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Patients in critical care settings often require continuous and multifaceted monitoring.
However, current clinical monitoring practices fail to capture important functional and
behavioral indices such as mobility or agitation. Recent advances in non-invasive
sensing technology, high throughput computing, and deep learning techniques
are expected to transform the existing patient monitoring paradigm by enabling
and streamlining granular and continuous monitoring of these crucial critical care
measures. In this review, we highlight current approaches to pervasive sensing
in critical care and identify limitations, future challenges, and opportunities in this
emerging field.
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CURRENT CRITICAL MONITORING PARADIGM

Critically ill patients in the intensive care unit (ICU) require constant monitoring. Currently,
“continuous” monitoring of ICU patients is limited to automated vital sign measurements
such as heart rate, blood pressure, body temperature, oxygen saturation, and respiratory rate.
Other monitoring activities are limited by nurse availability for observing and documenting
events, e.g., documenting falls or self-extubation events or detecting any exacerbation in
important clinical indices such as mobility, agitation, pain, and consciousness. At present,
assessment of these indices heavily relies on manual and repetitive examinations by nurses,
leading to increased work pressure and the potential for burnout (1, 2). These manual indices
also suffer from human error in data entry, observer subjectivity, and limited measurement
granularity (3-5).

A more granular and continuous assessment of such critical care indices would enable a more
comprehensive view of patient health. For example, granular functional status and behavioral
assessment could lead to timely and personalized interventions based on data-driven guidelines.
The need for continuous and automated monitoring of ICU patients has led researchers to
incorporate non-traditional methodologies such as computer vision, wearable sensing technology,
and various analytics algorithms (6). A comprehensive picture of the current state of the research
in this domain will help outline the next steps and point out some of the questions that need to be
answered. This work evaluates the feasibility of such monitoring approaches that are amenable to
pervasive sensing in the ICU.

In the following sections, we detail current applications of pervasive sensing in ICU patient
care settings. We then outline the knowledge gap in the literature, discuss current limitations, and
highlight potential avenues for future research in augmenting traditional intensive patient care with
pervasive sensing technology.
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RECENT ADVANCES IN CRITICAL CARE
MONITORING

Currently, monitoring ICU patients functional status and
behavioral aspects is limited in both granularity and information-
richness. Pervasive sensing of the patient and their surrounding
environment can provide a more comprehensive, continuous
assessment of patient status. It can aid in quantifying patient
health trajectories during the ICU stay. Two of the main avenues
of research for pervasive sensing in the ICU involve using
wearable accelerometers or computer vision devices, such as
thermal or depth cameras, for monitoring the status of the patient
and their environment. Wearable accelerometer devices, often
resembling wristwatches, are lightweight, non-invasive, and easy
to use. They allow for various computational analyses, do not
pose any safety or comfort concerns for the patient, and do not
impede the care procedures in the ICU. Wearable sensors have
been previously used for quantifying human mobility and activity
monitoring in various populations, and numerous analytic
approaches showcase their potential uses for ICU patients (7-
9). Applications of wearable accelerometers in the critical care
setting are wide-ranging, including but not limited to physical
activity (10-13) and energy expenditure monitoring (14), sleep
detection (8, 15), agitation or sedation monitoring (16, 17),
physiological signal monitoring (18, 19), fall detection (20, 21),
delirium detection and subtyping (9, 22), sepsis subtyping (12),
and frailty determination (23).

Another potential avenue for pervasive ICU monitoring
involves the application of computer vision techniques.
Computer vision provides a means for non-contact sensing of
the patient and their surroundings in the ICU, providing rich
information on several physical functions and behavioral aspects.
Possible applications of computer vision in the critical care
setting fall into two categories: (a) healthcare team observation,
such as measuring nursing workload (24) or monitoring hand
hygiene (25), and (b) patient monitoring. This article focuses on
the latter—computer vision applications for assessing patients
and their environment. Previous research has demonstrated
the potential applications of computer vision for fall detection
(26, 27), sleep pose detection (28), agitation detection (29),
physical activity monitoring (30, 31), head pose detection (22),
physiological signal monitoring (32), and visitation detection
(22, 33) in hospital settings (Figure 1).

