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Abstract1

1. Host density is hypothesized to be a major driver of variability in the responses and outcomes of wildlife2

populations following pathogen invasion. While the effects of host density on pathogen transmission3

have been extensively studied, these studies are dominated by theoretical analyses and small-scale4

experiments. This focus leads to an incomplete picture regarding how host density drives observed5

variability in disease outcomes in the field.6

2. Here, we leveraged a dataset of hundreds of replicate amphibian populations that varied by orders7

of magnitude in host density. We used these data to test the effects of host density on three out-8

comes following the arrival of the amphibian-killing fungal pathogen Batrachochytrium dendrobatidis9

(Bd): the probability that Bd successfully invaded a host population and led to a pathogen outbreak,10

the magnitude of the host population-level decline following an outbreak, and within-host infection11

dynamics that drive population-level outcomes in amphibian-pathogen systems.12

3. Based on previous small-scale transmission experiments, we expected that populations with higher13

densities would be more likely to experience Bd outbreaks and would suffer larger proportional declines14

following outbreaks. To test these predictions, we developed and fitted a Hidden Markov Model that15

accounted for imperfectly observed disease outbreak states in the amphibian populations we surveyed.16

4. Contrary to our predictions, we found minimal effects of host density on the probability of successful Bd17

invasion, the magnitude of population decline following Bd invasion, and the dynamics of within-host18

infection intensity. Environmental conditions, such as summer temperature, winter severity, and the19

presence of pathogen reservoirs, were more predictive of variability in disease outcomes.20

5. Our results highlight the limitations of extrapolating findings from small-scale transmission experiments21

to observed disease trajectories in the field and provide strong evidence that variability in host density22

does not necessarily drive variability in host population responses following pathogen arrival. In an23

applied context, we show that feedbacks between host density and disease will not necessarily affect24

the success of reintroduction efforts in amphibian-Bd systems of conservation concern.25

Keywords: transmission; disease-induced extinction; density-dependent; frequency-dependent; Batra-26

chochytrium dendrobatidis; Rana muscosa; Rana sierrae; chytridiomycosis27
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Introduction28

A central question in disease ecology is why host populations experience different responses and outcomes29

following the arrival of a pathogen (Deredec & Courchamp 2003; Lloyd-Smith et al. 2005; Davis et al. 2007;30

Frick et al. 2017; Golas et al. 2021). Observed variability in population responses and outcomes following31

pathogen arrival (henceforth “response trajectories”) depends on at least five different branch points (Fig.32

1; Wilber et al. 2019). The first branch point determines whether a pathogen successfully invades the host33

population (Diekmann et al. 2013). The second determines the effect of a pathogen on the host population34

(negative, positive, or no effect; Tompkins et al. 2011). The third determines whether a population that has35

experienced disease-induced declines experiences disease-induced extinction or continues to persist at low36

densities with or without the pathogen (De Castro & Bolker 2005). The fourth determines whether a host37

population that has been reduced in size by infection persists or experiences stochastic extinction (Golas38

et al. 2021). Finally, the fifth determines whether the population starts to recover towards a pre-invasion39

population size with or without the pathogen (Golas et al. 2021). These branch points encompass a rich set40

of theory on host suppression, resilience, stability, and stochasticity and provide a tractable way to uncover41

potential factors driving the observed variability in response trajectories in host-pathogen systems. However,42

for wildlife disease systems in particular, we rarely have field data of sufficient temporal resolution across43

replicate populations to examine the mechanisms driving outcomes at more than one branch point along a44

response trajectory (Davis et al. 2007; Frick et al. 2017; Dallas et al. 2018, but see Reijniers et al. (2012)).45

This omission leads to an incomplete picture regarding the key mechanisms driving observed variability in46

response trajectories and how the role of these mechanisms can change over the course of an outbreak.47

Host density is a central characteristic that can affect multiple branch points of response trajectories48

(Anderson & May 1979; Davis et al. 2007; Reijniers et al. 2012). Host density affects pathogen transmission49

if the between-host contact rate increases with host density over at least some range of host densities (Hopkins50

et al. 2020). Epidemiologically, the relationship between host density and transmission rate directly affects51

the ability of a pathogen to successfully invade a host population (branch point 1) (Lloyd-Smith et al. 2005),52

the magnitude of disease-induced declines following invasion (branch point 2) (Diekmann et al. 2013), and53

the propensity for disease-induced extinction (branch point 3) (De Castro & Bolker 2005). Ecologically,54

the effects of demographic stochasticity – the probabilistic nature of births and deaths – on population55

persistence are the strongest in small populations and can result in population extirpation following disease-56

induced declines even if the pathogen does not directly drive the host population extinct (branch point 4)57

(Lande et al. 2003). Thus, elucidating the effects of host density on various branch points is important to58

describe variability in response trajectories in host-parasite systems. However, many studies either i) focus59
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on the effects of density on transmission in small-scale experiments and then extrapolate these effects up to60

natural populations (Dallas et al. 2018; Tompros et al. 2022) or ii) focus on the effects of density at a single61

branch point in the field (e.g., pathogen invasion, Davis et al. 2007), even though the effects of host density62

can vary across the response trajectory (Begon et al. 2019). Given the potential importance of host density63

for the invasion and persistence of pathogens in host populations (Deredec & Courchamp 2003; Hopkins64

et al. 2020), the impact of density on each (or all) branch points along a response trajectory in actual field65

settings remains a key knowledge gap in most wildlife disease systems. This gap is particularly important66

for host species of conservation concern, where the multifaceted role of density across response trajectories67

can inform a wide range of species recovery actions, including optimal reintroduction strategies (Aiello et al.68

