:' frontiers ‘ Frontiers in Astronomy and Space Sciences

‘ @ Check for updates

OPEN ACCESS

Bala Poduval,
University of New Hampshire,
United States

Juan Carlos Martinez Oliveros,
University of California, Berkeley,
United States

Naoto Nishizuka,

National Institute of Information and
Communications Technology, Japan

Chetraj Pandey,
cpandeyl@gsu.edu

This article was submitted to Space
Physics,

a section of the journal

Frontiers in Astronomy and Space
Sciences

16 March 2022
30 June 2022
12 August 2022

Pandey C, Ji A, Angryk RA,

Georgoulis MK and Aydin B (2022),
Towards coupling full-disk and active
region-based flare prediction for
operational space weather forecasting.
Front. Astron. Space Sci. 9:897301.
doi: 10.3389/fspas.2022.897301

© 2022 Pandey, Ji, Angryk, Georgoulis
and Aydin. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Astronomy and Space Sciences

Methods
12 August 2022
10.3389/fspas.2022.897301

Towards coupling full-disk and
active region-based flare
prediction for operational space
weather forecasting

Chetraj Pandey'*, Anli Ji*, Rafal A. Angryk?,
Manolis K. Georgoulis? and Berkay Aydin®

*Department of Computer Science, Georgia State University, Atlanta, GA, United States, Research
Center for Astronomy and Applied Mathematics, Academy of Athens, Athens, Greece

Solar flare prediction is a central problem in space weather forecasting and has
captivated the attention of a wide spectrum of researchers due to recent advances
in both remote sensing as well as machine learning and deep learning approaches.
The experimental findings based on both machine and deep learning models reveal
significant performance improvements for task specific datasets. Along with
building models, the practice of deploying such models to production
environments under operational settings is a more complex and often time-
consuming process which is often not addressed directly in research settings.
We present a set of new heuristic approaches to train and deploy an operational
solar flare prediction system for >M1.0-class flares with two prediction modes: full-
disk and active region-based. In full-disk mode, predictions are performed on full-
disk line-of-sight magnetograms using deep learning models whereas in active
region-based models, predictions are issued for each active region individually
using multivariate time series data instances. The outputs from individual active
region forecasts and full-disk predictors are combined to a final full-disk prediction
result with a meta-model. We utilized an equal weighted average ensemble of two
base learners’ flare probabilities as our baseline meta learner and improved the
capabilities of our two base learners by training a logistic regression model. The
major findings of this study are: 1) We successfully coupled two heterogeneous
flare prediction models trained with different datasets and model architecture to
predict a full-disk flare probability for next 24 h, 2) Our proposed ensembling
model, i.e., logistic regression, improves on the predictive performance of two base
learners and the baseline meta learner measured in terms of two widely used
metrics True Skill Statistic (TSS) and Heidke Skill Score (HSS), and 3) Our result
analysis suggests that the logistic regression-based ensemble (Meta-FP) improves
on the full-disk model (base learner) by ~9% in terms TSS and ~10% in terms of HSS.
Similarly, it improves on the AR-based model (base learner) by ~17% and ~20% in
terms of TSS and HSS respectively. Finally, when compared to the baseline meta
model, it improves on TSS by ~10% and HSS by ~15%.
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1 Introduction

A solar flare is an intense burst of electromagnetic radiation
through magnetic reconnection and plasma instability coming
from the release of magnetic energy associated with active
regions (AR) and they transpire as a sudden brightening of
light on the Sun’s corona Toriumi and Wang (2019). Coronal
mass ejections (CMEs), which are often associated with solar
flares, have comparable energies, and can release large amounts
of mass resulting into major geomagnetic storms which creates
intense currents in the Earth’s magnetosphere, changes in the
radiation belts, and in the ionosphere Feng et al. (2020). When
particles emitted by the Sun are accelerated during a flare or by a
CME event and reach the Earth along interplanetary magnetic
field lines, Solar energetic particle (SEP) events are produced
Nutfez and Paul-Pena (2020). Primarily, solar flares are
considered to be the central phenomena in space weather
forecasting, and this paper discusses on the predictive models
for solar flares. Solar flares can induce intense variation in Earth’s
magnetic field, causing potential disruptions to many
stakeholders such as the electricity supply chain, airlines
industry, astronauts in space, and communication systems
including satellites and radio. Forecasting solar flares has been
a major challenge in heliophysics owing to the yet unsolved
fundamental cause of this phenomenon which makes it difficult
to predict the exact occurrence of a flare, especially for relatively
large ones. However, recent advancements in machine learning
and deep learning methods have demonstrated great
experimental success and catalyzed the efforts in prediction of
which the

interdisciplinary researchers Li et al. (2020); Nishizuka et al.

