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1. Introduction

Motivated by the study of discriminants, Gelfand, Kapranov, and Zelevinsky [14] in-
troduced the secondary polytope ZS’\KZ for a configuration A of n points in R4~1. Vertices
of this remarkable polytope correspond to regular triangulations of the convex hull of
A, and its faces correspond to regular polyhedral subdivisions. Billera and Sturmfels [4]
defined a more general notion of a fiber polytope ZiP(P = Q) for any linear projection
m: P — @ of polytopes. Secondary polytopes are exactly the fiber polytopes in the case
when P is a simplex.

In this paper, we extend the notion of a secondary polytope and define the higher
secondary polytopes ZAJ, .. ZA n—d So that ZA 1 coincides with the secondary polytope
Z%KZ up to affine translatlon and dilation. An example of a higher secondary polytope
is shown in Fig. 1.

Our main motivation for the introduction of polytopes T A, comes from total posi-
tivity. [31] constructed a parametrization of the totally positive part Grsg(k,n) of the
Grassmannian using plabic graphs, which are certain graphs drawn in a disk with ver-
tices colored in two colors. These graphs have interesting combinatorial, algebraic, and
geometric features. Remarkably, plabic graphs play a role in several different areas of
mathematics and physics: cluster algebras [38], quantum minors [37], soliton solutions
of Kadomtsev-Petviashvili (KP) equation [23,24], scattering amplitudes in A = 4 super-
symmetric Yang-Mills (SYM) theory [2], electrical networks [25], the Ising model [16],
and many other areas.

Plabic graphs are also closely related to polyhedral geometry. There are two varia-
tions of plabic graphs: trivalent plabic graphs and bipartite plabic graphs. [13] showed
that trivalent plabic graphs can be identified with sections of fine zonotopal tilings of
3-dimensional cyclic zonotopes. A related construction [33] identified trivalent plabic
graphs with 7-induced subdivisions for a projection 7 from the hypersimplex Ay , to
an n-gon. From both points of view, it is natural to define the subclass of regular
plabic graphs. Such regular plabic graphs can be explicitly constructed from a vector
h € R™. Regular trivalent plabic graphs correspond to (1) sections of regular fine zono-
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Fig. 1. The higher secondary polytope }?A,k forn =6, d = 3, k = 2, where A C R? is the set of vertices of a
generic convex hexagon. Thus X 4 x is a higher associahedron. The polytope X 4 has 32 vertices, and two

points in the interior of }EA,k (labeled by b and ¢), corresponding to non-regular fine zonotopal tilings, are
shown in red. The 34 points shown in this picture correspond to the 34 bipartite plabic graphs for Gr(3,6),
and the edges connecting them represent square moves of plabic graphs. See Section 2.3 and Example 7.9
for more details. (For interpretation of the colors in the figure(s), the reader is referred to the web version
of this article.)

topal tilings of a 3-dimensional cyclic zonotope, and (2) vertices of the fiber polytope
Zﬁb(Akwn N n-gon) associated to a projection of a hypersimplex Ay, ,, to a convex n-gon.

While regular trivalent plabic graphs correspond to vertices of the fiber polytope
Zﬁb(Ak’n 5 n-gon), regular bipartite plabic graphs also correspond to vertices of cer-
tain polytopes, which do not fit into the framework of fiber polytopes. In general, these
polytopes are deformations of fiber polytopes, obtained by contracting certain edges of
fiber polytopes. These polytopes, whose vertices correspond to regular bipartite plabic
graphs, are the higher secondary polytopes b Ak, where A is the configuration of vertices
of a convex n-gon. We call these polytopes higher associahedra, because, for k = 1, they
are the usual secondary polytopes of n-gons, which are exactly the celebrated associa-
hedra of Stasheff [44,40].

The study of soliton solutions of the Kadomtsev-Petviashvili (KP) equation also leads
to regular trivalent plabic graphs [23,24,20], which were called realizable plabic graphs
in [20], in the case that A = ((k1,k3),..., (kn,k2)). To understand a soliton solution
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14 b

Fig. 2. A contour plot coming from a point in Grs(2,4) undergoing a cluster mutation as time varies.

ua(z,y,t) of the KP equation coming from a point A in the positive Grassmannian,
one fixes the time ¢ and plots the points where u4(x,y,t) has a local maximum. This
gives rise to a tropical curve in the xy-plane; as soliton solutions model shallow water
waves, such as beach waves, this tropical curve shows the positions in the plane where
the corresponding wave has a peak. As was shown in [23,24], this tropical curve is a
reduced plabic graph, and hence the Pliicker coordinates naturally labeling the regions
of the curve form a cluster for the cluster structure on the Grassmannian; the authors
moreover speculated in [23] that when the time ¢ varies, one observes the face labels of
the soliton graph change by cluster transformations, see Fig. 2. We prove this conjecture
using the connection between soliton graphs and regular plabic graphs.
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We now discuss our constructions and results in more detail.

2. Main results
2.1. Background on secondary and fiber polytopes

Let A = (a4,...,a,) be a configuration of n points in R?~! and let Q C R9~!
be the convex hull of A. We assume that the points in A affinely span R%1. An A-
triangulation is a polyhedral subdivision of ) formed by simplices of the form Ag :=
conv{a; | i € B} for d-element subsets B of [n] := {1,...,n}. We view such simplices
Ap as labeled by subsets B, see Remark 3.7. To every A-triangulation 7, Gelfand—
Kapranov—Zelevinsky [14] associated a point vert“¥%(r) € R™ defined by
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vertKZ(7) .= Z Vol }(Ap) - ez, (2.1)
Ap€T
where Vol?™! is the usual Euclidean volume in R4™1, e}, es,..., e, is the standard basis

of R", and we set eg := > ,.pe; for B C [n]. The secondary polytope LGX?% of A is
defined as the convex hull of vectors vert®%%(7) where 7 ranges over all A-triangulations.
It turns out [14, Chapter 7, Theorem 1.7] that the vertices of ZiKZ correspond precisely
to reqular A-triangulations, defined in Section 6.

Billera and Sturmfels [4] introduced a more general notion of a fiber polytope Zi*(P =
Q) for any affine projection of polytopes w : P — @, which we review in Section 3.1. If
P:=A""! =conv(ey,...,e,) is the standard (n — 1)-dimensional simplex in R", Q :=
conv.A, and 7 is defined by 7(e;) = a; for all 4, then the fiber polytope ZfiP(A"~1 5 Q)
is a dilation of the secondary polytope Z%KZ, see [4, Theorem 2.5]. Therefore the vertices
of Zib(A"=1 5 Q) correspond to regular A-triangulations.

Another interesting case is when P = @3, = [0,1]" is the standard n-cube. Let us
denote by V := (v1,...,v,) the lift of A, i.e., the vector configuration in R? obtained
from A by setting v; := (a;,1) € R fori =1,...,n, and let Zy := """ [0,v;] C R¢ be
the zonotope associated to V. We have a projection &3,, = 2y, defined by 7(e;) = v; for
all i, and in this case, the fiber polytope £fiP(d2,, & Zy,) is called the fiber zonotope of
Zy. Its vertices correspond to reqular fine zonotopal tilings of the zonotope 2y, discussed
below. Restricting this projection map 7 to the hypersimplexr Ay, = &3, N {x € R™ |
x1+ - +x, = k}, and denoting its image by Qi := 7(Ay,) = 2y N{y € R? | y4 = k},
we obtain a fiber polytope ZfiP(A; , % Q) which has recently appeared in the theory
of total positivity for Grassmannians [13,33] and was studied further in [30].

2.2. Higher secondary polytopes

Given a configuration of n points A C R4=1 and its lift V C R¢ as above, we introduce
a family of polytopes EA,1,~-~,§A,n—d, called higher secondary polytopes, defined as
follows. For a d-element subset B of [n], let Vol*(II3) := | det(v;)iep| be the volume of
the parallelepiped I spanned by the vectors {v; | ¢ € B}. For a pair of disjoint subsets
A, B of [n] such that |B| = d and Vol?(Ig) > 0 (i.e., such that B is a basis of V), define
the shifted parallelepiped 114 g C Zy by

HA,B = Z Vg + Z[O,vb].

acA beB

Clearly Vold(HA7B) = Vol¥(Ilg) for any A. A fine zonotopal tiling of Zy is (roughly
speaking) a collection 7 of parallelepipeds I14 p that form a polyhedral subdivision of
Zy, see Definition 3.6, and we say that 7T is regular if it can be obtained as a projection
of the upper boundary of a (d 4+ 1)-dimensional zonotope onto 2y, see Definition 6.3.
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Definition 2.1. For a fine zonotopal tiling 7 of 2y, and k € Z, we introduce a vector

—

verty(7) = > Vol'(Ilp)-es € R™. (2.2)

Ta,g€T
|Al=Fk

It is clear that verty(7) = 0 if k ¢ [n — d]. For k € [n — d], the higher secondary polytope
2 A is defined by

E,A,k := conv {v/er\tk(’T) ’ T is a fine reqular zonotopal tiling of Zy} .

We expect that the word regular can be omitted from the above definition, see Con-
jecture 6.6. As we will see in Proposition 6.7, for each k € [n — d], the polytope EA,;€ has
dimension n — d. An example of a higher secondary polytope is shown in Fig. 1.

For simplicity, we formulate the following result modulo affine translation. A more
precise formulation will be given in (6.3). For polytopes P, P’ C R™, we write P — SR pr

if P = P’ 4« for some v € R™.

Theorem 2.2. Let A C R be a point configuration. Recall that @ = convA, V C R¢
is the lift of A, Zy is the zonotope of V, and Qr = Zy N{y € R? | yq = k} is the k-th
section of Zy,. Then we have the following.

shift

(i) ZGK2 shift ﬁffu, equivalently, ZiP(A"~1 5 Q)
(i) Z(E2, B Zv) 2 ot (zA L EA,n_d).
s shiff < <
(i) Z(Apn = Q) = m (pO,dZA,k +p1,dzA,k—1+"'+pd—1,dZA,k—d+1>
for all k € [n — 1], where p,q is the probability that a random permutation in

Sy has r descents.
(iv) Duality: o Ak — i

1 ~
MZA,I-

~T An—dks1 for all k € [n—d).

Here we assume that & Ak is a single point if k ¢ [n — d]. The volume forms Vol?
and Vol on R? are scaled so that Vol?([0, 1]%) = Vol*~ 1([0 11971 x {ya}) = 1 for any

ya € R. The numbers p;. 4 are given by the formula p, 4 = ~3-, where < > is the Fulerian
number, i.e., the number of permutations of 1,2, ..., d with exactly r descents.

Remark 2.3. Theorem 2.2(i) is not an obvious consequence of the definitions: it says that
LGKZ (defined by (2.1)) is the convex hull of points

Z Vol(Tlp) - (2.3)
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for all regular fine zonotopal tilings 7 of Zy. The formulae (2.1) and (2.3) are quite
different: we have ep in (2.1) as opposed to e4 in (2.3), and we have |A| =0 in (2.1) as
opposed to |[A| =1 in (2.3).

On the other hand, it is easy to see from the definitions that the last higher secondary

polytope o A.n—d satisfies ZiKZ st —ﬁi An—d- Thus Theorem 2.2(i) follows from
Theorem 2.2(iv).

Remark 2.4. The polytope T Ak in Fig. 1 is centrally symmetric, in agreement with

Theorem 2.2(iv): we have k =2 =mn —k —d + 1, thus iA,k Shits —EA,k-
Example 2.5. Let d = 1 and let A be the configuration of n points a1 = --- = a, =
0 € RO. Then V is the configuration of n vectors v; = -+ = v, = (1) € R!, and the

zonotope Zy is the interval [0,n] C R!. There are n! fine zonotopal tilings of Zy (see
Definition 3.6), in bijection with the permutations w € S,,. More specifically, for each
w € S, we have the following fine zonotopal tiling T, of Zy:

T = {p twr > Mo gwsts - - - Moo 1 bofwn} | -

Even though geometrically the tilings 7,, are the same for all w € S,,, we treat them as
different tilings because we take into account the labels of the tiles, see Remark 3.7. We
have verty, (Tw) = €fun,....w,} thus iA,k is the hypersimplex Ay, ,,. It is straightforward to
see from the definitions (cf. [4, Example 5.4] or [47, Example 9.8]) that n-ZP(&2,, & 2Z)
is the permutohedron Perm,, := conv{(wi,...,w,) | w € S,}. Thus Theorem 2.2(ii)
recovers the following well known decomposition [32, Section 16] (implicit in [17]) of the
permutohedron as a Minkowski sum of hypersimplices:

Perm,, = A1,n + AZ,n +-F An—l,n~

More generally, one can consider the case’ where V is a cyclic vector configuration
C(n,d), i.e., is given by v; = (uf‘l7 coou, ) fori€pand 0 < uy <ug < -+ < wu, €R.
Thus Example 2.5 corresponds to the case d = 1. If d = 2, then the zonotope Zy is a
2n-gon, and fine zonotopal tilings are exactly the rhombus tilings of the 2n-gon. They
correspond to commutation classes of reduced decompositions of the longest permutation
wo € Sy, [9]. It would be interesting to understand the structure of the associated higher
secondary polytopes in more detail.

Remark 2.6. For a cyclic vector configuration C(n,d), Ziegler [46] identified the fine
zonotopal tilings of the cyclic zonotope 2y, with elements of Manin-Shekhtman’s higher
Bruhat order B(n,d) [27], also studied by Voevodsky and Kapranov [45]. Note that

! Even more generally, we could choose a sequence of n vectors such that det(v;);ep > 0 for all B C [n]
of size k.
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Fig. 3. A plabic graph and its bipartite version.

B(n,1) coincides with the weak Bruhat order on permutations, corresponding to the
case d = 1 in Example 2.5.

We next proceed to the case d = 3.
2.3. Higher associahedra and plabic graphs

Our main motivating example is the case when b A,k 1s a higher associahedron, that is,
when d = 3 and A is the configuration of vertices of a convex n-gon in R2. For example,
one could take the points in A lying on a parabola, in which case the lift V of A is a cyclic
vector configuration C'(n,3). It turns out that the combinatorics of higher associahedra
is directly related to bipartite plabic graphs that were introduced in [31] in the study of
the totally nonnegative Grassmannian Grso(k,n).

