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Some dividing cells sense their shape by becoming polarized along their long axis. Cell polarity is controlled

in part by polarity proteins like Rho GTPases cycling between active membrane-bound forms and inactive

cytosolic forms, modeled as a “wave-pinning” reaction-diffusion process. Does shape sensing emerge from

wave-pinning? We show that wave pinning senses the cell’s long axis. Simulating wave-pinning on a curved

surface, we find that high-activity domains migrate to peaks and troughs of the surface. For smooth surfaces,

a simple rule of minimizing the domain perimeter while keeping its area fixed predicts the final position of the

domain and its shape. However, when we introduce roughness to our surfaces, shape sensing can be disrupted,

and high-activity domains can become localized to locations other than the global peaks and valleys of the

surface. On rough surfaces, the domains of the wave-pinning model are more robust in finding the peaks and

troughs than the minimization rule, though both can become trapped in steady states away from the peaks and

valleys. We can control the robustness of shape sensing by altering the Rho GTPase diffusivity and the domain

size. We also find that the shape sensing properties of cell polarity models can explain how domains localize to

curved regions of deformed cells. Our results help to understand the factors that allow cells to sense their shape

– and the limits that membrane roughness can place on this process.

For cells to respond to changing environments [1, 2] by

choosing a direction to crawl, an axis of division, or a location

to form a new branch, they must develop an internal biochem-

ical polarity, where proteins are distributed inhomogeneously

around the cell surface. In addition, the shape of the cell and

its internal membranes can help organize its polarity – cells

can sense their own shape [3]. Localization of different pro-

teins to different regions can occur when individual proteins

prefer to bind to membranes that have a specified curvature

range, as is known to happen with BAR proteins [4, 5], Ar-

fGAP [6–8], α-synuclein [9] SpoVM [10] and septins [11].

However, even if individual proteins do not have a curvature

preference, reactions on a cell membrane can be sensitive to

the shape of that membrane, leading to patterns of protein

localization sensitive to the membrane’s shape. This is the

broadest idea of “shape sensing.” This shape sensitivity can

arise from the local changes in surface-to-volume ratio [12]

or more complicated reaction-diffusion mechanisms [13–19].

Experiments have measured key correlations between local-

ization of myosin II [20], and PIP2 [21] and local cell shape

features like curvature, while inducing curvature within a cell

can change the localization of both myosin II [20] and the

polarity protein Rho [22]. Yeast polarity domain size also re-

flects cell shape [23]. Bacterial shape sensing has also been

recapitulated in vitro for the Min system of E. coli [24, 25].

Shape sensing may also play a role in creating instabilities

where cells crawl in circles [13, 26] or have a periodic mo-

tion [27]. Even the existence of polarization is sensitive to

cell volume [28]. Most dramatically, recent work studying the

distribution of PAR proteins in the C. elegans zygote demon-

strates a clear binary shape sensing: when PAR proteins are

disrupted from their natural location by experimental inter-

vention, they return to become localized to the nearest narrow

end of the zygote [29]. This experiment demonstrates that

PAR proteins sense the long axis of the cell – while not estab-

lishing whether this sensing is self-organized, or arises from a

pre-existing pattern.

Some elements of shape sensing are well understood, e.g.

how patterns can be selected by controlling the possible wave-

lengths of an initial linear instability [30]. Here we focus on a

specific aspect of shape sensing: motivated by [29], we study

how a single initial domain of high concentration moves in

response to the shape of its membrane. We will refer to this

as “domain migration shape sensing,” to distinguish it from

other examples of sensitivity to shape mentioned earlier. Do-

main migration cannot be captured by linear stability analy-

sis, and is not well understood. As a prototype model, we

study a minimal model of cell polarity, the “wave-pinning”

(WP) model of Mori et al. [31] which describes Rho GTPase

dynamics. We use this model as the simplest model that ro-

bustly describes cell polarity, but it is also closely related to

more detailed models used to describe PAR protein dynamics

[32]. Previous work has shown that membrane-bound active

form of Rho GTPases localize to the narrow end of the cell

[13, 33, 34], and links between the wave pinning model and

the Allen-Cahn model have been suggested [33, 35]. These

behaviors occur not only in the basic wave pinning model but

also in significantly more complicated models including mul-

tiple Rho GTPases and phosphoinositides [36, 37]. Later work

has also shown that narrow-end localization occurs in three

dimensions, but also demonstrates that domain localization in

response to a complex cell shape is difficult to predict [14].

Can we reproduce the shape sensing via domain migration

of [29] using a simple model? Is there a predictive mini-
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mal theory for where polarity proteins will end up in a cell,

other than just solving the complex reaction-diffusion PDEs?

Previous simulation work has also focused on smooth, ideal-

ized surfaces. Would reaction-diffusion mechanisms for shape

sensing be robust to the rough, complex shapes observed in

real cells? In this paper, we study these questions. We find

that a minimal WP model is able to recapitulate binary shape

sensing as well as localization of domains to corners of tri-

angular cells. We also argue that in many cases, we can

understand the dynamics of complex domain shapes arising

from the WP model by minimizing domain perimeter while

keeping domain area fixed. However, we find that this simple

minimization principle can be disrupted in sufficiently rough

membrane geometries, where shape sensing itself is also less

reliable. We show that shape sensing can be modulated by al-

tering the diffusion coefficient of the membrane-bound form

of our Rho GTPase, as well as the domain area. Our work is a

systematic test of a minimal theory for how shape influences

Rho GTPase cell polarity, and provides an understanding of

when shape sensing will succeed depending on the cell geom-

etry.

Membrane

Cytosol

+

(a) Wave pinning (b) Perimeter minimization

L

FIG. 1. (a) A schematic of the reaction involved in the wave-pinning

(WP) model. In the inactive form, Rho GTPases are in the cytosol,

ρcytosolic. The active form ρ is in the membrane. There is a positive

feedback: presence of the active form on the membrane locally pro-

motes conversion from the inactive form. (b) Representation of a

domain in the perimeter minimization (PM) model. The red curve

lies in a 3D surface. Its projection on the x-y plane is shown as the

black curve. To calculate the length of the boundary and the surface

area enclosed by the red curve, we divide the black curve into trian-

gles as shown and use results from differential geometry (Appendix).

I. MODELS

A. Wave-pinning model of cell polarity

We describe cell polarity with a variant of the wave-pinning

(WP) reaction-diffusion system [31]. This model treats

Rho GTPases exchanging between the active membrane-

bound ρ(r) and inactive cytosolic ρcytosolic states with rate

f (ρ, ρcytosolic), and the membrane-bound form diffusing on

the curved membrane with diffusion coefficient D; the total

amount of Rho GTPase is conserved. ρ(r) obeys the reaction-

diffusion equation:

∂ρ

∂t
= D∇2ρ + f (ρ, ρcytosolic). (1)

The reaction term f (ρ, ρcytosolic) includes basal rates of activa-

tion, de-activation, and a positive feedback where activation

occurs more often when active Rho GTPase is already present:

f (ρ, ρcytosolic) = ρcytosolic

(

k0 +
γρ2

K2 + ρ2

)

− δρ (2)

where k0 is a basal rate of activation, K is the concentration

at which the positive feedback begins to saturate, and γ is the

maximal rate of activation from positive feedback. The basal

rate of the reverse reaction i.e. conversion from ρ to ρcytosolic

is δ. In all the results presented in this paper, we have used

k0 = 0.07 s−1, γ = 5 s−1, K = 2 µm−2, and δ = 3 s−1. Un-

less otherwise stated, we use D = 0.5 µm2s−1. The order of

magnitude of these quantities are based on [31].

We assume that the diffusion coefficient of the cytosolic

form is so much larger than the diffusion coefficient of ρ

that ρcytosolic is well-mixed, i.e. constant over the cell vol-

ume. Because of the conservation of Rho GTPases between

the membrane-bound and cytosolic forms, the total number of

Rho GTPase proteins is
∫

membrane
ρ +

∫

cytosol
ρcytosol, which is a

unitless constant we call M. We can then determine ρcytosolic

as:

ρcytosolic =
M

ωS
− 1

ωS

∫

membrane

ρ. (3)

S denotes the surface area of the cell. ω is the ratio of the

volume of the cell to its surface area. Thus, ωS is the volume

of the cell. When we simulate an abstract surface h(x, y) where

there is no clear cytosolic volume, we take ω = 1 µm. We

choose M/S = 2.9µm−2 as a default value in our simulations;

changing this value changes the size of the domain of high

Rho GTPase activity, and if it is increased or decreased too

much, it will prevent the cell from polarizing. The equation

Eq. 1 is solved on our curved surfaces using a finite element

method (Appendix).

