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Abstract

Established guidelines describe minimum requirements for reporting algorithms in health-
care; it is equally important to objectify the characteristics of ideal algorithms that confer
maximum potential benefits to patients, clinicians, and investigators. We propose a frame-
work for ideal algorithms, including 6 desiderata: explainable (convey the relative impor-
tance of features in determining outputs), dynamic (capture temporal changes in physiologic
signals and clinical events), precise (use high-resolution, multimodal data and aptly complex
architecture), autonomous (learn with minimal supervision and execute without human
input), fair (evaluate and mitigate implicit bias and social inequity), and reproducible (vali-
dated externally and prospectively and shared with academic communities). We present an
ideal algorithms checklist and apply it to highly cited algorithms. Strategies and tools such
as the predictive, descriptive, relevant (PDR) framework, the Standard Protocol Items: Rec-
ommendations for Interventional Trials-Artificial Intelligence (SPIRIT-AI) extension, sparse
regression methods, and minimizing concept drift can help healthcare algorithms achieve
these objectives, toward ideal algorithms in healthcare.

Introduction

The breadth and complexity of human disease confer unique challenges in clinical decision-
making. The 10th revision of the International Statistical Classification of Diseases and Related
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Health Problems (ICD) classification system includes approximately 68,000 diagnostic codes.
Patients can have nearly any combination of these diagnoses managed with nearly any combi-
nation of relevant therapies whose efficacy hinges on underlying behavioral, social, and genetic
determinants of health. Patients and clinicians face shared clinical decision-making tasks while
under time constraints and high cognitive loads from high volumes of information [1,2]. The
average person generates more than 1 million gigabytes of healthcare data during their lifetime
or approximately 300 million books; these massive volumes of data far exceed human cognitive
capacities, which allow for approximately 5 to 10 facts per decision [3,4]. Abnormal or unex-
pected data are typically applied to hypothetical-deductive reasoning and heuristic processes
that are highly variable and error prone; when collected data are within normal limits, they are
often discarded to reduce cognitive load [5,6]. Unsurprisingly, clinical decision-making errors
are common and associated with mortality and morbidity [7,8].

By contrast, high-complexity and high-volume data can be parsed by machine learning
applications with relative ease. Published algorithms supporting clinical decisions have become
ubiquitous. Hundreds of retrospective studies are classified as artificial intelligence (AI) clini-
cal trials, but few are methodologically rigorous [9,10]. Experts have described important com-
ponents of algorithm-based and Al-enabled decision support and reporting guidelines; the
minimum information about clinical artificial intelligence modeling (MI-CLAIM) checklist,
Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence
(SPIRIT-AI) extension, and Consolidated Standards of Reporting Trials-Artificial Intelligence
(CONSORT-AI) guidelines facilitate consistent reporting, interpretation, and validation of Al
applications by establishing minimum requirements [11-15]. We believe that it is equally
important to objectify the characteristics of ideal algorithms that confer maximum potential
benefits to patients, clinicians, and investigators. To this end, we propose a framework for
ideal algorithms consisting of 6 desiderata. This framework is supported by a checklist, which
we apply to prominent healthcare algorithms.

The ideal algorithm framework

Ideal algorithms are explainable, dynamic, precise, autonomous, fair, and reproducible, as
illustrated in Fig 1. These desiderata are independent. Therefore, the degree to which an algo-
rithm achieves maximum potential benefits to patients, clinicians, and investigators can be
conceptualized as a continuum ranging from 0 desiderata (least ideal) to all 6 (most ideal).
Desiderata may have unique applications for different algorithms types; our framework is
designed to apply broadly to any algorithm type using objective criteria. A checklist of criteria
for ideal algorithms is provided in Table 1. Each desideratum is evaluated as being met, par-
tially met, not met, or not applicable by 1 or more objective criteria, which are each evaluated
as being met, not met, or not applicable.

