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Abstract

1. Host density is hypothesized to be a major driver of variability in the responses and outcomes of wildlife

populations following pathogen invasion. While the effects of host density on pathogen transmission
have been extensively studied, these studies are dominated by theoretical analyses and small-scale
experiments. This focus leads to an incomplete picture regarding how host density drives observed

variability in disease outcomes in the field.

. Here, we leveraged a dataset of hundreds of replicate amphibian populations that varied by orders

of magnitude in host density. We used these data to test the effects of host density on three out-
comes following the arrival of the amphibian-killing fungal pathogen Batrachochytrium dendrobatidis
(Bd): the probability that Bd successfully invaded a host population and led to a pathogen outbreak,
the magnitude of the host population-level decline following an outbreak, and within-host infection

dynamics that drive population-level outcomes in amphibian-pathogen systems.

. Based on previous small-scale transmission experiments, we expected that populations with higher

densities would be more likely to experience Bd outbreaks and would suffer larger proportional declines
following outbreaks. To test these predictions, we developed and fitted a Hidden Markov Model that

accounted for imperfectly observed disease outbreak states in the amphibian populations we surveyed.

. Contrary to our predictions, we found minimal effects of host density on the probability of successful Bd

invasion, the magnitude of population decline following Bd invasion, and the dynamics of within-host
infection intensity. Environmental conditions, such as summer temperature, winter severity, and the

presence of pathogen reservoirs, were more predictive of variability in disease outcomes.

. Our results highlight the limitations of extrapolating findings from small-scale transmission experiments

to observed disease trajectories in the field and provide strong evidence that variability in host density
does not necessarily drive variability in host population responses following pathogen arrival. In an
applied context, we show that feedbacks between host density and disease will not necessarily affect

the success of reintroduction efforts in amphibian- Bd systems of conservation concern.

Keywords: transmission; disease-induced extinction; density-dependent; frequency-dependent; Batra-

chochytrium dendrobatidis; Rana muscosa; Rana sierrae; chytridiomycosis
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Introduction

A central question in disease ecology is why host populations experience different responses and outcomes
following the arrival of a pathogen (Deredec & Courchamp 2003; Lloyd-Smith et al. 2005; Davis et al. 2007;
Frick et al. 2017; Golas et al. 2021). Observed variability in population responses and outcomes following
pathogen arrival (henceforth “response trajectories”) depends on at least five different branch points (Fig.
1; Wilber et al. 2019). The first branch point determines whether a pathogen successfully invades the host
population (Diekmann et al. 2013). The second determines the effect of a pathogen on the host population
(negative, positive, or no effect; Tompkins et al. 2011). The third determines whether a population that has
experienced disease-induced declines experiences disease-induced extinction or continues to persist at low
densities with or without the pathogen (De Castro & Bolker 2005). The fourth determines whether a host
population that has been reduced in size by infection persists or experiences stochastic extinction (Golas
et al. 2021). Finally, the fifth determines whether the population starts to recover towards a pre-invasion
population size with or without the pathogen (Golas et al. 2021). These branch points encompass a rich set
of theory on host suppression, resilience, stability, and stochasticity and provide a tractable way to uncover
potential factors driving the observed variability in response trajectories in host-pathogen systems. However,
for wildlife disease systems in particular, we rarely have field data of sufficient temporal resolution across
replicate populations to examine the mechanisms driving outcomes at more than one branch point along a
response trajectory (Davis et al. 2007; Frick et al. 2017; Dallas et al. 2018, but see Reijniers et al. (2012)).
This omission leads to an incomplete picture regarding the key mechanisms driving observed variability in
response trajectories and how the role of these mechanisms can change over the course of an outbreak.
Host density is a central characteristic that can affect multiple branch points of response trajectories
(Anderson & May 1979; Davis et al. 2007; Reijniers et al. 2012). Host density affects pathogen transmission
if the between-host contact rate increases with host density over at least some range of host densities (Hopkins
et al. 2020). Epidemiologically, the relationship between host density and transmission rate directly affects
the ability of a pathogen to successfully invade a host population (branch point 1) (Lloyd-Smith et al. 2005),
the magnitude of disease-induced declines following invasion (branch point 2) (Diekmann et al. 2013), and
the propensity for disease-induced extinction (branch point 3) (De Castro & Bolker 2005). Ecologically,
the effects of demographic stochasticity — the probabilistic nature of births and deaths — on population
persistence are the strongest in small populations and can result in population extirpation following disease-
induced declines even if the pathogen does not directly drive the host population extinct (branch point 4)
(Lande et al. 2003). Thus, elucidating the effects of host density on various branch points is important to

describe variability in response trajectories in host-parasite systems. However, many studies either i) focus
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on the effects of density on transmission in small-scale experiments and then extrapolate these effects up to
natural populations (Dallas et al. 2018; Tompros et al. 2022) or ii) focus on the effects of density at a single
branch point in the field (e.g., pathogen invasion, Davis et al. 2007), even though the effects of host density
can vary across the response trajectory (Begon et al. 2019). Given the potential importance of host density
for the invasion and persistence of pathogens in host populations (Deredec & Courchamp 2003; Hopkins
et al. 2020), the impact of density on each (or all) branch points along a response trajectory in actual field
settings remains a key knowledge gap in most wildlife disease systems. This gap is particularly important
for host species of conservation concern, where the multifaceted role of density across response trajectories
can inform a wide range of species recovery actions, including optimal reintroduction strategies (Aiello et al.
2014).

