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We report the creation and the study of the stability of a repulsive quasihomogeneous spin-1=2 Fermi gas
with contact interactions. For the range of scattering lengths a explored, the dominant mechanism of decay
is a universal three-body recombination toward a Feshbach bound state. We observe that the recombination
coefficient K3 ∝ ϵkina6, where the first factor, the average kinetic energy per particle ϵkin, arises from a
three-body threshold law, and the second one from the universality of recombination. Both scaling laws are
consequences of Pauli blocking effects in three-body collisions involving two identical fermions. As a
result of the interplay between Fermi statistics and the momentum dependence of the recombination
process, the system exhibits nontrivial temperature dynamics during recombination, alternatively heating or
cooling depending on its initial quantum degeneracy. The measurement of K3 provides an upper bound for
the interaction strength achievable in equilibrium for a uniform repulsive Fermi gas.
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Repulsive interactions in Fermi systems are at the heart
of some of the most interesting phenomena in quantum
many-body physics. For instance, the interplay between the
spin and orbital degrees of freedom gives rise to Stoner’s
itinerant ferromagnetism in the continuum [1] and to the
complex phases of the repulsive Hubbard model on a
lattice [2].
The dilute repulsive spin-1=2 Fermi gas, where the

interactions between two spin states ↑ and ↓ are described
by a positive s-wave scattering length a, is one of the most
fundamental quantummany-body models [3–5]. Among its
important features, it is amenable to first-principle calcu-
lations in perturbation (for kFa ≪ 1, where kF is the Fermi
wave number). In that limit, its properties (e.g., ground-
state energy, Landau parameters, etc.) are universal, i.e.,
they depend on a alone, not on details of short-range
physics [5–7].
Ultracold atomic gases have emerged as a powerful

platform for studying this model because effective re-
pulsion can be implemented on the so-called “upper”
(repulsive) branch using short-range attractive potentials
[8–14]. This implementation is particularly interesting
because it can realize the regime of strong (kFa≳ 1) yet
short-range (kFr0 ≪ 1, where r0 is the potential range)
interactions; see, e.g., Refs. [15,16].
However, the repulsive Fermi gas with short-range

attractive potentials is intrinsically metastable. This orig-
inates from the existence of a universal bound state in the
two-body problem for a > 0, with a binding energy ϵb ¼
ℏ2=ðma2Þ where m is the mass of the fermion. The pairing
instability of the repulsive branch of the many-body system
toward the lower (attractive) branch of bound pairs,

depicted in Fig. 1(a), is a complex problem; it is expected
to evolve from an instability driven by universal three-body
recombination for ϵb ≫ EF [17,18], to many-body pairing
effects when ϵb ≲ EF [13,17,19,20] where EF is the Fermi
energy.
This pairing instability has played a central role in the

study of the strongly repulsive Fermi gas and the search for
the itinerant-ferromagnet phase [16,20,26–38]. Pioneering
experiments have shown decreased lifetime of the gas with
increasing interactions [8,9] and larger initial rate of
reduction of repulsive correlations (possibly due to the
ferromagnetic instability) compared to the initial pairing
rate [13,14].
However, complex dynamics arising from the in-trap

density inhomogeneity as well as the far-from-equilibrium
nature of the initial quenched states have hindered the study
of the homogeneous system’s stability [8,13]. The advent
of homogeneous gases prepared in optical box traps [39–
42] has enabled the investigation of complex stability
problems in clean settings [43–45]. Here, we revisit the
fundamental problem of the stability of the repulsive Fermi
gas by measuring the three-body recombination law in a
homogeneous atomic gas.
The experiment starts with a weakly attractive gas

of 6Li atoms in a balanced mixture of the first and third
lowest Zeeman sublevels (respectively labeled as ↑ and ↓),
trapped in a red-detuned optical dipole trap. The gas is
evaporatively cooled at a bias magnetic field B ¼ 287 G. It
is then loaded in a blue-detuned (at a wavelength of
639 nm) cylindrical box trap constructed by intersecting
a “tube” beam (produced with a set of axicons) with two
thin sheets; see Fig. 1(b). The magnetic field is then ramped
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to B ¼ 597 G where the interactions are weakly repulsive
(a ≈ 500a0, where a0 is the Bohr radius [46]). At this stage,
we typically have N↑ ≈ N↓ ≈ 6 × 105 atoms per spin state
at T ≈ 0.3TF with EF ≈ kB × 0.5 μK and a spin imbalance
of ðN↓ − N↑Þ=ðN↓ þ N↑Þ ¼ 0.2ð3Þ%. The interaction
field is then ramped to its final value over 100 ms, and
left to settle for an additional 25 ms. We then hold the atoms
for a variable duration thold. We image the gas near the zero
crossing of a (jaj ≤ 50a0) by quickly ramping the field to
B ¼ 569 G, so that trapped pairs are converted into tightly
bound molecules and thus detuned from the atomic
imaging resonance [21,47].
We show in Fig. 2(a) examples of time evolution of the

atom number N per spin state for different values of a,
normalized to the initial atom number N0. Qualitatively, the
gas lifetime decreases with increasing a, even though N0

also decreases (because of losses during the interaction
field ramp and the settling time [21]). The average kinetic
energy per particle ϵkin, measured after time-of-flight
expansion and shown in Fig. 2(b), also slowly decreases
with thold.