Ideal algorithms are explainable

Explainable algorithms convey the relative importance of features in determining outputs.
Informed patients, diligent clinicians, and scrupulous investigators want to know how algo-
rithm predictions are made. We recommend the predictive, descriptive, relevant (PDR) frame-
work for achieving optimal explainability. PDR standardizes discussions regarding machine
learning explanations according to predictive accuracy, descriptive accuracy (i.e., the ability of
explainability mechanisms to describe objectively what the model has learned), and relevancy
as judged by the algorithm’s target human audience for its ability to provide insight into a cho-
sen problem [16].
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Desiderata for Ideal Algorithms in Health Care
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Fig 1. Ideal algorithms in healthcare have 6 desirable characteristics: explainable, dynamic, precise, autonomous, fair, and

reproducible.

https://doi.org/10.1371/journal.pdig.0000006.g001

Algorithm predictive accuracy is commonly described and easily interpreted by most clini-
cians and scientists. Yet, one underappreciated aspect of predictive accuracy can affect the
explainability of model outputs: In some cases, prediction error varies substantially by class.
When applying an algorithm to a patient in a class with disproportionately high prediction
error, one should have less confidence that model outputs are accurate and deemphasize algo-
rithm outputs in the decision-making process. Descriptive accuracy, or objective indicators of
what the model learned (e.g., coefficients in a regression model or weights in a neural net-
work), is less commonly described and is difficult to achieve with complex, “black box” models
such as deep neural networks. By contrast, the odds ratios produced by simple logistic regres-
sion are relatively easy to interpret, allowing clinicians to understand and mentally simulate
the model’s process for generating predictions. Despite the greater descriptive accuracy of sim-
ple models, complex models are often needed to solve complex, nonlinear problems for which
simple models suffer from poor predictive accuracy. Therefore, algorithm explainability meth-
ods have focused on complex machine and deep learning models. We note, though, recent
studies showing no great superiority of deep learning over regression in this field of classifying
illness severity of individual patients using readily available clinical data [15,17]. Descriptive
accuracy can be improved by choosing a simple, highly explainable model or performing post
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Table 1. Checklist for ideal algorithms in healthcare.

Desiderata Criteria Yes | Location | No | N/A
Explainable | Feature importance: conveys the relative importance of features in determining algorithm outputs
a
ges allvP Descriptive accuracy: describes what the algorithm has learned (e.g., weights in a neural network)
artia
No¢ Y Simulatability: clinicians can understand and mentally simulate the model’s process for generating predictions
N/A? Relevance: describes relevancy as judged by the algorithm’s target human audience
Dynamic Temporality: captures temporal changes in physiologic signals and clinical events
a
Yes . | Continuous monitoring: performance is reassessed at several time points, including the point at which performance is
Partially expected to plateau
No*
N/A?
Precise Data frequency: rate of data collection matches the rate of physiologic changes
a
I\;es allv® Complexity: algorithm complexity matches the complexity of the prediction or classification task
artially
No*®
N/A

Autonomous | Efficiency: the algorithm executes without the need for time-consuming, manual data entry by the end user (i.e., patient,
Yes® provider, or investigator)

Partially®
No*®
N/AY
Fair Generalizability: algorithm is developed and validated across diverse patient demographics and practice settings
YesaA , | Selectivity: excludes features that lack pathophysiologic or linguistic association with outcomes, but may introduce bias
I}zla;ct fally Objectivity: includes variables that are minimally influenced by clinician judgments (e.g., vital signs)
N/A¢
Reproducible | Generalizability: validated externally, prospectively
Yesa‘ , | Collaboration: algorithm is shared with the research community
o Bl Compliance: fulfills SPIRIT-AT extension guidelines (if trial) and fulfills CONSORT-AI guidelines
N/AY

*Overall adjudication is “Yes” when all criteria are either met or not applicable.

®Overall adjudication is “Partially” when some but not all criteria are either met or not applicable.

“Overall adjudication is “No” when no criteria are met.

dOverall adjudication is “N/A” when all criteria are not applicable.