The amphibian species complex Rana muscosa and Rana sierrae provides an ideal system to test how
host density affects response trajectories following the arrival of the fungal pathogen Batrachochytrium
dendrobatidis (Bd). Henceforth, we refer to both species as R. sierrae as there are few known epidemiological
or ecological differences between the species. R. sierrae live in high elevation lakes and streams in California’s
Sierra Nevada mountains, constituting hundreds of largely independent populations on the landscape (Knapp
& Matthews 2000). Bd has successfully invaded nearly all these populations over the last fifty years (Knapp
et al. 2016; Vredenburg et al. 2019). Aquatic Bd zoospores infect the skin of amphibian hosts where they
form sporangia and produce additional zoospores that can re-infect the same host and lead to increasing Bd
infection intensity (Longcore et al. 1999; DiRenzo et al. 2018). Extensive surveillance of frog populations and
disease presence in hundreds of waterbodies over 25 years has documented the following response trajectories
in populations of R. sierrae (Briggs et al. 2010; Jani et al. 2017): 1) Bd is detected in a previously naive
population and either sparks or fails to spark an epizootic, 2) if an epizootic occurs, the intensity of Bd
infection on hosts increases rapidly, leading to host death and population-level decline (Vredenburg et al.
2010), 3) infected host populations either continue to decline until extirpation or persist at reduced density
with ongoing Bd infection (Briggs et al. 2010), and 4) some amphibian populations eventually begin to recover
despite the continuing presence of Bd (Knapp et al. 2016; Joseph & Knapp 2018). Moreover, a previous small-
scale transmission experiment found that Bd transmission depends on R. sierrae density directly through
host contacts (standard density-dependent transmission) and indirectly through the density of Bd zoospores
in the water (Wilber et al. 2017). We have the opportunity to combine data from hundreds of populations
across a gradient of host densities and disease outcomes with predictions from transmission experiments to
ask: How does host density affect R. sierrae- Bd response trajectories following Bd arrival?

The intrinsic reproductive number Ry provides a theoretical framework for answering this question. The

quantity Rg describes the average number of infections produced by an average infected individual in a
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fully susceptible population and relates directly to population-level outcomes such as pathogen invasion and
the size of epizootics (Diekmann et al. 2013). Given previously observed density-dependent transmission
in mesocosm experiments (Wilber et al. 2017), Ry is expected to be proportional to host density in the R.
sierrae-Bd system. However, host density is one of multiple factors that can affect response trajectories.
For example, in this system the magnitude of Bd-induced declines is correlated with Bd infection intensity
(Vredenburg et al. 2010) which can be modulated by temperature (Andre et al. 2008). Thus, host populations
with similar host densities may still experience different response trajectories following the arrival of a
pathogen if environmental conditions such as temperature (Kilpatrick et al. 2010; Sonn et al. 2019) affect
infection intensity.

Here, we test three hypotheses regarding how host density and infection intensity drive variability in
response trajectories. First, we predict that higher host density should increase the probability of successful
Bd invasion into an R. sierrae population, resulting in an epizootic (branch point 1, Fig. 1). Given density-
dependent transmission, increasing host density should increase Ry and increase the probability of successful
invasion (and alternatively, decrease the probability of failed invasion) (Lloyd-Smith et al. 2005; Diekmann
et al. 2013). Second, given density-dependent transmission, the magnitude of population decline given
disease invasion should increase with increasing Ry (Fisher et al. 2012; Diekmann et al. 2013). We therefore
predict that the magnitude of host population declines following Bd invasion should increase for higher
host population density prior to decline (branch point 2-4). Finally, while it is often assumed that the
accumulation of Bd infection intensity following initial infection is driven by within-host processes and is
largely decoupled from the density of hosts in the environment (Wilber et al. 2017; DiRenzo et al. 2018),
there is some evidence that host density can influence chytrid infection intensity (Bosch et al. 2020; Tompros
et al. 2022). We test this hypothesis and predict that host density in enzootic and epizootic scenarios will

not have a clear effect on Bd infection intensity (branch point 2).

Materials and methods

Field sites and data collection

During the period 2004-2019, we conducted surveys of the lakes and ponds in Yosemite, Sequoia, and Kings
Canyon National Parks, California, USA that harbored most of the known R. sierrae populations (Knapp
et al. 2003; Knapp 2005). In Sequoia and Kings Canyon, the objective of these surveys was to describe the
ongoing spread of Bd through R. sierrae populations (Vredenburg et al. 2010; Zhou et al. 2015). In Yosemite,

where Bd is essentially ubiquitous and has been present for several decades (Vredenburg et al. 2019), the
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objective was to describe the status of Bd-infected frog populations and frog-Bd dynamics (Knapp et al.
2011, 2016). At each water body, counts of R. sierrae adults, subadults, and tadpoles were made during
diurnal visual encounter surveys (VES) of the entire water body shoreline and the first 100m of inlet and
outlet streams. During the summer, adults, subadults, and tadpoles occur almost exclusively in shallow
water near shore and are easily detected, and counts are highly repeatable (Knapp & Matthews 2000).
Following VES, we collected skin and mouthpart swabs from frogs and tadpoles to quantify Bd infection
intensities (Boyle et al. 2004). Although we targeted the collection of swabs from up to 20 individuals per
site-survey, constraints associated with limited time, adverse weather conditions, and small population size
often resulted in the collection of fewer swabs. Skin swabs were analyzed using standard Bd DNA extraction
and qPCR methods (Boyle et al. 2004, for R. sierrae-specific details see Joseph & Knapp (2018)).

