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ABSTRACT
Quantum time correlation functions (TCFs) involving two states are important for describing nonadiabatic dynamical processes such as
charge transfer (CT). Based on a previous single-state method, we propose an imaginary-time open-chain path-integral (OCPI) approach
for evaluating the two-state symmetrized TCFs. Expressing the forward and backward propagation on different electronic potential energy
surfaces as a complex-time path integral, we then transform the path variables to average and difference variables such that the integra-
tion over the difference variables up to the second order can be performed analytically. The resulting expression for the symmetrized
TCF is equivalent to sampling the open-chain configurations in an effective potential that corresponds to the average surface. Using
importance sampling over the extended OCPI space via open path-integral molecular dynamics, we tested the resulting path-integral approx-
imation by calculating the Fermi’s golden rule CT rate constant within a widely used spin-boson model. Comparing with the real-time
linearized semiclassical method and analytical result, we show that the imaginary-time OCPI provides an accurate two-state symmetrized
TCF and rate constant in the typical turnover region. It is shown that the first bead of the open chain corresponds to physical zero-
time and that the endpoint bead corresponds to final time t; oscillations of the end-to-end distance perfectly match the nuclear mode
frequency. The two-state OCPI scheme is seen to capture the tested model’s electronic quantum coherence and nuclear quantum effects
accurately.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0098162

I. INTRODUCTION
A central theme in quantum dynamics is the calculation

of quantum time correlation functions (TCFs), which describe
numerous dynamical phenomena such as chemical reaction rates,
transport properties, spectroscopic line shapes, and neutron and
light scattering. Generally, the standard quantum TCF of the oper-
ators Â at time 0 and B̂ at time t for the system described by
Hamiltonian Ĥ is given by1

C(t) = ⟨Â(0)B̂(t)⟩ = 1
Z
TrN[e−βĤ ÂeiĤt/h̵B̂e−iĤt/h̵], (1)

where TrN[⋅] is the trace over the (nuclear) Hilbert space,
Z = TrN[e−βĤ ] is the canonical partition function, and β = 1/kBT is
the inverse temperature (kB is the Boltzmann’s constant and h is the
reduced Planck’s constant). Such TCFs incorporate (nuclear) quan-
tum effects such as tunneling effect and zero-point energy, which
can be significant when the system includes light nuclear particles,
such as hydrogen, or is at low temperatures.2,3 For small molec-
ular systems, if the potential energy surface is known, the most
accurate way of obtaining TCFs is arguably through direct time evo-
lution of the wavefunction from the time-dependent Schrödinger
equation.4–7 However, the computational overhead of wavefunction
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methods is prohibitively high for complex or condensed-phase sys-
tems with many degrees of freedom (DOFs). Thus, it is desirable
to have more practical dynamical methods that can be used to treat
large systems.

The last half century has witnessed numerous efforts in devel-
oping approximate approaches for evaluating TCFs of large systems.
One such approach is the semiclassical initial value representation
(SC-IVR) proposed by Miller8–10 and its forward–backward version
proposed by Makri,11–13 where the time evolution of a quantum
system is transformed into a trajectory problem that is more
tractable than wavefunction methods. More practical schemes are
based on a linearization approximation that leads to the lin-
earized semiclassical (LSC)14–16 or equivalent classical Wigner
model,17 which can be derived directly from the linearization of
the forward–backward real-time path integrals as shown by Shi
and Geva.18–20 Consequently, LSC is also called the linearized path
integral (LPI) approach.21–25

Alternatively, Feynman path-integral techniques have become
a popular choice for incorporating nuclear quantum effects in
thermodynamic or time-independent properties in condensed
phases.26–29 By partitioning the quantum Boltzmann operator
exp(−βĤ) into P slices or “beads,” one can construct a repre-
sentation of the quantum-mechanical equilibrium distribution that
is isomorphic to classical ring-polymers consisting of P beads as
P →∞.30 The exact quantum mechanical statistics can be obtained
by sampling the extended ring-polymer configuration space, using,
e.g., path-integral Monte Carlo (PIMC)31 or path-integral molecu-
lar dynamics (PIMD).32–35 Since exp(−βĤ) can be considered as
a quantum propagator exp(−iĤt/h̵) in imaginary time t = −iβh,
PIMC and PIMD are commonly referred to as imaginary-time path-
integral approaches. The advantage of imaginary-time methods is
that the distribution is positive-definite and, therefore, ensemble
averages converge rapidly, as there are no highly oscillatory quan-
tum phase factors as occur in the real-time propagator. Such fac-
tors typically cause convergence issues in real-time path-integral
methods such as LSC/LPI.

Imaginary-time methods have become widely used to approxi-
mate quantum TCFs under the assumption that PIMDwith physical
masses captures some dynamical information. This class of methods
includes centroid molecular dynamics (CMD)36 and ring-polymer
molecular dynamics (RPMD),37 both of which have recently been
shown to be limiting cases of the numerically “exact” Matsubara
dynamics.38 Taking advantage of the cyclic symmetry of the ring-
polymers, CMD and RPMD directly generate the Kubo-transformed
TCF. Recently, we showed how RPMD could be applied to the
simulation of two-dimensional vibrational spectroscopy in liquids
to incorporate nuclear quantum effects via the double Kubo-
transformed correlation functions.39 However, due to the fact that
CMD/RPMD lacks quantum phase factors, the applicability of these
imaginary-time path-integral based dynamical schemes needs to be
carefully considered before they are generally applied.

A new approach to include quantum phase information is to
combine imaginary-time path-integral techniques with a second-
order expansion in the variables that describe difference between
forward- and backward-time paths. Recently, Robertson and
Habershon40 and Cendagorta et al.41 independently proposed
the open-chain path-integral (OCPI) approach for obtaining the
symmetrized TCF defined as

G(t) = 1
Z
TrN[ÂeiĤτ∗c /h̵B̂e−iĤτc/h̵], (2)

where τc is a complex time parameter given by τc = t − iβh/2. It
can be shown that the standard quantum TCF and the symmetrized
version are related through their Fourier transforms,42

C̃(ω) = eβh̵ω/2G̃(ω). (3)

The idea is similar to real-time LSC/LPI for symmetrized TCF43,44

except that it can be formulated as an imaginary-time sampling
approach as follows: We start from the complex-time forward and
backward propagators in the symmetrized TCF, transform the bead
position variables into averages and differences of the complex-
time paths, and truncate an expansion of the potential in the
forward–backward path integrals at second order in the path differ-
ence variables. When this is done, a positive-definite imaginary-time
OCPI sampling scheme is obtained that can provide quantum phase
information up to second order in the forward–backward path
differences. This imaginary-time sampling approach can be eval-
uated by any numerical sampling scheme, for example, molecular
dynamics,41 Monte Carlo,40 or enhanced sampling methods.45 It is
important to note that the method can be systematically improved
by including higher-order terms to yield a numerically formally
“exact” approach,41 although beyond second order, the integrals
over the path difference variables can no longer be performed
analytically.

The situation becomes more complicated when considering
nonadiabatic transitions between different electronic states. For
example, Fermi’s golden rule (FGR) charge transfer (CT) rate con-
stant for donor-to-acceptor transition requires a quantum TCF
involving two electronic states,46,47

CAD(t) =
1
ZD

TrN[e−βĤD ÂeiĤAt/h̵B̂e−iĤDt/h̵], (4)

where ĤD/A denote the donor/acceptor-state nuclear Hamiltoni-
ans and ZD = TrN[e−βĤD] is the donor-state partition function. The
fundamental difference between the single-state TCF in Eq. (1)
and two-state TCF in Eq. (4) is that the Heisenberg-picture oper-
ator B̂(t) = eiĤ t/h̵B̂e−iĤt/h̵ in Eq. (1) has a well-defined classical
limit, whereas eiĤAt/h̵B̂e−iĤDt/h̵ in Eq. (4) corresponds to quantum
coherence and, thus, does not have a well-defined classical limit.46
Beyond the single-state contribution, the energy gap between two
electronic states also contributes to the highly oscillatory quan-
tum phase factor, which is considerably more difficult to compute.
For this reason, conventional mixed quantum–classical dynamical
methods without explicit treatment of the electronic decoherence,
such as fewest-switches surface hopping (FSSH)48 and Ehrenfest
dynamics,49 can deviate significantly from exact quantum mechan-
ical FGR rate constants. Thus, it is essential to develop dynamical
methods that can capture electronic decoherence in a consistent
manner.

