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Abstract

One of the major bottlenecks in refining supervised algorithms is data scarcity. This might be caused by a number of
reasons often rooted in extremely expensive and lengthy data collection processes. In natural domains such as Helio-
physics, it may take decades for sufficiently large samples for machine learning purposes. Inspired by the massive success
of generative adversarial networks (GANSs) in generating synthetic images, in this study we employed the conditional GAN
(CGAN) on a recently released benchmark dataset tailored for solar flare forecasting. Our goal is to generate synthetic
multivariate time-series data that (1) are statistically similar to the real data and (2) improve the performance of flare
prediction when used to remedy the scarcity of strong flares. To evaluate the generated samples, first, we used the
Kullback-Leibler divergence and adversarial accuracy measures to quantify the similarity between the real and synthetic
data in terms of their descriptive statistics. Second, we evaluated the impact of the generated samples by training a
predictive model on their descriptive statistics, which resulted in a significant improvement (over 1100% in TSS and 350%
in HSS). Third, we used the generated time series to examine their high-dimensional contribution to mitigating the scarcity
of the strong flares, which we also observed a significant improvement in terms of TSS (4%, 7%, and 31%) and HSS (75%,
35%, and 72%), compared to oversampling, undersampling, and synthetic oversampling methods, respectively. We believe
our findings can open new doors toward more robust and accurate flare forecasting models.
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1 Introduction

Living With a Star (LWS) is a NASA scientific program to
study the Sun—Earth system and its impacts on human life
and society. Dedicated to this program, NASA launched
the first mission named Solar Dynamics Observatory
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5 Yang Chen (SDO) in February 2010. The SDO mission is an invalu-
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widespread blackouts in the northeastern USA, causing an
economic impact to the tune of billions of dollars [2].

A solar flare is an event occurring in the solar corona
that is characterized by a sudden orders-of-magnitude
brightening in Extreme Ultra-Violet (EUV) and X-ray, and
for large events, gamma-ray emissions, from a small area
on the Sun, lasting from minutes to a few hours [3, 4].
Since 1974, Geostationary Operational Environmental
satellites (GOES) operated by the National Oceanic and
Atmospheric Administration (NOAA) are employed to
automatically detect and classify X-ray flares into wave-
length bands of 1-8 Angstrom. According to the peak soft
X-ray flux in this range, flares are logarithmically catego-
rized as A, B, C, M, and X, from weaker to stronger. In a
typical binary classification strategy, the most intense
flares, namely the M and X classes, are identified as the
positive class. In contrast, no flare occurrence and flares of
A, B, and C classes are identified as the negative class.

The class-imbalance issue, an extreme imbalance
between positive and negative classes, is intrinsic to many
real-world machine learning tasks, including the solar flare
forecasting. It is widely known that an improper handling
of the class-imbalance issue can result in unrealistic and
unreliable analyses, with limited practical value in opera-
tional settings [5—7]. The scarcity of the positive class(es)
of flare data is an important problem that needs to be
appropriately treated in the current research. Inspired by
this, we make use of a deep learning-based approach to
produce the synthetic multivariate time-series data using
generative adversarial networks.

Many remedies have already been put forward to
address the class-imbalance issue. The simplest approaches
are oversampling, undersampling, and cost-sensitive
learning. We recently revisited some of these approaches
and their impact on a flare forecasting dataset [8]. In a more
complex attempt of mitigating the class-imbalance issue,
[9] demonstrates the benefit of using various statistic-based
synthetic oversampling techniques compared to naively
oversampling and undersampling. This motivates us to
investigate synthetic sample-based oversampling from a
new angle. More specifically, we employ a conditional
generative adversarial network (CGAN) to generate real-
istic time-series data (as opposed to descriptive statistics
derived from time series) based on real data and, therefore,
to construct a balanced training dataset to facilitate the task
of multivariate time-series classification. The rationale
behind using CGAN is as follows: (1) we can learn the
distribution of existing data and generate informative
synthetic samples; (2) the algorithm can explicitly control
the category of generated samples, especially to generate
minority synthetic samples for mitigating the class-imbal-
ance issue; (3) the CGAN enables us to produce time-series
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data rather than point-in-time data compared to the statis-
tic-based oversampling method.

This paper extends our previous investigations of using
a CGAN to produce time-series data in [10]. This paper
provides additional explanations of our input dataset and
associated classification problems used to evaluate our
synthetic data. Additionally, we have included numerous
comparisons with other approaches for remedying the
class-imbalance issue. The main contributions of this paper
can be categorized as follows:

e We utilize the CGAN to perform synthetic time-series
data generation on a recently released flare forecasting
benchmark dataset (SWAN-SF). Our experiments indi-
cate that utilizing the synthetic time-series data we have
generated may be an effective solution to the data
scarcity in the solar flare forecasting problem.

e We perform model selection using two methods: (a) the
Kullback—Leibler divergence metric for quantifying the
similarity between the distributions of the real and
synthetic data, and (b) the adversarial accuracy for
monitoring the performance of CGAN directly. We
show that these methods unanimously select the same
models.

e We conduct three groups of comparative experiments to
examine the effectiveness of the generated synthetic
samples as a remedy for the class-imbalance issue on
the flare forecasting task. We show that the significant
improvements are present not only compared to the
baseline where no augmentation is utilized, but also
compared to other remedies such as under-/over-
sampling, and statistical-based synthetic oversampling
methods.

e We quantitatively monitor the impact of the number of
synthetic samples used for balancing the data on the
forecasting performance. Overall, we observe a steady
boost in performance in terms of both TSS and HSS2
scores as the imbalance ratio decreases, providing
further evidence that the synthetically generated time
series are mimicking the real time series.