CONSORT-AL Consolidated Standards of Reporting Trials-Artificial Intelligence; N/A, not applicable; SPIRIT-AI, Standard Protocol Items: Recommendations for
Interventional Trials-Artificial Intelligence.

https://doi.org/10.1371/journal.pdig.0000006.t001

hoc analyses on a trained, complex model to understand what relationships the model has
learned [18]. Finally, the PDR framework holds that relevancy is context specific, i.e., the use-
fulness of model explainability mechanisms depends on criteria that are unique to different
people groups. Therefore, relevancy should be graded by the intended human audience and
their intended use of predictions generated by the model.

Examination of relevancy can resolve trade-offs between predictive and descriptive accu-
racy [16]. Consider an algorithm that is predicting the risk for complications after surgery. To
target researchers who seek the greatest predictive accuracy, explainability mechanisms could
be used to optimize feature engineering. To target patients who are planning to undergo elec-
tive surgery, explainability mechanisms could be used to identify the most important modifi-
able risk factors for complications (i.e., modifiable predictors of wound infection could
include poor blood glucose control and ongoing tobacco use). Notably, the PDR framework
(intentionally) does not address causal inference or methods for determining the degree to
which altering one variable changes another. In its purest form, explainability describes gen-
eral relationships and does not distinguish between causal and noncausal effects. Therefore,
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PDR is a simple and effective framework for evaluating and discussing the full range of user-
specific machine learning interpretations without confusing explainability with causality.

Ideal algorithms are dynamic

Dynamic algorithms capture temporal changes in physiologic signals and clinical events via time
series or sequence modeling. When algorithms are intended to improve clinical trial design, statis-
tical adjustment, or patient enrollment strategies, static predictions at a single time point are ade-
quate. When algorithms are intended to augment real-time, clinical decision-making as
conditions evolve, the algorithm should make dynamic predictions using new data as it become
available. Dynamic algorithm predictions are useful because continuous manual recalculations
are burdensome for individual patients, caregivers, and clinicians, and the cognitive load imposed
by serial reassessments of continuously accumulating data is substantial. Potentially valuable
information is easily missed and underutilized for risk stratification and clinical decision-making,
as it often requires computational capacity beyond human ability [1,2]. Instead, humans tend to
rely on heuristics, or cognitive shortcuts, which can lead to bias, error, and preventable harm
[6,19]. By contrast, large volume electronic health record (EHR) data are well suited to dynamic
predictive analytics that capture trends over time; physiologic time series data have been used to
predict mortality and specific conditions such as acute kidney injury [20-23].

Algorithm dynamicity is especially important when modeling conditions that change rap-
idly. For instance, intracranial and cerebral perfusion pressure can vacillate substantially after
traumatic brain injury. Delayed recognition of rapid changes in intracranial and cerebral per-
fusion pressure can worsen outcomes because brain ischemia is exquisitely time sensitive.
Classical traumatic brain injury prediction models only used static variables present on admis-
sion [24-26]. These models may be useful for research purposes, early prognostication, and
early resource use decisions, but they do not perform the critically important function of
updating predictions as new data become available. For example, an algorithm using 5-minute
median values of intracranial pressure, mean arterial pressure, cerebral perfusion pressure,
and Glasgow coma scale scores predicts 30-day mortality with approximately 84% discrimina-
tion 48 hours after admission [25]. Using 5-minute median values rather than continuous data
streams may be favorable for implementation in clinical settings, where data collection is fre-
quently interrupted.

Dynamic algorithms face challenges in evaluating performance over time and explainabil-
ity. In some cases, algorithms learn to predict which action a clinician will take next, rather
than physiologic events [27,28]. In addition, there are no standards for evaluating model per-
formance when predictions are made in a continuous or nearly continuous fashion. We sug-
gest evaluating standard model performance metrics at several predetermined, discrete time
points, including the point at which enough information has become available that calibration
is expected to plateau, achieving continuous monitoring of predictive performance. To opti-
mize explainability for dynamic algorithms, attention mechanisms can reveal periods during
which certain features make significant contributions to algorithm outputs [20,29]. For exam-
ple, the DeepSOFA algorithm uses time series measurements of the same input variables as the
sequential organ failure assessment (SOFA) score, passing those values through a recurrent
neural network with gated return and self-attention units. In 2 independent datasets of inten-
sive care unit (ICU) patients, DeepSOFA predicted in-hospital mortality with accuracy greater
than that of the traditional SOFA score [20]. Model explainability was promoted by generating
heatmaps that illustrate each variable’s relative contributions at each time step to the model’s
ultimate mortality prediction. Using time series measurements in dynamic algorithms relates
to the next desideratum of ideal algorithms: precision.
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Ideal algorithms are precise

