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More frequent atmospheric rivers slow  
the seasonal recovery of Arctic sea ice

Pengfei Zhang    1  , Gang Chen    2, Mingfang Ting    3, L. Ruby Leung    4, 
Bin Guan    5,6 & Laifang Li1,7,8

In recent decades, Arctic sea-ice coverage underwent a drastic decline in 
winter, when sea ice is expected to recover following the melting season. It 
is unclear to what extent atmospheric processes such as atmospheric rivers 
(ARs), intense corridors of moisture transport, contribute to this reduced 
recovery of sea ice. Here, using observations and climate model simulations, 
we find a robust frequency increase in ARs in early winter over the Barents–
Kara Seas and the central Arctic for 1979–2021. The moisture carried by 
more frequent ARs has intensified surface downward longwave radiation 
and rainfall, caused stronger melting of thin, fragile ice cover and slowed the 
seasonal recovery of sea ice, accounting for 34% of the sea-ice cover decline 
in the Barents–Kara Seas and central Arctic. A series of model ensemble 
experiments suggests that, in addition to a uniform AR increase in response 
to anthropogenic warming, tropical Pacific variability also contributes to the 
observed Arctic AR changes.

Recent decades have witnessed a rapid decline in Arctic sea ice during its 
winter ice-growing season1, which has raised concerns as Arctic sea-ice 
changes may fuel severe winter storms in mid-latitude continents2–4 and 
reshape the ecosystem and fisheries in the Arctic5,6. Winter sea-ice area 
(SIA) decline, especially in the Barents–Kara Seas, has been attributed 
to poleward atmospheric moisture transport (for example, refs. 7–9), 
while enhanced oceanic heat transport through the Nordic Sea has 
aggravated ice thinning10–15.

The bulk of Arctic moisture import is driven by atmospheric rivers 
(ARs)16, which are long, narrow transient corridors of strong horizontal 
moisture transport, typically accompanied by a low-level jet ahead of 
an extratropical cyclone17. ARs account for up to 90% of the poleward 
water vapour transport in mid-latitudes18,19, playing a crucial role in 
the hydrological cycle (for example, refs. 20,21). As ARs can extend into 
the Arctic circle22, there is a need to quantify the role of ARs in ongoing 
Arctic climate change.

In polar regions, contrary to AR-induced snow accumulation 
in East Antarctica23, the intense moisture and heat that are rapidly 

transported by ARs can exert a strong melting effect on the cryosphere, 
exemplified by ice sheet melt in Greenland24 and West Antarctica25, 
polynyas in the Weddell Sea26 and the 2016–2017 record low Arctic 
winter sea-ice growth22. The physical processes relevant to AR-induced 
ice melt or impeded ice growth include (1) enhanced downward long-
wave radiation (DLW) due to the greenhouse effect of water vapour, 
the cloud radiative effect (CRE) and condensational heating release, 
(2) reduction or even sign change in turbulent heat fluxes from the ice 
surface, (3) the insulating capacity of snow and (4) melt energy carried 
by rainfall (for example, refs. 22,25–31).

In recent decades, more frequent ARs have been observed in 
Greenland and West Antarctica24,25, coinciding with the poleward shift 
of ARs in a warming climate32–34. This study reports an increased AR 
frequency over the sea-ice-covered Eurasian Arctic. Given the melting 
effect of ARs, we hypothesize that more frequent Arctic ARs contribute 
to winter sea-ice decline. Although previous works have reported some 
AR-like plumes, such as meridional moisture intrusions that can induce 
cold-season sea-ice loss8,35, these synoptic systems only account for 
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is shown in Fig. 1. The negative sea-ice concentration (SIC) anomalies 
associated with ARs indicate that they significantly slow ice growth 
throughout all marginal seas, including the Barents–Kara Seas, the 
Labrador Sea, Baffin Bay and the Chukchi–Bering Seas (Fig. 1a). In the 
Atlantic sector where the newly formed ice cover is thin10,11, ARs cause 
up to 60% of the sea-ice melting (Fig. 1b), resulting in a reduction of 
~5 × 104 km2 SIA (Methods) in the Barents–Kara Seas and the neighbour-
ing central Arctic (ABK, outlined in Fig. 1b) within 3–4 days (Fig. 1c).  
This AR-driven sea-ice retreat is supported by the results from a 
pre-industrial simulation without background warming (Extended 
Data Fig. 1).

The melting effect of ARs on sea ice is dominated by exten-
sive DLW (partly contributed by clouds within ARs) from the water 
vapour carried by ARs, as well as AR-induced rainfall (Fig. 1c).  
The snowfall associated with ARs could cause an insulating effect 
at the sea-ice surface that inhibits ice growth over a much longer 
timescale (throughout the winter) in this region30, while anoma-
lies in surface turbulent fluxes rapidly decay after the AR landfall. 
The AR occurrence is significantly correlated with negative ABK 
SIA anomalies during the ice recovery season, which is robust for 
1979–2021 (Fig. 1d).

a small portion (36–38%)8 of Arctic moisture import compared with 
ARs (70–80%)16 (Supplementary Text 3). Furthermore, it is unclear to 
what extent human activities have contributed to the high-latitude AR 
changes in the past few decades, affecting mitigation and adaptation 
planning related to the rapidly changing Arctic water cycle.