A plabic graph is a planar graph embedded in a disk such that every boundary vertex
has degree 1 and every interior vertex is colored either black or white. A plabic graph
is called trivalent if every interior vertex has degree 3, and it is called bipartite if no
two interior vertices of the same color are connected by an edge. Note that taking a
trivalent plabic graph G and contracting all edges between interior vertices of the same
color produces a bipartite plabic graph denoted G (see Fig. 3).

There is a special class of (k,n)-plabic graphs (cf. Definition 7.1), that were used
in [31] to parametrize the top-dimensional cell of Gr>o(k,n). Each (k,n)-plabic graph
has n boundary vertices and k(n—k)+1 faces, and its face labels (cf. Definition 7.2) form
a cluster in the cluster algebra structure on the coordinate ring of the Grassmannian [38].

Given a plabic graph, one can apply certain moves to it, as shown in Fig. 4. Any two
trivalent (k,n)-plabic graphs can be connected using moves (M1)—(M3), see [31, Theo-
rem 13.4]. Since applying the moves (M1) and (M3) to G does not change its bipartite
version GPP, it follows that any two bipartite (k,n)-plabic graphs can be connected us-
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)= (E()Coa

Fig. 4. Moves on plabic graphs.

(M3)

ing only the square move (M2).? For example, there are 34 bipartite (3, 6)-plabic graphs
corresponding to the 34 points in Fig. 1 (including the two points labeled by b and ¢),
and square moves between them correspond to the edges in Fig. 1.

Building on the work of Oh—Postnikov—Speyer [29], it was shown in [13] that triva-
lent (k,n)-plabic graphs are exactly the planar duals of the horizontal sections of fine
zonotopal tilings of the zonotope Zy (where V C R? is the lift of A as above), see The-
orem 7.3. It was later observed in [33] that trivalent (k,n)-plabic graphs correspond to
m-induced subdivisions for the map 7 : Ay, = Q.

We say that a trivalent (k,n)-plabic graph G is A-regular if it is the planar dual
of a horizontal section of some regular fine zonotopal tiling of 2y, or equivalently, if
it corresponds to a regular w-induced subdivision of Q. We say that a bipartite (k, n)-
plabic graph G’ is A-regular if it equals to GPP for some A-regular trivalent (k, n)-plabic
graph G. For example, if A is the set of vertices of a generic hexagon, then there are 32
A-regular bipartite (3, 6)-plabic graphs, corresponding to the 32 vertices of the polytope
shown in Fig. 1. See Example 7.9 for more details.

Theorem 2.7. Let d = 3 and A be the configuration of vertices of a convex n-gon. Then:

(i) For each k € [n—3], the vertices of iA,k correspond to A-regular bipartite (k+1,n)-
plabic graphs, and the square moves connecting them correspond to the edges of iAvk.

(ii) For each k € [n — 1], the wvertices of E,A,k + EA,k,l + EA,k,g (equivalently, of
L8 Ak, & Q) correspond to A-regular trivalent (k,n)-plabic graphs, and the
moves (M1)-(M3) connecting them correspond to the edges of zA,k + EA,k—l +
Lak—2-

Example 2.8. The number of bipartite (2,n)-plabic graphs equals to the number of

trivalent (1,n)-plabic graphs, and is given by the Catalan number C,,_s, where C,,

m;ﬂ( ) In both cases, all such plabic graphs are regular, and the corresponding poly—

tope is b 4,1 which by Theorem 2.2(i) is a realization of the associahedron.

Example 2.9. Since T A,k has dimension n — d by Proposition 6.7, it follows from Theo-
rem 2.7(i) that every A-regular bipartite (k, n)-plabic graph admits at least n—d = n—3

2 We make the convention that applying a square move (M2) to a bipartite graph GP'P means first
uncontracting some vertices of GPP 5o that the vertices of the square become trivalent, then performing
the square move, and then taking the bipartite version of the resulting graph.
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Fig. 5. A trivalent, bipartite (4, 8)-plabic graph which admits only 4 square moves, superimposed onto its
dual plabic tiling. This plabic graph is not A-regular for any A, see Example 2.9.

square moves. Fig. 5 contains a (both trivalent and bipartite) (4,8)-plabic graph that
admits only 4 square moves, and therefore is not A-regular for any 4. This plabic graph
contains as a subgraph another plabic graph known in physics as the “four-mass box”,
see [2, Section 11.1].

An example of a trivalent (9, 18)-plabic graph that is not A-regular for any A was
constructed in [20, Section 6].

Let us say that the diameter of a polytope is the maximal graph distance between
its vertices in its 1-skeleton. It would be interesting to find the diameter of a higher
associahedron X Ak, which equals the maximal square move distance between two A-
regular plabic graphs. Finding the diameter of the usual associahedron T A1 is a well-
studied problem: answering a question of Sleator—Tarjan—Thurston [43], Pournin [34]
showed that it equals 2n — 10 for all n > 12. The following conjecture is due to Miriam
Farber.

Conjecture 2.10 (/10]). Let n = 2k. Then the diameter of the higher associahedron
EA,k_l equals %k(k — 1)2. More generally, for any bipartite (k,2k)-plabic graph G, the
minimal number of square moves needed to connect G with G°P equals %k(k —1)2, where
G°P is obtained from G by a 180° rotation followed by changing the colors of all vertices.
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An example for £ = 3 is shown in Fig. 1. The diameter of this polytope is equal to
%k(k —1)% = 6, and moreover the graph distance between any vertex and its antipodal
vertex is also equal to 6.

It was shown in [6, Section 6] that for certain bipartite (k, 2k)-plabic graphs G (coming
from double wiring diagrams of [12]), the square move distance between G and G°P is
at least %kz(k —1)2, giving a lower bound on the diameter of iA,k—l in Conjecture 2.10.
See [7] for related results.

2.4. Vertices, edges, and deformations

For simplicity, we assume here that A is a generic point configuration in R4~!. The
extension of the results in this subsection to arbitrary point configurations will be given
in Section 6.3.

It is well known (cf. Lemma 6.5) that any two regular fine zonotopal tilings of Zy, can
be related to each other by a sequence of flips. A flip is an elementary transformation of a
zonotopal tiling: if V' consists of d+1 vectors that span R? then Zy» admits precisely two
fine zonotopal tilings. For general vector configurations V, applying a flip F = (T — T7)
to a fine zonotopal tiling 7 of Zy, amounts to finding a shifted copy of a fine zonotopal
tiling of Zy for some V' C V of size d + 1, and replacing it with the other fine zonotopal
tiling of 2y, which produces another fine zonotopal tiling 7’ of 2y, see Fig. 8 (left).
Flips can occur at different levels: if the above copy of Zy is shifted by y € R%, then
the last coordinate y4 of y belongs to {0,1,...,n—d—1}, and we define the level of the
flip F' to be level(F') := y4 + 1. See Definition 5.8 and Example 5.10.

Since flips of regular fine zonotopal tilings correspond to the edges of the fiber zonotope
£fib(@m,, 5 Zy), we define the level of an edge of ZfP(60,, 5 Z),) to be the level of the
corresponding flip.

Let us say that a polytope P is a parallel deformation of another polytope P’ if the
normal fan of P is a coarsening of the normal fan of P’, see e.g. [35, Theorem 15.3] and
[1, Section 2.2]. Roughly speaking, P is a parallel deformation of P’ if P is obtained from
P’ by moving its faces while preserving their direction. During this process, every edge
of P’ stays parallel to itself but gets rescaled by some nonnegative real number.

We say that two fine zonotopal tilings 7 and 7' of 2y, are k-equivalent if they can be
connected by flips F' such that level(F') # k. Similarly, we say that two flips F = (T; —
T2) and F' = (T{ — T3) of level k are k-equivalent if T; is k-equivalent to 77 and 73 is
k-equivalent to T5.

Proposition 2.11. Let A be a generic configuration of n points in R%~1 and let k € [n—d).
(i) The vertices of the higher secondary polytope iA,k are in bijection with k-equivalence

classes of regular fine zonotopal tilings of Zy,.
(ii) The edges of Z a1 correspond to k-equivalence classes of flips of level k.
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(iii) For any nonnegative real numbers x1,...,Tn_q, the Minkowski sum

LIS S
Vold(ZV)( 1241 A& An—d

is a parallel deformation of the fiber zonotope Zi*(@D,, = Zy,), where edges of level
k are rescaled by xy for allk=1,...,n—d.

2.5. Soliton graphs

Finally we give applications of our previous results to the soliton graphs [23,24,20] as-
sociated to the Kadomtsev-Petviashvili (KP) equation. To understand a soliton solution
ua(z,y,t) of the KP equation coming from a point A in the positive Grassmannian, one
fixes the time ¢ and plots the points where u4(x,y,t) has a local maximum. This gives
rise to a tropical curve in the xy-plane. By [23,24], this tropical curve is a reduced plabic
graph, and as discussed in [20, Section 2.3], it comes from a regular subdivision of a
three-dimensional cyclic zonotope; we give a precise statement in Corollary 8.6. We then
apply some of our previous results to classify the soliton graphs coming from the positive
Grassmannian when the time parameter ¢ tends to +oo, and to show that generically,
when the higher time parameters evolve, the face labels of soliton graphs change via the
square moves (cluster transformations) on plabic graphs.

3. Fiber polytopes and zonotopal tilings

We give further background on fiber polytopes of [4] and discuss several specializations
of their construction. More details can be found in [4], [14, Chapter 7], and [47, Lecture 9].

3.1. Fiber polytopes

Let P C R"™ be a polytope, and let 7 : P — @ be a linear projection of polytopes. We
denote by {p; }ic[m] the vertex set of P (for some m > 1). For i € [m], let q, := 7(p;), and
let A := {q;}icm] be the associated point configuration. The fiber polytope ibp 5 Q)
is defined as the Minkowski integral

T 1 1
fib(p 5 Q)= Vol Q) e/Q(7T (z)N P)dx.

Here Vol denotes the dim(Q)-dimensional volume form on the affine span of @, and the
Minkowski integral can be understood in several ways, for example, as the set of points
fweQ ~v(x) de € R™, where 7 : Q — P runs over all sections of 7 [4,5].

However, instead of working with the Minkowski integral, we will use the following
description of Zfib(P 5 @) as a convex hull of points. Recall that an A-triangulation
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7 ={Apg} is a triangulation of @ into simplices Ag := conv{g; | i € B}, where B C [m]
is a (dim(Q) + 1)-element subset.

Proposition 3.1 ([/, Corollary 2.6]). The fiber polytope L (P 5 Q) equals the convex
hull

(P 5 Q) = conv{vert®®(7) | 7 is an A-triangulation}, where

1 n
vertfiP(7) := (@m(Q) + 1)Vol(Q) Z (VOI(AB) . sz> e R™ (3.1)

Ap€eT i€B

Definition 3.2 (/4,7, Definition 9.1]). Let 7 : P — @ be a projection of polytopes as
above. A m-induced subdivision of @) is a collection T of faces of P such that

o the images {n(F) | F € T} form a polyhedral subdivision® of Q;
o for any F, F’ € T such that 7(F) C 7(F’), we have F = F' N7~ (7 (F)).

A 7-induced subdivision 7T is called fine if all of its faces have dimension at most dim(Q).

Definition 3.3. For a polytope P C R™ and a vector h € R™, let (P)" denote the face
of P that maximizes the scalar product with h. Every vector h € R" gives rise to a
m-induced subdivision 7j of @ obtained as follows: for each point g € @, consider the
preimage P N7~ (q) of g under 7, and let Py p, be the unique minimal by inclusion face
of P that contains (P N 7~1(q))"?. The subdivision Ty, consists of the faces Py, for all
q € Q. A w-induced subdivision T of @ is called regular if it equals T, for some h € R™.

Our notion of a regular w-induced subdivision coincides with the notion of a w-coherent
subdivision from [4, Section 1] and [47, Definition 9.2].

It turns out (see the paragraph before [4, Corollary 2.7]) that if 7 is a fine m-induced
subdivision then the vector vertiP(r) is the same for any triangulation 7 of 7. We denote
this vector by vertfiP(T).

Corollary 3.4 ([, Corollary 2.7]). The fiber polytope Zi°(P 5 Q) equals the convex hull
(P 5 Q) = conv{vert™™(T) | T is a fine w-induced subdivision of Q}. (3.2)

The vertices of Zi°(P — Q) are the vectors vert™(T), where T ranges over all regular
fine w-induced subdivisions of @, and in particular,

(P 5 Q) = conv{vert™ (T) | T is a regular fine w-induced subdivision of Q}.
(3.3)

3 Recall that a polyhedral subdivision of a polytope Q is a polytopal complex C (any two elements of C
intersect in a common face) with underlying set Q.
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We now specialize this construction to the case where P is either a cube or a (hy-
per)simplex. In these cases, regular fine m-induced subdivisions recover well-studied
objects such as regular triangulations and regular fine zonotopal tilings. We discuss
them briefly here, and in more detail in Section 6. In what follows, we will repeatedly
use the following notation.

Notation 3.5. Let A = (a1, ...,a,) be a point configuration in R9~! which affinely spans
R4=1. Let V := (vy,...,v,) be the lift of A, thus v; := (a;,1) € R fori =1,...,n.
Then the endpoints of the vectors in V belong to Hy, where the hyperplane Hy, is defined
by Hj, := {y € R? | y; = k} in R%. The zonotope Zy, is defined as the Minkowski sum of
line segments:

n

ZV = Z[O,’Uz] - Rd.

i=1

We also let Qp := Zy N Hy, C R Let 7 be the projection 7 : R® — R? defined by
m(e;) = v; for all i, where ey, ..., e, is the standard basis in R".

3.2. Fiber polytopes for projections of a cube: fiber zonotopes

Let P =dd, :=[0,1]" = > ,[0,e;] € R™ be the standard n-dimensional cube. We
have a linear projection 7 : 63,, — 2y, given by 7(e;) = v;, for i € [n]. The fiber zonotope
of Zy is the fiber polytope (&3, 5 Zy).