In this work, we extend the OCPI approach41 to two-state sym-
metrized quantum TCFs and show this sampling scheme is able
to capture approximate quantum phase information explicitly. We
start by constructing the two-state symmetrized quantum TCF for
FGR CT rate constant. Next, we express the complex-time forward
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and backward path integrals and transform the bead variables evolv-
ing on two electronic potential energy surfaces to path average and
difference variables, and we truncate the Taylor expansion of the
forward and backward path-integral actions at second order in the
difference variables. As with the real-time LSC/LPI method, the
effective Hamiltonian and corresponding Boltzmann distribution
can be written as the average surface between the donor and accep-
tor states, but the Hamiltonian becomes complex.We propose to use
importance sampling to harvest the open-chain configurations using
the real OCPI effective Hamiltonian corresponding to the average
surface. We test this algorithm using a widely applied benchmark
spin-bosonmodel for condensed-phase CT processes,50–52 where the
exact quantum mechanical expression of FGR is known in closed
form.46 We will also compare the newly developed imaginary-time
OCPI scheme against the traditional real-time LSC/LPI approach46
in numerical accuracy. Furthermore, we investigate structures and
energy contributions of the open chains since an effective sampling
of the open-chain configurations has a decisive influence on the
accuracy of OCPI calculations.

The remainder of this paper is organized as follows: In Sec. II,
we derive the open-chain path-integral formalism for two-state sym-
metrized TCFs and show its relation with the TCFs required in the
Fermi’s golden rule rate constant. The benchmark spin-bosonmodel
Hamiltonian is described in Sec. III. Computational techniques are
described in Sec. IV. Results are reported and discussed in Sec. V.
Concluding remarks are provided in Sec. VI. The proof of the rela-
tion between the two-state symmetrized TCF and the standard TCF
is shown in the Appendix.

II. THEORY
We begin by briefly outlining the FGR CT rate constant

given by time integration of the two-state quantum TCF and its
LSC/LPI expression. Then, we derive the OCPI expressions for the
corresponding two-state symmetrized TCF.

A. Fermi’s golden rule charge transfer rate constant
We consider a two-state Hamiltonian for modeling CT process

between diabatic donor and acceptor electronic states, i.e., ∣D⟩ and
∣A⟩, respectively,

Ĥ = ĤD∣D⟩⟨D∣ + ĤA∣A⟩⟨A∣ + Γ̂DA∣D⟩⟨A∣ + Γ̂AD∣A⟩⟨D∣. (5)

Here, ĤD/A are the corresponding nuclear Hamiltonians,

ĤD/A =
P̂ 2

2
+VD/A(R̂), (6)

where R̂ = (R̂1, . . . , R̂N) and P̂ = (P̂1, . . . , P̂N) are the mass-weight
nuclear position operators and their conjugate momentum opera-
tors, respectively, VD/A(R̂) are potential energy surfaces (PESs) for
the corresponding states, and N is the number of nuclear DOFs.
Γ̂DA and Γ̂AD represent the electronic coupling between the donor
and acceptor states, and within the Condon approximation, they are
assumed to be constant, i.e., Γ̂DA = Γ̂†

AD = Γ.
The FGR rate constant for nonadiabatic electronic transi-

tions can be obtained via second-order time-dependent perturbation

theory by treating Ĥ0 = ĤD∣D⟩⟨D∣ + ĤA∣A⟩⟨A∣ as the unper-
turbed Hamiltonian and the electronic coupling ĤI = Γ̂DA∣D⟩⟨A∣
+ Γ̂AD∣A⟩⟨D∣ as the perturbation. As in the equilibrium FGR formal-
ism,53 the system is assumed to start out at thermal equilibrium in
the donor state, i.e., ρ̂(0) = ρ̂eqD ∣D⟩⟨D∣ and ρ̂eqD = 1

ZD
e−βĤ D , where ZD

is the donor-state partition function. The FGR CT rate constant for
D→ A electronic transition is given by

k = 2
h̵2

Re∫
∞

0
dt CDA(t) =

1
h̵2∫

∞

−∞
dt CDA(t), (7)

where the quantum time correlation function involves propagators
on two different electronic states, CDA(t), is derived from the off-
diagonal electronic coupling autocorrelation function,

CDA(t) = TrNTre[ρ̂(0)eiĤ0t/h̵ĤIe−iĤ 0t/h̵ĤI]

= 1
ZD

TrN[e−βĤ DeiĤ Dt/h̵Γ̂DAe−iĤAt/h̵Γ̂AD]. (8)

Here, Tre[⋅] denotes trace over the electronic Hilbert space. In
Eq. (7), we can also use CAD(t) [Eq. (4)] in the integrand, i.e.,

CAD(t) =
1
ZD

TrN[e−βĤ D Γ̂DAeiĤ At/h̵Γ̂ADe−iĤ Dt/h̵], (9)

since CAD(t) = C∗DA(t), which can be shown using Γ̂DA = Γ̂†
AD and

cyclic invariance of trace, Tr[ÂB̂Ĉ] = Tr[ĈÂB̂] = Tr[B̂ĈÂ].
Note that the validity of using a rate constant to describe CT

is based on the separation of timescales, where the decay time
of CDA(t) is much faster than k−1. Otherwise, one would have
to consider transient effects that give rise to a time-dependent
rate coefficient, which can be addressed by the nonequilibrium
FGR.54–57

B. The real-time linearized semiclassical (linearized
path-integral) scheme

The LSC/LPI approximation for the two-state quantum TCF
is obtained by casting CDA(t) in a real-time path-integral form and
truncating the expansion of the forward–backward action in terms
of the path difference variables at first order. The resulting LSC/LPI
expression for CDA(t) is given by20,46,47

CLSC/LPI
DA (t) = ∫ dR0dP0[Γ̂ADρ̂eqD ]W(R0,P0)

× [Γ̂DA]W(R
av
t ,P

av
t ) exp[−

i
h̵∫

t

0
ΔV(Rav

τ )dτ], (10)

where ΔV(R) = VA(R) −VD(R) is the energy gap between the
acceptor and donor states, and theWigner transform of any operator
Â is defined as

[Â]
W
(R,P) = ∫ dZ e−iZ⋅P/h̵⟨R + Z

2
∣Â∣R − Z

2
⟩. (11)

In the LSC/LPI prescription, (Rav
t ,Pav

t ) are obtained from classi-
cal trajectories starting from initial conditions (R0,P0) sampled

J. Chem. Phys. 157, 114111 (2022); doi: 10.1063/5.0098162 157, 114111-3

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

from the Wigner distribution and propagating up to time t on the
average PES,

V(R) = 1
2
[VD(R) +VA(R)]. (12)

The real-time fluctuations in the energy gap contribute to the
quantum phase factor exp[− i

h̵∫
t
0 ΔV(R

av
τ )dτ], which is difficult to

converge due to its highly oscillatory behavior.