When parameters allow polarization (see, e.g. [27, 31, 35]),

the WP model reaction-diffusion equation Eq. 1 admits solu-

tions that have a high-concentration region with ρ ≈ ρ+ and

low-concentration regions of ρ ≈ ρ−. These values are set by

the roots of f (ρ, ρcytosolic) = 0, which are, when the system

allows polarization, ρ−, ρ0, and ρ+, in increasing order. An

initial domain of enriched ρ will evolve into a “pinned” state,

where it has an area set by the reaction kinetics, the geometry,

and the total amount of Rho GTPase M. The conditions for

pinning, which set the steady-state domain shape in terms of

the total amount M and the values ρ− and ρ+ are discussed in

[27, 31, 35]. After the formation of a stable pinned domain,

the domain moves over the surface, keeping its area roughly

constant. On a flat two-dimensional surface, Jilkine has used

asymptotic analysis to show that the velocity of the domain

edge is is proportional to its curvature [33], tending to mini-

mize the perimeter.
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FIG. 2. The WP model is able to reproduce the shape sensing behavior of PAR proteins. (a) Top view: High concentration domains that

were created away from the ends travel towards the ends over a duration of several minutes. Note that we initialize the domain at a size a

little smaller than its steady-state size; it first expands and then migrates. (b) Front view: the angular position of the center of mass of a

high-concentration domain from the vertical axis. (c) the final angular position of the domain center of mass as a function of the inital angular

position. The steady state “flips” when θ crosses π. This is analogous to the binary shape sensing of [29].

B. Perimeter minimization model

On a flat surface, solutions of the wave-pinning equations

tend to minimize their domain perimeter [33], but their area

remains roughly constant, suggesting that the dynamics of do-

mains in these reaction-diffusion systems may be captured by

minimizing perimeter while keeping area constant. This same

idea may also capture more general proposed mechanisms for

cell polarity, like binary mixture phase separation [38, 39]. In

these models, line tension between the two phases drives do-

main coalescence and coarsening to minimize interface ten-

sion, while mass conservation keeps domain area fixed. Thus,

both wave-pinning and phase separation pictures of cellular

polarization tend to minimize the interface length of a polar-

ity protein domain. Therefore, we will also study a perimeter

minimization (PM) model of cell polarity. In the perimeter

minimization model, the high ρ concentration domain is rep-

resented by a portion of the 3D surface bounded by a closed

curve that lies in the surface (Fig. 1b). The closed curve is

the boundary of the domain. We minimize the length of the

boundary while constraining the enclosed surface area to be

fixed. The domain is free to relocate on the underlying sur-

face.

To calculate the length of the boundary and the enclosed

area, we project the 3D curve to the x-y plane, as shown

in Fig. 1. The projected curve is divided into triangular

“pie slices”. Given the surface h(x, y) and the points {xi, yi}
defining the domain we can compute the domain’s perime-

ter L ({xi, yi}) and area A ({xi, yi}) on the surface using the first

fundamental form of the surface and Gaussian quadrature (see

Appendix). We chose this approach to allow for simple differ-

entiation of the energy. We have argued that we should expect

many polarity mechanisms to minimize the domain perimeter

while keeping domain area fixed. To numerically find these

minima, we minimize the energy

F ({xi, yi}) = L ({xi, yi}) +
1

2
k (A ({xi, yi}) − A0)2 (4)

Eq. 4 penalizes deviations away from the prescribed area A0

with a coefficient k = 103µm−1 as a strong area constraint.

(We find that with this value of k, steady-state areas are well-

constrained to A0 to within about 2%). We choose A0 to be

the average steady state area of high concentration domains in

WP simulations for the given surface. The parameter A0 will

also depend on the total amount of protein M, because this

will alter the steady-state domain size. Values of A0 for each

simulation are provided in Table S1 in the Appendix.

We assume that the domain evolves in an overdamped way,

i.e. the velocity of a point (xi, yi) is negatively proportional

to the gradient of the energy F . The overdamped dynam-

ics assumption here is a minimal one; more complex mod-

els that still minimize the energy would also be possible [40],

e.g. modeling how the membrane lipids flow in response to

deformations of a domain with a line tension [41]. The over-

damped dynamics corresponds to minimizing F using a sim-

ple gradient-descent algorithm. Thus, we generate a series of

{xi, yi} that converge to a local minimum. The update from the
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nth iteration to the (n + 1)th iteration is obtained as

xn+1
i = xn

i − β
∂F
∂xn

i

yn+1
i = yn

i − β
∂F
∂yn

i

(5)

where β controls the step-size along the gradient. To ensure

steady state, we continue to evolve the system until the solu-

tion remains unchanged to a precision of 10−6 for 1000 itera-

tions. We use β = 10−2µm.

II. RESULTS

A. Wave-pinning exhibits binary shape sensing

One of the motivating experimental results for this study is

the reorientation of PAR protein domains in a C. elegans zy-

gote [29] to regions of high curvature. In these experiments,

a C. elegans zygote of roughly ellipsoidal shape is subjected

to cytoplasmic flows such that the high partitioning-defective

protein (PAR) concentration domain is rotated from the initial

position on one end of the zygote. If the induced rotation is

less than 90◦, the PAR domain goes back to its initial posi-

tion. But for rotations greater than 90◦ the polarity of the cell

is reversed. Thus, in the steady state, the PAR domain is al-

ways on one of the ends of the long axis of the zygote. PAR

proteins have reaction kinetics similar to the Rho GTPases i.e.

there are membrane-bound active and cytosolic inactive forms

that exchange [42], and PAR models have been built from ex-

tending WP models [43]. Therefore, the WP model may be an

effective minimal model for some elements of PAR polarity.

We test if the WP model can reproduce this bistability. We

solve the reaction-diffusion system on an ellipsoidal surface,

with initial conditions describing a high-ρ domain at different

angles θ (Fig. 2b). The WP model is able to reproduce the

shape sensing behavior of PAR proteins. Figure 2a shows the

top view of the ellipsoid as domains initialized close to θ = 0

(Fig. 2b) evolve over time. These domains move from the el-

lipsoid center towards its narrow ends over a duration of 18

minutes. A domain created just left of the center evolves to

the left end, and a domain just right of the center evolves to

the right end. We formalize this by tracking the angular po-

sition of the center of the high-ρ domain (Fig. 2b). Varying

the initial angular position, we find that domains initialized

closer to the left end, i.e. θinitial ∈ [0, π) end up at the left end

(θfinal = π/2), and all domains initialized closer to the right

end, θinitial ∈ (π, 2π] have θfinal = 3π/2 (Fig. 2c). This is

precisely the binary shape sensing observed by [29]. We em-

phasize that our model is not a full model of the PAR system,

which should include the effect of antagonistic interactions

between different PAR proteins and hydrodynamic flow [43];

however, it illustrates that minimalistic cell polarity models

can capture binary shape sensing without additional assump-

tions. The time taken to reach the steady state decreases from

1800 s for θ near 0 to 100 s for θ near π/2, and naturally in-

creases symmetrically as θ ranges from π/2 to π. This em-

phasizes the role of the initial condition’s symmetry: near-

symmetric initial conditions can take a long time for a spon-

taneous symmetry breaking to occur.
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FIG. 3. Steady state shape of a domain on a smooth sinusoidal

test surface. (a) Steady-state solution of the reaction-diffusion equa-

tions on a sinusoidal surface. Magenta lines are shown to illustrate

the boundaries of the high-ρ domain marked at ρ = (ρmax + ρmin) /2.

(b) Steady state of reaction-diffusion model (color map, viewed from

above), is in agreement with the perimeter minimization (solid ma-

genta line).