PHYSICAL FUNCTION MONITORING

ICU patients spend most of their time lying in bed, with
significantly less time sitting in a chair, standing, or walking (22,
34). Patients’ limited physical activity in the ICU has been linked
with disruptions in circadian rhythm, a higher risk of delirium,
and adverse outcomes in terms of cognitive and functional status
at the time of hospital discharge and in the long term. Efforts
at introducing physical therapy and early mobilization improve
the patients’ mobility and clinical outcomes such as delirium
days, discharge disposition, and the risk of readmission or death
(35-38). However, currently, there is a need for an objective,

continuous, and accurate evaluation method to quantify the
effect of rehabilitation practices. Additionally, such quantitative
measures could be used to evaluate the association between a
patient’s activity levels and their outcomes during and after their
ICU stay.

Existing clinical routine measurements of patients
mobility and physical status consist of limited standardized
observational scores such as the ICU Mobility Scale (IMS)
(39, 40). These observational evaluations aim to quantify
patient mobility (40), but they still lack granularity and
objectivity. Additionally, they provide limited information about
mobility patterns’ complex and dynamic nature throughout the
ICU stay.

Computer vision and wearable accelerometer devices can
provide more granular, objective, and continuous information
on functional activity. Both approaches have been used to
study physical activity in clinical settings to examine the
association with health outcomes such as delirium or sepsis.
However, there is limited research using computer vision or
accelerometers in the critical care domain (Table 1), despite
the high prevalence of sepsis or delirium in ICU patients.
For example, delirium prevalence in specialized ICUs can be
as high as 87%, and sepsis prevalence can be as high as
39% (46, 47).

Physical Activity

Recent efforts in the field of computer vision have applied deep
learning techniques to build models for automated physical
activity and posture recognition. Different camera types have
been used to detect patient mobility, including Red-Green-Blue
(RGB) cameras, depth cameras, and cameras that capture both
color and depth images, such as the Microsoft Kinect device.
Multi-view settings using multiple cameras installed at different
positions also have been used for capturing a more encompassing
view of the patient room (28, 31, 41, 42).

Generally, automated detection of patient mobility using
computer vision first requires patient identification in the scene.
After patient recognition, manually annotated datasets are used
to train the model to classify patient pose and mobility. Such
systems have been able to accurately classify patients’ high-level
activities such as nothing in bed (doing nothing, lying in bed), in-
bed activity, out-of-bed activity, and walking (30), and postures
such as lying in bed, sitting on the bed, sitting on the chair, and
standing (22) in the ICU. Depth camera-based systems have
been able to classify four provider activities: “moving the patient
into and out of bed” and “moving the patient into and out of
a chair” without incorporating the challenging step of patient
recognition (48, 49).

While computer vision techniques can identify a patient’s
posture, accelerometer devices can quantify the movement
intensity. Wearable devices allow for convenient data collection
and analysis since they provide continuous and patient-specific
data streams. Wearable accelerometers have been used for
examining physical activity patterns in different cohorts in
various ICU settings, including delirium patients, sepsis patients,
and patients with unilaterally motor impairment (10-13, 43, 50).
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FIGURE 1 | Applications of pervasive sensing for monitoring ICU patients, iconfinder.com.

TABLE 1 | Peer-reviewed publications using wearable devices and computer
vision in monitoring patients.

Task Data modality References

Physical activity Vision (10-12, 22, 28,
Wearables 30, 31, 41-43)

Energy Wearables (14)

expenditure

Fall risk Vision (20, 21, 26, 27,
Accelerometer 44, 45)

Frailty Accelerometer (23)

Energy Expenditure

Building on activity intensity detection, wearable accelerometer
devices have been used for determining energy expenditure.
Previously energy expenditure estimation of accelerometer
devices has been validated in the healthy adult population
(14). However, it has been shown that energy expenditure
is overestimated in ICU patients by comparing mechanical
ventilation with indirect calorimetry. The current methodology
of estimation of energy expenditure relies on the detection of
physical activity. It does not incorporate physiological conditions
such as fever with shivering that may alter the energy expenditure
(51). Accurate estimation of energy expenditure in ICU patients
enables optimizing enteral feeding details to prevent overfeeding

and underfeeding, both of which increase the risk of infection and
prolonged weaning from mechanical ventilation (52).

