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Transformer model architectures have revolutionized the natural language
processing (NLP) domain and continue to produce state-of-the-art results in text-
based applications. Prior to the emergence of transformers, traditional NLP
models such as recurrent and convolutional neural networks demonstrated
promising utility for patient-level predictions and health forecasting from
longitudinal datasets. However, to our knowledge only few studies have explored
transformers for predicting clinical outcomes from electronic health record (EHR)
data, and in our estimation, none have adequately derived a health-specific
tokenization scheme to fully capture the heterogeneity of EHR systems. In this
study, we propose a dynamic method for tokenizing both discrete and continuous
patient data, and present a transformer-based classifier utilizing a joint embedding
space for integrating disparate temporal patient measurements. We demonstrate
the feasibility of our clinical Al framework through multi-task ICU patient acuity
estimation, where we simultaneously predict six mortality and readmission
outcomes. Our longitudinal EHR tokenization and transformer modeling
approaches resulted in more accurate predictions compared with baseline
machine learning models, which suggest opportunities for future multimodal data
integrations and algorithmic support tools using clinical transformer networks.

KEYWORDS

transformer, deep learning, electronic health records, critical care, patient acuity,
clinical decision support

1. Introduction

Through the course of a typical intensive care unit (ICU) admission, a variety of
patient-level data is collected and recorded into electronic health records (EHR)
systems. Patient data is diverse, including measurements such as vital signs, laboratory
tests, medications, and clinician-judged assessment scores. While primarily used for ad-
hoc clinical decision-making and administrative tasks such as billing, patient-centric
data can also be used to build automated machine learning systems for assessing overall
patient health and predicting recovering or worsening patient trajectories.
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Patient mortality risk is often used as a proxy for overall ICU
patient acuity, both in traditional illness severity scores like SOFA
(1, 2) and more recent machine learning approaches such as
DeepSOFA (3). Whether manually calculated or algorithmically
computed, nearly all of these systems rely on measurements
from a set of handpicked clinical descriptors thought to be
most indicative of overall patient health. Given the breadth of
data available in modern EHR systems, there is untapped
potential for enhanced patient modeling contained in the large
amount of unused patient data.

Several recent studies have demonstrated the predictive
accuracy and patient modeling capacity of deep learning
implementations in healthcare, using models such as recurrent
neural networks (RNN) (3-8) and convolutional neural
networks (CNN) (9, 10).

Recently, Transformer models (11) have garnered increased
attention in the deep learning community due to their state-of-
the-art results on a variety of natural language processing (NLP)
tasks, particularly when using schemes such as Bidirectional
Encoder Representations from Transformers (BERT) (12).
There are also more recent advances in analyzing frequency of
data in Frequency Enhanced Decomposed Transformer Zhou
et al. (13) that exploits the sparseness of time series data.

From a temporal perspective, one advantage the Transformer
offers is its parallel processing characteristics. Rather than
processing data points sequentially, the Transformer views all
available data at once, modeling attention-based relationships
between all input time steps. In contrast, models such as RNNs
require distinct temporal separation within input sequences,
and usually demand a regular sample interval between adjacent
time steps. As clinical EHR data is recorded at highly irregular
frequency and is often missing measurements, a large amount
of data preprocessing is typically required in the form of
temporal resampling to a fixed frequency, and an imputation
scheme to replace missing values. Furthermore, given that
several EHR measurements are often recorded at the same
timestamp, typical machine learning workflows aggregate
temporally adjacent measurements into mean values contained
in resampled time step windows, or perform random shuffling
procedures before training models. Given its parallel and
fundamentally temporally agnostic attributes, the Transformer
is capable of distinctly processing all available measurements,
even those occurring at the same timestamp. Additionally, the
Transformer is able to process whichever data happens to be
the
techniques to account for data missingness.

available, reducing need for potentially bias-prone

In this study, we showcase the feasibility of a highly flexible
Transformer-based patient acuity prediction framework in the
critical care setting. Our contributions can be summarized by

the following:

 Our flexible system design incorporates a diverse set of EHR
input data that does not require a priori identification of
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clinically relevant input variables, and can work with any
data contained in EHR platforms.
o In contrast to recent Transformer approaches that either use
concepts  (14-16)
measurements from a handpicked set of features (17), we

discrete  medical or continuous
introduce a data embedding scheme that jointly captures
both concept and corresponding measurement values of a
wide variety of disjoint clinical descriptors.

 In our novel embedding module, we introduce a mechanism
for combining both absolute and relative temporality as an
improvement over traditional positional encoding.

.« We data

preprocessing, obfuscating the need for potentially biased

present an input scheme with minimal
temporal resampling or missing value imputation common
in many other sequential machine learning approaches.

o We expand BERT’s [CLS] token for classification into several
distinct tokens for predicting multiple-horizon patient
mortality and ICU readmission in a novel multi-task
learning environment.

o Rather than with

representation, we incorporate static patient information in

typical ~concatenation sequential
a novel way using a global self-attention token so that
every sequential time step is compared with the static pre-
ICU representation.

o We show that the Longformer (18) can be applied to long
EHR patient data

computation while retaining superior performance.