B. Wave-pinning and perimeter-minimization agree on a

simple smooth surface test problem

To understand how the dynamics of wave-pinning depend

on membrane shape in a simple context, we begin with a si-

nusoidal surface (Fig. 3a)

h(x, y) = h0 sin
2πx

W0

cos
2πy

W0

(6)

where h0 = 5.55 µm and W0 = 20 µm, and the system spans

−W0/2 ≤ x, y ≤ W0/2. The surface represents a portion of the

cell membrane, and its size and curvature are similar to that

of the ellipsoid. This surface has the advantage of being able

to be represented as a function z = h(x, y), making perimeter

minimization simpler (see Appendix for numerical methods).

We solve the reaction-diffusion equation Eq. 1 on the sim-

ple sinusoidal surface. We find that, initializing the system

with a region of high ρ concentration near one of the sur-

face peaks, the high-activity domain migrates to the peak at

long times (Fig. 3a, Movie 1). We simulate the reaction-

diffusion process for 5,000 seconds to ensure we have con-

verged to the steady state, but all but a few domains reach a

steady state within a few hundred seconds (see, e.g. Movie

1). The WP model gives as a result a concentration ρ on the

surface that decreases rapidly but smoothly from a maximum

value ρmax ≈ ρ+ to a minimum value ρmin ≈ ρ−. To define

an explicit domain shape and size as in the perimeter mini-

mization, we must choose a threshold. We choose the con-

tour of ρ = 1
2

(ρmin + ρmax) as the boundary for calculating the

area and shape of the high ρ concentration domain. Fig. 3b

shows the “top” view of the sinusoidal surface of Fig. 3a. The
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FIG. 4. Domains on smooth surface robustly find peaks and valleys, with agreement between wave-pinning and perimeter minimiza-

tion. (a) Rendering of the surface in Eq. 6. (b) and (c) show the trajectories and steady-state positions of domains in the WP and PM models

respectively. In both, the uniformly spaced grid of small blue dots indicate the initial position of a domain, the white line indicates the domain’s

trajectory, and heavy red dots are the domain’s final location. Color maps are contours of the height h(x, y).

curve in magenta indicates the steady-state shape of the do-

main obtained from perimeter minimization (Eq. 5), which

agrees closely with the transition from high to low ρ. This is

consistent with our idea that perimeter minimization is a good

heuristic for explaining the shape-sensing behavior.

Steady-state location of high activity domain depends on domain

initial position

Our results in Fig. 2 and the experimental results of [29]

show that regions of high active polarity protein concentra-

tion on the membrane will evolve to different steady-state lo-

cations depending on their initial location. What trajectory do

they take? Our simple test surface h(x, y) has multiple peaks

and troughs as potential steady-state locations for domains. To

understand how domains choose their steady-state positions

and what trajectory they take, we simulate domains starting

from 625 initial positions shown as a small grid of blue dots

in Fig. 4. We do these simulations in both the wave-pinning

and perimeter minimization models. The big red dots indicate

the steady state position of the center of mass of the domains.

A thin white line connecting a blue dot with a red dot indicates

the trajectory of the center of mass of the domain. Generally,

we observe that a domain migrates to the peak or valley that

is closest to it (Fig. 4). Interestingly, for points that are initial-

ized nearly equidistant between two peaks or valleys, these

domains follow a trajectory tracing out the line of symme-

try between these points. The PM model and the WP model

are in very good agreement in both their predicted trajecto-

ries and steady-state domain locations. While earlier work

has suggested that WP models have a perimeter-minimizing

property [33, 34, 36], it is somewhat surprising that the trajec-

tories match this well between the PM and WP model, given

the simplified overdamped dynamics we have chosen.

There is a small disagreement between PM and WP for the

three red dots along the central vertical line in the minimiza-

tion plot of Fig. 4. From the perspective of the energy min-

imization, peaks and troughs of the sinusoid are equivalent.

Therefore, the central vertical line is a line of symmetry. Do-

mains that start with their center of mass exactly equidistant

from a peak and a trough don’t migrate in the PM model, but

do in the WP model, where the symmetry is broken at a shorter

timescale. The exact timescale of breaking a symmetry like

this will depend on both the details of the initialization and the

rate of accumulation of floating point errors in both models.

Therefore, we would not necessarily expect these domains ini-

tialized precisely on lines of symmetry to agree between WP

and PM. We argue that the apparent steady-states (red dots)

away from the peaks and valleys in Fig. 4 in the PM model

are long-lived transients. Small perturbations away from these

apparent steady states leads to the domains migrating to the

peaks and valleys, as with the other domains (Fig. S1).

C. Shape sensing is disrupted on rough surfaces

Cell membranes have roughness due to the presence of

filopodia, blebs, embedded proteins, etc. Any mechanism

for domain localization should be robust to this roughness.

Therefore, we would like to check if our models are robust

in predicting the steady states for rough surfaces. How rough

can a surface be before shape sensing by WP or PM breaks

down? We characterize the disruption of shape sensing by

determining whether domains initialized to different locations

on the membrane can still migrate to the global peaks and val-

leys when additional roughness is introduced. To answer this

question we superimpose a small wavelength roughness of in-

creasing amplitude on the smooth sinusoidal surface,

h(x, y) = h0 sin
2πx

W0

cos
2πy

W0

+ h1 sin
2πx

W1

cos
2πy

W1

(7)
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FIG. 5. Surface roughness disrupts shape-sensing as shown by the presence of steady states at locations away from the global peaks

and the valleys of the surface. The wave-pinning model is more robust to it than perimeter minimization predicts as it has fewer such

local steady states. (a) Rendering of the surface in Eq. 7 with h1 as 10% of h0. (b) and (c) show the steady-state positions and the trajectories

obtained from WP model and PM model respectively for the surface in Fig. 5a. (d) Rendering of the surface in Eq. 7 with h1 as 20% of h0. (e)

and (f) show the steady-state positions and the trajectories obtained from WP model and PM model respectively for the surface in Fig. 5d. As

in Fig. 4, the uniformly spaced grid of small blue dots are domain initial positions, white lines are domain trajectories, and heavy red points

are domain final positions. Colors indicate contours of h(x, y).

where W1 = 4 µm and we choose the amplitude of the pertur-

bation h1 to be 10% or 20% of the amplitude h0.

We analyze the steady state positions of domains for the

same set of starting positions as studied in Fig. 4. These re-

sults are somewhat involved, and are presented in Figs. 5–7.

Domain steady-states and trajectories

How are the domain steady states and trajectories altered

in the presence of roughness? Fig. 5b shows how domains

move in the WP model for a surface with 10% roughness

(h1 = 0.1h0), showing steady states as red dots. Most of the

steady states are the same as in Fig. 4 except for the three red

dots at x = −5 µm and the three red dots at x = 5 µm, which

lie along lines of symmetry and can be long-lived transients

as discussed above. We find then that the WP model still lo-

calizes domains to the peaks and valleys in the presence of a

roughness of 10% amplitude of the smooth surface.

Fig. 5e shows the steady states of the WP model for the 625

initial conditions for the surface with roughness 20%. Now we

see several new steady states emerge in addition to the steady

states of the smooth surface. Again, we have some clusters of

steady state around the lines of symmetry at x = ±5 µm but

there are other steady states which are not near any lines of

symmetry. Thus, the shape-sensing ability of the WP model –

in the sense of its ability to find the global peaks and valleys –

has deteriorated for the increased roughness.

On a smooth surface, a domain that minimizes perimeter

while keeping area fixed localizes robustly to the peaks and

valleys of the surface and also reproduces the evolution of the

WP model (Fig. 4). Both of these properties fail for a suffi-

ciently rough surface. Fig. 5c shows the solution of the PM

model for the 10% surface roughness. In comparison with

Fig. 4 we note the emergence of extra steady states, includ-

ing states that are not near the lines of symmetry and cannot

be discounted as very long-lived transients. We argue that the

shape-sensing ability of the PM model is affected more than

the WP model for the same amount of surface roughness.