2 Related work
2.1 Class-imbalance remedies

One challenge present in many, if not all, natural hazard
forecasting problems is the issue of class imbalance, and
flare forecasting is no exception to this issue. Class
imbalance describes a situation where the events of one or
more of the class(es) in the dataset are notably less than
that of the other class(es). It is common to apply special
remedies to address the class imbalance if present. The
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reasoning behind addressing class imbalances is that a
significant imbalance in the dataset would affect any
classifier by injecting a bias toward the majority classes,
and machine learning models generally perform best when
classes are roughly equal in size. For example, the authors
[11] investigated the impact of class-imbalance issue on a
solar flare benchmark dataset, namely SWAN-SF [12].
Their findings show that the classification performance is
improved when typical class-imbalance remedies, such as
undersampling, oversampling, and incorporating misclas-
sification cost, are applied. Random oversampling balances
the dataset by randomly selecting and duplicating samples
of the minority class. Conversely, random undersampling
randomly removes samples of the majority class to achieve
a balance between the two classes. For multi-class prob-
lems, either of these remedies can be coupled with pre-
serving the climatology of the subclasses in the original
dataset [13]. However, these sampling-based methods can
only provide limited improvements in training, with the
risk of overfitting, since they do not introduce or utilize any
new data. Another approach to addressing class imbalance
is to produce synthetic samples based on the existing data.
In [14], Synthetic Minority Oversampling Technique,
namely SMOTE, was introduced to create new samples
between minority instances and their nearest neighbors of
the same class. In [9], three naive random synthetic over-
sampling methods, namely Random Uniform Synthetic
Oversampling (RUSO), Random Normal Synthetic Over-
sampling (RNSO), and Random NOise Synthetic Over-
sampling (RNOSO), were employed to generate synthetic
samples of the minority classes in the flare forecasting
problem. RUSO generates new samples from the uniform
distribution between the minimum and maximum values of
each feature of minority samples in the training set. In
contrast, RNSO uses the normal distribution with the mean
and standard deviation values of each feature of minority
samples in the training set. RNOSO generates new samples
by sampling noise terms from the normal distribution with
mean of 0 and standard deviation of 0.1 and adds the noise
to the existing minority samples. Although [9] demon-
strates the benefit of using various statistic-based synthetic
sampling methods over naively oversampling and under-
sampling, it is important to note that: (1) they do not
generate time-series data (as shown in Table 1). The
development of recurrent neural networks and generative
modeling opens the door to generating sequential data,
such as videos and music, and time series [15, 16]; (2) they
work under the assumption of normality, which is not
necessarily valid in many real-world applications. In our
study, we know that the peak X-ray fluxes of solar flares
follow a power-law distribution, and the distribution of
each of the magnetic-field physical parameters of SWAN-
SF is impacted by that.

2.2 Generative adversarial network (GAN)

Generative adversarial network is an emerging technique
for modeling high-dimensional distributions of real sam-
ples implicitly [26]. Initially proposed in [17], the GAN
learns to produce realistic data by training two components,
the generator and the discriminator, in an adversarial
manner. First, the generator is used to capture the data
distribution by sampling random vectors from a latent
space as inputs and to produce samples similar to the real
data. Next, the discriminator receives both generated
samples and real samples as inputs, and estimates the
probability of the input coming from the real data space.
By training the generator and the discriminator simulta-
neously, a generator is enabled to gradually generate more
realistic samples under the supervision of the real samples.
This process is repeated until the discriminator cannot
distinguish the generated samples from the real ones.
Typically, either the generator or the discriminator can be
implemented by arbitrary multilayer neural networks con-
sisting of fully connected networks, convolutional neural
networks, and recurrent neural networks, depending on the
actual data source.

