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Abstract

Mistrust is a major barrier to implementing deep learning in healthcare settings. Entrustment
could be earned by conveying model certainty, or the probability that a given model output is
accurate, but the use of uncertainty estimation for deep learning entrustment is largely unex-
plored, and there is no consensus regarding optimal methods for quantifying uncertainty.
Our purpose is to critically evaluate methods for quantifying uncertainty in deep learning for
healthcare applications and propose a conceptual framework for specifying certainty of
deep learning predictions. We searched Embase, MEDLINE, and PubMed databases for
articles relevant to study objectives, complying with PRISMA guidelines, rated study quality
using validated tools, and extracted data according to modified CHARMS criteria. Among 30
included studies, 24 described medical imaging applications. All imaging model architec-
tures used convolutional neural networks or a variation thereof. The predominant method
for quantifying uncertainty was Monte Carlo dropout, producing predictions from multiple
networks for which different neurons have dropped out and measuring variance across the
distribution of resulting predictions. Conformal prediction offered similar strong performance
in estimating uncertainty, along with ease of interpretation and application not only to deep
learning but also to other machine learning approaches. Among the six articles describing
non-imaging applications, model architectures and uncertainty estimation methods were
heterogeneous, but predictive performance was generally strong, and uncertainty estima-
tion was effective in comparing modeling methods. Overall, the use of model learning curves
to quantify epistemic uncertainty (attributable to model parameters) was sparse. Heteroge-
neity in reporting methods precluded the performance of a meta-analysis. Uncertainty esti-
mation methods have the potential to identify rare but important misclassifications made by
deep learning models and compare modeling methods, which could build patient and
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clinician trust in deep learning applications in healthcare. Efficient maturation of this field will
require standardized guidelines for reporting performance and uncertainty metrics.

Author summary

Deep learning prediction models perform better than traditional prediction models for
several healthcare applications. For deep learning to achieve it’s greatest impact on health-
care delivery, patients and providers must trust deep learning models and their outputs.
This article describes the potential for deep learning to earn trust by conveying model cer-
tainty-the probability that a given model output is accurate. If a model could convey not
only it’s prediction but also it’s level of certainty that the prediction is correct, patients and
providers could make an informed decision to incorporate or ignore the prediction. The
use of uncertainty estimation for deep learning entrustment is largely unexplored, and
there is no consensus regarding optimal methods for quantifying uncertainty. Our pur-
pose is to critically evaluate methods for quantifying uncertainty in deep learning for
healthcare applications and propose a conceptual framework for specifying certainty of
deep learning predictions. We systematically reviewed published scientific literature and
summarized results from 30 studies, and found that uncertainty estimation methods have
the potential to identify rare but important misclassifications made by deep learning mod-
els and compare modeling methods, which could build patient and clinician trust in deep
learning applications in healthcare.

Introduction

Deep learning is increasingly important in healthcare. Deep learning prediction models that
leverage electronic health record data have outperformed other statistical and regression-
based methods [1,2]. Computer vision models have matched or outperformed physicians for
several common and essential clinical tasks, albeit in select circumstances [3,4]. These results
suggest a potential role for clinical implementation of deep learning applications in health
care.

Mistrust is a major barrier to clinical implementation of deep learning predictions [5,6].
Efforts to restore and build trust in machine learning have focused primarily on improving
model explainability and interpretability. These techniques build clinicians’ trust, especially
when model outputs and important features correlate with logic, scientific evidence, and
domain knowledge [7,8]. Another critically important step in building trust in deep learning is
to convey model uncertainty, or the probability that a given model output is inaccurate [8].
Deep learning models that typically perform well make rare but egregious errors [9]. If a
model could calculate the uncertainty in its predictions on a case-by-case basis, patients and
clinicians would be afforded opportunities to make safe, effective, data-driven decisions
regarding the utility of model outputs, and either ignore predictions with high uncertainty or
triage them for detailed, human review. Unfortunately, there is a paucity of literature describ-
ing effective mechanisms for calculating model uncertainty for healthcare applications, and no
consensus regarding best methods exists.