From 2004-2019 we surveyed a total of 956 total lakes and ponds surveyed at least once for either frog
abundance or Bd, for a total of 3,168 unique lake x year surveys. Not all lakes were visited in all years
due to their remoteness (e.g., many lakes were > 10 miles from the nearest road). A total of 449 lakes
were surveyed in three or more years from 2004-2019. For the three analyses subsequently described, we
used different subsets of this dataset. Field work was conducted under an Institutional Animal Care and
Use Committee (TACUC) permit at the University of California Santa Barbara (# 478). Field permits for
sampling included YOSE-2015-SC1-0047, YOSE-2016-SC1-0121, YOSE-2017-SC1-0109, YOSE-2018-5C1-
0027, and YOSE-2019-SC1-0025 from Yosemite National Park and TE40090B from the US Fish and Wildlife

Service.

Hypothesis 1: Higher amphibian density increases the probability of a successful

Bd invasion

We used a multi-state Bd occupancy model to test whether lakes with higher host density had higher
probabilities of successful Bd invasion than lakes with lower host densities. In a fully susceptible population
with Ry > 1, a pathogen can still fail to spark a large outbreak following its arrival (Diekmann et al.
2013). Qualitatively, this might manifest as the pathogen appearing in the population, being detected at low
prevalence for some period of time, and then disappearing. We characterize this qualitative behavior as a
failed invasion. Alternatively, a pathogen could i) arrive in the population and remain at low prevalence for
some time before eventually increasing in prevalence or ii) immediately increase in prevalence upon arrival.
We consider both of these behaviors as a successful invasion. Once Bd successfully invades in this system, R.
sierrae populations consistently show high prevalence and infection intensity (Briggs et al. 2010; Vredenburg

et al. 2010). We designed a multi-state Bd occupancy model to capture these behaviors related to failed
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and successful invasion. Here, we give a brief overview of this model and provide a complete description in

Appendix S1.

The state process model

Consider a frog population in lake j sampled at year ¢, where t to t 4+ 1 refers to June in one year to June
in the following year. We assume that a frog population can occupy four potential states (Fig. 2). First,
the population j at time ¢ can be truly Bd-free, denoted as Xy ; ¢, where ‘U’ indicates ‘Unoccupied by Bd.
Second, the population j can be Bd-positive, but Bd is present in the population below some prevalence
p. We denote this state at Xrp ., where ‘LP’ indicates ‘low prevalence’. Third, the population j can be
infected with Bd above some prevalence p, denoted as X p,j; where ‘HP’ indicates ‘high prevalence’. Finally,
as is the case in the R. sierrae system, frog populations can also be extirpated by Bd, denoted as Xg ;. We
model transitions among these four states in population j as described in Fig. 2.

To test our hypothesis regarding failed and successful invasions, we focused on two parameters: ¢;; and
wjt. Given that Bd arrives in a population, the parameter w;; determines the probability of transitioning
to low prevalence or immediately experiencing a successful invasion and transitioning to high prevalence
(1 — wj,). Similarly, the parameter w;, also defines the probability that a population in a low prevalence
state remains in a low prevalence state and does not experience a successful invasion in a subsequent year.
The parameter ;. gives the probability of population j in a low prevalence state transitioning back to a
Bd-free state and experiencing a failed invasion in a subsequent year. We assume that ¢;; and w;; only
depend on the current state and covariates (i.e., the Markov property). Note that a complete failed or
successful trajectory given Bd arrival is a combination of parameters ¢, , and w,, (higher values of ¢, and

w; ¢ signify increased tendency for failed invasions).

Covariates affecting successful and failed invasions

We tested how host density and abundance of population j at time ¢ affected ¢; + and w;; and thus affected
failed and successful invasions. In addition to host density, we also included three covariates that could affect
failed or successful invasion: maximum summer temperature, winter severity, and tadpole presence/absence
(Andre et al. 2008; Briggs et al. 2010; Joseph & Knapp 2018). Using gridMET (Abatzoglou 2013), we
extracted the mean maximum air temperature at the location of population j in year t for the period
June-September, which are the months that frogs are active in the Sierra Nevada. Lab experiments have
shown that temperature affects infection intensity and frog survival in this system (Andre et al. 2008; Wilber
et al. 2016) and thus may impact failed or successful Bd invasion at finer temporal timescales than tested

previously (e.g., Knapp et al. 2011).
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Water temperature may be a more important driver of frog- Bd dynamics than air temperature for the
highly aquatic R. sierrae. Temperature of Sierra Nevada water bodies is heavily influenced by winter severity.
The high elevation lakes that R. sierrae inhabit are under ice and snow cover from approximately November-
June. More severe winters lead to longer ice and snow cover, shorter ice-free durations during summer
months, and cooler summer water temperatures (Smits et al. 2021). A well-supported measure/proxy of
winter severity is the snow water equivalent (SWE) on April 1st of the current year (extracted from the
California Data Exchange Center for snow survey locations across the Sierra Nevada). We used April 1
SWE as a predictor of failed or successful Bd invasion. As our measure of winter severity temporally
followed maximum summer temperature (e.g., maximum summer temperature in summer 2009 followed by
snow water equivalent measured in April 1 of 2010), we also included an interaction to test whether winter
severity modulated the effect of summer temperature on failed invasions.

Finally, tadpoles can act as an important reservoir for Bd in this system, maintaining infection but not
suffering disease-induced mortality (Briggs et al. 2010). We expected that the presence of tadpoles would
increase the persistence of Bd and decrease the probability of a failed invasion.