This study examines the changes in Arctic ARs and their role in slow-
ing down winter Arctic sea-ice recovery. The tropical Pacific features 
the most prominent modes of natural climate variability and exerts a 
stronger influence on the Arctic than any other ocean basin 36–38, so we 
utilize a pacemaker approach with a state-of-the-art climate model to 
quantify the contributions of anthropogenic forcing and the observed 
sea surface temperature (SST) variability over the tropical Pacific to 
Arctic AR changes. We also clarify the mechanisms behind the Arctic AR 
changes by separating the dynamic (circulation change) and thermody-
namic (moistening trend) effects. By focusing on ARs, we connect Arctic 
sea-ice changes with phenomenologically understood extreme weather 
events (ARs) that account for a large portion of Arctic moisture import.

The melting effect of ARs on Arctic sea ice
The melting effect of Arctic ARs during the ice recovery season (Novem-
ber–December–January (NDJ)) for the period 1979–2021 (Methods) 
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Fig. 1 | Relationship between ARs and Arctic sea ice. a, NSIDC SIC anomalies 
associated with ARs in NDJ for 1979–2021 (Methods). Red and blue lines are 
the climatological ice edges on 31 October and 31 January, respectively. 
Dots denote anomalies that are statistically significant at the 0.05 level 
according to 1,000 bootstrap samples. b, Same as a but for the SIC anomalies 
as a percentage of the climatology. The black outline (74–88° N, 20–90° E) 
highlights the ABK region. c, Composite temporal evolution of the anomalies 
of the selected variables in the ABK when ARs make landfall on the ice edge. 
IWV, vertical integral of water vapour; IVT, vertical integral of horizontal water 
vapour transport; LH, surface latent heat flux; NSW, net shortwave radiation; 
SH, surface sensible heat flux. SIA is the total ice area in the ABK calculated 
using NSIDC SIC (Methods), while other variables are area-averaged from 
ERA5 reanalysis. Day 0 is the day of AR ‘landfalling’ (defined as at least one grid 

cell of an AR reaching the ice edge in the ABK). The solid segments denote the 
significant anomalies at 0.05 level while the colour shading denotes the  
2.5–97.5% intervals based on 1,000 bootstrap samples. d, Seasonal cycle of 
SIA over the ABK region and its correlation with AR frequency. Given that the 
ice cover around ABK in late winter may extend to the coast, we extend the 
southern boundary of the ABK to 68° N (the dashed outline in b) for the SIA 
calculation. The black line is the climatology for 1979–2021 with an interval 
of 2σ (grey shading). The bars are the correlation coefficients between AR 
frequency and SIA in four overlapping 21-yr segments for 1979–2021  
(right y-axis, note the inverted scale). A three-month running average is 
applied before the correlation calculation; the bars in Dec indicate the NDJ 
values. The correlation of bars extending above the dashed line is significant  
at the 0.05 level.

http://www.nature.com/natureclimatechange


Nature Climate Change | Volume 13 | March 2023 | 266–273 268

Article https://doi.org/10.1038/s41558-023-01599-3

Increased AR penetration into the Arctic and 
sea-ice impacts
In the past few decades, the Arctic has seen a significant increase in AR 
frequency in the early winter over ABK. This AR trend is robust across 
three observational datasets (Fig. 2b and Supplementary Fig. 1b,c), 
coinciding with the most pronounced winter sea-ice decline in this 
region (for example, ref. 39). In contrast, fewer ARs reach inland Eurasia 
(60–90° E) to the south of ABK.

Considering the strong melting effect of ARs, it is important to 
determine whether more frequent ARs could have contributed to the 
sea-ice decline in recent decades. The observed early winter SIC trend 
for 1979–2021 features a pronounced decline in the marginal seas, 
including the ABK, the Greenland Sea, the Labrador Sea and the Chukchi 
Sea (Supplementary Fig. 4a), where ARs exert the melting effect (Fig. 1).  
Since the melting effect of ARs on the shrinkage of Arctic sea-ice cover 
is manifested by DLW and rainfall (Fig. 1c), we show the trends of cumu-
lated DLW and rainfall associated with ARs in NDJ in Fig. 3a,b. As the 
frequency of Arctic ARs increases in the ABK, the cumulated AR DLW 
is significantly intensified (Fig. 3a), which is partly due to the enhanced 
CRE (Extended Data Fig. 2a). The proportional contribution of the CRE 
to the cumulated AR DLW underscores the role of clouds in enhancing 
the AR-related DLW (Extended Data Fig. 3).

The cumulated AR rainfall, especially along the ice edge where the 
new ice forms, is greatly strengthened (Fig. 3b), while the AR-induced 
snowfall changes are relatively small (Extended Data Fig. 2b). Although 
the heat carried by rainfall is minor28,40,41, the higher correlation 
between SIC and rainfall with trends (−0.61) in the marginal ice zone 
of ABK compared with DLW (−0.47) during ARs suggests an increasing 
contribution of AR rainfall to sea-ice retreat. Quantifying the amount 
of energy input attributable to rainfall in comparison to other sources 
is outside the scope of this study and deserves further research. We 
also examined the above physical processes associated with the melt-
ing effect of ARs in the coupled climate model experiment of PAC2 
(see ‘Model experiments and interpretations’ in Methods, which are 
analysed in the next section) in Fig. 3c,d and Extended Data Fig. 2c. 
The AR-induced DLW and rainfall significantly increase in the ABK, 
consistent with observations. These results suggest that the increased 
AR frequency could have enhanced the melting effect of ARs.