solar flares, captivated interest of many
(2018); Huang et al. (2018). Developing predictive models for
flare prediction is limited to the nature, quantity, and quality of
flaring instances as well as the inductive bias of learning
As a

consequence of the intrinsic limitations pre-incorporated by

algorithms when predicting such flare events.
the predictive models during problem formulation or model
selection or utilizing different data products, an individual
flare prediction model is limited in performance. Although all
the models built so far for flare forecasting have limitations,
different comprehensions and insights on data distribution are
still valuable for making the final decision in an operational flare
forecasting system. Therefore, it is intuitive to use as many pieces
of information that can be gathered from different sets of models
such as machine learning or deep learning models obtained from
different data modalities in terms of active region magnetogram
patches, full-disk magnetograms or magnetogram’s metadata
(magnetic field parameters) to issue a reduced risk prediction.

In active region-based models, predictions are issued for
certain areas on the Sun with greatly enhanced magnetic flux,
known as active regions. Active regions have lifetimes of days to
montbh, feature strong and entangled magnetic fields and are the
exclusive locations of strong flares and major eruptions,
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including fast coronal mass ejections (CMEs). This said, only
a slim minority (10% or less) of active regions appearing in a
given solar cycle provide flares of GOES class >M1.0 and fast
CME:s [e.g., Georgoulis et al. (2019); Toriumi and Wang (2019)].
These regions can host solar eruptions. To employ active region-
based models in an operational setting, individual active region
forecasts are aggregated by computing the probability of flare
from at least one active region assuming conditional
independence and then these flare probabilities are used to
compute a full-disk flare occurrence probability. However, for
an operational system, working with near-real time data and
issuing near-real time predictions, active region-based models
relying on magnetic field observations possess a limited
forecasting ability as they restrict the training datasets within
central regions (+70°) due to severe projection effects Hoeksema
(2014). the

foreshortening closer to the solar limbs greatly impacts the

et al Besides unreliable measurements,
operational use of magnetic field data. This leads to reduction
in significant information required to make reliable flare
predictions in active regions. Moreover, predictions from
active region-based models often rely on sampled subset of
statistical features that were used to train the model and
therefore when examining forecasts from different subsets of
features, it is common to observe that for the similar condition of
the photospheric magnetic field, they can give varying values for
prediction probabilities of a particular flare to happen.

To account for the limitations of active region-based flare
predictors, full-disk prediction models provide a complementary
approach for operational flare forecasting systems Pandey et al.
(2021). The full-disk model utilize the compressed line-of-sight
magnetograms and these magnetograms are used for shape based
parameters (such as size, directionality, borders of sunspots) and
do not possess the magnetic field properties as in the
magnetogram rasters which is advantageous over the active
region-based models where individual active region magnetic
field parameters used near the limb are more prone to projection
effects. The significant part of an operational flare forecasting
model is to issue a reliable forecast for which we use a
heterogeneous ensemble that combines two different base
learners. In addition, to address the operational aspect of our
system, we consider two essential system-level criteria: 1) near-
real-time availability of input data is ensured given that both of
our base learners are trained with line-of-sight magnetograms
and physical parameters obtained from a line-of-sight
magnetograms and vector magnetograms available at a
cadence of 12 min, and 2) our proposed system is scalable in
a sense that it allows the flexibility of adding a new base learner (if
needed in the future) in the system as it will be one step away
from retraining the ensemble and deploying it back to our
forecasting system.

In this work, to issue more reliable forecasts in an operational
settings, we propose a heuristic ensemble approach which
consolidates the predictive results of the two aforementioned

frontiersin.org


https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.897301

Pandey et al.

prediction modalities into one combined solar flare forecast. The
major contributions of this paper are following: we present a
methodology on how to train and validate an ensemble flare
prediction model in regard to its operations-ready characteristics.
The ensemble combines the predictions from two base learners:
1) a deep learning-based full-disk flare predictor using SDO/HMI
images and 2) a set of probabilistic predictions from a time series
classifier utilizing active region patches’ magnetic field metadata
in the form of multivariate time series. For both base learners, we
use the similar time-segmented tri-monthly data partitioning
strategy Pandey et al. (2021) to perform 3-fold cross-validation
experiments. Finally, we use the probability scores of these two
base learners obtained from the validation and test partitions to
train and validate our proposed meta-learner which converges to
a more robust full-disk flare predictor.

The remainder of this paper is organized as follows. In
Section 2, we present the related work on ensemble solar flare
forecasting models. In Section 3, we provide a detailed workflow
of our methodology. In Section 4, we present our detailed
experimental evaluation with settings and results. In Section 5
we present a discussion on the ensembles created and, lastly, in
Section 6, we present our conclusions and discuss future work.