Recall that for A C [n], we set eq := ), €;. Faces 04 p of the n-cube &I, are
labeled by pairs (A4, B) of disjoint subsets A and B of [n]. They are given by

Oap = eA—|—Z[O,eb] ={(z1,...,zp) €E B, |z, =1for a € A,
beB

and z. = 0 for c € [n] \ (AU B)}.

Definition 3.6. A fine zonotopal tiling T of Zy is a collection of d-dimensional faces 04 p
of the n-cube such that

(1) The images I14 g := w(0a,p), for all O g € T, are d-dimensional parallelepipeds
that form a polyhedral subdivision of the zonotope 2y .
(2) For any two faces U4, p,, Oa,.B, € T, we have

7"-(|:|A1,B1 N DA%BQ) = HA17B1 N HA27BQ'
From our definition, it is clear that each fine zonotopal tiling is a fine m-induced

subdivision. We say that a fine zonotopal tiling is regular if the corresponding fine -
induced subdivision is regular. See Section 6.1 for several alternative definitions.
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Remark 3.7. We refer to the d-parallelepipeds 1145 = 7(0a,B) as (labeled) tiles. It
may happen that for two different pairs (A;, B1) and (A2, B2), the two tiles II4, p, and
14, B, coincide as subsets of RY. However, we regard them as different labeled tiles,
because they are labeled by different pairs. We will identify a fine zonotopal tiling T
with the collection of such labeled tiles 114 5.

The fiber zonotope of Zy, can be described explicitly as follows.

Proposition 3.8. Let V C R? be as in Notation 3.5. The fiber zonotope (63, = Zy)
equals the convexr hull

fib@m, 5 z2y) = conv{vertﬁb(T) | T is a fine zonotopal tiling of Zv}, and (3.4)

1
vertiP(T) = Vol 2o Zv Z Vol(Ig) - <6A+§BB>. (3.5)

Proof. We use (3.1), and let 7 be a triangulation of a fixed tile II4 g of 7. More specifi-
cally, we use Stanley’s triangulation [41] of GF4 into d! equal-volume simplices V,, labeled
by permutations w € Sy:

Vo i= {(ylwnvyd) S [07 1}d | 0< Y <0 < Yuy < 1} (36)

d
This gives rise to a triangulation 7 of Il 4 g into d! simplices, each of volume W' By
symmetry, we know that the combined contribution of these simplices to (3.1) has the
form z-e4+y-ep for some x,y € R. Each simplex V,, contributes #(&B))efx +u(w) for
some u(w) € R™. Let w € Sy be the permutation given by w; = wg41—; for all i € [d]. It

. Vol (11 Vol (11 Vol (1T
is easy to see that u(w) + u(w) = d,c\)/T((Zi))eB, thus z = \?ol((zf)) and y = 2301525)). O

3.8. Fiber polytopes for projections of a simplex: secondary polytopes

Let A and V be as in Notation 3.5. Let P = A"~! = conv(ey, ..., e,) be the standard
(n — 1)-dimensional simplex in R™, and 7 : P — @ := conv.A the projection defined by
m(e;) = a; for all i.

Definition 3.9 (/1/, Definition 1.6]). The secondary polytope LGK% is defined as the con-
vex hull

rGKZ .~ conv{vertGKZ( ) | 7 is an A-triangulation}, where (3.7
vert % (7) = Y Vol' M (Ap) - (3.8)
ApeT

The relationship between the polytopes ZiKZ and ZfP(A""1 5 Q) is given in [4,
Theorem 2.5]:



16 P. Galashin et al. / Advances in Mathematics 407 (2022) 108549

x 1
ATt 5 Q) = TN O] vold—l(Q)ZS‘KZ' (3.9)

Remark 3.10. Every fine zonotopal tiling 7 gives rise to an A-triangulation 7 := {Ap |
Iy p € T}, in which case we denote vert®%(T) := vert K% (7).

3.4. Fiber polytopes for projections of a hypersimplex: hypersecondary polytopes

Recall the definitions of V, Zy,, w, Hy, and @ from Notation 3.5. Also recall that
Apn=8,N{x €R"| 21+ +z, = k}. Note that if k = 1, then A;,, = A""L.
We discuss the fiber polytope ZfP(Ay,, % Q). Such polytopes have been recently
studied in [30] under the name hypersecondary polytopes (not to be confused with higher
secondary polytopes EA,;C introduced in this paper).

For integers r and d, the Eulerian number <f> is defined as the number of permutations
in Sy with r descents, where a descent of a permutation w is a position 7 such that
w; > w;+1 (thus <‘Ti> is zero if r ¢ [0,d — 1]). For example, we have <g> =1, ) =4,

=1

Lemma 3.11. Let T be a fine zonotopal tiling of Zy C Re. Then for all r € [d — 1] and
s €T, we have

(1)
(d—1)!

Proof. We have II4 p = w(@D 4,5) for A, B disjoint subsets and | B| = d. The intersection
4,8 N H\ 44, is the image of a hypersimplex A, 4 € 04 p = &4 under 7. By [41], Ay 4

Vol (a5 N Hjapyr) = Vol?(IIp). (3.10)

can be triangulated into <fj> equal-volume simplices, and the image of each of these

Vol?(I1g)
[CES I

simplices under 7 has volume O
Proposition 3.12. The fiber polytope Z°(Ay ,, = Q) equals the convex hull

T (AL L D Q) = conv{vertiP(T) | T is a fine zonotopal tiling of 2y}, where

(3.11)
vertiP(T) := Z Z Vol (I1g) d-1 (d-es+r-ep)
k .d'Voldek ol*(Ilp) i Atr-ep).
r=1114,BET
|A|= ke'r‘
(3.12)

Proof. Let 7 be a fine zonotopal tiling of Zy. Then TNHy, := {Illa g NHy |4 p €T}
is a fine m-induced subdivision for the projection Ay 5 Qp. A tile II A,B € T has a
full-dimensional intersection with Hj whenever |A| 4+ r = k for some r € [d — 1]. In this
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case, II4 g N Hy, can be triangulated into <fj> simplices as in the proof of Lemma 3.11.
Proceeding as in the proof of Proposition 3.8, we find that the combined contribution

d
of these simplices to (3.1) is precisely #%

that Zﬁb(A;m % Q) contains the right hand side of (3.11).
On the other hand, by (3.3), it is enough to consider only regular fine m-induced

(d-ea+r-ep). Thus we have shown

subdivisions, and every such subdivision clearly arises as 7 N Hj, for some regular fine
zonotopal tiling 7. This shows that the right hand side of (3.11) contains Zf®(A;,, &

Qk). O
Example 3.13. For d = 2, (3.12) becomes

1

Vertzb (T) = \/'Old_—l(cgk)

Vold(Ilp) - (eA + %eg) . (3.13)

Ma, €T
|A|=k—1

Example 3.14. Substituting £ = 1 into (3.12) and comparing the result with (3.8), we
find

vert K2 (T) = d - Vol H(Q,) - vertiP(T) and £GK% = d - Vol (Q,) - L8P (A1, & Q1),
(3.14)

in agreement with (3.9).
4. Vertices of fiber polytopes and vertices of higher secondary polytopes

Recall the definitions of V C R%, Zy,, Hy,, Q, and 7 from Notation 3.5. Also recall that
Agn =8, N{xeR" | z1+ - +z, = k}. In this section, we prove Theorem 4.6, which
gives a duality identity, and expresses the vertices of fiber polytopes ZfP(53,, N Zy),
LGRZ and £P(Ay, 5 Q) as linear combinations of the vectors verty,(7) defined
n (2.2). This will constitute one of the main steps in the proof of Theorem 2.2, which
we give in Section 6.2.

We start by giving a refinement of the simple fact that for any fine zonotopal tiling
T, the sum >y o Vol4(Il3) equals Vol%(Zy), and therefore does not depend on 7.
For k € [n — 1], we let

Br == Vol (Qr), (4.1)
and we set O := 0 for k ¢ [n — 1].
Proposition 4.1. Fiz a vector configuration V C R? as in Notation 3.5. For each k €

[0,n — d], there exists a number v(V) = v, (V) € Rsq such that for any fine zonotopal
tiling T, we have
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WV =nV)= > Vol'(llp). (4.2)
IIa BET
|Al=k

Proof. Let us temporarily denote

Z VOld 11 B

for all k € Z. Then S, = Vol (Qx) = Vol* " (ZyNHy) = Yy, , o7 Vol (ILa N Hy,).

d—1
Applying (3.10), we find that 8, = ZT L Ve=r (T, V) <d 1;, Since the coefficient of Fx_1
in the right hand side is equal to 7= d_l)l, the numbers 7, (7, V) can be expressed in terms

of the 3,’s by induction for k = 0,1, ..., n—d. Explicitly, let A4_ 1( )= Zﬁ_g <d;1>x be
the Eulerian polynomial, and let cg, c1, - - - € Z be defined by v (a:) = cotcrz+cax’+. .

(thus ¢y = 1). Then we have (T, V) = coBks1 + 18k + c2fBk—1 + -+ + cgr1Po for all
k € [0,n — d]. It is clear that 4;(7,V) does not depend on 7, and so we can refer to it

as v (V). O

Example 4.2. For d = 2, 3,4, we have respectively

V) = Brt1, (4.3)
Ve(V) = Brg1 — B+ + (—1)F 1 5g, (4.4)
VEOV) = B — 4Bk + 15Bk_1 — 56B5—2 + ..., (4.5)

where the coefficients of (4.5) form the sequence A125905 in the OEIS [28].

For i € [n], let V—i denote the vector configuration in R? obtained from V by omitting
v;. For each k € [0, n—d], we introduce a vector §(k, V) € R™ whose ith coordinate equals

8i(k, V) == (V) —y(V —1i) forallie[n]. (4.6)

For k ¢ [0,n — d], we set 7,(V) := 0 € R and d(k,V) := 0 € R™. Recall that the
vectors of V are assumed to linearly span R?. If the vectors of V — i all belong to a
lower-dimensional subspace of R?, we say that i is a coloop and set v(V —i) := 0 for all
k.

The following result will be useful in the proof of Theorem 4.6.

Proposition 4.3. For all k € [0,n — d], we have

Z VOl HB 6A+6B Z VOl HB) eA+6(k; V) (4.7)

Ia,BET ITa,BET
|Al=k |Al=k+1
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> Vol'(Iip)

HapeT (Y = 1)
|Al=k41, i€A
> \ ‘
Ha,BET .
T |A|=k, /;u/: T — 1
Fig. 6. Deleting v; from V and its effect on a tiling 7, see (4.8).
Proof. Fix ¢ € [n]. We first show that
S Vol'lip)+ > Vol(llp) = (VY —i). (4.8)
Ia,BeT Ma,BeT
|A|=k}1, i€A |A|=k, i¢ AUB

Assume that i is a coloop, which means that the vectors in V — i do not linearly span
R?, in which case the right hand side of (4.8) is zero. On the other hand, for each tile
Il4.p € T, we must have ¢ € B, which shows that the left hand side of (4.8) is also zero.
Assume now that ¢ is not a coloop. Then each fine zonotopal tiling 7 of Zy, gives rise to
a fine zonotopal tiling 7 — i of Zy_; defined by

T —i:= {HA\{i},B | ITaB € T, i€ A}H{H‘&B | ITaB € T, ’L% Al_lB}

Using this observation, we see that (4.8) follows from the definition (4.2) of v (V — 4).
For the example in Fig. 6, for k = 1, the left hand side of (4.8) is equal to 3 4+ 2 as shown
in Fig. 6 (middle) while the right hand side of (4.8) is equal to 5 as shown in Fig. 6
(right).

To prove (4.7), it is enough to verify what it says for the ith coordinate, which is:

> Vol'(ip) = > Vol(llp) + 6i(k, V). (4.9)
T4, BET Ia,BeT
|A|=k, i€AUB |A|=k+1, i€A

Adding Z Vol(Ilp) to both sides of (4.9) and applying (4.8) gives (V) =

Ma, €T
|Al=k, i¢ AUB

Y(V — i) + 9;(k, V), which is precisely the definition (4.6) of 6(k,V). O

Corollary 4.4. Recall the definition of V/e?sk(T) from (2.2). Let K C Z and choose some
numbers xy,yr € R for each k € K. Then
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E VOld(HB)‘(fEkeA-FykeB): E ((xk_yk)V/eRk(T)'i_yk(V/eRkJrl(T)+6(k77V)))'
Ma,BeT keEK
k:=|AleK

(4.10)

Proof. This follows by replacing zpe 4 + yrep on the left hand side of (4.10) with (x5 —
yr)ea + yr(ea + ep), and applying Proposition 4.3. O

Definition 4.5. Given two disjoint sets A, B C [n], let C := [n] \ (AU B), and denote
114 B,c := 14, p. For each zonotopal tiling 7 of Zy there exists “the opposite” zonotopal
tiling 7°P of Zy given by T°P := {llc g4 | lagc € T}, see Fig. 7.

Theorem 4.6. Recall the definitions of vert®(T), verti®(T), and vert“®%(T) from (3.5),
(3.12), and Remark 3.10. We have

n—d
verti®(T) = Vold (Z verty, (T) + % kzos ) ; (4.11)
o 1 d—1 <d> -1, d 1
vert, (T) = m (;0 I T)+ Z -, V)) ;o (4.12)
GKZ 1 —
vertAT) = oy, (vertl(T)+6(O,V)); (4.13)
verty (T) + verty —a—k11(T°) = v-1(V) - €y — 8(k — 1, V). (4.14)
Proof. Applying Corollary 4.4 to (3.5) with K = [0,n — d], z; = m, and y, =

W(Z) for all k € K, we obtain (4.11).
Similarly, applying Corollary 4.4 to (3.12) with K = [k —d + 1,k — 1], 24, =

ﬂand —#forallre[d—l] e get
dIVold_l(Qk)7 Ye—r = dVold—1 (Qr) , We ge
vertii® ()
d—1 d—1 d—1
1 (d—7)-({2)) — r () =
= T vert—p (T) + ———% (verty—pp1 (T) + 6(k — 1,V
VOld_l(Qk) —~ ( d k ( ) d! ( k +1( ) ( ))

1 (A=) (Y 4 a1y i
:VOIdll(Qk);()(( ) (o) 4D >Vertk T(T)+Tr!l>6(k—r,l})>.