Precise algorithms use data collection rates that are proportional to rates of physiologic
changes and machine learning techniques whose complexity matches the target outcome. Pre-
cision is important because human diseases are complex and nonlinear [30,31]. Simple, addi-
tive models often demonstrate poor predictive performance [32-34]. Three days after
colorectal surgery, a serum C-reactive protein level less than 172 mg/L has a 97% negative pre-
dictive value for the occurrence of anastomotic leak [34]. This finding may facilitate early dis-
charge home after major surgery. However, high C-reactive protein levels are nonspecific: As a
general marker of systemic inflammation, one would expect that C-reactive protein has a poor
positive predictive value, and it does (21%). To perform a complex task, such as differentiating
between an anastomotic leak and other pro-inflammatory postoperative complications, it is
potentially advantageous to incorporate high-resolution, multimodal patient data and machine
learning modeling [35-39].

For a given algorithm, the ideal rate of data collection should exceed by several fold the rate
of salient physiologic changes, similar to the manner in which Harry Nyquist noted that to rep-
resent a signal with fidelity, sampling should occur at twice the highest frequency of the signal
[40]. In many disease processes, this will require high-resolution data that are sampled at a fre-
quency that allows for early diagnosis, prevention, or treatment by capturing subtle but clini-
cally significant physiologic changes. Generally, longer intervals are more likely to miss critical
physiologic changes that occur between measurements [41-44]. For hospitalized patients, high-
frequency assessments are associated with greater accuracy in predicting decompensation. Sub-
tle signs of physiologic instability often occur hours before organ failure and cardiac arrest, rep-
resenting opportunities for prevention [45,46]. This is discordant with standard practices on
hospital wards, where vital signs are typically measured every 4 hours. Unsurprisingly, continu-
ous vital sign monitoring is associated with fewer rescue events, respiratory decompensation
events, unplanned ICU transfers, and ICU days, as well as shorter hospital length of stay
[47,48]. Yet, continuous monitoring can be expensive, can generate distracting false-positive
alarms, might impair patient comfort and mobility, and is not supported by a great deal of level
1 evidence, apart from heart rate characteristics monitoring for neonatal sepsis [49-54]. There-
fore, continuous monitoring is often reserved for high-risk patients that are most likely to mani-
fest time-sensitive clinically significant physiologic changes, for whom continuous data have a
proven ability to stand alone [55-60] and to add information to EHR data elements [36,59,61-
64] in predictive analytics. In designing algorithms, we suggest resampling data at intervals that
align with the expected velocity with which changes in physiologic signals lead to clinically sig-
nificant events, with sampling frequency equal to or greater than the Nyquist rate [40].

In many healthcare settings, highly granular data are routinely recorded from multiple
sources for clinical purposes. For example, clinical surveillance of critically ill patients often
includes not only vital sign and laboratory measurements but also assessments of mental sta-
tus, pain, respiratory mechanics, and mobility. Historically, these assessments are performed
and recorded by hospital staff in a subjective fashion. With improvements in sensor technolo-
gies and machine learning applications in healthcare, it has become feasible to automatically
capture and analyze data from ICU patients and environments tracked by accelerometers,
light sensors, sound sensors, and high-resolution cameras [65]. Wearable sensors can also cap-
ture meaningful, multimodal physiologic data from community-dwelling participants. Nota-
bly, high-resolution, multimodal data often suffer from high dimensionality, rendering simple
algorithms inaccurate.

Conversely, when algorithms have too many inputs relative to their application, generaliz-
ability is compromised due to overfitting. The optimal approach balances predictive accuracy
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and input complexity by using the fewest variables necessary to maintain high performance.
This can be accomplished with sparse regression methods [66]. Generating parsimonious
models, although harboring the potential to compromise predictive performance, has the addi-
tional advantage of improving the descriptive accuracy for input features, as described above
in the “Ideal algorithms are explainable” section.