2 Related works

The idea of automatically extracting forecast patterns from
the large volume of intrinsic magnetic field data on the
photosphere of the sun using machine learning methods has
begun from the early 1990’s Aso et al. (1994). Since then, with the
rapid development in machine learning and deep learning
approaches, a number of research groups Nishizuka et al
(2018); Huang et al. (2018); Li et al. (2020), Nishizuka et al.
(2021), and references therein present their efforts in applying
such methods to build flare forecasting models.

In recent years, Li et al. (2020); Huang et al. (2018) used a
deep learning model based on CNN with different data products
for flare forecasting. Although they show an impressive
performance on flare classification, they limit the scope of the
prediction to smaller areas by using active region-based data
within + 30°-45°" of the central meridian of the Sun which may
counter their performance for true operational forecasting. In
addition, Florios et al. (2018) calculated physical features of
flaring and non-flaring ARs obtained from the SDO/HMTI’s
near-real-time vector magnetogram data and trained SVMs,
multilayer perceptrons (MLPs), and decision tree algorithms
to predict occurrences of >MI1.0-class and >C1.0-class flares
with a forecast horizon of 24 h. In Benvenuto et al. (2018), a
combination of supervised lasso regression for identifying the
significant features and then an unsupervised fuzzy clustering is
used for the classification of >M1.0-class and >C1.0-class flares.
Furthermore, Park et al. (2018); Pandey et al. (2021) uses full-disk
magnetograms data as a point in time observation with CNN

Frontiers in Astronomy and Space Sciences

03

10.3389/fspas.2022.897301

based deep learning models, which have limitations in capturing
the evolution of solar flares and they do not account for flares that
are on the eastern-limb of the Sun. Overall, some methods are
appropriate for constructing prediction models for the temporal
data variation, whereas others are beneficial for spatial data
variation, which demands a need for a coupled hybrid model
that can exploit the gains of multiple models.

Jonas et al. (2018) designed a time series data set using
photospheric and coronal images from HMI/SDO and AIA/SDO
instruments to forecast >M1.0-class flares within the next 24 h.
They utilize random partitioning of datasets into 80 and 20% for
training and testing the linear classifier. Apart from devising flare
forecasting as a binary classification task, Abduallah et al. (2021)
formulates it as a multiclass classification problem to classify B-,
C-, M- and X-class flares by utilizing the physical parameters
within + 70° provided by the SHARP series of HMI/SDO. Finally,
the author uses majority voting as an ensemble to issue a final
flare forecast from three different models trained on the same
data. The training procedure in their work uses random 10-fold
cross-validation.

Instead of using a single prediction model, ensembles use a
set of predictions and combine these results to improve on a
single-model prediction. In addition, an ensemble can be created
with a single model itself by perturbing its initial conditions or
parameter settings to produce multiple results and then combine
those results into one called homogeneous ensembles Breiman
(1996); Freund and Schapire (1996). Flare forecasting problems
also make use of decision tree-based homogeneous ensembles.
Liu C. et al. (2017) apply random forest (RF) Breiman (2001)—a
meta-algorithm that fits a number of decision tree classifiers on
different sub-samples of a dataset and utilizes averaging to
improve the model’s performance. Similarly, Nishizuka et al.
(2017) employed an extremely randomized tree (ERT) classifier
Geurts et al. (2006) by fitting several decision-tree classifiers on a
random subset of features with a randomly defined threshold to
prevent overfitting. While RF and ERT are meta-algorithms
based on the bagging technique, XGBoost Chen and Guestrin
(2016) follows boosting approach to ensemble construction and
focuses on incorrect predictions. It varies from Random Forest
such that XGBoost always prioritizes functional space while
reducing the cost of a model, whereas Random Forest tries to
prioritize hyperparameters when optimizing the model. McGuire
et al. (2019) uses XGBoost for window-based feature extraction
from time series of physical parameters to classify solar flares.
However the aforementioned ensembles can optimize on one set
of data modality.

Besides decision trees, different models trained with different
algorithms but with same data modalities can also be used in an
ensemble as in Liu J.-F. et al. (2017). However, they only included
magnetograms with ARs within + 30° of the central meridian of
the Sun for >C1.0-class flares and then designed a multimodel
integrated learner (MIM) by fitting several distinct base learners,
such as neural networks, naive classifiers, and SVMs. Finally, the
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outputs of base learners were combined by a genetic algorithm.
Similar efforts for >C1.0-class flares forecasting can be seen in
Campi et al. (2019) where ARs extracted from SDO/HMI images
from 2012 September 14 and 2016 April 30 are used and two-
third of the instances are randomly selected for training and one-
third for testing their models. Furthermore, in Domijan et al.
(2019) they study the predictive capabilities of magnetic-feature
properties located within + 45° from the solar central meridian
and detected using Solar Monitor Active Region Tracker Higgins
etal. (2011) in Michelson Doppler Imager (MDI) magnetograms
and analyze the features to predict >C1.0-class flares within the
24h following the observation. In this data-driven era of
predictive models, complex models can bring on higher
accuracy, but also ensembles allow many weak models to be
combined to produce a meta model that can compete with the
state-of-the-art research efforts Murray (2018).