C. Open-chain path-integral scheme for two-state
symmetrized TCF

We now develop the OCPI formulation for the two-state sym-
metrized TCF. We start out by introducing the corresponding sym-
metrized TCF that corresponds to the CAD(t) in Eq. (9) by replacing
t with t + iβh/2,

GAD(t) =
1
ZD

TrN[Γ̂DAeiĤ Aτ∗c /h̵Γ̂ADe−iĤ Dτc/h̵], (13)

where τc is the complex time τc = t – iβh/2. As in the single-state
case [Eq. (3)], it can be shown that the two-state standard and sym-
metrized TCFs are related through their Fourier transforms (see the
Appendix for proof),

C̃AD(ω) = eβh̵ω/2G̃AD(ω). (14)

For simplicity, in this section, we restrict ourselves to
one-dimensional nuclear-space notation, i.e., ĤD/A = p̂ 2/(2m)
+VD/A(x̂), and we assume that the electronic coupling operators
Γ̂DA, Γ̂AD are functions of the nuclear position x̂ only. Expressing the
trace in Eq. (13) in the position basis, we have

GAD(t) = ∫ dx dx′ΓDA(x)⟨x∣eiĤ Aτ∗c /h̵∣x′⟩ΓAD(x′)⟨x′∣e−iĤ Dτc/h̵∣x⟩,
(15)

where ΓDA(x) and ΓAD(x′) are eigenvalues of the operator Γ̂DA
at position x and the operator Γ̂AD at position x′, respectively,
⟨x′∣e−iĤ Dτc/h̵∣x⟩ is the forward complex-time quantum propagator

from x to x′, and ⟨x∣eiĤ Aτ∗c /h̵∣x′⟩ is the backward complex-time quan-
tum propagator from x to x′. We slice the forward and backward
propagators into P beads each (for a total of 2P beads) by insert-
ing 2P closure relations and obtain the discretized path-integral
expression for GAD(t),

GAD(t) =
1
ZD
∫ dx(1) ⋅ ⋅ ⋅dx(2P)ΓDA(x(1))ΓAD(x(P+1))

×
P

∏
α=1
⟨x(α+1)∣e−iĤ Dε/h̵∣x(α)⟩

2P

∏
α=P+1

⟨x(α+1)∣eiĤ Aε∗/h̵∣x(α)⟩,

(16)

where ε = τc/P denotes the complex time segment, x = (x(1),
. . . , x(2P)) denote the bead positions, and the trace requires a closed
ring-polymer boundary condition x(2P+1) = x(1). Applying a Trotter

splitting for each short-time propagator as below,29,30,41

⟨x(α+1)∣e−iĤ Dε/h̵∣x(α)⟩ ≈
√

m
2πih̵ε

exp{ i
h̵
m
2ε
(x(α+1) − x(α))

2

− i
h̵
ε[VD(x(α+1)) +VD(x(α))

2
]}, (17)

⟨x(α+1)∣eiĤ Aε∗/h̵∣x(α)⟩ ≈
√

m
−2πih̵ε∗ exp{ −

i
h̵

m
2ε∗
(x(α+1) − x(α))

2

+ i
h̵
ε∗[VA(x(α+1)) +VA(x(α))

2
]}, (18)

we obtain an exact quantummechanical path-integral expression for
the two-state symmetrized TCF,

GAD(t) =
1
ZD
∫ dx ΓDA(x(1))ΓAD(x(P+1))ρ(x)eiϕ(x). (19)

Here, ρ(x) is a positive-definite distribution given by

ρ(x) = ( mP
2πh̵∣τc∣

)
P

exp{−
2P

∑
α=1
[A(x(α+1) − x(α))

2

+ β
2P

VD(x(α))] −
β
2P

ΔVRP(x)} ∣
x(2P+1)=x(1)

, (20)

the phase factor ϕ(x) is given by

ϕ(x) = γ
2
[

P

∑
α=1
(x(α+1) − x(α))

2
−

2P

∑
α=P+1

(x(α+1) − x(α))
2
]

− t
Ph̵
[

P

∑
α=2

VD(x(α)) −
2P

∑
α=P+2

VD(x(α))] +
t
Ph̵

ΔVRP(x). (21)

Here, for simplicity, we denote

A = mPβ
4∣τc∣2

, γ = mPt
h̵∣τc∣2

, (22)

and

ΔVRP(x) =
1
2
ΔV(x(1)) + 1

2
ΔV(x(P+1)) +

2P

∑
α=P+2

ΔV(x(α)), (23)

where ΔV(x) = VA(x) −VD(x) is the energy gap between donor
and acceptor states. The phase factor ϕ in Eq. (21) still exists even if
ΔV = 0, and we refer to this phase contribution as the nuclear quan-
tum coherence, in contrast with the electronic quantum coherence
for which ΔV ≠ 0.

Next, as illustrated in Fig. 1, we introduce an open-chain path-
integral approximation to Eq. (19). First, we define the path average
and difference variables, r = (r(1), . . . , r(P+1)) and s = (s(2), . . . , s(P)),
respectively, as follows:41
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FIG. 1. Schematic representation of the open-chain path-integral transformation
[Eq. (24)]. A closed ring polymer of 2P beads (P = 5 shown here) including P
beads of forward propagation on ĤD (blue) and P beads of backward propagation
on ĤA (red) is transformed into an open chain of P + 1 path-integral beads (purple).
The vertical dashed lines indicate the same physical times increasing from left
to right, and the open-chain beads are the averages between the corresponding
forward-path and backward-path beads.

r(1) = x(1),

r(P+1) = x(P+1),

r(α) = 1
2
[x(α) + x(2P+2−α)] (α = 2, . . . ,P),

s(α) = x(α) − x(2P+2−α) (α = 2, . . . ,P).

(24)

The inverse transformation from r and s back to the bead
positions x is

x(1) = r(1),

x(P+1) = r(P+1),

x(α) = r(α) + 1
2
s(α) (α = 2, . . . ,P),

x(2P+2−α) = r(α) − 1
2
s(α) (α = 2, . . . ,P).

(25)

Second, we rewrite the distribution function ρ [Eq. (20)] and
the phase factor ϕ [Eq. (21)] in terms of r and s and expand the
potential energies about s(α) = 0 up to second order; for α = 2, . . . ,P,
we obtain

VD(x(α)) = VD(r(α) +
1
2
s(α))

≈ VD(r(α)) +
1
2
V′D(r(α))s(α) +

1
8
V′′D(r(α))(s(α))2,

(26)

VD(x(2P+2−α)) = VD(r(α) −
1
2
s(α))

≈ VD(r(α)) −
1
2
V′D(r(α))s(α) +

1
8
V′′D(r(α))(s(α))2.

The potential energy terms in the distribution function ρ become

2P

∑
α=1

VD(x(α)) ≈ VD(r(1)) +VD(r(P+1))

+ 2
P

∑
α=2
[VD(r(α)) +

1
8
V′′D(r(α))(s(α))2], (27)

and the potential energy terms in the phase factor ϕ become

P

∑
α=2

VD(x(α)) −
2P

∑
α=P+2

VD(x(α)) ≈
P

∑
α=2

V′D(r(α))s(α), (28)

2P

∑
α=P+2

ΔV(x(α)) =
2P

∑
α=2+P

ΔV(r(α) − 1
2
s(α))

≈
2P

∑
α=P+2

ΔV(r(α)) − 1
2
ΔV′(r(α))s(α)

+ 1
8
ΔV′′(r(α))(s(α))2. (29)

Third, collecting terms in the distribution and phase factor as a
function of average and difference variables (r, s), denoting the in-
between average variables r′ = (r(2), . . . , r(P)), and calling the average
PES V(x) = 1

2 [VA(x) +VD(x)], we obtain the OCPI distribution
and phase factor expressions as follows:

ρ(r, s) = ρ1(r) ρ2(r′, s), (30)

ρ1(r) = (
mP

2πh̵∣τc∣
)
P

exp{−A[2
P

∑
α=1
(r(α+1) − r(α))2]

− β
2P
[V(r(1)) +V(r(P+1)) + 2

P

∑
α=2

V(r(α))]}, (31)

ρ2(r′, s) = exp{−
A
2
[
P−1
∑
α=2
(s(α+1) − s(α))2 + (s(2))2 + (s(P))2]

− β
2P

P

∑
α=2
[−1

2
V ′(r(α))s(α) + 1

4
V ′′(r(α))(s(α))2]},

(32)