To quantify the role of ARs in sea-ice change, we examine the SIA 
growth in the ABK, defined as the cumulative sum of the daily anomalies 

of SIA tendency in NDJ, with and without AR occurrences (Methods) 
(Fig. 4). Since the Arctic winter surface temperature in the current 
climate is below the freezing point despite the warming trend, it is 
expected that the general decline of sea ice in summer could lead to 
a faster thermodynamic ice growth in winter. Meanwhile, the ice has 
thinned due to oceanic warming12–15, and thinner ice grows faster10,11. 
Indeed, significantly faster SIA growth in NDJ is seen without the impact 
of the ARs (blue line in Fig. 4). Along with AR frequency increase, the 
melting effect on thin, fragile ice cover is enhanced (red line in Fig. 4), 
which partly offsets the fast thermodynamic SIA growth and results 
in a weak, non-significant positive trend in total SIA growth (black 
line in Fig. 4). Thus, frequent ARs can prevent the sea ice from grow-
ing to the extent allowed by the freezing temperature. On the basis of 
the melting effect of ARs on ABK SIA (red line in Fig. 4), we calculate 
the ABK SIA reduction associated with 1% AR frequency, which on 
average is −8.8 ± 0.6 × 104 km2 in NDJ (Methods). Then, by projecting 
the SIA reduction corresponding to 1% AR frequency to the actual AR 
frequency trend, we estimate the enhancement of the melting effect 
due to AR frequency increase, which accounts for ~34 ± 2% of the total 
SIA decline in NDJ (Fig. 2b). Qualitatively similar results are found in 
the PAC2 simulations (dashed lines in Fig. 4). The SIA growth with and 
without ARs clearly demonstrates that more frequent ARs slow the 
seasonal sea-ice growth and therefore contribute to the SIA decline 
during the ice-growing season.

Drivers of Arctic AR frequency trends
To examine the causes of the Arctic AR trends, we first analysed 
the Global Ocean Global Atmosphere (GOGA2) experiment, an 
atmosphere-only model ensemble using CAM6/CESM2 forced by his-
torical SST/SIC and radiative forcing that includes both the anthro-
pogenic forcing and observed natural variability. Despite the bias of 
excessive ARs in the Bering Sea, the increasing ARs in the ABK, the AR 
climatology and the land–sea contrast of the AR changes in the Eurasian 
sector are closely reproduced in GOGA2 (Fig. 5a), suggesting that the 
model is capable of capturing the observed AR changes.

To identify the contribution of anthropogenic warming, we analyse 
the CESM2 Large Ensemble (LENS2), a coupled ocean–atmosphere–sea 
ice model forced by historical radiative forcing (Methods). The LENS2 
ensemble mean, which corresponds to the model response to external 
radiative forcing, shows a uniform positive trend in AR frequency over 
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Fig. 2 | Arctic AR frequency trends in NDJ for 1979–2021. a, AR frequency trends 
from the ERA5 reanalysis. Contours are climatology. Dots denote trends that are 
statistically significant at the 0.05 level according to Student’s t-test. b, Area-
averaged AR frequency time series in the ABK area (highlighted by the red outline 
in a) from three reanalysis datasets (European Centre for Medium-Range Weather 
Forecasts 5th generation reanalysis (ERA5); Modern-Era Retrospective analysis 

for Research and Applications, version 2 (MERRA2); and Japan Meteorological 
Agency Japanese 55-year Reanalysis ( JRA55)). The dashed grey line is the linear 
trend of the ensemble mean of the three datasets. The red line is the time series 
of area sum SIA in the ABK with missing data in NDJ for 1987–1988. Both the AR 
and SIA trends (0.47% decades−1 and −0.13×106 km2 decade−1) are significant at the 
0.05 level based on Student’s t-test.
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the entire high-latitude region (Fig. 5b). The maximum AR increase 
in LENS2 is in inland Eurasia, in contrast to fewer ARs in observations 
and GOGA2 for this region (Fig. 2a and Fig. 5a,b). Note that LENS2 and 
GOGA2 use the same atmosphere model and radiative forcing, except 
that GOGA2 is forced by observed variability in SSTs while LENS2 has 
internally generated SST variations with suppressed internal vari-
ability in its ensemble mean. The distinct spatial patterns of AR trends 
between LENS2 and GOGA2 suggest a possible role of the different SST 
variations. Although the model SST biases might contribute to the 
disagreement between the LENS2 ensemble mean and the observed 
or GOGA2 AR trends, some LENS2 members share high similarity with 
GOGA2 and are distinct from the ensemble mean (Extended Data Fig. 
4). This further supports a possible role of internal variability in the 
modelled and observed AR trends.

To examine the contribution of the observed SST variability, we 
employ a pacemaker experiment (PAC2) that is the same as LENS2, 
except that the tropical Pacific SST anomalies (SSTa) are nudged 
towards the observed variations (Methods). We focus on the tropical 
Pacific here as it has the most prominent modes of natural climate 
variability, and it can exert a stronger influence on the Arctic than any 
other ocean basins37,38. Figure 5c shows that PAC2 captures the sig-
nificant AR increases around the ABK region. With the tropical Pacific 
SST variability being the only difference between PAC2 and LENS2, the 
negative pattern correlation of the AR trend in LENS2 with 5th genera-
tion reanalysis (ERA5) (−0.39) in (0–120° E, 45–90° N) compared with 
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the positive correlation (0.44) in PAC2 suggests that the tropical Pacific 
influence is non-negligible and must be considered to fully understand 
the observed AR trends in the Arctic.

