH can quickly access
this structure in a matter of minutes or less. While traditional
CSP structure generators may, in theory, be used to sample
potential hydrate water positions when given an anhydrous
framework, placement of waters into random, unfavorable posi-
tions will lead to overprediction of many energetically unfavor-
able hydrates, along with the additional computational overhead
of minimizing each of these structures. In addition, such an
approach would require a priori specification of the desired num-
ber of waters to incorporate within the crystal lattice.
In order to test MACH on fractional hydrates where the

available void spaces are not as obvious, we have studied the
stoichiometric hemihydrate form I of the paroxetine hydrochlo-
ride, the subject of notable class-action polymorph lawsuits
(18, 19, 36–38). By simply visualizing the voids of the experi-
mental dehydrated paroxetine hydrochloride form I, it is not
obvious to conclude if this structure can accommodate water
molecules. For example, by probing the void spaces in this
structure with the default 1.2-Å probe radius in the CCDC’s
Mercury toolkit, as is typically done in structural void analysis
(15, 39–41), there appear to be no apparent voids within the
dehydrated paroxetine hydrochloride form I structure. However,
using a smaller probe radius of 0.8 Å, there appear to be
small, connected voids that occupy 5.8% of the unit cell volume
(Fig. 4A). It is also unclear where the water molecules should be
placed from structural inspection of these voids.
Using the MACH protocol, the positions around the chlo-

ride ion and the protonated amine are thoroughly sampled to
determine the water positions within the tight voids that meet
our cutoff criteria and scoring measures (Fig. 4B). Overall,

these results show the applicability of MACH and its cutoff cri-
teria for inserting water in nonobvious, tight void spaces of
fractional hydrates, as well as for predicting the highly direc-
tional ion–water interactions within the crystal lattice. The
hemihydrate of form I is also predicted when using the DFT-D
optimized host framework of form I as an input to MACH,
where its optimized framework is representative of a structure
that is generated from CSP (SI Appendix, Figs. S7 and S8). In
addition, MACH also correctly predicts the hydrate, form II,
of paroxetine hydrochloride (SI Appendix, Fig. S10).

In a final example, we test MACH on the patented, phase 2
hemihydrate of sitagliptin L-tartrate (SLTPH2) as reported by
Tieger et al. (42) and Richter et al. (43) to demonstrate how
our approach differentiates between chemical environments of
different structural voids. The dehydrated SLTPH2 framework
structure exhibits a range of physically and chemically diverse
void environments (Fig. 5A), as usually observed in complex
pharmaceutical molecules (6, 44), and was used as a framework
for water insertion.

Based on chemical intuition, the vast available void spaces
and numerous polar atoms from both sitagliptin and tartrate
counterion suggest that this structure is very amenable to host-
ing water molecules. However, contrary to these general obser-
vations and consistent with the experimental structure, only
one water molecule is inserted within the small hydrophilic
pockets (Fig. 5B). This is due to the exposed carboxylate group
and hydroxyl substituents of the tartrate counterion, which
allow for electrostatic and highly directional hydrogen bonding
interactions with water. Concurrently, the absence of water
molecules within the large void spaces suggests that no hydro-
gen bond acceptors/donors from the host molecule can be
readily accessed here. Although hydrogen bond acceptors are
present within these large void spaces and channels, they reside
in hydrophobic environments or are shielded by surrounding
hydrophobic atoms, hence rendering them inaccessible to water
molecules. For example, within the extended channels, while
the nitrogen of the triazole ring is partially exposed to the open
void spaces, the surrounding hydrophobic functionalities, such
as the trifluoromethyl and trifluorophenyl groups, prevent facile

A

C

B

Fig. 4. Paroxetine hemihydrate form I (no water) showing (A) small, connected voids using a probe radius of 0.8 Å with a 0.3-Å contact spacing. (B) The
hemihydrate structure and the chemical environment of the inserted water showing its directional interactions and distances from neighboring hydrophobic
atoms. (C) Comparisons of water positions between the predicted and experimental structure show a difference of 0.12 and 0.14 Å in their relative water
positions.
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hydrogen bonding of water to the triazole nitrogen (Fig. 5A).
MACH has also been tested on the DFT-D optimized dehy-
drated framework of SLTPH2, resulting in water insertions at
the same positions and stoichiometries as the experimental
structure (SI Appendix, Fig. S12).

General Applicability, Potential Limitations, and Future Work.
In order to understand better the general applicability and
potential limitations of MACH, we have also tested this
approach on the DFT-D optimized frameworks of multiple
other crystal structures (SI Appendix, Figs. S14–S18), including
target XXIV from the sixth CCDC blind test, pharmaceutically
relevant molecules, and an organic luminogen. From these exam-
ples, we note that MACH successfully predicts the correct
hydrate structures, water positions, and stoichiometries in most
of these examples.
In the test case for a different brucine hydrate, a nonstoi-

chiometric 3.85 hydrate (SI Appendix, Fig. S17), we observed
MACH generating multiple hydrate structures with varying
fractional stoichiometries (4.0, 4.25, and 4.35) and water posi-
tions from different independent runs due to the random nature
of the algorithm, the chemical environments of the notably vast
void spaces present, and the dynamic nature of the inserted
waters. Since these predicted structures differ in stoichiometry,
an ensemble average of water positions was not taken for com-
parison. However, these structures likely represent an ensemble
of plausible (fractional) water stoichiometries and configurations
and can be used for further structural elucidation or refinement
as the experimental water occupancies and positions are not well
defined. Experimentally observed structures and stoichiometries
for nonstoichiometric higher hydrates may likely constitute an
ensemble of structures with varying water positions and stoi-
chiometries (3). Yet, MACH is potentially able to distinguish
these nonstoichiometric higher hydrates by generating an
ensemble of different plausible hydrate structures. In its current
form, MACH assumes full water occupancy and predicts the
highest possible accessible water occupancy of a given frame-
work structure. As an enhancement of the MACH workflow,