ϕ(r) = γ
P

∑
α=2
(2r(α) − r(α−1) − r(α+1))s(α) − t

Ph̵

P

∑
α=2

V ′(r(α))s(α)

+ t
Ph̵
[

P

∑
α=2

ΔV(r(α)) + 1
2
ΔV(r(1)) + 1

2
ΔV(r(P+1))

+
P

∑
α=2

1
8
ΔV′′(r(α))(s(α))2]. (33)
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Fourth, we define a tridiagonal (P − 1) × (P − 1)matrixM(r′)
with elements

Mαα′(r′) = [2A +
β
4P

V ′′(r(α)) − it
4Ph̵

ΔV′′(r(α))]δαα′

− Aδα+1,α′ − Aδα,α′+1 (α,α′ = 2, . . . ,P), (34)

(P − 1)-dimensional vector K(r) with components

Kα(r) = γ(2r(α) − r(α−1) − r(α+1)) −
t
Ph̵

V ′(r(α))

− iβ
4P

ΔV′(r(α)) (α = 2, . . . ,P), (35)

and the phase factor Φ due to electronic quantum coherence as

Φ(r) = t
Ph̵
[

P

∑
α=2

ΔV(r(α)) + 1
2
ΔV(r(1)) + 1

2
ΔV(r(P+1))]. (36)

The two-state symmetrized TCF in Eq. (19) can then be expressed as

GAD(t) =
1
ZD
∫ drρ1(r)ΓDA(r(1))ΓAD(r(P+1)) eiΦ(r)

×∫ ds e−
1
2 s

TM(r′)s+iK(r)s. (37)

The integration over the path difference variables s in Eq. (37)
is a multivariate Gaussian integral, which can be evaluated
analytically via

∫ ds e−
1
2 s

TM(r′)s+iK(r)s =
¿
ÁÁÀ (2π)P−1

det[M(r′)] e
− 1

2K(r)
TM−1(r′)K(r). (38)

Finally, inserting Eq. (38) into Eq. (37), we obtain the main
result of this paper, i.e., the open-chain path-integral formula for
the two-state symmetrized TCF or two-state open path symmetrized
correlation function (OPSCF),

GAD(t) =
(2π)(P−1)/2

ZD
∫ drρ1(r)ΓDA(r(1))ΓAD(r(P+1))eiΦ(r)

× e−
1
2 [K(r)

TM−1(r′)K(r)+ln(det[M(r′)])]. (39)

The above expression suggests that this imaginary-time sampling
technique can be performed with an effective PES of (P + 1)-bead
open chain,

Ṽ(r) =W(r) +Vspr(r) +VOP(r), (40)

where the first term is from Gaussian integral and couples all the
beads. This term is also complex for the general two-state case
[due to term − it

4Ph̵ΔV
′′(r(α)) of M matrix in Eq. (34) and term

− iβ
4PΔV

′(r(α)) of vector K in Eq. (35)],

W(r) = 1
2β
[K(r)TM−1(r′)K(r) + ln(det[M(r′)])]

complex
, (41)

the second term contains harmonic interactions between adjacent
beads with frequency ωP =

√
P/∣τc∣,

Vspr(r) =
P

∑
α=1

1
2
mω2

P(r(α+1) − r(α))2, (42)

and the last term reflects the open-chain potential energy on the
average PES with the two end beads subject to only half the average
PES,

VOP(r) =
1
P
[

P

∑
α=2

V(r(α)) + 1
2
V(r(1)) + 1

2
V(r(P+1))]. (43)

In fact, this imaginary-time path integral can be evaluated using any
sampling technique, e.g., Monte Carlo, molecular dynamics (MD),
or any enhanced sampling scheme.When usingMD to sample open-
chain configurations, fictitious masses (m′) and fictitious momenta
p = (p(1), . . . , p(P+1)) are added to form a Hamiltonian,

H̃(r,p) = p2

2m′
+ Ṽ(r). (44)

It is important to note that when ΔV ≡ 0, GAD(t) reduces to
the single-state case for the average PES, where the phase factor eiΦ

originating from the electronic quantum coherence vanishes and the
W(r) reduces to the single-state counterpart on the average PES, i.e.,
Wav(r), which is real. Let us denote the OCPI sampling distribution
of the open chain on the average PES as

ρ̃av =
(2π)(P−1)/2

Z̃av
exp(−βṼav(r)), (45)

Z̃av = (2π)(P−1)/2 ∫ dr exp(−βṼav(r)), (46)

where the OCPI effective potential, dependent on the average PES,
is given by

Ṽav(r) =Wav(r) +Vspr(r) +VOP(r), (47)

Wav(r) =
1
2β
[K(r)TM−1(r′)K(r) + ln(det[M(r′)])]

av
. (48)

Here,Wav(r) is positive definite. The single-state symmetrized TCF
[Eq. (2)] on the average PES is expressed as

G(t) = ∫ drρ̃av(r)A(r(1))B(r(P+1))

= ⟨A(r(1))B(r(P+1))⟩
av
. (49)

However, in the two-state case, W(r) is complex and not positive
definite; thus, it cannot be used as sampling distribution.

To evaluate the two-state GAD(t) in Eq. (39), we utilize impor-
tance sampling and propose to sample according to Ṽav with the real
Wav(r) and absorb the ratio e−βW(r)/e−βWav(r) in the observable,
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GAD(t) =
Z̃av

ZD

(2π)(P−1)/2

Z̃av
∫ drρ1(r)ΓDA(r(1))ΓAD(r(P+1))

× eiΦ(r) e
−βW(r)

e−βWav(r)
e−βWav(r)

= Z̃av

ZD
⟨ΓDA(r(1))ΓAD(r(P+1))eiΦ(r)

e−βW(r)

e−βWav(r)
⟩
av
. (50)

The above formula provides a practical approach for evaluating the
two-state GAD(t), and we shall employ it in our calculations of
open path integral molecular dynamics (OPIMD).31,58,59 We note
that there are surely other ways to evaluate GAD(t), such as open
path-integral Monte Carlo,40 complex Langevin methods,60 and
other enhanced sampling techniques. Moreover, the two-state OCPI
could be systematically improved by, for example, considering a
higher-order expansion in the difference variables via cumulant
methods,41 tuning the optimal value of P as in colored-noise ther-
mostat approaches, and employing higher-order Trotter expansions
such as a Suzuki–Chin factorization.41,61

III. MODEL
The spin-boson model is one of the most widely used two-

state models for quantum dynamics simulations of charge transfer
reactions; the Hamiltonian is given by50,51

Ĥ = Γσ̂x −
ΔE
2
σ̂z +

N

∑
j=1
( P̂j

2
+ 1
2
ω2
j R̂

2
j − cjR̂jσ̂z), (51)

where σ̂x = ∣D⟩⟨A∣ + ∣A⟩⟨D∣ and σ̂z = ∣D⟩⟨D∣ − ∣A⟩⟨A∣ are Pauli
spin operators; ΔE = −hωDA is the reaction free energy for
D→ A process; {R̂j, P̂j,ωj, cj∣ j = 1, . . . ,N} are the mass-weighted
positions, momenta, nuclear vibrational frequencies, and the
electronic–nuclear coupling coefficients, respectively; and N is the
number of nuclear DOFs.

Equivalently, the spin-boson Hamiltonian in Eq. (51) can be
cast into the general form of Eq. (5), where the electronic cou-
plings Γ̂DA = Γ̂AD = Γ and the donor-state and acceptor-state nuclear
Hamiltonians are given by46

ĤD =
N

∑
j=1

P̂2
j

2
+ 1
2
ω2
j R̂

2
j + h̵ωDA,

ĤA =
N

∑
j=1

P̂2
j

2
+ 1
2
ω2
j (R̂ j − Req

j )
2
.