We modeled ¢;; and w;; as

probit(-;+) =B. 0 + 8. 110g19(Dj¢) + B.2(Max. summer temperature; ;) + 3. 3(Winter severity, ,)+
’ (1)

B. 4(Tadpole presence; ;) + 3. 5(Max. summer temperature; , X Winter severity ,)

where ‘probit’ indicates the probit link function (the inverse cumulative density function of a standard
normal distribution) and - refers to either ¢ or w. The variable D;; is either the observed abundance of
adult and sub-adult R. sierrae in population j in year ¢ based on VES or the density of R. sierrae (abundance
in population j at time ¢ / perimeter of lake j). Our primary hypothesis was that increasing D;; would
decrease @;; and w; ;.

We also considered three additional models with different covariates as described in Table 1. We describe

how we account for missing covariates in Appendix S2.

The observation process model

Let Y} ; be the observed state of population j at year t. When Y} ; = U, Bd was not observed in a population.
When Y;; = LP, observed Bd prevalence was equal to or below the threshold p and the population was
classified as low prevalence. When Y;, = HP, observed Bd prevalence was above the threshold p and the
population was classified as high prevalence. When fitting the model, we varied this cutoff p between 0.25-0.5

to assess its influence on our results. Finally, when Y;,; = E, no subadults or adults were observed after
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Bd-induced declines and the population was classified as extirpated. Given the long-lived tadpole stage of
this species (up to three years) and their resistance to Bd-induced mortality, tadpoles may still have been
present in the population after adult and subadult extirpation. We have observed no population recovery
when only tadpoles persist following an outbreak and classify these populations as functionally extirpated,
E.

The probability of correctly classifying a population as Bd-free (U), low prevalence (LP), or high preva-
lence (HP) depends on how many frogs were sampled for Bd in the population and the unknown true Bd

prevalence on frogs. We directly accounted for this source of observation error as described in Appendix S1.

Data selection

To examine the effects of host density on failed Bd invasion, we identified frog populations that we surveyed
prior to Bd-induced declines. First, we included populations where Bd was not observed on the first survey
but was then subsequently observed in later surveys. Second, we also included populations where Bd was
detected on the first survey, but was then not detected on the next survey given at least five Bd swabs were
obtained and given that the population did not undergo Bd-induced declines over the interval between the
first and second survey. Finally, we excluded populations where frogs were reintroduced to the location as
part of ongoing amphibian recovery efforts, populations that had fewer than three Bd swabbing visits from
2004-2019, and all populations from Yosemite National Park where Bd invaded prior to the onset of Bd
sampling in 2004 (Vredenburg et al. 2019). In total, we used 79 populations sampled over 16 years in this

analysis. Figure 2B shows representative trajectories for 16 of these populations.

Model fitting

To fit our model to the data, we used the forward algorithm to combine the state process and the observation
process to estimate the likelihood of an observed sequence of states y;. = ¥y;.1,¥j.2,---,¥;nr for population
j (Appendix S1; McClintock et al. 2020). y; is a zero-one vector (i.e., an indicator) specifying whether the
observed state of population j at time t was either [Bd-free, Low prevalence, High prevalence, Extirpated].
We implemented all models in Stan (Carpenter et al. 2017). We performed structural model comparison
using Pareto smoothed leave-one-out information criterion (LOOIC; Vehtari et al. 2016; Merkle & Rosseel
2018), where lower values indicate better out-of-sample performance. We also tested for the role of sampling

bias as lakes with higher frog abundance tended to have more animals swabbed (Appendix S3).
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Hypothesis 2: Higher pre-invasion amphibian density increases the magnitude

of disease-induced declines

To test this hypothesis, we first identified populations that likely had not experienced Bd epizootics or
declines at the beginning of our sampling in 2004, but had experienced successful Bd invasion by the end
of our sampling in 2019. To identify these populations, we first only considered populations in the eastern
portion of Sequoia and Kings Canyon National Parks, as these populations had generally not experienced
Bd-induced declines prior to the start of our surveys in 2004. Because this analysis relied on estimates of
proportional changes in frog abundance, we then excluded populations that had fewer than three visual
encounter surveys or swabbing events from 2004-2019. Of these lakes, we then identified the maximum and
minimum frog abundances that were observed from 2004-2019, the years these maximum and minimum
abundances were observed, and the maximum Bd prevalence experienced by the population. We included
populations where i) maximum observed frog abundance occurred prior to minimum frog abundance and ii)
maximum prevalence was greater than 0.25 and occurred between maximum and minimum observed adult
abundance. The first criterion ensured we included populations that at least experienced some decline. The
second criteria ensured that Bd prevalence peaked between observed maximum and minimum abundance
and helped identify populations where Bd successfully invaded and at least partially contributed to observed
declines.

We examined two metrics of frog abundance. First, we counted both adults and subadults toward the
total frog abundance and Bd prevalence. Our rationale was that the abundance of subadults prior to Bd
invasion would contribute to Ry and the magnitude of declines. However, our measure of subadult abundance
is subject to more variability than adult abundance. Thus, we also considered a dataset where only adult
frogs contributed to abundance and Bd prevalence. The adult and subadult dataset contained 82 populations
that met the criteria described above and the adult-only dataset contained 52 populations.

We then asked: Is amphibian abundance or density prior to decline in a population predictive of the
magnitude of the population decline following Bd invasion? Given density-dependent transmission, epidemi-
ological theory predicts that the final size of an epizootic (one minus the proportion of susceptible hosts
remaining in the population after an epizootic has concluded) is directly related to the intrinsic reproductive
number Ry, which in turn depends on host density (Fisher et al. 2012; Diekmann et al. 2013). Thus, we
expected that increasing host abundance or density should increase Ry and increase the final size of the
epizootic.