2014).69

The amphibian species complex Rana muscosa and Rana sierrae provides an ideal system to test how70

host density affects response trajectories following the arrival of the fungal pathogen Batrachochytrium71

dendrobatidis (Bd). Henceforth, we refer to both species as R. sierrae as there are few known epidemiological72

or ecological differences between the species. R. sierrae live in high elevation lakes and streams in California’s73

Sierra Nevada mountains, constituting hundreds of largely independent populations on the landscape (Knapp74

& Matthews 2000). Bd has successfully invaded nearly all these populations over the last fifty years (Knapp75

et al. 2016; Vredenburg et al. 2019). Aquatic Bd zoospores infect the skin of amphibian hosts where they76

form sporangia and produce additional zoospores that can re-infect the same host and lead to increasing Bd77

infection intensity (Longcore et al. 1999; DiRenzo et al. 2018). Extensive surveillance of frog populations and78

disease presence in hundreds of waterbodies over 25 years has documented the following response trajectories79

in populations of R. sierrae (Briggs et al. 2010; Jani et al. 2017): 1) Bd is detected in a previously naive80

population and either sparks or fails to spark an epizootic, 2) if an epizootic occurs, the intensity of Bd81

infection on hosts increases rapidly, leading to host death and population-level decline (Vredenburg et al.82

2010), 3) infected host populations either continue to decline until extirpation or persist at reduced density83

with ongoing Bd infection (Briggs et al. 2010), and 4) some amphibian populations eventually begin to recover84

despite the continuing presence of Bd (Knapp et al. 2016; Joseph & Knapp 2018). Moreover, a previous small-85

scale transmission experiment found that Bd transmission depends on R. sierrae density directly through86

host contacts (standard density-dependent transmission) and indirectly through the density of Bd zoospores87

in the water (Wilber et al. 2017). We have the opportunity to combine data from hundreds of populations88

across a gradient of host densities and disease outcomes with predictions from transmission experiments to89

ask: How does host density affect R. sierrae-Bd response trajectories following Bd arrival?90

The intrinsic reproductive number R0 provides a theoretical framework for answering this question. The91

quantity R0 describes the average number of infections produced by an average infected individual in a92
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fully susceptible population and relates directly to population-level outcomes such as pathogen invasion and93

the size of epizootics (Diekmann et al. 2013). Given previously observed density-dependent transmission94

in mesocosm experiments (Wilber et al. 2017), R0 is expected to be proportional to host density in the R.95

sierrae-Bd system. However, host density is one of multiple factors that can affect response trajectories.96

For example, in this system the magnitude of Bd-induced declines is correlated with Bd infection intensity97

(Vredenburg et al. 2010) which can be modulated by temperature (Andre et al. 2008). Thus, host populations98

with similar host densities may still experience different response trajectories following the arrival of a99

pathogen if environmental conditions such as temperature (Kilpatrick et al. 2010; Sonn et al. 2019) affect100

infection intensity.101

Here, we test three hypotheses regarding how host density and infection intensity drive variability in102

response trajectories. First, we predict that higher host density should increase the probability of successful103

Bd invasion into an R. sierrae population, resulting in an epizootic (branch point 1, Fig. 1). Given density-104

dependent transmission, increasing host density should increase R0 and increase the probability of successful105

invasion (and alternatively, decrease the probability of failed invasion) (Lloyd-Smith et al. 2005; Diekmann106

et al. 2013). Second, given density-dependent transmission, the magnitude of population decline given107

disease invasion should increase with increasing R0 (Fisher et al. 2012; Diekmann et al. 2013). We therefore108

predict that the magnitude of host population declines following Bd invasion should increase for higher109

host population density prior to decline (branch point 2-4). Finally, while it is often assumed that the110

accumulation of Bd infection intensity following initial infection is driven by within-host processes and is111

largely decoupled from the density of hosts in the environment (Wilber et al. 2017; DiRenzo et al. 2018),112

there is some evidence that host density can influence chytrid infection intensity (Bosch et al. 2020; Tompros113

et al. 2022). We test this hypothesis and predict that host density in enzootic and epizootic scenarios will114

not have a clear effect on Bd infection intensity (branch point 2).115

Materials and methods116

Field sites and data collection117

During the period 2004-2019, we conducted surveys of the lakes and ponds in Yosemite, Sequoia, and Kings118

Canyon National Parks, California, USA that harbored most of the known R. sierrae populations (Knapp119

et al. 2003; Knapp 2005). In Sequoia and Kings Canyon, the objective of these surveys was to describe the120

ongoing spread of Bd through R. sierrae populations (Vredenburg et al. 2010; Zhou et al. 2015). In Yosemite,121

where Bd is essentially ubiquitous and has been present for several decades (Vredenburg et al. 2019), the122
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objective was to describe the status of Bd-infected frog populations and frog-Bd dynamics (Knapp et al.123

2011, 2016). At each water body, counts of R. sierrae adults, subadults, and tadpoles were made during124

diurnal visual encounter surveys (VES) of the entire water body shoreline and the first 100m of inlet and125

outlet streams. During the summer, adults, subadults, and tadpoles occur almost exclusively in shallow126

water near shore and are easily detected, and counts are highly repeatable (Knapp & Matthews 2000).127

Following VES, we collected skin and mouthpart swabs from frogs and tadpoles to quantify Bd infection128

intensities (Boyle et al. 2004). Although we targeted the collection of swabs from up to 20 individuals per129

site-survey, constraints associated with limited time, adverse weather conditions, and small population size130

often resulted in the collection of fewer swabs. Skin swabs were analyzed using standard Bd DNA extraction131

and qPCR methods (Boyle et al. 2004, for R. sierrae-specific details see Joseph & Knapp (2018)).132