Applying the well known recurrence (d—7) - (“_1) + (r+1)-(*7') = () for Eulerian
numbers yields (4.12).
For k = 1, combining (4.12) with (3.14) yields (4.13).
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v T TP

Fig. 7. A vector configuration V, a fine zonotopal tiling 7 of Zy, and its “opposite” tiling T7°P for d = 2 and
n = 4. We label each vertex v;, + --- 4+ v;, by i1 ---ip.

Finally, to show (4.14), we use |A| + |C| = n — d and (2.2) to write

v/er\tn,d,kH(TOp) = Z VOld(HB) e — Z Vold(HB) . (E[H] — €A — eB),
Ilc,B,AETP Ila,BET
|C|l=n—d—k+1 |[A|l=k—1

and by (4.2) and (4.7), this is equal to

Y1 (V) ey — > Vol'(llp) - (ea + ep) = yu-1(V) - €y — 8(k — 1, V) — verty (7).
Ma,BeET
|A|=k—1

Example 4.7. For d = 2, (4.12) becomes

1 —

vertiP(T) = QVT(Q;C) (vertk(T) + verty_1 (T) + &(k — l,V)) . (4.15)

Example 4.8. Consider the case n = 4, d = 2, and let V be the vector configuration given
in Fig. 7 (left), so the vectors vy, vs,vs,v4 of V are the column vectors of the matrix

(? i (1) _11>.IfB:{i,j}forl§i<j§4thenVold(HB):j—i.Wehave

Vol“(2y) =10, Vol* ' (Q1) =3, Vol" (@) =4, Vol' (Q3) =3,

where Vol?(2y) is the area of 2y and Vol*™!(Qy) is the length of the horizontal section
of Zy by the line y» = k. By (4.3), (V) is equal to Br11 = Vol? *(Qx1). Using this
to compute (V) (and also vy (V —1) for ¢ = 1,2,3,4), we get

(V) =3, (V) =4, Y12(V) = 3;
500,V) = (1,0,0,1),  8(LV)=(2,1,1,2),  &2,V)=(3333).

Let 7 and 7°P be as in Fig. 7. The corresponding vertices of the higher secondary
polytopes are given by
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verty(7) = (0,3,0,1), verto(7) = (0,3,3,0),
verty (T°) = (2,0,0,2), verta(T°P) = (2,0,3,1).

We would like to verify the formulas from Theorem 4.6. First, (4.14) clearly holds: for
k=1 and k = 2, we have

—

verty (T) + verto(T°) = (2,3,3,2),
YoW)ep, —6(0,V) =3-(1,1,1,1) — (1,0,0,1) = (2,3,3,2),

verty (T) + verty (T°P) = (2,3,3,2)
S(1,1,1,1) — (2,1,1,2) = (2,3,3,2).

) )

71(V)e[n] — (5(1, V) =4

Using (3.5) and (3.13), we find

1 e e e e
fib _ {2,4} {1,2} ( {2,3}) ( €45, 4}> ( {1,3})
vert (7 ) —10 (2—2 + —2 + leqg + —2 + |e2 + + 2 + —2

€11
+3 (e + 2)) 10(3 8,5,4);

€(24)  €{12} 1
2 2 ) 51302

1
3
i((e + S8 1 (eat {34})+2(e2+%)):%(2,7,4,3);
1
3

. 1
verti?(T) == -3 (6{2 3) + {;4}> = 5(1,2,2, 1).

vertiP(T) = (2

verti?(T) =

We indeed see that (4.11) and (4.12) (which specializes to (4.15) for d = 2) hold as well:

vertf® (T) = 1io(g,g, 5.4)= % ( orty (T) + vorta(T) + % (6(0,V) + 8(1,V) + 8(2, v>)> :
vert™(T) = £(1,3,0,2) = —— (V’\m(T) +0+8(0 V)) :
1 6 y Iy Yy 23 ) Ll
verti(T) = (2 7,4,3)= i (Verta(T) + verta (T) +6(1,V)) :
1 —
vertfb(T) = g(3,6, 6.3)= 7 (0 + verta(T) + 8(2, V)) .

5. Flips of zonotopal tilings

Zonotopal tilings form a poset under refinement whose minimal elements are fine
zonotopal tilings. Two fine zonotopal tilings differ by a flip (cf. Definition 5.6) if there
exists a zonotopal tiling that covers both of them in this poset. In this section we describe
(see Corollaries 5.9 and 5.16) how the vectors verty (7)) and verty(7”) differ when the fine
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zonotopal tilings 7 and 77 differ by a flip. This will be useful in Section 6 for describing
the 1-skeleton of a higher secondary polytope.

5.1. Oriented matroids and signed circuits

Each vector configuration V = (vy,...,v,) spanning R¢ defines a rank d oriented
matroid M = My,. We refer to [3] for the definition of an oriented matroid, but note
that it is completely determined by its set C(M) of circuits introduced below. We denote
by B(M) the collection of bases of V, that is, d-element subsets B C [n] such that the
vectors {v;}icp form a linear basis of R%. We say that the vector configuration V' is
generic if B(M) = ([Z}) :={B C [n] | |B| = d}, that is, if every d vectors of V form a
basis of R?. An independent set is a subset I C [n] such that there is a basis B € B(M)
satisfying I C B.

Let us mention a well known property of fine zonotopal tilings, see Fig. 7 for an
example.

Proposition 5.1 (/39, (56)]). Let T be a fine zonotopal tiling of Zy. Then the map II4 p —
B is a bijection between T and B(M). In other words, for each basis B € B(M) of V,
there exists a unique set A C ([n] \ B) such that 114 g belongs to T.

Definition 5.2. A signed set is a pair X = (X+, X ™) of disjoint subsets of [n]. Its support
is X := Xt U X", and we set X := [n]\ X, thus [n] = Xt U XX~ For each j € [n]
we write
+1, ifje Xt
X; =4 -1, ifjeXx; (5.1)
0, if j € X°.

For j € X, we denote X := X\ {j}. We also let —X := (X, X*) denote the opposite
signed set.

Definition 5.3. A circuit of V is a signed set C' = (CT,C~) such that C7) is an indepen-
dent set for each j € C, but there exists a vector a(C) € R™ satisfying
a;(C)>0for j€CT, «a;(C)<0forjecC™, a;(C)=0forjeC°

and Z a;(C)v; =0.

jec

Such a vector a(C) is unique up to multiplication by a positive real number. We denote
by C(M) the collection of all circuits of V.

Throughout, for A C [n] and j € [n], we abbreviate AUj := AU{j} and A\j := A\{j}.



24 P. Galashin et al. / Advances in Mathematics 407 (2022) 108549

5.2. Circuit orientations

A convenient way to work with flips of fine zonotopal tilings is to use the language of
circuit orientations.

Definition 5.4. A circuit orientation is a map o : C(M) — {+1,0,—1} satisfying
o(=C) = —o(C) for all C € C(M). We say that o is generic if o(C) € {+1,—1}
for all C € C(M).

We describe a way to associate a generic circuit orientation (called colocalization in [15]
because they are dual to the localizations of [3, Definition 7.1.5]) to each fine zonotopal
tiling 7 of Zy. Let T be such a tiling. Define its set of vertex labels (cf. Fig. 7) by*

Vert(7):={I C[n]| ACIC AUB for some II4 g € T}. (5.2)

Given a set S C [n] and a circuit C € C(M), we say that S orients C positively if
CT C S and C~ NS = (. Similarly, we say that S orients C' negatively if C— C S
and Ct NS = (). We say that a collection D C 2" orients C positively if some set in
D orients C positively but no set in D orients C negatively. Similarly, we say that a
collection D C 2" orients C' negatively if some set in D orients C' negatively but no set
in D orients C' positively.

Proposition 5.5 (/15, Theorem 2.7 and Corollary 7.22]). Let T be a fine zonotopal tiling
of Zy and let C € C(M). Then the collection Vert(T) either orients C positively or
orients C' negatively (but not both).

Note that Proposition 5.5 can alternatively be deduced by combining Proposi-
tion 2.2.11, Theorem 2.2.13, and Proposition 7.1.4 of [3]. We define a generic circuit
orientation o7 : C(M) — {+1,—1} by setting

0’7’(0) =

1, if Vert ients C' positively,
{+ if Vert(T) orients C' positively for all C € C(M). (5.3)

—1, if Vert(T) orients C negatively,

Definition 5.6. Consider two fine zonotopal tilings 7, 7" of Zy, and let 0 := o7, 0’ := o7
be the corresponding generic circuit orientations. We say that 7 and 77 differ by a flip
if there exists a circuit C' € C(M) such that o(C) = +1, ¢/(C) = =1 and o(X) = ¢/(X)
for all X € C(M) such that X # +C. In this case, we denote this flip by F := (T — T)
and say that F is a flip along C.

4 Qiven a fine zonotopal tiling 7, the collection Vert(7) defined in (5.2) coincides with the collection
defined in [15, Eq. (2.1)]. The two definitions look slightly different because in [15], a tiling is a collection
of faces of all different dimensions, whereas here we identify a tiling with its collection of top-dimensional
faces.
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Our next goal is to describe the effect of a flip F = (T — T”) on the tiles of 7 and
on verty (7).

5.8. Flips for generic vector configurations

Recall that a vector configuration V is called generic if B(M) = ([Z]). Before pro-
ceeding to the general case, we describe flips of zonotopal tilings and their effect on
the vertices of higher secondary polytopes in the case when V is generic. Thus in this
subsection we restrict our attention to generic vector configurations. We postpone the
proofs of all results until Section 5.4.

Recall that the vector a(C') from Definition 5.3 is defined up to a positive real con-
stant. We start by fixing a choice for this constant: for each C € C(M), define a(C) € R"™
by

o, (C):=Cj ~V01d(HQ<j>) for all j € [n], (5.4)

where C; € {+1,0,—1} and CY € B(M) are given in Definition 5.2. As we will see in
Lemma 5.11, a(C') satisfies the assumptions of Definition 5.3.

Proposition 5.7. Let F = (T — T') be a flip along C € C(M). Then there exists a set
A:= A(F) C [n]\ C such that

T\ TI = {HAUJ‘7Q(J') }j€C+ U {HA7Q<j) }jEC*
and T'\T = {HAQ(]‘) }j€C+ U {HAUJ}Q@ }jeC— )

Definition 5.8. Using the notation of Proposition 5.7. We define level(F) := |A(F)|+1 €
[n — d].

Corollary 5.9. Let k € [n —d] and F = (T — T') be a flip along C € C(M). Then

\%r\tk(T) — @k(T/) _ {04(0), if level(F) = k,

0, otherwise.

Example 5.10. Let V and 7 be as in Example 4.8. An example of a flip F = (T — T7)
is shown in Fig. 8 (left). Here we have C = ({3},{1,4}) and thus a(C) = —e; +
3e; —2e4 = (—1,0,3,—2). We also have A(F) = {2} and level(F) = 2. Recall from
Example 4.8 that we had verty(7) = (0,3,0,1) and verty(7) = (0,3, 3,0). Similarly, we
find vert; (77) = (0,3,0,1) and verty(7") = (1,3,0,2). Thus verty(T) — vert;(7’) = 0
and verty (7)) — verty(77) = a(C), in agreement with Corollary 5.9.
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Fig. 8. A flip for the case when V is generic (left) and non-generic (right).

5.4. Flips for arbitrary vector configurations

We generalize the results of the previous subsection to vector configurations that are
not necessarily generic.
For a circuit C' € C(M), denote by

BM/C) = {J S (M\C) | (JUCD) € BM) for all j € C'}

the set of bases of the contracted oriented matroid M/C. In other words, B(M/C) is
the set of bases of the vector configuration that is the image of V in the quotient space
RY/(v; | j € C).

For any circuit C € C(M) and J € B(M/C), define the vector a(C,J) € R™ by

a;(C,J) == Cj - Vol*(Tlgey,,)  for all j € [n]. (5.5)
We also define

aC):= > aC)) (5.6)

JEB(M/C)

When V is generic, the set B(M/C) = {@} consists of a single element, and «(C,0) =
a(C) specializes to the vector a(C') defined in (5.4).

Lemma 5.11. Let C € C(M) be a circuit of M. Then for each J € B(M/C), the vector
a(C, J) satisfies the assumptions of Definition 5.3. In particular, the vectors {a(C, J) |
J € B(M/C)} and also a(C) coincide up to rescaling by a positive real number.

Proof. By (5.5), we only need to check that a(C,J) gives a linear dependence between
the vectors of V, i.e., Y .cca;(C,J)v; = 0. Let I := CUJ = {ji < -+ < jay1}
The kernel of the d x (d + 1) matrix M with columns v;,,...,v;,,, is given by
Zie[d+1](_1)iAI\j,; (M) - e; € RML where Ap j, (M) := det(v},)icr;, denotes the cor-
responding Pliicker coordinate of M. If j; € J then Ap; (M) = 0. If j; € C then
|Ap,(M)| = |ay,(C,J)|, and the sign agrees with C;. O
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We now show the following generalization of Proposition 5.7, see Fig. 8 (right) for an
example.

Proposition 5.12. Let F = (T — T') be a flip along C € C(M). Then for each J €
B(M/C), there exists a set A(F,J) C [n]\ (CUJ) such that

T\T = |_| <{HA(F,J)Uj,C(j)uJ}j€C+ U {HA(F,J),C’(J‘)L,J}J_GC) , and

JEB(M/C)

\ J€B|(7|A/Q) A(F,J),CcOuJ jec+ A(F,J)uj,cug jeo-

Before proving Proposition 5.12, we explain how to reconstruct a fine zonotopal tiling
T from the associated generic circuit orientation o7 defined in (5.3). Consider a generic
circuit orientation o : C(M) — {41, —1} and a basis B € B(M) of V. Given j € [n]\ B,
there exists a unique circuit C' € C(M) such that j € CT and C C BL{j}. Following [20],
we say that j is externally semi-active (with respect to o and B) if o(C) = +1, and we
denote by Ext,(B) C ([n] \ B) the set of all externally semi-active j. Define a collection
T of tiles by

To = {ll4.p|B € BIM), A=Ext,(B)}. (5.7)

Lemma 5.13. Let T be a fine zonotopal tiling of Zy and let o := o7 be the associated
generic circuit orientation. Then T =T,.