(52)

Here, Req
j is the equilibrium position displacement between the

donor and acceptor states for the jth nuclear mode, which is related
to cj through

Req
j =

2cj
ω2
j

( j = 1, . . . ,N). (53)

The reorganization energy for the spin-boson model is

Er =
N

∑
j=1

2c2j
ω2
j
= 1
2

N

∑
j=1

ω2
j (Req

j )
2
. (54)

The frequencies and the coupling coefficients {ωj, cj} in the
spin-boson model are usually determined by the spectral density
defined by50

J(ω) = π
2

N

∑
j=1

c2j
ωj

δ(ω − ωj), (55)

which can be constructed using the energy-gap time correlation
function obtained from all-atom molecular dynamics simulations
of realistic condensed-phase systems.52,62,63 In this work, we employ
the Ohmic spectral density given by

J(ω) = π
2
h̵ξωe−ω/ωc , (56)

where ωc is a cutoff frequency and ξ is the Kondo parameter. The
nuclear mode frequencies and couplings for the Ohmic spectral
density can be obtained using64

ωj = −ωc ln(1 −
j

N + 1) ( j = 1, . . . , N), (57)

cj = ωj
√
h̵ξωc/(N + 1) ( j = 1, . . . , N). (58)

In this study, we choose the model parameters ωc = 1,
h = 1, ξ = 1, Γ = 1, and N = 19. In the rest of the paper, the energy
unit is chosen as hωc and the time unit as ω−1c . We investigate
two temperatures, β = 0.5 and 4, as high and low temperatures,
respectively.

For the spin-boson model, the symmetrized TCF GAD(t) is
known in closed form as

GAD(t) = Γ2 exp
⎧⎪⎪⎨⎪⎪⎩
−iωDAt −

N

∑
j=1

ωj(Req
j )

2

2h̵

× [coth(βh̵ωj

2
)(1 − cos(ωjt) cosh(

βh̵ωj

2
))

+ cos(ωjt) sinh(
βh̵ωj

2
)]
⎫⎪⎪⎬⎪⎪⎭
, (59)

which is a real even function of time when ωDA = 0. The quantum
TCF CAD(t) is also known in closed form,46

CAD(t) = C∗DA(t) = Γ2 exp
⎧⎪⎪⎨⎪⎪⎩
−iωDAt −

N

∑
j=1

ωj(Req
j )

2

2h̵

× [coth(βh̵ωj

2
)(1 − cos(ωjt)) − i sin(ωjt)]

⎫⎪⎪⎬⎪⎪⎭
. (60)

Time integration of Eq. (60) leads to the FGR rate constant, which
is equivalent to the Fourier transform of the CAD(t; ωDA = 0) or
the inverse Fourier transform of the CDA(t; ωDA = 0) as a function
of ωDA,

k(ωDA) =
1
h̵2

F[CAD(t;ωDA = 0)](ωDA)

= 1
h̵2

F −1[CDA(t;ωDA = 0)](ωDA). (61)

This procedure for obtaining the FGR rate constant from GAD(t)
from imaginary-time OCPI sampling is summarized in Fig. 2.
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FIG. 2. Procedure of calculating FGR rate constant k(ωDA) from the sym-
metrized TCF GAD(t) without ΔE = −hωDA. Here, FT stands for Fourier trans-
form, Ã(ω) = F[A(t)](ω), and IFT stands for inverse Fourier transform, Â(ω)
= F −1[A(t)](ω). Finally, the FGR rate constant as a function of ωDA is given
by k(ωDA) = C̃AD(ωDA)/ h2 = ĈDA(ωDA)/ h2.

IV. COMPUTATIONAL DETAILS
In the OCPI calculations, we employed imaginary-time

open path integral molecular dynamics (OPIMD) with staging
variables33,59 for sampling open chains of the spin-boson model at
the two temperatures β = 0.5 and β = 4. A Langevin thermostat65
was implemented for a canonical sampling of the open-chain config-
uration space. The GAD(t) was evaluated starting from t = 0 with a
physical time intervalΔt = 0.11 and amaximum physical time 14.08,
at a total of 129 time points; negative physical times were directly
obtained by using time-symmetry of GAD(t). The number of beads
P ranged from 64 to 284, and more specifically, we added beads
according to

P = max[64, integer(20∣τc∣)], (62)

to increase numerical stability in long physical time regions. This
scheme of choosing P leads to a constant P = 64 when t < 3.3 at
β = 0.5 and t < 2.53 at β = 4 before P starts to increase with the
physical time.

In the imaginary-time OCPI simulations, the MD time step
δt of the simulations ranged from 0.002 to 0.010. In all cases, the
open chains were first propagated for 1 × 106 steps for equilibration,
and then configurations of the open chains for each nuclear mode
were sampled in subsequent MD steps. In the high-temperature
case (β = 0.5), the MD time step was chosen to be δt = 0.010 and
δt = 0.002 for modes 0–9 and modes 10–18, respectively, and a total
of 4 × 109 and 5 × 108 were sampled for modes 0–2 and modes
3–18, respectively. In the low-temperature case (β = 4), the MD
time step was chosen to be δt = 0.010 for all modes, and a total of
4 × 109, 2 × 109, and 5 × 108 were sampled for modes 0–2, modes
3–9, and modes 10–18, respectively. Statistical properties, such as
the average effective energy and average interbead and end-to-end
distances, were obtained by sampling every 103 configurations in
the OCPI simulations. The computational cost for sampling 109

open-chain configurations of all time points per mode is about 9900
core-hours using a single core of Intel Xeon Gold 6132 @ 2.60 GHz
CPU. The computational cost grows linearly with the number of

nuclear normal modes in the spin-boson model, whereas for cou-
pled nuclear degrees of freedom, it is expected to grow beyond
linear scaling, and the sparsity of the M matrix would depend on
the coupling between the modes. Furthermore, from our obser-
vation, the computational cost grows approximately quadratically
with respect to the number of beads. For example, sampling of 109

open-chain configurations of 66 beads takes 55 000 s on one core
and sampling of 109 open-chain configurations of 134 beads takes
190 000 s.

A Whittaker–Eliers (WE) smoother,66 implemented in
Python,67 is employed iteratively to smooth the numerically
sampled GAD(t). Three parameters for the WE smoother include
the order of the fitting polynomial (n), the smoothness parameter
(λ), and a convergence tolerance (Dconv). The input data to the
smoother is logGAD(t), where log denotes a base-10 logarithm
hereinafter. In the low-temperature case, we used an iterative
WE smoother with n = 4, λ = 1 × 103, and Dconv = 1 × 10−4; in the
high-temperature case, the central 110 data points were smoothed
with n = 4, λ = 10, andDconv = 5 × 10−4.

There is a normalization factor Z̃av/ZD in Eq. (50) corre-
sponding to the different partition functions in the definition of
two-state symmetrized TCF GAD(t) in Eq. (13) and the OCPI par-
tition function for the average PES as in Eq. (46). Since the OCPI
partition function Z̃D is equal to the quantum partition function ZD
for harmonic potentials as in the spin-boson model, for a nuclear
mode, we can transform this normalization factor by substituting
r(α) → r(α) + 1

2R
eq, (α = 1, . . . ,P + 1) in the OCPI effective poten-

tial for the average PES [Eq. (47)] and compare with the OCPI
effective potential for the donor-state PES,

ṼD(r) =
1
2β
[K(r)TM−1(r′)K(r) + ln(det[M(r′)])]

D

+
P

∑
α=1

1
2
mω2

P(r(α+1) − r(α))2

+ 1
P
[

P

∑
α=2

VD(r(α)) +
1
2
VD(r(1)) +

1
2
VD(r(P+1))]. (63)

Consider the jth mode with open-chain variables rj = (r(1)j , . . . ,

r(P+1)j ). On introducing a change of variables r(α)j → r(α)j + 1
2R

eq
j

(α = 1, . . . ,P + 1) and inserting VD(R̂j)= 1
2ω

2
j R̂

2
j andV(R̂j) = 1

2ω
2
j (R̂j

− 1
2R

eq
j )

2
+ 1

8ω
2
j (Req

j )
2 into Eqs. (47) and (63), respectively, we

obtain

Ṽav(rj +
1
2
Req
j ) = ṼD(rj) +

1
8
ω2
j (Req

j )
2. (64)