From 2004-2019 we surveyed a total of 956 total lakes and ponds surveyed at least once for either frog133

abundance or Bd, for a total of 3,168 unique lake × year surveys. Not all lakes were visited in all years134

due to their remoteness (e.g., many lakes were > 10 miles from the nearest road). A total of 449 lakes135

were surveyed in three or more years from 2004-2019. For the three analyses subsequently described, we136

used different subsets of this dataset. Field work was conducted under an Institutional Animal Care and137

Use Committee (IACUC) permit at the University of California Santa Barbara (# 478). Field permits for138

sampling included YOSE-2015-SC1-0047, YOSE-2016-SC1-0121, YOSE-2017-SC1-0109, YOSE-2018-SC1-139

0027, and YOSE-2019-SC1-0025 from Yosemite National Park and TE40090B from the US Fish and Wildlife140

Service.141

Hypothesis 1: Higher amphibian density increases the probability of a successful142

Bd invasion143

We used a multi-state Bd occupancy model to test whether lakes with higher host density had higher144

probabilities of successful Bd invasion than lakes with lower host densities. In a fully susceptible population145

with R0 > 1, a pathogen can still fail to spark a large outbreak following its arrival (Diekmann et al.146

2013). Qualitatively, this might manifest as the pathogen appearing in the population, being detected at low147

prevalence for some period of time, and then disappearing. We characterize this qualitative behavior as a148

failed invasion. Alternatively, a pathogen could i) arrive in the population and remain at low prevalence for149

some time before eventually increasing in prevalence or ii) immediately increase in prevalence upon arrival.150

We consider both of these behaviors as a successful invasion. Once Bd successfully invades in this system, R.151

sierrae populations consistently show high prevalence and infection intensity (Briggs et al. 2010; Vredenburg152

et al. 2010). We designed a multi-state Bd occupancy model to capture these behaviors related to failed153
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and successful invasion. Here, we give a brief overview of this model and provide a complete description in154

Appendix S1.155

The state process model156

Consider a frog population in lake j sampled at year t, where t to t + 1 refers to June in one year to June157

in the following year. We assume that a frog population can occupy four potential states (Fig. 2). First,158

the population j at time t can be truly Bd-free, denoted as XU,j,t, where ‘U’ indicates ‘Unoccupied by Bd’.159

Second, the population j can be Bd-positive, but Bd is present in the population below some prevalence160

ρ. We denote this state at XLP,j,t, where ‘LP’ indicates ‘low prevalence’. Third, the population j can be161

infected with Bd above some prevalence ρ, denoted as XHP,j,t where ‘HP’ indicates ‘high prevalence’. Finally,162

as is the case in the R. sierrae system, frog populations can also be extirpated by Bd, denoted as XE,j,t. We163

model transitions among these four states in population j as described in Fig. 2.164

To test our hypothesis regarding failed and successful invasions, we focused on two parameters: φj,t and165

ωj,t. Given that Bd arrives in a population, the parameter ωj,t determines the probability of transitioning166

to low prevalence or immediately experiencing a successful invasion and transitioning to high prevalence167

(1 − ωj,t). Similarly, the parameter ωj,t also defines the probability that a population in a low prevalence168

state remains in a low prevalence state and does not experience a successful invasion in a subsequent year.169

The parameter φj,t gives the probability of population j in a low prevalence state transitioning back to a170

Bd-free state and experiencing a failed invasion in a subsequent year. We assume that φj,t and ωj,t only171

depend on the current state and covariates (i.e., the Markov property). Note that a complete failed or172

successful trajectory given Bd arrival is a combination of parameters φj,t and ωj,t (higher values of φj,t and173

ωj,t signify increased tendency for failed invasions).174

Covariates affecting successful and failed invasions175

We tested how host density and abundance of population j at time t affected φj,t and ωj,t and thus affected176

failed and successful invasions. In addition to host density, we also included three covariates that could affect177

failed or successful invasion: maximum summer temperature, winter severity, and tadpole presence/absence178

(Andre et al. 2008; Briggs et al. 2010; Joseph & Knapp 2018). Using gridMET (Abatzoglou 2013), we179

extracted the mean maximum air temperature at the location of population j in year t for the period180

June-September, which are the months that frogs are active in the Sierra Nevada. Lab experiments have181

shown that temperature affects infection intensity and frog survival in this system (Andre et al. 2008; Wilber182

et al. 2016) and thus may impact failed or successful Bd invasion at finer temporal timescales than tested183

previously (e.g., Knapp et al. 2011).184
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Water temperature may be a more important driver of frog-Bd dynamics than air temperature for the185

highly aquatic R. sierrae. Temperature of Sierra Nevada water bodies is heavily influenced by winter severity.186

The high elevation lakes that R. sierrae inhabit are under ice and snow cover from approximately November-187

June. More severe winters lead to longer ice and snow cover, shorter ice-free durations during summer188

months, and cooler summer water temperatures (Smits et al. 2021). A well-supported measure/proxy of189

winter severity is the snow water equivalent (SWE) on April 1st of the current year (extracted from the190

California Data Exchange Center for snow survey locations across the Sierra Nevada). We used April 1191

SWE as a predictor of failed or successful Bd invasion. As our measure of winter severity temporally192

followed maximum summer temperature (e.g., maximum summer temperature in summer 2009 followed by193

snow water equivalent measured in April 1 of 2010), we also included an interaction to test whether winter194

severity modulated the effect of summer temperature on failed invasions.195

Finally, tadpoles can act as an important reservoir for Bd in this system, maintaining infection but not196

suffering disease-induced mortality (Briggs et al. 2010). We expected that the presence of tadpoles would197

increase the persistence of Bd and decrease the probability of a failed invasion.198