2. Methods
2.1. Cohort

sequences to minimize required

The University of Florida Integrated Data Repository was
used as an honest broker to build a single-center longitudinal
dataset from a cohort of adult patients admitted to intensive
care units at University of Florida Health between January 1st,
2012 and September 22nd, 2019. Our project was approved by
the Institutional Review Board of the University of Florida
and the University of Florida Privacy Office (IRB201901123).
Full cohort statistics is described in Table 1.

We excluded ICU stays lasting less than 1 h (to reduce EHR
data artifacts and provide predictive models with adequate
patient data) or more than 10 days, to limit outliers based on
tokenized sequence length and following several existing
studies using ICU encounters for predictive modeling (19).
Excluding patients based on length of stay resulted in roughly
95% of the original ICU cohort. Our final cohort consisted of
73,190 distinct ICU stays from 69,295 hospital admissions and
52,196 unique patients. The median length of stay in the ICU
was 2.7 days.

We divided our total cohort of ICU stays into a
development cohort of 60,516 ICU stays (80%) for training
our models, and a validation cohort of 12,674 ICU stays

frontiersin.org
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TABLE 1 Summary statistics for experimental ICU cohorts.

Patients, n

Hospital encounters, n

Age, years, median (25th, 75th)
Female, n (%)

Body mass index, median (25th,
75th)

Development
cohort
(n =60, 516)

41,881
57,168
61.0 (49.0, 71.0)
27,380 (45.2)
26.9 (23.0, 32.0)

Validation
cohort
(n=12, 674)

10,315
12,127
62.0 (49.0, 73.0)
5,616 (44.3)
273 (233, 32.2)

Hospital length of stay, days, 6.7 (3.6, 12.1) 6.4 (3.3, 11.5)
median (25th, 75th)
ICU length of stay, days, median 2.8 (1.5, 5.1) 2.9 (1.6, 5.5)
(25th, 75th)
Time to hospital discharge, days, 1.9 (0.0, 4.8) 1.1 (0.0, 4.1)
median (25th, 75th)
Hispanic, n (%) 2,130 (3.5) 539 (4.3)
Non-English speaking, n (%) 1,092 (1.8) 233 (1.8)
Marital status, n (%)
Married 26,084 (43.1) 5,457 (43.1)
Single 21,844 (36.1) 4,931 (38.9)
Divorced 11,905 (19.7) 2,142 (16.9)
Smoking status, 7 (%)
Never 20,180 (33.3) 4,653 (36.7)
Former 19,378 (32.0) 4,167 (32.9)
Current 12,094 (20.0) 2,326 (18.4)
Insurance status, 7 (%)
Medicare 31,447 (52.0) 6,543 (51.6)
Private 13,115 (21.7) 2,912 (23.0)
Medicaid 10,208 (16.9) 1,999 (15.8)
Uninsured 5,746 (9.5) 1,220 (9.6)
Comorbidities, n (%)
Charlson comorbidity index, 2.0 (0.0, 4.0) 2.0 (0.0, 4.0)
median (25th, 75th)
Myocardial infarction 7,537 (12.5) 1,985 (15.7)
Congestive heart failure 14,897 (24.6) 3,380 (26.7)
Peripheral vascular disease 10,005 (16.5) 2,185 (17.2)
Cerebrovascular disease 8,981 (14.8) 1,720 (13.6)
Chronic pulmonary disease 17,938 (29.6) 3,473 (27.4)
Metastatic carcinoma 3,377 (5.6) 812 (6.4)
Cancer 8202 (13.6) 1,808 (14.3)
Mild liver disease 4,745 (7.8) 960 (7.6)
Moderate/severe liver disease 1,856 (3.1) 374 (3.0)
Diabetes without 14,137 (23.4) 2,395 (18.9)
complications
Diabetes with complications 5,052 (8.3) 1,736 (13.7)
AIDS 442 (0.7) 53 (0.4)
Dementia 1,692 (2.8) 559 (4.4)
Paraplegia/hemiplegia 3,465 (5.7) 769 (6.1)
Peptic ulcer disease 1,110 (1.8) 187 (1.5)
Renal disease 11,878 (19.6) 2,493 (19.7)
(continued)
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TABLE 1 Continued

Development Validation
cohort cohort
(n=60, 516) (n=12, 674)
Rheumatologic disease 1,794 (3.0) 342 (2.7)

Neighborhood characteristics,
median (25th, 75th)

Total population, n x 10° 17.0 (10.6, 26.4) 17.6 (10.6, 26.7)

Distance to hospital, km 39.3 (17.9, 69.1) 42.4 (20.2, 76.5)

Median income, dollars x 103 40.1 (33.8, 46.7) 40.1 (35.1, 47.4)

Poverty rate, % 19.6 (14.0, 27.7) 19.3 (13.7, 26.7)

Rural area, n 22543 (37.3) 4691 (37.0)
Clinical outcomes, n (%)

ICU readmission before 3,583 (5.9) 613 (4.8)
hospital discharge

Inpatient mortality 5,813 (9.6) 1,131 (8.9)

7-day mortality 5,237 (8.7) 1,022 (8.1)

30-day mortality 7,056 (11.7) 1,380 (10.9)

90-day mortality 9,197 (15.2) 1,785 (14.1)

1-year mortality 12,991 (21.5) 2,288 (18.1)

(20%) for evaluating their predictive performance. 10% of the
development set was used for within-training validation and
early stopping. The cohort was split chronologically, where
the earliest 80% of ICU stays was used for training, and the
most recent 20% used for evaluation. To ensure the same
patient did not appear in both development and validation
sets, all ICU stays of patients with multiple admissions
spanning the cohort threshold were grouped into the
development cohort.