The PAC2 results are designed to represent the combined effects 
of anthropogenic warming and, at least partly, the observed tropi-
cal Pacific influence. Since these two factors are largely additive, the 
contribution of tropical Pacific variability can be obtained by calcu-
lating the differences between PAC2 and LENS2, as shown in Fig. 5d 
(see Methods for detailed interpretation and caveats). The observed 
variability from the tropical Pacific increases the AR frequency in the 
eastern Arctic, especially north of the ABK region, while significantly 
fewer ARs are found in inland Eurasia (Fig. 5d). These results suggest 
that tropical Pacific variability is crucial to the observed spatial pattern 
of AR changes around the Eurasian Arctic.

To further quantify the relative contributions of anthropogenic 
warming versus tropical Pacific influence, Fig. 5e shows the uncertain-
ties of the area-averaged AR trends for ABK in the three sets of model 
experiments. The 95% confidence interval of the ensemble mean in 
GOGA2 encompasses the observed trend, indicating that the model 
forced with anthropogenic forcing and historical SST can capture the 
observed AR trend. In contrast, the observed AR trend is outside the 95% 
confidence interval of the anthropogenic change alone (LENS2) or the 
tropical Pacific influence alone (PAC2 − LENS2). This suggests that the 
observed AR change cannot be fully explained by either external forcing 
or tropical Pacific variability alone, but instead reflects the combined 
effect of anthropogenic forcing and internal climate variability. Based 
on Fig. 5e, the tropical Pacific influence accounts for 38 ± 12% of the 

AR changes in PAC2. Note that the fraction will depend on the model’s 
equilibrium climate sensitivity, which, at 5.3 K in CESM2, is larger than 
the best-estimated range of 1.5–4.5 K (ref. 42). It implies that the contri-
bution of tropical Pacific SST variability could be even higher in reality.

Mechanisms of Arctic AR changes
We examined the mechanisms of the AR trends over the high latitudes, 
0–110° E. Since water vapour transport is the product of wind and mois-
ture content, the mechanisms of the AR changes in a warming climate 
can be roughly partitioned between the trends in wind (dynamic effect) 
and atmospheric moisture (thermodynamic effect) (for example, 
ref. 34). The decomposition (Methods) is shown in Fig. 6. In observa-
tions, the AR increase in the ABK is dominated by the thermodynamic 
effect, while the lower number of ARs in west Eurasia is explained by 
the dynamic effect (Fig. 6a–c). The thermodynamic AR increases in the 
Arctic are consistent with the increase in the atmosphere’s water hold-
ing capacity due to fast Arctic warming, which supports increased AR 
frequency observed in the Arctic in recent decades. The dynamical AR 
decrease in west Eurasia may be related to more persistent Ural blocking 
in recent decades43, which suppresses cyclonic AR circulation. These 
land–sea contrasts in AR changes can also be seen in GOGA2 and PAC2, 
both partly constrained by the observed tropical Pacific variability 
(Fig. 6d–f,j–l). In fact, the tropical Pacific SSTa nudged to observations 
in the otherwise free-running PAC2 experiment can produce a tropi-
cal Pacific–Arctic teleconnection (for example, ref. 44), contributing 
thermodynamically to a warming Arctic through radiative feedback36. 
This warming, induced by tropical Pacific variability in combination 
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the ensemble (that is, the minimum and maximum for GOGA2 and PAC2, 3rd 
minimum and maximum for LENS2). The blue bar is calculated on the basis of 
the ten members in PAC2 by removing the ensemble mean of LENS2, denoting 
the uncertainty of the contribution of tropical Pacific variability. The open 
circles show the trends in three reanalyses for 1979–2014 (the same period as 
model ensembles), representing the observation. Trends in three reanalyses are 
significant at the 0.05 level according to Student’s t-test.
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with anthropogenic forcing, favours more frequent ARs in the Arctic, 
which is well captured by GOGA2 and PAC2 (Fig. 6f,l).

In contrast, there is a weak dynamical contribution and a strong 
thermodynamic increase in inland west Eurasia in the ensemble mean 
of LENS2 (Fig. 6h,i), leading to the maximum AR increase over west 
Eurasia (Fig. 6g and Fig. 5b). These differences between the LENS2 
ensemble mean and observation in the spatial distributions of dynamic 
and thermodynamic effects can be attributed to the suppressed natural 
variability. Several ensemble members of LENS2, however, capture 
the maximum thermodynamic effect in the Arctic as in GOGA2 and 
PAC2 (Extended Data Fig. 4), further suggesting the important role of 
internal variability.

Conclusions
In this study, we show a robust frequency increase in ARs that pen-
etrate into the Arctic in the ice-growing season for 1979–2021, espe-
cially over the ABK. ARs, which dominate the Arctic moisture import, 
induce a strong melting effect, especially on the newly formed thin 
and fragile sea ice, through enhanced DLW from the AR-transported 
water vapour and the associated rainfall. Given the thinner ice cover 
aggravated by warmer ocean water mass (for example, refs. 10,12–15), 
more frequent ARs result in a stronger melting effect on sea ice in 
ice-growing season, slowing down the seasonal sea-ice recovery 
in recent decades and accounting for 34 ± 2% of the observed SIA 
decline in early winter in the ABK. Using state-of-the-art model 

ensembles and a pacemaker experiment, we further demonstrate 
that, in addition to a uniform AR increase in response to anthropo-
genic forcing, the observed tropical Pacific SST variability is another 
vital driving factor of the observed AR changes around the Arctic in 
the past four decades. The increased frequency of Arctic ARs, in turn, 
is mainly driven by thermodynamics (warming).