More dramatically, solving the PM model on a surface with

20% roughness shows a huge increase in the number of steady

states (Fig. 5f) – domains do not typically move over any sig-
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FIG. 6. Steady-state domain shapes agree between wave-pinning and perimeter minimization even at 20% roughness. Three repre-

sentative examples are shown from the subset of initial conditions where steady-state centroids are in agreement between WP and PM (see

text).

nificant distance on the surface and are largely localized to

near their initial position. The ability of the PM model to

find global peaks and valleys has broken down. As we noted

above, in the WP model, domains do not perfectly localize to

the troughs and peaks at 20% roughness, but the level of new

steady states created in PM at 20% roughness is qualitatively

worse. This, again, suggests the relative robustness of the WP

model.

Domain Shapes

For smooth surfaces, the steady states, trajectories, and

shapes of domains are identical between the perimeter min-

imization and wave-pinning models (Fig. 3b, 4). In the pres-

ence of surface roughness, though, the steady states and tra-

jectories do not match between WP and PM (Fig. 5). Does

this indicate a complete failure of the matching between the

PM model and the WP model, or worse – was the match

we saw in Fig. 4 a coincidence? To check this question,

we test if the PM model and WP model can reproduce the

same steady-state domain shapes. However, it is only appro-

priate to compare the domain shapes at the same location on

the surface h(x, y). For the 20% roughness case, the num-

ber of steady states predicted by the PM model (Fig. 5f) is

much larger than the number of steady states predicted by the

WP model (Fig. 5e), but for some of the 625 initial condi-

tions, the steady states of the WP model and the PM model

have centroids that are close to each other. We compare do-

main shapes between PM and WP when the predicted steady-

state domain centroids are in agreement (within a tolerance of

0.15 µm), finding that domain shapes match well between the

models even in the presence of 20% surface roughness (Ex-

amples shown in Figs. 6a, 6b, 6c). These shapes are nontrivial

and complex, very different from the circular domains found

on the smooth surface, and the agreement is excellent. Even

though the PM model is unable to give the same trajectories

and the same steady states as the WP model, it is still quite

robust at reproducing the domain shapes.

D. Perimeter minimization on rough surfaces is fragile to

small changes in domain area

We saw in the previous section that perimeter minimization

can predict complex nontrivial domain shapes that appear in

the WP model (Fig. 6). This suggests that the steady states

of WP do obey a perimeter minimization principle – at least

locally. However, the large-scale trajectories and many of the

steady states differ between the PM model and the WP model.

Why? The PM model has a tight constraint on the domain

area, while in the WP model the domain area is only approxi-

mately fixed. In fact, for the WP model the domain area varies

slightly for different starting positions of the center of mass

and also at different locations of the center of mass along the

trajectory. For the simulations shown in Fig. 5, we found that

the domain area ranged from 8%-10% of the total surface area

of the rough membrane. Does perimeter minimization predict

the same domain steady state location or trajectory for these

different values of domain area? Figures 7a-c show the trajec-

tory plots obtained from the PM model when domain area is

constrained to a value A0 that is 8%, 9%, and 10% of the total

surface area for the surface with 20% roughness. The local

minima predicted for different domain areas are different (see,

e.g. white boxes in Fig. 7a-c). This shows that strict perime-

ter minimization on a rough surface is fragile – it depends so

strongly on the target area A0 that we should not expect agree-

ment between WP and PM.

The fragility of perimeter minimization to small changes in

area can be understood by thinking about the domain as mov-

ing within an effective energy landscape U(x) (Fig. 8). When

the surface h(x, y) is smooth, this landscape is also smooth,

and a domain can smoothly travel to the peak or trough –

the energy minimum. However, when the surface becomes
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FIG. 7. Steady states predicted by perimeter minimization are sensitive to domain size. We have highlighted the steady states at the

peak, marked with white squares, which is markedly different in the three subfigures. (a), (b), and (c) show the steady state positions and the

trajectories given by the PM model when the domain area is set to 8%, 9%, and 10% of the total surface area respectively. As in Fig. 4, the

uniformly spaced grid of small blue dots are domain initial positions, white lines are domain trajectories, and heavy red points are domain final

positions. Colors are the contour map of h(x, y).

rough, we expect the effective energy landscape to also be-

come rough (Fig. 8, right) – and domains become trapped

in local minima. More importantly for this section, we can

see that small perturbations to the landscape – as might be

expected from changing the domain area – can lead to large

shifts in the steady state. This corresponds with the fragility

observed in Fig. 7.

Smooth surface: robust shape 

sensing

Rough surface: shape sensing 

fragile to small changes

FIG. 8. Movement of the domain over a surface is like moving a

particle through energy landscape U(x); shape-sensing is like find-

ing the minimum energy position. For a smooth surface, the global

minimum is easily attained but for rough surfaces there are local min-

ima with energy barriers that prevent reaching the global minimum.

Small changes to initial condition or the landscape parameters lead

to changes in outcome (blue arrows, right)

E. How reaction-diffusion shape sensing can be made robust to

membrane roughness

The sensitivity of the PM model to the domain area does not

fully explain the difference between the steady states shown in

Fig. 5 – the WP model has many fewer unique steady-states

than any of the PM results presented in Fig. 7. Why is the WP

model so robust?

Effect of diffusion coefficient

The high ρ concentration domain formed by wave-pinning

has a finite interface width as shown in Fig. 3a. The PM model

domain, on the other hand, has a sharp interface. The width

of the interface increases with the diffusion coefficient of the

reaction-diffusion system [28]. So as we decrease the diffu-

sion coefficient, the interface width of the WP model will de-

crease – potentially leading to better agreement between WP

and PM.

For the smooth surface, the WP model and the PM model

are in good agreement (see Fig. 4), and reducing the diffusion

coefficient in the WP model does not alter the results for this

surface (Fig. 9a,d).

In our default parameters, domains in the WP model largely

reach the peaks or valleys of the surface at 10% roughness

(Fig. 5b). However, on reducing the diffusion coefficient

from 0.5 µm s−1 to 0.1 µm s−1, the WP model begins to show

nontrivial local minima (Fig. 9e), albeit different from those

shown by the PM model as shown in Fig. 5. As we increase

the surface roughness to 20% for D = 0.1 µm s−1, the num-

ber of local minima for the smaller diffusion coefficient in-

creases significantly (Fig. 9f). The number of local minima

for D = 0.1 µm s−1 for the 20% roughness case are compara-

ble to the number of local minima seen in the PM model (see

Fig. 5f).

We emphasize that our results in Fig. 9 show that decreas-

ing the diffusion coefficient increases the number of steady

states – this is not just an artifact of decreasing diffusion mak-

ing kinetics slower. Because of the slower diffusion coeffi-
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FIG. 9. In the WP model, the width of the interface of high activity domain can be decreased by reducing the diffusivity. As the WP

model approaches the sharp interface limit, many local minima steady states appear. (a), (b), and (c) show the steady state positions

for D = 0.5µm2s−1 for increasing surface roughness. (d), (e), and (f) show the corresponding steady state positions for D = 0.1µm2s−1 for

increasing surface roughness. As in Fig. 4, the uniformly spaced grid of small blue dots are domain initial positions, white lines are domain

trajectories, and heavy red points are domain final positions. Colors are contour map of h(x, y).

cient, we ran the simulations in Fig. 9 with D = 0.1µm2/s for

a time of 20000 s, compared with 5000 s for D = 0.5µm2/s.

We also ensured that these steady states were converged by

running the simulations for finer finite element meshes, and

for longer simulation times for a subset of the initial positions.

We argue that the robustness of the WP model as compared

to the PM model is due to the finite interface width of the high

ρ concentration domain, and that we can control whether the

WP model seeks the true peaks and valleys or gets stuck in

local minima in part by changing this interface width via D.

Effect of domain size

Along with size of the roughness, and the size of the in-

terface, the diameter of the high ρ concentration domain is

another length scale in this problem. Can cells sense shape

more effectively when the domain is probing a larger length

scale? We investigate the effect of size of the high ρ concen-

tration domains on the steady states by increasing M/S , which

strongly influences domain size, from 2.9 µm−2 to 3.2 µm−2.

This increases the typical domain size to ∼18% of the surface.

