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SYSTEMATIC REVIEW

Predictive Modeling for Readmission to 
Intensive Care: A Systematic Review
OBJECTIVES: To evaluate the methodologic rigor and predictive performance 
of models predicting ICU readmission; to understand the characteristics of ideal 
prediction models; and to elucidate relationships between appropriate triage 
decisions and patient outcomes.

DATA SOURCES: PubMed, Web of Science, Cochrane, and Embase.

STUDY SELECTION: Primary literature that reported the development or valida-
tion of ICU readmission prediction models within from 2010 to 2021.

DATA EXTRACTION: Relevant study information was extracted independently 
by two authors using the Critical Appraisal and Data Extraction for Systematic 
Reviews of Prediction Modelling Studies checklist. Bias was evaluated using the 
Prediction model Risk Of Bias ASsessment Tool. Data sources, modeling meth-
odology, definition of outcomes, performance, and risk of bias were critically eval-
uated to elucidate relevant relationships.

DATA SYNTHESIS: Thirty-three articles describing models were included. Six 
studies had a high overall risk of bias due to improper inclusion criteria or omis-
sion of critical analysis details. Four other studies had an unclear overall risk of 
bias due to lack of detail describing the analysis. Overall, the most common (50% 
of studies) source of bias was the filtering of candidate predictors via univar-
iate analysis. The poorest performing models used existing clinical risk or acuity 
scores such as Acute Physiologic Assessment and Chronic Health Evaluation II, 
Sequential Organ Failure Assessment, or Stability and Workload Index for Transfer 
as the sole predictor. The higher-performing ICU readmission prediction models 
used homogenous patient populations, specifically defined outcomes, and rou-
tinely collected predictors that were analyzed over time.

CONCLUSIONS: Models predicting ICU readmission can achieve performance 
advantages by using longitudinal time series modeling, homogenous patient pop-
ulations, and predictor variables tailored to those populations.

KEY WORDS: critical care; critical illness; forecasting; intensive care units; risk

More than 4 million patients are admitted to ICUs in the United States 
each year (1). On average, 7% of all patients discharged from an ICU 
will be readmitted to the ICU (2). Episodes of readmission are asso-

ciated with an approximately sevenfold increase in risk-adjusted mortality (3). 
With intensive care accounting for 25%–40% of all healthcare expenditures, 
intensivists seek to identify patients that can be safely transferred out of the 
ICU as early as possible (4). Yet, premature ICU discharge and unplanned re-
admission is associated with additional costs and prolonged hospital and ICU 
lengths of stay (5).

Accurately predicting ICU readmission has the potential to identify patients 
that would benefit from further medical optimization prior to transfer out of 
the ICU or continuous vital sign monitoring on hospital wards. Traditionally, 
clinical approaches to ICU discharge decisions involve examining the patient 
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and performing a time-consuming, manual review of 
health records under strict time constraints. Under 
these conditions, clinicians tend to rely on heuristics, 
which can lead to cognitive errors (6–9). Not surpris-
ingly, clinician predictions of a patient’s need for future 
ICU resources are variable and often inaccurate, to the 
detriment of patients (10, 11). Data-driven clinical 
decision-support tools can potentially minimize harm 
from cognitive errors by providing clinicians with ac-
curate, precise predictions by modeling what has hap-
pened for similar patients in the past. Unfortunately, 
many lack accuracy, reproducibility, and clinical work-
flow integration. Better methods are needed to support 
ICU discharge decision-making.

To develop accurate and effective decision-sup-
port platforms that augment ICU discharge deci-
sion-making, we aim to 1) evaluate the methodologic 
rigor and predictive performance of models predicting 
ICU readmission and 2) understand the characteris-
tics of high-performing, generalizable, and transparent 
prediction models.

MATERIALS AND METHODS

PubMed, Web of Science, Cochrane, and Embase were 
systematically searched for articles related to the de-
velopment or validation of ICU readmission predic-
tion models within the past 11 years (2010–2021) 
on April 1, 2021. Searches were tailored to each da-
tabase to use the annotated concepts specific to each 

database, such as PubMed’s medical subject heading 
terms (see Supplemental Digital Content, Appendix 
A, http://links.lww.com/CCX/B130). The search terms 
were batched into three groups: ICU, readmission, and 
prediction/modeling.