Ideal algorithms are autonomous

Autonomous algorithms execute with minimal human input. Beyond the training and testing
autonomy shared by all unsupervised machine learning algorithms, autonomous algorithms in
healthcare can be implemented with minimal input by users. Manual data entry by the end
user imposes time constraints that hinder the clinical application of nonautonomous decision
support algorithms [67]. For dynamic models that capture temporal changes by frequently
resampling high-resolution data, the cost of manual data entry is even greater. Fortunately, the
widespread availability of high-volume EHR data and open-source machine learning code pro-
motes algorithm autonomy [68,69].

Autonomous algorithms have substantial potential to augment decision-making for clinical
scenarios in which many input features have complex associations with outcomes. Predicting
risk for complications after surgery is one such instance. Accurate predictions of postoperative
complications can influence patients’ decisions whether to undergo surgery, identify risk fac-
tors that are amenable to risk reduction strategies, and inform decisions regarding appropriate
postoperative triage destination and resource use. Regrettably, clinicians demonstrate variable
performance in predicting risk for postoperative complications, and surgeons frequently com-
mit judgment errors that confer preventable harm [70-72]. Several accurate predictive analytic
decision support algorithms have been developed and validated to augment clinical risk pre-
dictions, but most are hindered by time-consuming manual data entry requirements and lack
of integration with clinical workflow [67,73-77]. Yet, autonomous prediction of postoperative
complications is possible. One machine learning platform autonomously imports EHR input
data to predict 8 postoperative complications with area under the receiver operating character-
istic curve (AUC) 0.82 to 0.94, exhibiting accuracy greater than that of physicians [69,70].

Potential advantages of autonomy also apply to algorithm training. Supervised machine
learning algorithms use training data that are labeled by humans and then classifies or makes
predictions on new, unseen data; in unsupervised learning, algorithms generate their own
labels according to the structure and distribution of input data, discovering patterns and asso-
ciations. Deep learning models avoid time-intensive, handcrafted feature engineering by
autonomously learning feature representations from raw data. In addition to efficiency and
pragmatism, autonomous learning offers performance advantages, as has been demonstrated
in the gaming industry. “Go” has 32,490 possible first moves, precluding an exhaustive search
of all possible moves for each board configuration. Instead, a combination of deep and rein-
forcement learning can predict outcomes following sequences of actions and efficiently iden-
tify optimal moves. This approach was initially applied in learning 30 million positions and
instructions from a human Go expert, allowing the algorithm to build a decision policy net-
work. The program then played against itself, attempting to maximize the chance of beating
previous versions of its own decision-making policy. Next, a value network predicted the final
outcome of a game based on any board configuration. Finally, the policy and value networks
were combined, and an optimized search algorithm was used to select the next move for any
board configuration. This approach defeated the European Go champion 5 games to 0 [78].
Subsequently, a completely autonomous model was trained exclusively on self-play. This
model defeated the human input model 100 games to 0 [79]. For healthcare applications, it
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remains plausible that performance is greatest for completely autonomous learning
approaches for instances in which high-quality training data exist. Unfortunately, most health-
care data sources are compromised by a lack of granularity, generalizability, volume, or a com-
bination thereof.

Ideal algorithms are fair

Fair algorithms evaluate and mitigate implicit bias and social inequity. In theory, algorithms
use mathematical formulas and functions to produce objective outputs, offering a bulwark
against subjectivity with resultant bias and inequity. In practice, many algorithms are trained
on biased source data and produce biased outputs [80]. In healthcare, single-center source
data may disproportionately represent certain demographics. When these data are used for
algorithm training, that algorithm may perform poorly when applied to a patient that is
sparsely represented in the source data. Poor performance may be especially harmful when it
has directionality, i.e., the algorithm consistently overestimates or underestimates risk in a
manner that affects decision-making. For example, if a decision support tool incorporates the
observation that Black patients have increased risk for mortality after coronary artery bypass,
then model outputs could decrease the likelihood that Black patients will garner the benefits of
an indicated procedure [81,82]. To determine whether a demographic or socioeconomic factor
should be included in a prediction model, it is necessary to assess whether that factor has a
plausible or proven pathophysiologic association with the outcome of interest. To do so, we
recommend machine learning explainability mechanisms, causal inference, and clinical inter-
pretation of biologic plausibility. If this analysis reveals no evidence of a pathophysiologic asso-
ciation, then it is likely that the demographic or socioeconomic factor is an indicator of
suboptimal access to care, referral patterns, or systemic bias and should be excluded from the
algorithm.