We modeled φj,t and ωj,t as199

probit(·j,t) =β
·,0 + β

·,1 log10(Dj,t) + β
·,2(Max. summer temperaturej,t) + β

·,3(Winter severityj,t)+

β
·,4(Tadpole presencej,t) + β

·,5(Max. summer temperaturej,t ×Winter severityj,t)
(1)

where ‘probit’ indicates the probit link function (the inverse cumulative density function of a standard200

normal distribution) and · refers to either φ or ω. The variable Dj,t is either the observed abundance of201

adult and sub-adult R. sierrae in population j in year t based on VES or the density of R. sierrae (abundance202

in population j at time t / perimeter of lake j). Our primary hypothesis was that increasing Dj,t would203

decrease φj,t and ωj,t.204

We also considered three additional models with different covariates as described in Table 1. We describe205

how we account for missing covariates in Appendix S2.206

The observation process model207

Let Yj,t be the observed state of population j at year t. When Yj,t = U , Bd was not observed in a population.208

When Yj,t = LP , observed Bd prevalence was equal to or below the threshold ρ and the population was209

classified as low prevalence. When Yj,t = HP , observed Bd prevalence was above the threshold ρ and the210

population was classified as high prevalence. When fitting the model, we varied this cutoff ρ between 0.25-0.5211

to assess its influence on our results. Finally, when Yj,t = E, no subadults or adults were observed after212
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Bd-induced declines and the population was classified as extirpated. Given the long-lived tadpole stage of213

this species (up to three years) and their resistance to Bd-induced mortality, tadpoles may still have been214

present in the population after adult and subadult extirpation. We have observed no population recovery215

when only tadpoles persist following an outbreak and classify these populations as functionally extirpated,216

E.217

The probability of correctly classifying a population as Bd-free (U), low prevalence (LP ), or high preva-218

lence (HP ) depends on how many frogs were sampled for Bd in the population and the unknown true Bd219

prevalence on frogs. We directly accounted for this source of observation error as described in Appendix S1.220

Data selection221

To examine the effects of host density on failed Bd invasion, we identified frog populations that we surveyed222

prior to Bd-induced declines. First, we included populations where Bd was not observed on the first survey223

but was then subsequently observed in later surveys. Second, we also included populations where Bd was224

detected on the first survey, but was then not detected on the next survey given at least five Bd swabs were225

obtained and given that the population did not undergo Bd-induced declines over the interval between the226

first and second survey. Finally, we excluded populations where frogs were reintroduced to the location as227

part of ongoing amphibian recovery efforts, populations that had fewer than three Bd swabbing visits from228

2004-2019, and all populations from Yosemite National Park where Bd invaded prior to the onset of Bd229

sampling in 2004 (Vredenburg et al. 2019). In total, we used 79 populations sampled over 16 years in this230

analysis. Figure 2B shows representative trajectories for 16 of these populations.231

Model fitting232

To fit our model to the data, we used the forward algorithm to combine the state process and the observation233

process to estimate the likelihood of an observed sequence of states yj,· = yj,1,yj,2, . . . ,yj,n for population234

j (Appendix S1; McClintock et al. 2020). yj,t is a zero-one vector (i.e., an indicator) specifying whether the235

observed state of population j at time t was either [Bd-free,Low prevalence,High prevalence,Extirpated].236

We implemented all models in Stan (Carpenter et al. 2017). We performed structural model comparison237

using Pareto smoothed leave-one-out information criterion (LOOIC; Vehtari et al. 2016; Merkle & Rosseel238

2018), where lower values indicate better out-of-sample performance. We also tested for the role of sampling239

bias as lakes with higher frog abundance tended to have more animals swabbed (Appendix S3).240
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Hypothesis 2: Higher pre-invasion amphibian density increases the magnitude241

of disease-induced declines242

To test this hypothesis, we first identified populations that likely had not experienced Bd epizootics or243

declines at the beginning of our sampling in 2004, but had experienced successful Bd invasion by the end244

of our sampling in 2019. To identify these populations, we first only considered populations in the eastern245

portion of Sequoia and Kings Canyon National Parks, as these populations had generally not experienced246

Bd-induced declines prior to the start of our surveys in 2004. Because this analysis relied on estimates of247

proportional changes in frog abundance, we then excluded populations that had fewer than three visual248

encounter surveys or swabbing events from 2004-2019. Of these lakes, we then identified the maximum and249

minimum frog abundances that were observed from 2004-2019, the years these maximum and minimum250

abundances were observed, and the maximum Bd prevalence experienced by the population. We included251

populations where i) maximum observed frog abundance occurred prior to minimum frog abundance and ii)252

maximum prevalence was greater than 0.25 and occurred between maximum and minimum observed adult253

abundance. The first criterion ensured we included populations that at least experienced some decline. The254

second criteria ensured that Bd prevalence peaked between observed maximum and minimum abundance255

and helped identify populations where Bd successfully invaded and at least partially contributed to observed256

declines.257

We examined two metrics of frog abundance. First, we counted both adults and subadults toward the258

total frog abundance and Bd prevalence. Our rationale was that the abundance of subadults prior to Bd259

invasion would contribute to R0 and the magnitude of declines. However, our measure of subadult abundance260

is subject to more variability than adult abundance. Thus, we also considered a dataset where only adult261

frogs contributed to abundance and Bd prevalence. The adult and subadult dataset contained 82 populations262

that met the criteria described above and the adult-only dataset contained 52 populations.263

We then asked: Is amphibian abundance or density prior to decline in a population predictive of the264

magnitude of the population decline following Bd invasion? Given density-dependent transmission, epidemi-265

ological theory predicts that the final size of an epizootic (one minus the proportion of susceptible hosts266

remaining in the population after an epizootic has concluded) is directly related to the intrinsic reproductive267

number R0, which in turn depends on host density (Fisher et al. 2012; Diekmann et al. 2013). Thus, we268

expected that increasing host abundance or density should increase R0 and increase the final size of the269

epizootic.270

We used a Beta-binomial regression where our response variable was the minimum abundance of the frog271

population in lake j, nminimum abundance,j . Our model was272

10



nminimum abundance,j ∼ Beta-Binomial(npre-decline abundance,j , pdecline,j , k)

logit(pdecline,j) = β0 + β1 log10(Dj)