Hence, for the jth mode,

Z̃av = (2π)(P−1)/2 ∫ drj e−βṼ av(rj)

= (2π)(P−1)/2 ∫ drj e−β[Ṽ D(rj)+ 1
8ω

2
j (R

eq
j )

2]

= Z̃De−β
1
8ω

2
j (R

eq
j )

2

, (65)
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and the normalization factor for all the modes of the spin-boson
model is given by

Z̃av

Z̃D
= e−β

1
8∑

N
j=1 ω

2
j (R

eq
j )

2

= e−βEr/4. (66)

The real-time LSC/LPI method for calculating the FGR CT
rate constant was implemented as a trajectory-based numerical
simulation46 and used to compare with the imaginary-time OCPI
approach. The quantum TCF obtained directly from LSC/LPI
simulation for the spin-boson model is given by

CLSC/LPI
DA (t) = Γ2 ∫ dR0dP0 ρeqD,W(R0,P0)

× exp[− i
h̵∫

t

0
ΔV(Rav

τ )dτ], (67)

where the initial conditions (R0,P0) were sampled from the Wigner
semiclassical distribution corresponding to the equilibrated donor
state,

ρeqD,W(R0,P0) =
N

∏
j=1

1
πh̵

tanh(βh̵ωj

2
)

× exp{− 2
h̵ωj

tanh(βh̵ωj

2
)(

P2
j0

2
+
ω2
j R

2
j0

2
)}, (68)

and then the nuclear positions and momenta were propagated on
the average PES with MD time step δt = 0.001 and along each tra-
jectory from physical time t = 0 to t = ±14.08. The quantum TCF as
a function of time with interval Δt = 0.11 was obtained by averaging
over 106 trajectories and total 2.56 × 108 configurations. The com-
putational cost for generating 106 trajectories is about 15 core-hours
using a single core of Intel Xeon Gold 6132 @ 2.60 GHz CPU.

V. RESULTS AND DISCUSSION
Our main result is shown in Fig. 3, where the CT rate constants

in the spin-boson model computed using the proposed imaginary-
time two-state open-chain path-integral technique, the real-time
LSC/LPI approach, and the analytical FGR rate constants are com-
pared for two temperatures (β = 0.5 and β = 4). First, we see that
the OCPI approach is able to reproduce the analytical FGR CT rate
constant in the typical turnover parameter space ranging from the
normal regime to the inverted regime while increasing the thermo-
dynamic driving force or the reaction free energy −ΔE = hωDA. This
is an important test of the ability of the two-state OCPI approach
to capture the real-time quantum dynamical behavior using only
imaginary-time sampling, whichmakes OCPI promising for systems
that are not straightforward to formulate as a real-time quantum
dynamical scheme. In addition, using the WE smoother,66 the two-
state OCPI approach can reproduce the analytical FGR CT rate
constant in a much wider region. The effect of smoothing actu-
ally helps in reducing numerical noise in the short-time signal of
GAD(t), which has a significant effect on the FGR rate constant in
the large ωDA region. This was confirmed by the identical FGR rate
constants obtained using smoothed short-time (up to t = 5.5) and
long-time (up to t = 14) inputs. Second, both the imaginary-time
OCPI and the real-time LSC/LPI methods generate accurate FGR

FIG. 3. Comparison of the charge transfer rate constants obtained with imaginary-
time open-chain path-integral (OCPI, red circle), smoothed OCPI numerical result
(OCPI(s), cyan dashed line), real-time linearized semiclassical (LSC, blue), Mar-
cus theory (orange) against analytical Fermi’s golden rule (FGR, black) for the
spin-boson model at temperatures (a) β = 0.5 and (b) β = 4. The logarithm with
base 10 of the rate constant is plotted as a function of ωDA/ωc corresponding to a
variety of thermodynamic driving force (−ΔE = hωDA).

CT rate constant until they start to deviate from the exact result since
ωDA = 11 ωc at high temperature β = 0.5 [Fig. 3(a)], whereas at low
temperature, the OCPImethod starts to deviate from the exact result
atωDA = 4.5ωc, which is earlier than the LSC/LPImethod [Fig. 3(b)].
Since the OCPI and LSC/LPI are numerically “exact” for the spin-
boson model with harmonic nuclear modes, the observed deviations
are ascribed to numerical issues such as the sign problem in the
real-time path-integral approach as well as the sampling of the open
chains and the exponential conversion factor in the imaginary-time
OCPI approach, which will be discussed later. Third, the Marcus
theory seems to be able to predict the high-temperature CT rate con-
stant rather well when ωDA < 10 ωc at β = 0.5 but breaks down for
the entire range of ωDA in the low-temperature β = 4 case dramati-
cally, which indicates the importance of incorporating the nuclear
quantum effects in calculating CT rate constant, as addressed
in FGR.

The direct results from the imaginary-time OCPI simulations
of the spin-boson model at two temperatures are the two-state
GAD(t) shown in Fig. 4. For the spin-boson model with ωDA = 0,
the two-state symmetrized TCF GAD(t) is a real and even func-
tion of time, so we extended the positive time result to negative
using symmetry. The numerical results of GAD(t) at two temper-
atures are reproduced with extremely high accuracy, for 20 orders
of magnitude for the β = 0.5 case and 7 orders of magnitude for
the β = 4 case. The smoothed GAD(t) perfectly reproduces the exact
result. Figures 4(e) and 4(f) suggest that the OCPI sampling error
is quite small, where the largest error of GAD(t) is 10−3 for the
high-temperature case and 10−4 for the low-temperature case. These
results suggest that the OCPI sampling scheme using Eq. (50) offers
the two-state symmetrized TCF with amazingly high accuracy even
with the complex observable, at least for the current benchmark
spin-boson model.

We, thus, know that the two-state symmetrized TCF is accu-
rately reproduced using OCPI. To further analyze the origin of the
CT rate constant deviation at largeωDA by the current OCPImethod,
we plot the relevant intermediate TCFs and their frequency-domain
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FIG. 4. Two-state symmetrized time correlation functions GAD(t) of the spin-
boson model obtained with numerical imaginary-time OCPI sampling (red circle),
smoothed OCPI numerical results (cyan dashed line), and analytical result (black
line) plotted in the linear scale for temperatures (a) β = 0.5 and (b) β = 4; the
corresponding semilog scale plots are included in panels (c) and (d). (e) and (f)
Absolute errors of the numerical GAD(t) for both temperatures at β = 0.5 (red)
and β = 4 (blue) plotted in the linear and semilog scales, respectively.

counterparts in the conversion steps from the two-state symmetrized
TCF GAD(t) to the corresponding standard TCF CAD(t) at β = 0.5
in Fig. 5. Taking Fourier transform on the time-domain two-state
symmetrized TCF GAD(t) that is directly obtained from OPSCF
calculation [Fig. 5(a)], we obtain the frequency-domain G̃AD(ω)
[Fig. 5(b)], where we see a symmetric deviation of the numerical
result from the analytical result. Then, using the relation C̃AD(ω)
= eβh̵ω/2G̃AD(ω) in Eq. (14), we obtain the frequency-domain
CAD(ω) [Fig. 5(c)], where we see that the numerical result shows
a larger error in the positive frequency region than the negative
region. The FGR rate constant as a function of ωDA is proportional
to CAD(ω), thus the intrinsic conversion factor of eβhω/2 magnifies
the deviation in the FGR rate constant. The magnification of devi-
ation is more pronounced in the low-temperature case of β = 4. It
is evident that the exponential factor between G̃AD(ω) and C̃AD(ω)

FIG. 5. The conversion from the two-state symmetrized time correlation func-
tion to the standard quantum time correlation function at β = 0.5 as described
by Fig. 2, where the numerical and analytical results are rendered as scatter
dots and lines, respectively. (a) The two-state symmetrized TCF, GAD(t), in lin-
ear scale; (b) Fourier transformed symmetrized TCF, G̃AD(ω), in semilog scale;
(c) Fourier transformed quantum TCF, C̃AD(ω), in semilog scale; (d) the quantum
TCF, CAD(t), in the linear scale with the numerical real and imaginary parts as red
and orange circles compared with analytical real and imaginary parts as black and
blue lines, respectively.

magnifies the sampling error in the OCPI and leads to the error of
the predicted FGR rate constant at large ωDA or the deep inverted
regime. Finally, the standard two-state TCF CAD(t) is obtained from
an inverse Fourier transform of C̃AD(ω) back to the time-domain as
shown in [Fig. 5(d)], which reproduces the analytical TCF.

