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Kodama and the third author. In particular, we confirm their 
conjecture that when the higher times evolve, soliton graphs 
change according to the moves for plabic graphs.
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1. Introduction

Motivated by the study of discriminants, Gelfand, Kapranov, and Zelevinsky [14] in-

troduced the secondary polytope Σ
GKZ
A for a configuration A of n points in Rd−1. Vertices 

of this remarkable polytope correspond to regular triangulations of the convex hull of 

A, and its faces correspond to regular polyhedral subdivisions. Billera and Sturmfels [4]

defined a more general notion of a fiber polytope Σ
fib(P

π
→ Q) for any linear projection 

π : P → Q of polytopes. Secondary polytopes are exactly the fiber polytopes in the case 

when P is a simplex.

In this paper, we extend the notion of a secondary polytope and define the higher 

secondary polytopes Σ̂A,1, . . . , ̂ΣA,n−d so that Σ̂A,1 coincides with the secondary polytope 

Σ
GKZ
A up to affine translation and dilation. An example of a higher secondary polytope 

is shown in Fig. 1.

Our main motivation for the introduction of polytopes Σ̂A,k comes from total posi-

tivity. [31] constructed a parametrization of the totally positive part Gr>0(k, n) of the 

Grassmannian using plabic graphs, which are certain graphs drawn in a disk with ver-

tices colored in two colors. These graphs have interesting combinatorial, algebraic, and 

geometric features. Remarkably, plabic graphs play a role in several different areas of 

mathematics and physics: cluster algebras [38], quantum minors [37], soliton solutions 

of Kadomtsev-Petviashvili (KP) equation [23,24], scattering amplitudes in N = 4 super-

symmetric Yang-Mills (SYM) theory [2], electrical networks [25], the Ising model [16], 

and many other areas.

Plabic graphs are also closely related to polyhedral geometry. There are two varia-

tions of plabic graphs: trivalent plabic graphs and bipartite plabic graphs. [13] showed 

that trivalent plabic graphs can be identified with sections of fine zonotopal tilings of 

3-dimensional cyclic zonotopes. A related construction [33] identified trivalent plabic 

graphs with π-induced subdivisions for a projection π from the hypersimplex Δk,n to 

an n-gon. From both points of view, it is natural to define the subclass of regular

plabic graphs. Such regular plabic graphs can be explicitly constructed from a vector 

h ∈ R
n. Regular trivalent plabic graphs correspond to (1) sections of regular fine zono-
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Fig. 1. The higher secondary polytope Σ̂A,k for n = 6, d = 3, k = 2, where A ⊆ R
2 is the set of vertices of a 

generic convex hexagon. Thus Σ̂A,k is a higher associahedron. The polytope Σ̂A,k has 32 vertices, and two 
points in the interior of Σ̂A,k (labeled by b and c), corresponding to non-regular fine zonotopal tilings, are 
shown in red. The 34 points shown in this picture correspond to the 34 bipartite plabic graphs for Gr(3, 6), 
and the edges connecting them represent square moves of plabic graphs. See Section 2.3 and Example 7.9
for more details. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

topal tilings of a 3-dimensional cyclic zonotope, and (2) vertices of the fiber polytope 

Σ
fib(Δk,n

π
→ n-gon) associated to a projection of a hypersimplex Δk,n to a convex n-gon.

While regular trivalent plabic graphs correspond to vertices of the fiber polytope 

Σ
fib(Δk,n

π
→ n-gon), regular bipartite plabic graphs also correspond to vertices of cer-

tain polytopes, which do not fit into the framework of fiber polytopes. In general, these 

polytopes are deformations of fiber polytopes, obtained by contracting certain edges of 

fiber polytopes. These polytopes, whose vertices correspond to regular bipartite plabic 

graphs, are the higher secondary polytopes Σ̂A,k, where A is the configuration of vertices 

of a convex n-gon. We call these polytopes higher associahedra, because, for k = 1, they 

are the usual secondary polytopes of n-gons, which are exactly the celebrated associa-

hedra of Stasheff [44,40].

The study of soliton solutions of the Kadomtsev-Petviashvili (KP) equation also leads 

to regular trivalent plabic graphs [23,24,20], which were called realizable plabic graphs

in [20], in the case that A = ((κ1, κ2
1), . . . , (κn, κ2

n)). To understand a soliton solution 
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Fig. 2. A contour plot coming from a point in Gr>0(2, 4) undergoing a cluster mutation as time varies.

uA(x, y, t) of the KP equation coming from a point A in the positive Grassmannian, 

one fixes the time t and plots the points where uA(x, y, t) has a local maximum. This 

gives rise to a tropical curve in the xy-plane; as soliton solutions model shallow water 

waves, such as beach waves, this tropical curve shows the positions in the plane where 

the corresponding wave has a peak. As was shown in [23,24], this tropical curve is a 

reduced plabic graph, and hence the Plücker coordinates naturally labeling the regions 

of the curve form a cluster for the cluster structure on the Grassmannian; the authors 

moreover speculated in [23] that when the time t varies, one observes the face labels of 

the soliton graph change by cluster transformations, see Fig. 2. We prove this conjecture 

using the connection between soliton graphs and regular plabic graphs.
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We now discuss our constructions and results in more detail.

2. Main results

2.1. Background on secondary and fiber polytopes

Let A = (a1, . . . , an) be a configuration of n points in R
d−1, and let Q ⊆ R

d−1

be the convex hull of A. We assume that the points in A affinely span R
d−1. An A-

triangulation is a polyhedral subdivision of Q formed by simplices of the form ΔB :=

conv{ai | i ∈ B} for d-element subsets B of [n] := {1, . . . , n}. We view such simplices 

ΔB as labeled by subsets B, see Remark 3.7. To every A-triangulation τ , Gelfand–

Kapranov–Zelevinsky [14] associated a point vertGKZ(τ) ∈ R
n defined by
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vertGKZ(τ) :=
∑

ΔB∈τ

Vold−1(ΔB) · eB , (2.1)

where Vold−1 is the usual Euclidean volume in Rd−1, e1, e2, . . . , en is the standard basis 

of R
n, and we set eB :=

∑
i∈B ei for B ⊆ [n]. The secondary polytope Σ

GKZ
A of A is 

defined as the convex hull of vectors vertGKZ(τ) where τ ranges over all A-triangulations. 

It turns out [14, Chapter 7, Theorem 1.7] that the vertices of ΣGKZ
A correspond precisely 

to regular A-triangulations, defined in Section 6.

Billera and Sturmfels [4] introduced a more general notion of a fiber polytope Σ
fib(P

π
→

Q) for any affine projection of polytopes π : P → Q, which we review in Section 3.1. If 

P := Δn−1 = conv(e1, . . . , en) is the standard (n − 1)-dimensional simplex in Rn, Q :=

convA, and π is defined by π(ei) = ai for all i, then the fiber polytope Σfib(Δn−1 π
→ Q)

is a dilation of the secondary polytope ΣGKZ
A , see [4, Theorem 2.5]. Therefore the vertices 

of Σfib(Δn−1 π
→ Q) correspond to regular A-triangulations.

Another interesting case is when P = � n = [0, 1]n is the standard n-cube. Let us 

denote by V := (v1, . . . , vn) the lift of A, i.e., the vector configuration in Rd obtained 

from A by setting vi := (ai, 1) ∈ R
d for i = 1, . . . , n, and let ZV :=

∑n
i=1[0, vi] ⊆ R

d be 

the zonotope associated to V. We have a projection � n
π
→ ZV , defined by π(ei) = vi for 

all i, and in this case, the fiber polytope Σfib( � n
π
→ ZV) is called the fiber zonotope of 

ZV . Its vertices correspond to regular fine zonotopal tilings of the zonotope ZV , discussed 

below. Restricting this projection map π to the hypersimplex Δk,n := � n ∩ {x ∈ R
n |

x1 + · · · + xn = k}, and denoting its image by Qk := π(Δk,n) = ZV ∩ {y ∈ R
d | yd = k}, 

we obtain a fiber polytope Σfib(Δk,n
π
→ Qk) which has recently appeared in the theory 

of total positivity for Grassmannians [13,33] and was studied further in [30].

2.2. Higher secondary polytopes

Given a configuration of n points A ⊆ R
d−1 and its lift V ⊆ R

d as above, we introduce 

a family of polytopes Σ̂A,1, . . . , ̂ΣA,n−d, called higher secondary polytopes, defined as 

follows. For a d-element subset B of [n], let Vold(ΠB) := | det(vi)i∈B | be the volume of 

the parallelepiped ΠB spanned by the vectors {vi | i ∈ B}. For a pair of disjoint subsets 

A, B of [n] such that |B| = d and Vold(ΠB) > 0 (i.e., such that B is a basis of V), define 

the shifted parallelepiped ΠA,B ⊆ ZV by

ΠA,B :=
∑

a∈A

va +
∑

b∈B

[0, vb].

Clearly Vold(ΠA,B) = Vold(ΠB) for any A. A fine zonotopal tiling of ZV is (roughly 

speaking) a collection T of parallelepipeds ΠA,B that form a polyhedral subdivision of 

ZV , see Definition 3.6, and we say that T is regular if it can be obtained as a projection 

of the upper boundary of a (d + 1)-dimensional zonotope onto ZV , see Definition 6.3.
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Definition 2.1. For a fine zonotopal tiling T of ZV and k ∈ Z, we introduce a vector

v̂ertk(T ) :=
∑

ΠA,B∈T
|A|=k

Vold(ΠB) · eA ∈ R
n. (2.2)

It is clear that v̂ertk(T ) = 0 if k /∈ [n − d]. For k ∈ [n − d], the higher secondary polytope

Σ̂A,k is defined by

Σ̂A,k := conv
{

v̂ertk(T )
∣∣∣ T is a fine regular zonotopal tiling of ZV

}
.

We expect that the word regular can be omitted from the above definition, see Con-

jecture 6.6. As we will see in Proposition 6.7, for each k ∈ [n − d], the polytope Σ̂A,k has 

dimension n − d. An example of a higher secondary polytope is shown in Fig. 1.

For simplicity, we formulate the following result modulo affine translation. A more 

precise formulation will be given in (6.3). For polytopes P, P ′ ⊆ R
m, we write P

shift
== P ′

if P = P ′ + γ for some γ ∈ R
m.

Theorem 2.2. Let A ⊆ R
d−1 be a point configuration. Recall that Q = convA, V ⊆ R

d

is the lift of A, ZV is the zonotope of V, and Qk = ZV ∩ {y ∈ R
d | yd = k} is the k-th 

section of ZV . Then we have the following.

(i) Σ
GKZ
A

shift
== 1

(d−1)! Σ̂A,1, equivalently, Σfib(Δn−1 π
→ Q) 

shift
== 1

d!Vold−1(Q)
Σ̂A,1.

(ii) Σ
fib( � n

π
→ ZV) 

shift
== 1

Vold(ZV )

(
Σ̂A,1 + · · · + Σ̂A,n−d

)
.

(iii) Σ
fib(Δk,n

π
→ Qk) 

shift
== 1

Vold−1(Qk)

(
p0,dΣ̂A,k + p1,dΣ̂A,k−1 + · · · + pd−1,dΣ̂A,k−d+1

)

for all k ∈ [n − 1], where pr,d is the probability that a random permutation in 

Sd has r descents.

(iv) Duality: Σ̂A,k
shift
== −Σ̂A,n−d−k+1 for all k ∈ [n − d].

Here we assume that Σ̂A,k is a single point if k /∈ [n − d]. The volume forms Vold

and Vold−1 on Rd are scaled so that Vold([0, 1]d) = Vold−1([0, 1]d−1 × {yd}) = 1 for any 

yd ∈ R. The numbers pr,d are given by the formula pr,d =
〈d

r
〉

d! , where 
〈

d
r

〉
is the Eulerian 

number, i.e., the number of permutations of 1, 2, . . . , d with exactly r descents.

Remark 2.3. Theorem 2.2(i) is not an obvious consequence of the definitions: it says that 

Σ
GKZ
A (defined by (2.1)) is the convex hull of points

1

(d − 1)!

∑

ΠA,B∈T
|A|=1

Vold(ΠB) · eA (2.3)
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for all regular fine zonotopal tilings T of ZV . The formulae (2.1) and (2.3) are quite 

different: we have eB in (2.1) as opposed to eA in (2.3), and we have |A| = 0 in (2.1) as 

opposed to |A| = 1 in (2.3).

On the other hand, it is easy to see from the definitions that the last higher secondary 

polytope Σ̂A,n−d satisfies ΣGKZ
A

shift
== − 1

(d−1)! Σ̂A,n−d. Thus Theorem 2.2(i) follows from 

Theorem 2.2(iv).

Remark 2.4. The polytope Σ̂A,k in Fig. 1 is centrally symmetric, in agreement with 

Theorem 2.2(iv): we have k = 2 = n − k − d + 1, thus Σ̂A,k
shift
== −Σ̂A,k.

Example 2.5. Let d = 1 and let A be the configuration of n points a1 = · · · = an =

0 ∈ R
0. Then V is the configuration of n vectors v1 = · · · = vn = (1) ∈ R

1, and the 

zonotope ZV is the interval [0, n] ⊆ R
1. There are n! fine zonotopal tilings of ZV (see 

Definition 3.6), in bijection with the permutations w ∈ Sn. More specifically, for each 

w ∈ Sn, we have the following fine zonotopal tiling Tw of ZV :

Tw :=
{

Π∅,{w1}, Π{w1},{w2}, . . . , Π{w1,...,wn−1},{wn}

}
.

Even though geometrically the tilings Tw are the same for all w ∈ Sn, we treat them as 

different tilings because we take into account the labels of the tiles, see Remark 3.7. We 

have v̂ertk(Tw) = e{w1,...,wk}, thus Σ̂A,k is the hypersimplex Δk,n. It is straightforward to 

see from the definitions (cf. [4, Example 5.4] or [47, Example 9.8]) that n ·Σfib( � n
π
→ ZV)

is the permutohedron Permn := conv{(w1, . . . , wn) | w ∈ Sn}. Thus Theorem 2.2(ii) 

recovers the following well known decomposition [32, Section 16] (implicit in [17]) of the 

permutohedron as a Minkowski sum of hypersimplices:

Permn = Δ1,n + Δ2,n + · · · + Δn−1,n.

More generally, one can consider the case1 where V is a cyclic vector configuration

C(n, d), i.e., is given by vi = (ud−1
i , . . . , ui, 1) for i ∈ [n] and 0 < u1 < u2 < · · · < un ∈ R. 

Thus Example 2.5 corresponds to the case d = 1. If d = 2, then the zonotope ZV is a 

2n-gon, and fine zonotopal tilings are exactly the rhombus tilings of the 2n-gon. They 

correspond to commutation classes of reduced decompositions of the longest permutation 

w0 ∈ Sn [9]. It would be interesting to understand the structure of the associated higher 

secondary polytopes in more detail.

Remark 2.6. For a cyclic vector configuration C(n, d), Ziegler [46] identified the fine 

zonotopal tilings of the cyclic zonotope ZV with elements of Manin-Shekhtman’s higher 

Bruhat order B(n, d) [27], also studied by Voevodsky and Kapranov [45]. Note that 

1 Even more generally, we could choose a sequence of n vectors such that det(vi)i∈B > 0 for all B ⊆ [n]
of size k.
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Fig. 3. A plabic graph and its bipartite version.

B(n, 1) coincides with the weak Bruhat order on permutations, corresponding to the 

case d = 1 in Example 2.5.

We next proceed to the case d = 3.

2.3. Higher associahedra and plabic graphs

Our main motivating example is the case when Σ̂A,k is a higher associahedron, that is, 

when d = 3 and A is the configuration of vertices of a convex n-gon in R2. For example, 

one could take the points in A lying on a parabola, in which case the lift V of A is a cyclic 

vector configuration C(n, 3). It turns out that the combinatorics of higher associahedra 

is directly related to bipartite plabic graphs that were introduced in [31] in the study of 

the totally nonnegative Grassmannian Gr≥0(k, n).