We used a Beta-binomial regression where our response variable was the minimum abundance of the frog

population in lake j7 Mminimum abundance,j - Our model was

10
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Mminimum abundance,j ™~ Beta‘Binomial(nprc-dcclinc abundance,j s Pdecline,j » k) ( )
2
logit(pdecline,j) = BO + 61 IOglo(Dj)

where the variable pgeciine,; i the expected proportion population decline in lake j and £ is the shape
parameter of the Beta-binomial distribution. The covariate D; is either pre-decline frog abundance in lake
J Mpre-decline abundance,j OT density Npre decline density,j = Mpre-decline abundance,j/1ake perimeter ;.

We standardized the density covariates before fitting the model (subtracted the mean and divided by the
standard deviation). We fit the model with a Bayesian approach using Stan (Carpenter et al. 2017) and put
slightly regularizing priors on the non-intercept coefficients of Normal(0,0 = 5). We used an uninformative

prior on the intercept fg.

Hypothesis 3: Amphibian density does not affect within-host infection dynamics

To test for the effect of host density on Bd infection load, we performed two analyses. In the first analysis, we
used a subset of the data that included populations where hosts were persisting enzootically and potentially
recovering in the presence of Bd. These consisted of 111 data points from 40 populations located in Yosemite
National Park where Bd invasion and declines occurred prior to 2004 (the onset of our sampling, Knapp et al.
2016; Vredenburg et al. 2019). Focusing on enzootic populations allowed us to eliminate the potential causal
pathway from Bd infection intensity to host density in a time step and isolate whether there was evidence
for a causal pathway between host density and Bd infection intensity. We fit a piece-wise, linear regression
consistent with the causal diagram in Fig. S3. This amounted to fitting two linear regressions: one where
Bd load in the current year was predicted by Bd load in the previous year and amphibian density in the
current year and the other where amphibian density in the current year was predicted by Bd load in the
previous year. We were interested in whether the path coefficient (i.e., standardized regression coefficient)
between host abundance or density and Bd load at time ¢ was clearly distinguishable from zero.

In the second analysis, we tested the role of host density on within-host infection dynamics during
an epizootic. We examined whether the within-host infection dynamics of individuals collected from a
population experiencing an epizootic and released into lakes containing no frogs (i.e., low density) were
similar to the infection dynamics within the more dense donor population. We used opportunistically-
collected data from a conservation action where 120 adult frogs existing in a lake containing nearly 800 adult
frogs were translocated to three frog-free lakes (40 per lake) in an effort to reestablish frog populations at
these sites. As described in detail in Appendix S4, this translocation occurred concurrent with the onset

of an epizootic in the donor population and translocated populations, providing an unfortunate but rare

11
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opportunity to quantify the effect of frog density on within-host infection dynamics.

We tested whether final Bd infection intensity was different between frogs in the three translocated
populations in low abundance/density environments and donor frogs in a high abundance/density environ-
ment approximately one month following translocation. For all populations, frogs started with an infection
intensity near zero. Our hypothesis was that infection intensities in the low abundance translocated popu-
lations would not be systematically lower or higher than infection intensities in the high abundance donor
population. We fit linear models where log Bd infection intensity was our normally distributed response
variable and lake ID (one donor lake and three translocated lakes) was our predictor variable. We allowed
the variability in infection intensity to differ among lakes. We compared models using LOOIC and used

uninformative priors on our model parameters over their range of support.

Results

Higher amphibian density has little effect on the probability of failed or successful

Bd invasions

There was little support for our predictions that higher amphibian abundance or density increased the
probability of successful Bd invasion or decreased the probability of failed invasion (Fig. 3). For all models
we explored, the probability w of a population remaining in a low prevalence state compared to transitioning
to a high prevalence state showed a trend with host abundance in the opposite direction than we expected
— namely, there was some evidence that increasing frog density/abundance increased the probability of
remaining in a low prevalence state (Fig. 3, Fig. 4A). This trend was not a result of sampling bias and
persisted even after accounting for observation error and rarefying the data (Appendix S3; Fig. S1). The
probability ¢ of a population transitioning from a low prevalence Bd state to a Bd-free state was not strongly
associated with host abundance or density (Fig. 3, Fig. 4B).

In comparison to host density, there was a stronger effect of maximum temperature on the probability
of successful vs. failed Bd invasion. Across the different models that we fit, increasing maximum summer
air temperature in the previous year (with a range of 11-18 degrees C across sites) generally increased the
probability of failed invasion in the following year (increased ¢, Fig. 3, Fig. 4C-D) and decreased the
probability that a population transitioned to a high prevalence state (increased w). While our choice of p
affected whether the 95% credible interval of the temperature coefficient included zero, the direction of the
temperature effect was consistent across all of our models for both host density and abundance. Rarefying

the data showed that the inferred positive effect of temperature was most robust for ¢. There was little
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evidence for a non-linear effect of temperature on ¢ (Table 1).

We found evidence that the temperature effect was modified by winter severity — more severe winters
reduced the positive effect of temperature on ¢ and w (Fig. 3, Fig. S2A, Table 1). Rarefying the data
showed that this inferred relationship was most robust for w — namely that the probability of observing a
transition from low to high prevalence in a given year was less influenced by temperature in the preceding
summer if the summer was followed by a more severe winter (Fig. 3).