2.2. Data

We extracted patient data from several EHR data sources:
sociodemographics and information available upon hospital
admission, summarized patient history, vital signs, laboratory
tests, medication administrations, and numerical assessments
from a variety of bedside scoring systems. We did not target
or manually select any specific ICU variables, instead using all
such data contained in our EHR system. A full list of
variables used in our experiments is shown in Table 2.

Static data: For each ICU stay, we extracted a set of non-
sequential  clinical ~ descriptors  pertaining to patient
characteristics, admission information, and a summarized
patient history from the previous year. Patient-level features
included

admission type, and neighborhood characteristics derived

several demographic indicators, comorbidities,
from the patient’s zip code. Patient history consisted of a
variety of medications and laboratory test results up to one

year prior to hospital admission (Table 2). Historical patient
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TABLE 2 Summary of variables used in Transformer experiments.

Variable Type
Patient demographics
Age Static
Sex Static
Ethnicity Static
Race Static
Language Static
Marital status Static
Smoking status Static
Insurance provider Static
Patient residential information
Total population Static
Distance from hospital Static
Rural/Urban Static
Median income Static
Proportion black Static
Proportion hispanic Static
Percent below poverty line Static
Patient admission information
Height Static
Weight Static
Body mass index Static
17 comorbidities present at Admission Static
Charlson comorbidity index Static
Presence of chronic kidney disease Static
Admission type Static
Patient history: medications®
ACE inhibitors Static
Aminoglycosides Static
Antiemetics Static
Aspirin Static
Beta blockers Static
Bicarbonates Static
Corticosteroids Static
Diuretics Static
NSAIDS Static
Vasopressors/Inotropes Static
Statins Static
Vancomycin Static
Nephrotoxic drugs Static
Patient history: laboratory test results”
Serum hemoglobin Static
Urine hemoglobin Static
Serum glucose Static
Urine glucose Static
Urine red blood cells Static
Urine protein Static
Serum urea nitrogen Static
(continued)
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Variable Type
Serum creatinine Static
Serum calcium Static
Serum sodium Static
Serum potassium Static
Serum chloride Static
Serum carbon dioxide Static
White blood cells Static
Mean corpuscular volume Static
Mean corpuscular hemoglobin Static
Hemoglobin concentration Static
Red blood cell distribution Static
Platelets Static
Mean platelet volume Static
Serum anion gap Static
Blood pH Static
Serum oxygen Static
Bicarbonate Static
Base deficit Static
Oxygen saturation Static
Band count Static
Bilirubin Static
C-reactive protein Static
Erythrocyte sedimentation rate Static
Lactate Static
Troponin T/I Static
Albumin Static
Alaninen Static
Asparaten Static

ICU vital signs
Systolic blood pressure® Temporal
Diastolic blood pressure® Temporal
Mean arterial pressure® Temporal
Heart rate Temporal
Respiratory rate Temporal
Oxygen flow rate Temporal
Fraction of inspired oxygen (FIO2) Temporal
Oxygen saturation (SPO2) Temporal
End-tidal carbon dioxide (ETCO2) Temporal
Minimum alveolar concentration (MAC) Temporal
Positive end-expiratory pressure (PEEP) Temporal
Peak inspiratory pressure (PIP) Temporal
Tidal volume Temporal
Temperature Temporal

ICU Assessment Scores’

ASA physical status classification Temporal
Braden scale Temporal
(continued)
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TABLE 2 Continued

Variable Type
Confusion assessment method (CAM) Temporal
Modified early warning score (MEWS) Temporal
Morse fall scale (MFS) Temporal
Pain score Temporal
Richmond agitation-sedation scale (RASS) Temporal
Sequential organ failure assessment (SOFA) Temporal

ICU laboratory tests®
106 distinct lab tests present in EHR system Temporal

ICU medications®
345 distinct medications present in EHR system Temporal

“Extracted features included total counts of administered medications up to
one year prior to hospital admission.

PExtracted features included total counts of recorded laboratory test results
and minimum, maximum, mean, and standard deviation of measurement
values up to one year prior to hospital admission. Both serum and urine-
based tests extracted separately when available.

“Invasive and non-invasive readings for systolic blood pressure, diastolic blood
pressure, and mean arterial pressure were treated as distinct event tokens.
9For assessment scores with multiple sub-components, each component was
treated as a distinct timestamped measurement, resulting in 30 such
assessment measurements.

*We retained distinct laboratory tests and medications that were administered
in at least 1% of the training cohort of ICU stays.

measurement features were derived from a set of statistical
summaries for each descriptor (minimum, maximum, mean,
standard deviation).