A plabic graph is a planar graph embedded in a disk such that every boundary vertex 

has degree 1 and every interior vertex is colored either black or white. A plabic graph 

is called trivalent if every interior vertex has degree 3, and it is called bipartite if no 

two interior vertices of the same color are connected by an edge. Note that taking a 

trivalent plabic graph G and contracting all edges between interior vertices of the same 

color produces a bipartite plabic graph denoted Gbip (see Fig. 3).

There is a special class of (k, n)-plabic graphs (cf. Definition 7.1), that were used 

in [31] to parametrize the top-dimensional cell of Gr≥0(k, n). Each (k, n)-plabic graph 

has n boundary vertices and k(n −k) +1 faces, and its face labels (cf. Definition 7.2) form 

a cluster in the cluster algebra structure on the coordinate ring of the Grassmannian [38].

Given a plabic graph, one can apply certain moves to it, as shown in Fig. 4. Any two 

trivalent (k, n)-plabic graphs can be connected using moves (M1)–(M3), see [31, Theo-

rem 13.4]. Since applying the moves (M1) and (M3) to G does not change its bipartite 

version Gbip, it follows that any two bipartite (k, n)-plabic graphs can be connected us-
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(M1) (M2) (M3)

Fig. 4. Moves on plabic graphs.

ing only the square move (M2).2 For example, there are 34 bipartite (3, 6)-plabic graphs 

corresponding to the 34 points in Fig. 1 (including the two points labeled by b and c), 

and square moves between them correspond to the edges in Fig. 1.

Building on the work of Oh–Postnikov–Speyer [29], it was shown in [13] that triva-

lent (k, n)-plabic graphs are exactly the planar duals of the horizontal sections of fine 

zonotopal tilings of the zonotope ZV (where V ⊆ R
3 is the lift of A as above), see The-

orem 7.3. It was later observed in [33] that trivalent (k, n)-plabic graphs correspond to 

π-induced subdivisions for the map π : Δk,n → Qk.

We say that a trivalent (k, n)-plabic graph G is A-regular if it is the planar dual 

of a horizontal section of some regular fine zonotopal tiling of ZV , or equivalently, if 

it corresponds to a regular π-induced subdivision of Qk. We say that a bipartite (k, n)-

plabic graph G′ is A-regular if it equals to Gbip for some A-regular trivalent (k, n)-plabic 

graph G. For example, if A is the set of vertices of a generic hexagon, then there are 32

A-regular bipartite (3, 6)-plabic graphs, corresponding to the 32 vertices of the polytope 

shown in Fig. 1. See Example 7.9 for more details.

Theorem 2.7. Let d = 3 and A be the configuration of vertices of a convex n-gon. Then:

(i) For each k ∈ [n −3], the vertices of Σ̂A,k correspond to A-regular bipartite (k+1, n)-

plabic graphs, and the square moves connecting them correspond to the edges of Σ̂A,k.

(ii) For each k ∈ [n − 1], the vertices of Σ̂A,k + Σ̂A,k−1 + Σ̂A,k−2 (equivalently, of 

Σ
fib(Δk,n

π
→ Qk)) correspond to A-regular trivalent (k, n)-plabic graphs, and the 

moves (M1)–(M3) connecting them correspond to the edges of Σ̂A,k + Σ̂A,k−1 +

Σ̂A,k−2.

Example 2.8. The number of bipartite (2, n)-plabic graphs equals to the number of 

trivalent (1, n)-plabic graphs, and is given by the Catalan number Cn−2, where Cm :=
1

m+1

(
2m
m

)
. In both cases, all such plabic graphs are regular, and the corresponding poly-

tope is Σ̂A,1 which by Theorem 2.2(i) is a realization of the associahedron.

Example 2.9. Since Σ̂A,k has dimension n − d by Proposition 6.7, it follows from Theo-

rem 2.7(i) that every A-regular bipartite (k, n)-plabic graph admits at least n −d = n −3

2 We make the convention that applying a square move (M2) to a bipartite graph Gbip means first 
uncontracting some vertices of Gbip so that the vertices of the square become trivalent, then performing 
the square move, and then taking the bipartite version of the resulting graph.
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Fig. 5. A trivalent, bipartite (4, 8)-plabic graph which admits only 4 square moves, superimposed onto its 
dual plabic tiling. This plabic graph is not A-regular for any A, see Example 2.9.

square moves. Fig. 5 contains a (both trivalent and bipartite) (4, 8)-plabic graph that 

admits only 4 square moves, and therefore is not A-regular for any A. This plabic graph 

contains as a subgraph another plabic graph known in physics as the “four-mass box”, 

see [2, Section 11.1].

An example of a trivalent (9, 18)-plabic graph that is not A-regular for any A was 

constructed in [20, Section 6].

Let us say that the diameter of a polytope is the maximal graph distance between 

its vertices in its 1-skeleton. It would be interesting to find the diameter of a higher 

associahedron Σ̂A,k, which equals the maximal square move distance between two A-

regular plabic graphs. Finding the diameter of the usual associahedron Σ̂A,1 is a well-

studied problem: answering a question of Sleator–Tarjan–Thurston [43], Pournin [34]

showed that it equals 2n − 10 for all n > 12. The following conjecture is due to Miriam 

Farber.

Conjecture 2.10 ([10]). Let n = 2k. Then the diameter of the higher associahedron 

Σ̂A,k−1 equals 1
2k(k − 1)2. More generally, for any bipartite (k, 2k)-plabic graph G, the 

minimal number of square moves needed to connect G with Gop equals 1
2k(k − 1)2, where 

Gop is obtained from G by a 180◦ rotation followed by changing the colors of all vertices.
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An example for k = 3 is shown in Fig. 1. The diameter of this polytope is equal to 
1
2k(k − 1)2 = 6, and moreover the graph distance between any vertex and its antipodal 

vertex is also equal to 6.

It was shown in [6, Section 6] that for certain bipartite (k, 2k)-plabic graphs G (coming 

from double wiring diagrams of [12]), the square move distance between G and Gop is 

at least 1
2k(k − 1)2, giving a lower bound on the diameter of Σ̂A,k−1 in Conjecture 2.10. 

See [7] for related results.

2.4. Vertices, edges, and deformations

For simplicity, we assume here that A is a generic point configuration in Rd−1. The 

extension of the results in this subsection to arbitrary point configurations will be given 

in Section 6.3.

It is well known (cf. Lemma 6.5) that any two regular fine zonotopal tilings of ZV can 

be related to each other by a sequence of flips. A flip is an elementary transformation of a 

zonotopal tiling: if V ′ consists of d +1 vectors that span Rd then ZV′ admits precisely two 

fine zonotopal tilings. For general vector configurations V, applying a flip F = (T → T ′)

to a fine zonotopal tiling T of ZV amounts to finding a shifted copy of a fine zonotopal 

tiling of ZV′ for some V ′ ⊆ V of size d + 1, and replacing it with the other fine zonotopal 

tiling of ZV′ , which produces another fine zonotopal tiling T ′ of ZV , see Fig. 8 (left). 

Flips can occur at different levels: if the above copy of ZV′ is shifted by y ∈ R
d, then 

the last coordinate yd of y belongs to {0, 1, . . . , n − d − 1}, and we define the level of the 

flip F to be level(F ) := yd + 1. See Definition 5.8 and Example 5.10.

Since flips of regular fine zonotopal tilings correspond to the edges of the fiber zonotope 

Σ
fib( � n

π
→ ZV), we define the level of an edge of Σfib( � n

π
→ ZV) to be the level of the 

corresponding flip.

Let us say that a polytope P is a parallel deformation of another polytope P ′ if the 

normal fan of P is a coarsening of the normal fan of P ′, see e.g. [35, Theorem 15.3] and 

[1, Section 2.2]. Roughly speaking, P is a parallel deformation of P ′ if P is obtained from 

P ′ by moving its faces while preserving their direction. During this process, every edge 

of P ′ stays parallel to itself but gets rescaled by some nonnegative real number.

We say that two fine zonotopal tilings T and T ′ of ZV are k-equivalent if they can be 

connected by flips F such that level(F ) �= k. Similarly, we say that two flips F = (T1 →

T2) and F ′ = (T ′
1 → T ′

2 ) of level k are k-equivalent if T1 is k-equivalent to T ′
1 and T2 is 

k-equivalent to T ′
2 .

Proposition 2.11. Let A be a generic configuration of n points in Rd−1, and let k ∈ [n −d].

(i) The vertices of the higher secondary polytope Σ̂A,k are in bijection with k-equivalence 

classes of regular fine zonotopal tilings of ZV .

(ii) The edges of Σ̂A,k correspond to k-equivalence classes of flips of level k.
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(iii) For any nonnegative real numbers x1, . . . , xn−d, the Minkowski sum

1

Vold(ZV)

(
x1Σ̂A,1 + · · · + xn−dΣ̂A,n−d

)

is a parallel deformation of the fiber zonotope Σfib( � n
π
→ ZV), where edges of level 

k are rescaled by xk for all k = 1, . . . , n − d.

2.5. Soliton graphs

Finally we give applications of our previous results to the soliton graphs [23,24,20] as-

sociated to the Kadomtsev-Petviashvili (KP) equation. To understand a soliton solution 

uA(x, y, t) of the KP equation coming from a point A in the positive Grassmannian, one 

fixes the time t and plots the points where uA(x, y, t) has a local maximum. This gives 

rise to a tropical curve in the xy-plane. By [23,24], this tropical curve is a reduced plabic 

graph, and as discussed in [20, Section 2.3], it comes from a regular subdivision of a 

three-dimensional cyclic zonotope; we give a precise statement in Corollary 8.6. We then 

apply some of our previous results to classify the soliton graphs coming from the positive 

Grassmannian when the time parameter t tends to ±∞, and to show that generically, 

when the higher time parameters evolve, the face labels of soliton graphs change via the 

square moves (cluster transformations) on plabic graphs.

3. Fiber polytopes and zonotopal tilings

We give further background on fiber polytopes of [4] and discuss several specializations 

of their construction. More details can be found in [4], [14, Chapter 7], and [47, Lecture 9].

3.1. Fiber polytopes

Let P ⊆ R
n be a polytope, and let π : P → Q be a linear projection of polytopes. We 

denote by {pi}i∈[m] the vertex set of P (for some m ≥ 1). For i ∈ [m], let qi := π(pi), and 

let A := {qi}i∈[m] be the associated point configuration. The fiber polytope Σ
fib(P

π
→ Q)

is defined as the Minkowski integral

Σ
fib(P

π
→ Q) :=

1

Vol(Q)

∫

x∈Q

(π−1(x) ∩ P ) dx.

Here Vol denotes the dim(Q)-dimensional volume form on the affine span of Q, and the 

Minkowski integral can be understood in several ways, for example, as the set of points ∫
x∈Q

γ(x) dx ∈ R
n, where γ : Q → P runs over all sections of π [4,5].

However, instead of working with the Minkowski integral, we will use the following 

description of Σfib(P
π
→ Q) as a convex hull of points. Recall that an A-triangulation
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τ = {ΔB} is a triangulation of Q into simplices ΔB := conv{qi | i ∈ B}, where B ⊆ [m]

is a (dim(Q) + 1)-element subset.

Proposition 3.1 ([4, Corollary 2.6]). The fiber polytope Σfib(P
π
→ Q) equals the convex 

hull

Σ
fib(P

π
→ Q) = conv{vertfib(τ) | τ is an A-triangulation}, where

vertfib(τ) :=
1

(dim(Q) + 1)Vol(Q)

∑

ΔB∈τ

(
Vol(ΔB) ·

∑

i∈B

pi

)
∈ R

n. (3.1)

Definition 3.2 ([47, Definition 9.1]). Let π : P → Q be a projection of polytopes as 

above. A π-induced subdivision of Q is a collection T of faces of P such that

• the images {π(F ) | F ∈ T } form a polyhedral subdivision3 of Q;

• for any F, F ′ ∈ T such that π(F ) ⊆ π(F ′), we have F = F ′ ∩ π−1(π(F )).

A π-induced subdivision T is called fine if all of its faces have dimension at most dim(Q).

Definition 3.3. For a polytope P ⊆ R
n and a vector h ∈ R

n, let (P )h denote the face 

of P that maximizes the scalar product with h. Every vector h ∈ R
n gives rise to a 

π-induced subdivision Th of Q obtained as follows: for each point q ∈ Q, consider the 

preimage P ∩ π−1(q) of q under π, and let Pq,h be the unique minimal by inclusion face 

of P that contains (P ∩ π−1(q))h. The subdivision Th consists of the faces Pq,h for all 

q ∈ Q. A π-induced subdivision T of Q is called regular if it equals Th for some h ∈ R
n.

Our notion of a regular π-induced subdivision coincides with the notion of a π-coherent 

subdivision from [4, Section 1] and [47, Definition 9.2].

It turns out (see the paragraph before [4, Corollary 2.7]) that if T is a fine π-induced 

subdivision then the vector vertfib(τ) is the same for any triangulation τ of T . We denote 

this vector by vertfib(T ).

Corollary 3.4 ([4, Corollary 2.7]). The fiber polytope Σfib(P
π
→ Q) equals the convex hull

Σ
fib(P

π
→ Q) = conv{vertfib(T ) | T is a fine π-induced subdivision of Q}. (3.2)

The vertices of Σfib(P → Q) are the vectors vertfib(T ), where T ranges over all regular 

fine π-induced subdivisions of Q, and in particular,

Σ
fib(P

π
→ Q) = conv{vertfib(T ) | T is a regular fine π-induced subdivision of Q}.

(3.3)

3 Recall that a polyhedral subdivision of a polytope Q is a polytopal complex C (any two elements of C
intersect in a common face) with underlying set Q.
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We now specialize this construction to the case where P is either a cube or a (hy-

per)simplex. In these cases, regular fine π-induced subdivisions recover well-studied 

objects such as regular triangulations and regular fine zonotopal tilings. We discuss 

them briefly here, and in more detail in Section 6. In what follows, we will repeatedly 

use the following notation.

Notation 3.5. Let A = (a1, . . . , an) be a point configuration in Rd−1 which affinely spans 

R
d−1. Let V := (v1, . . . , vn) be the lift of A, thus vi := (ai, 1) ∈ R

d for i = 1, . . . , n. 

Then the endpoints of the vectors in V belong to H1, where the hyperplane Hk is defined 

by Hk := {y ∈ R
d | yd = k} in Rd. The zonotope ZV is defined as the Minkowski sum of 

line segments:

ZV :=
n∑

i=1

[0, vi] ⊆ R
d.

We also let Qk := ZV ∩ Hk ⊆ R
d. Let π be the projection π : R

n → R
d defined by 

π(ei) = vi for all i, where e1, . . . , en is the standard basis in Rn.

3.2. Fiber polytopes for projections of a cube: fiber zonotopes

Let P = � n := [0, 1]n =
∑n

i=1[0, ei] ⊆ R
n be the standard n-dimensional cube. We 

have a linear projection π : � n → ZV given by π(ei) = vi, for i ∈ [n]. The fiber zonotope

of ZV is the fiber polytope Σfib( � n
π
→ ZV).

Recall that for A ⊆ [n], we set eA :=
∑

i∈A ei. Faces �A,B of the n-cube � n are 

labeled by pairs (A, B) of disjoint subsets A and B of [n]. They are given by

�A,B := eA +
∑

b∈B

[0, eb] = {(x1, . . . , xn) ∈ � n | xa = 1 for a ∈ A,

and xc = 0 for c ∈ [n] \ (A � B)}.

Definition 3.6. A fine zonotopal tiling T of ZV is a collection of d-dimensional faces �A,B

of the n-cube such that

(1) The images ΠA,B := π(�A,B), for all �A,B ∈ T , are d-dimensional parallelepipeds 

that form a polyhedral subdivision of the zonotope ZV .