In recent years, the usage of ensembles have become a more
popular research topic in space weather forecasting. Guerra et al.
(2015) created a multi-model ensemble from four base learners
for >M1.0-class flare prediction, finding an improved forecast
output compared to any one single model. Similarly, Schunk et al.
(2016) built an ionosphere-thermosphere-electrodynamics
multimodel ensemble prediction system based on seven
physics-based data assimilation models. Furthermore, in
Guerra et al. (2020), full-disk probabilistic forecasts from six
operational forecasting methods are converted to an ensemble for
>M1.0-class flares by a linear classifier and create a total of
28 ensembles to show the improvement of such a technique over
individual model forecasts. Although, ensemble methods are
increasingly being used by space weather researchers, much of
this research has yet to be implemented into operations, where
transitioning comes with issues of model compatibility.

It is worth noting that using a flare forecasting model in
operational settings, generally it is preferred to use more
simplistic robust methods. Diving into meteorology’s scenario,
The NASA Community Coordinated Modeling Center’s
(CCMC) CME Scoreboard ') and solar flare Scoreboard ?)
provide an weighted and equi-weight average of multiple forecast
scores. Using an equal weighted average of multiple forecasts can be
used as a reliable first guess over a more complex model runs or
deciding on one specific forecast out of several in operations Murray
(2018), however, an ensemble derived from a linear combination of
multiple models can add to the decision making capabilities on one
final forecast leveraging the advantage of simplicity and hence
making it more reliable to trust its decision while in operation.

To evaluate a flare forecasting system in an operational scenario,
Cinto et al. (2020) provides a set of criteria that are worth
considering and can be used to distinguish a non-operationally

1 https://kauai.ccmc.gsfc.nasa.gov/CMEscoreboard/.

2 https://ccme.gsfc.nasa.gov/challenges/flare.php.
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evaluated system: 1) model evaluation without truly unseen data, 2)
using active region (AR) magnetograms only near the center of the
solar disk, 3) only using AR magnetograms linked to >C1.0-class
flares, and 4) using insufficient data instances. The author argues
that the non-operationally evaluated system are evaluated under
certain bias and that does not make them wrong, however,
evaluating under such specific conditions might impair their
predictive capabilities in real operational settings. In addition to
these guidelines, it is essential to note that, most of the studies, create
a cross-validation dataset by randomizing the process of data
splitting. While such data splitting leads to higher experimental
accuracy scores, it often fails to deliver similarly real-time
performance as discussed in Ahmadzadeh et al. (2021). We build
our models that meet the standard of the aforementioned criteria as
they can address the near-limb events with the full-disk base learner,
they are trained and tested with a time-segmented partitioning of
data from solar cycle 24, and we evaluate our models using data
instances that were not presented to the models during training to
address the operational settings of flare forecasting.

In this work, we combine the prediction probabilities of two
types of base learners by the means of a linear classifier based on
logistic regression. Our first base learner, which is a deep learning
based model which focuses on spatial variation of a full-disk
magnetogram. Similarly, our second base learner is a heuristic-
based aggregation model which outputs full disk probability
using the results from active region-based multivariate time
series classifiers. We train and validate an operations-ready
ensemble flare prediction model which optimizes the
predictive performance of both our base learners and provides
a better confidence while issuing a flare forecast.

3 Methodology

Ensemble approaches integrate multiple forecasts into a
single prediction by combining the predictions from multiple
base learners. A simplistic way of integrating the forecasts is to
use an equal weighting for each forecast and combine to improve
on a single-model prediction which we use as our baseline meta-
model. As mentioned earlier, we attempt to combine the
predictions of two base learners: 1) a deep learning-based full-
disk flare predictor using Helioseismic and Magnetic Imager
(HMI) instrument onboard Solar Dynamics Observatory (SDO)
images and 2) a multivariate time series classifier utilizing
magnetic field metadata to issue one combined full-disk flare
forecast.