Temporal data: For each ICU stay, we extracted all available
vital signs, laboratory tests, medication administrations, and
bedside assessment scores recorded in our EHR system while
the patient was in the ICU (Table 2). We refer to each
extracted measurement as a clinical event. Each event was
represented as a vector containing the name of the
measurement (e.g. “noninvasive systolic blood pressure”), the
elapsed time from ICU admission, the current measured
value, and eight cumulative value-derived features
corresponding to prior measurements of the same variable
earlier in the ICU stay (mean, median, count, minimum,
maximum, standard deviation, first value, elapsed time since
most recent measurement). For bedside assessment scores
with multiple treated each sub-

sub-components, we

component as a distinct measurement. Invasive and
noninvasive measurements were treated as distinct tokens. We
excluded ICU stays with sequence lengths longer than 12,000
tokens, and the resulting mean sequence length in our cohorts
was 1,996.

Data processing: Categorical features present in the pre-
ICU static data were converted to one-hot vectors and
concatenated with the remaining numerical features. Missing
static features were imputed with training cohort medians, but
no such imputation was required for the tokenized temporal

ICU data. Binary indicator masks were computed and
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concatenated with static features to capture patterns of
missingness.

Static features were standardized to zero mean and unit
variance based on values from the training set. For each
variable name in the temporal ICU data, corresponding
continuous measurement value features were individually
the
timestamps were converted to number of elapsed hours from

standardized in same manner. ICU measurement
ICU admission, and were similarly standardized based on
training cohort values.

ICU measurement names were converted to unique
integer identifiers in a similar manner to standard
tokenization mapping procedures in NLP applications. Each
temporal clinical event was also associated with an integer
position index. While similar to the positional formulations
in NLP applications, we introduce one key distinction that
is more suitable for Transformers based on EHR data: we
do not enforce the restriction that positional indices are
unique, and if two clinical events occurred at the same EHR
timestamp, they are associated with the same sequential
position index.

Each temporal measurement token consisted of integer
positional identifier, integer variable identifier, continuous
elapsed time from ICU admission, and eight continuous
features extracted from current and prior measurement values.

Following data extraction and processing, each ICU stay was
c R718x1
of 718 static pre-ICU features, and (2) a matrix of T temporal
c RTxlz

identifier. Across our entire population, the temporal ICU

associated with two sets of data: (1) a single vector x;

ICU measurements x; including token position and
measurements included 19 unique vital signs, 106 unique
laboratory tests, 345 unique medication administrations, and
29 bedside assessment score components; however, each ICU
stay only included a subset of such total variables, and its
corresponding temporal sequence only included what was
measured during the corresponding ICU stay. One of the
benefits of our proposed EHR embedding framework is the
lack of resampling, propagation, imputation, or other such
related

temporal preprocessing

sequential modeling tasks.

typically performed in

2.3. Clinical outcomes

For each ICU stay, we sought to predict six clinical
outcomes related to patient illness severity: ICU readmission
within the same hospital encounter, inpatient mortality, 7-day
mortality, 30-day mortality, 90-day mortality, and 1-year
mortality. Our model is formulated as a multi-task design,
and simultaneously estimates risk for all six clinical prediction
targets.

frontiersin.org


https://doi.org/10.3389/fdgth.2022.1029191
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

Shickel et al.

2.4. Model architecture

The primary driver behind our ICU patient acuity
Our
modified model utilizes the global and sliding window

estimation model is the transformer encoder (11).

mechanism introduced by the Longformer (18) along with
special classification tokens from BERT (12). Figure 1 shows
a high-level overview of our Transformer architecture. Our
longitudinal tokenization pipeline and Transformer modeling
architecture code will be available upon request for interested
researchers.

Novel embedding: In typical Transformer implementations,
one-dimensional input sequences consist of integer-identified
tokens (such as textual tokens or discrete clinical concepts)
that are embedded using a lookup table, after which a
positional encoding vector is added to inject local temporality.
For existing applications of Transformers with EHR data, the
values of a given measurement are not factored into its
representation.

10.3389/fdgth.2022.1029191

Our embedding scheme introduces three novelties that offer
improvements for clinical prediction tasks. First, positional
indices are derived from EHR record times and are not
unique (see Section 2.2), allowing for multiple tokens to share
the same positional index and resulting positional encoding.
Rather than enforce an arbitrary sequence order or implement
a random shuffling procedure for simultaneous tokenized
events, this modification is more flexible with respect to
clinical workflows.

Second, in addition to novel framing of relative and local
through
modifications, each clinical event token also explicitly includes

temporal  relationships positional  encoding
absolute temporality in the form of a feature indicating the
elapsed hours from ICU admission. We hypothesized that the
injection of both relative and absolute temporality would
allow the Transformer to better model patient trajectories.
Finally, each clinical event in our tokenized input sequences
consists of several continuous measurement values in addition

to the discrete token identifiers (see Section 2.2). To our

ICU readmission risk
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FIGURE 1

Overview of our proposed generalized EHR Longformer network for simultaneously predicting multiple patient outcomes in the ICU. Pre-ICU
information includes summarized history of patient medications and laboratory tests, sociodemographic indicators, and features relating to
hospital admission. Temporal ICU measurements take the flexible form of tuples: (p, non-unique positional index of clinical event based on
timestamp; t, elapsed time from ICU admission, f, unique measurement identifier integer; v, set of continuous features derived from measured
values). Task-specific [CLS] tokens are assigned t = time of prediction and V = 0. Tokens are individually embedded and passed through a stack
of Longformer layers with sliding self-attention windows. Global attention is applied to static feature representation and prediction tokens. The
concatenation of each layer's [CLS] representations are used for a given task to predict the desired mortality risk. Not shown: Transformer

v
Task-Specific Tokens

feedforward network and nonlinear activations. FC: fully-connected layers.
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knowledge, no other work integrates both discrete and
continuous data in this manner, with the majority of recent
research opting for discrete medical codes only (Section 4.2).
We augment discrete variable tokens with continuous
measurement values into our embedding to better capture
recovery or worsening trends as a patient progresses through
an ICU stay.