The origin of the decay is model-independently reve-
aled by plotting the atom loss rate _N=N0 versus N=N0

[Fig. 2(c)]. The examples shown follow a scaling relation
of the rate _N ∝ −Nγ (fits are shown as solid lines, and fitted
values of γ are in legend). We observe that γ ≈ 1 at
weak interactions (a ≪ 103a0) where the losses are
caused by density-independent collisions with the residual

FIG. 2. Decay of a uniform repulsive Fermi gas. (a) Evolution
of atom numbers for different interaction strengths, normalized to
the initial atom numbers N0. The solid blue, yellow, and red lines
are fits to a three-body loss model that includes a one-body loss
rate determined from the green-line fit [48]. The three-body loss
fits are limited to the region where ϵkin changes by less than 20%
of its initial value, indicated by solid circles; open circles are not
used in the fit. The same marker style is used in (b) and (c).
Dotted lines are extensions of the fits beyond the fitting range.
(b) Evolution of the average kinetic energy per particle during
atom losses. (c) Scaling relation between atom loss rate and atom
number. Solid lines are power law fits and the extracted
exponents γ are listed in the legend.

FIG. 1. A homogeneous repulsive Fermi gas prepared in an
optical box. (a) Sketch of the two lowest energy branches of a
Fermi gas with a positive scattering length a; the “upper”
(repulsive) branch is shown in red, the “lower” branch (a gas of
fermion pairs) is shown in blue. The red dashed line is the repulsive
Fermi gas energy up to second order in kFa [3,4]; the red shaded
area depicts the energy width associated with the finite lifetime of
the upper branch. (b) In situ imaging of the box-trapped Fermi gas.
Gravity, here oriented along −ŷ, is compensated by magnetic
levitation. The image on the left is the column-integrated optical
density (OD). The plots on the right are cuts along thewhite dashed
lines of the image. The solid lines are derived from the fit used to
extract the volume of the box; V ¼ 7.3ð6Þ × 10−4 mm3. The
slanted profile in the horizontal cut is caused by the slightly
conical shape of our cylindrical box [21].
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background gas. For stronger interactions, we observe
γ ≈ 3, consistent with an atom loss rate per unit volume

_n ¼ −L3n3 ð1Þ

due to three-body collisions, with a constant loss coefficient
L3 and a uniform density n ¼ N=V, where V is the volume
of the box.
Now that we have established a range over which

losses are dominated by three-body recombination, we
quantitatively characterize the process. The event rate per
unit volume for each type of event is Ω≡ K3n3

(¼ Ω↑↑↓ ¼ Ω↑↓↓) where K3 is the recombination coeffi-
cient; K3 can be studied through losses, since K3 ¼ L3=d,
where d is the average number of atoms lost per event
(either because their release energy from recombination
exceeds the trap depth or because they form molecules that
are optically detuned). We obtain L3 by fitting NðtÞ to the
solution of Eq. (1) [48] [solid lines in Fig. 2(a)]. To ensure
that L3 is approximately constant with thold, the fits are
restricted to a range where ϵkin changes by at most 20% of
the initial value; see solid points in Fig. 2 (the consistency
of this analysis is discussed in [21]).
We examine this assumption more carefully by studying

the relationship between L3 and ϵkin. We control ϵkin by
varying the box depth at an intermediate evaporative
cooling stage, keeping the final box depth Ubox the same.
As shown in Fig. 3(a) for three different values of a, we
observe that L3 scales as a power law of ϵkin averaged over
time, ϵ̄kin.
Theoretically, K3 ∝ ϵλkin, where the exponent λ is deter-

mined by the three-body threshold laws, which crucially
depends on the symmetries imposed by the quantum
statistics of the collision participants [18]. For instance,
for three distinguishable particles or indistinguishable

bosons, there is no energy dependence (λ ¼ 0); for three
indistinguishable fermions, λ ¼ 2 [49,50]. The generic
process in the spin-1=2 Fermi gas corresponds to the
previously unverified case of collisions involving two
indistinguishable fermions. The three-body event rate in
a unit volume ω3 depends on the momenta k1 and k2 of the
indistinguishable fermions, and is independent of the third
participant’s momentum k0 [51]:

ω3ðk1; k2; k0Þ ∝ ðk1 − k2Þ2: ð2Þ

Integrating Eq. (2) over the phase space density of the three
participants, one finds λ ¼ 1. Experimentally, we measure
λexp ¼ 1.36ð14Þ [52] [solid line in Fig. 3(a)], in reasonable
agreement with the theoretical prediction.
The dependence of ω3 on momentum has interesting

implications on the temperature dynamics of the gas during
decay. In Fig. 3(b), we show T=T0 versus N=N0 (where T0

is the initial T). Depending on T=TF, the system either
cools down or heats up. This effect results from an interplay
between Fermi correlations and the momentum dependence
of ω3. The cooling effect from the preferential removal of
particles with large momenta (without spatial selectivity)
[21], strongest for T ≫ TF, competes with the heating from
the perforation of the Fermi sea, which dominates in the
deeply degenerate regime [53]. A theoretical model
describing this interplay, shown as colored dashed lines
in Fig. 3(b), yields good agreement with the observed
evolution of the temperature for N=N0 ≳ 0.7 [21]. The
discrepancy at late times for low ðT=TFÞ0 might be due to
additional cooling from plain evaporation.
Quantitatively, we define the coefficient θ3b ≡

ðN=TÞð∂T=∂NÞV under this rarefaction [21], and measure
it at thold ¼ 0 for various T=TF [Figs. 3(b) and 3(c)]. We
observe that the transition from heating to cooling occurs at

FIG. 3. Threshold law for the recombination of three spin-1=2 fermions. (a) Scaling relation between L3 and the (time-averaged)
kinetic energy ϵ̄kin. All three datasets are fitted with a common exponent λexp and with independent prefactors. For visual clarity, the
datasets are rescaled by factors b (see legend) so that the power law fits are a single line (solid line). The dashed line is the fit assuming
λ ¼ 1 [21]. (b) Temperature evolution during three-body losses. The dashed lines are theoretical predictions without adjustable
parameters, given the initial measured ðT=TFÞ0 (see legend). The solid lines are linear fits to extract θ3b; the dotted lines show estimates
on the uncertainties on θ3b; see panel (c). (c) Temperature-change coefficient θ3b versus T=TF. The solid line is the theoretical prediction
[21]. The vertical dashed line marks the critical ðT=TFÞ� at which θ3b changes sign, and the horizontal dashed line shows the asymptotic
value of θ3b in the classical limit.
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a critical degeneracy ðT=TFÞ� ≈ 0.7. The measurements are
in excellent agreement with the theoretical prediction [solid
line in Fig. 3(c)] [21], which establishes the crossing at
ðT=TFÞ� ¼ 0.71 (vertical dashed line). It is worthwhile to
note that θ3b—and consequently ðT=TFÞ�—is governed
only by the momentum dependence of ω3 [Eq. (2)]; it is
independent of the a-dependent prefactor of ω3 [21]. For
T ≫ TF, θ3b approaches 2=9, where the cooling effect is
most pronounced. Note that for all T, θ3b < 2=3, so that
this process does not increase the quantum degeneracy of
the gas (see related scenarios for bosons [54,55], and
fermions near a narrow Feshbach resonance [56]).
We now turn to the dependence of L3 on interactions. In

Fig. 4(a), we display γ versus a; the solid points are data
where losses are three-body dominated (see Fig. 4 and
caption). We subsequently extract L3 for all interactions by
fixing γ ¼ 3 and taking one-body decay into account [48];
to factor out the effect of the threshold law, we display
L3=ϵ̄kin; see Fig. 4(b). We observe that over more than 4
orders of magnitude, L3=ϵ̄kin follows a power law of a.
Fitting the data in the three-body-dominated region [solid
blue points in Fig. 4(b)], we find L3=ϵ̄kin ∝ a6.1ð2Þ (solid
blue line).
The fact that L3 scales precisely as a6 is strong evidence

for the universality of this process. Indeed, should three-
body recombination be universal, i.e., be independent of
short-range physics, the threshold law implies the scaling of
K3 with interaction strength [57]. Specifically, if K3 ∝ ϵλkin,
then on dimensional grounds, K3 ∝ ϵλkinðmλ−1=ℏ2λ−1Þa4þ2λ.
For two identical fermions, one finds K3 ∝ a6, in excellent
agreementwith ourmeasurements. Compared to the bosonic
case, where K3 ∝ a4 [58–60], an additional factor ϵkin=ϵb,
∝ ðkFaÞ2 at low T, can be interpreted as a suppression factor
due to Pauli blocking, which arises as two identical fermions
need to come within ≈ a of each other to form a final
bound state.
Now that we established L3 ∝ ϵkina6, we can extract the