Frailty

Accelerometer devices have also been used to detect frailty
(23), a geriatric syndrome defined as “a clinically recognizable
state of increased vulnerability, resulting from the aging-
associated decline in reserve and function across multiple
physiologic systems such that the ability to cope with every day
or acute stressors is compromised” (53). There is increasing
evidence of frailty being an indicator for decreased reserve and
increased vulnerability in critical care patients (54, 55). Frailty
has been shown to increase the risk of both adverse events
such as death and discharge to skilled nursing homes and
prolonged hospitalization and loss of independence after hospital
discharge (56, 57).

Falls

ICU patients experience decreased functional status and more
muscle atrophy (58) exacerbated by minimal physical activity.
They also suffer from impaired consciousness and attention
(59), further compounded by disrupted circadian rhythm
and sedation. While previous research has demonstrated the
importance of physical activity in ICU patients, the increased risk
of falls is brought on by confusion and agitation (60). Computer
vision can detect falls in hospital settings (26, 27, 44, 45), as well
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as accelerometer-based monitoring systems (20, 21). Still, these
approaches have not been adequately investigated in the ICU.
Despite the importance of accurate assessment and
monitoring of physical activity, energy expenditure, fall
risk, and frailty in ICU patients, few studies have investigated the
use of pervasive sensing to facilitate assessment and monitoring.

BEHAVIORAL MONITORING

Facial Expressions

Behavioral indices such as pain facial expressions are different
from physical activity indices. They do not elucidate gross
variations in patients and thus could elude the nurses
observation. Facial expressions can also be influenced by
sedative-hypnotics and analgesics commonly used in the ICU.
While there is no validated facial expressions score in critical
care, a few preliminary studies have examined anxiety-related
facial expressions. Anxiety is highly prevalent in critical care
patients (61, 62). However, it is rarely screened in routine care
settings in the ICU (62). Computer vision approaches have been
used for anxiety detection (63, 64), focusing on features such as
head movement, mouth, and eye movement, and heart activity as
indicators of anxiety. Patient head pose angle and variability have
also been studied using computer vision and associated with pain
and agitation indicators (22, 65-67).

Pain
Continuous and objective monitoring of patient pain in the
ICU, including for non-communicative patient populations, can
pave the way for real-time adjustments to analgesics for optimal
patient care, patient experience, and better health outcomes.
While wearable accelerometers have previously been used for
studying pain (68), no study has investigated the relationship
between pain and physical activity in the ICU settings,
leaving unanswered the question of the complicated relationship
between mobility, mental agitation, stress, and pain. The issue
of pain in the ICU has many aspects. In addition to the
potential effect of pain on a patient’s physical activity, facial
expressions and physiological signals may also be affected by
pain. Previous work has investigated the feasibility of pain
detection using vital signs (69, 70). Although this approach uses
data routinely collected in the ICU, it has not shown strong
specificity for pain detection. Formalizing facial expression of
pain using facial action units (71) and advances in deep learning
and computational power available have made it more plausible
to move toward automated detection of facial expression of pain
in the ICU. Facial expressions are assessed manually using several
behavioral pain scales such as Non-verbal Pain Scale (NVP),
Behavioral Pain Scale (BPS), and Critical Care Pain Observation
Tool (CPOT), particularly for non-communicative patients (72—
74). Researchers have used deep learning approaches to detect
facial expressions of pain and to recognize individual facial action
units associated with pain. Still, robust automated detection of
pain in the ICU scene based on facial information requires more
research and validation (75-79).

Agitation/Sedation

Agitation is prevalent in the ICU and is a large factor
in conditions such as delirium (80). Current methods for
assessing delirium rely on transient rather than continuous
assessment, which is an important limitation given the waxing
and waning characteristics which help define delirium. Over-
sedation has been shown to lengthen ICU duration and put
a patient at higher risk for delirium (81). In comparison,
under-sedation has been linked with increased agitation and
a higher risk of self-extubation (82, 83). Optimizing sedation
to better control patients’ agitation may lower the patients
risk of removing endotracheal tubes (84). Similar to pain,
accurate detection of a patient’s agitation and sedation levels
will improve the administration of sedative interventions to
optimize clinical decisions. Previous research has used sensors
for monitoring agitation in critical care settings. Agitation
detection methods have shown strong performance using
accelerometers (16, 17, 85), image-based approaches (29),
and pupillometric video devices (86). Using wearable devices
to study anxiety, researchers used Google Glass to discover
that heart rate, but not spontaneous blink rate, changes in
anxious patients (87).