(2) For any two faces �A1,B1
, �A2,B2

∈ T , we have

π(�A1,B1
∩ �A2,B2

) = ΠA1,B1
∩ ΠA2,B2

.

From our definition, it is clear that each fine zonotopal tiling is a fine π-induced 

subdivision. We say that a fine zonotopal tiling is regular if the corresponding fine π-

induced subdivision is regular. See Section 6.1 for several alternative definitions.
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Remark 3.7. We refer to the d-parallelepipeds ΠA,B = π(�A,B) as (labeled) tiles. It 

may happen that for two different pairs (A1, B1) and (A2, B2), the two tiles ΠA1,B1
and 

ΠA2,B2
coincide as subsets of R

d. However, we regard them as different labeled tiles, 

because they are labeled by different pairs. We will identify a fine zonotopal tiling T

with the collection of such labeled tiles ΠA,B .

The fiber zonotope of ZV can be described explicitly as follows.

Proposition 3.8. Let V ⊆ R
d be as in Notation 3.5. The fiber zonotope Σfib( � n

π
→ ZV)

equals the convex hull

Σ
fib( � n

π
→ ZV) = conv{vertfib(T ) | T is a fine zonotopal tiling of ZV}, and (3.4)

vertfib(T ) =
1

Vol(ZV)

∑

ΠA,B∈T

Vold(ΠB) ·

(
eA +

1

2
eB

)
. (3.5)

Proof. We use (3.1), and let τ be a triangulation of a fixed tile ΠA,B of T . More specifi-

cally, we use Stanley’s triangulation [41] of � d into d! equal-volume simplices ∇w labeled 

by permutations w ∈ Sd:

∇w := {(y1, . . . , yd) ∈ [0, 1]d | 0 < yw1
< · · · < ywd

< 1}. (3.6)

This gives rise to a triangulation τ of ΠA,B into d! simplices, each of volume Vold(ΠB)
d! . By 

symmetry, we know that the combined contribution of these simplices to (3.1) has the 

form x ·eA +y ·eB for some x, y ∈ R. Each simplex ∇w contributes Vold(ΠB)
d!Vol(ZV ) eA +u(w) for 

some u(w) ∈ R
n. Let w̄ ∈ Sd be the permutation given by w̄i = wd+1−i for all i ∈ [d]. It 

is easy to see that u(w) + u(w̄) = Vold(ΠB)
d!Vol(ZV ) eB , thus x = Vold(ΠB)

Vol(ZV ) and y = Vold(ΠB)
2Vol(ZV ) . �

3.3. Fiber polytopes for projections of a simplex: secondary polytopes

Let A and V be as in Notation 3.5. Let P = Δn−1 = conv(e1, . . . , en) be the standard 

(n − 1)-dimensional simplex in Rn, and π : P → Q := convA the projection defined by 

π(ei) = ai for all i.

Definition 3.9 ([14, Definition 1.6]). The secondary polytope Σ
GKZ
A is defined as the con-

vex hull

Σ
GKZ
A := conv{vertGKZ(τ) | τ is an A-triangulation}, where (3.7)

vertGKZ(τ) :=
∑

ΔB∈τ

Vold−1(ΔB) · eB . (3.8)

The relationship between the polytopes ΣGKZ
A and Σfib(Δn−1 π

→ Q) is given in [4, 

Theorem 2.5]:
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Σ
fib(Δn−1 π

→ Q) =
1

d · Vold−1(Q)
Σ

GKZ
A . (3.9)

Remark 3.10. Every fine zonotopal tiling T gives rise to an A-triangulation τ := {ΔB |

Π∅,B ∈ T }, in which case we denote vertGKZ(T ) := vertGKZ(τ).

3.4. Fiber polytopes for projections of a hypersimplex: hypersecondary polytopes

Recall the definitions of V, ZV , π, Hk, and Qk from Notation 3.5. Also recall that 

Δk,n = � n ∩ {x ∈ R
n | x1 + · · · + xn = k}. Note that if k = 1, then Δ1,n = Δn−1. 

We discuss the fiber polytope Σfib(Δk,n
π
→ Qk). Such polytopes have been recently 

studied in [30] under the name hypersecondary polytopes (not to be confused with higher 

secondary polytopes Σ̂A,k introduced in this paper).

For integers r and d, the Eulerian number
〈

d
r

〉
is defined as the number of permutations 

in Sd with r descents, where a descent of a permutation w is a position i such that 

wi > wi+1 (thus 
〈

d
r

〉
is zero if r /∈ [0, d − 1]). For example, we have 

〈
3
0

〉
= 1, 

〈
3
1

〉
= 4, 〈

3
2

〉
= 1.

Lemma 3.11. Let T be a fine zonotopal tiling of ZV ⊆ R
d. Then for all r ∈ [d − 1] and 

ΠA,B ∈ T , we have

Vold−1(ΠA,B ∩ H|A|+r) =

〈
d−1
r−1

〉

(d − 1)!
Vold(ΠB). (3.10)

Proof. We have ΠA,B = π( � A,B) for A, B disjoint subsets and |B| = d. The intersection 

ΠA,B ∩ H|A|+r is the image of a hypersimplex Δr,d ⊆ �A,B
∼= � d under π. By [41], Δr,d

can be triangulated into 
〈

d−1
r−1

〉
equal-volume simplices, and the image of each of these 

simplices under π has volume Vold(ΠB)
(d−1)! . �

Proposition 3.12. The fiber polytope Σfib(Δk,n
π
→ Qk) equals the convex hull

Σ
fib(Δk,n

π
→ Qk) = conv{vertfib

k (T ) | T is a fine zonotopal tiling of ZV}, where

(3.11)

vertfib
k (T ) :=

1

d! · Vold−1(Qk)

d−1∑

r=1

∑

ΠA,B∈T
|A|=k−r

Vold(ΠB) ·

〈
d − 1

r − 1

〉
· (d · eA + r · eB).

(3.12)

Proof. Let T be a fine zonotopal tiling of ZV . Then T ∩ Hk := {ΠA,B ∩ Hk | ΠA,B ∈ T }

is a fine π-induced subdivision for the projection Δk,n
π
→ Qk. A tile ΠA,B ∈ T has a 

full-dimensional intersection with Hk whenever |A| + r = k for some r ∈ [d − 1]. In this 
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case, ΠA,B ∩ Hk can be triangulated into 
〈

d−1
r−1

〉
simplices as in the proof of Lemma 3.11. 

Proceeding as in the proof of Proposition 3.8, we find that the combined contribution 

of these simplices to (3.1) is precisely Vold(ΠB)

d!·Vold−1(Qk)
(d · eA + r · eB). Thus we have shown 

that Σfib(Δk,n
π
→ Qk) contains the right hand side of (3.11).

On the other hand, by (3.3), it is enough to consider only regular fine π-induced 

subdivisions, and every such subdivision clearly arises as T ∩ Hk for some regular fine 

zonotopal tiling T . This shows that the right hand side of (3.11) contains Σfib(Δk,n
π
→

Qk). �

Example 3.13. For d = 2, (3.12) becomes

vertfib
k (T ) :=

1

Vold−1(Qk)

∑

ΠA,B∈T
|A|=k−1

Vold(ΠB) ·

(
eA +

1

2
eB

)
. (3.13)

Example 3.14. Substituting k = 1 into (3.12) and comparing the result with (3.8), we 

find

vertGKZ(T ) = d · Vold−1(Q1) · vertfib
1 (T ) and Σ

GKZ
A = d · Vold−1(Q1) · Σfib(Δ1,n

π
→ Q1),

(3.14)

in agreement with (3.9).

4. Vertices of fiber polytopes and vertices of higher secondary polytopes

Recall the definitions of V ⊆ R
d, ZV , Hk, Qk, and π from Notation 3.5. Also recall that 

Δk,n = � n ∩{x ∈ R
n | x1 + · · ·+xn = k}. In this section, we prove Theorem 4.6, which 

gives a duality identity, and expresses the vertices of fiber polytopes Σfib( � n
π
→ ZV), 

Σ
GKZ
A , and Σfib(Δk,n

π
→ Qk) as linear combinations of the vectors v̂ertk(T ) defined 

in (2.2). This will constitute one of the main steps in the proof of Theorem 2.2, which 

we give in Section 6.2.

We start by giving a refinement of the simple fact that for any fine zonotopal tiling 

T , the sum 
∑

ΠA,B∈T Vold(ΠB) equals Vold(ZV), and therefore does not depend on T . 

For k ∈ [n − 1], we let

βk := Vold−1(Qk), (4.1)

and we set βk := 0 for k /∈ [n − 1].

Proposition 4.1. Fix a vector configuration V ⊆ R
d as in Notation 3.5. For each k ∈

[0, n − d], there exists a number γd
k(V) = γk(V) ∈ R>0 such that for any fine zonotopal 

tiling T , we have
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γd
k(V) = γk(V) =

∑

ΠA,B∈T
|A|=k

Vold(ΠB). (4.2)

Proof. Let us temporarily denote

γ̃k(T , V) :=
∑

ΠA,B∈T
|A|=k

Vold(ΠB)

for all k ∈ Z. Then βk = Vold−1(Qk) = Vold−1(ZV ∩Hk) =
∑

ΠA,B∈T Vold−1(ΠA,B ∩Hk). 

Applying (3.10), we find that βk =
∑d−1

r=1 γ̃k−r(T , V) ·
〈d−1

r−1〉
(d−1)! . Since the coefficient of γ̃k−1

in the right hand side is equal to 1
(d−1)! , the numbers γ̃k(T , V) can be expressed in terms 

of the βr’s by induction for k = 0, 1, . . . , n −d. Explicitly, let Ad−1(x) :=
∑d−2

r=0

〈
d−1

r

〉
xr be 

the Eulerian polynomial, and let c0, c1, · · · ∈ Z be defined by 1
Ad−1(x) = c0+c1x +c2x2+. . .

(thus c0 = 1). Then we have γ̃k(T , V) = c0βk+1 + c1βk + c2βk−1 + · · · + ck+1β0 for all 

k ∈ [0, n − d]. It is clear that γ̃k(T , V) does not depend on T , and so we can refer to it 

as γk(V). �

Example 4.2. For d = 2, 3, 4, we have respectively

γ2
k(V) = βk+1, (4.3)

γ3
k(V) = βk+1 − βk + · · · + (−1)k+1β0, (4.4)

γ4
k(V) = βk+1 − 4βk + 15βk−1 − 56βk−2 + . . . , (4.5)

where the coefficients of (4.5) form the sequence A125905 in the OEIS [28].

For i ∈ [n], let V −i denote the vector configuration in Rd obtained from V by omitting 

vi. For each k ∈ [0, n −d], we introduce a vector δ(k, V) ∈ R
n whose ith coordinate equals

δi(k, V) := γk(V) − γk(V − i) for all i ∈ [n]. (4.6)

For k /∈ [0, n − d], we set γk(V) := 0 ∈ R and δ(k, V) := 0 ∈ R
n. Recall that the 

vectors of V are assumed to linearly span R
d. If the vectors of V − i all belong to a 

lower-dimensional subspace of Rd, we say that i is a coloop and set γk(V − i) := 0 for all 

k.

The following result will be useful in the proof of Theorem 4.6.

Proposition 4.3. For all k ∈ [0, n − d], we have

∑

ΠA,B∈T
|A|=k

Vold(ΠB) · (eA + eB) =
∑

ΠA,B∈T
|A|=k+1

Vold(ΠB) · eA + δ(k, V). (4.7)
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Fig. 6. Deleting vi from V and its effect on a tiling T , see (4.8).

Proof. Fix i ∈ [n]. We first show that

∑

ΠA,B∈T
|A|=k+1, i∈A

Vold(ΠB) +
∑

ΠA,B∈T
|A|=k, i/∈A�B

Vold(ΠB) = γk(V − i). (4.8)

Assume that i is a coloop, which means that the vectors in V − i do not linearly span 

R
d, in which case the right hand side of (4.8) is zero. On the other hand, for each tile 

ΠA,B ∈ T , we must have i ∈ B, which shows that the left hand side of (4.8) is also zero. 

Assume now that i is not a coloop. Then each fine zonotopal tiling T of ZV gives rise to 

a fine zonotopal tiling T − i of ZV−i defined by

T − i := {ΠA\{i},B | ΠA,B ∈ T , i ∈ A} � {ΠA,B | ΠA,B ∈ T , i /∈ A � B}.

Using this observation, we see that (4.8) follows from the definition (4.2) of γk(V − i). 

For the example in Fig. 6, for k = 1, the left hand side of (4.8) is equal to 3 + 2 as shown 

in Fig. 6 (middle) while the right hand side of (4.8) is equal to 5 as shown in Fig. 6

(right).

To prove (4.7), it is enough to verify what it says for the ith coordinate, which is:

∑

ΠA,B∈T
|A|=k, i∈A�B

Vold(ΠB) =
∑

ΠA,B∈T
|A|=k+1, i∈A

Vold(ΠB) + δi(k, V). (4.9)

Adding 
∑

ΠA,B∈T
|A|=k, i/∈A�B

Vold(ΠB) to both sides of (4.9) and applying (4.8) gives γk(V) =

γk(V − i) + δi(k, V), which is precisely the definition (4.6) of δ(k, V). �

Corollary 4.4. Recall the definition of v̂ertk(T ) from (2.2). Let K ⊆ Z and choose some 

numbers xk, yk ∈ R for each k ∈ K. Then
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∑

ΠA,B∈T
k:=|A|∈K

Vold(ΠB) · (xkeA + ykeB)=
∑

k∈K

(
(xk −yk)v̂ertk(T )+yk(v̂ertk+1(T )+δ(k, V))

)
.

(4.10)

Proof. This follows by replacing xkeA + ykeB on the left hand side of (4.10) with (xk −

yk)eA + yk(eA + eB), and applying Proposition 4.3. �

Definition 4.5. Given two disjoint sets A, B ⊆ [n], let C := [n] \ (A � B), and denote 

ΠA,B,C := ΠA,B . For each zonotopal tiling T of ZV there exists “the opposite” zonotopal 

tiling T op of ZV given by T op := {ΠC,B,A | ΠA,B,C ∈ T }, see Fig. 7.

Theorem 4.6. Recall the definitions of vertfib(T ), vertfib
k (T ), and vertGKZ(T ) from (3.5), 

(3.12), and Remark 3.10. We have

vertfib(T ) =
1

Vold(ZV)

(
n−d∑

k=1

v̂ertk(T ) +
1

2

n−d∑

k=0

δ(k, V)

)
; (4.11)

vertfib
k (T ) =

1

Vold−1(Qk)

(
d−1∑

r=0

〈
d
r

〉

d!
v̂ertk−r(T ) +

d−1∑

r=1

r ·
〈

d−1
r−1

〉

d!
δ(k − r, V)

)
; (4.12)

vertGKZ(T ) =
1

(d − 1)!

(
v̂ert1(T ) + δ(0, V)

)
; (4.13)

v̂ertk(T ) + v̂ertn−d−k+1(T op) = γk−1(V) · e[n] − δ(k − 1, V). (4.14)

Proof. Applying Corollary 4.4 to (3.5) with K = [0, n − d], xk = 1
Vol(ZV ) , and yk =

1
2Vol(ZV ) for all k ∈ K, we obtain (4.11).

Similarly, applying Corollary 4.4 to (3.12) with K = [k − d + 1, k − 1], xk−r =
d·〈d−1

r−1〉
d!Vold−1(Qk)

, and yk−r =
r·〈d−1

r−1〉
d!Vold−1(Qk)

for all r ∈ [d − 1], we get

vertfib
k (T )

=
1

Vold−1(Qk)

d−1∑

r=1

(
(d − r) ·

〈
d−1
r−1

〉

d!
v̂ertk−r(T ) +

r ·
〈

d−1
r−1

〉

d!
(v̂ertk−r+1(T ) + δ(k − r, V))

)

=
1

Vold−1(Qk)

d−1∑

r=0

(
(d − r) ·

〈
d−1
r−1

〉
+ (r + 1) ·

〈
d−1

r

〉

d!
v̂ertk−r(T ) +

r ·
〈

d−1
r−1

〉

d!
δ(k − r, V)

)
.