3.1 Base learners
3.1.1 Time-series forest

Our active region-based prediction model is a multivariate
Time Series Forest (TSF), trained with Space Weather Analytics
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FIGURE 1
A timeline diagram to present the problem formulation of our deep learning-based full-disk flare prediction model using bi-daily observations
of full-disk line-of-sight magnetograms and prediction window of 24 h considered to label the magnetogram instances.

benchmark dataset for solar flare prediction (SWAN-SF) 3.1.2 Deep learning model

Angryk et al. (2020a,b) to predict the occurrence of >M1.0- We trained an AlexNet-based Krizhevsky et al. (2012)
class flares within the next 24 h by using an observation window Convolutional Neural Network to perform full-disk binary
of 12h. The SWAN-SF is an open source multivariate time flare prediction for >M1.0-class flares. Similar to the active
series (MVTS) dataset that provides time series instances for a region-based counterparts, the full-disk model assumes a 24 h
collection of space weather related physical parameters within + prediction window, but uses a single image (point-in-time
70° primarily calculated for each active regions from solar observation) to perform the predictions. For this task, we
photospheric magnetograms. The TSF model is trained by collected compressed 8-bit images created from full-disk line-
utilizing six magnetic-field parameters: 1) TOTUSJH (Total of-sight magnetograms provided by HMI/SDO. We collected two
unsigned current helicity), 2) TOTPOT (Total photospheric compressed magnetogram images per day (bi-daily image

magnetic free energy density), 3) TOTUSJZ (Total unsigned samples) at 00:00 UT and 12:00 UT from December 2010 to
vertical current), 4) ABSNJZH (Absolute value of the net December 2018 using Helioviewer APT Muller et al. (2009) and
current helicity), 5) SAVNCPP (Sum of the modulus of the labeled them based on maximum of GOES peak X-ray flux

net current per polarity), and 6) USFLUX (Total unsigned flux) converted to NOAA/GOES flare classes observed in next 24 h
from the suggested list of 13 parameters in Bobra and Couvidat as shown in Figure 1. Unlike the TSF model, this deep learning
(2015) as these are available in near-real time, which is a model outputs flaring probability for the entire full-disk and its
necessity for an operational system. The model outputs the implementation is based on Pandey et al. (2021).

flaring probability for an individual active region and the We used trimonthly partitioning for training our models,
implementation of this model is based on Ji et al. (2020). which is non-chronological time-segmented partitioning
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strategy, where Partition-1 contains data from January to March,
Partition-2 from April to June, Partition-3 from July to
September, and Partition-4 from October to December in a
timeline from 2010 to 2018. The AR-based model also uses
the same partitioning for aligning our training partitions and
avoiding the penetration of training partitions into testing data in
different prediction modalities to ensure the fair comparisons
and avoid partial memorization through temporal coherence
Ahmadzadeh et al. (2021).

3.2 Flare prediction ensemble

Our active region-based model outputs probabilities of flare
(Pry) for each active region which we then aggregate to obtain a
restricted full-disk flaring probability (i.e., from active regions in
central locations). We use the following heuristic function in Eq.
1 to determine aggregated active region flaring probability’.

Paggreguted =1- n [1 - PFL (ARz)] (1)

where Pg; (AR)) is the flaring probability of an active region, and
the aggregated result calculates the probability of having at least
one flaring active region, assuming the flaring events from active
regions are conditionally independent. The product term
calculates the probability of having no flaring active regions.
These aggregated results from the active-region based model

3 We note that, while aggregating active regions based outputs to
full-disk probabilities, there were instances that were not available
even when we search for most-recent valid active-region predictions
up to 6 h prior to the designated forecast. Therefore, such instances
are also removed from full-disk models for consistency.
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are then concatenated with full-disk model’s output. The
aggregation procedure searches for most-recent valid active-
region predictions up to 6h prior to the designated forecast
issue time. These gathered predictions from full-disk and
aggregated full-disk probabilities are then combined to issue a
final flare forecast using an ensemble. In this work, while preparing
our final dataset for the full-disk model, we do not include
magnetogram images where the observation time of the
available image and requested image timestamp is more than
6 hours. Therefore due to data unavailability through helioviewer,
we have used a total of 4,235 data instances, where 3,502 are No
Flare (NF) instances and 733 are Flare (FL) instances. The detailed
distribution of the dataset for each tri-monthly partition is shown
in Figure 2 and the class imbalance ratios across the partitions are
generally consistent from ~ 12-22% ( ~3.6:1 to ~7.2:1).

In our baseline meta-model approach, we use equal weighted
averaging of flare probabilities from aggregated active-regions and
full-disk flaring probabilities for issuing a final forecast. In other
words, given two flaring probabilities from two approaches, the
baseline approach is to compute the arithmetic average of the
probabilities, assuming equal importance. This simplistic
combination of flare probabilities will serve as our baseline,
although it is a naive approach that does not consider the intrinsic
characteristics of long-term diagnostic results from the models.

Our alternative approach to the baseline meta-model is logistic
regression-based classifier that is trained with flaring probabilities
from the base learners. As we already use two powerful algorithms to
train our base learner to extract the complex dynamics of the datasets,
we chose a linear model, logistic regression, because of its simplicity
and computational efficiency for the final prediction result. The
infrastructure of our complete flare prediction system design is
presented in Figure 3 which shows our overall methodology for
creating an ensemble using two heterogeneous base learners that
outputs a full-disk flare forecast.