Proof. Let B € B(M) be a basis of V. By Proposition 5.1, there exists a unique A C
([n]\ B) such that IT4 g € T. It suffices to show that A = Ext,(B). Let j € ([n]\ B) be
any element, and let C' € C(M) be the unique circuit such that C C BUj and j € C*.
We would like to show that j € A if and only if o(C) = +1.

Suppose that j € A. Then CT \ j is an independent set contained in B and thus
AUCT = AU(CT\j) belongs to Vert(T), see (5.2). We also see that (AUCT)NC™ = 0,
so AUCT orients C positively, and thus o(C) = +1.

Conversely, suppose that j ¢ A. Then C~ C CY) is an independent set contained
in B and thus AU C~ € Vert(T). But now A U C~ orients C negatively, and thus
o(C)=-1. O

Corollary 5.14. Let F = (T — T') be a flip along C' € C(M), and let I14 g € T. Then:

e if B=CY UJ for some j € CT and J € B(M/C) then j € A and Tlz\;p € T';
« if B=CY'UJ for somejeC™ and J € B(M/C) then j ¢ A and Tay;p € T';
o otherwise, Iy g € T".

Proof. By Proposition 5.1, there exists a unique set A’ such that II4 g € T7'. By
Lemma 5.13, we have A = Ext,(B) and A" = Ext,(B), where 0 := o7 and ¢’ := op.
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By Definition 5.6, the values of o and ¢’ only differ on +C. By (5.7), for each j € ([n]\ B)
such that C ¢ (B U j), we have j € A if and only if j € A’. If C C B U j then we have
B =CY 1 J for some J € B(M/C), and depending on whether j € C*+ or j € C~, we
either get j € A\ A’ or j € A"\ A, respectively. O

Proof of Proposition 5.12. Fix J € B(M/C) and let o := o7. By Corollary 5.14, in
order to prove Proposition 5.12, it suffices to show that

for any j € C, if we let B := CY) U J, then Ext,(B)\ j is independent of j.  (5.8)

Indeed, in this case, the set A(F,J) := Ext,(B) \ j clearly satisfies the assumptions of
Proposition 5.12.

To prove (5.8), choose any ji,j2 € C, and let By := CYUY U J, By = OV 1 J,
Ay = Exty(B1) \ j1, Ag := Ext,(B2) \ j2. We need to show that A; = As.

Let D := Vert(7)UVert(T"). By Proposition 5.5 and Definition 5.6, for any X € C(M)
such that X # +C, D orients X either positively or negatively (but not both). Next, we
have

A UT,AaUT €D forall I C(CUJ). (5.9)

Indeed, by Corollary 5.14, we either have A; U (I \ j1) € Vert(T) and A; U (T U j) €
Vert(T”) or vice versa, and the argument for A, is completely similar.

We would like to show A; C Ay. Otherwise, assume that i € Ay \ As. Let X € C(M)
be the unique circuit satisfying X € By Ui and i € XT. Then X # +C and X~ C Bs.
By (5.9), we have Ay LI X~ € D. Since i ¢ Az, we have A; N X =, thus D orients X
negatively.

Suppose that j; ¢ X*. By (5.9), A1 U X" = A; U (X \ i) belongs to D, thus D
orients X positively, and we get a contradiction.

Thus j; € XT. After possibly switching the direction of the flip F' (which amounts to
replacing C with —C), we may assume that j; € C~. Applying the circuit elimination
aziom [3, Definition 3.2.1 (C3)] to X, C, and j;, we see that there exists Y € C(M)
satisfying

YTCXTulH)\{n} Y S X UuC)\{ik

We have Y # +C and i ¢ Y. By (5.9), the sets A;UY T = A; U (YT \i)and A UY ™
both belong to D. Moreover, A; U Y™ orients Y positively while A2 LI Y™ orients YV
negatively. We arrive at a contradiction, which shows A; C As. By symmetry, we get
A1 D As, therefore A, = As. O

Definition 5.15. Using the notation of Proposition 5.12, for J € B(M/C), we define
level(F, J) := |A(F,J)| + 1.
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Corollary 5.16. Let k € [n —d] and F = (T — T') be a flip along C € C(M). Then

verty(T) —verty(T) = > a(C,J).

JEB(M/C)
level(F,J)=k

Proof. Recall from Lemma 5.11 that } .. a;(C, J)v; = 0. Since the last coordinate of
each v, is equal to 1, (5.5) implies that

> Vol'(gay,) = Y Vol (TTgo,y)- (5.10)

jec+ jec-

Combining (2.2) with Proposition 5.12, we see that there exists u € R™ such that

verty (T) = u + Z Z VOld(HQ(j)uJ)eA(F,J)Uj
JEB(M/C) jeCt
level(F,J)=k

+ Z Z VOld(HQ(J'>|_|J)eA(F,J)a

JeB(M/C) jeC—
level(F,J)=k+1

V/ePCk(T/) =u—+ E E Vold(HQ(j)uJ)eA(F’J)Uj
JeEB(M/C) jeC~
level(F,J)=k

+ Z Z Vold(HQ(j)uJ)eA(FyJ).

JeB(M/C) jeCt
level(F,J)=k+1

By (5.10), the difference of the right hand sides equals to

Z Z Vold(HQ(jmJ)ej - Z Vold(HQmuJ)ej = Z a(C,J). O
JeB(M/C) \jeC+t jeC— JeB(M/C)
level(F,J)=k level(F,J)=k

Example 5.17. Let n = 5, d = 2, and let V consist of the column vectors of the matrix

% } (1) (1) 11>, as shown in Fig. 8 (right). Thus vs = vy, and let C = ({3}, {4}).

We have B(M/C) = {{1},{2},{5}}.

An example of a flip F' = (T — T) along C is shown in Fig. 8 (right). Geometrically,
the tiling has not changed, but some vertex labels have changed, replacing 3 with 4. The
values of a(C,J), A(F,J), level(F,J) for various J € B(M/C), as well as the values

of verty(T), verty(T"), verty(T) — verty(7") for various k € [n — d], are given in the
following tables.
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J a(C,J) A(F,J) | level(F,J) k verty, (T) verty, (T') verty, (T) — vert, (T')
{1} 2(e3 — eyq) {5} 2 1 (2,0,0,0,2) (2,0,0,0,2) 0

{2} e3 — ey {1,5} 3 2 (2,1,2,0,3) (2,1,0,2,3) 2(e3 —eq)

{5} e3 — ey {1,2} 3 3 (2,1,3,1,2) (2,1,1,3,2) 2(e3 —eq)

This again agrees with Corollary 5.16.
6. Regular zonotopal tilings and higher secondary polytopes

In this section we start by introducing regular fine zonotopal tilings. We then define
higher secondary polytopes, compute their dimension, and prove Theorem 2.2.

Let A, V, and @ = conv.A be as in Notation 3.5, and let h = (hy,...,h,) € R"
be a height vector. Then the upper boundary of the polyhedron conv{(a;,h; —t) | i €
[n], t > 0} C R? projects piecewise-linearly onto @, and projections of its facets give rise
to a polyhedral subdivision of @. Such a subdivision is called regular, and in particular,
the A-triangulations that can be obtained this way from a height vector h are called
reqular A-triangulations. Again, the notion of a regular A-triangulation coincides with
the notion of a regular fine 7m-induced subdivision from Definition 3.3.

6.1. Regular zonotopal tilings

Let V be a vector configuration in R? as above. First, we define the notion of a generic
height vector h € R™. Recall the vector a(C) from (5.6), which by Lemma 5.11 satisfies
the assumptions of Definition 5.3. Let (-,-) denote the standard inner product on R™,
and define the secondary hyperplane arrangement

Hy :={h eR" | (h,a(C)) =0 for some C € C(M)}. (6.1)

Definition 6.1. We say that a height vector h € R™ is generic (for V) if it does not belong
to Hy. In this case, we write h € R™ \ Hy.

For h € R™\ Hy, let op, : C(M) — {+1, —1} be the generic circuit signature given by

oh(C) = {H’ i {h, alC) >0,y ancecm), (6.2)

-1, if (h,a(C)) <0,

Recall from (5.3) that each fine zonotopal tiling 7 gives rise to a generic circuit
signature o7 : C(M) — {+1,—-1}.

Proposition 6.2. Let h = (hq,...,hy,) € R®"\Hy be a generic height vector. Then T := Ty,
from Definition 3.3 is the unique fine zonotopal tiling of Zy satisfying o = op,.

Proof. The uniqueness part follows from Lemma 5.13. Consider the m-induced subdivi-
sion 7 := T from Definition 3.3. Since h is generic, it follows that 7 is a fine zonotopal
tiling of Zy.
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It remains to show that o7 = op. Otherwise, suppose that C' € C(M) is a circuit
such that o7 (C) = —1 and op(C) = +1. Then there must exist a set S € Vert(7) that
orients C negatively, so C~ C S and CT NS = (). By Definition 3.3, having S € Vert(T)
implies that (es,h) > (x,h) for all z € 63, N7 !(r(es)). On the other hand, since
a(C) satisfies the assumptions of Definition 5.3, and S orients C' negatively, it is clear
that es + ea(C) belongs to 63, N 7w~ !(7(es)) for all sufficiently small ¢ > 0. But now
because op(C) = +1 is equivalent to (a(C), h) > 0, we get a contradiction. O

Definition 6.3. A fine zonotopal tiling 7 of Zy is called regular if 7 = 7T for some
h e R" \ Hy.

Thus regular fine zonotopal tilings are precisely the regular fine m-induced subdivisions
for the case 7 : 00,, — Zy.

Remark 6.4. The usual dgﬁnition of Tn makes use of the zonotope Zj; associated with
the vector configuration V = (vy,...,9,) in R given by v; := (v, h;). Namely, Tp, is
obtained by projecting the upper boundary of Z3; down to Zy via a map that forgets
the last coordinate. (Here the upper boundary is defined as the set of all points @ on the
boundary of Zj; such that x +eeqy1 ¢ Z5; for all € > 0.) It is straightforward to see that
this construction gives rise to the same tiling, see [4, Lemma 4.2].

The following result is well known, see e.g. [4, Corollary 4.2]. We include a proof since
we will use a similar construction later in the proof of Proposition 6.9.

Lemma 6.5. Any two reqular fine zonotopal tilings T, 7T’ can be connected by a sequence

of flips.

Proof. In order to construct the desired sequence of flips, we first choose generic h, b’ €
R™ \ Hy such that T = Tp, T’ = Tp/, and the line segment h(t) := th + (1 — t)h’
connecting them intersects at most one hyperplane in Hy at a time. (That is, for each
0 <t <1, h(t) is orthogonal to a(C) for at most one pair =C' of opposite circuits.)
Then the (finite) sequence Tp(y), defined for all 0 < ¢ < 1 such that h(t) € R™ \ Hy,
connects T to T by flips. O

We also note that if 7 = Tp, for some h € R™\Hy, then T_p, = T°P (see Definition 4.5).
6.2. Higher secondary polytopes

We use the conventions of Notation 3.5. Recall from Definition 2.1 that for each
k € [n — d], the higher secondary polytope L 41 is defined as the convex hull

EA,k = conv {v/e?tk (T) ‘ T is a fine reqular zonotopal tiling of Zv} ,
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where the vector V/e?tk(T) is defined in (2.2). As mentioned in Section 2, we expect that
the word regular can be omitted from the above definition.

Conjecture 6.6. The higher secondary polytope EA,k s equal to
EA,,C = conv {v/eRk(T) ‘ T is a fine zonotopal tiling of Zv} .

That is, for each (not necessarily reqular) fine zonotopal tiling T, the vector v/ePck(T)
lies in Z 4.

See Fig. 1 for an illustration.
We start by computing the dimension of X 4 ;.

Proposition 6.7. The dimension of EA’;C is equal to n — d.

Proof. Let M be the d x n matrix whose columns are v, ..., v,. Then the row span U of
M is a d-dimensional subspace of R™. Let W C R™ be the (n — d)-dimensional subspace
spanned by the vectors a(C') for all C € C(M). It is clear that U and W are orthogonal
subspaces and R" = U & W. By Corollary 5.16, Lemma 5.11, and Lemma 6.5, we see
that all edge directions of EA,;C belong to W. Thus dim(EA,k) <n-—d.

By Corollary 5.16, it remains to show that for each circuit C' € C(M), there exists
aflip F = (T — T7') along C and J € B(M/C) such that level(F,J) = k, that is,
|A(F, J)| = k—1. Choose any J € B(M/C) and any (k—1)-element set S C ([n]\(CUJ)),
and let T := [n] \ (C U JUS). Choose any height vector h = (hy,...,h,) € R™ such
that (h,a(C)) =0, (h,a(X)) # 0 for all X # +C, and for all s € S, b€ CUJ, and
t € T, we have hy > 0, hy < 0, and |hs], |he| > |hs|. Let AT, h~ € R™ \ Hy be generic
height vectors given by ht := h+¢-a(C), h™ := h—¢-a(C) for some small € > 0, and
let 7 := Tp+, T' :=Tp-. Then F := (T — T') is a flip along C (recall Definition 5.6,
(6.2), and Proposition 6.2), and it is easy to see from (5.7) and (5.8) using op+ = o7
that A(F,J) =S, thus level(F,J) =k. O

Example 6.8. For the case d = 1 from Example 2.5, we have a circuit C' = ({i}, {j})
for all 1 <4 # j < n. We see that for each k € [n — d], the higher secondary polytope
2,4,1@ = Ay, contains an edge parallel to e; — e; for all ¢ # j, in agreement with the
proof of Proposition 6.7.