Applying the well known recurrence (d − r) ·
〈

d−1
r−1

〉
+ (r + 1) ·

〈
d−1

r

〉
=
〈

d
r

〉
for Eulerian 

numbers yields (4.12).

For k = 1, combining (4.12) with (3.14) yields (4.13).
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Fig. 7. A vector configuration V, a fine zonotopal tiling T of ZV , and its “opposite” tiling T op for d = 2 and 
n = 4. We label each vertex vi1

+ · · · + vik
by i1 · · · ik.

Finally, to show (4.14), we use |A| + |C| = n − d and (2.2) to write

v̂ertn−d−k+1(T op) =
∑

ΠC,B,A∈T op

|C|=n−d−k+1

Vold(ΠB) · eC =
∑

ΠA,B∈T
|A|=k−1

Vold(ΠB) · (e[n] − eA − eB),

and by (4.2) and (4.7), this is equal to

γk−1(V) · e[n] −
∑

ΠA,B∈T
|A|=k−1

Vold(ΠB) · (eA + eB) = γk−1(V) · e[n] − δ(k − 1, V) − v̂ertk(T ). �

Example 4.7. For d = 2, (4.12) becomes

vertfib
k (T ) =

1

2Vol1(Qk)

(
v̂ertk(T ) + v̂ertk−1(T ) + δ(k − 1, V)

)
. (4.15)

Example 4.8. Consider the case n = 4, d = 2, and let V be the vector configuration given 

in Fig. 7 (left), so the vectors v1, v2, v3, v4 of V are the column vectors of the matrix (
2 1 0 −1
1 1 1 1

)
. If B = {i, j} for 1 ≤ i < j ≤ 4 then Vold(ΠB) = j − i. We have

Vold(ZV) = 10, Vold−1(Q1) = 3, Vold−1(Q2) = 4, Vold−1(Q3) = 3,

where Vold(ZV) is the area of ZV and Vold−1(Qk) is the length of the horizontal section 

of ZV by the line y2 = k. By (4.3), γk(V) is equal to βk+1 = Vold−1(Qk+1). Using this 

to compute γk(V) (and also γk(V − i) for i = 1, 2, 3, 4), we get

γ0(V) = 3, γ1(V) = 4, γ2(V) = 3;

δ(0, V) = (1, 0, 0, 1), δ(1, V) = (2, 1, 1, 2), δ(2, V) = (3, 3, 3, 3).

Let T and T op be as in Fig. 7. The corresponding vertices of the higher secondary 

polytopes are given by
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v̂ert1(T ) = (0, 3, 0, 1), v̂ert2(T ) = (0, 3, 3, 0),

v̂ert1(T op) = (2, 0, 0, 2), v̂ert2(T op) = (2, 0, 3, 1).

We would like to verify the formulas from Theorem 4.6. First, (4.14) clearly holds: for 

k = 1 and k = 2, we have

v̂ert1(T ) + v̂ert2(T op) = (2, 3, 3, 2),

γ0(V)e[n] − δ(0, V) = 3 · (1, 1, 1, 1) − (1, 0, 0, 1) = (2, 3, 3, 2),

v̂ert2(T ) + v̂ert1(T op) = (2, 3, 3, 2),

γ1(V)e[n] − δ(1, V) = 4 · (1, 1, 1, 1) − (2, 1, 1, 2) = (2, 3, 3, 2).

Using (3.5) and (3.13), we find

vertfib(T ) =
1

10

(
2

e{2,4}

2
+

e{1,2}

2
+
(

e4 +
e{2,3}

2

)
+
(

e2 +
e{3,4}

2

)
+ 2
(

e2 +
e{1,3}

2

)

+3
(

e{2,3} +
e{1,4}

2

))
=

1

10
(3, 8, 5, 4);

vertfib
1 (T ) =

1

3

(
2

e{2,4}

2
+

e{1,2}

2

)
=

1

6
(1, 3, 0, 2);

vertfib
2 (T ) =

1

4

((
e4 +

e{2,3}

2

)
+
(

e2 +
e{3,4}

2

)
+ 2
(

e2 +
e{1,3}

2

))
=

1

8
(2, 7, 4, 3);

vertfib
3 (T ) =

1

3
· 3
(

e{2,3} +
e{1,4}

2

)
=

1

2
(1, 2, 2, 1).

We indeed see that (4.11) and (4.12) (which specializes to (4.15) for d = 2) hold as well:

vertfib(T )=
1

10
(3, 8, 5, 4)=

1

10

(
v̂ert1(T ) + v̂ert2(T ) +

1

2
(δ(0, V) + δ(1, V) + δ(2, V))

)
;

vertfib
1 (T )=

1

6
(1, 3, 0, 2)=

1

2 · 3

(
v̂ert1(T ) + 0 + δ(0, V)

)
;

vertfib
2 (T )=

1

8
(2, 7, 4, 3)=

1

2 · 4

(
v̂ert2(T ) + v̂ert1(T ) + δ(1, V)

)
;

vertfib
3 (T ) =

1

6
(3, 6, 6, 3)=

1

2 · 3

(
0 + v̂ert2(T ) + δ(2, V)

)
.

5. Flips of zonotopal tilings

Zonotopal tilings form a poset under refinement whose minimal elements are fine 

zonotopal tilings. Two fine zonotopal tilings differ by a flip (cf. Definition 5.6) if there 

exists a zonotopal tiling that covers both of them in this poset. In this section we describe 

(see Corollaries 5.9 and 5.16) how the vectors v̂ertk(T ) and v̂ertk(T ′) differ when the fine 
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zonotopal tilings T and T ′ differ by a flip. This will be useful in Section 6 for describing 

the 1-skeleton of a higher secondary polytope.

5.1. Oriented matroids and signed circuits

Each vector configuration V = (v1, . . . , vn) spanning R
d defines a rank d oriented 

matroid M = MV . We refer to [3] for the definition of an oriented matroid, but note 

that it is completely determined by its set C(M) of circuits introduced below. We denote 

by B(M) the collection of bases of V, that is, d-element subsets B ⊆ [n] such that the 

vectors {vi}i∈B form a linear basis of R
d. We say that the vector configuration V is 

generic if B(M) =
(

[n]
d

)
:= {B ⊆ [n] | |B| = d}, that is, if every d vectors of V form a 

basis of Rd. An independent set is a subset I ⊆ [n] such that there is a basis B ∈ B(M)

satisfying I ⊆ B.

Let us mention a well known property of fine zonotopal tilings, see Fig. 7 for an 

example.

Proposition 5.1 ([39, (56)]). Let T be a fine zonotopal tiling of ZV . Then the map ΠA,B �→

B is a bijection between T and B(M). In other words, for each basis B ∈ B(M) of V, 

there exists a unique set A ⊆ ([n] \ B) such that ΠA,B belongs to T .

Definition 5.2. A signed set is a pair X = (X+, X−) of disjoint subsets of [n]. Its support

is X := X+ � X−, and we set X0 := [n] \ X, thus [n] = X+ � X0 � X−. For each j ∈ [n]

we write

Xj =

⎧
⎪⎪⎨
⎪⎪⎩

+1, if j ∈ X+;

−1, if j ∈ X−;

0, if j ∈ X0.

(5.1)

For j ∈ X, we denote X(j) := X \ {j}. We also let −X := (X−, X+) denote the opposite

signed set.

Definition 5.3. A circuit of V is a signed set C = (C+, C−) such that C(j) is an indepen-

dent set for each j ∈ C, but there exists a vector α(C) ∈ R
n satisfying

αj(C) > 0 for j ∈ C+, αj(C) < 0 for j ∈ C−, αj(C) = 0 for j ∈ C0,

and
∑

j∈C

αj(C)vj = 0.

Such a vector α(C) is unique up to multiplication by a positive real number. We denote 

by C(M) the collection of all circuits of V.

Throughout, for A ⊆ [n] and j ∈ [n], we abbreviate A ∪j := A ∪{j} and A \j := A \{j}.
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5.2. Circuit orientations

A convenient way to work with flips of fine zonotopal tilings is to use the language of 

circuit orientations.

Definition 5.4. A circuit orientation is a map σ : C(M) → {+1, 0, −1} satisfying 

σ(−C) = −σ(C) for all C ∈ C(M). We say that σ is generic if σ(C) ∈ {+1, −1}

for all C ∈ C(M).

We describe a way to associate a generic circuit orientation (called colocalization in [15]

because they are dual to the localizations of [3, Definition 7.1.5]) to each fine zonotopal 

tiling T of ZV . Let T be such a tiling. Define its set of vertex labels (cf. Fig. 7) by4

Vert(T ) := {I ⊆ [n] | A ⊆ I ⊆ A � B for some ΠA,B ∈ T }. (5.2)

Given a set S ⊆ [n] and a circuit C ∈ C(M), we say that S orients C positively if 

C+ ⊆ S and C− ∩ S = ∅. Similarly, we say that S orients C negatively if C− ⊆ S

and C+ ∩ S = ∅. We say that a collection D ⊆ 2[n] orients C positively if some set in 

D orients C positively but no set in D orients C negatively. Similarly, we say that a 

collection D ⊆ 2[n] orients C negatively if some set in D orients C negatively but no set 

in D orients C positively.

Proposition 5.5 ([15, Theorem 2.7 and Corollary 7.22]). Let T be a fine zonotopal tiling 

of ZV and let C ∈ C(M). Then the collection Vert(T ) either orients C positively or 

orients C negatively (but not both).

Note that Proposition 5.5 can alternatively be deduced by combining Proposi-

tion 2.2.11, Theorem 2.2.13, and Proposition 7.1.4 of [3]. We define a generic circuit 

orientation σT : C(M) → {+1, −1} by setting

σT (C) :=

{
+1, if Vert(T ) orients C positively,

−1, if Vert(T ) orients C negatively,
for all C ∈ C(M). (5.3)

Definition 5.6. Consider two fine zonotopal tilings T , T ′ of ZV , and let σ := σT , σ′ := σT ′

be the corresponding generic circuit orientations. We say that T and T ′ differ by a flip

if there exists a circuit C ∈ C(M) such that σ(C) = +1, σ′(C) = −1 and σ(X) = σ′(X)

for all X ∈ C(M) such that X �= ±C. In this case, we denote this flip by F := (T → T ′)

and say that F is a flip along C.

4 Given a fine zonotopal tiling T , the collection Vert(T ) defined in (5.2) coincides with the collection 
defined in [15, Eq. (2.1)]. The two definitions look slightly different because in [15], a tiling is a collection 
of faces of all different dimensions, whereas here we identify a tiling with its collection of top-dimensional 
faces.
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Our next goal is to describe the effect of a flip F = (T → T ′) on the tiles of T and 

on v̂ertk(T ).

5.3. Flips for generic vector configurations

Recall that a vector configuration V is called generic if B(M) =
(

[n]
d

)
. Before pro-

ceeding to the general case, we describe flips of zonotopal tilings and their effect on 

the vertices of higher secondary polytopes in the case when V is generic. Thus in this 

subsection we restrict our attention to generic vector configurations. We postpone the 

proofs of all results until Section 5.4.

Recall that the vector α(C) from Definition 5.3 is defined up to a positive real con-

stant. We start by fixing a choice for this constant: for each C ∈ C(M), define α(C) ∈ R
n

by

αj(C) := Cj · Vold(ΠC(j)) for all j ∈ [n], (5.4)

where Cj ∈ {+1, 0, −1} and C(j) ∈ B(M) are given in Definition 5.2. As we will see in 

Lemma 5.11, α(C) satisfies the assumptions of Definition 5.3.

Proposition 5.7. Let F = (T → T ′) be a flip along C ∈ C(M). Then there exists a set 

A := A(F ) ⊆ [n] \ C such that

T \ T ′ =
{

ΠA∪j,C(j)

}
j∈C+

�
{

ΠA,C(j)

}
j∈C−

and T ′ \ T =
{

ΠA,C(j)

}
j∈C+

�
{

ΠA∪j,C(j)

}
j∈C−

.

Definition 5.8. Using the notation of Proposition 5.7. We define level(F ) := |A(F )| + 1 ∈

[n − d].

Corollary 5.9. Let k ∈ [n − d] and F = (T → T ′) be a flip along C ∈ C(M). Then

v̂ertk(T ) − v̂ertk(T ′) =

{
α(C), if level(F ) = k,

0, otherwise.

Example 5.10. Let V and T be as in Example 4.8. An example of a flip F = (T → T ′)

is shown in Fig. 8 (left). Here we have C = ({3}, {1, 4}) and thus α(C) = −e1 +

3e3 − 2e4 = (−1, 0, 3, −2). We also have A(F ) = {2} and level(F ) = 2. Recall from 

Example 4.8 that we had v̂ert1(T ) = (0, 3, 0, 1) and v̂ert2(T ) = (0, 3, 3, 0). Similarly, we 

find v̂ert1(T ′) = (0, 3, 0, 1) and v̂ert2(T ′) = (1, 3, 0, 2). Thus v̂ert1(T ) − v̂ert1(T ′) = 0

and v̂ert2(T ) − v̂ert2(T ′) = α(C), in agreement with Corollary 5.9.
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Fig. 8. A flip for the case when V is generic (left) and non-generic (right).

5.4. Flips for arbitrary vector configurations

We generalize the results of the previous subsection to vector configurations that are 

not necessarily generic.

For a circuit C ∈ C(M), denote by

B(M/C) :=
{

J ⊆ ([n] \ C)
∣∣∣ (J � C(j)) ∈ B(M) for all j ∈ C

}

the set of bases of the contracted oriented matroid M/C. In other words, B(M/C) is 

the set of bases of the vector configuration that is the image of V in the quotient space 

R
d/ 〈vj | j ∈ C〉.

For any circuit C ∈ C(M) and J ∈ B(M/C), define the vector α(C, J) ∈ R
n by

αj(C, J) := Cj · Vold(ΠC(j)�J ) for all j ∈ [n]. (5.5)

We also define

α(C) :=
∑

J∈B(M/C)

α(C, J). (5.6)

When V is generic, the set B(M/C) = {∅} consists of a single element, and α(C, ∅) =

α(C) specializes to the vector α(C) defined in (5.4).

Lemma 5.11. Let C ∈ C(M) be a circuit of M. Then for each J ∈ B(M/C), the vector 

α(C, J) satisfies the assumptions of Definition 5.3. In particular, the vectors {α(C, J) |

J ∈ B(M/C)} and also α(C) coincide up to rescaling by a positive real number.

Proof. By (5.5), we only need to check that α(C, J) gives a linear dependence between 

the vectors of V, i.e., 
∑

j∈C αj(C, J)vj = 0. Let I := C � J = {j1 < · · · < jd+1}. 

The kernel of the d × (d + 1) matrix M with columns vj1
, . . . , vjd+1

is given by ∑
i∈[d+1](−1)iΔI\ji

(M) · ei ∈ R
d+1, where ΔI\ji

(M) := det(vji
)i∈I\ji

denotes the cor-

responding Plücker coordinate of M . If ji ∈ J then ΔI\ji
(M) = 0. If ji ∈ C then 

|ΔI\ji
(M)| = |αji

(C, J)|, and the sign agrees with Cj . �
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We now show the following generalization of Proposition 5.7, see Fig. 8 (right) for an 

example.

Proposition 5.12. Let F = (T → T ′) be a flip along C ∈ C(M). Then for each J ∈

B(M/C), there exists a set A(F, J) ⊆ [n] \ (C � J) such that

T \ T ′ = �
J∈B(M/C)

({
ΠA(F,J)∪j,C(j)�J

}
j∈C+

�
{

ΠA(F,J),C(j)�J

}
j∈C−

)
, and

T ′ \ T = �
J∈B(M/C)

({
ΠA(F,J),C(j)�J

}
j∈C+

�
{

ΠA(F,J)∪j,C(j)�J

}
j∈C−

)
.