Two authors independently reviewed the abstracts 
for article inclusion and exclusion criteria, with any 
disagreements settled by a third investigator. Full texts 
of the articles that passed the screening were reviewed 
for relevance to review objectives independently by two 
authors, resulting in a final set of articles. Study infor-
mation was extracted from each of the relevant articles 
using the Critical Appraisal and Data Extraction for 
Systematic Reviews of Prediction Modelling Studies 
checklist; bias was evaluated using the Prediction 
model Risk Of Bias ASsessment Tool (PROBAST) (12, 
13).

RESULTS

One-hundred sixteen unique articles were identified 
from the 181 articles returned by the four database 
searches (Fig. 1). Title/Abstract screening reduced 
the total number of articles to 66, which was further 
reduced to the final number of 33 after full-text screen-
ing. The primary reasons for exclusion were non-ICU 
readmission prediction model (21), abstract only (4), 
did not evaluate prediction model (4), non-English full 
text (3), nonprimary literature (1).

Thirty-three studies were included in the final anal-
ysis, as summarized in Supplemental Table 1 (http://
links.lww.com/CCX/B130) (14–46). Twenty-five stud-
ies recruited patients from a single center; eight stud-
ies (14–19, 29, 42) reported results from two or more 
centers. The most common source of patient data was 
Medical Information Mart for Intensive Care (MIMIC), 
which was used in nine studies (14, 19, 21–25, 30, 43) 
(Supplemental Table 2, http://links.lww.com/CCX/
B130). ICUs with more specific patient populations 
(e.g., neuro ICU only or postoperative cardiac ICU 
only) sourced 12 studies (16, 17, 20, 25, 26, 29, 31, 32, 
34, 37, 38, 44). Twenty-one studies used ICU readmis-
sion within windows that ranged from six hours to 30 
days as the primary endpoint. Thirteen studies used a 
combined endpoint that included death (14, 15, 18, 22, 
24–29, 42, 44, 45), cardiac arrest (14, 29), or rapid re-
sponse team deployment (27) in addition to ICU re-
admission. One study evaluated ICU readmission as 

  KEY POINTS

Question: What are characteristics of high-per-
forming, generalizable, and transparent models for 
predicting ICU readmission?

Findings: Higher-performing ICU readmission 
prediction models used homogenous patient pop-
ulations, specifically defined outcomes, and rou-
tinely collected predictors that were analyzed over 
time.

Meanings: Models predicting ICU readmission 
can achieve performance advantages by using 
longitudinal time series modeling, homogenous 
patient populations, and predictor variables tai-
lored to those populations.
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both a single and combined endpoint (26). One study 
derived two models to predict ICU readmission and 
death following ICU discharge separately (18). Seven 
studies used time series models that accounted for lon-
gitudinal patient trends (21–25, 30, 44).

Details of study methodology, validation, and sen-
sitivity analyses are summarized in Supplemental 
Table 2 (http://links.lww.com/CCX/B130). Six stud-
ies accounted for reasons behind ICU readmission 
(20, 31–33, 36, 37), with a single study limiting results 
to only readmissions directly related to the initial 
ICU admission (32). In 22 studies, exclusion criteria 

comprised variations of the following: outbound fa-
cility transfer, death during index ICU admission, do 
not resuscitate (DNR) or withdrawal of invasive phys-
iologic support, and an ICU stay less than 24 hours. 
Other exclusion criteria, particularly for the surgical 
or postoperative ICU studies, were surgeries not per-
taining to the index ICU stay, missing data, death in 
surgery, or severe illness such as congenital valvular 
disease or brain tumor. Rationale for predictor vari-
able selection was stated in 18 studies and was based 
on clinical experience (six studies), routinely avail-
able variables (four), previously unvalidated models 

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram.
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(five), hypothesis testing of specific predictor variables 
(five), or restricted readmission predictors previously 
identified in the literature (two). Two studies selected 
predictor variables from a larger pool based on the 
greatest differences between readmitted and nonread-
mitted patient cohorts (18, 21). Validation was per-
formed in 25 studies—internal validation in 19 articles 
and both internal and external validation in six articles 
(14, 17, 21, 29, 42, 45). Seventeen studies used discret-
ization to transform continuous variables into catego-
rical variables.