For the smooth surface and the surface with 10% roughness,

there were no local minima in the WP model (see Fig. 4) and

Fig. 5b). Increasing the domain size did not produce any sig-

nificant difference in these two cases. But for the surface with

20% roughness, some of the local minima that were not situ-

ated on any line of symmetry appear to “coalesce” as shown in

Fig. 10. At the lines of symmetry, as we have already noted, it

is difficult for the domains to localize to a unique solution. So,

in general, it seems that increasing the domain size, increases

the robustness of the shape-sensing slightly.

F. Shape sensing occurs in a broad range of

biologically-relevant geometries

The insight we have developed in the simple sinusoidal sur-

face can help us understand both past computational work and

experiments beyond our motivating example of binary shape

sensing [29]. We show the evolution of the wave-pinning

reaction-diffusion model on three different 3D surfaces in Fig.

11: a sphere with a bump and a sphere with a larger bump,

both approximating the shmoo-like structures of mating yeast

as previously simulated in, e.g. [38, 44], and a cell with tri-

angular symmetry. This last shape models C. elegans zygotes
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the shape-sensing ability of the WP model. The steady state po-

sitions in (b) are closer to the global peaks and valleys. (a) shows

the steady states and trajectories obtained from the WP model when

M/S = 2.9µm−2 and the size of the domains is 9% of the total surface

area. (b) shows the steady states and trajectories obtained from the

WP model when M/S = 3.2µm−2 and the size of the domains is 18%

of the total surface area. As in Fig. 4, the uniformly spaced grid of

small blue dots are domain initial positions, white lines are domain

trajectories, and heavy red points are domain final positions. Colors

are a contour map of h(x, y).

studied in triangular confinement by [45]. We have argued

above that, on smooth surfaces at least, the high-activity do-

main evolves to locally minimize the perimeter while keep-

ing a fixed area. What would perimeter minimization predict

on these surfaces? Let us think about a perfect sphere first.

Given the rotational symmetry of a sphere, no angle is pre-

ferred, so a domain initialized in one location will stay in that

location, as if it were on a flat surface. Similarly, because

the sphere with a bump is locally identical to a sphere, except

in the immediate vicinity of the bump, we expect domains to

remain at their initial centers of mass. We then simulate the

wave-pinning equations for a sphere with a bump in Fig. 11a.

When we initialize domains at different angles with respect

to the bump, we find that domains on the larger spherical re-

gion remain at their initial angle. However, when domains are

initialized closer to the bump, they are repelled by the bump

– localizing to the nearest undistorted portion of the sphere.

This is similar to the final localization observed in [38] in a

similar geometry (Fig. 7A in that paper). However, once the

domain is initialized sufficiently close to the bump, it local-

izes to a final position on the bump – the local minimum of

perimeter with fixed area. This “sphere with a bump” geom-

etry is particularly informative because it has a large region

that is identical to an unperturbed sphere – leading to a large

fraction of the surface where domains will not migrate signif-

icantly. This shows the value of understanding the dynamics

in terms of a local minimization of perimeter: even though

there is a “global” location with smaller perimeter – placing

the domain at the bump – domains initialized on the sphere

do not migrate. This may explain why shape sensing in re-

lated reaction-diffusion models was viewed as weak [38]. By

contrast, if the region of the bump is increased (Fig. 11b),

domains become attracted to the peak over a larger range of

initial conditions. These results show how shape sensing can

be disguised on surfaces that are sufficiently close to a sphere.

Our results also illustrate that it is essential to study a range

of different initial conditions: there are often many different

steady states even on a simple surface, and a full understand-

ing of shape sensing requires seeing under which conditions

different initial conditions converge to these steady states.

More excitingly, we see that the same mechanism of shape

sensing by wave-pinning that we have studied above can ex-

plain additional elements of domain localization. In Fig. 11c,

we simulate the wave-pinning reaction-diffusion model on a

cell with triangular symmetry, similar to the shapes of zygotes

confined in triangular wells studied by [45]. In that paper, the

authors found that in zygotes depleted of AIR-1, PAR-2 local-

ized to the triangular corners of the cell – the regions of high

curvature – and were able to reproduce this with a model in

which the rate of binding to the membrane was sensitive to

curvature. Here, we show that curvature-dependent binding

is not necessary to reproduce localization to the corners. If

we initialize a domain to the sides of the cell, we observe that

it migrates to the corner (Fig. 11c). This is, again, consis-

tent with our intuition from the perimeter minimization idea:

domains with the same area will have a lower perimeter if

they are localized to the tips. (We note: for the corners to

have a lower perimeter, there must be some Gaussian curva-

ture at the corners of the cell. We would not expect corner

localization if the cell were shaped, for instance, like a tri-

angular prism.) Corner localization behavior would not have

been seen in the original simulations of [45] in the absence of

curvature-dependent binding rates kon, because they worked in

one dimension – which does not resolve the full shape of the

domain’s perimeter. While the wave-pinning model does not

serve as a complete model for the PAR system, it shows that

a minimalistic cell polarity mechanism can reproduce corner

localization without any additional assumptions.

III. DISCUSSION

In this paper, we have shown that the classic wave-pinning

model of cell polarity is sufficient to produce the behavior

of binary shape sensing observed by [29] – as might be an-
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FIG. 11. Shape sensing from wave-pinning occurs in a broad range of biologically-relevant three-dimensional cell shapes. We show the

final angular position of a domain as a function of its initial angle, as in Fig. 2c. ρ concentration is plotted for representative examples. Cell

shapes are a) spheres with a bump (“shmoo”), b) teardrop, and c) a samosa shape modeling a cell in a triangular confinement [45]. Domains

initialized at one location on a three-dimensional cell surface systematically evolve to their nearest steady-state location.

ticipated by earlier work [13, 14, 34]. We then try to cap-

ture some of the essential features and limitations of shape

sensing by the wave-pinning Rho GTPase dynamics as well

as developing a heuristic model for it in terms of minimiza-

tion of an effective energy proportional to the domain perime-

ter. Wave-pinning reliably senses cell shapes when the cell

is smooth, but introduction of surface roughness significantly

disrupts this process. The ability of wave-pinning to sense

cell shape in the presence of roughness is controlled by both

the diffusion coefficient D on the surface (Fig. 9) and the do-

main size (Fig. 10). The perimeter minimization heuristic cap-

tures much of the dynamics of domain migration, but fails on

rougher surfaces (Fig. 5) due to the relevance of finite inter-

face sizes and domain area fluctuations (Fig. 7). However, the

perimeter minimization heuristic does let us understand when

domains on more complex, biological shapes should migrate,

including predicting the corner-localization of PAR domains

in triangular confinement (Fig. 11.

How fast is shape sensing by wave pinning? Does it oc-

cur on a biologically relevant timescale? In the experiments

on long-axis polarization of PAR proteins[29], the high-PAR

concentration domain reaches a steady states in approximately

10 minutes. Our modeling shows that protein domains at-

tain their steady states on a timescale of 100-1800 seconds,

compatible with a roughly 10 minute timescale. The longest

times required to reach steady state occur when the domain is

initialized nearly symmetrically, requiring a symmetry break-

ing. The timescale is similar between the three-dimensional

ellipsoidal domain and our smooth sinusoidal surfaces, where

except for those initial conditions at lines of symmetry, do-

mains take ∼ 100-500 s to reach steady state. Earlier work

from Cusseddu et al. have reported results for WP simula-

tions on a capsule [14], similar to the ellipsoidal shape of Sec-

tion IIII A, finding a much longer time of 13463 s to reach

steady state. This may have been influenced by a symmetric

initial condition. However, unlike their simulation model, we

have assumed that the interior is well-mixed, and we have also

chosen a larger diffusion coefficient of 0.5 µm2s−1 compared

to their value of 0.1 µm2s−1. Koo et al [46] have reported

in vivo experimental results that Rho GTPases show six dif-

ferent diffusive states of which the average diffusivity of the

most probable diffusive states is closer to 0.5µm2s−1, though

we note that our model does not yet address the possibility of

multiple states with different diffusion coefficients. The dif-

fusion coefficients and kinetics may influence the plausibility

of shape sensing in different contexts. If the time to attain

the steady state is as long as 13000 seconds, the large-scale

shape of the cell will likely change due to other phenomena,

like formation of protrusions, before shape-sensing by wave-

pinning happens. Earlier work finding relatively weak effects

of membrane shape on polarization [38] used membrane diffu-

sion coefficients based on those for yeast, D ≈ 0.0025µm2/s

[47]; this value is orders of magnitude smaller than in our

case, and may lead to very slow, if any, shape sensing. Future

work incorporating reaction-diffusion on a moving membrane

(following, e.g. [48, 49]) would be required to understand

whether shape sensing that is slow relative to surface motion

would probe the time-averaged surface or be disrupted by dy-

namic changes.