Next, we discuss the features of the open chains in the OCPI
simulations of the spin-boson model. Figure 6 shows the decom-
position of the average OCPI effective potential energy for three
representative nuclearmodes (modes 5, 10, 15) as a function of phys-
ical time at two temperatures (β = 0.5 on left panels and β = 4 on
right panels). According to Eq. (50), the OCPI effective potential is
given by Eq. (47) or expressed as follows:

Ṽ = Vspr +VOP +
1
2β
[KTM−1K + ln(det M)]

av
. (69)

From top to bottom rows in Fig. 6, we have Vspr, VOP, 1
2βK

TM−1K,
and 1

2β ln(det M) terms, and the last row is the total effective
potential. It is clearly shown that the 1

2β ln(det M) term is dom-
inant among all the contributions, which is typically 2 orders of
magnitude larger than the other terms. The origin of the curva-
ture of the 1

2β ln(det M) term changes at around t = 2.5, especially
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FIG. 6. ecomposition of the averaged OCPI effective potential energy for repre-
sentative low, medium, and high frequency modes of the spin-boson model as a
function of time (mode 5, mode 10, and mode 15 as red, blue, and orange lines)
at temperatures β = 0.5 (left panels) and β = 4 (right panels). Panels (a) and (b),
(c) and (d), (e) and (f), (g) and (h), and (i) and (j) correspond to the interbead
spring potential energy Vspr, open path potential energy on average PES VOP, the

1
2β KT M−1K term, the 1

2β ln(det M) term, and the total OCPI effective potential

energy Ṽ , respectively.

in Fig. 6(h), and can be traced back to the fact that our choice
of the bead number P starts to increase linearly with complex
time ∣τc∣ at longer times according to Eq. (62). The large magni-
tude change in the 1

2β ln(det M) term lies in the fact that when
P is fixed, this term scales as P ln(A) ≈ P ln(Pβ/∣τc∣2) + Const.
≈ −2 ln(∣τc∣) + Const., when P ∝ ∣τc∣, it reduces to −∣τc∣ ln(∣τc∣)
+ Const., and at low temperature, increasing the bead number
affects this trend more distinctly. Moreover, Vspr decreases with
increasing time since the interbead frequencyωP =

√
P/∣τc∣ increases

with the number of beads, whereas 1
2βK

TM−1K shows the oppo-
site trend such that it roughly cancels with Vspr. The VOP term
has a relatively stable behavior for different times, which indi-
cates that the open-chain beads remain near the minimum of the
average PES.

The typical structural descriptors for the open chains include
the average interbead distance between connected beads and
the average end-to-end distance between the first and the last
open-chain beads, which are defined as follows:

Dinterbead(t) = ⟨
1
P

P

∑
α=1
∣r(α+1) − r(α)∣⟩

av

, (70)

Dend−end(t) = ⟨∣r(1) − r(P+1)∣⟩
av
. (71)

Figure 7 displays the average interbead and end-to-end distances of
open chains for the three representative modes (modes 5, 10, 15) at
β = 0.5 and β = 4, respectively. The averaged interbead distances for
high and low temperatures, as shown in Figs. 7(a) and 7(b), respec-
tively, initially rise when t < 2.5 and then decay when t > 2.5. This
trend comes from the bead number choice, i.e., before t = 2.5, the
bead number P is fixed at 64 and, thus, the interbead frequency
ωP =

√
P/∣τc∣ decreases with increasing time, which will make the

open chain more delocalized, whereas after t = 2.5, the bead number
P starts to increase, resulting in more compact and localized open
chains.

The averaged end-to-end distances for high and low tempera-
tures are shown in Figs. 7(c) and 7(d), respectively. The end-to-end
distances for three modes of different frequencies clearly reflect their
physical periodic motion, where the first peaks of the oscillation
in the end-to-end distances match exactly with the half periods of
the three modes [as indicated by arrows in Figs. 7(c) and 7(d)].
The end-to-end distance clearly exhibits the real-time dynamics,
which demonstrates that the OCPI approach accurately captures the
real-time quantum dynamics via a well-defined sampling scheme;
thus, to be more precise, we should refer to the OCPI a “complex-
time” path-integral technique. Unlike the ring-polymer beads that
are equivalent in imaginary-time RPMD and CMD approaches, the
open-chain beads are associated with increasing time slices: The first
bead of the open chain corresponds to time zero while the last bead
of the open chain corresponds to the time t, and the intermedi-
ate beads follow a chronological order in-between time zero and t.
Efficient sampling of the open-chain configurations in the effective
potential is thus key to the OPCI method.

Figure 8 presents several sampled open-chain snapshots for the
three representative modes (modes 5, 10, 15) at the two tempera-
tures. It is evident that the open chains at high temperature (β = 0.5)
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FIG. 7. The averaged interbead and end-to-end distances of open chains for repre-
sentative low, medium, and high frequency modes of the spin-boson model (mode
5, mode 10, and mode 15 as red, blue, and orange lines). Panels (a) and (b) are
the averaged interbead distances between connected beads [Eq. (70)] for β = 0.5
and β = 4, respectively. Panels (c) and (d) are the averaged end-to-end dis-
tances between the first and the last open-chain beads [Eq. (71)] for β = 0.5 and
β = 4, respectively, and the arrows indicate the half period of the corresponding
modes.

are smoother than those at low temperature (β = 4) in all the cases
sampled, which can be traced back to the fact that the interbead fre-
quency ωP is larger at high temperature than at low temperature.
Thus, the open-chain beads are more spread or delocalized at low
temperature than at high temperature. A more important observa-
tion is that with an increase of the real time from t = 0 to t = 10, the
bead positions from the first bead to the last one exhibit a physical
oscillation with the corresponding mode’s frequency. For example,
for mode 5 at high temperature, the bead positions barely change at
t = 0, whereas at t = 10, about three-quarters of an oscillation is seen;
for mode 10 at high temperature, a similar trend is observed except
for a higher oscillation frequency. This is more obvious in the case
of mode 15 in the high-temperature case, there is nearly one period
at t = 2.5, two periods at t = 5, and so on. In the low-temperature
case, the bead positions also exhibit the same physical oscillation
of the corresponding frequency but with more noise than in the
high-temperature case. Moreover, the sampled open chains start
from different initial bead positions that span the typical region of
the corresponding mode at a given temperature, which can be seen
from the wider distribution of bead positions at high temperature
than at low temperature. In short, snapshots of the open-chain sam-
pling display a delocalization effect at low temperature and periodic
motion of the bead positions with a frequency that increases with
time.

Finally, we discuss the features and possible improvements
regarding the two-state OCPI technique. First, the current compu-
tational approach has a complex phase factor eiΦ(r)e−βW(r)/e−βWav(r)

in the observable in Eq. (50), allowing us to sample only from
positive-definite OCPI effective potential ρ̃av. Although this impor-
tance sampling approach works for the model tested, there may
exist an alternative and more effective approach where one could
directly sample from complex effective potential. When performing
the imaginary-time sampling over a complex effective Hamiltonian,
the observable will contain only one complex factor eiΦ(r) result-
ing from the energy-gap fluctuation that embodies the electronic
quantum coherence, a signature of two-state TCF.