The most common modeling technique was logistic 
regression. Twenty-three studies evaluated at least one 
logistic regression model (15–18, 23, 24, 26–29, 31–40, 
42, 43, 46). Other model techniques included recurrent 
neural networks (22, 30), gradient boosting machines 
(14, 25), and artificial neural networks (23). Model 
performance was commonly assessed by area under 
the receiver operating characteristic curve (AUROC), 
a metric that shows the tradeoff between the true posi-
tive rate and false positive rate across different decision 
thresholds, where 0.5 represents random chance (e.g., 
a coin flip) and 1 represents perfect discrimination. 
The AUROC of a test with acceptable discriminating 
capabilities lies between 0.70 and 0.80. AUROC ranged 
from 0.51 (26) to 0.94 (21). Models that did not exceed 
an AUROC of 0.75 tended to 1) use existing clinical risk 
or acuity scores such as Acute Physiologic Assessment 
and Chronic Health Evaluation (APACHE) II (26, 34) 
or Stability and Workload Index for Transfer as the sole 
predictor (28, 30, 31) and 2) predict readmission based 
on singular laboratory values or findings (36, 40). The 
best performing models did one of the following: 1) 
used models with longitudinal temporal components 
that can analyze trends over time (21, 22), 2) used a 
more homogenous, post-surgical patient population 
(16, 17, 20, 29, 31, 32), or 3) limited ICU readmissions 
to those directly related to original admission (32).

Model sensitivity and specificity were reported in 
15 studies. Sensitivity ranged from 18% to 91% (21, 
40). Specificity ranged from 22% to 95% (14, 28). One 
study reported a range of sensitivities and specificities 
that varied from 0% to 99% based on the predicted 
likelihood of readmission or death. Only four models 
reported both sensitivities and specificities above 70% 
(18, 21, 29, 32). The models with high sensitivity fol-
lowed the same three principles as above (22, 30, 31), 
whereas the models with high specificity used novel 

predictor variables, such as eosinophilia (14, 40). 
Models with high AUROC and sensitivity/specificity 
adhered to the patterns described above and also fre-
quently employed some form of data imputation, in-
ternal validation, and ICU readmission timing (18, 21, 
22, 29, 32, 34).

Six studies had a high overall risk of bias as indi-
cated by PROBAST (26, 33, 34, 42–44) due to im-
proper inclusion criteria (33, 34, 42, 43) or omission 
of critical analysis details (26, 44). Four other studies 
had an unclear overall risk of bias due to lack of de-
tail describing the analysis (31, 33, 34, 41). Overall, the 
most common (50% of studies) source of bias was the 
filtering of candidate predictors via univariate analysis 
(15, 26–28, 31–34, 37–40). The remaining studies used 
appropriate cohort definitions and analytical methods 
and were assessed as having a low risk of bias.

DISCUSSION

We identified methodological characteristics that 
enhanced performance, generalizability, and transpar-
ency of ICU readmission prediction models. We did 
not unequivocally identify the “best” performing ICU 
prediction model in our review due to the limitations 
of the metric reported across all studies (AUROC) 
and the nuance and complexity of adjudicating what 
describes the “best” ICU prediction model.