Algorithm bias can be evaluated by assessing calibration across demographic and socioeco-
nomic variables. If an observed outcome matches algorithm-predicted probabilities for men
but not women, then the algorithm exhibits bias against women. This method was used to
evaluate racial bias in an algorithm that predicts healthcare needs [83]. The authors compared
observed versus predicted healthcare needs for primary care patients who self-identified as
Black versus White. When comparing Black and White patients with similar predicted risk,
Black patients had greater illness severity. The algorithm was designed to identify patients at or
above the 97th percentile of risk and allocate them to receive extra care. At the 97th percentile,
Black patients had 4.8 chronic illnesses, and White patients had 3.8 chronic illnesses
(p < 0.001). The likely mechanism for this discrepancy was the use of healthcare expenditures
as a proxy for health needs. If less money is spent on Black patients than on White patients
who have the same illness severity, then the algorithm will errantly learn that Black patients
have lesser health needs than White patients who have the same illness severity. Racial discrep-
ancies were eliminated by modifying the algorithm so that expenditures were not a proxy for
health needs.

Several other methods for promoting algorithm fairness have been described [4]. Models
should be reevaluated over time to determine whether temporal changes in study populations,
healthcare systems, and medical practices have affected relationships between features and
outcomes. This phenomenon, concept drift, undermines algorithm performance by several
mechanisms, including algorithm bias. During preprocessing, individual patient data can be
mapped to probability distributions that obfuscates information about membership in a pro-
tected subgroup (e.g., race, ethnicity, sex, gender, etc.) while retaining as much other informa-
tion about the patient as possible [84]. During postprocessing, the open-source What-If Tool
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allows interactive model testing under user-controlled hypothetical circumstances, which can
quantify the effects of different demographic and socioeconomic factors on model outputs
[85]. In addition, the What-If Tool can demonstrate whether model performance varies across
subgroups, which may be useful in determining whether the model should be applied for a
patient that is poorly represented in model training data.

Ideal algorithms are reproducible

Reproducible algorithms are validated both externally and prospectively and are shared with
academic communities. In a survey distributed by Nature, greater than 70% of all researchers
had attempted and failed to reproduce another scientist’s experiments, and 90% reported that
science is facing a reproducibility crisis [86]. Reproducibility, a critically important element of
any scientific inquiry, is especially important for machine learning algorithms because it estab-
lishes trustworthiness and credibility. Prior to successful clinical implementation, “black box”
algorithms must earn the trust of patients, clinicians, and investigators. Even when explainabil-
ity is suboptimal, people may be willing to use an algorithm that is well validated and freely
available to academicians. In addition, a reproducible algorithm can be tuned and optimized
over time, offering a performance advantage.

There are several major barriers to algorithm reproducibility. Prominent EHR platforms
are not designed to accommodate algorithm scalability across institutions and platforms. This
produces an “analytic bottleneck” in which investigators must process, harmonize, and vali-
date massive amounts of data within institutional silos. Many researchers do not possess the
necessary resources to work at such a large computational scale, much less keep track of which
data were used for different studies and evaluate the impact of data reuse on the statistical bias.
In addition, there are limited cloud resources for sharing multiple, large, healthcare data repos-
itories among research groups that have their own algorithm pipelines and tools. Given these
obstacles, many algorithms are never shared and validated externally. To ensure that algo-
rithms are suitable for external validation, results from interventions using AI algorithms
should be reported in a standardized fashion, as proposed by the SPIRIT-AI extension, which
was developed in parallel with CONSORT-AI guidelines [11,12]. Compliance with these pro-
tocols will promote the reproducibility of findings. Yet, most reports involving algorithms in
healthcare do not involve implementation in a clinical trial. Noninterventional studies that
involve prediction models should comply with the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement [87,88]. Finally,
generalizability can be enhanced by using input features that are collected routinely in clinical
care, excluding features whose collection requires specialized measurement tools that are
unavailable in most settings.