dimensionless constant A in L3 ¼ dAϵkina6=ℏ, predicted to
be universal. As some or all products of the recombination
can be lost, d, the link between losses and recombinations,
depends on the box depth Ubox and ϵb. To gain insight into
this link, we implement a second imaging protocol where
we image the atoms directly at the interaction field [see
label “4B” in the top left inset of Fig. 4(b)]; in our range of
a, molecules and atoms are optically unresolved [47]. The
measurements are displayed as red circles in Figs. 4(a)
and 4(b).
At low a, L3 measured by both imaging methods

coincide, as d ¼ 3 in both cases. The separation at a ≳
1300a0 occurs close to the condition ϵb=3 ≈ 2Ubox at which
the molecules remain trapped [see cartoons at the bottom of
Fig. 4(b)] [61]. For larger a, d < 3 for the “interaction
field” imaging.
For the “zero-crossing” imaging [see label “4A” in the

top left inset of Fig. 4(b)], d ¼ 3 still holds; the a6 scaling

extends up to the point where 2ϵb=3 < Ubox, beyond which
all recombination products may be trapped [17,63,64]. The
maximum of L3ðaÞ is located marginally beyond this
threshold. Fixing d ¼ 3, we fit L3=ϵ̄kin (solid blue points)
and find A ¼ 143ð16Þstatð24Þsys. To examine more closely
the quality of the a6 scaling, we extract A without free
parameters from ℏL3=ð3ϵ̄kin a6Þ [Fig. 4(c)]. Our measure-
ments are in excellent agreement with the theoretical
prediction A ¼ 148 for the mass-balanced three-fermion
problem [17].
The range over which the a6 scaling law applies is

surprisingly large. First, it extends even at large awhere the

FIG. 4. Universality of three-body recombination. (a) Atom-
loss scaling exponent γ. Blue and red circles are respectively
imaged near the zero crossing of a or directly at the interaction
field. Data in the three-body dominant region, selected by
jγ − 3j ≤ 0.5 (blue band) and with a relative uncertainty
≤ 20%, are shown by solid points and left open otherwise, in
all panels. (b) Universal scaling of L3 with a. The experiment
sequence is shown in the upper insets. The blue line is the power
law fit to the solid blue points. Vertical gray dashed lines mark the
threshold values of a such that ϵb=3 ¼ 2Ubox and 2ϵb=3 ¼ Ubox,
and the bands include average over initial energies [21]. Bottom
cartoons depict imaging and trapping regimes after recombina-
tions for the atoms and molecules. (c) Universal constant A. Data
points are the experimental values of A ¼ ℏL3=ð3ϵ̄kina6Þ, and the
solid purple line is derived from a global a6 fit to the data in
(b) (not shown). The systematic error from the volume calibration
is shown by the light purple band [21].
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measured γ is only marginally close to 3 (see open circles in
Fig. 4). Second, at the highest a for which we observe a6

scaling, ϵkin ≳ kB × 0.5 μK is only slightly smaller than
ϵb ≈ kB × 1.2 μK, even though the condition for the uni-
versal scaling is expected to be valid for ϵkin ≪ ϵb [17].
Finally, our measurement of K3 provides an important

ingredient for assessing the limits of equilibrium for a
strongly interacting repulsive Fermi gas. To ensure equi-
librium, Γ3 ≡ 3K3n2 [65] must be significantly smaller
than Γ2, the two-body elastic collision rate. The largest
interaction strength for which Γ2 ¼ Γ3 is kFa ≈ 1.0, and it
is reached for T ≈ 0.85TF [21,66]. This limit is close to the
predicted point for the ferromagnetic transition, kFa ¼ π=2
in the mean-field approximation [67] and ≈ 1 in quantum
Monte Carlo simulations [20,33,35].
In conclusion, we studied the stability of the repulsive

Fermi gas with short-range interactions. We measured the
universal recombination law for three particles of equal
mass involving two identical fermions. This Letter paves
the way for the study of complex stability problems of
Fermi systems in clean uniform settings, e.g., multi-
component gases [68–70], mass-imbalanced mixtures
[71–75], and molecules [76,77]. A future work could
leverage uniform Fermi gases to explore the regime
ϵb ≲ ϵkin, where K3 ∝ ϵkina6 should no longer hold; in
that regime, many-body pairing mechanisms are expected
to take over at low temperature [19,20]. To access the
shorter timescales expected, fast state preparation and
probing techniques such as internal state manipulation
could be useful [13,14].
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