Before proving Proposition 5.12, we explain how to reconstruct a fine zonotopal tiling 

T from the associated generic circuit orientation σT defined in (5.3). Consider a generic 

circuit orientation σ : C(M) → {+1, −1} and a basis B ∈ B(M) of V. Given j ∈ [n] \ B, 

there exists a unique circuit C ∈ C(M) such that j ∈ C+ and C ⊆ B�{j}. Following [26], 

we say that j is externally semi-active (with respect to σ and B) if σ(C) = +1, and we 

denote by Extσ(B) ⊆ ([n] \ B) the set of all externally semi-active j. Define a collection 

Tσ of tiles by

Tσ := {ΠA,B |B ∈ B(M), A = Extσ(B)} . (5.7)

Lemma 5.13. Let T be a fine zonotopal tiling of ZV and let σ := σT be the associated 

generic circuit orientation. Then T = Tσ.

Proof. Let B ∈ B(M) be a basis of V. By Proposition 5.1, there exists a unique A ⊆

([n] \ B) such that ΠA,B ∈ T . It suffices to show that A = Extσ(B). Let j ∈ ([n] \ B) be 

any element, and let C ∈ C(M) be the unique circuit such that C ⊆ B ∪ j and j ∈ C+. 

We would like to show that j ∈ A if and only if σ(C) = +1.

Suppose that j ∈ A. Then C+ \ j is an independent set contained in B and thus 

A ∪C+ = A �(C+ \j) belongs to Vert(T ), see (5.2). We also see that (A ∪C+) ∩C− = ∅, 

so A ∪ C+ orients C positively, and thus σ(C) = +1.

Conversely, suppose that j /∈ A. Then C− ⊆ C(j) is an independent set contained 

in B and thus A ∪ C− ∈ Vert(T ). But now A ∪ C− orients C negatively, and thus 

σ(C) = −1. �

Corollary 5.14. Let F = (T → T ′) be a flip along C ∈ C(M), and let ΠA,B ∈ T . Then:

• if B = C(j) � J for some j ∈ C+ and J ∈ B(M/C) then j ∈ A and ΠA\j,B ∈ T ′;

• if B = C(j) � J for some j ∈ C− and J ∈ B(M/C) then j /∈ A and ΠA∪j,B ∈ T ′;

• otherwise, ΠA,B ∈ T ′.

Proof. By Proposition 5.1, there exists a unique set A′ such that ΠA′,B ∈ T ′. By 

Lemma 5.13, we have A = Extσ(B) and A′ = Extσ′(B), where σ := σT and σ′ := σT ′ . 
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By Definition 5.6, the values of σ and σ′ only differ on ±C. By (5.7), for each j ∈ ([n] \B)

such that C � (B ∪ j), we have j ∈ A if and only if j ∈ A′. If C ⊆ B ∪ j then we have 

B = C(j) � J for some J ∈ B(M/C), and depending on whether j ∈ C+ or j ∈ C−, we 

either get j ∈ A \ A′ or j ∈ A′ \ A, respectively. �

Proof of Proposition 5.12. Fix J ∈ B(M/C) and let σ := σT . By Corollary 5.14, in 

order to prove Proposition 5.12, it suffices to show that

for any j ∈ C, if we let B := C(j) � J , then Extσ(B) \ j is independent of j. (5.8)

Indeed, in this case, the set A(F, J) := Extσ(B) \ j clearly satisfies the assumptions of 

Proposition 5.12.

To prove (5.8), choose any j1, j2 ∈ C, and let B1 := C(j1) � J , B2 := C(j2) � J , 

A1 := Extσ(B1) \ j1, A2 := Extσ(B2) \ j2. We need to show that A1 = A2.

Let D := Vert(T ) ∪Vert(T ′). By Proposition 5.5 and Definition 5.6, for any X ∈ C(M)

such that X �= ±C, D orients X either positively or negatively (but not both). Next, we 

have

A1 � I, A2 � I ∈ D for all I ⊆ (C � J). (5.9)

Indeed, by Corollary 5.14, we either have A1 � (I \ j1) ∈ Vert(T ) and A1 � (I ∪ j1) ∈

Vert(T ′) or vice versa, and the argument for A2 is completely similar.

We would like to show A1 ⊆ A2. Otherwise, assume that i ∈ A1 \ A2. Let X ∈ C(M)

be the unique circuit satisfying X ⊆ B2 ∪ i and i ∈ X+. Then X �= ±C and X− ⊆ B2. 

By (5.9), we have A2 � X− ∈ D. Since i /∈ A2, we have A2 ∩ X+ = ∅, thus D orients X

negatively.

Suppose that j1 /∈ X+. By (5.9), A1 ∪ X+ = A1 � (X+ \ i) belongs to D, thus D

orients X positively, and we get a contradiction.

Thus j1 ∈ X+. After possibly switching the direction of the flip F (which amounts to 

replacing C with −C), we may assume that j1 ∈ C−. Applying the circuit elimination 

axiom [3, Definition 3.2.1 (C3)] to X, C, and j1, we see that there exists Y ∈ C(M)

satisfying

Y + ⊆ (X+ ∪ C+) \ {j1}, Y − ⊆ (X− ∪ C−) \ {j1}.

We have Y �= ±C and i /∈ Y −. By (5.9), the sets A1 ∪ Y + = A1 � (Y + \ i) and A2 � Y −

both belong to D. Moreover, A1 ∪ Y + orients Y positively while A2 � Y − orients Y

negatively. We arrive at a contradiction, which shows A1 ⊆ A2. By symmetry, we get 

A1 ⊇ A2, therefore A1 = A2. �

Definition 5.15. Using the notation of Proposition 5.12, for J ∈ B(M/C), we define 

level(F, J) := |A(F, J)| + 1.
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Corollary 5.16. Let k ∈ [n − d] and F = (T → T ′) be a flip along C ∈ C(M). Then

v̂ertk(T ) − v̂ertk(T ′) =
∑

J∈B(M/C)
level(F,J)=k

α(C, J).

Proof. Recall from Lemma 5.11 that 
∑

j∈C αj(C, J)vj = 0. Since the last coordinate of 

each vj is equal to 1, (5.5) implies that

∑

j∈C+

Vold(ΠC(j)�J ) =
∑

j∈C−

Vold(ΠC(j)�J ). (5.10)

Combining (2.2) with Proposition 5.12, we see that there exists u ∈ R
n such that

v̂ertk(T ) = u +
∑

J∈B(M/C)
level(F,J)=k

∑

j∈C+

Vold(ΠC(j)�J )eA(F,J)∪j

+
∑

J∈B(M/C)
level(F,J)=k+1

∑

j∈C−

Vold(ΠC(j)�J)eA(F,J),

v̂ertk(T ′) = u +
∑

J∈B(M/C)
level(F,J)=k

∑

j∈C−

Vold(ΠC(j)�J)eA(F,J)∪j

+
∑

J∈B(M/C)
level(F,J)=k+1

∑

j∈C+

Vold(ΠC(j)�J )eA(F,J).

By (5.10), the difference of the right hand sides equals to

∑

J∈B(M/C)
level(F,J)=k

⎛
⎝∑

j∈C+

Vold(ΠC(j)�J)ej −
∑

j∈C−

Vold(ΠC(j)�J)ej

⎞
⎠ =

∑

J∈B(M/C)
level(F,J)=k

α(C, J). �

Example 5.17. Let n = 5, d = 2, and let V consist of the column vectors of the matrix (
2 1 0 0 −1
1 1 1 1 1

)
, as shown in Fig. 8 (right). Thus v3 = v4, and let C = ({3}, {4}). 

We have B(M/C) = {{1}, {2}, {5}}.

An example of a flip F = (T → T ′) along C is shown in Fig. 8 (right). Geometrically, 

the tiling has not changed, but some vertex labels have changed, replacing 3 with 4. The 

values of α(C, J), A(F, J), level(F, J) for various J ∈ B(M/C), as well as the values 

of v̂ertk(T ), v̂ertk(T ′), v̂ertk(T ) − v̂ertk(T ′) for various k ∈ [n − d], are given in the 

following tables.
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J α(C, J) A(F, J) level(F, J)

{1} 2(e3 − e4) {5} 2

{2} e3 − e4 {1, 5} 3

{5} e3 − e4 {1, 2} 3

k v̂ertk(T ) v̂ertk(T ′) v̂ertk(T ) − v̂ertk(T ′)

1 (2, 0, 0, 0, 2) (2, 0, 0, 0, 2) 0

2 (2, 1, 2, 0, 3) (2, 1, 0, 2, 3) 2(e3 − e4)

3 (2, 1, 3, 1, 2) (2, 1, 1, 3, 2) 2(e3 − e4)

This again agrees with Corollary 5.16.

6. Regular zonotopal tilings and higher secondary polytopes

In this section we start by introducing regular fine zonotopal tilings. We then define 

higher secondary polytopes, compute their dimension, and prove Theorem 2.2.

Let A, V, and Q = convA be as in Notation 3.5, and let h = (h1, . . . , hn) ∈ R
n

be a height vector. Then the upper boundary of the polyhedron conv{(ai, hi − t) | i ∈

[n], t ≥ 0} ⊆ R
d projects piecewise-linearly onto Q, and projections of its facets give rise 

to a polyhedral subdivision of Q. Such a subdivision is called regular, and in particular, 

the A-triangulations that can be obtained this way from a height vector h are called 

regular A-triangulations. Again, the notion of a regular A-triangulation coincides with 

the notion of a regular fine π-induced subdivision from Definition 3.3.

6.1. Regular zonotopal tilings

Let V be a vector configuration in Rd as above. First, we define the notion of a generic 

height vector h ∈ R
n. Recall the vector α(C) from (5.6), which by Lemma 5.11 satisfies 

the assumptions of Definition 5.3. Let 〈·, ·〉 denote the standard inner product on Rn, 

and define the secondary hyperplane arrangement

HV := {h ∈ R
n | 〈h, α(C)〉 = 0 for some C ∈ C(M)}. (6.1)

Definition 6.1. We say that a height vector h ∈ R
n is generic (for V) if it does not belong 

to HV . In this case, we write h ∈ R
n \ HV .

For h ∈ R
n \ HV , let σh : C(M) → {+1, −1} be the generic circuit signature given by

σh(C) :=

{
+1, if 〈h, α(C)〉 > 0,

−1, if 〈h, α(C)〉 < 0,
for all C ∈ C(M). (6.2)

Recall from (5.3) that each fine zonotopal tiling T gives rise to a generic circuit 

signature σT : C(M) → {+1, −1}.

Proposition 6.2. Let h = (h1, . . . , hn) ∈ R
n\HV be a generic height vector. Then T := Th

from Definition 3.3 is the unique fine zonotopal tiling of ZV satisfying σT = σh.

Proof. The uniqueness part follows from Lemma 5.13. Consider the π-induced subdivi-

sion T := Th from Definition 3.3. Since h is generic, it follows that T is a fine zonotopal 

tiling of ZV .
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It remains to show that σT = σh. Otherwise, suppose that C ∈ C(M) is a circuit 

such that σT (C) = −1 and σh(C) = +1. Then there must exist a set S ∈ Vert(T ) that 

orients C negatively, so C− ⊆ S and C+ ∩ S = ∅. By Definition 3.3, having S ∈ Vert(T )

implies that 〈eS , h〉 ≥ 〈x, h〉 for all x ∈ � n ∩ π−1(π(eS)). On the other hand, since 

α(C) satisfies the assumptions of Definition 5.3, and S orients C negatively, it is clear 

that eS + εα(C) belongs to � n ∩ π−1(π(eS)) for all sufficiently small ε > 0. But now 

because σh(C) = +1 is equivalent to 〈α(C), h〉 > 0, we get a contradiction. �

Definition 6.3. A fine zonotopal tiling T of ZV is called regular if T = Th for some 

h ∈ R
n \ HV .

Thus regular fine zonotopal tilings are precisely the regular fine π-induced subdivisions 

for the case π : � n → ZV .

Remark 6.4. The usual definition of Th makes use of the zonotope ZṼ associated with 

the vector configuration Ṽ = (ṽ1, . . . , ̃vn) in Rd+1 given by ṽi := (v, hi). Namely, Th is 

obtained by projecting the upper boundary of ZṼ down to ZV via a map that forgets 

the last coordinate. (Here the upper boundary is defined as the set of all points x on the 

boundary of ZṼ such that x + εed+1 /∈ ZṼ for all ε > 0.) It is straightforward to see that 

this construction gives rise to the same tiling, see [4, Lemma 4.2].

The following result is well known, see e.g. [4, Corollary 4.2]. We include a proof since 

we will use a similar construction later in the proof of Proposition 6.9.

Lemma 6.5. Any two regular fine zonotopal tilings T , T ′ can be connected by a sequence 

of flips.

Proof. In order to construct the desired sequence of flips, we first choose generic h, h′ ∈

R
n \ HV such that T = Th, T ′ = Th′ , and the line segment h(t) := th + (1 − t)h′

connecting them intersects at most one hyperplane in HV at a time. (That is, for each 

0 ≤ t ≤ 1, h(t) is orthogonal to α(C) for at most one pair ±C of opposite circuits.) 

Then the (finite) sequence Th(t), defined for all 0 ≤ t ≤ 1 such that h(t) ∈ R
n \ HV , 

connects T to T ′ by flips. �

We also note that if T = Th for some h ∈ R
n\HV then T−h = T op (see Definition 4.5).

6.2. Higher secondary polytopes

We use the conventions of Notation 3.5. Recall from Definition 2.1 that for each 

k ∈ [n − d], the higher secondary polytope Σ̂A,k is defined as the convex hull

Σ̂A,k := conv
{

v̂ertk(T )
∣∣∣ T is a fine regular zonotopal tiling of ZV

}
,
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where the vector v̂ertk(T ) is defined in (2.2). As mentioned in Section 2, we expect that 

the word regular can be omitted from the above definition.

Conjecture 6.6. The higher secondary polytope Σ̂A,k is equal to

Σ̂A,k = conv
{

v̂ertk(T )
∣∣∣ T is a fine zonotopal tiling of ZV

}
.

That is, for each (not necessarily regular) fine zonotopal tiling T , the vector v̂ertk(T )

lies in Σ̂A,k.

See Fig. 1 for an illustration.

We start by computing the dimension of Σ̂A,k.

Proposition 6.7. The dimension of Σ̂A,k is equal to n − d.

Proof. Let M be the d ×n matrix whose columns are v1, . . . , vn. Then the row span U of 

M is a d-dimensional subspace of Rn. Let W ⊆ R
n be the (n − d)-dimensional subspace 

spanned by the vectors α(C) for all C ∈ C(M). It is clear that U and W are orthogonal 

subspaces and Rn = U ⊕ W . By Corollary 5.16, Lemma 5.11, and Lemma 6.5, we see 

that all edge directions of Σ̂A,k belong to W . Thus dim(Σ̂A,k) ≤ n − d.

By Corollary 5.16, it remains to show that for each circuit C ∈ C(M), there exists 

a flip F = (T → T ′) along C and J ∈ B(M/C) such that level(F, J) = k, that is, 

|A(F, J)| = k−1. Choose any J ∈ B(M/C) and any (k−1)-element set S ⊆ ([n] \(C�J)), 

and let T := [n] \ (C � J � S). Choose any height vector h = (h1, . . . , hn) ∈ R
n such 

that 〈h, α(C)〉 = 0, 〈h, α(X)〉 �= 0 for all X �= ±C, and for all s ∈ S, b ∈ C � J , and 

t ∈ T , we have hs > 0, ht < 0, and |hs|, |ht| � |hb|. Let h+, h− ∈ R
n \ HV be generic 

height vectors given by h+ := h + ε · α(C), h− := h − ε · α(C) for some small ε > 0, and 

let T := Th+ , T ′ := Th− . Then F := (T → T ′) is a flip along C (recall Definition 5.6, 

(6.2), and Proposition 6.2), and it is easy to see from (5.7) and (5.8) using σh+ = σT

that A(F, J) = S, thus level(F, J) = k. �

Example 6.8. For the case d = 1 from Example 2.5, we have a circuit C = ({i}, {j})

for all 1 ≤ i �= j ≤ n. We see that for each k ∈ [n − d], the higher secondary polytope 

Σ̂A,k = Δk,n contains an edge parallel to ei − ej for all i �= j, in agreement with the 

proof of Proposition 6.7.