Our embedding module consists of (1) a traditional lookup
table used for measurement name identifier, (2) a sinusoidal
positional embedding table, and (3) a single fully-connected
layer for embedding absolute time and value-derived features.
The final sequence embedding is the summation of three
embedded vectors: (1) the embedding of absolute time with
corresponding cumulative values, (2) the measurement token
and (3) a
positional encoding. In our implementation, the sinusoidal

identifier embedding, traditional ~sinusoidal
positional encoding is based on the position of unique
measurement times in the input sequence: for an example
sequence of measurement hours [0.1,0.2,0.2,0.3,0.3], the
positional indices are computed as [0, 1, 1, 2, 2].

Novel multi-task global tokens: In the original BERT
implementation, a single special [CLS] token is prepended to
that is

representation of the entire sequence. We extend this notion

input sequences meant to capture a global
by prepending each sequence with 6 such special tokens: one
for each of our clinical outcomes. As each token in our data
scheme consists of a (time, name, values) 12-tuple, we set
time of each [CLS] token equal to the total ICU length of stay
and all values equal to zero. The special token identifiers are
embedded in a similar fashion to other ICU measurement
tokens. In our experiments, we include an additional
prediction target for long-term hospital readmission that is
used for regularization, but not included in our patient acuity
estimation. In the Longformer implementation in our
encoder, we set each of the multi-task tokens to compute
global attention, so that self-attentions are computed among
all sequence elements for each clinical outcome token.

Novel inclusion of static patient data: In many sequential
models for clinical prediction, a final encounter representation
is obtained by concatenating the pre-sequence static patient
representation with the sequential representation. In our
work, we prepend each ICU sequence with the representation
obtained from passing the static patient information vector
through a fully-connected network. We assign this static
token as global, so that every time step computes attention
with the static data. We hypothesized that this more fine-
grained injection of patient information at every time step
would improve the capacity of our model to learn important
and more personalized patient trajectory patterns.

Model details: Our final model consisted of an embedding
layer, followed by 8 Longformer layers, and a separate linear
prediction layer for each of our 6 clinical outcomes. For

making a task-specific prediction, the task-specific linear layer
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uses the concatenation of representations corresponding to its
special [CLS] token at each of the 8 layers. In our initial
Longformer implementation, we used a hidden size of 128, a
feedforward size of 512, 8 attention heads, a sliding window
of size 128, dropout of 0.1, and a batch size of 21.
Hyperparameters were chosen with respect to hardware
constraints; hyperparameter optimization will be a focus of
future work.

Models
development set of 60,516 ICU stays corresponding to 80% of

Experiment details: were trained using a
our total ICU cohort. 10% of this development set was used
for early stopping based on the mean AUROC among all six
clinical outcomes and a patience of four epochs. All
experiments were conducted on a local Linux server equipped
with two i7-7820X 3.6 GHz CPUs, 3 NVIDIA GeForce RTX
2080Ti GPUs, 512GB SSD storage, and 128GB RAM. Models
were designed and run using the PyTorch and Hugging Face
Python libraries.

In this feasibility study, we compared performance against
six other ICU prediction models:

o Longformer using tokenized data sequences with only

discrete code identifiers. In this variant of our proposed
do the
measurement values in the representation of each event

framework, we not include continuous
token.

o Recurrent neural network (RNN) with gated recurrent units
(GRU) using continuous multivariate time series inputs. In
this experiment, the flexibility of our tokenization scheme
is removed, and more traditional “tabularized” input data
sequences were constructed where each variable is assigned
a distinct column. Sequences were constructed with
continuous current values and resampled to 1-hour

frequency to align with common practice found in

literature. Multi-task predictions were drawn from the final
hidden of the GRU Static
information was concatenated with the

representation and fed through fully-connected layers

state encoder. patient

sequence

before classification.

o GRU with attention mechanism. This variant is identical to
the above, but with the addition of a simple attention
mechanism over the hidden states of the GRU. States are
weighted by alignment scores and summed to yield a final
attention-based sequential representation.

o Tokenized GRU with attention. In this final experimental
setting, we used the same novel EHR embedding and
tokenization approach as with our Transformer model
architecture (see Section 2.2), but instead use a GRU with
attention mechanism in place of the Transformer model.

o CatBoost (20) gradient boosting algorithm. The algorithm
employs gradient boosting on decision trees for both
regression and classification tasks. Gradient boosting

algorithms have shown benefits over random forests and
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require comparatively less hyperparameter tuning for
optimal performance. For this experiment, the embedding
layers are removed and the CatBoost model is trained on
samples containing both the pre-ICU information and
concatenated ICU measurements.

o XGBoost (21) gradient boosting algorithm. This experiment
and associated data processing is identical to CatBoost,
except an XGBoost model is used for prediction.