Our purpose is to critically evaluate methods for quantifying uncertainty in deep learning
for healthcare applications and propose a conceptual framework for optimizing certainty in
deep learning predictions. Herein, we perform a scoping review of salient literature, critically
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evaluate methods for quantifying uncertainty in deep learning, and use insights gained from
the review process to develop a conceptual framework.

Materials and methods

Article inclusion is illustrated in Fig 1, a PRISMA flow diagram. We searched Embase, MED-
LINE, and PubMed databases, chosen for their specificity to the healthcare domain, for articles
with “deep learning” and “confidence” or “uncertainty” in the title or abstract and for articles
with “deep learning” and “conformal prediction” in the title or abstract, identifying 37 unique
articles. Two investigators independently screened all article abstracts for relevance to review
objectives, removing three articles. Full texts of the remaining 34 articles were reviewed. Study
quality was independently rated by two investigators using quality assessment tools specific to
the design of the study in question (available at: https://www.nhlbi.nih.gov/health-topics/
study-quality-assessment-tools). Only studies describing healthcare applications that were
good or fair quality were included in the final analysis, which removed four articles, leaving 30
total articles in the final analysis. Data extraction was performed according to a modification
of CHARMS criteria, which included methods for measuring uncertainty in deep learning pre-
dictions [10]. The search was performed according to Preferred Reporting Items for System-
atic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines, as
listed in S1 PRISMA Checklist.

During screening, there were disagreements between the two investigators regarding the
exclusion of five articles; all disagreements were resolved by discussion of review objectives
without a third-party arbiter. Cohen’s kappa statistic summarizing interrater agreement
regarding article screening was 0.358 (observed agreement = 0.848, expected agree-
ment = 0.764), suggesting that screening agreement between reviewers was fair [11,12]. During
full text review, there was a disagreement between the two investigators regarding the exclu-
sion of one article, which was resolved by discussion of review objectives without a third-party
arbiter. Cohen’s kappa statistic summarizing interrater agreement regarding full text review
could not be calculated because both observed and expected agreement were 0.964, but this
high value suggests that agreement between reviewers was substantial.

Results

Included articles are summarized in Table 1. Notably, the use of uncertainty estimation in
these articles was rarely applied to building trust in deep learning among patients, caregivers,
and clinicians. Therefore, the presentation of results will focus primarily on the content of the
articles, and opportunities to use uncertainty-aware deep learning to build trust will be dis-
cussed further in the Discussion section as a novel application of established techniques.

Among 30 included studies, 24 described medical imaging applications and six described
non-imaging applications; these categories are evaluated and reported separately. First, impor-
tant themes from included articles are synthesized into a conceptual framework.

Conceptual framework for optimizing certainty in deep learning
predictions

Deep learning uncertainty can be classified as epistemic, (i.e., attributable to uncertainty
regarding model parameters or lack of knowledge), or aleatoric (i.e., attributable to stochastic
variability and noise in data). Epistemic and aleatoric uncertainty have overlapping etiologies,
as variability and noise in data can contribute to uncertainty regarding optimal model parame-
ters and knowledge regarding ground truth. In addition, epistemic and aleatoric uncertainty
may be amenable to similar mitigation strategies, as collecting and analyzing more data may

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000085 August 10, 2022 3/15


https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
https://doi.org/10.1371/journal.pdig.0000085

PLOS DIGITAL HEALTH

Uncertainty-aware deep learning in healthcare

PRISMA 2020 flow diagram for new reviews which included searches of databases and registers only
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Fig 1. PRISMA flow diagram for article inclusion.
https://doi.org/10.1371/journal.pdig.0000085.9001