We now proceed to proving Theorem 2.2. Recall from Definition 3.3 that for a polytope 

P ⊆ R
n and a vector h ∈ R

n, (P )h is the face of P that maximizes the scalar product 

with h.

Proposition 6.9. Let h ∈ R
n\HV be a generic height vector, and let Th be the correspond-

ing regular fine zonotopal tiling of ZV . Recall the definitions of vertfib(T ), vertfib
k (T ), and 

vertGKZ(T ) from (3.5), (3.12), and Remark 3.10.
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(i) (ΣGKZ
A )h = vertGKZ(Th).

(ii) (Σfib( � n
π
→ ZV))h = vertfib(Th).

(iii) (Σfib(Δk,n
π
→ Qk))h = vertfib

k (Th) for all k ∈ [n − 1].

(iv) (Σ̂A,k)h = v̂ertk(Th) for all k ∈ [n − d].

Proof. Parts (i)–(iii) are well known, see [4, Proposition 1.2, the proof of Theorem 2.5, 

Corollary 4.2], or [47, the proof of Theorem 9.6]. To prove (iv), we need to show that 

for any regular fine zonotopal tiling T ′ := Th′ of ZV (where h′ ∈ R
n \ HV), we have 

〈h, v̂ertk(Th)〉 ≥ 〈h, v̂ertk(T ′)〉. We proceed as in the proof of Lemma 6.5. After slightly 

modifying h′ without changing Th′ , we may assume that every point of the ray {h′ +

th | t ≥ 0} is orthogonal to α(C) for at most one pair ±C of opposite circuits. The 

corresponding finite sequence of flips connects T ′ to T . Suppose that for some t > 0

and C ∈ C(M), we have 〈h′ + th, α(C)〉 = 0. Choose a small positive ε so that the 

tilings T− := Th′+(t−ε)h and T+ := Th′+(t+ε)h differ by a flip F = (T+ → T−) along C. 

By Definition 5.6 and Proposition 6.2, 〈h, α(C)〉 > 0. By Corollary 5.16, v̂ertk(T+) −

v̂ertk(T−) is a positive scalar multiple of α(C), so 〈h, v̂ertk(T+)〉 > 〈h, v̂ertk(T−)〉. Thus 

the dot product of v̂ertk(Th′+th) with h increases weakly as t grows from 0 to ∞, and 

when t is sufficiently large, we obviously have Th′+th = Th. �

Proof of Theorem 2.2. All four parts of Theorem 2.2 follow from Theorem 4.6, Propo-

sition 6.9, and (3.3). Explicitly, the polytopes in question are related as follows:

Σ
GKZ
A =

1

(d − 1)!

(
Σ̂A,1 + δ(0, V)

)
;

Σ
fib( � n

π
→ ZV) =

1

Vold(ZV)

(
Σ̂A,1 + · · · + Σ̂A,n−d +

1

2

n−d∑

k=0

δ(k, V)

)
;

Σ
fib(Δk,n

π
→ Qk) =

1

Vold−1(Qk)

(
p0,dΣ̂A,k + p1,dΣ̂A,k−1 + · · · + pd−1,dΣ̂A,k−d+1

+
d−1∑

r=1

r

d
· pr−1,d−1δ(k − r, V)

)
for all k ∈ [n − 1];

Σ̂A,k = − Σ̂A,n−d−k+1 + γk−1(V) · e[n] − δ(k − 1, V) for all k ∈ [n − d].

(6.3)

Here we set pr,d =
〈d

r
〉

d! as before. �

6.3. Vertices, edges, and deformations

In this section, we prove Proposition 2.11. We state it more generally for point con-

figurations that are not necessarily generic. For a flip F = (T → T ′) along a circuit C

and J ∈ B(M/C), recall the definition of level(F, J) ∈ [n − d] from Definition 5.15. Let 

us write Level(F ) := {level(F, J) | J ∈ B(M/C)}.
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Extending the definitions of Section 2.4, we say that two fine zonotopal tilings T and 

T ′ of ZV are k-equivalent if they can be connected by flips F such that k /∈ Level(F ). 

Similarly, we say that two flips F = (T1 → T2) and F ′ = (T ′
1 → T ′

2 ) are k-equivalent if 

T1 is k-equivalent to T ′
1 and T2 is k-equivalent to T ′

2 .

Proposition 6.10. Let A be an arbitrary configuration of n points in Rd−1, and let k ∈

[n − d].

(i) The vertices of the higher secondary polytope Σ̂A,k are in bijection with k-equivalence 

classes of regular fine zonotopal tilings of ZV .

(ii) The edges of Σ̂A,k correspond to k-equivalence classes of flips F such that k ∈

Level(F ).

(iii) For any nonnegative real numbers x1, . . . , xn−d, the Minkowski sum

1

Vold(ZV)

(
x1Σ̂A,1 + · · · + xn−dΣ̂A,n−d

)

is a parallel deformation of the fiber zonotope Σfib( � n
π
→ ZV), where an edge 

corresponding to a flip F along C ∈ C(M) is rescaled by 
∑

J∈B(M/C) xlevel(F,J).

Proof. Parts (i) and (ii) follow from part (iii). As for part (iii), the statement about the 

parallel deformation is an immediate consequence of Theorem 2.2(ii), together with the 

fact ([47, Proposition 7.12]) that the normal fan of a Minkowski sum of two polytopes 

is the common refinement of the individual normal fans. The statement about the edges 

follows from Proposition 6.9. �

7. Higher associahedra and plabic graphs

In this section, we give background on plabic graphs, and explain the relation be-

tween plabic graphs and higher associahedra, which are the higher secondary polytopes 

in the case that d = 3 and A is the set of vertices of a convex n-gon in R2. We then 

prove Theorem 2.7 and discuss several combinatorial notions arising from our construc-

tion.

7.1. Background on plabic graphs

Recall the definition of a plabic graph G and its bipartite version Gbip from Section 2.3. 

We always assume that plabic graphs have no interior vertices of degree 1 or 2. A strand

in a plabic graph G is a directed path p defined as follows:

• p starts and ends at a boundary vertex of G;
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• at each black interior vertex of G, p turns “maximally right”5;

• at each white interior vertex of G, p turns “maximally left”.

From now on, fix n and 1 ≤ k ≤ n − 1.

Definition 7.1. A (k, n)-plabic graph is a plabic graph G with n boundary vertices such 

that:

(1) for each i ∈ [n], the strand starting at vertex i ends at vertex i + k (modulo n);

(2) G has k(n − k) + 1 faces.

Condition (2) could be replaced by describing several forbidden patterns for the way 

the strands in G may look, see [31, Theorem 13.2]. Note that k(n − k) + 1 is the minimal 

number of faces a plabic graph satisfying condition (1) can have. We label the faces of a 

plabic graph as follows.

Definition 7.2. Given a (k, n)-plabic graph G, we label each face F of G by a set S(F ) ⊆

[n], defined by the condition that for each i ∈ [n], S(F ) contains i if and only if F is to 

the left of the unique strand in G that ends at vertex i.

It turns out [31] that S(F ) has size k. Let F(G) := {S(F ) | F a face of G} ⊆
(

[n]
k

)
.

7.2. Plabic graphs from fine zonotopal tilings

Throughout the rest of Section 7, we fix d = 3. We also fix a configuration 

A = (a1, . . . , an) of vertices of a convex n-gon in R
2, and let V, ZV , Qk, and π be 

as in Notation 3.5. Recall that we have a projection Δk,n
π
→ Qk from the hyper-

simplex to the k-th horizontal section of ZV . In this section we recall how to obtain 

plabic graphs from fine zonotopal tilings, based on results of [13] and [33, Section 

11].

Given a subset S ⊆ [n], we let

vS :=
∑

i∈S

vi.

Clearly Qk is a convex n-gon in the affine plane Hk = {(y1, y2, y3) | y3 = k}, with vertices 

v[1,k], v[2,k+1], . . . , v[n,k−1], corresponding to all consecutive cyclic intervals of size k in 

[n]. Each two-dimensional face F of Δk,n is a triangle with vertices eS , eT , eR for some 

S, T, R ∈
(

[n]
k

)
. Moreover, we have either |S ∩ T ∩ R| = k − 1 or |S ∪ T ∪ R| = k + 1, in 

5 Here by a maximally right (resp., left) turn we mean that if an interior vertex w of G is incident to 
edges e1, . . . , em in clockwise order and p passes through ei and then through w, it must then pass through 
ei−1 (resp., ei+1), where the indices are taken modulo n.
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Fig. 9. A plabic tiling of a hexagon Q3, with vertices of Q3 labeled by the cyclic intervals of size 3. The dual 
graph is a (neither trivalent nor bipartite) (3, 6)-plabic graph. The strand from 5 to 2 is shown in green. A 
face label contains 2 if and only if it is to the left of this strand.

which case we say that F is isomorphic to Δ1,3, or Δ2,3, respectively. The fine π-induced 

subdivisions of Qk come from collections of two-dimensional faces of Δk,n. Moreover, the 

fine π-induced subdivisions are in bijection with the tilings of the n-gon Qk by triangles, 

such that:

• Each vertex has the form vS for some S ∈
(

[n]
k

)
.

• Each edge has the form [vS , vT ] for two k-element subsets S and T such that |S∩T | =

k − 1.

• Each face is a triangle which is the projection of a two-dimensional face of Δk,n

isomorphic to either Δ1,3 or Δ2,3 (in which case we say that the face is white, or 

black, respectively).

Such a tiling of Qk is called a triangulated plabic tiling, and its dual graph G (which has 

white and black vertices corresponding to the white and black faces of the tiling) is a 

trivalent plabic graph, see Fig. 9.

In the other direction, given a (k, n)-plabic graph G, the corresponding plabic tiling

PT(G) is a polyhedral subdivision of Qk into convex polygons colored black and white: 

for each black (resp., white) vertex w of G that is adjacent to faces F1, . . . , Fm in 

clockwise order, PT(G) contains a black (resp., white) polygon with boundary vertices 
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Fig. 10. The zonotope ZV associated to V = (va, vb, vc, vd) has precisely two fine zonotopal tilings, which 
differ by a flip. The horizontal sections give rise to triangulated plabic tilings and, dually, to trivalent 
(k, n)-plabic graphs for n = 4 and k = 1, 2, 3 (from bottom to top). The flip corresponds to applying the 
moves (M1), (M2), (M3) on plabic graphs, as in Theorem 7.4.

vS(F1), . . . , vS(Fm). By the results6 of [29], PT(G) is the planar dual of G: the ver-

tices/edges/faces of PT(G) correspond to the faces/edges/vertices of G, respectively, see 

Fig. 9.

Theorem 7.3 ([13, Theorem 1.2]).

(i) For each trivalent (k, n)-plabic graph G, the triangulated plabic tiling PT(G) coin-

cides with the horizontal section T ∩ Hk of some fine zonotopal tiling T of ZV .

(ii) For each fine zonotopal tiling T of ZV , the intersection T ∩Hk coincides with PT(G)

for a unique trivalent (k, n)-plabic graph G.

For a fine zonotopal tiling T of ZV , we denote by Gk(T ) the trivalent (k, n)-plabic 

graph G from Theorem 7.3(ii), and we let Gbip
k (T ) denote its bipartite version.

Recall that (k, n)-plabic graphs are connected by moves (M1)–(M3) from Fig. 4. For 

the following result, illustrated in Fig. 10, see [13, Section 3].

Theorem 7.4. Suppose that F = (T → T ′) is a flip and level(F ) = k.

6 The authors of [29] only work with bipartite (k, n)-plabic graphs. For general (k, n)-plabic graphs, one 
needs to “uncontract” some interior vertices of G and add some diagonals to the corresponding faces of 
PT(G).



38 P. Galashin et al. / Advances in Mathematics 407 (2022) 108549

Fig. 11. A plabic tiling associated to a bipartite (k + 1, n)-plabic graph, with k + 1 = 3 and n = 6. The 
labeling of white faces by k-element sets is shown at the left, while the areas of the white faces are shown 
at the right.

• We have Gr(T ) = Gr(T ′) for all r �= k, k + 1, k + 2;

• the graphs Gk(T ) and Gk(T ′) are related by move (M1);

• the graphs Gk+1(T ) and Gk+1(T ′) are related by move (M2);

• the graphs Gk+2(T ) and Gk+2(T ′) are related by move (M3).

7.3. Vertices of higher associahedra

Each fine zonotopal tiling T of ZV gives rise to a point v̂ertk(T ) ∈ R
n and to a 

bipartite (k + 1, n)-plabic graph Gbip := Gbip
k+1(T ). The definition (2.2) of v̂ertk(T ) can 

be expressed in a simple way in terms of PT(Gbip), which we now explain.

Recall that PT(Gbip) consists of black and white polygons corresponding to black 

and white vertices of Gbip (cf. Fig. 9). Let w be a white interior vertex of Gbip, and 

let F1, . . . , Fm be the faces of Gbip adjacent to it. By the construction of face labels 

in Section 7.1, we see that the face labels S(F1), . . . , S(Fm) ∈
(

[n]
k+1

)
have intersection 

S∩(w) :=
⋂m

i=1 S(Fi) of size k, see Fig. 11 (left). Thus every white face w∗ of PT(Gbip)

is naturally labeled by a set S∩(w) of size k. Let Area(w∗) denote the area of this white 

face w∗ (viewed as a metric convex polygon inside Hk+1
∼= R

2), see Fig. 11 (right).

Proposition 7.5. Let T be a fine zonotopal tiling of ZV and let Gbip := Gbip
k+1(T ) be the 

corresponding bipartite (k + 1, n)-plabic graph. Then

v̂ertk(T ) = 2
∑

w

Area(w∗) · eS∩(w), (7.1)

where the sum is taken over all white interior vertices w of Gbip.

Proof. We use (2.2). It is not hard to see that each tile ΠA,B ∈ T gives rise to a white 

triangle w∗ in the plane y3 = |A| + 1 whose face label is S∩(w) = A. Moreover every 
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white face in the plabic tilings associated to T comes from a tile of T . Therefore in (2.2), 

instead of summing over tiles ΠA,B with |A| = k, we can sum over white triangles in the 

plane y3 = k + 1. Also note that we can relate the volume of ΠA,B to the area of the 

corresponding white triangle, using the normalization of our volume form given in the 

discussion preceding Remark 2.3. The result follows. �

Example 7.6. Applying Proposition 7.5 to the zonotopal tiling whose horizontal section 

is shown in Fig. 11, we obtain

v̂ert2(T ) = 8e{1,6} + 11e{4,6} + 7e{3,6} + 6e{3,4} + 6e{2,3} = (8, 6, 19, 17, 0, 26).

7.4. Regular plabic graphs

Recall from Section 2.3 that A-regular trivalent (k, n)-plabic graphs are by definition 

the horizontal sections of regular fine zonotopal tilings of ZV , while A-regular bipar-

tite (k, n)-plabic graphs are those that are obtained from A-regular trivalent ones by 

contracting edges. Let us give an explicit algorithm of reconstructing a trivalent (resp., 

bipartite) A-regular (k, n)-plabic graph Gk,h (resp., Gbip
k,h) from a given height function 

h. In order to do so, we specialize some general constructions from Sections 5 and 6.