(2)

where the variable pdecline,j is the expected proportion population decline in lake j and k is the shape273

parameter of the Beta-binomial distribution. The covariate Dj is either pre-decline frog abundance in lake274

j npre-decline abundance,j or density npre-decline density,j = npre-decline abundance,j/lake perimeterj .275

We standardized the density covariates before fitting the model (subtracted the mean and divided by the276

standard deviation). We fit the model with a Bayesian approach using Stan (Carpenter et al. 2017) and put277

slightly regularizing priors on the non-intercept coefficients of Normal(0, σ = 5). We used an uninformative278

prior on the intercept β0.279

Hypothesis 3: Amphibian density does not affect within-host infection dynamics280

To test for the effect of host density on Bd infection load, we performed two analyses. In the first analysis, we281

used a subset of the data that included populations where hosts were persisting enzootically and potentially282

recovering in the presence of Bd. These consisted of 111 data points from 40 populations located in Yosemite283

National Park where Bd invasion and declines occurred prior to 2004 (the onset of our sampling, Knapp et al.284

2016; Vredenburg et al. 2019). Focusing on enzootic populations allowed us to eliminate the potential causal285

pathway from Bd infection intensity to host density in a time step and isolate whether there was evidence286

for a causal pathway between host density and Bd infection intensity. We fit a piece-wise, linear regression287

consistent with the causal diagram in Fig. S3. This amounted to fitting two linear regressions: one where288

Bd load in the current year was predicted by Bd load in the previous year and amphibian density in the289

current year and the other where amphibian density in the current year was predicted by Bd load in the290

previous year. We were interested in whether the path coefficient (i.e., standardized regression coefficient)291

between host abundance or density and Bd load at time t was clearly distinguishable from zero.292

In the second analysis, we tested the role of host density on within-host infection dynamics during293

an epizootic. We examined whether the within-host infection dynamics of individuals collected from a294

population experiencing an epizootic and released into lakes containing no frogs (i.e., low density) were295

similar to the infection dynamics within the more dense donor population. We used opportunistically-296

collected data from a conservation action where 120 adult frogs existing in a lake containing nearly 800 adult297

frogs were translocated to three frog-free lakes (40 per lake) in an effort to reestablish frog populations at298

these sites. As described in detail in Appendix S4, this translocation occurred concurrent with the onset299

of an epizootic in the donor population and translocated populations, providing an unfortunate but rare300
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opportunity to quantify the effect of frog density on within-host infection dynamics.301

We tested whether final Bd infection intensity was different between frogs in the three translocated302

populations in low abundance/density environments and donor frogs in a high abundance/density environ-303

ment approximately one month following translocation. For all populations, frogs started with an infection304

intensity near zero. Our hypothesis was that infection intensities in the low abundance translocated popu-305

lations would not be systematically lower or higher than infection intensities in the high abundance donor306

population. We fit linear models where log Bd infection intensity was our normally distributed response307

variable and lake ID (one donor lake and three translocated lakes) was our predictor variable. We allowed308

the variability in infection intensity to differ among lakes. We compared models using LOOIC and used309

uninformative priors on our model parameters over their range of support.310

Results311

Higher amphibian density has little effect on the probability of failed or successful312

Bd invasions313

There was little support for our predictions that higher amphibian abundance or density increased the314

probability of successful Bd invasion or decreased the probability of failed invasion (Fig. 3). For all models315

we explored, the probability ω of a population remaining in a low prevalence state compared to transitioning316

to a high prevalence state showed a trend with host abundance in the opposite direction than we expected317

– namely, there was some evidence that increasing frog density/abundance increased the probability of318

remaining in a low prevalence state (Fig. 3, Fig. 4A). This trend was not a result of sampling bias and319

persisted even after accounting for observation error and rarefying the data (Appendix S3; Fig. S1). The320

probability φ of a population transitioning from a low prevalence Bd state to a Bd-free state was not strongly321

associated with host abundance or density (Fig. 3, Fig. 4B).322

In comparison to host density, there was a stronger effect of maximum temperature on the probability323

of successful vs. failed Bd invasion. Across the different models that we fit, increasing maximum summer324

air temperature in the previous year (with a range of 11-18 degrees C across sites) generally increased the325

probability of failed invasion in the following year (increased φ, Fig. 3, Fig. 4C-D) and decreased the326

probability that a population transitioned to a high prevalence state (increased ω). While our choice of ρ327

affected whether the 95% credible interval of the temperature coefficient included zero, the direction of the328

temperature effect was consistent across all of our models for both host density and abundance. Rarefying329

the data showed that the inferred positive effect of temperature was most robust for φ. There was little330

12



evidence for a non-linear effect of temperature on φ (Table 1).331

We found evidence that the temperature effect was modified by winter severity – more severe winters332

reduced the positive effect of temperature on φ and ω (Fig. 3, Fig. S2A, Table 1). Rarefying the data333

showed that this inferred relationship was most robust for ω – namely that the probability of observing a334

transition from low to high prevalence in a given year was less influenced by temperature in the preceding335

summer if the summer was followed by a more severe winter (Fig. 3).336

Finally, tadpole presence decreased probability of failed invasion – the presence of tadpoles in the previous337

year increased the probability that Bd persisted in the population to the current year (i.e., a negative effect on338

φ; Fig. 3, Fig. 2B). This result was consistent when we used log10 observed tadpole abundance as a predictor339

variable, though using tadpole presence/absence as a covariate led to a better predictive model (LOOIC from340

model with tadpole presence/absence was > 3 units lower than a model with log10 tadpole abundance, Table341