allow for more effective identification and imputation of outlier and missing values, reducing
aleatoric uncertainty, and may also allow for more effective parameter searches. Beyond these
overlapping etiologies and mitigation strategies, epistemic and aleatoric uncertainty have some
unique and potentially important attributes. Epistemic uncertainty can be seen as a lack of
information about the best model and can be reduced by adding more training data [13].
Learning curves stratified by number of training samples offer an intuitive approach to visual-
izing epistemic uncertainty, where it becomes evident that using more data typically results
not only in more accurate models, but also in more stable loss when trained for the same num-
ber of epochs. In stochastic models, parameter estimates also become more stable with increas-
ing amounts of training data. In addition to increasing knowledge through larger sample sizes,
it may also be possible to reduce epistemic uncertainty by adding input features, especially
multi-modal features (e.g., using not only vital signs to predict hospital mortality, but also
using laboratory values, imaging data, and unstructured text data from notes written by clini-
cians), or modifying the algorithm to learn from additional nonlinear combinations of
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Table 1. Summary of included studies, classified as imaging or non-imaging applications.

Primary Purpose Population or Sample size Model Best model Validation Method for Quality
author sampling unit architecture performance method quantifying Rating
prediction
uncertainty
Medical imaging applications
Araujo (34) | Grade diabetic | Datasets of retinal | Approximately | Convolutional- Quadratic-weighted External Calculate Cohen’s Good
retinopathy images 93,000 images batch Cohen’s kappa 0.71- kappa statistics for
severity normalization | 0.84 for predictions vs. model predictions at
blocks, max- ground truth threshold levels of
pooling layers uncertainty,
calculated by variance
in image-wise
retinopathy grade
probability
Athanasiadis Correlate Audio-visual 187 people, 7356 Generative Classification 52.52% in | External | Conformal prediction | Good
(20) visual and emotion datasets audio Adversarial one dataset and 47.11% to obtain error
audio recordings, 7442 Networks in the other calibration
emotional videos, 96
expression images
Ayhan (31) Diagnosing Fundus images 89,215 images Convolutional AUC 0.959-0.982 External | Calculate variancein | Good
diabetic neural network the form of entropy
retinopathy as a distribution of
predicted
probabilities
Cao (32) Classify breast | Breast ultrasound | 107 patients with | Dense U-Net Accuracy 99.21% Internal Generate visual Fair
masses, images 13,382 epistemic uncertainty
identify tumors ultrasound slices maps for each image
Carneiro Classifying Images of colorectal | 940 images from | Residual and Accuracy 0.76 External | Classification entropy |  Fair
(29) colorectal polyps obtained by 287 patients densely or the predicted
polyps colonoscopy connected variance produced by
convolutional Bayesian methods
networks
Edupuganti Quantify Knee MRI images | 19 patients with Variational R? = 0.97 for 2-fold External | Generate a posterior | Good
(35) uncertainty in 320 2D image autoencoders, under sampling of the MRI image and
deep MRI slices per patient | convolutional generate pixel
segmentation neural networks variance maps using
Monte-Carlo
sampling
Graham (21) | Label regions | Brain MRIimages 593 scans 3D UNet Dice score 0.845 for all | External Cross-entropy Good
and sub- regions in uncertainty- uncertainty measured
regions of the aware hierarchical at each progressively
brain model smaller sub-region of
the brain
Herzog (15) Diagnose Brain MRI images | 511 patients with Bayesian Accuracy 95.9%, was Internal Variance, variation Good
ischemic average 30 convolutional 2% better than model ratio, and predictive
stroke images per neural network without uncertainty entropy of a
patient measurements distribution of
Bayesian probabilities
Hu (30) Diagnose a Positron emission 83 patients Convolutional Sensitivity 74.7% Internal Zone-based Good
rare lymphoma | tomography and neural networks, uncertainty estimates
computed coarse-to-fine based on Monte
tomography scan segmentation Carlo dropout
images technique comparing
the lesion and the
background
Ktena (22) Evaluate Brain functional 871 subjects Convolutional Opverall classification External Calculate similarity Good
similarity MRI images neural networks improvement with between irregular
between proposed metric 11.9% graphs rather than
functional and AUC 0.58 calculating
brain networks uncertainty directly
(Continued)
PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000085 August 10, 2022 5/15


https://doi.org/10.1371/journal.pdig.0000085

PLOS DIGITAL HEALTH

Uncertainty-aware deep learning in healthcare

Table 1. (Continued)