The AR frequency increase manifests the intensifying hydrologi-
cal cycle in the Arctic45–47, and could exert impacts beyond hydrology 
and the cryosphere. Combined with more frequent cyclones in the 
central Arctic and Chukchi Sea48,49, the resultant rainfall and snowfall 
are expected to undergo pronounced changes50,51, leading to a more 
stormy Arctic. These changes will increase the ecosystem fragility and 
human exposure to natural hazards in the Arctic as international ocean 
freight and fishing industries grow in the coming decades. Advancing 
our understanding of the changes in the synoptic weather systems such 
as ARs in a warming climate could lead to more credible projections of 
ecosystem changes and human adaptation to the growing impacts of 
global warming in the polar region.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Fig. 6 | Mechanisms of AR changes. a, NDJ AR frequency trend in ERA5, which 
is reproduced from Fig. 2a but shown in cylindrical map projection here. b,c, 
Contributions of dynamic (b) and thermodynamic (c) effects to the AR trend in 
ERA5. d–l, Corresponding maps for GOGA2 (d–f), LENS2 (g–i) and PAC2 (j–l).  
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Dots denote that the variables are statistically significant at the 0.05 level 
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box in each subplot delineates the ABK region.
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Methods
Observational datasets
Three reanalysis datasets were employed in this study: ERA553 for 1979–
2021 at a resolution of 0.5° × 0.5°, National Aeronautics and Space 
Administration (NASA) Modern-Era Retrospective analysis for Research 
and Applications, version 2 (MERRA2)54 for 1980–2021 at 0.625° × 0.5° 
and JRA5555 for 1979–2021 at 1.5° × 1.5°. We focused on the long-term 
changes during the sea-ice seasonal recovery months NDJ, and thus 
there were 42 NDJ in ERA5 and JRA55 and 41 NDJ in MERRA2 that were 
analysed. Daily variables were used, but the results were robust using 
6-h data (see Supplementary Fig. 1a versus Fig. 2a). See Supplementary 
Text 4 for quality and validation of reanalysis data.

The sea-ice data were obtained from the NOAA/National Snow and 
Ice Data Center (NSIDC) climate data record of satellite passive microwave 
SIC, version 4 (ref. 56). Both daily and monthly SIC estimates for 1979–2021 
from the NASA Bootstrap algorithm on a 25 km × 25 km grid were used. 
Note that satellite observations were missing during the 1987–1988 win-
ter. The sea-ice cover edge was defined as the 15% contour of SIC by con-
vention. The region between the climatological ice edges on 31 October 
and 1 January (the red and blue lines in Fig. 1a,b, Fig. 3 and Supplementary 
Fig. 4) are referred to as the marginal ice zone. Sea-ice coverage can be 
measured in terms of both ice area and ice extent (see NSIDC terminology: 
https://nsidc.org/learn/cryosphere-glossary/i). Sea-ice extent measures 
the ocean region surrounded by the sea-ice cover edge line. SIA at each 
grid cell was calculated as SIC multiplied by the cell area (that is, the area 
of the portion of the cell covered by ice). For example, for a grid cell with 
SIC of 50%, the whole grid cell was treated as ice-covered (SIC > 15%) in 
determining sea-ice extent, while only 50% of the grid cell was counted 
in SIA. There was almost no difference between sea-ice exent and SIA 
in terms of long-term change or large scales. We used SIA in this study 
because SIA represented the exact change in SIC and thus was appropriate 
to reflect the impact of ARs at the synoptic temporal and spatial scales. 
The NDJ SIA growth in Fig. 4 was defined as the cumulative sum of daily 
anomalies of SIA tendency in NDJ. The SIA tendency on day i was defined 
as (SIAi+1 − SIAi−1)/2, where i denotes the day number from 1 November to 
31 January. The daily anomaly was the deviation from the daily climatol-
ogy of the whole study period of each dataset smoothed with a 15-day 
moving average window. SIA growth associated with (without) AR was 
the cumulated sum of SIA tendency with (without) AR occurrence. We 
focused on ice coverage because of the distinct surface energy balance 
and air–sea interaction with and without ice cover on the sea surface.

Model experiments and interpretation
This study involved a series of model ensemble experiments conducted 
by the Climate Variability and Change Working Group at the National 
Center for Atmospheric Research using the state-of-the-art global 
climate model CESM2. First, the 50-member CESM2 Large Ensemble 
(LENS2)57 outputs were employed. LENS2 covered the period from 
1850 to 2100 under Coupled Model Intercomparison Project Phase 
6 (CMIP6) historical (before 2014) and SSP370 (from 2015) future 
radiative forcing scenarios. Each ensemble member was forced in 
an identical way, except for the initial conditions. The LENS2 ensem-
ble can be regarded as an expansion set of the CESM2 simulations 
in the CMIP6 archive. The results in LENS2 were therefore generally 
similar to the CESM2 simulations in CMIP6, which we have confirmed. 
Second, we examined a ten-member atmosphere-only simulation 
from CAM6, the atmospheric component of CESM2, forced by the 
same external forcing as LENS2 and prescribed time-varying SST from 
NOAA Extended Reconstruction Sea Surface Temperature Version 5 
(ERSSTv5) and Hadley Centre sea ice (HadISST1) from 1880 to 2019, 
named Global Ocean Global Atmosphere. This set of simulations was 
called GOGA2 to differentiate it from a similar set of simulations pro-
duced by CAM5/CESM1. Third, we analysed a ten-member pacemaker 
historical experiment with CESM2 in which the SSTa in the tropical 
Pacific were nudged to observations (ERSSTv5). The nudging mask 