Federated learning offers opportunities to ensure the external validity, generalizability, and
reproducibility of algorithms via collaborative machine learning without data sharing [89-92].
When sensitive patient data are shared between institutions, there is risk for unintended data
disclosures and piracy by adversarial third parties. In federated learning, local models are
trained separately and consolidated into a global model [89-92]. As local models train, they
send local updates in the form of gradients or coefficients for incorporation in the global
model. Even when these relatively secure methods are applied, privacy leakage can occur when
adversaries infer whether a given attribute belongs to the model’s training data or infer class
representatives from collaborative models [93-97]. To mitigate privacy leakage in federated
learning, the risks for privacy-sensitive information and privacy leakage can be quantified for
each data record, with subsequent obfuscation of high-risk records.
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Table 2. Highly cited AI algorithms graded by their interpretability, dynamicity, precision, autonomy, fairness, and reproducibility.

Primary author | Algorithm application

Explainable | Dynamic | Precise | Autonomous | Fair | Reproducible

Gulshan Detecting diabetic retinopathy No N/A Yes Yes Yes No
Iorio Predicting tumor sensitivity to pharmacotherapies Yes N/A Yes No Yes No
Kamnitsas Brain lesion segmentation Yes N/A Yes Yes Yes Yes
Ott Predicting human lymphocyte antigen binding No N/A Yes Yes Yes Yes
Savova Extracting information from clinical free text in EHRs No N/A Yes Yes No Yes
Tajbakhsh Medical image classification, detection, and segmentation No N/A Yes Yes Yes No
Wolfe Identifying and assessing severity of fibromyalgia Yes N/A Yes No No No
Xiong Predicting splicing regulation for mRNA sequences Yes N/A Yes Yes No No

Al artificial intelligence; EHR, electronic health record; N/A, not applicable (i.e., temporal changes and continuous monitoring were not applicable to these algorithms

and their intended use).

https://doi.org/10.1371/journal.pdig.0000006.t002

Application of the ideal algorithms framework to prominent
algorithms in healthcare

To identify prominent examples of algorithms in healthcare, we reviewed the 20 most highly
cited articles in medical Al as identified in a bibliometric analysis by Nadri and colleagues
[98]. Among these 20 articles, 8 described an algorithm. Table 2 applies the ideal algorithm
framework to these 8 algorithms by the majority vote of 3 independent raters. Fleiss kappa sta-
tistic was 0.708, suggesting substantial interrater agreement [99,100]. All 8 algorithms met cri-
teria for precision, 6 of the algorithms were autonomous, 5 were fair, 4 were explainable, and 3
were reproducible. Dynamicity was not applicable to any of the algorithms. These findings
suggest opportunities to enhance the autonomy, fairness, explainability, and reproducibility of
algorithms in healthcare.

Conclusions

While the breadth and complexity of human disease compromise the efficacy of hypothetical-
deductive reasoning and heuristic decision-making, high-complexity and high-volume data
can be parsed by machine learning applications with relative ease. Established guidelines
describe minimum requirements for reporting algorithm healthcare applications; it is equally
important to describe the maximum potential of ideal algorithms. We propose that ideal algo-
rithms have 6 desiderata that are represented in a checklist presented herein: explainable (con-
vey the relative importance of features in determining outputs), dynamic (capture temporal
changes in physiologic signals and clinical events), precise (use high-resolution, multimodal
data and aptly complex architecture), autonomous (learn with minimal supervision and exe-
cute without human input), fair (evaluate and mitigate implicit bias and social inequity), and
reproducible (are validated externally and prospectively and shared with academic communi-
ties). By achieving these objectives, healthcare algorithms confer maximum potential benefits
to patients, clinicians, and investigators.
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