Primary Purpose Population or Sample size Model Best model Validation Method for Quality
author sampling unit architecture performance method quantifying Rating
prediction
uncertainty
Lee (43) Quantify MR, proton 15 rats Convolutional Measurement Internal Calculate Cramer- Fair
uncertainty in | magnetic resonance neural networks uncertainty for five Rao-lower-bounds
brain spectroscopy major metabolites was statistics to estimate
metabolite less than 10% the reliability of
identification fitting
Leibig (44) Diagnose Fundus images 89,902 images | Convolutional >85% sensitivity and External Draw Monte Carlo Good
diabetic neural networks |  80% sensitivity when samples from the
retinopathy referring 20% of the approximate
most uncertain predictive posterior,
decisions for use its standard
further inspection deviation to represent
uncertainty
McKinley Detect multiple MRI images Training: 4-5 Convolutional | Accuracies of 75% and | External Use best-practice Good
(45) sclerosis lesion sets of 176 neural networks | 85% in separating stable standards to annotate
changes images for 26 and progressive time- lesions, predict the
patients, testing: points probability that a
77 image sets convolutional neural
network will assign a
different label than
assigned a ground
truth
Nair (36) Detect multiple | MRIs from patients 1064 patients, Convolutional | Overall lesion-level true | External Approximate Good
sclerosis with relapsing- annual MRIs neural network | positive rate of 0.8 at 0.2 probability
lesions remitting multiple during a false detection rate distributions with
sclerosis 24-month Monte Carlo dropout
period and measure their
variance, predictive
entropy, and mutual
information
Natekar (37) | Classify brain | Brain MRI images Training: 285 Convolutional Whole tumor Dice External The mean of the Fair
tumors cases, testing: 48 | neural networks coefficient 0.830 variance in a
volumes predicted posterior
distribution
generated by running
a model for 100
epochs for each
image
Qin (16) Estimate brain | Brain diffusion MRI | Approximately | Convolutional All correlations External | Train an ensemble of | Good
and scans 1,000,000 images | neural network between estimation deep networks,
cerebrospinal (not specified uncertainty and error measure variance in
fluid fully) were significant their fused results
intracellular (p<0.001)
volume
Roy (46) Identify brain Brain MRIs Four datasets Convolutional | Dice = 0.88, 0.83, 0.81, External Samples are passed Good
structures with MRIs from | neural network 0.81 through the neural
30, 29, 13, and network serially,
18 subjects some weights
dropped each time,
derive voxel-wise and
structure-wise
uncertainty from
variance across runs
Sedghi (23) Model Brain MRIs 115 subjects Convolutional Intra-subject dice for External | Calculate variancein | Good
agreement for neural network gray matter, white displacements for
brain image matter, cereprospinal different image
classifications fluid = 0.70, 0.77, 0.62 classifications
(Continued)
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Table 1. (Continued)