If V is a configuration of n vectors in R3 such that their endpoints are vertices A of 

a convex n-gon in H1
∼= R

2, then the circuits of V are given by

C(M) = ± {({a, c}, {b, d}) | 1 ≤ a < b < c < d ≤ n} .

For each circuit C = ({a, c}, {b, d}), we have a (unique up to rescaling by a positive real 

number) vector

α(C) = xaea − xbeb + xcec − xded (7.2)

whose coordinates are the coefficients of the linear dependence xava − xbvb + xcvc −

xdvd = 0. (Here xa, xb, xc, xd > 0.) Given a generic height vector h ∈ R
n \ HV , we 

define (as in (6.2)) the generic circuit signature σh(C) := ±1 depending on whether 

μh(a, b, c, d) := xaha − xbhb + xchc − xdhd ∈ R \ {0} is positive or negative (it cannot 

be 0 precisely because h is generic).

Definition 7.7. We say that I ⊆ [n] is (A, h)-compatible if for all 1 ≤ a < b < c < d ≤ n, 

we have:

• if a, c ∈ I and b, d /∈ I then μh(a, b, c, d) > 0;

• if a, c /∈ I and b, d ∈ I then μh(a, b, c, d) < 0.

We denote F(A, k, h) :=
{

I ∈
(

[n]
k

) ∣∣∣ I is (A, h)-compatible
}

.
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Fig. 12. A point configuration A, and the corresponding bipartite and trivalent plabic graphs for k = 2 and 
h as in Example 7.8.

By Proposition 6.2, the regular zonotopal tiling T := Th satisfies σT = σh. But 

now by (5.3), we see that the k-element sets in Vert(T ) are precisely the elements of 

F(A, k, h). Therefore by Theorem 7.3, F(A, k, h) is the set of labels of some triangu-

lated plabic tiling, and hence by [29], F(A, k, h) coincides with F(Gbip
k,h) for a unique 

bipartite (k, n)-plabic graph Gbip
k,h, and this graph Gbip

k,h can be explicitly reconstructed 

from F(A, k, h) as in [29, Section 9]. To find the unique trivalent (k, n)-plabic graph Gk,h, 

we use [13, Proposition 4.6]: the face labels of Gk,h are given by F(Gk,h) = F(A, k, h), 

and two faces labeled by S, T ∈
(

[n]
k

)
are connected by an edge in PT(Gk,h) if and only 

if S ∩ T ∈ F(A, k − 1, h) and S ∪ T ∈ F(A, k + 1, h). This completely determines the 

triangulated plabic tiling PT(Gk,h) from which Gk,h can be reconstructed as a planar 

dual. By Theorem 7.3, PT(Gk,h) is the horizontal section of Th by Hk, and PT(Gbip
k,h) is 

obtained from it by removing all edges that are adjacent to two faces of the same color.

Example 7.8. Let V = (v1, . . . , v5) be given by the column vectors of 

(
0 1 2 1 0
0 0 1 2 1
1 1 1 1 1

)
, 

thus A is the point configuration shown in Fig. 12 (left). Let h := (1, 0, 3, 0, 0) ∈ R
n. 

For each circuit C = ({a, c}, {b, d}) for a < b < c < d, the values of α(C) (computed 

using (5.4)) and μh(a, b, c, d) are given in the following table (which shows that h ∈

R
n \ HV is generic).

α(C) μh(a, b, c, d)

(2, −3, 2, −1, 0) +8

(2, −2, 1, 0, −1) +5

(2, −1, 0, 1, −2) +2

(2, 0, −1, 2, −3) −1

(0, 1, −1, 1, −1) −3
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Let k = 2. We find that F(A, k, h) = {12, 23, 34, 45, 15, 13, 35}, where we abbrevi-

ate {a, b} as ab. Thus the unique bipartite (k, n)-plabic graph Gbip
k,h with face labels 

F(Gbip
k,h) = F(A, k, h) is shown in Fig. 12 (middle). To find the trivalent plabic graph 

Gk,h, observe that {1, 3, 4} ∈ F(A, k +1, h) while {3} ∈ F(A, k −1, h), so there must be 

an edge connecting {1, 3} to {3, 4} in PT(Gk,h). Thus Gk,h is the trivalent plabic graph 

given in Fig. 12 (right).

7.5. Proof of Theorem 2.7

(i): Our goal is to show that given two generic height vectors h, h′ ∈ R
n \HV , we have 

v̂ertk(Th) = v̂ertk(Th′) if and only if Gbip
k+1,h = Gbip

k+1,h′ . By (7.1), if Gbip
k+1,h = Gbip

k+1,h′

then clearly v̂ertk(Th) = v̂ertk(Th′). Conversely, assume that v̂ertk(Th) = v̂ertk(Th′). 

Then by Proposition 2.11(i), the tilings Th and Th′ are k-equivalent. By Theorem 7.4, 

we see that the trivalent graphs Gk+1,h and Gk+1,h′ are related by moves (M1) and 

(M3), thus their bipartite versions coincide. Similarly, combining Proposition 2.11(ii) 

with Theorem 7.4, we find that the edges of Σ̂A,k correspond to square moves of A-

regular bipartite (k + 1, n)-plabic graphs.

(ii): First, note that by Theorem 2.2(iii), the vertices and edges of Σ̂A,k + Σ̂A,k−1 +

Σ̂A,k−2 are in bijection with vertices and edges of 1
Vold−1(Qk)

(
Σ̂A,k + 4Σ̂A,k−1 + Σ̂A,k−2

)

shift
== Σ

fib(Δk,n
π
→ Qk). The statement that the vertices and edges of Σ̂A,k+Σ̂A,k−1+Σ̂A,k−2

correspond to trivalent plabic graphs and moves (M1)–(M3) connecting them follows by 

combining Proposition 2.11(iii) with Theorem 7.4. �

Example 7.9. Let n = 6 and k = 3. An example of a higher associahedron Σ̂A,k, where 

A is the point configuration from Fig. 13 (top left) is shown in Fig. 1. The plabic graphs 

corresponding to the points of Σ̂A,k labeled by a, b, c, d are shown in Fig. 13. The points 

labeled by b and c belong to the interior of Σ̂A,k. On the other hand, for the point 

configuration A′ from Fig. 13 (bottom left), the points labeled a and d belong to the 

interior of Σ̂A′,k, while the points labeled by b and c are among the vertices of Σ̂A′,k. 

If A′′ is such that the three diagonals of the hexagon Q = convA′′ intersect at a single 

point then none of the four points a, b, c, d are among the 30 vertices of Σ̂A′′,k. A similar 

computation can be found in [20, Theorem 4.2].

The plabic graphs labeled by b and d arose in [36, Section 8] in the context of mirror 

symmetry for Grassmannians. If one considers the Newton-Okounkov bodies ΔG associ-

ated to a plabic graph G for Gr(3, 6), then 32 of the 34 plabic graphs give rise to integral 

polytopes ΔG; b and d label the non-integral ones.

When A is the set of vertices of a convex n-gon, the combinatorics of the associahedron 

Σ̂A,1 does not depend on the specific choice of this n-gon. Example 7.9 shows that this is 

not the case for higher associahedra. Computational evidence suggests that the following 

result still holds.
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Fig. 13. The four plabic graphs, corresponding to the points in Fig. 1 labeled a, b, c, d. These are the only 
(3, 6)-plabic graphs that are not A-regular for some A, see Example 7.9. Similar figures can be found in [20, 
Figure 18] or [30, Figure 1].

Conjecture 7.10. Suppose that A is the set of vertices of a generic convex n-gon. Then 

the f -vector of Σ̂A,k depends only on n and k.

For instance, we saw in Example 7.9 that Σ̂A,k has 32 vertices when A is generic and 

n = 6. The number of vertices of Σ̂A,k for generic A, n ≤ 7, and k ∈ [n − 3] is given in 

the following table.

n

4 2

5 5 5

6 14 32 14

7 42 231 231 42
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7.6. Large heights

Fix a configuration A of vertices of a convex n-gon in R2. Let w = (w1, . . . , wn) ∈ Sn

be a permutation of [n]. Choose a height vector h(w) = (h1, . . . , hn) ∈ R
n satisfying

hw1
� hw2

� · · · � hwn
> 0. (7.3)

In (7.3), our usage of � means that the heights are large compared to the coefficients 

appearing in (7.2) (for all circuits C), or more precisely: for each 4-tuple a < b <

c < d, we have that μh(a, b, c, d) = xaha + xchc − xbhb − xdhd > 0 if and only if 

max(ha, hc) > max(hb, hd). Our goal is to explicitly describe F(A, k, h(w)). First we 

need a few definitions.

Fix n, and choose s, t ∈ [n]. We let [s, t) be the cyclic interval between s and t −1: if s ≤

t, then [s, t) := {s, s +1, . . . , t −1}, and if s > t, then [s, t) := {s, s +1, . . . , n, 1, 2, . . . , t −1}. 

We similarly define cyclic intervals (s, t] and [s, t].

For S ⊆ [n] and 0 ≤ j ≤ |S|, we define top
(w)
j (S) to be the j-element subset T of S

such that ht > hs (equivalently, wt < ws) for all t ∈ T and s ∈ S \ T .

Proposition 7.11. Let w ∈ Sn and h(w) be as in (7.3). Then for each 1 ≤ k ≤ n, we have

F(A, k, h(w))

=
k

�
r=1

{
[s, t) � top

(w)
k−r([t, s))

∣∣∣ s, t ∈ [n] such that |[s, t)| = r
}

�
{

top
(w)
k ([n])

}
. (7.4)

Proof. It is easy to see that each set in the right hand side of (7.4) is (A, h(w))-compatible. 

Conversely, consider I ∈
(

[n]
k

)
and write I as a union of cyclic intervals I1 ∪ · · · ∪ Im with 

m as small as possible. For example, if I = {1, 3, 4, 5, 7, 8, 10} ⊆ [10] then we write 

I = [10, 1] ∪ [3, 5] ∪ [7, 8]. Clearly, I being (A, h(w))-compatible means that whenever we 

choose i, i′ ∈ I from two distinct cyclic intervals Ia and Ib, either hi or hi′ is greater 

than any hj for j /∈ I.

Therefore at most one of the cyclic intervals I1, . . . , Im can contain elements whose 

height is less than the height of any element not in I. Let [s, t) be that cyclic interval 

(if it exists, otherwise we must have I = top
(w)
k ([n])), and let r := |[s, t)| ≤ k. Since we 

need all remaining elements of I to have greater heights than all elements of [n] \ I, we 

find I = [s, t) � top
(w)
k−r([t, s)). �

Remark 7.12. Note that by Proposition 7.11, the set F(A, k, h(w)) explicitly constructed 

in Proposition 7.11 depends only on the ordering of the largest k heights.

Example 7.13. Fix k and n and suppose that w = w0 := (n, n − 1, . . . , 1). Then 

F(A, k, h(w)) consists of [n − k + 1, n] together with the k-element subsets [i, i + j) ∪

(n − k + j, n] for 1 ≤ i ≤ n − k and 1 ≤ j ≤ k. Note that if we interpret k-element 
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subsets of [n] as Young diagrams contained in a k × (n − k) rectangle (by identifying 

each Young diagram with the path consisting of unit steps west and south from (n −k, k)

to (0, 0) which cuts it out and then reading off the positions of the vertical steps), then 

F(A, k, h(w)) corresponds to the rectangles which fit inside the k × (n − k) rectangle. 

This collection was called the rectangles cluster in [36] and comes from the plabic graph 

associated to the Le-diagram of [31].

On the other hand, suppose that w = id := (1, 2, . . . , n). Then F(A, k, h(w)) consists 

of [k] together with the k-element subsets [1, i) ∪ [j, j + k − i] for 1 ≤ i ≤ k and i + 1 ≤

j ≤ n − k + i. If we interpret k-element subsets of [n] as Young diagrams contained in a 

k × (n −k) rectangle as before, then F(A, k, h(w)) corresponds to Young diagrams which 

are complements of rectangles in the k × (n − k) rectangle.

7.7. Black-partite and white-partite plabic graphs

By Theorem 2.7, the vertices of Σ̂A,k correspond to bipartite plabic graphs, while 

the vertices of Σ̂A,k + Σ̂A,k−1 + Σ̂A,k−2 correspond to trivalent plabic graphs. It is thus 

natural to also consider the polytope Σ̂A,k + Σ̂A,k−1.

Definition 7.14. A plabic graph G is called black-partite if all interior white vertices of G

are trivalent, and no edge of G connects two black interior vertices.

We similarly define white-partite plabic graphs by switching the roles of black and 

white in the above definition. For example, for each n ≥ 3, there is only one white-

partite (1, n)-plabic graph. As discussed in Example 2.8, there is a Catalan number 

Cn−2 of black-partite (1, n)-plabic graphs, and the number of white-partite (2, n)-plabic 

graphs is also equal to Cn−2. As we will show in Proposition 7.15 below, this is not a 

coincidence.

It follows from [31, Theorem 13.4] that any two black-partite (k, n)-plabic graphs are 

related by moves (M1) and (M2), and any two white-partite (k, n)-plabic graphs are 

related by moves (M2) and (M3). We deduce the following surprising bijection from the 

results of [13].

Proposition 7.15. For k < n, black-partite (k, n)-plabic graphs are in bijection with white-

partite (k + 1, n)-plabic graphs.

Proof. We describe a construction that gives the desired bijection. Given a plabic graph 

G, denote by Gbpt (resp., Gwpt) the black-partite (resp., white-partite) plabic graph 

obtained from G by contracting all edges connecting two black (resp., white) interior 

vertices. Given a fine zonotopal tiling T of ZV , denote by Gbpt
k (T ) and Gwpt

k (T ) the 

black-partite and white-partite (k, n)-plabic graphs obtained from the trivalent plabic 

graph Gk(T ) from Section 7.2. For each T and each k < n, we say that the plabic graphs 

Gbpt
k (T ) and Gwpt

k+1(T ) are linked.
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Lemma 7.16. Every black-partite (k, n)-plabic graph is linked with exactly one white-

partite (k + 1, n)-plabic graph, and every white-partite (k + 1, n)-plabic graph is linked 

with exactly one black-partite (k, n)-plabic graph.

Proof. It follows from the results of [13] that every trivalent (k, n)-plabic graph G appears 

as Gk(T ) for some fine zonotopal tiling T of ZV . Thus every black-partite (k, n)-plabic 

graph is equal to Gbpt
k (T ) for some T , and is linked with the graph Gwpt

k+1(T ). Every 

white vertex of Gbpt
k (T ) is trivalent, thus the three faces incident to it are labeled by sets 

A ∪ b1, A ∪ b2, A ∪ b3 for some b1, b2, b3 /∈ A, and the horizontal section T ∩ Hk contains 

a white triangle with vertex labels A ∪ b1, A ∪ b2, A ∪ b3. We find that ΠA,B ∈ T for 

B := {b1, b2, b3}, but then a black triangle with vertex labels A ∪ {b1, b2}, A ∪ {b1, b3}, 

A ∪{b2, b3} appears in T ∩Hk+1. Conversely, every black triangle in T ∩Hk+1 corresponds 

to a white triangle in T ∩ Hk. We have shown that Gwpt
k+1(T ) is uniquely determined by 

Gbpt
k (T ). The proof that Gbpt

k (T ) is uniquely determined by Gwpt
k+1(T ) is completely 

analogous. �

It is clear that Lemma 7.16 gives the desired bijection, finishing the proof of Propo-

sition 7.15. �

We return to the study of the polytope Σ̂A,k + Σ̂A,k−1. We say that a black-partite 

(k, n)-plabic graph G is A-regular if it can be obtained as Gbpt
k (T ) for some regular fine 

zonotopal tiling T of ZV . We similarly define A-regular white-partite (k + 1, n)-plabic 

graphs, and clearly the bijection of Proposition 7.15 restricts to such plabic graphs. 