Clearly Define a Homogenous Patient 
Population

A single prediction model that is highly accurate and 
generalizable to any ICU patient would be quite useful, 
but the authors found no such model. Instead, it may be 
preferable to identify patient subgroups with distinct 
baseline characteristics and physiologic signatures of 
illness and use separate models for each subgroup. This 
is consistent with other research trends, such as New 
York State’s Report Cards on Cardiac Surgeons, which 
succeeded in generating credible comparisons between 
the mortality rates of individual providers performing 
coronary artery bypass grafting; similar projects, such 
as the Healthcare Financing Administration’s annual 
report on mortality rates among hospitalized Medicare 
patients, failed in part due to the population heteroge-
neity (47). For example, models designed and validated 
exclusively among cardiac surgery patients performed 
well (16, 17, 29, 31, 38). Even among models that used 

Downloaded from http://journals.lww.com/ccejournal by BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCy
wCX1AWnYQp/IlQrHD3i3D0OdRyi7TvSFl4Cf3VC4/OAVpDDa8KKGKV0Ymy+78= on 03/15/2023



Systematic Review

Critical Care Explorations	 www.ccejournal.org          5

a similar patient subgroup, models trained and evalu-
ated in a single center tended to outperform multi-
center models.

One counter-interpretation of our results is that 
the higher performance of homogenous models was a 
result of overfitting and, thus, a sign of poor external 
generalizability. In the present review, the likelihood 
of overfitting was deemed low. Eight of the 11 high-
performing studies had large sample sizes (> 1,000), 
and 10 involved some form of internal or external 
validation.

A likely contributing factor that helps to explain 
the increase in performance observed between ho-
mogenous single center studies and heterogenous 
multicenter studies is the strong and often overriding 
influence that operational and administrative factors 
play in ICU bed allocation and level of care determina-
tion. This includes differences in resource availability 
(e.g., number of beds, presence of step-down units, and 
staffing) as well as care protocols that can vary widely 
both inter- and intra-institutionally (e.g., medical vs 
surgical services) and can decouple ICU readmission 
decisions from the underlying patient physiology.

A likely example of this is the increase in perfor-
mance (AUROC, sensitivity, specificity) observed be-
tween the separate logistic regression models for ICU 
readmission and mortality developed by Badawi and 
Breslow (18). Death is a physiologic phenomenon that 
escapes many of the operational and administrative 
hurdles encountered when admitting a patient to the 
ICU. Two additional contributing factors, which may 
help to explain this difference, are that the patients who 
died represented a smaller, but possibly more physi-
ologically extreme, pole of the dataset and that the 
model predicting mortality relied on fewer admission 
variables and included more last-day physiologic vari-
ables reflecting patient state at the time of discharge.

Last, it is important to distinguish between pallia-
tive care, DNR, or withdrawal of invasive physiologic 
support patients from the general population as their 
goals for care tend to differ significantly, which can im-
pact the training of data-driven models.

The importance of homogeneity was substantiated 
by several studies with a low risk of bias (Supplemental 
Table 3, http://links.lww.com/CCX/B130) (14–25, 27–
30, 32, 37–43, 45, 46). While developing distinct mod-
els for each patient subgroup may prove cumbersome 
if performed to the extreme, limiting future studies to 

a single surgery type (e.g., cardiac surgery) or a single 
initial complaint (e.g., respiratory distress) may lead to 
better overall model performance.

Be Specific When Defining Outcomes 

We found that few models controlled for the reasons 
behind ICU readmission. ICU readmission is often 
due to multiple factors not necessarily related to pa-
tient stability upon discharge, including nosocomial 
infection, administrative causes, or pathologic causes 
unrelated to stability during initial discharge. A mul-
ticenter cohort study found that less than half of ICU 
readmissions within the same hospitalization per-
tained to the initial complaint, and almost half ex-
perienced new complications, particularly related to 
respiratory diseases (48). Furthermore, ICU readmis-
sion with the same diagnosis as the initial admission 
may not represent patient acuity during their initial 
stay but deterioration at home or within the ward. As 
time increases between the initial ICU stay and read-
mission, the likelihood of confounding factors leading 
to readmission increases. Only seven articles restricted 
ICU readmissions to within 48 hours or less, and the 
only model to restrict readmissions to those related to 
initial admission was one of the highest performing. 
Restricting readmission causes to physiologic exacer-
bations related to initial admission and restricting to 
earlier readmission may be valuable tools that allow a 
closer snapshot of patient state during their initial ICU 
stay and should be further considered.