Our results show that, at least for smooth surfaces, the

reaction-diffusion WP model is well-captured by perimeter

minimization. This result is consistent with earlier work relat-

ing mass-conserved reaction diffusion equations and coarsen-

ing driven by interfacial tension (i.e. perimeter minimization)

in simpler contexts [50–52], as well as the analysis of [33].

However, our work highlights crucial limitations of these as-

sumptions. The fragility of energy minimization on rough sur-

faces to small changes in area (Fig. 7) shows that an approx-
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imate conservation of domain area is not sufficient to com-

pletely characterize domain trajectories and steady states, and

that the full reaction-diffusion equations need to be solved. In

addition, we note that the WP model consists of two stable

phases only when the concentration of the inactive form is in

a suitable range [14, 31]. The ability of cells to sense shape,

as with their ability to polarize [28], will be dependent on cell

size and total Rho GTPase amount.

Throughout this paper, we have assumed that the cytoso-

lic component of the Rho GTPase is well-mixed and therefore

uniform. This contrasts with the key role of the cytosolic dif-

fusion proposed in long axis selection by [53], and the full

bulk-surface implementation of the wave-pinning model in

[14]. The well-mixed cytosol is a common assumption, given

the large difference in cytosolic and membrane-bound diffu-

sion coefficients, but it is a potential limitation of the model. If

we extended our model to allow for a finite level of cytosolic

diffusion, the cytosolic inactive form might not be homoge-

neous, as observed previously [36]. With an inhomogeneous

cytosol, the local ratio of surface area to volume might play

a significant role [12]. This would break the symmetry in our

model between positive and negative curvature – peaks and

valleys would no longer be identical from the point of view of

the model.

Our approach shows that shape sensing may emerge from

wave pinning without any explicit dependence upon mem-

brane curvature in protein binding or kinetics. Previous work

has suggested that in order to explain PAR domain localiza-

tion in C. elegans zygotes in triangular confinement, binding

rates in the reaction-diffusion model must be dependent on

curvature [45]. We have shown in Fig. 11 that the corner lo-

calization of these domains does not require this curvature-

dependent binding, but can be reproduced solely from the

minimal reaction-diffusion wave pinning model if simulated

in a three-dimensional geometry. If we extended our model

to study explicit dependence of binding rates on local curva-

ture, this dependence could also be used to break the symme-

try between positive and negative curvature, as with cytoso-

lic diffusion. However, the ability of single proteins to sense

micron-scale curvature on their own is rare, and many aspects

of the mechanism of micron-scale curvature sensing remain

unresolved [54, 55]. We are not aware of any evidence show-

ing that Rho GTPases or PAR proteins have binding rates that

depend on local curvature. We therefore suggest that prefer-

ences for different signs of curvature are more likely to arise

from cytosolic diffusion effects.

Our results show that surface roughness can impede shape

sensing by both energy minimization and Rho GTPase dy-

namics, with perimeter minimization more strongly affected.

How crucial is the effect of roughness to understanding shape

sensing in realistic geometries? This likely varies between

cell types: the C. elegans zygote appears fairly smooth on

the micron scale [29], while at the other extreme, blebby cell

surfaces may have overhangs and extremely complex invo-

lutions [21], for which the mechanism of domain migration

shape sensing studied here seems implausible. The impor-

tance of roughness is also dependent on the diffusivity of the

membrane-bound Rho GTPases (Fig. 9). Diffusion of polarity

proteins could be altered by their coupling to the cytoskele-

ton or other proteins [56–59], controlling the extent to which

shape sensing leads to domains finding the global peaks and

valleys or long axis, or rather becoming pinned to a local

minimum. It is also possible to regulate the size of polarity

domains by changing the available concentration of Rho GT-

Pases; this will also alter shape sensing (Fig. 10).

Our results clarify both the power and limits of shape sens-

ing by reaction-diffusion and perimeter minimization: in the

best case, shape sensing proceeds in a straightforward, pre-

dictable way, and robustly finds the minima and maxima in

reasonable amounts of time. However, both mechanisms are

fragile to sufficiently rough perturbations. This suggests that

many past models of spontaneous cell turning, cell polariza-

tion, etc., [13, 32, 60–62] may need to be systematically tested

to determine to what extent they are robust to realistic changes

in cell geometry.

CODE AVAILABILITY

Simulation code for reaction-diffusion and

perimeter minimization is posted on Zenodo:

https://zenodo.org/record/6731244
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SI APPENDIX

Appendix A: Movie captions

Movie 1: Evolution of wave-pinning model on the sinusoidal surface showing the migration of a domain from its initial

position to the final position at the surface peak. View is from the top.

Appendix B: Parameter Values

We tabulate the default parameter values used in our simulations. Any changes from the default values have been explicitly

mentioned in the main text.

Parameter Default Value Description

k0 0.07 s−1 Basal activation rate

γ 5 s−1 Positive feedback activation rate

K 2 µm−2 Saturation parameter

δ 3 s−1 Deactivation rate

D 0.5 µm−2s−1 Diffusion coefficient of the active ρ

M/S 2.9 µm−2 Total concentration (see Eq. 3)

S R0 627 µm2 Total surface area of the smooth surface

S R10 664 µm2 Total surface area of the surface with 10% roughness

S R20 768 µm2 Total surface area of the surface with 20% roughness

AR0 0.09 S R0 Surface area constraint for PM model on the smooth surface

AR10 0.09 S R10 Surface area constraint for PM model on the 10% roughness surface

AR20 0.09 S R20 Surface area constraint for PM model on the 20% roughness surface

k 103 µm−1 Penalty coefficient (see Eq. 4)

β 10−2 µm Gradient-descent step size coefficient (see Eq. 5)

Tsim 5,000 s Simulation time (D = 0.5µm2/s simulations)

Nelem 80000 Number of mesh elements

TABLE S1. Default values of the parameters used in the simulations of the PM and the WP models.

Appendix C: Transient States in Perimeter Minimization

In Fig. 4c, we noted that perimeter minimization predicts some three “steady” state along the x = 0 line that have been marked

as red dots in the plot. The initial positions of the centroid of the domains in all of these cases were along the x = 0 line which

is a line of symmetry. If we apply a small random perturbation of 0.02 µm to each point (xi, yi) of the final states of these

simulations, they attain steady states on one of the peak or valleys. Thus, we confirm that these are indeed transient states and

are an artefact of the symmetry of the surface. Fig. S1 show the trajectory plot after perturbing the final states.

Appendix D: Details of the Numerical Methods

1. Finite Element Model for Wave-pinning on a 3D surface

Our approach uses some standard finite element tools: this section will be easier to follow with knowledge of weak forms of

PDEs, discretization of the domain of PDEs into a linear triangular mesh, the shape functions of a linear triangular element, and
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FIG. S1. The steady states and trajectories obtained from the perimeter minimization simulations on the smooth surface after applying a small

perturbation to the final states along x = 0 line shown in Fig. 4.

Gaussian quadrature on linear triangles to evaluate integrals defined over the elements.