Primary Purpose Population or Sample size Model Best model Validation Method for Quality
author sampling unit architecture performance method quantifying Rating
prediction
uncertainty
Seebock (38) Detect Optical coherence 226, 33, 31 Bayesian U-Net, Precision = 0.748, External Testing samples are Good
anomalies in | tomography B-scans convolutional recall = 0.844, passed through the
retinal optical neural network- Dice = 0.789 neural network
coherence based several times, some
tomography weights are dropped
images each time,
uncertainty is derived
from variance across
runs
Tanno (17) Differentiate Diffusion tensor Training: 16 Convolutional Uncertainty-based External Integrate intrinsic Good
among healthy images or mean subjects, neural network | classification correctly uncertainty with a
brain, glioma, apparent validation: identified 96% of all heteroscedastic noise
and multiple propagator-MRI variable, overall high-risk (uncertain) model and parameter
sclerosis 28 subjects predictions uncertainty with
Bayesian inference
Valiuddin Density Thoracic computed | 1,108 thoracic Probabilistic Increased predictive External Learn aleatoric
(18) modeling of tomography and computed U-Net performance (GED and uncertainty as a
medical images | endoscopic polyp tomography ToU) of up to 14% with distribution of
images scans, 1,000 an approach that possible annotations
polyp images models uncertainty using a probabilistic
segmentation model
Wang (33) Classify Optical cohere 5,028 images Convolutional Accuracy 0.951, External Mean and standard Good
diabetic tomography images and recurrent | Fl-score 0.935-0.939, deviation of
macular edema neural networks AUC 0.986-0.990 probabilistic
predictions yielded
by ensemble of
models
Wickstrom Classify polyps Images obtained 912 images Fully IoU Internal | Monte Carlo dropout | Good
(47) seen on from colonoscopies convolutional background = 0.946, to approximate
colonoscopy network ToU polyp = 0.587, Bayesian posterior of
mean IoU = 0.767, weights, Monte
global accuracy = 0.949 Carlo-guided
backpropagation,
standard deviation of
pixels
Wieslander Investigate Rat lungs after 1,105 images Convolutional Precision = 0.89, Internal | Conformal prediction | Good
(19) drug treatment with neural network | recall = 0.87, F1 = 0.87; using largest p-value
distribution on | different doses and conformal prediction minus second largest
lung routes of a R* = 0.99 for actual vs. p-value
microscopy medication observed error
images
Non-imaging applications
Cortes- Drug discovery Potency of a 24 protein drug | Ensembles of Strong correlation External | Ensemble deep neural | Good
Ciriano (24) substance in targets, 203 100 deep neural | between confidence networks by
inhibiting a 5,207 bioactivity networks levels and percentage of recording network
biochemical or data points per confidence intervals parameters
biological function protein encompassing true throughout local
bioactivity (R* > 0.99, minima during single
p<0.001) network
optimization,
calculate variability
and validation
residuals across
snapshots
(Continued)
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Table 1. (Continued)

Primary Purpose Population or Sample size Model Best model Validation Method for Quality
author sampling unit architecture performance method quantifying Rating
prediction
uncertainty
Cortes- Drug discovery Potency of a 24 protein drug Deep neural Strong correlation External | Conformal prediction | Good
Ciriano (27) substance in targets, 479- networks and between confidence to compute
inhibiting a 5,207 bioactivity | random forest levels and error rates prediction errors on
biochemical or data points per (R* > 0.99, p<0.001) ensembles of
biological function protein predictions generated
by dropout
Scalia (25) Predict Molecular graphs 4 datasets: Graph Test set errors for 4 External Monte Carlo Good
molecular 130828, 103657, | convolutional datasets: 0.74, 0.32, dropout, deep
properties 11908, and 4200 | neural networks 1.33,0.481 ensembles, and
graphs bootstrapping with
comparison of these
three methods
Sieradzki Compound Bit strings Several sample Multi-layer Models incorporating External Pass test samples Good
(48) bioactivity representing sizes, largest: perceptron uncertainty information through the neural
prediction compound approximately gained 0.004-0.007 network serially,
structures 4,000 precision some weights
dropped each time,
uncertainty derived
from variance in
dropout
Teng (28) Predict Clinical, imaging, Alzheimer’s: Deep generative Alzheimer’s: Internal | Ensemble of possible | Good
Alzheimer’s genetic, and 1,574 patients, model with accuracy = 0.916, patient forecasts
and biochemical markers |  Parkinson’s: | recurrent neural AUC =0.981, using a generative
Parkinson’s of 1,093 patients networks F1 = 0.916; Parkinson’s: network
disease neurodegenerative accuracy = 0.797,
progression disease AUC = 0.939,
F1=0.797
Zhang (26) Predict toxicity Toxicities of Active class: deep neural Average AUC = 0.734; External | Conformal prediction | Good
for chemical chemical 7039; inactive networks, single-label predictions using user-defined
compounds compounds on class: 89,922 random forest, generated for about significance levels
nuclear receptors light gradient 90% of all instances
and stress response- boosting with overall confidence
related targets machine 80% or greater

AUC: area under the receiver operating characteristic curve, GED: generalized energy distance, IoU: intersection over union, MRI: magnetic resonance imaging.