Incorporate Temporality

Models that incorporate time series data generally ex-
hibit greater accuracy than static models. This is likely 
attributable to the nature of human pathophysiology. 
Illness severity evolves and snapshot assessments can 
misrepresent risk for decompensation. Fortunately, 
electronic health record data are typically recorded 
with date and time values that can capture trends in 
illness severity over time. This approach has been suc-
cessfully used to predict mortality and specific condi-
tions, such as acute kidney injury (49–52).

Use Routinely Collected Predictors

Models should be developed using select, routinely 
available predictors. Overly complex algorithms can 
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hamper clinicians in practice, where time-sensitive 
treatments and diagnosis can be critical to patient 
survival. We found that model simplicity could be 
improved, as only six studies deliberately limited pre-
dictors to those routinely collected, and only one de-
liberately restricted the number of predictors.

Transparently Report Predictive Performance

AUROC can serve as a valuable indicator of discrimi-
native performance in balanced datasets; however, in 
the prediction of ICU readmission, a relatively low fre-
quency event, performance can appear  
deceivingly high for models that are overly biased  
toward the majority class (no readmission).  
Alternative performance metrics such as F1 score 
( True Positive
True Positive + 1

2 (False Positive + False Negative)) and area 

under the precision-recall curve (
True Positive

True Positive + False Positive
True Positive

True Positive + False Positive ), 
which were reported in a handful of included studies, 
are robust against dataset imbalance and may paint a 
more clear and fair picture of how one model com-
pares to another. Additionally, calibration metrics such 
as Brier score, Hosmer-Lemeshow statistic, and av-
erage absolute error can further elucidate the overall 
performance of models in a robust manner (53, 54). In 
our review, 18 (55%) of studies reported calibration 
measurements, the majority of which used the Hosmer-
Lemeshow statistic. Further complicating the evalua-
tion of superior model performance are the similar yet 
distinct values and priorities of stakeholders in the 
healthcare delivery system (e.g., physicians, patients, 
and healthcare administrators), which often vary both 
across and within roles.

Transparently Report Methodology

Approximately half of the reported studies omitted key 
details, which hampered our ability to critically evaluate 
the methodology employed in the creation of the mod-
els described. This highlights the importance of using 
reporting guidelines such as Transparent Reporting 
of multivariate prediction model for the Individual 
Prognosis Or Diagnosis (TRIPOD) that ensure essen-
tial elements for the appraisal of methodological rigor 
are presented clearly and consistently across all studies 
(55). None of the included studies reported compliance 
with the TRIPOD reporting guidelines (Supplemental 
Table 3, http://links.lww.com/CCX/B130).

Six studies had a high overall risk of bias as indicated 
by PROBAST (26, 33, 34, 42–44) due to improper in-
clusion criteria (33, 34, 42, 43) or omission of critical 
analysis details (26, 44). Four other studies had an un-
clear overall risk of bias due to lack of detail describing 
the analysis (31, 33, 34, 41).

Previous systematic reviews of ICU readmission 
prediction models focused primarily on the outcome 
(i.e., ICU readmission) rather than model characteris-
tics. Nevertheless, the major findings from other sys-
tematic reviews are consistent with findings from the 
present review. Rosenberg and Watts (2) found that 
unstable vital signs at the time of ICU discharge were 
the strongest predictor of ICU readmission. Similarly, 
Wong et al (56) reported that greater illness severity, 
as measured with APACHE or Simplified Acute 
Physiology Score scales at the time of ICU admission or 
discharge, was associated with increased risk for ICU 
readmission (57). Apart from the classic approach to 
using illness severity to predict ICU admission, Vollam 
et al (58) performed a systematic review to evaluate 
associations between time of ICU discharge and out-
comes. The authors found that evening and nighttime 
ICU discharge transfer times were associated with an 
increased prevalence of ICU readmission and in-hos-
pital mortality, thus, underscoring the importance of 
health system factors in patient triage decisions and 
outcomes. In a novel assessment of prediction models 
themselves, Markazi-Moghaddam et al (59) examined 
the performance and validity of five ICU readmission 
prediction models that met relatively stringent quality 
criteria, finding not only heterogeneous and often sub-
optimal methods but also weak external validity. All 
of the studies evaluated by Markazi-Moghaddam et 
al (59) were among those included in the present re-
view. There was general agreement between reviews 
regarding the content and quality of these three com-
mon studies. Collectively, other systematic reviews had 
different objectives and breadth of included studies but 
drew conclusions consistent with the present review.