Given the flare probability scores of two base learners which
we utilize as two input features—Py; (FD) and Py (Aggregated),
and one binary (0/1) target feature (y) where 0 is used for No flare
(NF) and 1 is used for Flare (FL). Logistic Regression aim to
optimize the weights (w;, w,, and b), such that:

Z = w; X Pp (FD) + w, x Pp (Aggregated) +b  (2)
y=0(2) (3)

where, Z in Eq. ( 2) is the linear combination of two base
learners’ output, o is the sigmoid activation function, and y is
the predicted output as shown in Eq. ( 3). The above problem
of finding the optimized weights w, w, for two base learners is
formulated as an optimization problem where the loss is
minimized to get the better values of weights using a
logistic loss function as shown in Eq. (4).

N

foss(1) =~ Y[ Iog (7)) + (1= ) -Tog (1 3)] @
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We use stochastic gradient descent (SGD) as our solver for the
optimization with hyperparameter tuning. The hyperparameters we
considered are learning rate and different regularization parameters
which includes L1 loss Tibshirani (1996), L2 loss Hoerl and Kennard
(1970), and linear mixings of L1 and L2 loss Zou and Hastie (2005).
And As we will describe later on Section 4, we employ 2-fold cross-
validation for our meta-model where we use one of the test partition
scores of the base learners to train and another for testing our meta
model, referred to as Meta-FP, interchangeably. We note that we aim
to provide full-disk forecasts by computing the aggregated flare
probability scores from active regions to make it compatible with
the full-disk model using the probabilistic heuristic shown in Eq. (1).

4 Experimental evaluation
4.1 Experimental settings
In this work, we trained two base learners for flare prediction (

>M1.0-class with two different dataset and model
configurations and architectures. Although our two base learners

flares)

utilize two different data modalities (ie., point-in-time image and
multivariate time series), we used time-segmented tri-monthly
partitioning when training both of these models. We divided our
datasets into four partitions to ready our 3-fold holdout cross-
validation dataset. The data in Partition-1 contains images from the
months of January to March, Partition-2 from April to June, Partition-
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3 from July to September, and Partition-4 from October to December.
Here, this partitioning of the dataset is created by dividing the data
timeline from Dec 2010 to Dec 2018 into four partitions on the basis of
months rather than chronological partitioning, to incorporate
approximately equal distribution of flaring instances in every fold
for training, validating, and testing the model. Furthermore, such a
partitioning strategy diversify the data instances in both the training
and testing phase of our models as it considers instances during solar
maxima and minima of solar cycle 24 used in this work.

We create three sets of base learner models from 3-fold cross-
validation experiments as our base learners where we use Partition-3 as
our hold-out test set (i.e., never used in training and validation). Then,

o In Fold-1, we trained both of our base learners with

Partition-1 and Partition-2 and validated on Partition-4
o In Fold-2, we trained both of our base learners with

Partition-1 and Partition-4 and validated on Partition-2
o In Fold-3, we trained both of our base learners with

Partition-2 and Partition-4 and validated on Partition-1.

All of these three base learners are tested on Partition-3. Partition-
3 as a test differs from the validation sets in each fold such that, we
used the validation set in every epoch to track the performance of our
model whereas the test set, Partition-3, is used only once to confirm
the performance of the trained models and meta-models at the end.

To train and validate our Meta-FP, we create our dataset based on
the probability scores of our three base learner sets obtained from 3-
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FIGURE 4

An experimental design diagram to depict the flow of our experiments for this work. Meta-FP experiments for logistic regression (LR) are cross-
validated using each fold results of base learners. This results into 2-fold cross-validation in each experiments of Meta-FP.

Fold cross validation experiments. The details of our experimental
design is shown in Figure 4. We used the flare probability scores from
the validation set and test set used in respective base learners
interchangeably to train and validate our Meta-FP model which is
a general linear model i.e., logistic regression (LR). The experiments
for Meta-FP are performed in such way that:

o In Expt. 1, we performed 2-fold cross validation with
Partition-4 and Partition-3.

o In Expt. 2, we performed 2-fold cross validation with
Partition-2 and Partition-3.
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o In Expt. 3, we performed 2-fold cross validation with
Partition-1 and Partition-3.

In doing so, we trained six Meta-FP models based on logistic
regression and compared our results with a baseline Meta-FP
which is an equal weighted average of two base learners.

To evaluate the performance of our models, we create a
contingency matrix, which includes information on True
Positives (TP), True Negatives (TN), False Positives (FP) and
False Negatives (FN) to evaluate the performance of our base
learners and Meta-FP. Note that, in the context of our flare
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prediction task, Flare (FL) is considered as the positive outcome
while No Flare (NF) is the negative. Using these four outcomes
we use two widely used performance metrics in space weather
forecasting, True Skill Statistics [TSS, shown in Eq. ( 5)] and
Heidke Skill Score (HSS, shown in Eq. ( 6)) to evaluate our model.