We now proceed to proving Theorem 2.2. Recall from Definition 3.3 that for a polytope
P C R™ and a vector h € R", (P)" is the face of P that maximizes the scalar product
with h.

Proposition 6.9. Let h € R™\Hy, be a generic height vector, and let Tp, be the correspond-
ing regular fine zonotopal tiling of Zy. Recall the definitions of vert™ (T, verti®(T), and
vertKZ(T) from (3.5), (3.12), and Remark 5.10.



P. Galashin et al. / Advances in Mathematics 407 (2022) 108549 33

(i) (ZﬁKZ)h = vert“KZ(Ty,).

(ii) (ZfP(a@, 5 Zy))P = verti®(T3,).
(iii) (Eﬁ (A = Qk)) = verti®(Ts) for all k € [n —1].
(iv) (Zax)" = verty(Tn) for all k € [n — d].

Proof. Parts (i)—(iii) are well known, see [4, Proposition 1.2, the proof of Theorem 2.5,
Corollary 4.2], or [47, the proof of Theorem 9.6]. To prove (iv), we need to show that
for any regular fine zonotopal tiling 7’ := Tp/ of 2y (where b’ € R™ \ Hy), we have
(h,verty(Tn)) > (h,verty(T")). We proceed as in the proof of Lemma 6.5. After slightly
modifying b’ without changing 7/, we may assume that every point of the ray {h’ +
th | t > 0} is orthogonal to a(C) for at most one pair £C of opposite circuits. The
corresponding finite sequence of flips connects 7’ to 7. Suppose that for some ¢ > 0
and C € C(M), we have (h’ + th,a(C)) = 0. Choose a small positive € so that the
tilings 7_ := Th/y(t—)p and Ty := Thr4(44en differ by a flip F = (74 — 7_) along C.
By Definition 5.6 and Proposition 6.2, (h, a(C)) > 0. By Corollary 5.16, vert(7%.) —
verty(7-) is a positive scalar multiple of a(C), so (h, verty(75.)) > (h, vert(7_)). Thus
the dot product of V/e?ck('ﬁlurth) with h increases weakly as t grows from 0 to oo, and
when ¢ is sufficiently large, we obviously have Tp/y1p = Tp. O

Proof of Theorem 2.2. All four parts of Theorem 2.2 follow from Theorem 4.6, Propo-
sition 6.9, and (3.3). Explicitly, the polytopes in question are related as follows:

£ = L (Faa +80)

d—1)
1 1 n—d
I, 52y = ——— [ Zai A Zanat =D 6V
( V) VOld(Zv) ( Al An—d 9 kZ:O ( )
1 ~ ~ ~
(AL, D Qr) = P0.aZ Ak + P1aZA k-1 Pd-1,dZA k—dt1
Vol (Qr) ’

d—1
+ TZ: 2 pr_1.a-16(k —r, V)) for all k € [n —1];

~

iA,k =— ZA n—d—k+1 + ’Yk—l(V) “€[n] — 5(]41 — l,V) for all k € [n — d]
(6.3)
()

Here we set p, 4 = -5 as before. 0O

6.3. Vertices, edges, and deformations

In this section, we prove Proposition 2.11. We state it more generally for point con-
figurations that are not necessarily generic. For a flip F = (7 — T) along a circuit C
and J € B(M/C), recall the definition of level(F, J) € [n — d] from Definition 5.15. Let
us write Level(F) := {level(F,J) | J € BIM/C)}.
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Extending the definitions of Section 2.4, we say that two fine zonotopal tilings 7 and
T’ of Zy are k-equivalent if they can be connected by flips F' such that k ¢ Level(F).
Similarly, we say that two flips F = (71 — T3) and F' = (T{ — T3) are k-equivalent if
Ty is k-equivalent to 7{ and T3 is k-equivalent to 7.

Proposition 6.10. Let A be an arbitrary configuration of n points in R~1, and let k €
[n—d].

(i) The vertices of the higher secondary polytope iA,k are in bijection with k-equivalence
classes of regular fine zonotopal tilings of Zy,.
(ii) The edges of EA,k correspond to k-equivalence classes of flips F such that k €
Level(F).
(iii) For any nonnegative real numbers xy,...,Tn_q, the Minkowski sum

Vold(ZV)( 1<A,1 d«=A, d

is a parallel deformation of the fiber zonotope LiP(6D, = Zy), where an edge
corresponding to a flip F' along C € C(M) is rescaled by ZJEB(M/Q) Tlevel(F,J)-

Proof. Parts (i) and (ii) follow from part (iii). As for part (iii), the statement about the
parallel deformation is an immediate consequence of Theorem 2.2(ii), together with the
fact ([47, Proposition 7.12]) that the normal fan of a Minkowski sum of two polytopes
is the common refinement of the individual normal fans. The statement about the edges
follows from Proposition 6.9. O

7. Higher associahedra and plabic graphs

In this section, we give background on plabic graphs, and explain the relation be-
tween plabic graphs and higher associahedra, which are the higher secondary polytopes
in the case that d = 3 and A is the set of vertices of a convex n-gon in R2. We then
prove Theorem 2.7 and discuss several combinatorial notions arising from our construc-

tion.
7.1. Background on plabic graphs

Recall the definition of a plabic graph G and its bipartite version GP™ from Section 2.3.
We always assume that plabic graphs have no interior vertices of degree 1 or 2. A strand

in a plabic graph G is a directed path p defined as follows:

e p starts and ends at a boundary vertex of G;
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« at each black interior vertex of G, p turns “maximally right”’;
« at each white interior vertex of G, p turns “maximally left”.

From now on, fixnand 1 <k <n—1.

Definition 7.1. A (k,n)-plabic graph is a plabic graph G with n boundary vertices such
that:

(1) for each i € [n], the strand starting at vertex i ends at vertex ¢ + k (modulo n);
(2) G has k(n — k) + 1 faces.

Condition (2) could be replaced by describing several forbidden patterns for the way
the strands in G may look, see [31, Theorem 13.2]. Note that k(n — k) + 1 is the minimal
number of faces a plabic graph satisfying condition (1) can have. We label the faces of a
plabic graph as follows.

Definition 7.2. Given a (k, n)-plabic graph G, we label each face F' of G by a set S(F') C
[n], defined by the condition that for each i € [n], S(F) contains 4 if and only if F is to
the left of the unique strand in G that ends at vertex 1.

It turns out [31] that S(F') has size k. Let F(G) := {S(F') | F a face of G} C ([Z]).
7.2. Plabic graphs from fine zonotopal tilings

Throughout the rest of Section 7, we fix d = 3. We also fix a configuration
A = (ay,...,a,) of vertices of a convex n-gon in R? and let V, 2y, Qy, and 7 be
as in Notation 3.5. Recall that we have a projection Ay , 5 Qp from the hyper-
simplex to the k-th horizontal section of Zy,. In this section we recall how to obtain
plabic graphs from fine zonotopal tilings, based on results of [13] and [33, Section
11].

Given a subset S C [n], we let

Vg = E v;.

i€S

Clearly Qy, is a convex n-gon in the affine plane Hy, = {(y1,y2,v3) | y3 = k}, with vertices
V[1,k], V[2,k+1]> - - - » Un,k—1], corresponding to all consecutive cyclic intervals of size k in
[n]. Each two-dimensional face F of Ay, is a triangle with vertices eg, er, er for some
S,T,R € ([z]). Moreover, we have either [SNTNR|=k—1or |[SUTUR|=k+1, in

5 Here by a mazimally right (resp., left) turn we mean that if an interior vertex w of G is incident to
edges e, ..., en in clockwise order and p passes through e; and then through w, it must then pass through
e;_1 (resp., e;+1), where the indices are taken modulo n.
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Fig. 9. A plabic tiling of a hexagon Q3, with vertices of Q3 labeled by the cyclic intervals of size 3. The dual
graph is a (neither trivalent nor bipartite) (3, 6)-plabic graph. The strand from 5 to 2 is shown in green. A
face label contains 2 if and only if it is to the left of this strand.

which case we say that F' is isomorphic to Ay 3, or Ag 3, respectively. The fine 7-induced
subdivisions of ()} come from collections of two-dimensional faces of Ay, ,,. Moreover, the
fine m-induced subdivisions are in bijection with the tilings of the n-gon @ by triangles,
such that:

e FEach vertex has the form vg for some S € ([Z]).

o Each edge has the form [vg, v7] for two k-element subsets S and T such that |SNT| =
k—1.

o Each face is a triangle which is the projection of a two-dimensional face of Ay,
isomorphic to either A; 3 or Ay s (in which case we say that the face is white, or
black, respectively).

Such a tiling of Qy, is called a triangulated plabic tiling, and its dual graph G (which has
white and black vertices corresponding to the white and black faces of the tiling) is a
trivalent plabic graph, see Fig. 9.

In the other direction, given a (k,n)-plabic graph G, the corresponding plabic tiling
PT(G) is a polyhedral subdivision of @} into convex polygons colored black and white:
for each black (resp., white) vertex w of G that is adjacent to faces Fi,...,F, in
clockwise order, PT(G) contains a black (resp., white) polygon with boundary vertices
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Fig. 10. The zonotope Zy, associated to V = (v, vy, V., vq) has precisely two fine zonotopal tilings, which
differ by a flip. The horizontal sections give rise to triangulated plabic tilings and, dually, to trivalent
(k, n)-plabic graphs for n = 4 and k = 1,2,3 (from bottom to top). The flip corresponds to applying the
moves (M1), (M2), (M3) on plabic graphs, as in Theorem 7.4.

VS(Fy)s- -+ US(F,,)- By the results® of [29], PT(G) is the planar dual of G: the ver-
tices/edges/faces of PT(G) correspond to the faces/edges/vertices of G, respectively, see
Fig. 9.

Theorem 7.3 ([13, Theorem 1.2]).

(i) For each trivalent (k,n)-plabic graph G, the triangulated plabic tiling PT(G) coin-
cides with the horizontal section T N Hy, of some fine zonotopal tiling T of Zy.

(ii) For each fine zonotopal tiling T of Zy, the intersection T NHy, coincides with PT(G)
for a unique trivalent (k,n)-plabic graph G.

For a fine zonotopal tiling 7 of 2y, we denote by Gy (T) the trivalent (k,n)-plabic
graph G from Theorem 7.3(ii), and we let GEiP(T) denote its bipartite version.

Recall that (k,n)-plabic graphs are connected by moves (M1)—(M3) from Fig. 4. For
the following result, illustrated in Fig. 10, see [13, Section 3].

Theorem 7.4. Suppose that F' = (T — T') is a flip and level(F) = k.

6 The authors of [29] only work with bipartite (k,n)-plabic graphs. For general (k,n)-plabic graphs, one
needs to “uncontract” some interior vertices of G and add some diagonals to the corresponding faces of
PT(G).
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Fig. 11. A plabic tiling associated to a bipartite (k + 1, n)-plabic graph, with £ +1 = 3 and n = 6. The
labeling of white faces by k-element sets is shown at the left, while the areas of the white faces are shown
at the right.

We have G.(T) = G(T") for allr # k,k+ 1,k + 2;

the graphs Gi(T) and Gi(T') are related by move (M1);

the graphs Gi1(T) and Gi+1(T") are related by move (M2);
o the graphs Giy2(T) and Gr12(T') are related by move (M3).

7.8. Vertices of higher associahedra

Each fine zonotopal tiling 7 of 2y gives rise to a point V/e?tk(T) € R™ and to a
bipartite (k + 1,n)-plabic graph GP'P := Gzifl (T). The definition (2.2) of verty(7) can
be expressed in a simple way in terms of PT(GPP), which we now explain.

Recall that PT(GPP) consists of black and white polygons corresponding to black
and white vertices of GP'P (cf. Fig. 9). Let w be a white interior vertex of GP'?, and
let Fy,...,F,, be the faces of G adjacent to it. By the construction of face labels
in Section 7.1, we see that the face labels S(F1),...,S(Fn) € (k[i]l) have intersection
S7(w) == Ni~, S(F;) of size k, see Fig. 11 (left). Thus every white face w* of PT(GP)
is naturally labeled by a set S™(w) of size k. Let Area(w*) denote the area of this white
face w* (viewed as a metric convex polygon inside Hy,1 = R?), see Fig. 11 (right).

Proposition 7.5. Let T be a fine zonotopal tiling of Zy and let GPP := Gzif:l(T) be the
corresponding bipartite (k + 1,n)-plabic graph. Then

verty(T) = 2 Z Area(w™) - egn(w), (7.1)

where the sum is taken over all white interior vertices w of GP'P.

Proof. We use (2.2). It is not hard to see that each tile II4 g € T gives rise to a white
triangle w* in the plane y3 = |A| + 1 whose face label is S”'(w) = A. Moreover every
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white face in the plabic tilings associated to 7 comes from a tile of 7. Therefore in (2.2),
instead of summing over tiles I14 p with |A| = k, we can sum over white triangles in the
plane y3 = k + 1. Also note that we can relate the volume of II4 g to the area of the
corresponding white triangle, using the normalization of our volume form given in the
discussion preceding Remark 2.3. The result follows. O

Example 7.6. Applying Proposition 7.5 to the zonotopal tiling whose horizontal section
is shown in Fig. 11, we obtain

verta(T) = 8eq16) + lleqs g + Teqse) + 6eqs.q) + 6ega sy = (8,6,19,17,0,26).
7.4. Regular plabic graphs

Recall from Section 2.3 that A-regular trivalent (k,n)-plabic graphs are by definition
the horizontal sections of regular fine zonotopal tilings of Zy,, while A-regular bipar-
tite (k,n)-plabic graphs are those that are obtained from .A-regular trivalent ones by
contracting edges. Let us give an explicit algorithm of reconstructing a trivalent (resp.,
bipartite) A-regular (k,n)-plabic graph Gy p (resp., GZTZ) from a given height function
h. In order to do so, we specialize some general constructions from Sections 5 and 6.

If V is a configuration of n vectors in R? such that their endpoints are vertices A of
a convex n-gon in H; = R2, then the circuits of V are given by

CM)==x{({a,c},{b,d}) |1 <a<b<c<d<n}.