covered the tropical Pacific from the American coast to the western 
Pacific between 20° S–20° N, with the form of a wedge shape toward the 
Maritime Continent to the west of the dateline, and a 5° buffer region 
where the strength of the relaxation was linearly reduced. In each pace-
maker run, the model-simulated temporal SSTa was replaced with the 
observed evolution of SSTa (that is, the tropical Pacific SSTa was the 
pacemaker), with the rest of the model’s coupled climate system free 
to evolve. Since only the anomalies were nudged, the nudging did not 
alter the mean state of the model. In the period between the 1980s and 
2010s, there was a decadal cooling trend in the tropical Pacific (that is, a 
La Niña-like change), known as the phase transition of the Inter-decadal 
Pacific Oscillation or Pacific Decadal Oscillation, the leading mode of 
internal variability at the decadal timescale featuring SST variability in 
the Pacific Ocean (see https://www.cesm.ucar.edu/working_groups/
CVC/simulations/cesm2-pacific_pacemaker.html for the nudging mask 
area and the details of the Pacific Pacemaker experiments). This CESM2 
Pacific Pacemaker ensemble was called PAC2 in this study.

The daily and monthly outputs were available at the same resolu-
tion of 0.9° × 1.25°. We only analysed the outputs for 1979–2014 in which 
all experiments were forced by the historical forcing to facilitate a com-
parison to the observations, that is, 35 NDJ in each member for analysis.

As the three experiments (GOGA2, LENS2 and PAC2) shared the 
same radiative forcing and used the same atmospheric model, the 
differences among them lay in the surface boundary conditions for 
the atmosphere: prescribed observed SST (GOGA2), coupled ocean–
atmosphere except for the tropical Pacific SST that is constrained by 
the observed Inter-decadal Pacific Oscillation evolution (PAC2) and 
fully coupled ocean–atmosphere (LENS2). With these experimen-
tal set-ups, the climate evolution in GOGA2 was most comparable to 
observations, followed by PAC2, while LENS2 was free to evolve subject 
only to external forcing.

We interpreted the model results following the well-established 
approach in the climate modelling community (for example, refs. 58–60). 
The observed climate reflected the combination of the radiatively forced 
response and a specific realization of the natural variability. Because the 
latter was random, we would not expect an individual member of the 
free-running model ensembles to closely resemble the observations. 
Although free-running models cannot perfectly reproduce the exact 
phase of the observed natural variability, model ensembles can be used 
to separate the influences of external forcing and internal variability. The 
influence of anthropogenic forcing can be estimated by the ensemble 
mean of LENS2 because each member of the ensemble is influenced by 
the same external forcing. The internal variability was largely suppressed 
by averaging across the individual ensemble members, which featured 
different realizations of the random natural variability. In other words, the 
spread among the ensemble members in LENS2 represented the effects of 
random internal variability. With the tropical Pacific SSTa nudged to the 
observations, the PAC2 ensemble spread represented internal variability 
associated with regions outside the tropical Pacific and with internal 
atmospheric dynamics. Its ensemble mean reflected the combination of 
the anthropogenically forced responses and the model’s responses to the 
observed tropical Pacific SST variability. As PAC2 and LENS2 shared the 
same model configurations, their forced responses should in principle 
be the same, and therefore the forced response in both LENS2 and PAC2 
can be represented by the ensemble mean of LENS2. Then, the role of 
the tropical Pacific SST variability, called tropical Pacific influence, can 
be isolated by subtracting the LENS2 ensemble mean from the PAC2 
mean58–60. The tropical Pacific influence is an estimate of the variability 
in the climate system that is associated with tropical Pacific SSTs. Holland 
et al. 58 concluded that this approach allows us to consistently compare 
the magnitude of climate responses (for example, Arctic AR changes) 
to anthropogenic forcing and tropical Pacific variability. The significant 
difference between the PAC2 and LENS2 mean AR trends in northern ABK 
and inland Eurasia (Fig. 5d) suggests that the Pacific variability played 
a detectable role in the high-latitude AR trend during recent decades.
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There are caveats in understanding the influence of tropical Pacific 
variability based on the model experiments. First, the estimate of the 
tropical influence assumes that the responses to tropical Pacific vari-
ability and external forcings are independent. Indeed, they are largely 
linearly separable for all practical purposes (for example, refs. 61–63), 
although this assumption may not strictly hold. In any case, it is difficult 
to completely separate the external and tropical signals. Thus, the linear 
assumption neglects the impact of external forcing on tropical Pacific 
variability58. Second, it is possible that the forced response in LENS2 and 
PAC2 may not be the same. Nevertheless, many previous studies have 
shown that the above approach practically and realistically delineates 
the response to tropical Pacific variability (for example, refs. 58–60).