TP FP
TP+FN FP+TN
TP x TN - FN x EP
((Px (FN+TN)+ (TP +FP) x N))

TSS = (5)

HSS =2 x (6)

The values of TSS range from -1 to 1, where 1 indicates all correct
predictions, -1 represents all incorrect predictions, and 0 represents no-
skill, often transpiring as the random or one-sided (all positive/all
negative) predictions. It is defined as the difference between True
Positive Rate (TPR) and False Positive Rate (FPR) and does not
account for class-imbalance, i.e., treats false positives (FP) and false
negatives (FN) equally. Similarly, HSS measures the forecast skill of the
models over an imbalance-aware random prediction. It ranges from
-00 to 1, where 1 represents the perfect skill and 0 represents no skill
gain over a random prediction. It is common practice to use HSS for
the solar flare prediction models (similar to weather predictions where
forecast skill has more value than accuracy or single-class precision),
due to the high class-imbalance ratio present in the datasets.

4.2 Evaluation

Although AR-based classifiers are better for pinpointing the
source active regions for flares and giving more accurate
estimations for forecasting flaring phenomena, the aggregated
results drop significantly in contrast to our expectation. The
results from AR-based models shows TSS = 0.82+0.02 and
HSS = 0.20+0.04 when these methods are evaluated solely on
active region based confusion matrices. However, when we
aggregate them, these models fail to reach the acceptable levels
of skill scores as they drop to TSS = 0.32+0.04 and HSS = 0.15+0.02.
The reason for these issues may stem from three reasons: 1) limb
events are not considered (beyond + 70°) as there are no reliable
magnetic field readings, 2) these models are not optimized for full-
disk flare prediction, and/or 3) an independent, equally weighted
aggregation scenario in our heuristic approach. Furthermore, the
drop in aggregated skill scores can be attributed to the number of
high false positives, which is common in rare-event forecasting
problems and particularly in flare forecasting. The reason we
empirically observed throughout the years for these false
positives are often the models™ inability to distinguish [C4+ to
C9.9] flares from >M-class flares as discussed in Pandey et al.
(2022). All in all, our first observation is that for full-disk flare
prediction, our designated deep learning models are more effective
when compared to the AR aggregations as it considers the near-
limb events by using a compressed full-disk magnetogram which
are suitable to capture the shape parameters in the active regions
within and beyond + 70° of the central meridian of the Sun.
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FIGURE 5

Validation Scores of base learners in Fold-1 (base learners
trained with Partitions 1 and 2) and the corresponding validation
scores of Meta-FP (meta models trained in Expt. 1).

Analyzing our results, we observed that our logistic
regression-based Meta-FP improves on both TSS and HSS
compared to two base learners and equal weighting baseline
meta learner on respective test partitions as shown in Figures
5-7.1In our first experiment, we trained two Meta-FP models that
utilizes the flare probability scores of two base learners that are
trained with Partition-1 and Partition-2 of the respective
datasets. We train and validate our Meta-FP with respect to
the unused two partitions that are Partition-3 and Partition-4 for
the first experiment as shown in Figure 5. Our other two
experiments are also consistent with making sure to only use
two such partitions that have not been used while training the
base learners as shown in Figures 6, 7. While the improvement in
terms of TSS and HSS on both the base learner and baseline
Meta-FP can be seen across all six logistic regression-based Meta-
FP model, the maximum improvement of logistic regression over
base learners and baseline can be seen with base learners in Fold-
1 (trained with Partition-1 and Partition-2) where the Meta-FP is
trained with Partition 3 and tested on Partition-4 (right side of
the Figure 5). In this experiment, the logistic regression model
improves on full-disk (base learner) in terms of TSS by ~6% and
HSS by ~14%. Similarly, it improves on aggregated AR-based
models in terms of TSS by ~22% and HSS by ~28%. While we
used the equal weighted averaging as a baseline model, it does not
improve on the results from the full-disk base learner. However,
compared to the baseline for the same experiment (Fold-1) as
explained above, the logistic regression model improves by ~13%
and ~21% in terms of TSS and HSS respectively.