1). In contrast, we detected little effect of tadpole presence on the probability of a population transitioning342

to a high prevalence state (ω).343

Higher host density weakly increases the magnitude of disease-induced declines344

Higher frog abundance or density prior to Bd invasion was weakly predictive of larger disease-induced de-345

clines (Fig. 5). When we included only adult frogs in our analysis, there was a positive trend between346

magnitude of decline and maximum host abundance/density prior to Bd-induced declines, but the 95%347

credible intervals overlapped zero (Fig. 5A-B). In contrast, when we considered adult and subadult abun-348

dance/density, increasing host density prior to Bd-induced declines increased the magnitude of declines (95%349

credible intervals did not overlap zero; Fig. 5C-D). However, across at least two orders of magnitude of host350

abundance/density, any protective effect of low density on the magnitude of decline likely had minimal351

biological significance. That is, even very small populations experienced large proportional declines. For352

example, for a population with seven individuals, our model predicted an 84% decline (95% CI: [73%, 91%]),353

which corresponds to approximately six of the seven individuals suffering Bd-induced mortality.354

Higher amphibian density has little effect on infection intensity355

For enzootic populations, there were small effects of host abundance or host density at time t on mean Bd356

infection load at time t (Fig. S3). The path coefficients on the link between host abundance or density in357

year t and Bd infection intensity at year t all overlapped zero (Fig. S3).358

We also detected no consistent effect of host abundance on infection intensity for populations undergoing359

an epizootic (Fig. 6A). In our opportunistic translocation study, infection load varied among the four360
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populations (Fig. 6B). Despite this variation, all mean infection intensities were still above 1 million ITS361

copies and mean infection intensities in low abundance translocated populations were not less than infection362

intensities in the high abundance donor population (Fig. 6B; ∆LOOIC of the model assuming lower infection363

intensities in translocated populations compared to the donor population - model where infection intensities364

were free to vary: 10.9). Rather, in two of the translocated populations (50170 and 50219), there was365

evidence that mean infection intensity was higher than in the donor population (Fig. 6B; difference in366

mean log infection intensity relative to donor population 50183: β50170 = 0.31, 95% credible interval: [0.03,367

0.60]; β50219 = 0.45, 95% CI: [0.14, 0.75]). In the remaining translocated population 50194, mean infection368

intensity was not distinguishable from the source population (Fig. 6B; β50194 = −0.10, 95% CI: [-0.47,369

0.26]). Combined abundance of tadpoles, subadults, and adults was orders of magnitude higher in the donor370

population compared to the translocated populations (Fig. 6C).371

Discussion372

Host density is hypothesized to be a major driver of variability in response trajectories following disease373

invasion in wildlife populations (Lloyd-Smith et al. 2005; Begon et al. 2019; Golas et al. 2021). While the374

effects of host density on transmission have been extensively studied in host-parasite systems (reviewed in375

Hopkins et al. 2020), these studies are dominated by theoretical analyses and small-scale experiments. Here,376

we leveraged a dataset consisting of hundreds of replicate amphibian populations invaded by the fungal377

pathogen Bd across 25 years to test the effects of host density and abundance (henceforth referred to as378

“host density” as the effects were similar) on observed variability in response trajectories. Counter to our379

predictions, we found minimal effects of host density on the probability of successful Bd invasion and the380

magnitude of population decline following Bd invasion. Moreover, we found little evidence that host density381

affected the dynamics of within-host infection intensity.382

We expected host density to be an important factor driving variation in response trajectories for three383

reasons. First, we generally would expect a relationship between host density and Bd transmission as384

more frogs shed more zoospores, leading to increased infection (Briggs et al. 2010; Courtois et al. 2017).385

Second, a small-scale transmission experiment in this system found that density-dependent transmission386

better described observed R. sierrae-Bd transmission than other functions such as frequency-dependent or387

constant transmission (Wilber et al. 2017). Finally, host density is a positive predictor of Bd prevalence,388

transmission, and declines in other amphibian-Bd studies (Rachowicz & Briggs 2007; Gillespie et al. 2015;389

Adams et al. 2017). Despite these a priori lines of evidence, we observed little effect of host density on390

disease outcomes across multiple branch points of the response trajectory.391
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There are at least two potential explanations for this result. First, the observed density-dependent392

transmission for R. sierrae in small-scale mesocosm experiments may not be reflective of the transmission393

dynamics in the field. In particular, contact dynamics leading to approximate frequency-dependent transmis-394

sion might be a driver of multi-year disease dynamics in this system. In the Sierra Nevada, R. sierrae adults395

and tadpoles aggregate when over-wintering under lake ice, which occurs for approximately nine months of396

the year (Knapp 2021). If the size of aggregations is largely independent of host density and aggregations397

are occurring for over 75% of year, then we might expect frequency-dependent disease dynamics to drive the398

response trajectories of R. sierrae, despite infection dynamics during summer months being more consistent399

with density-dependent transmission. This could also explain why small-scale transmission experiments that400

lasted only 32 days in the summer were not reflective of multi-year disease dynamics observed in the field401

(Wilber et al. 2017). Our results provide a sober reminder of the limitations of extrapolating small-scale,402

short-term transmission experiments to predict patterns in multi-year response trajectories (Mihaljevic et al.403

2020).404

The second explanation is that, even under density-dependent transmission, stochasticity in infection405

dynamics and the environment can mask the effects of density (Lloyd-Smith et al. 2005; Briggs et al. 2010;406

Kyle et al. 2020). For example, Briggs et al. (2010) developed a stochastic model of this frog-Bd system407

and showed that given only density-dependent infection dynamics one could obtain response trajectories408

consistent with enzootic or epizootic dynamics. These differences in response trajectories were not necessarily409

mediated by differences in initial host density, but by within-host infection processes such as the rate that410