Third, some biases in model physics may affect sea-ice simulation 
and the impact of ARs on sea ice in CESM2. Over the Arctic, the CESM2 
configuration has thinner liquid clouds and a smaller cloud fraction due 
to underestimated aerosols. This leads to increased shortwave radiation 
received by sea ice in melt season and thus an insufficient late summer Arc-
tic sea-ice cover, while the sea-ice coverage bias is relatively small in winter 
(for example, refs. 64,65). The sea-ice bias could produce a faster ice growth 
in early winter, debasing the significance of the melting effect of ARs on sea 
ice in CESM2 simulations, as we can see in Fig. 4. In addition, smaller cloud 
fractions may also reduce the contribution of cloud to DLW. Climate models 
do not consider the heat conduction from rainfall to sea ice. On the other 
hand, the winter ice thickness in CESM2 is biased thin in historical simula-
tions66, which could enhance the melting effect of ARs. That is to say, biases 
in CESM2 physics may partly cancel each other to simulate the impact of 
ARs on sea ice. These limitations could explain the weaker melting effect of 
ARs simulated in PAC2 than observation (Fig. 4). Furthermore, given that 
the Gulf Stream warming in CESM2 lies towards the higher end of CMIP6 
models67, the underestimation of the winter SIC decline in the Barents–Kara 
Seas in recent decades in CESM2 (see ref. 67 or Supplementary Fig. 4) may 
be attributable to the underestimation of atmospheric influences such as 
the melting effect of weaker ARs in CESM2. Nevertheless, given that the 
ensembles employed in the current study are based on the same model, 
the model bias may be cancelled when one ensemble is subtracted from 
another and thus may not affect the understanding of the tropical Pacific 
influence obtained from PAC2 minus LENS2.

AR detection and analysis methods
We employed an IVT-based (Supplementary Text 1) AR detection algo-
rithm originally developed in ref. 68 and slightly optimized it for the 
Arctic, following ref. 24. The algorithm by ref. 68 is recommended by 
the Atmospheric River Tracking Method Intercomparison Project 
(ARTMIP), especially for research on ARs in polar latitudes and inland 
regions69. ARTMIP noted that this algorithm is one of the methods that 
facilitates the attribution of impacts within the AR footprint69. In fact, 
all ARTMIP global algorithms tend to agree remarkably well on the AR 
footprints70. In the algorithm used in this study, the monthly dependent 
85th percentile of the IVT magnitude at each grid cell, or 100 kg m−1 s−1, 
whichever was greater, was used as the intensity threshold to identify 
contiguous regions with elevated IVT. In practice, the 85th percentile 
IVT was the threshold used in the mid-latitudes, which is the same as 
many other algorithms69, while 100 kg m−1 s−1 was the actual threshold 
used in the Arctic region because of the low IVT due to low air tempera-
ture. We also checked the ARs with relative thresholds in the Arctic, 
and the results were not sensitive to the choice of thresholds (Supple-
mentary Text 2 and Supplementary Fig. 1d–f). Potential ARs were then 
filtered by applying size, length, length-to-width ratio, coherence, the 
meridional component of mean IVT and mean transport direction cri-
teria. We followed ref. 24 to change the length criterion from 2,000 km 
to 1,500 km, considering that the ARs reaching the Arctic are usually at 
the end of their lifecycle and their size is decreased. In fact, the results 
were not sensitive to the change in length criterion. These require-
ments ensured that the identified characteristics were long, narrow, 
coherent belts of poleward moisture transport in (and connecting) the 

mid-latitudes and polar regions, thus bearing the features of ARs. See 
refs. 24,68 for additional details of the AR detection algorithm.

A scaling method33 was employed to separate the thermodynamic 
effect and the dynamical effect in the AR frequency trend. We created a 
hypothetical scenario of daily IVT with dynamic effect only by applying a 
scaling coefficient to specific humidity, given that the moisture changes 
were expected to scale in line with the Clausius–Clapeyron relationship. 
Specifically, the specific humidity was scaled by a factor qc/qs, where qc is 
the climatological specific humidity in NDJ at the level and grid to which 
this factor applies and qs is the seasonal mean specific humidity at the 
same grid for the given NDJ. By scaling the data this way, the year-to-year 
change in specific humidity was removed. Then, the IVT calculated with 
the scaled moisture field and the same threshold were used as input to the 
AR detection algorithm. As a result, the effect of the background moisture 
interannual variability on AR variability was suppressed, allowing the AR 
trend due to the dynamic effect to be estimated. The two components 
were found to be largely linearly additive using the same method71. There-
fore, we calculated the thermodynamic effect as the difference between 
the total trend and the dynamic effect.

Variable (DLW, rainfall, snowfall, SIC and so on) anomalies associ-
ated with ARs at a grid were detected if an AR appeared at this grid. The 
climatology or reference state refers to the mean of the whole study 
period of each dataset smoothed with a 15-day moving average window. 
For the AR-related trends in variables (DLW, CRE, rainfall and snowfall) 
shown in Fig. 3, Supplementary Fig. 2b and Extended Data Figs. 2 and 
3, we first integrated the variable associated with ARs in NDJ over time 
(that is, the total/cumulated amount of these fluxes related to ARs) 
and then calculated the trends. The contribution of CRE to DLW was 
the difference between surface DLW and clear sky DLW. The impact of 
ice drifting related to AR wind on ABK SIA was much smaller than that 
of the melting effect of ARs (Supplementary Text 5) and thus was not 
involved in this study.