https://doi.org/10.1371/journal.pdig.0000085.t001

variables. Once an epistemic uncertainty limit has been reached, quantifying the remaining
aleatoric uncertainty in predictions could augment clinical application by allowing patients
and providers to understand whether predictions have suitable accuracy and certainty for

incorporation in shared decision-making, or are too severely compromised by aleatoric uncer-
tainty to be useful, regardless of overall model accuracy [13]. These concepts are illustrated in
Fig 2. This explanation considers transforming a given model into a stochastic ensemble
through Bernoulli sampling of weights at model test time, giving rise to a measure of epistemic
uncertainty for each sample.

Medical imaging applications

Among the 24 studies describing medical imaging applications, 12 of those 24 (50%) used
magnetic resonance imaging (MRI) features for model training and testing; 11 of those 12
(92%) of which involved the brain or central nervous system. The next most common sources
of model features were retinal or fundus images (5 of 24, 21%) and endoscopic images of colo-
rectal polyps (3 of 24, 13%). The remaining studies used computed tomography images, breast
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Conceptual Framework for Optimizing Certainty
in Deep Learning Predictions
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Fig 2. A conceptual framework for optimizing certainty in deep learning predictions by quantifying and
minimizing aleatoric and epistemic uncertainty.

https://doi.org/10.1371/journal.pdig.0000085.9002

ultrasound images, lung microscopy images, or facial expressions. All model architectures
included convolutional neural networks or a variation thereof (e.g., U-Net).

The predominant method for quantifying uncertainty in model predictions was Monte
Carlo dropout, as originally described by Gal and Ghahramani as a Bayesian approximation of
probabilistic Gaussian processes [14]. Briefly, during testing, multiple predictions are gener-
ated from a given network for which different neurons have dropped out. The neuron dropout
rate is calibrated during model development according to training data sparsity and model
complexity. Each forward pass uses a different set of neurons, so the outcome is an ensemble
of different network architectures that can generate a posterior distribution for which high var-
iance suggests high uncertainty and low variance suggests low uncertainty. Studies assessing
the efficacy of uncertainty measurements provided reasonable evidence that uncertainty esti-
mations were useful. In applying a Bayesian convolutional neural network to diagnose ische-
mic stroke using brain MRI images, Herzog et al [15] found that uncertainty measurements
improved model accuracy by approximately 2%. In applying a convolutional neural network
to estimate brain and cerebrospinal fluid intracellular volume, Qin et al [16] reported highly
significant correlations (all p<<0.001) between uncertainty estimations and observed error
based on ground truth values. Finally, in applying a convolutional neural network for differen-
tiating among glioma, multiple sclerosis, and healthy brain, Tanno et al [17] found that uncer-
tainty-based classification correctly identified 96% of all predictions that had high-risk for
error; this error was likely attributable to aleatoric uncertainty from noise and variability in
data. Valiuddi et al [18] used Monte Carlo simulations in depicting the performance of a prob-
abilistic U-Net performing density modeling of thoracic computed tomography and
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endoscopic polyp images, learning aleatoric uncertainty as a distribution of possible annota-
tions using a probabilistic segmentation model. This approach was effective in increasing pre-
dictive performance, measured by generalized energy distance and intersection over union, by
up to 14%. Collectively, these findings suggest Monte Carlo dropout methods can accurately
estimate uncertainty in predictions made by convolutional neural networks that make rare but
potentially important misclassifications on medical imaging data, and corroborates prior evi-
dence that Monte Carlo dropout can also offer predictive performance advantages, especially
on external validation, by mitigating risk for overfitting.

Conformal prediction-used in two studies—demonstrated strong performance in estimating
uncertainty. Wieslander et al [19] applied convolutional neural networks to investigate drug
distribution on microscopy images of rat lungs following different doses and routes of medica-
tion administration, finding that conformal prediction explained 99% of the variance in pre-
dicted versus actual error. In another study by Athanasiadis et al [20], conformal prediction
improved audio-visual emotion classification for a semi-supervised generative adversarial net-
work compared with a similar network using the classifier alone.