For each circuit C = ({a, c}, {b,d}), we have a (unique up to rescaling by a positive real
number) vector

a(C) = vee, — Tpep + Tl — Taq (7.2)

whose coordinates are the coefficients of the linear dependence z,v, — xpvy + T V. —
xqvq = 0. (Here x4, xp, 2,24 > 0.) Given a generic height vector h € R™ \ Hy, we
define (as in (6.2)) the generic circuit signature op(C) := +1 depending on whether
pun(a,b, e, d) := xohg — xphy + xche — xghg € R\ {0} is positive or negative (it cannot
be 0 precisely because h is generic).

Definition 7.7. We say that I C [n] is (A, h)-compatible if for all 1 <a <b< ¢ <d < n,
we have:

o ifa,c€T and b,d ¢ I then pp(a,b,c,d) > 0;
e ifa,c¢ T and b,d € I then pup(a,b,c,d) < 0.

We denote F(A, k,h) := {I € ([Z]) ‘ Iis (A, h)—compatible}.
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Fig. 12. A point configuration A, and the corresponding bipartite and trivalent plabic graphs for k = 2 and
h as in Example 7.8.

By Proposition 6.2, the regular zonotopal tiling 7 := T satisfies o+ = op. But
now by (5.3), we see that the k-element sets in Vert(7) are precisely the elements of
F(A, k,h). Therefore by Theorem 7.3, F(A, k, h) is the set of labels of some triangu-
lated plabic tiling, and hence by [29], F(A, k, h) coincides with f(GZf}DI) for a unique
bipartite (k,n)-plabic graph GZTZ, and this graph GZE can be explicitly reconstructed
from F(A, k, h) as in [29, Section 9]. To find the unique trivalent (k, n)-plabic graph Gy p,
we use [13, Proposition 4.6]: the face labels of Gy p are given by F(Gypn) = F(A, k, h),
and two faces labeled by S,T € ([Z]) are connected by an edge in PT (G ) if and only
it SNT € F(Ak—1,h) and SUT € F(A,k+ 1,h). This completely determines the
triangulated plabic tiling PT(Gy ) from which G p can be reconstructed as a planar
dual. By Theorem 7.3, PT (G, n) is the horizontal section of 7p, by Hy, and PT(GZE) is
obtained from it by removing all edges that are adjacent to two faces of the same color.

1 1 1
thus A is the point configuration shown in Fig. 12 (left). Let h := (1,0,3,0,0) € R™.

For each circuit C' = ({a,c},{b,d}) for a < b < ¢ < d, the values of a(C) (computed
using (5.4)) and pp(a,b,c,d) are given in the following table (which shows that h €
R™\ Hy is generic).

01 2 10
Example 7.8. Let V = (vq,...,v5) be given by the column vectors of (O 01 2 1> ,
1 1

a(C) un(a, b, ¢, d)
( ) +8
( ) +5
(2,—-1,0,1,-2) +2
( )
( )

-1
-3
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Let k = 2. We find that F(A, k,h) = {12,23,34,45,15,13,35}, where we abbrevi-

ate {a,b} as ab. Thus the unique bipartite (k,n)-plabic graph szfl with face labels

.F(szl,';) = F(A, k, h) is shown in Fig. 12 (middle). To find the trivalent plabic graph
Gy h, observe that {1,3,4} € F(A, k+1,h) while {3} € F(A, k—1,h), so there must be
an edge connecting {1,3} to {3,4} in PT(Gy ). Thus Gi p is the trivalent plabic graph
given in Fig. 12 (right).

7.5. Proof of Theorem 2.7

(i): Our goal is to show that given two generic height vectors h, h’ € R™\ Hy,, we have
verty (Tn) = verty(Tp) if and only if G'Py \, = GP'®, .. By (7.1), if G, , = G,
then clearly verty(7n) = verty (7). Conversely, assume that verty(7n) = verty(7pn).
Then by Proposition 2.11(i), the tilings 7 and 7 are k-equivalent. By Theorem 7.4,
we see that the trivalent graphs Griin and Gyiqp are related by moves (M1) and
(M3), thus their bipartite versions coincide. Similarly, combining Proposition 2.11(ii)
with Theorem 7.4, we find that the edges of T A correspond to square moves of A-
regular bipartite (k + 1, n)-plabic graphs.

(ii): First, note that by Theorem 2.2(iii), the vertices and edges of iA,k + EA,k—l +
EAJC_Q are in bijection with vertices and edges of m (iAk + 4§A,k—1 + /Z\AJC_Q)

shift

— Zﬁb(A;m 7 Q). The statement that the vertices and edges of §A7k+§,47k_1 +§A7k_2
correspond to trivalent plabic graphs and moves (M1)—(M3) connecting them follows by
combining Proposition 2.11(iii) with Theorem 7.4. 0O

Example 7.9. Let n = 6 and k¥ = 3. An example of a higher associahedron T Ak, Where
A is the point configuration from Fig. 13 (top left) is shown in Fig. 1. The plabic graphs
corresponding to the points of EAyk labeled by a, b, ¢, d are shown in Fig. 13. The points
labeled by b and ¢ belong to the interior of iA,k- On the other hand, for the point
configuration A’ from Fig. 13 (bottom left), the points labeled a and d belong to the
interior of £ Ak, while the points labeled by b and ¢ are among the vertices of T Al k-
If A" is such that the three diagonals of the hexagon Q = conv.A” intersect at a single
point then none of the four points a, b, ¢, d are among the 30 vertices of EAN,;C. A similar
computation can be found in [20, Theorem 4.2].

The plabic graphs labeled by b and d arose in [36, Section 8] in the context of mirror
symmetry for Grassmannians. If one considers the Newton-Okounkov bodies Ag associ-
ated to a plabic graph G for Gr(3,6), then 32 of the 34 plabic graphs give rise to integral
polytopes Ag; b and d label the non-integral ones.

When A is the set of vertices of a convex n-gon, the combinatorics of the associahedron
T 4,1 does not depend on the specific choice of this n-gon. Example 7.9 shows that this is
not the case for higher associahedra. Computational evidence suggests that the following
result still holds.
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Fig. 13. The four plabic graphs, corresponding to the points in Fig. 1 labeled a, b, ¢,d. These are the only
(3, 6)-plabic graphs that are not A-regular for some A, see Example 7.9. Similar figures can be found in [20,
Figure 18] or [30, Figure 1].

Conjecture 7.10. Suppose that A is the set of vertices of a generic convexr n-gon. Then
the f-vector of L4 depends only onn and k.

For instance, we saw in Example 7.9 that b A has 32 vertices when A is generic and
n = 6. The number of vertices of X 4 for generic A, n <7, and k € [n — 3] is given in
the following table.

14 32 14
42 231 231 42

N O U B
ot
ot
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7.6. Large heights

Fix a configuration A of vertices of a convex n-gon in R%. Let w = (w1, ..., w,) € S,
be a permutation of [n]. Choose a height vector (") = (hy,..., h,) € R™ satisfying

Ry > oy > -+ > hy,, > 0. (7.3)

In (7.3), our usage of > means that the heights are large compared to the coefficients
appearing in (7.2) (for all circuits C'), or more precisely: for each 4-tuple a < b <
¢ < d, we have that pp(a,b,c,d) = xohg + xche — xphy — x4hg > 0 if and only if
max(hq, he) > max(hy, hg). Our goal is to explicitly describe F(A, k, h(*)). First we
need a few definitions.

Fix n, and choose s, ¢ € [n]. We let [s, t) be the cyclic interval between s and t—1:if s <
t,then [s,t) := {s,s+1,...,t—1},and if s > ¢, then [s,?) := {s,s+1,...,n,1,2,...,t—1}.
We similarly define cyclic intervals (s,t] and [s, ¢].

For S C [n] and 0 < j < |S|, we define top;w)(S) to be the j-element subset T' of S
such that hy > hs (equivalently, wy < wg) for allt € T and s € S\ T.

Proposition 7.11. Let w € S,, and h™) be as in (7.3). Then for each 1 < k < n, we have
F(A k)

k
_ |:! {[S,t) Ltop(™ ([t, 5)) ‘ s,t € [n] such that |[s,t)| = r} T {mp;w)([n])} . (7.4)

Proof. It is easy to see that each set in the right hand side of (7.4) is (A, h*))-compatible.
Conversely, consider I € ([Z]) and write I as a union of cyclic intervals I; U---U I,;, with
m as small as possible. For example, if I = {1,3,4,5,7,8, 10} C [10] then we write
I =1[10,1]U[3,5] U[7,8]. Clearly, I being (A, h{*))-compatible means that whenever we
choose 7,7’ € I from two distinct cyclic intervals I, and I, either h; or h; is greater
than any h; for j ¢ I.

Therefore at most one of the cyclic intervals I,..., I, can contain elements whose
height is less than the height of any element not in I. Let [s,t) be that cyclic interval
(if it exists, otherwise we must have I = top,(cw)([n])), and let r :=|[s,t)| < k. Since we
need all remaining elements of I to have greater heights than all elements of [n] \ I, we
find I = [s,t) U topgi)r([t, s)). O

Remark 7.12. Note that by Proposition 7.11, the set F (A, k, h(w)) explicitly constructed
in Proposition 7.11 depends only on the ordering of the largest k heights.

Example 7.13. Fix k& and n and suppose that w = wy := (n,n — 1,...,1). Then
F(A, k, h™)) consists of [n — k + 1,n] together with the k-element subsets [i,i + j) U
(n—k+jmnforl <i<n-—kand1l <j <k Note that if we interpret k-element
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subsets of [n] as Young diagrams contained in a k x (n — k) rectangle (by identifying
each Young diagram with the path consisting of unit steps west and south from (n—k, k)
to (0,0) which cuts it out and then reading off the positions of the vertical steps), then
F(A, k, h™)) corresponds to the rectangles which fit inside the k x (n — k) rectangle.
This collection was called the rectangles cluster in [36] and comes from the plabic graph
associated to the Le-diagram of [31].

On the other hand, suppose that w = id := (1,2, ...,n). Then F(A,k, h(w)) consists
of [k] together with the k-element subsets [1,7) U [j,j +k —i]for 1 <i<kandi+1<
j <n—k+i. If we interpret k-element subsets of [n] as Young diagrams contained in a
k x (n— k) rectangle as before, then F(A, k, h(™)) corresponds to Young diagrams which
are complements of rectangles in the k x (n — k) rectangle.

7.7. Black-partite and white-partite plabic graphs

By Theorem 2.7, the vertices of T Ak correspond to bipartite plabic graphs, while
the vertices of L Ak + T Ak—1+ T Ak—2 correspond to trivalent plabic graphs. It is thus
natural to also consider the polytope ZA,k + ZA,k—l-

Definition 7.14. A plabic graph G is called black-partite if all interior white vertices of G
are trivalent, and no edge of G connects two black interior vertices.

We similarly define white-partite plabic graphs by switching the roles of black and
white in the above definition. For example, for each n > 3, there is only one white-
partite (1,n)-plabic graph. As discussed in Example 2.8, there is a Catalan number
C—2 of black-partite (1,n)-plabic graphs, and the number of white-partite (2, n)-plabic
graphs is also equal to C,,_2. As we will show in Proposition 7.15 below, this is not a
coincidence.

It follows from [31, Theorem 13.4] that any two black-partite (k,n)-plabic graphs are
related by moves (M1) and (M2), and any two white-partite (k,n)-plabic graphs are
related by moves (M2) and (M3). We deduce the following surprising bijection from the
results of [13].

Proposition 7.15. For k < n, black-partite (k,n)-plabic graphs are in bijection with white-
partite (k + 1,n)-plabic graphs.

Proof. We describe a construction that gives the desired bijection. Given a plabic graph
G, denote by GPP! (resp., G¥P') the black-partite (resp., white-partite) plabic graph
obtained from G by contracting all edges connecting two black (resp., white) interior
vertices. Given a fine zonotopal tiling 7 of Zy, denote by Gzpt(’T) and G}P'(T) the
black-partite and white-partite (k,n)-plabic graphs obtained from the trivalent plabic
graph G (T) from Section 7.2. For each 7 and each k < n, we say that the plabic graphs
GYPY(T) and G}P'(T) are linked.
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Lemma 7.16. Fvery black-partite (k,n)-plabic graph is linked with exactly one white-
partite (k + 1,n)-plabic graph, and every white-partite (k + 1,n)-plabic graph is linked
with exactly one black-partite (k,n)-plabic graph.

Proof. Tt follows from the results of [13] that every trivalent (k, n)-plabic graph G appears
as G (T) for some fine zonotopal tiling 7 of Zy,. Thus every black-partite (k,n)-plabic
graph is equal to Gzpt(T) for some 7T, and is linked with the graph sz_ftl (T). Every
white vertex of Gl,zpt (T) is trivalent, thus the three faces incident to it are labeled by sets
AUby, AUby, AUbs for some by, by, bs ¢ A, and the horizontal section 7 N Hy, contains
a white triangle with vertex labels A U by, AU by, AU bs. We find that II4 p € T for
B := {b1,bs,bs3}, but then a black triangle with vertex labels A U {b1,b2}, AU {b1,b3},
AU{by, b3} appears in TN Hj 1. Conversely, every black triangle in 7N Hj1 corresponds
to a white triangle in 7 N Hy. We have shown that G‘,;’_Etl(T) is uniquely determined by
GYPY(T). The proof that GyP*(T) is uniquely determined by GZVJ}:E(T) is completely
analogous. 0O

It is clear that Lemma 7.16 gives the desired bijection, finishing the proof of Propo-
sition 7.15. O

We return to the study of the polytope EA’k + EA,k—l- We say that a black-partite
(k,n)-plabic graph G is A-regular if it can be obtained as Gzpt (T) for some regular fine
zonotopal tiling 7 of Zy,. We similarly define A-regular white-partite (k + 1, n)-plabic
graphs, and clearly the bijection of Proposition 7.15 restricts to such plabic graphs.
Observe also that by Theorem 7.4, applying the moves (M1) and (M2) to a black-partite
(k,n)-plabic graph G corresponds to applying the moves (M2) and (M3) to the unique
(k 4+ 1,n) white-partite plabic graph linked with G. The proof of the following result is
analogous to that of Theorem 2.7.