Bd zoospores reinfect the same host (Briggs et al. 2010). Moreover, for density-dependent host-pathogen411

systems, demographic and environmental stochasticity can significantly blur the effects of host density on412

disease invasion and persistence (Lloyd-Smith et al. 2005; Kyle et al. 2020). The dataset we used here was413

unique in that it addressed many of the challenges identified when testing for density thresholds in wildlife414

pathogen systems (Lloyd-Smith et al. 2005): it contained hundreds of replicate populations, host abundance415

spanned orders of magnitude (from 10s to 1000s of individuals), and the system was largely driven by a single416

host species (though see Reeder et al. 2012). So despite the inherent challenges of stochasticity and finite417

populations, the R. sierrae-Bd system was uniquely poised to detect an effect of host density on successful418

pathogen invasion or the magnitude of host decline, if one existed.419

We did detect an effect of host density on the magnitude of disease-induced declines in a direction con-420

sistent with our a priori predictions related to density-dependent transmission. However, the biological421

significance of this density effect for describing variability in response trajectories may be small as the pre-422

dicted magnitude of declines for even small populations was still nearly 85%. This was further echoed in our423

results regarding within-host infection dynamics, where we found that regardless of host density or whether a424
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population was in an epizootic or enzootic state, density had minimal effect on Bd infection intensity. Thus,425

lower host densities provided little meaningful protective effects for naive R. sierrae populations where Bd426

had successfully invaded.427

In contrast to host density, we found that environmental conditions were more important factors driving428

disease outcomes. Given a less severe winter, higher maximum summer air temperature in the previous year429

increased the probability of failed invasion and reduced the probability of a population transitioning to a430

high prevalence state in the following year. However, winter severity’s interaction with summer temperature431

made its overall effect on failed Bd invasion context-dependent. Interpreting the biological meaning of432

this interaction between winter severity and summer temperature remains speculative. However, we do433

know that winter severity can decrease infected host survival (Joseph & Knapp 2018) and exploring how434

and why this covariate interacts with other environmental covariates is an interesting future direction to435

explore. For example, the observation that cool summers and severe winters lead to a decreased probability436

of population transitioning to a high prevalence state could be a result of mortality bias: perhaps highly437

infected individuals are removed from the population over winter leading to observed failed invasions where438

Bd is at least temporarily removed from the population through host mortality.439

For less severe winters, the positive effect of temperature on failed invasion probability was consistent with440

other amphibian-Bd field studies. In these previous studies, increased temperature generally decreased Bd441

prevalence and infection intensity (Sonn et al. 2019), which would correspondingly increase the probability442

of Bd failing to invade. Previous laboratory studies on R. sierrae-Bd interactions have identified non-linear443

effects of temperature on infection dynamics, with Bd growth rate increasing from 4 to 20 degrees C with444

subsequent decreases in frog survival probability (Wilber et al. 2016), and R. sierrae survival probability445

increasing between 20-26 degrees C, likely due to decreases in Bd growth rate (Andre et al. 2008). While these446

previous results might suggest that maximum mean summer air temperatures between 11-18 degrees C as447

observed at our field sites should increase successful Bd invasions, one cannot directly compare the absolute448

value of laboratory temperatures and air temperatures from the field. Mean air temperature from June to449

September is correlated with, but not the same as, temperature in the ambient environment experienced by450

amphibians (Bradford 1984). A useful next step will be to quantify the availability and selection of fine-451

scale thermal refuges and whether this provides additional explanatory power for the observed variability in452

response trajectories across amphibian populations (Barrile et al. 2021).453

The presence/absence of R. sierrae tadpoles was also a significant predictor of the probability of failed454

Bd invasion across populations. This result is consistent with the hypothesis that tadpoles are a temporary455

Bd reservoir in this system, maintaining high levels of Bd infection but suffering little mortality until meta-456

morphosis (Briggs et al. 2010). Interestingly, our model predicted that while tadpoles helped maintain Bd457
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in a population, they had little effect on the onset of an epizootic (i.e., transitions from a low prevalence to a458

high prevalence state). Reservoir hosts – a group of hosts that contribute to continued infection in another459

group of hosts (Haydon et al. 2002) – can affect pathogen presence and epidemic potential in a focal group.460

However, when transmission (i.e., the event of becoming infected) and within-host infection processes (i.e.,461

the increase of pathogen in the host following infection) are driven by different causes, reservoirs contributing462

to pathogen spillover in a focal host or lifestage might not be directly responsible for subsequent outbreaks.463

Our results have important applied implications for population management in this system and other sys-464

tems where pathogens are of conservation concern. Reintroductions are an important tool for re-establishing465

amphibian populations (Joseph & Knapp 2018; Canessa et al. 2019). While larger population sizes or re-466

peated introductions are often associated with increased reintroduction success (Fischer & Lindenmayer467

2000), when pathogen transmission is density-dependent, large reintroduced populations can suffer from468

increased transmission, more severe population declines, and lower probabilities of long-term persistence469

(Fisher et al. 2012; Aiello et al. 2014). We detected weak effects of host density on disease outcomes, in-470

dicating that reintroduction efforts in this system are unlikely to be limited by negative effects of large471

reintroductions on transmission and disease-induced declines. Rather, environmental conditions seem to472

play a larger role on disease outcomes (echoed in Joseph & Knapp 2018). Quantifying how host density473

and other population parameters or covariates affect branch points across a response trajectory provides a474

powerful framework to disentangle variability in disease outcomes in real populations and inform subsequent475

management efforts.476
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Table 1: ∆LOOIC values for the four models of success and failed invasion fit at different prevalence cutoffs
ρ. ∆LOOIC values should only be compared within a column. Lower values indicate a better predictive
model. “Full model” indicates the model given in equation 1. All other models are modified relative to the
full model.