Two studies used uncertainty estimation to compare modeling methods. Graham et al [21]
used uncertainty measurements to demonstrate that a hierarchical approach to labeling
regions and sub-regions of the brain produced similar predictive performance with greater
certainty compared with a flat labeling approach, at any level of the labeling tree. Alternatively,
to evaluate similarity between functional brain networks, Ktena et al [22] use convolutional
neural network architectures in deriving a novel similarity metric on irregular graphs, demon-
strating improver overall classification. Sedghi et al [23] calculated variance in displacement
for different image classifications of brain MRIs, demonstrating good dice values for intra-sub-
ject pairs with consistent good results when simulating resections on the images, suggesting
utility for challenging clinical scenarios.

Non-imaging applications

The six studies describing non-imaging medical applications were heterogenous. Five of the
studies endeavored to predict and classify biochemical and molecular properties for pharma-
cologic applications, each with somewhat different model architectures (i.e., ensembles of deep
neural networks, convolutional neural networks, and multi-layer perceptrons). Three of these
five studies generated posterior distributions and assessed variance across those distributions
to approximate prediction uncertainty. In one instance, there was almost no gain in predictive
performance; in another by Cortes-Ciriano and Bender, there was strong correlation between
estimated confidence levels and the percentage of confidence intervals that encompassed the
ground truth (R* > 0.99, p<0.001) [24]. This difference in performance may have been attrib-
utable to differences in model features. The less successful model used bit strings to represent
molecular structures; the more successful model used high-granularity bioactivity features,
with 203-5,207 data points per protein. A third study in the molecular property class also used
Monte Carlo dropout techniques and reported relatively low test error values [25]. Two studies
used conformal predictions to estimate uncertainty, one of which used conformal predictions
in predicting active and inactive compound classes, generating single-label predictions for
about 90% of all instances with overall confidence 80% or greater. Best results were demon-
strated for deep neural networks rather than random forest or light gradient boosting machine
models, and conformal prediction offered a controllable error rate and better recall for all
three model types [26]. Cortes-Ciriano and Bender [27] leveraged conformal predictions in
analyzing errors on ensembles of predictions generated by dropout, reporting strong correla-
tion between confidence levels and error rates (R* > 0.99, p<0.001), with results similar to
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those reported in their Deep Confidence work [24]. The remaining non-imaging study pre-
dicted neurodegenerative disease progression using multi-source clinical, imaging, genetic,
and biochemical data, reporting variable predictive performance across different outcomes,
but overall strong performance [28]. Compared with the biochemical prediction models, this
study used a unique method for quantifying uncertainty, by measuring variance across predic-
tions made by an ensemble of possible patient forecasts using a generative network. Collec-
tively, these findings suggest that unique model architectures and methods for estimating
uncertainty can be applied to a variety of non-pixel-based input features, producing occasional
predictive performance advantages and accurate uncertainty estimations.

Discussion

This review found that the uncertainty inherent in deep learning predictions are most com-
monly estimated for medical imaging applications using Monte Carlo dropout methods on
convolutional neural networks. In addition, unique model architectures and uncertainty esti-
mation methods can apply to non-pixel features, simultaneously improving predictive perfor-
mance (presumably by mitigating risk for overfitting, in the case of Monte Carlo Dropout)
while accurately estimating uncertainty. Unsurprisingly, for medical imaging applications,
larger datasets of training images were associated with greater predictive performance
[15,21,29-38]. We could not perform meta-analyses on predictive performance or uncertainty
estimations because performance metrics and methods for quantifying uncertainty were heter-
ogenous, despite relative homogeneity in model architectures—which were primarily based on
convolutional neural networks-and homogeneity in methods for estimating uncertainty-
which were primarily based on Monte Carlo dropout [14]. Uncertainty estimations for non-
medical imaging applications were both sparse and heterogenous. Yet the weight of evidence
suggests that a variety of methods can estimate uncertainty in predictions on non-pixel fea-
tures, offering greater performance and reasonably accurate uncertainty estimations. Confor-
mal prediction demonstrated efficacy in uncertainty estimation as well and is easy to interpret
(e.g., at a confidence level of 80%, at least 80% of the predicted confidence intervals contain the
true value), and applies not only to deep learning but also to other machine learning
approaches such as random forest modeling.