Finally, tadpole presence decreased probability of failed invasion — the presence of tadpoles in the previous
year increased the probability that Bd persisted in the population to the current year (i.e., a negative effect on
v; Fig. 3, Fig. 2B). This result was consistent when we used logy observed tadpole abundance as a predictor
variable, though using tadpole presence/absence as a covariate led to a better predictive model (LOOIC from
model with tadpole presence/absence was > 3 units lower than a model with log;o tadpole abundance, Table
1). In contrast, we detected little effect of tadpole presence on the probability of a population transitioning

to a high prevalence state (w).

Higher host density weakly increases the magnitude of disease-induced declines

Higher frog abundance or density prior to Bd invasion was weakly predictive of larger disease-induced de-
clines (Fig. 5). When we included only adult frogs in our analysis, there was a positive trend between
magnitude of decline and maximum host abundance/density prior to Bd-induced declines, but the 95%
credible intervals overlapped zero (Fig. 5A-B). In contrast, when we considered adult and subadult abun-
dance/density, increasing host density prior to Bd-induced declines increased the magnitude of declines (95%
credible intervals did not overlap zero; Fig. 5C-D). However, across at least two orders of magnitude of host
abundance/density, any protective effect of low density on the magnitude of decline likely had minimal
biological significance. That is, even very small populations experienced large proportional declines. For
example, for a population with seven individuals, our model predicted an 84% decline (95% CI: [73%, 91%]),

which corresponds to approximately six of the seven individuals suffering Bd-induced mortality.

Higher amphibian density has little effect on infection intensity

For enzootic populations, there were small effects of host abundance or host density at time ¢ on mean Bd
infection load at time ¢ (Fig. S3). The path coefficients on the link between host abundance or density in
year t and Bd infection intensity at year ¢ all overlapped zero (Fig. S3).

We also detected no consistent effect of host abundance on infection intensity for populations undergoing

an epizootic (Fig. 6A). In our opportunistic translocation study, infection load varied among the four
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populations (Fig. 6B). Despite this variation, all mean infection intensities were still above 1 million ITS
copies and mean infection intensities in low abundance translocated populations were not less than infection
intensities in the high abundance donor population (Fig. 6B; ALOOIC of the model assuming lower infection
intensities in translocated populations compared to the donor population - model where infection intensities
were free to vary: 10.9). Rather, in two of the translocated populations (50170 and 50219), there was
evidence that mean infection intensity was higher than in the donor population (Fig. 6B; difference in
mean log infection intensity relative to donor population 50183: Bso170 = 0.31, 95% credible interval: [0.03,
0.60]; 850219 = 0.45, 95% CI: [0.14, 0.75]). In the remaining translocated population 50194, mean infection
intensity was not distinguishable from the source population (Fig. 6B; 850104 = —0.10, 95% CI: [-0.47,
0.26]). Combined abundance of tadpoles, subadults, and adults was orders of magnitude higher in the donor

population compared to the translocated populations (Fig. 6C).

Discussion

Host density is hypothesized to be a major driver of variability in response trajectories following disease
invasion in wildlife populations (Lloyd-Smith et al. 2005; Begon et al. 2019; Golas et al. 2021). While the
effects of host density on transmission have been extensively studied in host-parasite systems (reviewed in
Hopkins et al. 2020), these studies are dominated by theoretical analyses and small-scale experiments. Here,
we leveraged a dataset consisting of hundreds of replicate amphibian populations invaded by the fungal
pathogen Bd across 25 years to test the effects of host density and abundance (henceforth referred to as
“host density” as the effects were similar) on observed variability in response trajectories. Counter to our
predictions, we found minimal effects of host density on the probability of successful Bd invasion and the
magnitude of population decline following Bd invasion. Moreover, we found little evidence that host density
affected the dynamics of within-host infection intensity.

We expected host density to be an important factor driving variation in response trajectories for three
reasons. First, we generally would expect a relationship between host density and Bd transmission as
more frogs shed more zoospores, leading to increased infection (Briggs et al. 2010; Courtois et al. 2017).
Second, a small-scale transmission experiment in this system found that density-dependent transmission
better described observed R. sierrae-Bd transmission than other functions such as frequency-dependent or
constant transmission (Wilber et al. 2017). Finally, host density is a positive predictor of Bd prevalence,
transmission, and declines in other amphibian-Bd studies (Rachowicz & Briggs 2007; Gillespie et al. 2015;
Adams et al. 2017). Despite these a priori lines of evidence, we observed little effect of host density on

disease outcomes across multiple branch points of the response trajectory.
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There are at least two potential explanations for this result. First, the observed density-dependent
transmission for R. sierrae in small-scale mesocosm experiments may not be reflective of the transmission
dynamics in the field. In particular, contact dynamics leading to approximate frequency-dependent transmis-
sion might be a driver of multi-year disease dynamics in this system. In the Sierra Nevada, R. sierrae adults
and tadpoles aggregate when over-wintering under lake ice, which occurs for approximately nine months of
the year (Knapp 2021). If the size of aggregations is largely independent of host density and aggregations
are occurring for over 75% of year, then we might expect frequency-dependent disease dynamics to drive the
response trajectories of R. sierrae, despite infection dynamics during summer months being more consistent
with density-dependent transmission. This could also explain why small-scale transmission experiments that
lasted only 32 days in the summer were not reflective of multi-year disease dynamics observed in the field
(Wilber et al. 2017). Our results provide a sober reminder of the limitations of extrapolating small-scale,
short-term transmission experiments to predict patterns in multi-year response trajectories (Mihaljevic et al.
2020).