Corollary 7.17. Let d = 3 and A C R? be the configuration of vertices of a convex n-gon.

(i) The vertices of zA,k + §A7k_1 are in bijection with A-reqular black-partite (k,n)-
plabic graphs, as well as with A-regular white-partite (k + 1,n)-plabic graphs.

(ii) The edges of EA,;C + E.A}kfl correspond to the moves (M1) and (M2) of A-regular
black-partite (k,n)-plabic graphs, as well as to the moves (M2) and (M3) of A-regular
white-partite (k + 1,n)-plabic graphs.

8. Applications to soliton graphs

In this section we start by explaining how tropical hypersurfaces are dual to regular
subdivisions of a related zonotope, see Definition 8.2. We then explain how, when d = 3,
we can recover the construction of soliton graphs—contour plots of soliton solutions of
the KP equation (see Corollary 8.6 and Definition 8.7)—and in particular, recover the
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fact that they are realizations of reduced plabic graphs. We conclude with applications
of our previous results to soliton graphs.

8.1. Tropical hypersurfaces and regular zonotopal tilings

Definition 8.1. A tropical polynomial is a function F : R%~1 — R that can be expressed
as the tropical sum of a finite number of tropical monomials. More precisely, if we let X
denote (X1,...,X4-1), then a tropical polynomial F' is the maximum

F= Fr(Xy,.... Xq 1) = Fi(X
max (X1, Xao1) max 7(X)

of a finite set {F|I € B} of linear functionals” Fy : RY~! — R. The tropical hypersurface
V(F) is the set of points in R¥~! where F' is non-differentiable. Equivalently, V (F) is
the set of points where the maximum among the terms of F' is achieved at least twice.

Note that V(F) is a codimension-one piecewise-linear subset of R9~1. Moreover, the
complement of V(F) is a collection of (top-dimensional) regions of R¢~1, where each
region R = R(I) is naturally associated to some I € B; more specifically, we have that
Fr(X) > F;(X) for all points X = (X1,...,Xgq-1) € R(I) for all J # I.

We now look at some particularly nice examples of tropical hypersurfaces. Fix positive
numbers n, d and k, and let A = (a4, ..., a,) be a point configuration in R4~! as before.

Definition 8.2. Let h € R™. For 1 <7 < n, define a linear functional f; s : R4 - R by

fin(X):=(X,a;)+h;, equivalently, f; n(X1,...,Xg-1)=0a;1 X1+ -+ a;,a-1Xa—1+h;.

(8.1)
For I € (W), let Frp=3c; fin-
We consider the tropical polynomial
Fk7h(X) = max F],h(X), (82)

1e()

and define Vj, 5, to be the tropical hypersurface V(Fy ). We denote by F(Vi.n) C ([Z])
the collection of all sets I € ([Z]) that appear as a face labels of regions in the complement
of Vk,h-

Recall from Notation 3.5 that for a point configuration A C R%1, 2, denotes the
zonotope associated with the lift V C R? of A. Recall also that each generic height vector
h € R™\ Hy determines a regular fine zonotopal tiling Tp of 2y, and that its set of
vertex labels is denoted by Vert(7z) C 2, see (5.2).

7 In tropical geometry one typically uses integer or rational coefficients, because these coefficients come
from valuations of power series, but in this paper everything will make sense for real coefficients.
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Proposition 8.3. Let A and V be as above, and let h € R™\ Hy, be a generic height vector.
Then

F(Vin) = Vert(Th) N (“}?).
Proof. Let V = (V1,...,0,) be the lift of V to R4+ given by v; := (v, h;). Let I € ([Z]).
By Remark 6.4, I € Vert(7y) if and only if v; := ), ; v; belongs to the upper boundary
of Zj;. Equivalently, there exists a vector 3(/q = (X,q,1) € R+ (for some X € R4~!
and ¢ € R) such that the dot product with X, is maximi@d over Z3 at vr. Since
Z5 = Zie[n] [0,9;], we see that this happens precisely when (X ,,v;) is positive for i € T
and negative for ¢ ¢ I. Note that (iq,ﬂﬁ = (X,a;) +q+ h; = fin(X) + ¢. We have
shown that I € Vert(7p) if and only if there exist X € R"! and ¢ € R such that
forall i € I and j ¢ I, we have f; h(X) +q > 0 > f; n(X) + g. The latter condition
can be restated as: there exists X € R?~! such that for all i € I and j ¢ I, we have
fi.n(X) > fjn(X), which is equivalent to F7 p(X) > Fjp(X) for all J # I. Therefore
a k-element subset I lies in Vert(7y) if and only if I € F(Vi ). DO

8.2. Soliton graphs

In the case that d = 3, we recover the soliton graphs which were studied in [23,24] in
order to study soliton solutions to the KP equation. We briefly review that construction
here.

The KP equation

=0

0 ou ou O%u 0%u
ox

—45 + 6u8_x + 923 3—y2
was proposed by Kadomtsev and Petviashvili in 1970 [22], in order to study the stability
of the soliton solutions of the Korteweg-de Vries (KdV) equation under the influence
of weak transverse perturbations. The KP equation can be also used to describe two-
dimensional shallow water wave phenomena (see for example [21]). This equation is now
considered to be a prototype of an integrable nonlinear partial differential equation.

Let t = (t3,t4,...,t,) be a vector of “higher times” (often one sets t4 =---=1t, =0
and t3 = ¢, but it will be convenient for us to use the higher times.) There is a well
known recipe (see [18,8]) for using a point A in the real Grassmannian Gr(k,n) together
with n real parameters k1 < -+ < K, to construct a 7-function 74(z,y,t), such that a
simple transformation of it

2

'LLA(CL',y,t) = 2% II’ITA((L',y,t)

is a soliton solution of the KP equation.
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The 7-function is defined as follows. For i € [n], set
h; = Kl?t3 + -+ Kty and E;(z,y,t) :=exp(kiz + n?y + h;).

For I = {i; < - < iz} € (i), set

K= H (Ki,, — Ki,) and  Er(z,y,t) =K Ej, - E;,. (8:3)
£<m
For A € Gr(k,n), we define
TA(l',y,t) = Z AI(A) El(xayvt)7 (84)

re()

where Aj(A) is the Pliicker coordinate of A € Gr(k,n) indexed by I as before.

If one is interested in the behavior of the soliton solutions when the variables (z,y, t)
are on a large scale, then, as in [24, Section 4.2], it is natural to rescale the variables
with a small positive number e,

T Y t
r — -, y — -, t — -,
€

which leads to

A | =

k
79 (z,y,t) = Z exp Z(f{ijx + n?jy +hi;) +In(A(A)Ky) |,
Iem j=1

where M = M(A):={I | A;(A) #0} C ([Z]) and I = {i; < -+- < ip}. Then we define
a function Fa(z,y,t) as the limit

k

— |1 € j— . 2 .
Fa(z,y,t) = igr(l)eln (t4(z,y,t)) = max z;(mjx + kLY +hig) o (8.5)
J:

Since the above function depends only on the collection M, we also denote it as
FM(x7y7t)

Definition 8.4 (/25,2/]). Fix t = (t3,...,t,) € R"2. Given a solution u4(z,y,t) of the
KP equation as above, we define its (asymptotic) contour plot C¢(M) to be the set of all
(z,y) € R? where Fa(z,y,t) is not linear.

The contour plot approximates the locus where the corresponding solution of the KP
equation has its peaks, and we label each region in the complement of Ci(M) by the
k-element subset I which achieves the maximum in (8.5).
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Remark 8.5. Comparing (8.5) with Definition 8.2 in the case that M = ([Z]), we see that
Fy(z,y,t) is a tropical polynomial for d = 3, fi(x,y) = k;x + k?y + h; for i € [n], and
the asymptotic contour plot C¢(M) is the tropical hypersurface Vi(f1,..., fn)-

Let d =3 and A= {a4,...,a,} for a; = (r;,k?). Consider its lift V and the zonotope
Zy C R? as in Notation 3.5. Denote h := (hy,..., h,) where h; = k3t3 + - - - + k"'t,, and
recall that Ty, is the regular zonotopal tiling of Zy, induced by h. Applying Proposition 8.3
to these contour plots, we obtain the following result.

Corollary 8.6. Assume that M = ([Z]) and I = {iy,...,ix} € M. Then there exists a
point (xz,y) € R? lying in the region of the complement of C¢(M) labeled by I if and only
if vi, + -+ v, is a vertex of T.

Note that Corollary 8.6 is closely related to the discussion in [20, Section 2.3].

Definition 8.7 (/25,2/]). We associate a soliton graph G(M) to each contour plot Cy(M)
by marking any intersection of three line segments by either a white or black vertex,
depending on whether there is a unique line segment directed from the vertex towards
y — oo or a unique line segment directed from the vertex towards y — —oo (it is
impossible for a line segment to be parallel to the z-axis).

When M = ([Z]), and for generic times ¢t = (ts,...,%,), all intersections of line
segments are trivalent intersections, and by [24, Corollary 10.9], the graph G¢(M) is a
(k,n)-plabic graph, see Fig. 14. Corollary 8.6 then says the following (for A C R? as
above).

Corollary 8.8. Each soliton graph G¢(M) associated to M = ([Z]) is a trivalent A-regular
(k,n)-plabic graph.

Fig. 14 shows the contour plot associated to the positive Grassmannian Grso(2,6);
each region is labeled by an element I = {i1,i2} € ([g]) which indicates that in that
region, Fr(z,y) = fi,(x,y) + fi,(x,y) > Fy(z,y) for all other J € ([g}). The trivalent
intersections of line segments are marked by white or black vertices as in Definition 8.7.

It is natural to ask how the soliton graph (plabic graph) changes when the higher
times t = (t3,...,t,) evolve. In [23], the authors speculated (cf. Fig. 2) that the face
labels of the soliton graph should change via cluster transformations, or in other words,
via moves (M1)—(M3) of the plabic graph from Fig. 4. This is now a consequence of
Theorem 2.7.

Corollary 8.9. Fiz A and M as in Corollary 8.6, and consider the associated soliton
graphs G¢(M). Then as the higher times t = (ts,...,t,) evolve, G¢(M) changes via the
moves from Fig. 4. In particular the face labels change via square mowves.
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Fig. 14. A soliton graph G¢(M) coming from Gr(2, 6).

Proof. Changing the higher times continuously corresponds to changing the heights
contmuously, which by Theorem 2.7 corresponds to walking around the normal fan of
Tak+Zak1+Zap2 O

In [24, Theorem 8.5 and Theorem 8.9], the authors classified the contour plots C¢(M)
obtained when ¢t = (t5,0,...,0) and t3 — £o0o. We can now give a generalization of their
results (cf. Corollary 8.11) in the case that M = (7)) and the ,’s are positive. Let us
write t > 0ift; >0fori=3,...,n

Proposition 8.10. Assume that M = ([Z]), the numbers k1 < --- < Ky, are positive, and
that the vector t > 0 is nonzero. Then C¢(M) can be identified with the plabic graph
associated to the Le-diagram, and its regions are labeled by the elements of F (A, k, h(w))
for w = wqy as in Example 7.13. Similarly, the regions of C_y(M) are labeled by the
elements of F(A, k, h(w)) for w =id.

Proof. Recall that v; = (k;,k2,1) and h; = K3ts + - - - + £I't,. Our goal is to show that
hp > hp—1 > -+ > hy in the sense of (7.3). In other words, we need to show that
uh(abcd)<0f0ralll<a<b<c<d<n For 3 < j < n, let h¥) € R™ be given
by hgj) = Kjtj, thus h = 377 4 Y. 1t suffices to show pu,) (a,b,c,d) < 0. It follows
from (7.2) and (e).4) that

1 1 1 1
Ra Kb Ke KRd
KRG (a’a bv C, d) = —det k2 kP K2 K2 = 7tj : K{a,b7c,d} T 8(j—3) (H(h Kb, Ke, H(i)v

c

d ped o ged T
tiky tiky tike tiky

where Ko 04y Was defined in (8.3) and sy is the Schur polynomial associated with a
partition A = (A1,..., ), see [42, §7.15]. Thus s(;_3) = h;_3 is the complete homoge-
neous symmetric polynomial [42, §7.5]. Since K1 < - -+ < Ky, we find Kqp ¢4y > 0. Since
we have also assumed that k1,...,k, > 0, we find s¢;_g)(Ka, Kb, ke, ka) > 0. We have
shown 1) (a, b, c,d) < 0 for all j such that ¢; > 0, which implies pp(a,b, ¢, d) < 0. For
the case of C_t(M), the same argument shows up(a,b,c,d) >0. O
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In Proposition 8.10, we required the k-parameters to be positive. For the case t =
(t3,0,...,0) studied in [24], this assumption can be lifted.

Corollary 8.11. Proposition 8.10 still holds when the numbers k1 < --- < Ky are not
necessarily positive, provided that t = (t3,0,...,0) with t3 > 0.

Proof. Indeed, in this case the polynomial s;_3y = s from the proof of Proposi-
tion 8.10 is equal to 1, thus we have up(a,b,c,d) < 0 regardless of the sign of the
k-parameters. 0O

Since the generic soliton graphs G¢(M) for M = ([Z]) are trivalent (k,n)-plabic
graphs, it is natural to ask which (k,n)-plabic graphs are realizable as soliton graphs.
Similarly to Section 2.3, let us say that a bipartite (k, n)-plabic graph is realizable if it can
be obtained from some G¢(M) by contracting unicolored edges. Thus every realizable
(k,n)-plabic graph is also A-regular for some A. (It is not clear to us whether the
converse is true.) In [23,24], the authors showed that all bipartite (2, n)-plabic graphs
are realizable. In [20], building on work of [19], Karpman and Kodama showed that for
k=3 and n =6,7,8, every bipartite (k,n)-plabic graph is realizable for some choice of
k- and t-parameters (see however Example 7.9 and [20, Theorem 4.2]).
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