Model description Host abundance
or density

∆LOOIC

ρ = 0.25 ρ = 0.33 ρ = 0.50

Full model abundance 0 0 0

Full model density 2.74 2.83 0.90

Replace tadpoles p/a with log10
tadpoles

abundance 6.61 7.44 3.78

Replace tadpoles p/a with log10
tadpoles

density 11.12 10.79 3.32

Remove winter severity abundance 2.30 5.73 4.94

Remove winter severity density 6.30 8.90 7.12

Remove winter severity, replace
linear temperature w/ quadratic
temperature

abundance 6.54 9.96 6.42

Remove winter severity, replace
linear temperature w/ quadratic
temperature

density 9.49 13.24 7.21
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2: Does Bd invasion lead
to population decline?

3: Does Bd directly cause
 population extiction?

4: Does Bd indirectly cause
 population extiction?

5: Do populations recover?

a. Bd absent, no host decline

b. Bd present, host increase

c. Enzootic I

d. Epizootic h. Bd present, host recovery

e. Enzootic II

g. Stochastic/indirect
extinction

f. Bd-induced extinction

Figure 1: Framework for contextualizing different response trajectories in host-parasite systems, with a
particular focus on amphibian populations experiencing infection with Batrachochytrium dendrobatidis (Bd).
The black dots give the five branch points at which the trajectories of host-parasite systems can diverge,
leading to variability in response trajectories. The boxes refer to the different population-level trajectories
observed in amphibian-Bd systems. Reproduced from Wilber et al. (2019).
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Figure 2: A. A directed graph of the state process model used to describe successful and failed invasions
in the R. sierrae-Bd system. The circles represent the four possible states a frog population can take: Bd-
free/Unoccupied, low Bd prevalence, high Bd prevalence, and extirpated. The parameters give the transition
probabilities among states as described in the main text. B. Observed state trajectories from 16 example
amphibian populations. In these plots the cutoff between a low prevalence state and a high prevalence state
is ρ = 0.5. Numbers in facets are unique lake ids.
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Increased probability of remaining in low
prevalence state

Decreased probability
of transitioning to
Bd­free state

Figure 3: The estimated effect sizes of frog abundance or density, maximum summer temperature, winter
severity (snow water equivalents), and tadpole presence/absence on the probability of transitioning from a
low prevalence to a Bd-free population (φ) and the probability of a Bd-invaded population remaining in a
low prevalence state rather than transitioning to the high prevalence state (ω). All effect sizes other than
tadpole presence/absence are estimated from standardized predictors (subtracting the mean and dividing
by the standard deviation). Reported effect sizes are the medians with 95% credible intervals. The dashed
line indicates an effect size of zero. Models were fit with different prevalence cutoffs ρ that delineated a
low prevalence population (prevalence < ρ) from a high prevalence population (prevalence > ρ). Parameter
estimates are shown for different values of ρ. Points above the dashed line indicate that increasing a covariate
increases the given transition probability, and below the dashed line indicate that increasing the covariate
decreases the given transition probability. Note that all subplots other than ‘φ, tadpole’ have the same
y-axis.
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Figure 4: A., B. The inferred effects of host abundance on ω and ϕ. C., D. The inferred effects of average
summer air temperature on ω and ϕ when host abundance is used as a covariate. In all plots, ρ = 0.25, lines
give the median estimated probabilities when all other covariates in the model are set to their mean values
and tadpoles are present (equation 1), and shaded ribbons are 95% credible intervals.
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Figure 5: A. Observed and predicted magnitudes of amphibian population declines across varying adult
abundances prior to Bd-induced declines. Black points are the observed magnitudes of population declines
(1 - minimum abundance over survey period / maximum abundance over survey period). Black lines are
the model predicted relationships between host abundance/density and the magnitude of decline and gray
ribbon is the 95% credible interval. B. Same as A., but using maximum density of adults. Maximum density
is calculated as adult abundance / lake perimeter. C. Same as A., but using maximum abundance of adults
+ subadults. D. Same as A., but using maximum density of adults + subadults.
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Figure 6: A. Bd infection intensity data from the frog translocation study. On Aug. 3, 2010, adult frogs
from the donor population 50183 were swabbed and identified as Bd negative. On Aug. 8, 2010, 120 adult
frogs were collected from 50183, pit tagged, swabbed, and moved to three frog-free sites (50170, 50219, and
50194). The translocated populations were surveyed again on Aug. 24-25 and Sept. 13-14. The thick green
lines and diamonds show mean infection intensities on frogs that eventually ended up in specific translocated
populations (though all frogs were in 50183 prior to Aug. 3). The thick blue line and diamonds show
mean infection intensities in the source population 50183 over three sampling events. The thin and partially
transparent lines and points show load trajectories for individual frogs. We statistically compared infection
data from populations on and after Sept. 8, 2010 in panel B. B. Boxplots of infection intensities on frogs
in the donor and translocated populations from surveys that took place on or after Sept. 8, 2010. The
“**” symbol over boxplots indicate whether the 95% credible interval of the difference between infection
intensities in the translocated populations and in the donor population did not overlap zero (i.e., a notable
difference). “ov” indicates intervals did overlap zero. Sample sizes show how many swabs are contributing to
the estimate of the mean in each population. C. The maximum abundance of adults, subadults, and tadpoles
observed during 2010 visual encounter surveys. The translocated populations had no frogs immediately prior
to translocations and no tadpoles or subadults following translocations. Note that the y-axis is on a log-
scale. Plotting the y-axis in units of host density, rather than abundance, does not change the qualitative
differences between lakes.
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