The second explanation is that, even under density-dependent transmission, stochasticity in infection
dynamics and the environment can mask the effects of density (Lloyd-Smith et al. 2005; Briggs et al. 2010;
Kyle et al. 2020). For example, Briggs et al. (2010) developed a stochastic model of this frog-Bd system
and showed that given only density-dependent infection dynamics one could obtain response trajectories
consistent with enzootic or epizootic dynamics. These differences in response trajectories were not necessarily
mediated by differences in initial host density, but by within-host infection processes such as the rate that
Bd zoospores reinfect the same host (Briggs et al. 2010). Moreover, for density-dependent host-pathogen
systems, demographic and environmental stochasticity can significantly blur the effects of host density on
disease invasion and persistence (Lloyd-Smith et al. 2005; Kyle et al. 2020). The dataset we used here was
unique in that it addressed many of the challenges identified when testing for density thresholds in wildlife
pathogen systems (Lloyd-Smith et al. 2005): it contained hundreds of replicate populations, host abundance
spanned orders of magnitude (from 10s to 1000s of individuals), and the system was largely driven by a single
host species (though see Reeder et al. 2012). So despite the inherent challenges of stochasticity and finite
populations, the R. sierrae-Bd system was uniquely poised to detect an effect of host density on successful
pathogen invasion or the magnitude of host decline, if one existed.

We did detect an effect of host density on the magnitude of disease-induced declines in a direction con-
sistent with our a priori predictions related to density-dependent transmission. However, the biological
significance of this density effect for describing variability in response trajectories may be small as the pre-
dicted magnitude of declines for even small populations was still nearly 85%. This was further echoed in our

results regarding within-host infection dynamics, where we found that regardless of host density or whether a
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population was in an epizootic or enzootic state, density had minimal effect on Bd infection intensity. Thus,
lower host densities provided little meaningful protective effects for naive R. sierrae populations where Bd
had successfully invaded.

In contrast to host density, we found that environmental conditions were more important factors driving
disease outcomes. Given a less severe winter, higher maximum summer air temperature in the previous year
increased the probability of failed invasion and reduced the probability of a population transitioning to a
high prevalence state in the following year. However, winter severity’s interaction with summer temperature
made its overall effect on failed Bd invasion context-dependent. Interpreting the biological meaning of
this interaction between winter severity and summer temperature remains speculative. However, we do
know that winter severity can decrease infected host survival (Joseph & Knapp 2018) and exploring how
and why this covariate interacts with other environmental covariates is an interesting future direction to
explore. For example, the observation that cool summers and severe winters lead to a decreased probability
of population transitioning to a high prevalence state could be a result of mortality bias: perhaps highly
infected individuals are removed from the population over winter leading to observed failed invasions where
Bd is at least temporarily removed from the population through host mortality.

For less severe winters, the positive effect of temperature on failed invasion probability was consistent with
other amphibian-Bd field studies. In these previous studies, increased temperature generally decreased Bd
prevalence and infection intensity (Sonn et al. 2019), which would correspondingly increase the probability
of Bd failing to invade. Previous laboratory studies on R. sierrae-Bd interactions have identified non-linear
effects of temperature on infection dynamics, with Bd growth rate increasing from 4 to 20 degrees C with
subsequent decreases in frog survival probability (Wilber et al. 2016), and R. sierrae survival probability
increasing between 20-26 degrees C, likely due to decreases in Bd growth rate (Andre et al. 2008). While these
previous results might suggest that maximum mean summer air temperatures between 11-18 degrees C as
observed at our field sites should increase successful Bd invasions, one cannot directly compare the absolute
value of laboratory temperatures and air temperatures from the field. Mean air temperature from June to
September is correlated with, but not the same as, temperature in the ambient environment experienced by
amphibians (Bradford 1984). A useful next step will be to quantify the availability and selection of fine-
scale thermal refuges and whether this provides additional explanatory power for the observed variability in
response trajectories across amphibian populations (Barrile et al. 2021).

The presence/absence of R. sierrae tadpoles was also a significant predictor of the probability of failed
Bd invasion across populations. This result is consistent with the hypothesis that tadpoles are a temporary
Bd reservoir in this system, maintaining high levels of Bd infection but suffering little mortality until meta-

morphosis (Briggs et al. 2010). Interestingly, our model predicted that while tadpoles helped maintain Bd
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in a population, they had little effect on the onset of an epizootic (i.e., transitions from a low prevalence to a
high prevalence state). Reservoir hosts — a group of hosts that contribute to continued infection in another
group of hosts (Haydon et al. 2002) — can affect pathogen presence and epidemic potential in a focal group.
However, when transmission (i.e., the event of becoming infected) and within-host infection processes (i.e.,
the increase of pathogen in the host following infection) are driven by different causes, reservoirs contributing
to pathogen spillover in a focal host or lifestage might not be directly responsible for subsequent outbreaks.