Linear projection was used to determine the amount of enhance-
ment of AR melting effect due to AR frequency increase. We first calcu-
lated the melting effect on SIA corresponding to 1% AR frequency (~0.92 
day) occurrence based on the SIA growth with AR (red line in Fig. 4)  
and AR frequency (Fig. 2b) in NDJ, which on average was a reduction of 
−8.8 ± 0.6 × 104 km2 in the ABK SIA in NDJ in the observation. Uncertainty 
was measured by the standard error computed from interannual time 
series. Then we estimated the enhancement of the melting effect due 
to AR frequency increase by projecting the SIA reduction correspond-
ing to 1% AR frequency to the actual trend in AR frequency (Fig. 2b)  
and finally inferred its contribution (~34 ± 2%) to the SIA decline in the 
ABK in NDJ (red line in Fig. 2b). The estimation was 30 ±5 % in PAC2 due 
to a weaker melting effect simulated in CESM2. The uncertainty in PAC2 
was the standard error across ensemble members.

Statistics
Two-sided Student’s t-tests were used in the significance test for the linear 
trend in observations. A two-sided 1,000 bootstrap resampling with 
replacement was used in the significance tests for the composite analysis 
and the trends in model ensembles. In Fig. 5e, following ref. 52, the uncer-
tainty in the mean trend of an ensemble is represented by the 95% confi-
dence interval, which is given by b ± csb

√n
, where b is the ensemble mean of 

the trends calculated from individual ensemble members, n is the ensem-
ble size, c is the 97.5th percentile of the Student’s t distribution with n − 1 
degrees of freedom and sb is an estimate of the inter-member standard 
deviation of the trends. We calculated this 95% confidence interval for 
the ensemble mean of GOGA2, LENS2 and PAC2, shown as the vertical 
colour bars in Fig. 5e. The pattern correlation coefficient was employed 
to measure the pattern similarity with latitudinal weights considered.

Data availability
ERA5, MERRA2 and JRA55 reanalysis data are available at https://
cds.climate.copernicus.eu/#!/home, https://gmao.gsfc.nasa.gov/

http://www.nature.com/natureclimatechange
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reanalysis/MERRA-2/data_access/ and https://jra.kishou.go.jp/JRA-55/
index_en.html. NSIDC SIC data are available from https://nsidc.org/
data/G02202. The CESM2 simulations used in this study are available 
at: CESM2 Large Ensemble Community Project (https://www.cesm.
ucar.edu/community-projects/lens2/data-sets), CESM2 Pacific Pace-
maker Ensemble72 (https://www.earthsystemgrid.org/dataset/ucar.
cgd.cesm2.pacific.pacemaker.html) and CAM6 Prescribed SST AMIP 
ensembles (https://www.cesm.ucar.edu/working-groups/climate/
simulations/cam6-prescribed-sst). CESM2 pre-industrial outputs are 
available from the Coupled Model Intercomparison Project Phase 6 
archive at https://pcmdi.llnl.gov/CMIP6/. See the Supplementary 
Information for the data information of the datasets only used in 
supplementary.

Code availability
The code73 for the AR detection method used in this study is available 
via the UCLA Dataverse at https://doi.org/10.25346/S6/SJGRKY. The 
results, data and codes74 used to produce Figs. 1–6 are available via 
figshare at https://doi.org/10.6084/m9.figshare.21405051.v2.
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Extended Data Fig. 1 | ABK SIA anomalies when ARs make landfalling on 
the ice cover in CESM2 pre-industrial simulation. Same as the composite 
SIA anomalies in Fig. 1c but for a 40-year segment (1160-1199) from CESM2 
pre-industrial simulation. There is no significant background trend in the Arctic 
in these 40 years. The same AR detection procedure is conducted for these 40 

years using daily data. The color shadings denote the 2.5-97.5% intervals of the 
anomalies, and the solid segments denote the significant anomalies based on 
1000 bootstrap samples. The SIA anomalies show a significant retreat following 
ARs reaching the ice edge, supporting the results in observations (Fig. 1c).
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Extended Data Fig. 2 | AR-induced trends in cloud radiative effect in 
cumulated DLW (left) and snowfall (right) in NDJ in ERA5 (a,b) and the model 
ensemble from PAC2 (c). See Method for the calculation details of the total 
amounts of the flux variables associated with ARs in NDJ. The cloud radiative 
effect of DLW is expressed as the difference between DLW and clear sky DLW. The 

cloud radiative effect of longwave radiation in PAC2 is missing due to no clear sky 
DLW output in PAC2. Dots denote trends that are statistically significant at the 
0.05 level according to the t-test for ERA5 and the 1000 bootstrap samples for 
PAC2.
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Extended Data Fig. 3 | Proportional contribution of cloud radiative effect to the cumulated surface DLW related to ARs in NDJ for 1979-2021 in ERA5. The linear 
fit is shown as the black line and the equation.
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Extended Data Fig. 4 | AR frequency trend in selected individual members in 
LENS2. The left column shows the mean AR frequency trend in 5 LENS2 members 
who are most (least) similar to GOGA2 in the area of (0°-110°E, 45°-90°N). Here, 
we regard the AR trend pattern in GOGA2 as the reference pattern considering 
the system consistency. The results are similar for using PAC2 as the reference 
pattern. The middle and right columns are the contributions of dynamic and 

thermodynamic effects, similar to that in Fig. 6. The dots indicate the AR changes 
are significantly different from the other 45 members in LENS2 at the 0.05 level 
based on 1000 bootstrap samples. The results are similar in the composites of the 
LENS2 sub-ensembles with the largest (smallest) trends in ABK, which we have 
confirmed.
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