We want to solve the following system of equations

∂a

∂t
= D∇2a + f (a, b)

b = α − 1

S

∫

Ω

a

using the Finite Element Method. Here, for conciseness, we’ve written the membrane-bound concentration as a and the uniform

cytosolic concentration as b. α = M
ωS

. We’ve also implicitly assumed ω = 1µm here, but this can be generalized to nonzero ω by

taking S → ωS in the final equations. The first step for setting up the finite-element problem is to derive the “weak form” of the

PDEs. We can express the time derivative using finite-difference. Let a be the concentration at time-step n and ā, be the value of

a at time step n − 1. Let the time step size be t.

a − ā = tD∇2a + t f (a, b)

We will linearize the non-linear reaction function f (a, b) using ak+1 = ak + δa and bk+1 = bk + δb. Here δa is the correction to

the value of ak at the kth Newton iteration and similarly for δb.

ak+1 − ā = tD∇2ak+1 + t f (ak+1, bk+1)

ak + δa − ā = tD∇2ak + tD∇2δa + t f (ak, bk) + t fa(ak, bk)δa + t fb(ak, bk)δb

where fa, and fb are the derivatives of f with respect to a and b respectively. Collecting the terms in δa and δb on the LHS,

(

1 − t fa(ak, bk)
)

δa − tD∇2δa − t fb(ak, bk)δb = ā − ak + tD∇2ak + t f (ak, bk)

Multiply both sides by u, the test function, and integrate by parts setting the boundary terms to zero due to the boundary

conditions (which will be either no flux or periodic).

∫

Ω

(

1 − t fa(ak, bk)
)

uδa dΩ + tD

∫

Ω

∇u · ∇δa dΩ − t

∫

Ω

fb(ak, bk)uδb dΩ = (D1)

∫

Ω

u(ā − ak) dΩ − tD

∫

Ω

∇u · ∇ak dΩ + t

∫

Ω

u f (ak, bk) dΩ
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We will simplify the constraint equation using these linearizations, a = ak+1 = ak + δa and b = bk+1 = bk + δb:

bk + δb = α − 1

S

∫

Ω

(

ak + δa
)

dΩ

Collecting δa and δb on the LHS, we get

(

1

S

∫

Ω

δa dΩ

)

+ δb = α − bk − 1

S

∫

Ω

ak dΩ (D2)

The integral equations D1 and D2 are the weak forms of the original PDEs. Our goal is to solve for δa, and δb. But this is an

infinite-dimensional problem because δa varies continuously over the surface although δb is uniform. FEM converts the infinite-

dimensional problem to a finite-dimensional problem i.e. a system of equations. It does this by discretizing the domain of the

system of PDEs into a discrete mesh of simple geometric entities called as the “finite elements” like triangles, or rectangles

(or tetrahedrons and hexahedrons for higher-dimensional domains). In our problem, the domain Ω is a surface. The surface

is discretized into a mesh of triangles Ωe where e = 1, 2, . . .. Fig. S2 shows a sample surface domain discretized into linear

triangular elements. The next step in FEM is to discretize all the field variables in all the integrands in the above equations into

1
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FIG. S2. A sample surface Ω which is the domain of a PDE to be solved using FEM is shown with its boundaries as bold lines. It has been

discretized into a mesh of non-overlapping linear triangles Ωe where e = 1, 2, . . . , 8 shown with thin lines. The circular dots are the nodes of

the mesh that are coincident with the vertices of the triangles. The bold numbers show the global indices of the nodes. The italic numbers

show the local indices of the nodes in a triangle. The number in parenthesis indexes the triangles.

their values at the “nodes” of the finite element. Fig. S2 shows the nodes of a sample finite element mesh along with one possible

way to index the nodes globally and locally. The number and location of nodes depends on the type of finite element being used.

A node of the finite element mesh may be shared between multiple finite elements e.g. in Fig. S2 global node 1 is the same as

local node 1 for triangle (1) and local node 3 for triangle (2). It is useful to define a mapping between the global and local indices

of the nodes. Let E be the total number of elements in the mesh, G be the total number of nodes in the finite element mesh, and

let N denote the number of nodes per element. Let I denote the global index of a node and i(e) denote its local index in the eth

element. We can define a mapping between the global and local nodes

Λ(e) : {I}I=G
I=1 → {i(e)}i=N

i=1

or equivalently

i(e) =

G
∑

I=1

Λ
(e)

Ii
I e = 1, 2, . . . , E (D3)
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where Λ
(e)

Ii
denotes an element of an array of zeros and ones defined as

Λ
(e)

Ii
=















1 if global node I is the local node i of element e

0 otherwise
(D4)

Clearly, Λ(e) is a matrix of size N × G. As an example, in reference to Fig. S2, the global node index vector is I =

{1, 2, 3, 4, 5, 6.7, 8, 9}T . The local node index vector for triangle (5) is i = {5, 4, 8}T that gives the global node indices for

nodes 1, 2, and 3 of triangle (5). The mapping matrix Λ(5) as per equations D3, and D4 is

Λ(5) =

























0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0

























.

We can verify that























5

4

8























=

























0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0























































































































1

2

3

4

5

6

7

8

9































































































As we noted above that in FEM the field variables are discretized to their nodal values. To obtain the value of the field variables

at any position other than the nodes, interpolation is used. The interpolation functions are spatially varying and their exact form

depends on the choice of the finite element. There is an interpolation function associated with each node of each element. These

are called as the local interpolation functions. Let φ
(e)

i
denote the local interpolation function associated with the ith node of the

eth element. These functions satisfy some useful properties like

φ
(e)

i
(x, y) ≡ 0 if (x, y) < Ωe (D5)

φ
(e)

i

(

x
(e)

j
, y

(e)

j

)

= δi j

Dpφ
(e)

i

(

x
(e)

j
, y

(e)

j

)

= δi j (D6)

where δi j is the Kronecker-delta which is 0 when i , j and 1 when i = j.
(

x
(e)

j
, y

(e)

j

)

are the coordinates of the jth node of the

element e. Dp indicates the pth order derivative with respect to x(e), and y(e) where p is less than or equal to the order of φ
(e)

i
(x, y).

For example, a linear triangular finite element (that we have used in our simulations) with element index e has three nodes that

coincide with its vertices as shown in Fig. S2. If the vertices are located at (x1, y1) , (x2, y2), and (x3, y3), the corresponding local

interpolation functions are

φe
1(x, y) =

x (y2 − y3) + x2y3 − x3y2 − y (x2 − x3)

x1y2 − x1y3 − x2y1 + x2y3 + x3y1 − x3y2

φe
2(x, y) =

−x (y1 − y3) − x1y3 + x3y1 + y (x1 − x3)

x1y2 − x1y3 − x2y1 + x2y3 + x3y1 − x3y2

φe
3(x, y) =

x (y1 − y2) + x1y2 − x2y1 − y (x1 − x2)

x1y2 − x1y3 − x2y1 + x2y3 + x3y1 − x3y2

The local interpolation functions can be “assembled” together using the index mapping shown in equation D3 into global

interpolation functions such that there is one interpolation function associated with each global node of the finite element mesh.

The global interpolation function associated with the Ith node is

ψI(x, y) =

E
⋃

e=1

N
∑

i=1

Λ
(e)

iI
φ

(e)

i
(x, y). (D7)
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Finally, we are ready to discretize the field variables as interpolations of nodal values over the entire mesh using the global

interpolation functions of equation D7. We will use capital letters to denote the nodal values e.g. FaI will denote the value of

fa(x, y) on the Ith global node. We will use the following substitutions

fa (a(x, y), b) =

G
∑

l=1

Fal ψl(x, y)

fb (a(x, y), b) =

G
∑

m=1

Fbm ψm(x, y)

δa(x, y) =

G
∑

i=1

δAi ψi(x, y)

∇δa(x, y) =

G
∑

i=1

δAi∇ψi(x, y)

ā(x, y) =

G
∑

n=1

Ānψn(x, y)

ak(x, y) =

G
∑

n=1

Ak
nψn(x, y)

∇ak(x, y) =

G
∑

p=1

Ak
p∇ψp(x, y)

f
(

ak(x, y), bk
)

=

G
∑

q=1

Fqψq(x, y)

The nodal values δAi, i = 1, 2, . . . ,G are the unknowns that we have to solve for. Therefore, we need G equations to solve for the

G unknowns. We generate these equations by setting u = ψ j where j = 1, 2, . . . ,G in equation D1. Using the above substitutions

and setting u = ψ j, equations D1, and D2 can be written as

∫

Ω















1 − t
∑

l

Falψl(x, y)