Second, the normalization factor Z̃av/ZD, in general, does not
have a closed-form expression for arbitrary molecular systems and
may require a separate calculation to determine the ratio of par-
tition functions using enhanced sampling λ-dynamics45 or more
complicated sampling techniques to compute the partition functions
themselves.68

Third, compared with the real-time LSC/LPI approach, the
efficiency of this imaginary-time OCPI approach currently does
not exceed the real-time LSC/LPI, since the OCPI requires inde-
pendent simulations for each different physical time, whereas the
trajectory-based LSC/LPI could obtain all the times from averaging
over the large set of trajectories. The fact that OCPI is implemented
as a set of independent sampling calculations makes it more suit-
able for parallel computing. The Wigner distribution for LSC/LPI
method is not easy to obtain for anharmonic systems,18,19,69,70 but in
OCPI, the effective distribution will be accurate up to the second
order in the difference path variables, which is more straightfor-
ward to implement than obtaining the Wigner distribution for
general anharmonic systems. In anharmonic systems, the Wigner
transformed density may be nonpositive-definite and suffer from
multidimensional Fourier transform issues. Moreover, there is room
for improving OCPI calculations, such as rare event sampling
schemes, and the theoretical accuracy level could be improved
systematically by going to higher orders in the difference path
variables.61,71

Fourth, it is observed here that the numerical error of the
FGR rate constant calculation is primarily due to the exponen-
tial factor in C̃AD(ω) = eβh̵ω/2G̃AD(ω), which causes an error in the
deep inverted region. Using a smoothing algorithm, the accuracy of
OCPI could be improved significantly, which is attributed to a less
noisy short-time region in the symmetrized TCF as a result of the
smoothing. Alternatively, numerical issues may be circumvented if
the OCPI method can be applied to the Kubo-transformed TCF,37
which does not contain an unbounded exponential conversion
factor.

Fifth, it should be possible to generalize the current OCPI tech-
nique of two-state TCFs for general anharmonic and non-Condon
systems,57,72,73 correlated multidimensional PESs,63 and linear and
nonlinear spectroscopies39,74,75 described by multi-time multi-state
TCFs.39,63 It will be important to extend the OCPI to anharmonic
systems, where one could test the OCPI implementation, sampling,
and accuracy of the second-order approximation, and we will report
a comprehensive study on the anharmonic models in a future work.
In condensed-phase systems, the quantum coherence reflected in
the symmetrized TCF is expected to lead to fast decay of the TCF,
which makes it easier to perform an OCPI calculation; however,
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FIG. 8. Snapshots of sampled open chains in the imaginary-time OCPI simulations for representative low, medium, and high frequency modes of the spin-boson model
(mode 5, mode 10, and mode 15) for different times (t = 0, 2.5, 5, 7.5, 10) at temperatures (a) β = 0.5 and (b) β = 4.
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one must still deal with a large number of degrees of freedom. With
more complicated TCF forms, it may be nontrivial to formulate the
corresponding OCPI theory.

VI. CONCLUDING REMARKS
Quantum time correlation functions that involve multiple elec-

tronic states are essential for nonadiabatic quantum dynamics. In
this paper, we proposed an imaginary-time open-chain path-integral
(OCPI) sampling method for calculating two-state quantum time
correlation functions and applied it to calculate the Fermi’s golden
rule charge transfer rate constant between two electronic states. The
OCPI approach directly computes the two-state symmetrized time
correlation function, which contains equivalent dynamical informa-
tion to the standard two-state quantum time correlation function, as
seen in Eq. (14). The two-state OCPI formalism expresses the two-
state symmetrized TCF, GAD(t), in terms of forward and backward
path integrals on the donor and the acceptor PESs. We write the 2P
forward and backward path variables in terms of (P + 1) average and
(P − 1) difference path variables as in LSC/LPI, followed by Taylor
expansion of the two electronic PESs up to second order in the dif-
ference path variables, allowing us to integrate out the difference
variables analytically. As a result, we obtain an effective potential
as a function of the open-chain variables of (P + 1) beads, which
are subject to the average PES between the donor and the accep-
tor PESs, along with other extended OCPI terms. We propose an
imaginary-time OCPI sampling scheme for evaluating GAD(t) that
involves complex quantum phase factors originating from electronic
quantum coherence.

With the two-state OCPI method developed here, we com-
puted the FGR charge transfer rate constant for a widely used
spin-boson model at high and low temperatures. The OCPI calcula-
tion was implemented using open path integral molecular dynamics
(OPIMD) with a thermostat to sample the open-chain configura-
tions in the effective potential. Results show that OCPI gives an
accurate GAD(t), which can be converted to the FGR rate con-
stant (k = C̃AD(ωDA)/h̵2) that agrees well with the analytical results,
ranging from the normal regime to the inverted regime. Compared
with the real-time LSC/LPI approach and the classic Marcus theory,
OCPI together with LSC/LPI was found to offer accurate FGR CT
rate constants covering the entire turnover, while the Marcus the-
ory is seen to fail at low temperature or in the deep inverted region.
The oscillations of the end-to-end distances of the open chains per-
fectly match the mode’s oscillation period, which suggests that the
open-chain beads in order from first to last correspond to physi-
cal time zero through final time t. This feature indicates that the
“complex-time” OCPI contains real-time information. Ultimately,
the OCPI approach brings a new way of formulating the real-time
quantum dynamics involving two electronic states using imaginary-
time sampling and is shown to be capable of capturing electronic
quantum coherence and nuclear quantum effect accurately. It will
be important to test this approach in realistic condensed-phase sys-
tems such as photoinduced charge transfer in liquid solutions57,76

and interfacial semiconductors.77
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APPENDIX: PROOF OF THE RELATION
BETWEEN THE TWO-STATE SYMMETRIZED
TCF AND THE STANDARD TCF [Eq. (14)]

Here, we derive the relation between the standard quantum
TCF CAD(t) and the symmetrized TCF GAD(t) as in Eq. (14). First,
we expand CAD(t) and GAD(t) in the energy basis of the donor and
acceptor Hamiltonians, i.e., ĤD∣ j D⟩ = ED

j ∣ j D⟩ and ĤA∣ j A⟩ = EA
j ∣ j A⟩,

CAD(t) =
1
ZD

Tr[e−βĤ D ÂeiĤ At/h̵B̂e−iĤ Dt/h̵]

= 1
ZD
∑
j,k

Tr[e−βĤ D ∣ j D⟩⟨ j D∣Â∣kA⟩⟨kA∣eiĤ At/h̵B̂e−iĤ Dt/h̵]

= 1
ZD
∑
j,k
e−βE

D
j ADA

jk BAD
kj e

iωAD
kj t , (A1)

where ADA
jk = ⟨ j D∣Â∣kA⟩, BAD

kj = ⟨kA∣B̂∣ j D⟩, and h̵ωAD
kj = EA

k − ED
j .

Taking Fourier transform of CAD(t), we have

C̃AD(ω) =
2π
ZD
∑
j,k
e−βE

D
j ADA

jk BAD
kj δ(ωAD

kj − ω). (A2)

Next, we expand GAD(t) in the energy basis,

GAD(t) =
1
ZD

Tr[ÂeiĤ Aτ∗c /h̵B̂e−iĤ Dτc/h̵]

= 1
ZD
∑
j,k

Tr[∣ j D⟩⟨ j D∣ÂeiĤ Aτ∗c /h̵∣kA⟩⟨kA∣B̂e−iĤ Dτ∗c /h̵]

= 1
ZD
∑
j,k
ADA
jk BAD

kj e
iωAD

kj t/h̵e−β(E
D
j +E

A
k )/2. (A3)
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Taking Fourier transform of GAD(t), we have

G̃AD(ω) =
2π
ZD
∑
j,k
ADA
jk BAD

kj δ(ωAD
kj − ω)e−βE

D
j e−βh̵ω/2. (A4)

Comparing Eqs. (A2) and (A4), we obtain the relationship

C̃AD(ω) = eβh̵ω/2G̃AD(ω). (A5)
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