Sleep Detection

Previous studies have shown generally poor sleep quality in
critical care settings (88). Sleep disruption in the ICU has been
linked to various factors, including but not limited to the type
and severity of the underlying medical condition, round the clock
health care activities, enteral feeding, medication side effects, lack
of natural light exposure and noise levels, and general disruptions
to patients’ circadian rhythm (88-90).

Sleep disturbance in ICU patients has been studied to
determine its effect on patient outcomes and recovery (91) and
has been shown to increase the risk of a longer stay in the
ICU, worse discharge outcomes, impaired defense mechanism,
and sleep disturbances that persist or develop after discharge
(90). Determining a patients sleep quality during their stay
in the ICU allows for evaluating the effectiveness of the
administered sleep hygiene interventions. Polysomnography,
as the gold standard for studying sleep, has previously been
investigated in ICU patients. However, polysomnography data
require interpretation and might not be feasible for continuous
data collection throughout the patient’s stay in the ICU since
it typically includes several EEG leads, electro-oculography, and
chin electromyography (92, 93).

Accelerometer devices have been evaluated in quantifying
sleep in healthy populations (15). However, previous studies
have shown that they overestimate sleep in the ICU settings,
possibly because the implemented sleep detection algorithms
rely on a lack of physical activity in determining sleep events.
ICU patients typically have low activity throughout the day,
resulting in fractured sleep and shallower sleep stages (8). Other
researchers have used computer vision to detect sleep pose, but
these studies have been investigated based on data from healthy
adults, limiting the generalizability of their performance to the
ICU setting (28, 94).
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ENVIRONMENTAL MONITORING

ICU patients spend most of their ICU stay in one room,
leaving the room only for medical procedures. Information about
the ICU room environment can enhance our understanding
of possible contributing factors to patients’ recovery speed.
Wearable accelerometer devices are more suited for monitoring
patients’ physical activity, but they do not capture any
information about patients’ surroundings. Computer vision
techniques offer additional opportunities for capturing and
studying the effects of environmental factors on patients
recovery trajectories.

Visitation Detection

To encourage sleep hygiene, hospitals generally implement
official guidelines for regulating the presence of visitors in the
ICU. However, visitations and interactions with the environment
may be beneficial in improving patients’ experience by reducing
their anxiety, leading to a lowered risk of delirium and an overall
more positive experience during their ICU stay (95, 96). Accurate
detection of the number of visitors and healthcare personnel
in the room and environmental factors such as a room’s noise
and light at all hours allows for quantifying the effects of such
disruptions on patients’ sleep quality and circadian rhythm
integrity. Computer vision has been used to determine the
number of people in ICU care rooms (31, 33, 97) to understand
the association between visitation and clinical care disruptions
to patients with patients’ sleep hygiene and outcomes. Such
information could assist in developing more accurate evidence-
based visitation and sleep quality guidelines for ICU patients.

Light and Noise Monitoring

Light and noise intensity levels are primary contributors to sleep
deprivation and fragmentation in the ICU (91). Previous studies
have demonstrated the feasibility of using affordable light and
noise intensity sensors in ICU rooms (22, 98). Several studies
using noise intensity sensors in the ICU have determined that
noise level frequently surpasses the levels recommended by the
World Health Organization (WHO) (99, 100). Various sleep
hygiene interventions in the ICU population incorporate light
and noise exposure limits with mixed results in efficacy. Accurate,
continuous light and noise intensity measures can enhance our
understanding of the effect of environmental factors on patient
sleep and the efficacy of sleep hygiene guidelines (90).

NON-CONTACT VITAL SIGN MONITORING

In addition to novel physical activity and behavioral indices, the
use of computer vision and wearable devices has enabled non-
contact monitoring of vital signs such as heart rate and blood
pressure in the ICU. Such devices could remove the need for
electrodes and cuft-based devices sensitive to movement artifacts,
prone to detachment, and restricting patient movement. Recent
research in computer vision and wearable devices has focused on
the feasibility of non-contact monitoring of vital signs, including
the use of RGB and thermal cameras for contactless estimation
of heart rate, blood pressure, blood oxygen saturation, and

respiration rate in research, hospital and ICU settings [e.g., (32,
101-106)]. Wearable devices have been used for measuring heart
rate, oxygen saturation, and blood pressure in hospital and ICU
patients [e.g., (18, 19, 107)].