ψ j(x, y)
∑

i

δAiψi(x, y) dΩ + tD

∫

Ω

∇ψ j(x, y) ·
∑

i

δAi∇ψi(x, y) dΩ − t

∫

Ω

ψ j(x, y)
∑

m

Fbmψm(x, y)δb dΩ

(D8)

=

∫

Ω

ψ j(x, y)















∑

n

(

Ān − Ak
n

)

ψn(x, y)















dΩ − tD

∫

Ω

∇ψ j(x, y) ·
∑

p

Ak
p∇ψp(x, y) dΩ + t

∫

Ω

ψ j(x, y)
∑

q

Fqψq(x, y) dΩ

1

S

∫

Ω

∑

i

δAiψi(x, y) dΩ + δb = α − bk − 1

S

∫

Ω

∑

m

Ak
mψm(x, y) dΩ (D9)

We can rearrange the above equations as

∑

i

δAi















∫

Ω















1 − t
∑

l

Falψl(x, y)















ψi(x, y)ψ j(x, y) + tD∇ψi(x, y) · ∇ψ j(x, y) dΩ















− δb














t

∫

Ω

ψ j(x, y)
∑

m

Fbmψm(x, y) dΩ















(D10)

=
∑

n

(

Ān − Ak
l

)

∫

Ω

ψn(x, y)ψ j(x, y) dΩ −
∑

p

Ak
p

(

tD

∫

Ω

∇ψp(x, y) · ∇ψ j(x, y) dΩ

)

+ t

∫

Ω

ψ j(x, y)
∑

q

Fqψq(x, y) dΩ

∑

i

δAi

(

1

S

∫

Ω

ψi(x, y) dΩ

)

+ δb = α − bk − 1

S

∫

Ω

∑

m

Ak
mψm(x, y) dΩ (D11)

We can write the above equations as
∑

i

Pi jδAi + Q jδb = R j (D12)

∑

i

S iδAi + δb = T
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where

Pi j =

∫

Ω















1 − t
∑

l

Falψl(x, y)















ψi(x, y)ψ j(x, y) dΩ + tD

∫

Ω

∇ψi(x, y) · ∇ψ j(x, y) dΩ

Q j = −t

∫

Ω

ψ j(x, y)
∑

m

Fbmψm(x, y) dΩ

R j =
∑

l

(

Āl − Ak
l

)

∫

Ω

ψl(x, y)ψ j(x, y) dΩ −
∑

m

Ak
m

(

tD

∫

Ω

∇ψm(x, y) · ∇ψ j(x, y) dΩ

)

+ t

∫

Ω

ψ j(x, y)
∑

q

Fqψq(x, y) dΩ

S i =
1

S

∫

Ω

ψi(x, y)

T = α − bk − 1

S

∫

Ω

∑

m

Ak
mψm(x, y) dΩ

Equation D12 can also be written as a block matrix equation



















[P] {Q}

{S }T 1





































{δA}

δb



















=



















{R}

T



















All the integrals in the definition of the matrices above will be calculated using Gaussian Quadrature over triangles. In general,

for solving the above system of equations on a 3D surface, the Laplacian operator in the original PDEs has to be the Laplace-

Beltrami operator. But if we discretize the 3D surface using linear triangles we can use the regular Laplacian operator [63]. We

use FEniCS [64] for implementing the finite element method. FEniCS provides various solvers for solving the linearized system

of equations that we obtained above. We use the default LU decomposition solver.

2. Perimeter Minimization Model

In our perimeter minimization model of cell polarity, the domain boundary moves to locally minimize the cell’s perimeter,

while keeping the area constant, i.e. minimizing Equation 4. This energy F is a function of the domain perimeter L and its area

A. To describe the domain dynamics we need to be able to compute the length of a closed curve embedded in the 3D surface,

and the surface area enclosed by the curve. We will also need the derivatives of the length and the area with respect to the points

parameterizing the domain shape. In the following text, we show how to compute these. We will derive these results using the

first fundamental form from differential geometry.

Consider a surface Ω whose points are defined as

Ω =
{

(x, y, h(x, y)) | (x, y) ∈ R2 and h ∈ R
}

.

We define a piecewise continuous closed curve γ embedded in the surface Ω. Let its projection in the x-y plane be Γ. We will

parameterize Γ using polar-coordinates centered at a point (a, b) in the interior of Γ in the x-y plane.

Γ(θ) = (a + r(θ) cos θ, b + r(θ) sin θ) .

We choose r(θ) to be a N segment piecewise linear function of θ such that the kth segment of r(θ) is

r(k) (θ) = rk +
rk+1 − rk

θk+1 − θk

(θ − θk) where k = 1, 2, ...,N.

Since Γ is a closed curve we have an effective periodic boundary condition, rN+1 = r1 and θN+1 = θ1, i.e.

r(N) (θ) = rN +
r1 − rN

θ1 − θN

(θ − θN) .

In the above equations we have used

rk = r(θk) where θk =
2π(k − 1)

N

The values of rk are the unknown parameters of our optimization problem. The coordinates (a, b) are calculated as the mean of

the x, and y coordinates calculated of from the values of rk, and θk after every iteration of the gradient-descent algorithm.
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A point X on the surface Ω in the interior of γ can be written as

X(θ) =
[

x (r(θ), θ) , y (r(θ), θ) , h(x, y)
]T

The coefficients of the first fundamental form can be obtained as

E =
∂X

∂r
·
∂X

∂r

F =
∂X

∂r
·
∂X

∂θ

G =
∂X

∂θ
·
∂X

∂θ

a. Length

Length of the kth segment of the curve γ is

L(k) =

∫ θk+1

θk

√
Er′2 + 2Fr′ +G dθ where r′ =

∂r(k)

∂θ
=

rk+1 − rk

θk+1 − θk

.

Let f (r, r′; θ) =
√

Er′2 + 2Fr′ +G where E, F and G are functions of r. Then using 1-point Gaussian quadrature we can write

L(k) ≈ (θk+1 − θk) f

(

θk+1 + θk

2

)

It should also be noted that, because we are choosing r(θ) to be piecewise linear, we have

r

(

θk+1 + θk

2

)

=
rk+1 + rk

2
. (D13)

Using chain-rule and product rule of differentiation,

∂L(k)

∂rk

= (θk+1 − θk)

(

∂ f

∂r

∂r

∂rk

+
∂ f

∂r′
∂r′

∂rk

)

.

Therefore,

∂L(k)

∂rk

=

(

θk+1 − θk

2

)

∂ f

∂r
− ∂ f

∂r′
.

Similarly, we can show that

∂L(k)

∂rk+1

=

(

θk+1 − θk

2

)

∂ f

∂r
+
∂ f

∂r′
.

b. Area

Area of the kth triangular slice of the region bounded by γ can be obtained as

A(k) =

∫ θk+1

θk

∫ r(θ)

0

√
EG − F2 dr dθ

We will use 1-point Gaussian quadrature along θ which gives

A(k) ≈ (θk+1 − θk)

∫
rk+1+rk

2

0

√
EG − F2 dr

We will use a 5-point Gaussian quadrature along r. Let’s use g ≡
√

EG − F2.

A(k) ≈ (θk+1 − θk)

(

rk+1 + rk

4

)

∑

i

wi g

(

(1 + ξi)

(

rk+1 + rk

4

))
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where wi are the Gaussian quadrature weights and ξi are the corresponding quadrature points. We can now write

∂A(k)

∂rk

=

(

θk+1 − θk

4

)

∑

i

wi gi +

(

θk+1 − θk

4

)

(rk+1 + rk)
∑

i

wi

∂gi

∂r

∂r

∂rk

We have to evaluate gi at r = (1 + ξi)(rk+1 + rk)/4, therefore ∂r/∂rk = (1 + ξi)/4,

∂A(k)

∂rk

=

(

θk+1 − θk

4

)

∑

i

wi gi +

(

θk+1 − θk

16

)

(rk+1 + rk)
∑

i

(1 + ξi) wi

∂gi

∂r

Similarly, it can be shown that

∂A(k)

∂rk

=
∂A(k)

∂rk+1

Together, these formulas let us compute the domain perimeter and its area by summing over the areas and lengths in each

triangular slice k. Similarly, we can use the derivatives of the area for each slice in order to evolve Eq. 5
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