For both imaging and non-imaging applications, uncertainty estimations are poised to aug-
ment clinical application by identifying rare but potentially important misclassifications made
by deep learning models. First, mistrust of machine learning predictions must be overcome.
Model explainability, interpretability, and consistency with logic, scientific evidence, and
domain knowledge are critically important in building trust [7,8]. Yet, even when a model is
easy to understand, generates predictions consistent with medical knowledge, and has 90%
overall accuracy, patients and providers may wonder: is this prediction among the 1 in 10 that
is incorrect? Can the model tell me whether it is certain or uncertain of this particular predic-
tion? To address these questions and build trust, it seems prudent to include model uncer-
tainty estimations in shared decision-making processes. Therefore, we believe that uncertainty
estimations are a critical element in the safe, effective clinical implementation of deep learning
in healthcare. In performing this review, we sought to summarize evidence regarding the effi-
cacy of uncertainty estimation in building trust in deep learning among patients, caregivers,
and clinicians, but we found little evidence thereof. Therefore, we propose uncertainty-aware
deep learning as a novel approach to building trust.

We found no previous systematic or scoping reviews on the same topic, though several
authors have described important components of estimating uncertainty in deep learning pre-
dictions. Common statistical measures of spread (e.g., standard deviation and interquartile
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range) are undefined for single point predictions. Entropy, however, does apply to probability
distributions. Therefore, most uncertainty estimation methods generate probability distribu-
tions around point estimations. Monte Carlo dropout, as originally described by Gal and
Ghahramani, offers an elegant solution [14]. During testing, multiple stochastic predictions
are generated from a given network for which different neurons have dropped out with speci-
fied probability. This dropout rate is calibrated during model development according to train-
ing data sparsity and model complexity. When training, dropping out different sets of neurons
at different steps harbors the additional advantage of mitigating overfitting. When testing,
each forward pass uses a different set of neurons; therefore, the outcome is an ensemble of dif-
ferent network architectures that can be represented as a posterior distribution. Variance
across the distribution of predictions can be analyzed by several methods (e.g., entropy, varia-
tion ratios, standard deviation, mutual information). High variance suggests high uncertainty;
low variance suggests low uncertainty.

This review was limited by heterogeneity in model performance metrics and methods for
quantifying uncertainty. To identify the optimal methods for estimating uncertainty in deep
learning predictions, it would be necessary to perform a meta-analysis or comparative effec-
tiveness analyses. This would be facilitated by achieving consensus regarding core performance
and uncertainty metrics. The field of deep learning uncertainty estimation is maturing rapidly;
it would be advantageous to establish reporting guidelines, as has been done for prediction
modeling, causal inference, and machine learning trials [39-42]. Finally, beyond uncertainty
estimations, it may be useful to quantify how similar an individual patient is to other patients
in the training data, so that users can understand whether uncertainty is attributable to vari-
ability in outcomes relative to similar features in the training data or due to a patient having
outlier features that are not well represented in the training data.

Conclusions

For convolutional neural network predictions on medical images, Monte Carlo dropout meth-
ods accurately estimate uncertainty. For non-medical imaging applications, a paucity of evi-
dence suggests that several uncertainty estimation methods can improve predictive
performance and accurately estimate uncertainty. Using uncertainty estimations to gain the
trust of patients and clinicians is a novel concept that warrants empirical investigation. The
rapid maturation of deep learning uncertainty estimations in medical literature could be facili-
tated by achieving consensus regarding performance and uncertainty metrics and standardiz-
ing reporting guidelines. Once standardized and validated, uncertainty estimates have the
potential to identify rare but important misclassifications made by deep learning models in
clinical settings, augmenting shared decision-making processes toward improved healthcare
delivery.
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