Our results have important applied implications for population management in this system and other sys-
tems where pathogens are of conservation concern. Reintroductions are an important tool for re-establishing
amphibian populations (Joseph & Knapp 2018; Canessa et al. 2019). While larger population sizes or re-
peated introductions are often associated with increased reintroduction success (Fischer & Lindenmayer
2000), when pathogen transmission is density-dependent, large reintroduced populations can suffer from
increased transmission, more severe population declines, and lower probabilities of long-term persistence
(Fisher et al. 2012; Aiello et al. 2014). We detected weak effects of host density on disease outcomes, in-
dicating that reintroduction efforts in this system are unlikely to be limited by negative effects of large
reintroductions on transmission and disease-induced declines. Rather, environmental conditions seem to
play a larger role on disease outcomes (echoed in Joseph & Knapp 2018). Quantifying how host density
and other population parameters or covariates affect branch points across a response trajectory provides a
powerful framework to disentangle variability in disease outcomes in real populations and inform subsequent

management efforts.
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Table 1: ALOOIC values for the four models of success and failed invasion fit at different prevalence cutoffs
p. ALOOIC values should only be compared within a column. Lower values indicate a better predictive
model. “Full model” indicates the model given in equation 1. All other models are modified relative to the
full model.

Model description Host abundance ALOOIC

or density

p=025|p=033 | p=0.50

Full model abundance 0 0 0
Full model density 2.74 2.83 0.90
Replace tadpoles p/a with log;y abundance 6.61 7.44 3.78
tadpoles
Replace tadpoles p/a with logiy  density 11.12 10.79 3.32
tadpoles
Remove winter severity abundance 2.30 5.73 4.94
Remove winter severity density 6.30 8.90 7.12
Remove winter severity, replace abundance 6.54 9.96 6.42
linear temperature w/ quadratic
temperature
Remove winter severity, replace density 9.49 13.24 7.21
linear temperature w/ quadratic
temperature
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Figure 1: Framework for contextualizing different response trajectories in host-parasite systems, with a
particular focus on amphibian populations experiencing infection with Batrachochytrium dendrobatidis (Bd).
The black dots give the five branch points at which the trajectories of host-parasite systems can diverge,
leading to variability in response trajectories. The boxes refer to the different population-level trajectories

observed in amphibian- Bd systems. Reproduced from Wilber
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Figure 2: A. A directed graph of the state process model used to describe successful and failed invasions
in the R. sierrae-Bd system. The circles represent the four possible states a frog population can take: Bd-
free/Unoccupied, low Bd prevalence, high Bd prevalence, and extirpated. The parameters give the transition
probabilities among states as described in the main text. B. Observed state trajectories from 16 example
amphibian populations. In these plots the cutoff between a low prevalence state and a high prevalence state
is p = 0.5. Numbers in facets are unique lake ids.
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Figure 3: The estimated effect sizes of frog abundance or density, maximum summer temperature, winter
severity (snow water equivalents), and tadpole presence/absence on the probability of transitioning from a
low prevalence to a Bd-free population (¢) and the probability of a Bd-invaded population remaining in a
low prevalence state rather than transitioning to the high prevalence state (w). All effect sizes other than
tadpole presence/absence are estimated from standardized predictors (subtracting the mean and dividing
by the standard deviation). Reported effect sizes are the medians with 95% credible intervals. The dashed
line indicates an effect size of zero. Models were fit with different prevalence cutoffs p that delineated a
low prevalence population (prevalence < p) from a high prevalence population (prevalence > p). Parameter
estimates are shown for different values of p. Points above the dashed line indicate that increasing a covariate
increases the given transition probability, and below the dashed line indicate that increasing the covariate
decreases the given transition probability. Note that all subplots other than ‘e, tadpole’ have the same

y-axis.
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Figure 4: A., B. The inferred effects of host abundance on w and ¢. C., D. The inferred effects of average
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give the median estimated probabilities when all other covariates in the model are set to their mean values
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Figure 5: A. Observed and predicted magnitudes of amphibian population declines across varying adult
abundances prior to Bd-induced declines. Black points are the observed magnitudes of population declines
(1 - minimum abundance over survey period / maximum abundance over survey period). Black lines are
the model predicted relationships between host abundance/density and the magnitude of decline and gray
ribbon is the 95% credible interval. B. Same as A., but using maximum density of adults. Maximum density
is calculated as adult abundance / lake perimeter. C. Same as A., but using maximum abundance of adults
+ subadults. D. Same as A., but using maximum density of adults + subadults.
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Figure 6: A. Bd infection intensity data from the frog translocation study. On Aug. 3, 2010, adult frogs
from the donor population 50183 were swabbed and identified as Bd negative. On Aug. 8, 2010, 120 adult
frogs were collected from 50183, pit tagged, swabbed, and moved to three frog-free sites (50170, 50219, and
50194). The translocated populations were surveyed again on Aug. 24-25 and Sept. 13-14. The thick green
lines and diamonds show mean infection intensities on frogs that eventually ended up in specific translocated
populations (though all frogs were in 50183 prior to Aug. 3). The thick blue line and diamonds show
mean infection intensities in the source population 50183 over three sampling events. The thin and partially
transparent lines and points show load trajectories for individual frogs. We statistically compared infection
data from populations on and after Sept. 8, 2010 in panel B. B. Boxplots of infection intensities on frogs
in the donor and translocated populations from surveys that took place on or after Sept. 8, 2010. The
@7 gymbol over boxplots indicate whether the 95% credible interval of the difference between infection
intensities in the translocated populations and in the donor population did not overlap zero (i.e., a notable
difference). “ov” indicates intervals did overlap zero. Sample sizes show how many swabs are contributing to
the estimate of the mean in each population. C. The maximum abundance of adults, subadults, and tadpoles
observed during 2010 visual encounter surveys. The translocated populations had no frogs immediately prior
to translocations and no tadpoles or subadults following translocations. Note that the y-axis is on a log-
scale. Plotting the y-axis in units of host density, rather than abundance, does not change the qualitative
differences between lakes.
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