Observe also that by Theorem 7.4, applying the moves (M1) and (M2) to a black-partite 

(k, n)-plabic graph G corresponds to applying the moves (M2) and (M3) to the unique 

(k + 1, n) white-partite plabic graph linked with G. The proof of the following result is 

analogous to that of Theorem 2.7.

Corollary 7.17. Let d = 3 and A ⊆ R
2 be the configuration of vertices of a convex n-gon.

(i) The vertices of Σ̂A,k + Σ̂A,k−1 are in bijection with A-regular black-partite (k, n)-

plabic graphs, as well as with A-regular white-partite (k + 1, n)-plabic graphs.

(ii) The edges of Σ̂A,k + Σ̂A,k−1 correspond to the moves (M1) and (M2) of A-regular 

black-partite (k, n)-plabic graphs, as well as to the moves (M2) and (M3) of A-regular 

white-partite (k + 1, n)-plabic graphs.

8. Applications to soliton graphs

In this section we start by explaining how tropical hypersurfaces are dual to regular 

subdivisions of a related zonotope, see Definition 8.2. We then explain how, when d = 3, 

we can recover the construction of soliton graphs—contour plots of soliton solutions of 

the KP equation (see Corollary 8.6 and Definition 8.7)—and in particular, recover the 
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fact that they are realizations of reduced plabic graphs. We conclude with applications 

of our previous results to soliton graphs.

8.1. Tropical hypersurfaces and regular zonotopal tilings

Definition 8.1. A tropical polynomial is a function F : R
d−1 → R that can be expressed 

as the tropical sum of a finite number of tropical monomials. More precisely, if we let X

denote (X1, . . . , Xd−1), then a tropical polynomial F is the maximum

F = max
I∈B

FI(X1, . . . , Xd−1) = max
I∈B

FI(X)

of a finite set {FI |I ∈ B} of linear functionals7 FI : R
d−1 → R. The tropical hypersurface

V (F ) is the set of points in Rd−1 where F is non-differentiable. Equivalently, V (F ) is 

the set of points where the maximum among the terms of F is achieved at least twice.

Note that V (F ) is a codimension-one piecewise-linear subset of Rd−1. Moreover, the 

complement of V (F ) is a collection of (top-dimensional) regions of R
d−1, where each 

region R = R(I) is naturally associated to some I ∈ B; more specifically, we have that 

FI(X) > FJ(X) for all points X = (X1, . . . , Xd−1) ∈ R(I) for all J �= I.

We now look at some particularly nice examples of tropical hypersurfaces. Fix positive 

numbers n, d and k, and let A = (a1, . . . , an) be a point configuration in Rd−1 as before.

Definition 8.2. Let h ∈ R
n. For 1 ≤ i ≤ n, define a linear functional fi,h : R

d−1 → R by

fi,h(X) :=〈X, ai〉+hi, equivalently, fi,h(X1, . . . , Xd−1)=ai,1X1 +· · ·+ai,d−1Xd−1 +hi.

(8.1)

For I ∈
(

[n]
k

)
, let FI,h =

∑
i∈I fi,h.

We consider the tropical polynomial

Fk,h(X) = max
I∈([n]

k
)
FI,h(X), (8.2)

and define Vk,h to be the tropical hypersurface V (Fk,h). We denote by F(Vk,h) ⊆
(

[n]
k

)

the collection of all sets I ∈
(

[n]
k

)
that appear as a face labels of regions in the complement 

of Vk,h.

Recall from Notation 3.5 that for a point configuration A ⊆ R
d−1, ZV denotes the 

zonotope associated with the lift V ⊆ R
d of A. Recall also that each generic height vector 

h ∈ R
n \ HV determines a regular fine zonotopal tiling Th of ZV , and that its set of 

vertex labels is denoted by Vert(Th) ⊆ 2[n], see (5.2).

7 In tropical geometry one typically uses integer or rational coefficients, because these coefficients come 
from valuations of power series, but in this paper everything will make sense for real coefficients.
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Proposition 8.3. Let A and V be as above, and let h ∈ R
n \HV be a generic height vector. 

Then

F(Vk,h) = Vert(Th) ∩

(
[n]

k

)
.

Proof. Let Ṽ = (ṽ1, . . . , ̃vn) be the lift of V to Rd+1 given by ṽi := (v, hi). Let I ∈
(

[n]
k

)
. 

By Remark 6.4, I ∈ Vert(Th) if and only if ṽI :=
∑

i∈I ṽi belongs to the upper boundary 

of ZṼ . Equivalently, there exists a vector X̃q := (X, q, 1) ∈ R
d+1 (for some X ∈ R

d−1

and q ∈ R) such that the dot product with X̃q is maximized over ZṼ at ṽI . Since 

ZṼ =
∑

i∈[n][0, ̃vi], we see that this happens precisely when 〈X̃q, ̃vi〉 is positive for i ∈ I

and negative for i /∈ I. Note that 〈X̃q, ̃vi〉 = 〈X, ai〉 + q + hi = fi,h(X) + q. We have 

shown that I ∈ Vert(Th) if and only if there exist X ∈ R
d−1 and q ∈ R such that 

for all i ∈ I and j /∈ I, we have fi,h(X) + q > 0 > fj,h(X) + q. The latter condition 

can be restated as: there exists X ∈ R
d−1 such that for all i ∈ I and j /∈ I, we have 

fi,h(X) > fj,h(X), which is equivalent to FI,h(X) > FJ,h(X) for all J �= I. Therefore 

a k-element subset I lies in Vert(Th) if and only if I ∈ F(Vk,h). �

8.2. Soliton graphs

In the case that d = 3, we recover the soliton graphs which were studied in [23,24] in 

order to study soliton solutions to the KP equation. We briefly review that construction 

here.

The KP equation

∂

∂x

(
−4

∂u

∂t
+ 6u

∂u

∂x
+

∂3u

∂x3

)
+ 3

∂2u

∂y2
= 0

was proposed by Kadomtsev and Petviashvili in 1970 [22], in order to study the stability 

of the soliton solutions of the Korteweg-de Vries (KdV) equation under the influence 

of weak transverse perturbations. The KP equation can be also used to describe two-

dimensional shallow water wave phenomena (see for example [21]). This equation is now 

considered to be a prototype of an integrable nonlinear partial differential equation.

Let t = (t3, t4, . . . , tn) be a vector of “higher times” (often one sets t4 = · · · = tn = 0

and t3 = t, but it will be convenient for us to use the higher times.) There is a well 

known recipe (see [18,8]) for using a point A in the real Grassmannian Gr(k, n) together 

with n real parameters κ1 < · · · < κn to construct a τ -function τA(x, y, t), such that a 

simple transformation of it

uA(x, y, t) = 2
∂2

∂x2
ln τA(x, y, t)

is a soliton solution of the KP equation.
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The τ -function is defined as follows. For i ∈ [n], set

hi := κ3
i t3 + · · · + κn

i tn and Ei(x, y, t) := exp(κix + κ2
i y + hi).

For I = {i1 < · · · < ik} ∈
(

[n]
k

)
, set

KI :=
∏

�<m

(κim
− κi�

) and EI(x, y, t) := KI · Ei1
· · · Eik

. (8.3)

For A ∈ Gr(k, n), we define

τA(x, y, t) =
∑

I∈([n]
k

)

ΔI(A) EI(x, y, t), (8.4)

where ΔI(A) is the Plücker coordinate of A ∈ Gr(k, n) indexed by I as before.

If one is interested in the behavior of the soliton solutions when the variables (x, y, t)

are on a large scale, then, as in [24, Section 4.2], it is natural to rescale the variables 

with a small positive number ε,

x −→
x

ε
, y −→

y

ε
, t −→

t

ε
,

which leads to

τ ε
A(x, y, t) =

∑

I∈M

exp

⎛
⎝1

ε

k∑

j=1

(κij
x + κ2

ij
y + hij

) + ln(ΔI(A)KI)

⎞
⎠ ,

where M = M(A) := {I | ΔI(A) �= 0} ⊆
(

[n]
k

)
and I = {i1 < · · · < ik}. Then we define 

a function FA(x, y, t) as the limit

FA(x, y, t) = lim
ε→0

ε ln (τ ε
A(x, y, t)) = max

I∈M

⎧
⎨
⎩

k∑

j=1

(κij
x + κ2

ij
y + hij

)

⎫
⎬
⎭ . (8.5)

Since the above function depends only on the collection M, we also denote it as 

FM(x, y, t).

Definition 8.4 ([23,24]). Fix t = (t3, . . . , tn) ∈ R
n−2. Given a solution uA(x, y, t) of the 

KP equation as above, we define its (asymptotic) contour plot Ct(M) to be the set of all 

(x, y) ∈ R
2 where FM(x, y, t) is not linear.

The contour plot approximates the locus where the corresponding solution of the KP 

equation has its peaks, and we label each region in the complement of Ct(M) by the 

k-element subset I which achieves the maximum in (8.5).
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Remark 8.5. Comparing (8.5) with Definition 8.2 in the case that M =
(

[n]
k

)
, we see that 

FM(x, y, t) is a tropical polynomial for d = 3, fi(x, y) = κix + κ2
i y + hi for i ∈ [n], and 

the asymptotic contour plot Ct(M) is the tropical hypersurface Vk(f1, . . . , fn).

Let d = 3 and A = {a1, . . . , an} for ai = (κi, κ
2
i ). Consider its lift V and the zonotope 

ZV ⊆ R
3 as in Notation 3.5. Denote h := (h1, . . . , hn) where hi = κ3

i t3 + · · · + κn
i tn, and 

recall that Th is the regular zonotopal tiling of ZV induced by h. Applying Proposition 8.3

to these contour plots, we obtain the following result.

Corollary 8.6. Assume that M =
(

[n]
k

)
and I = {i1, . . . , ik} ∈ M. Then there exists a 

point (x, y) ∈ R
2 lying in the region of the complement of Ct(M) labeled by I if and only 

if vi1
+ · · · + vik

is a vertex of Th.

Note that Corollary 8.6 is closely related to the discussion in [20, Section 2.3].

Definition 8.7 ([23,24]). We associate a soliton graph Gt(M) to each contour plot Ct(M)

by marking any intersection of three line segments by either a white or black vertex, 

depending on whether there is a unique line segment directed from the vertex towards 

y → ∞ or a unique line segment directed from the vertex towards y → −∞ (it is 

impossible for a line segment to be parallel to the x-axis).

When M =
(

[n]
k

)
, and for generic times t = (t3, . . . , tn), all intersections of line 

segments are trivalent intersections, and by [24, Corollary 10.9], the graph Gt(M) is a 

(k, n)-plabic graph, see Fig. 14. Corollary 8.6 then says the following (for A ⊆ R
2 as 

above).

Corollary 8.8. Each soliton graph Gt(M) associated to M =
(

[n]
k

)
is a trivalent A-regular 

(k, n)-plabic graph.

Fig. 14 shows the contour plot associated to the positive Grassmannian Gr>0(2, 6); 

each region is labeled by an element I = {i1, i2} ∈
(

[6]
2

)
which indicates that in that 

region, FI(x, y) = fi1
(x, y) + fi2

(x, y) > FJ(x, y) for all other J ∈
(

[6]
2

)
. The trivalent 

intersections of line segments are marked by white or black vertices as in Definition 8.7.

It is natural to ask how the soliton graph (plabic graph) changes when the higher 

times t = (t3, . . . , tn) evolve. In [23], the authors speculated (cf. Fig. 2) that the face 

labels of the soliton graph should change via cluster transformations, or in other words, 

via moves (M1)–(M3) of the plabic graph from Fig. 4. This is now a consequence of 

Theorem 2.7.

Corollary 8.9. Fix A and M as in Corollary 8.6, and consider the associated soliton 

graphs Gt(M). Then as the higher times t = (t3, . . . , tn) evolve, Gt(M) changes via the 

moves from Fig. 4. In particular the face labels change via square moves.



50 P. Galashin et al. / Advances in Mathematics 407 (2022) 108549

Fig. 14. A soliton graph Gt(M) coming from Gr(2, 6).

Proof. Changing the higher times continuously corresponds to changing the heights 

continuously, which by Theorem 2.7 corresponds to walking around the normal fan of 

Σ̂A,k + Σ̂A,k−1 + Σ̂A,k−2. �

In [24, Theorem 8.5 and Theorem 8.9], the authors classified the contour plots Ct(M)

obtained when t = (t3, 0, . . . , 0) and t3 → ±∞. We can now give a generalization of their 

results (cf. Corollary 8.11) in the case that M =
(

[n]
k

)
and the κi’s are positive. Let us 

write t ≥ 0 if ti ≥ 0 for i = 3, . . . , n.

Proposition 8.10. Assume that M =
(

[n]
k

)
, the numbers κ1 < · · · < κn are positive, and 

that the vector t ≥ 0 is nonzero. Then Ct(M) can be identified with the plabic graph 

associated to the Le-diagram, and its regions are labeled by the elements of F(A, k, h(w))

for w = w0 as in Example 7.13. Similarly, the regions of C−t(M) are labeled by the 

elements of F(A, k, h(w)) for w = id.

Proof. Recall that vi = (κi, κ
2
i , 1) and hi = κ3

i t3 + · · · + κn
i tn. Our goal is to show that 

hn � hn−1 � · · · � h1 in the sense of (7.3). In other words, we need to show that 

μh(a, b, c, d) < 0 for all 1 ≤ a < b < c < d ≤ n. For 3 ≤ j ≤ n, let h(j) ∈ R
n be given 

by h
(j)
i := κj

i tj , thus h =
∑n

j=3 h(j). It suffices to show μh(j)(a, b, c, d) < 0. It follows 

from (7.2) and (5.4) that

μh(j)(a, b, c, d) = − det

⎛
⎝

1 1 1 1
κa κb κc κd

κ2
a κ2

b κ2
c κ2

d

tjκj
a tjκj

b tjκj
c tjκj

d

⎞
⎠ = −tj · K{a,b,c,d} · s(j−3)(κa, κb, κc, κd),

where K{a,b,c,d} was defined in (8.3) and sλ is the Schur polynomial associated with a 

partition λ = (λ1, . . . , λm), see [42, §7.15]. Thus s(j−3) = hj−3 is the complete homoge-

neous symmetric polynomial [42, §7.5]. Since κ1 < · · · < κn, we find K{a,b,c,d} > 0. Since 

we have also assumed that κ1, . . . , κn > 0, we find s(j−3)(κa, κb, κc, κd) > 0. We have 

shown μh(j)(a, b, c, d) < 0 for all j such that tj > 0, which implies μh(a, b, c, d) < 0. For 

the case of C−t(M), the same argument shows μh(a, b, c, d) > 0. �
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In Proposition 8.10, we required the κ-parameters to be positive. For the case t =

(t3, 0, . . . , 0) studied in [24], this assumption can be lifted.

Corollary 8.11. Proposition 8.10 still holds when the numbers κ1 < · · · < κn are not 

necessarily positive, provided that t = (t3, 0, . . . , 0) with t3 > 0.

Proof. Indeed, in this case the polynomial s(j−3) = s(0) from the proof of Proposi-

tion 8.10 is equal to 1, thus we have μh(a, b, c, d) < 0 regardless of the sign of the 

κ-parameters. �

Since the generic soliton graphs Gt(M) for M =
(

[n]
k

)
are trivalent (k, n)-plabic 

graphs, it is natural to ask which (k, n)-plabic graphs are realizable as soliton graphs. 

Similarly to Section 2.3, let us say that a bipartite (k, n)-plabic graph is realizable if it can 

be obtained from some Gt(M) by contracting unicolored edges. Thus every realizable 

(k, n)-plabic graph is also A-regular for some A. (It is not clear to us whether the 

converse is true.) In [23,24], the authors showed that all bipartite (2, n)-plabic graphs 

are realizable. In [20], building on work of [19], Karpman and Kodama showed that for 

k = 3 and n = 6, 7, 8, every bipartite (k, n)-plabic graph is realizable for some choice of 

κ- and t-parameters (see however Example 7.9 and [20, Theorem 4.2]).
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