3. Results

At present time, the primary aim of our novel mortality
prediction model is not to show state-of-the-art improvements
in model accuracy; rather, we present this work as a feasibility
study for future research. We believe our novel modifications
of existing Transformer architectures for use in clinical EHR
in highly flexible
personalized patient representations and predictions across a

applications will result and more
variety of clinical tasks.

In this first iteration of our experiments, we did not perform
any hyperparameter optimization, instead choosing sensible
settings that both highlight the novel aspects of the
architecture and work with our hardware constraints. In
passing, we note that often parameter tuning is an essential
component of enhancing performance, and future iterations
of this work will focus on optimizing crucial parameters such
as learning rate, dropout, number of self-attention heads,
number of self-attention layers, hidden dimension, and size of
the sliding self-attention window.

Our results are shown in Table 3. Our Transformer
architecture with novel EHR embedding and tokenization
scheme yielded slightly superior mean AUROC (0.929) across
all six clinical prediction tasks, with individual task AUROC
ranging from 0.843 (ICU readmission) to 0.983 (7-day
mortality). The Transformer using tokenized embeddings that
omit continuous measurement values resulted in the lowest
mean AUROC (0.773) and worst performance across most of
the clinical outcomes, ranging from 0.512 (ICU readmission)

10.3389/fdgth.2022.1029191

to 0.900 (7-day mortality). It outperformed the XGBoost
model for inpatient and 7-day mortality.

In terms of GRU baseline models, the traditional model and
data processing scheme resulted in the lowest baseline accuracy,
with mean AUROC of 0.900 and task AUROC ranging from
0.750 (ICU readmission) to 0.972 (7-day mortality). The
augmentation of this model and data scheme with traditional
attention mechanism improved the performance to a mean
AUROC of 0.909.

The best GRU baseline model used our novel EHR
embedding, tokenization, and representation pipeline. This
model yielded a mean AUROC of 0.927 with individual task
AUROC ranging from 0.831 to 0.982. It performed best for
predicting 30-day mortality and 90-day mortality, although
the relative difference compared with the transformer is
minimal. For the gradient boosting algorithms, CatBoost
outperformed XGBoost across all outcomes (mean AUROC:
0.863 vs. 0.836) except for predicting ICU readmission
(AUROC: 0.759 vs. 0.762). The CatBoost model performed
similarly to the baseline GRU model for all other outcomes.
The tree-based models were predominantly outperformed by
GRU models with attention.

Across all models and data representation schema, ICU
readmission proved the most difficult task. Among the
multiple prediction horizons for patient mortality, models
were best able to predict 7-day mortality, followed by
inpatient mortality, 30-day mortality, 90-day mortality, and 1-
year mortality.

4. Discussion
4.1. Principal findings

This work presents a novel ICU acuity estimation model

inspired by recent breakthroughs in  Transformer
architectures. Our proposed model framework incorporates
several novel modifications to the existing Transformer

architecture that make it more suitable for processing EHR

TABLE 3 Multi-task prediction results expressed as area under the receiver operating characteristic curve (AUROC).

Model Data Mean Readmission Mortality
ICU Inpatient 7- 30- 90- 1-

Day Day Day Year
Transformer Tokenized events (discrete only) 0.773 0.512 0.889 0.900 0.831 0.777 0.727
Transformer Tokenized events + continuous measurement values  0.929 0.843 0.978 0.983 0.953 0.923 0.892
GRU Resampled multivariate time series 0.900 0.750 0.960 0.972 0.938 0.907 0.872
GRU with attention ~ Resampled multivariate time series 0.909 0.770 0.965 0.975 0.946 0.914 0.882
GRU with attention =~ Tokenized events + continuous measurement values  0.927 0.831 0.977 0.982 0.954 0.925 0.891
CatBoost Tokenized events + continuous measurement values 0.863 0.759 0.901 0.915 0.890 0.868 0.847
XGBoost Tokenized events + continuous measurement values  0.836 0.762 0.867 0.878 0.859 0.833 0.817
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data Through initial

experiments, our model was on par with, or outperformed,

of varying modalities. feasibility
common variants of RNN baselines, and we feel our approach
holds promise for incorporating additional EHR-related
outcome prediction tasks and additional sources of EHR input
data.

One of the advantages of our work is that input elements are
treated as distinct. For example, if heart rate, respiratory rate,
and SPO2 were recorded at the same timestamp in an EHR
system, our framework operates on these individual elements,
rather than combining them into a single aggregated time step
RNN or CNN-based work. From
interpretability standpoint, combined with the inherent self-

as in similar an
attention mechanisms of the Transformer, isolation of inputs
allows for improved clarity with respect to important or
contributing clinical factors. While one area of recent
sequential interpretability ~research involves multivariate
attribution for aggregated time steps (5, 22), Transformer-
based approaches such as ours obfuscate the need for
multivariate attribution, as attentional alignment scores are
assigned to individual measurements. This property highlights
the potential for EHR Transformers to shed increased
transparency and understanding for clinical prediction tasks
built upon complex human physiology.

Furthermore, while many sequential applications of deep
learning to EHR (including recent implementations of
Transformer techniques) make use only of discrete clinical
the

continuous

concepts, framework  extends

representational

our  proposed

capacity by
measurement values alongside these discrete codes and events.

integrating

The inclusion of continuous measurement values represents
an important step forward, as the measured result of a clinical
test or assessment can provide crucial information alongside a
simple presence indicator that can help complex models
develop a better understanding of patient state and overall
health trajectory.