grand canonical Monte Carlo deletion steps may be incorpo-
rated in the iterative loops to account for varying water levels as
a function of chemical potential, as is commonly observed in
nonstoichiometric hydrates. Ultimately, this can provide useful
computational insights that may help in capturing the risk of
observing such nonstoichiometric higher hydrates experimen-
tally as these hydrates can bring significant challenges in phar-
maceutical development (3, 6).

Lastly, we also observed that MACH was not able to insert
any waters into the DFT-D minimized framework structure of
paracetamol trihydrate as the DFT-D minimization results in
formation of new hydrogen bonds that close off any accessible
voids. Such behavior may occur more often in crystal hydrates
of small, polar molecules where there are fewer overall interac-
tions to stabilize the dehydrated framework. We note that when
this approach is used with standard anhydrous CSP, it may not
necessarily capture such labile hydrates where significant confor-
mational changes or lattice collapse occur upon dehydration.
However, our insertion scheme can be easily either augmented
with evolutionary/genetic CSP algorithms that generate such
porous crystal structures (45, 46) or even combined with a stoi-
chiometric hydrate CSP applied to highly labile hydrates.

Due to the simplicity and speed of MACH, we believe its utili-
zation introduces a promising direction for efficiently conducting
hydrate CSP and could serve well an integral component in CSP
workflows. In conjunction with standard anhydrous CSP (or even
multicomponent CSP), MACH can be used to generate hydrate
structures efficiently, wherein each generated structure from CSP
can be used as a candidate for water insertion. This can be espe-
cially effective when augmented with newly developed CSP algo-
rithms that efficiently generate accurate landscapes for structurally
similar chemical entities (47). These results can guide further
hydrate CSP or experimental studies by capturing the plausible
hydrate stoichiometries, hence eliminating the need for brute force
energy-based CSP searches of each plausible stoichiometry or par-
tial stoichiometry.

In addition, these generated hydrate structures (or lack
thereof) can provide unique insights to aid drug and materials

C

A B

Fig. 5. (A) Void spaces of SLTPH2 hemihydrate and their respective chemical environments. Inaccessible hydrogen bond forming groups are shown in red, while
accessible groups are shown in green. (B) Water positioning in the SLTPH2 hemihydrate within the tight, hydrophilic pocket voids, showing the hydrogen bonding
interactions of the water molecule. (C) Comparison of the predicted water positions with the experimental water positions showing an average difference of
0.41 Å. However, when the experimental structure is DFT-D minimized, it matches exactly with the predicted hydrate structure (SI Appendix, Fig. S11), thus
showing that the experimental structure and the MACH predicted hydrate structure fall into the same DFT-D minimum.
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design in identifying molecules or structural patterns that may
be prone to hydrate formation during storage or downstream
processing. In addition to its utilization in CSP, MACH also
provides rich opportunities for hydrate structural elucidation,
especially in cases where the electron density of waters within
the crystal lattice cannot be easily resolved.
Finally, MACH provides the groundwork for the develop-

ment of more advanced data/topologically driven insertion
approaches where finer-grained cutoff and scoring criteria can be
further refined through neural network approaches or explicit
consideration of atomic polarization. These criteria can also be
modified to capture solvate crystal structures or multicomponent
mixed solvate/hydrate polymorphs, paving the path for poten-
tially redefining multicomponent CSP.

Computational Methods

Water Position Optimization. Water optimization and MD
runs for each iteration were done using the PINY_MD (48)
package, where the General AMBER Force Field (49) intermo-
lecular and intramolecular parameters were used with atomic
point charges assigned from the restricted electrostatic potential
(50) charge assignment scheme using RHF/6-31G*//MP2/6-
31G* in Gaussian09 (51–55).

DFT Optimization. Periodic DFT-D optimizations and energy
calculations for crystal structures were performed using the Per-
dew-Burke-Ernzerhof (PBE) functional (56) with the Neumann-
Perrin (NP) dispersion correction (57), a plane wave basis set
(520 eV, 2 π × 0.07 Å�1 k-point grid), and default projected-
augmented wave (PAW) pseudopotentials, as implemented in
VASP 5.4.1 (58–60).

Hydrate Crystal Structure Database Analysis. The dataset for
building the cutoff distance and hydrophobicity score histo-
grams was obtained from a search of the Crystal Structure
Database using the Conquest software (61). Structures included
in this dataset had three-dimensional coordinates determined,
have an R factor of ≤0.05, are nondisordered, include no
errors, are not polymeric, are single crystal structures, and are
not organometallics.

Void Analysis and Visualization. Voids within the crystal struc-
ture were visualized using CCDC Mercury (62), with contact
surfaces as described by Barbour (63).

Structural Comparison. Comparisons between different entire
hydrate crystal structures were performed using the COM-
PACK algorithm (64). The differences between the structures’
water positions were then determined after the two crystal
structures were overlaid.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix and will be made available by the authors
upon request.
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