POST-DISCHARGE MONITORING

Critical care patients often require longitudinal monitoring
and follow-up visits after discharge from the hospital. Patients’
discharge destination can vary depending on the health status,
ranging from home and home care for more stable patients to
hospice for those who need more care with a lower chance for
recovery. While clinicians have access to many tools to assess
patients and determine a prognosis, current assessments do
not extend well to post-discharge monitoring, resulting in less
quantifiable information about post-discharge recovery (108).
Computer vision approaches are not suitable in these scenarios
due to technical and especially privacy concerns. However,
wearable sensors can be used for physical activity monitoring
and patient recovery (109), facilitating more comprehensive
evaluations between follow-up visits. There is currently limited
research on using this methodology to monitor the improvement
in patients functional status in free-living settings among
survivors of critical illness (109-111). With the increasing
popularity of accelerometer-equipped smartwatches, it is also
possible to monitor physical activity before and after a patient’s
ICU stay to examine its relation with health recovery.

TECHNICAL CHALLENGES AND FUTURE
DIRECTIONS

While the current body of literature shows strong potential
for using these novel approaches in critical care for faster,
more personalized, and more accurate clinical decisions, several
challenges need to be addressed (Figure 2).

Ethical and Privacy Concerns

Deep learning methods discussed in many of the computer
vision-based studies mentioned in this review require large,
labeled datasets for training and validation. The developed
models need to be validated in diverse populations in ICU
settings and consider age, gender, primary diagnosis, and
race. However, ethical and legal reasons rightly prevent the
construction of public datasets to protect the privacy of patients,
their visitors, and the healthcare team (112). Existing Privacy
guidelines typically mandate deidentification and temporary
recordings, while the current state of research still requires
raw recordings of the ICU room for post-event annotations
and analysis. While research in this direction could potentially
facilitate the clinical workflow, researchers should be cognizant
of the privacy implications and the tradeoft between privacy and
technological benefits.

Computer Vision

An essential intermediate step in several computer vision
approaches is detecting a patient in the room of each video frame.
Previous research (113-115) has shown promising results in

Frontiers in Digital Health | www.frontiersin.org

May 2022 | Volume 4 | Article 773387


https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles

Davoudi et al.

Pervasive Sensing in ICU

Reliable patient
recognition despite high
variance/occlusions

Objective labels used
for model development:
e.g. pain

Validation in
large and diverse

f) Backward
st compatibility
: I Generalizability
Ry Challenges
Dirzgt(ilons —— System needs bt
Comfort
/\ Interoperability
Technical Hardware and -
challenges computational Scalability

Patient changing
location in the

Real-time results

FIGURE 2 | Directions of future research to enable effective and reliable pervasive monitoring in the ICU.
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facial recognition in each single frame or tracking the patient face
during the recording, but most of these studies are validated on
an ideal frontal full-face view of a patient’s face or with standard
lighting. Real-world ICU rooms may be crowded, with varying
degrees of lighting and numerous objects that could partially
obscure the patient’s face, such as ventilators or oxygen masks.
Patient face identification will be even more challenging due
to variations in the face angle and obscuring elements such as
facial hair or glasses. Improved patient recognition adapted to
the ICU setting will make computer vision solutions more robust.
Because of the variable location of the bed and patient, the ideal
developed methodology should be agnostic to the bed/patient
location and position.

Sleep Detection

Sleep detection methods still require further research for reliable
use in ICU patients. Future approaches may focus on multimodal
models and using wearable sensors to collect information on
activity, heart rate, and body temperature. Current wearable
activity sensors determine sleep based on a lack of activity and
wake periods, but this does not account for the minimal activity
of the ICU patients, thus resulting in low specificity.