Given the flexible nature of our Transformer framework,
each patient input sequence only contains the measurements
that were made during the ICU encounter. The advantages
for EHR applications are twofold. First, in traditional RNN or
CNN-based work, the distance between time steps is assumed
to be fixed, and this is typically achieved by resampling input
sequences to a fixed frequency by aggregating measurements
within resampled windows, and propagating or imputing
values into windows without present values. Such a scheme
has the potential for introducing bias, and when using our
novel EHR embedding paradigm and Transformer-based
modeling approach, the problem of missing values is made
redundant given the explicit integration of both absolute and
relative temporality for each irregularly measured clinical
event. Additionally, in typical deep sequential applications
using EHR data, the number of input features at each time
step must be constant. This is achieved by an a priori
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identification and extraction of a subset of clinical descriptors
thought to be relevant indicators for a given prediction task.
As we have shown, when using a Transformer-based
approach with our flexible tokenization scheme, any and all
EHR measurements can be easily incorporated into the
prediction framework, even when some types do not exist for
a given patient or ICU encounter, and do not necessitate bias-
prone imputation techniques.

While the Transformer offers several benefits over existing
sequential deep learning models such as the RNN, it is not
without drawbacks. Because the self-attention mechanism is
highly parallelizable and does not require step-wise iterative
processing of a sequence (unlike the RNN), there is a tradeoff
between faster computation and a much larger memory
footprint (complexity O(n?) without scope modifications). As
such, Transformers may be infeasible to implement in
training environments with limited computational resources.

In our approach, we introduced a novel method for
incorporating static, pre-sequential patient information and
patient history into the overall prediction model. Typically,
such static information is concatenated with a final sequential
representation before making a prediction. We instead include
static information as a distinct token in the input sequence,
and assign global attention using the Longformer self-
attention patterns. In effect, static patient-level information is
injected into the self-attention representation of every ICU
measurement, allowing more fine-grained and personalized
incorporation of changes in overall patient health trajectories.

Another novel contribution we feel can be applied to even
non-EHR tasks is the expansion of the special BERT
classification token into a separate token per classification
target in a multi-task prediction setting. Given the global self-
attention patterns between all task tokens and every sequential
input element, such a scheme allows the model to develop
task-specific data representations that can additionally learn
from each other.

As with other retrospective machine learning models for
predicting patient outcomes from longitudinal data, our
transformer framework offers the potential for augmenting
clinical ~decision-making with dynamic data-driven risk
estimations that can be used to help forecast patient trajectory
and guide treatment and care strategies. Intended not to
mandate particular course of action, tools such as ours can
complement existing standards of care and provide clinicians
with additional support.

4.2. Related work

4.2.1. Transformer models

First introduced by Vaswani et al. (11) for machine
tasks, the
architecture built upon layers of self-attention mechanisms.

translation Transformer is a deep learning
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The Transformer views attention as a function of keys K,
queries Q, and values V. In the work of Vaswani et al. (11),
all three elements came from the same input sequence, and is
why their style of attention is referred to as self-attention. In
a similar manner to previously described works, compatibility
between a key and query is used to weight the value, and in
the case of self-attention, each element of an input sequence
is represented as a contextual sum of the alignment between
itself and every other element. Similar to the memory
networks of Sukhbaatar and Szlam (23), the Transformer also
involves the addition of a positional encoding vector to
preserve relative order information between input tokens.

An end-to-end Transformer architecture typically includes
both an encoder and decoder component. While critical for
many NLP tasks such as machine translation, our architecture
utilizes only the Transformer encoder, which encodes input
sequences into hidden representations that are subsequently
used for predicting patient mortality.

A comprehensive overview of the Transformer and BERT is
beyond the scope of this section; we refer interested readers to
Vaswani et al. (11) and Devlin et al. (12), respectively.

Briefly, the first stage of a Transformer encoder typically
includes an embedding component, where each input sequence
element is converted to a hidden representation that is fed into
the remainder of the model. In its original NLP-centered
design where inputs are sequences of textual tokens, a
traditional embedding lookup table is employed to convert
such tokens into continuous representations. Unlike similar
sequential models like RNNs or CNNs, the Transformer is
fundamentally temporally agnostic and processes all tokens

simultaneously ~rather than sequentially. As such, the
Transformer embedding module must inject some notion of
temporality into its element embeddings. In typical

Transformer implementations, this takes the form of a
positional encoding vector, where the position of each element
is embedded by sinusoidal lookup tables, which is subsequently
added to the token embeddings. The primary aim of such
positional embeddings is to allow the model to understand
local temporality between nearby sequence elements.

At each layer of a Transformer encoder, a representation of
every input sequence element is formed by summing self-
attention compatibility scores between the element and every
other element in the sequence. Typical with other deep
learning architectures, as more layers are added to the
encoder, the representations become more abstract.