The major findings from the present review are 
that transparent, high-performing, and generalizable 
models utilizing clearly defined homogenous patient 
populations with few ICU readmission confounders, 
specifically defined outcomes, incorporating routine 
datapoints collected over time, and presented trans-
parently in terms of methodology and model perfor-
mance, can inform future investigations in building 
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effective models primed to augment decision-making 
when applied clinically. To achieve homogeneity, it is 
necessary to identify patient subgroups with distinct 
baseline characteristics and physiologic signatures of 
illness and use separate models for each subgroup. To 
avoid overfitting, models should incorporate a suf-
ficient sample size, enumerate differences between 
subgroups and the patient population as a whole, and 
perform both internal and external validation. Most 
models presented in this review were published prior 
to the dissemination of reporting guidelines from 
editors of critical care journals (60); future investiga-
tions should adhere to these guidelines for selecting 
predictor variables, operationalizing variables, deal-
ing with missing data, appropriate validation, model 
performance measures and their interpretation, and 
reporting practices. Future prediction models should 
also seek to represent and include clinical decisions 
for treatments, continuous vital sign monitoring, and 
other relevant aspects of clinical care (61, 62). To de-
termine whether additional observations contribute 
significantly to predictive performance, future inves-
tigations should generate model learning curves in 
which the y-axis plots a performance metric (ideally 
the F1 score, representing the weighted average of 
precision and recall) and the x-axis plots sequential 
epochs of observations during training. When the 
slope plateaus, additional observations (e.g., patients 
or ICU admissions) will not improve performance, 
but additional input variables (e.g., demographics or 
biomarkers) might. If the training set is exhausted be-
fore the slope plateaus, performance might improve 
with additional observations. Model learning curves 
also allow future research to build upon previously re-
ported models in an evidence-based fashion.

This study has several limitations. First, the in-
cluded studies demonstrate significant heterogeneity, 
which precludes the performance of a meta-analysis. 
Although a meta-analysis would help elucidate rela-
tionships between appropriate triage decisions and 
patient outcomes, this objective has been met by pre-
vious studies. Meta-analysis was not necessary to com-
plete the other two objectives of this review: critically 
evaluating the methodologic rigor and predictive per-
formance of models that predict ICU readmission and 
understanding the characteristics of ideal prediction 
models. Second, while most included articles used 
unique datasets generated at their institutions, many 

used common datasets, namely MIMIC. As MIMIC 
data are drawn from a single institution, this intro-
duces possible systemic findings into our conclusions. 
Third, eight of our articles combined mortality with re-
admission as a single endpoint, which can change the 
frequency of the outcome in each dataset and intro-
duce bias. Thus, care should be practiced when inter-
preting the results of the mixed outcome studies, and 
a more balanced approach using AUROC, sensitivity, 
and specificity should be employed.

CONCLUSIONS

Among models predicting ICU readmission, models 
with the highest transparency, performance, and gen-
eralizability used clearly defined homogenous patient 
populations with few ICU readmission confounders, 
specifically defined outcomes, incorporated routine 
datapoints collected over time, and presented meth-
odology and model performance in a forthright and 
unambiguous manner. These findings were substan-
tiated by several studies that had a low risk of bias. 
Future investigations regarding the prediction of ICU 
readmission should consider longitudinal time series 
modeling using homogenous patient populations, 
with specific outcomes, and routinely collected pre-
dictor variables tailored to those populations. Their 
methodologies should be reported in accordance with 
consensus guidelines (e.g., TRIPOD) and include suf-
ficient performance and calibration metrics in order to 
fairly assess model quality.
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