Pain Assessment

Researchers also need to consider the effect of pain relief
medications, nociceptive generators, and interindividual
differences in pain processing in studying patients’ pain.
However, this is a challenging concept since medication effect

changes over time depending on pharmacokinetics such as
age, sex, weight, body surface area, renal and hepatic function,
fluid shifts, medication dosage, time since administration,
administration route, and drug-drug interactions. This
complexity often increases for continuous infusions of
medications. Additionally, model development relies on patient
self-report and nurses’ observation for non-verbal patients. The
uncertainty regarding how to translate pain intensity assessments
into objective, rational clinical decisions for analgesic therapies
that reduce pain intensity and patient risk further complicates
developing generalizable and reliable models. There is also a need
to integrate outcomes pertaining to pain, analgesic requirement,
and “patient function” to provide a more holistic perspective on
recovery trajectories.

Wearable Devices

Another implementation challenge for using wearable devices
in the ICU is the requirement of current devices to be
tightly secured on the skin to better capture patients subtle
movements. This may prove to be an inconvenience for some
patients, as continuous contact with the skin might cause
irritation or even could pose risks for infection, tissue ischemia,
compartment syndrome, and wound breakdown. Furthermore,
for patients with medical equipment on their wrists, wrist-worn
accelerometer devices might not be an option unless future
medical equipment includes built-in accelerometers.
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Forward-Compatibility

The inclusion of multiple data streams for different patient
care tasks using pervasive sensing also requires generalizability,
interoperability, scalability, and reliability of the systems.
Interoperable and generalizable systems can operate together
and be incorporated into different monitoring platforms,
while scalable systems will accommodate collecting data from
a larger number of patients. The accompanying analytical
algorithms need to be adaptable for new hardware choices.
Moreover, there must be a consensus on the measured
variables better to evaluate the performance of proposed
methods and devices. Ultimately, the positive impact of
such systems in critical care needs to be rigorously assessed
and validated.

Model Validation With Minimal Data Burden

To improve the adoption of pervasive sensing in routine
care in the ICU, developed models and devices should be
easily manageable by the care team with minimal or no
required training. Any developed model should be validated
to reduce the false alarm rate in the ICU -as is investigated
with vital sign-based alarms (116)-and should optimize
the visualization approach to prevent data fatigue. The
presentation of new information should be determined
by considering the preferences of the physicians and their
team and could include facets such as a daily summary,
continuous display or separate tabs, or simple alarms for specific,
pre-determined events.

Real-Time Models

Ultimately, any developed detection and prediction model
should report a patient’s status in real-time to allow the ICU
team to implement timely interventions, such as incorporating
more active physical therapy regimens, improving sleep hygiene
routines, and adapting administered medications. The necessary
communications infrastructure and reporting medium should be
optimized to avoid alarm fatigue to the already overburdened
ICU nurses.

CONCLUSION

Patients in the ICU have diverse and heterogeneous health
backgrounds, which necessitate more personalized and
dynamic treatments and interventions. This calls for developing
monitoring methodologies that provide continuous, objective,
and quantifiable patient information. Traditional monitoring of
vital signs, nursing observations, and self-reported pain scores
is essential but does not provide a comprehensive view of the
patient’s overall health status.

Advances in computation and computer vision fields and the
development of accurate measuring devices such as wearable
accelerometers have introduced more options for patient
monitoring in-home, community, and hospital settings. The
acute nature of health events in the ICU can benefit from
pervasive, passive sensing methodologies that reduce nurses
workload and replace some of the tasks that require repetition of
measurements, such as detection of pain and agitation. Moreover,

pervasive sensing technology can enable measuring indices that
were not previously recorded, including a patients physical
activity level, facial expressions, and head pose variations.
Classification algorithms trained on the data from similar
scenarios may allow for more timely prediction of adverse events
such as falls and delirium, enabling the healthcare team to
prevent their occurrence.

Many of the proposed domains of the ABCDEF bundle,! an
evidence-based guide for clinicians to improve ICU patients’
recovery and outcomes that emphasize pain assessment,
prevention, and management (117), require accurate monitoring
of the patients during their stay in the ICU. Continuous
monitoring of pain levels using computer vision approaches
will be helpful for continuous and accurate pain assessment
and ultimately for real-time adaptation of pain medications.
The choice of analgesia and sedation is another domain in
this guideline that can benefit from continuous monitoring
of the patients’ sedation levels to personalize analgesia choice.
Quantifying patients’ mobility also improves the evaluation of the
effectiveness of the administered mobility and exercise regimens.
Moreover, the use of accelerometer and vision sensors to detect
delirium can improve delirium assessments, as proposed in the
ABCDEEF bundle.
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