The recent NLP method BERT (12) is
Transformers, and at present time represent state of the art in

based on

a variety of natural language processing tasks. In addition to
its novel pretraining scheme, BERT also prepends input
sequences with a special [CLS] token before a sequence is
passed through the model. The goal of this special token is to
capture the combined representation of the entire sequence,
and for classification tasks is used for making predictions.
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Transformers are also being used in computer vision as well,
with great success. For example, videos especially benefit from
Transformers which can learn the temporal and spatial
features of vision data. They have shown to before the same
or better for vision tasks, while also reducing vision-specific
induction bias Han et al. (24). For video data, they can be
used for trajectory tracking of objects like balls Patrick et al.
(25) using attention on objects in images, as well as
approximate self attention to reduce quadratic dependency.

While the Transformer is in one sense more efficient than
its sequential counterparts due to its ability to parallelize
computations at each layer, one of the main drawbacks is its
required memory consumption. Since each input element of a
sequence of length n must be compared with every other
the
implementations require memory on the order of O(n?).

input element in sequence, typical Transformer
While acceptable for relatively short sequences, the memory
consumption quickly becomes problematic for very long
the of

Transformers is an area of ongoing research.

sequences.  Decreasing memory  requirement

One potential solution was proposed by Beltagy et al. (18) in
their Longformer architecture. Rather than computing full n?
self-attentions, they propose a sliding self-attention window of
specified width, where each input sequence element is
compared only with neighboring sequence elements within
the window. They extend this to include user-specified global
attention patterns (such as on the special [CLS] tokens for
classification) that are always compared with every element in
the Through

demonstrate the promising ability of the Longformer to

sequence. several NLP experiments, they

approximate results from a full Transformer model.

4.2.2. Transformers in healthcare

Given the similarity between textual sequences and
temporal patient data contained in longitudinal EHR records,
exploring the efficacy of
of BERT for
applications using electronic health records. In terms of
data of
Transformers in a clinical setting tend to fall under three

several works have

begun

Transformers and modifications clinical

patient modalities, existing implementations
primary categories:

Perhaps the most aligned with the original BERT
implementation, several studies adapt and modify BERT for
constructing language models from unstructured text
contained in clinical notes. The ClinicalBERT framework of
Huang et al. (26) used a BERT model for learning continuous
representations of clinical notes for predicting 30-day hospital
readmission. Zhang et al. (27) pretrained a BERT model on
clinical notes to characterize inherent bias and fairness in
clinical language models.

Song et al. (17)’s SAnD architecture developed Transformer
models for several clinical prediction tasks using continuous

multivariate clinical time series.
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The majority of existing EHR Transformer research has
focused on temporal sequences of discrete EHR billing codes.
Li et al. (16)’s BEHRT framework modified the BERT
paradigm for predicting future disease from diagnosis codes.
Med-BERT (15) demonstrated the performance advantages of
a contextualized clinical pretraining scheme in conjunction
with a BERT modification. RAPT (28) used a modified
Transformer pretraining scheme to overcome several
challenges with sparse EHR data. SETOR (29) utilized neural
ordinary differential equations with medical ontologies to
construct a Transformer model for predicting future
diagnoses. RareBERT (30) extends Med-BERT for diagnosis of
rare diseases. Meng et al. (31) used Transformers for
predicting depression from EHR. Hi-BEHRT (16) extends
BEHRT using a hierarchical design to expand the receptive
field to capture longer patient sequences. Choi et al. (32) and
Shang et al. (33)’s G-BERT architecture capitalize on the
inherent ontological EHR structure.

In contrast to the isolated data modalities implemented in
existing EHR Transformers, the novel embedding scheme
utilized in our models combines both discrete and continuous
patient data to generate a comprehensive representation of
distinct clinical events and measurements.

4.5. Limitations

This feasibility study has several limitations and is intended
as a methodological guiding framework for future multimodal
and multi-task EHR Transformer research. Our retrospective
dataset is limited to patients from a single-center cohort.
Future work will evaluate performance in external validation
cohorts such as MIMIC-IV (34). We also present results with
parameters that maximize our limited hardware capacity;
future work will focus on several hyperparameter tuning and
model selection procedures. The baseline models we present
for comparison are drawn from simplified implementations
found in clinical deep learning research, and more recent
approaches may offer enhanced predictive performance. From
the results in Table 3, one might conclude that our EHR
embedding procedure had a larger impact than use of the
Transformer architecture, given the competitive AUROC of
the GRU baseline when
tokenization pipeline for estimating risk of patient mortality.

attentional implementing our

Future work will focus on disentangling the relative impacts
of both model and data representation designs.
4.6. Conclusions and next steps

We feel there is still great potential for exploring additional

benefits of our approach with diverse EHR data for a variety of
clinical modeling and prediction tasks, especially in the realm of
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clinical interpretability. Given our promising pilot study results,
future versions of this work will perform hyperparameter
optimization with a focus on maximizing predictive accuracy.
Additionally, since transformers are fundamentally composed
of attention mechanisms, they can be analyzed with respect to
particular outcomes, time points, or variables of interest to
highlight important contributing factors to overall risk
estimation. Future research will emphasize analyzing self-
attention distributions between input variables and clinical
outcomes to further the clinical explainability and enhance
the clinical trust of Transformers in healthcare. We believe
there is great potential for multimodal patient monitoring
using flexible EHR frameworks such as ours. Future research
will also focus on augmenting our multi-modal datasets with
additional clinical data modalities such as clinical text and
images, and pre-training our Transformer architectures with
self-supervised prediction schemes across a variety of input
data and clinical outcomes.
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