On an average, we observe that our full-disk model (base learner)
has TSS = 0.40+0.07 and HSS = 0.25+0.07 and the AR-based model
(base learner) has TSS = 0.32+0.04 and HSS = 0.15+0.02 computed
over both test and validation results from all three folds. When we
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Validation Scores of base learners in Fold-2 (base learners
trained with Partitions 1 and 4) and the corresponding validation
scores of Meta-FP (meta models trained in Expt. 2).
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Validation Scores of base learners in Fold-3 (base learners
trained with Partitions 2 and 4) and the corresponding validation
scores of Meta-FP (meta models trained in Expt. 3).

employed the baseline meta learner (equal-weighted average), the
average TSS = 0.39+0.05 and HSS = 0.20+0.04 is observed. Given that,
equal weighted average is used as a common way to ensemble two or
more models, it can be problematic as it could not even surpass the
scores of a base learner (full-disk model). With the logistic regression-
based meta learner (Meta-FP), the average TSS and HSS observed is
0.49+0.02 and 0.35+0.05 respectively. Therefore, we see that on an
average, the Meta-FP improves on the full-disk model by ~9% in
terms of TSS and ~10% in terms of HSS. Similarly, it improves on the
AR-based model by ~17% and ~20% in terms of TSS and HSS
respectively. Finally, when compared to the baseline meta model, it
improves on TSS by ~10% and HSS by ~15%.
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5 Discussion

Ensemble methods combines multiple models to obtain
better predictive performance than could be obtained from
any of the constituent model alone. By using an ensemble
method, we learn how the single model output can be
improved based on 1) maximum voting, 2) equal weighted
averaging, and 3) weighted voting. Learning the weights in
weighted voting, in the scope of this paper, is structured as a
logistic regression problem. One usual way to create an ensemble
is to simply average the forecast probabilities of multiple models
and provide a final forecast decision, however, it is naive to
assume that all base-learners are equally good. Therefore, the
main objective of training an ensemble here is to learn and assign
better weights for two base-learner predictions by quantifying the
level of impact of individual models predictions on the final
forecast. The prediction distribution for Partition-3 and
Partition-4 used in Experiment-1 for training and testing the
ensemble alternatingly and the learned decision-boundary by
Meta-FP LR is shown in Figure 8 as an example to show how an
ensemble improves over the base-learner by coupling using a
linear classifier. The predicted probability distribution and
learned decision boundary in Experiment-2 and 3 is presented
in Supplementary Figures S1, S2 respectively. Furthermore, the
confusion matrices for base-learners predictions and for the
consequent ensembles created in all three experiments are
presented in Supplementary Tables S1-Sé6.

Ensemble methods defy the idea of making one model and
relying on this model as the best/most accurate predictor we can
make. It rather take a multitude of models into account, and
combine those models to produce one final model that issues a
final forecast. At this point, we do have access to very complex
machine learning paradigms that have proven to be very effective in
several areas, such as computer vision and image classification.
However, relying on the forecast of a single model for rare events like
major solar flares might be critical for a system in operation. The
model thus obtained might be biased on the dataset used to train the
model and can be just as good as the curated dataset used to create
the model. Therefore, it is essential to have a reliable flare forecasting
model obtained by assembling multiple models with different data
modalities to leverage the most with coupling.

6 Conclusion and future work

In this work, we trained a logistic regression-based meta
learner for flare prediction that combines the probabilities of
two flare prediction models trained with different datasets and
machine learning paradigms. While we have two models (base
learners) with their own advantages in prediction capabilities,
we observed that for base learners, full disk models have better
performance for full disk flare forecasting compared to AR-
aggregation. Therefore, with a motive of further improving the
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performance of base learners, we explored a simplest way to
combine them by training an ensemble flare predictor which
automates the task of assigning weights to the outputs of our
base learners, thus improving the overall performance of our
models and adding robustness to the prediction task
compared to equal weighted ensembling.

Furthermore, considering that we only used bi-daily
observations, the shape parameters considered in compressed
magnetograms proves to be actually powerful. AR-based models
on the other hand, using magnetic field data, either as images or
derived products, as they are now, will have limited capability
although they have higher sensitivity per active region. Therefore,
a complementary approach is necessary that does not only rely
directly on magnetic field rasters and this work introduces a
technique which considers both the magnetic-field parameters
and shape-based parameters to obtain flare forecasting models
with their own essence and abilities. Finally, we combine these
two heterogeneous models into one coupled model using a linear
ensemble to improve overall performance. Although we see
significant improvements in skill scores after ensembling, our
coupled models are not without limitations that are also inherited
from our full-disk based model trained with point-in-time bi-
daily observations, which overlooks the temporal evolution of
magnetic-field parameters of the active regions which can limit
the predictive capabilities of full-disk flare predictors. Therefore,
our next goal is to formulate the flare prediction task as a video
classification problem using full-cadence image sequences that
will account for the temporal evolution of active regions.
Furthermore, there are several other directions that can be
explored such as using a basis function on the aggregated
active region prediction probabilities, finding other better
aggregation strategies that could boost the performance of
AR-based models while computing a full-disk probability and
elaborate the ensemble using more sophisticated classifiers,
aiming to further improve the predictive capabilities of our
models.
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