The vanilla GAN has exhibited some limitations on the
stability of the model training and the diversity of the
generated sample [18]. Therefore, several works have
investigated designing new architectures in order to miti-
gate the training issues and improve the quality of the
generated samples. For example, the deep convolutional
GAN (DCGAN) utilizes convolutional neural networks as
the generator and discriminator and replaces pooling layers
with strided convolutions (discriminator) and fractional-
strided convolutions (generator) to improve the training
stability [27]. The Wasserstein GAN [18] introduces the
Earth-Mover distance to improve the learning stability and
provide a meaningful learning curve for tuning hyperpa-
rameters. The Info GAN [19] incorporates the representa-
tion learning by maximizing the mutual information
between a fixed subset of the latent variables and the
observations. The variational GAN (VAEGAN) [20]
combines autoencoder and GAN to encode the real data as
inputs of the generator instead of randomly sampling from
a latent space, enabling the GAN model to achieve faster
and more stable learning. The conditional GAN (CGAN)
[21] is another variant dedicated to improving the quality
of the generated samples and controlling the classes of the
synthetic samples by utilizing conditional information. The
most common form of conditional information is the class
labels. All the reviewed approaches and their key features
are organized in Table 1 for convenience.

Various GAN applications have been proposed to deal
with different demands, from art, science, finance, drug
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Table 1 Fourteen studies related to this work

No. Methods Production Features
types
1 Oversampling/ Time series
undersampling
2 Advanced oversampling Time series
[13]
SMOTE [14] Point-in-time

RUSO/RNSO /RNOSO [9]
Vanilla GAN [17]

WGAN [18]

InfoGAN [19]

VAEGAN [20]

CGAN [21]

Point-in-time
Time series
Time series
Time series

Time series

O 0 9 O N B W

Time series
training

10 C-RNN-GAN [16]

11 RCGAN [22]

12 DoppelGANger [23]

13 [24]

14 TimeGAN [25]

Time series
Time series
Time series
Time series

Time series

The simplest one; No new data introduced
Applied on multi-class problems

Provides statistical interpretations

Provides statistical interpretations

Generating single-class samples

Stable and faster training by using a meaningful objective function
Learns interpretable latent variables in an unsupervised manner
Stable and faster training

Generates multi-class samples by using conditional information; Stable and faster

Generates single-category musical data

Generates privacy-free medical data

High fidelity; Privacy-free; Deal with mix-type data

Learns the conditional probability distribution of features by GAN
Incorporates conditional temporal dynamics into the unsupervised GAN

The over-/under-sampling (Row 1) is the simplest one which is considered as our baseline model. Row 2 corresponds an effective method in
multi-class problems that couples oversampling and undersampling by preserving the distribution of the subclasses in the original dataset. Rows
3 and 4 describe statistic-based methods. Rows 5-14 list several GAN-based methods. The type of the generated data for each method is specified

in the third column

discovery to video games, and have achieved great success.
In the computer vision domain, synthetic image generation
has been tested in scenarios, such as cartoon characters
[28], face frontal views [29], and new human poses [30].
Image-to-image translation [31, 32] and text-image syn-
thesis [33] applications enable users to transfer objects
between different styles or different formats. Moreover,
image super-resolution [34, 35] and motion stabilization
[36] applications are especially helpful in autonomous
driving and navigation tasks since object detection accu-
racy is improved by utilizing optimized images or videos.
The last but not least avenue of applying GANs is data
augmentation. Traditional data augmentation techniques
usually perform a transformation pipeline on the existing
instances of data, and it involves one or more of data
manipulations, to name a few, random rotation, translation,
reflection, cropping, blurring, sharpening, and hue adjust-
ment. However, these transformations are not applicable to
all situations. For example, the chirality of an image of
solar filament would be changed if a reflection or affine
transformation is performed. GAN provides an alternative
way to perform the data augmentation, that is to learn an
underlying distribution of real samples and to produce new
realistic samples based on the learned distribution.

@ Springer

2.3 Time-series generation using GAN

Various projects in different domains have emerged to shed
light on generating time-series data by utilizing the gen-
erative adversarial network, as shown in Table 1. In [16],
the use of a C-RNN-GAN was proposed as a method to
generate musical data. This method applied a unidirec-
tional long short-term memory (LSTM) as the generator
and a bidirectional LSTM as the discriminator. In [22],
RGAN was developed as a privacy-preserving method for
generating synthetic medical data in an effort to mitigate
the concern regarding the utilization of the privacy-sensi-
tive patient data to train machine learning models. Dop-
pelGANger [23] is another framework designed for
generating synthetic time series data with high fidelity and
sharing data with privacy-free properties. Particularly, it
deals with mix-type datasets that contain continuous and
discrete features. In [37], GAN was utilized as a data
augmentation method for generating synthetic biosignal
data, including electroencephalographic (EEG) and elec-
trocardiography (ECG). The improved Wasserstein GAN
was employed to generate synthetic spiking time series in
the banking domain [38]. In [24], the authors used GAN to
learn the conditional probability distribution of the key
features to generate synthetic time-series data. TimeGAN
[25] combined the versatility of the unsupervised GAN
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approach with the control over conditional temporal
dynamics. This method has two more autoencoding com-
ponents, including an embedding function and a recon-
struction function trained jointly with the generator and the
discriminator components. This structure enables the
model to iteratively learn to encode features, generate
representations, and adjust weighting parameters according
to the objective function.

3 SWAN-SF dataset

The data used in this project are a benchmark dataset
named Space Weather ANalytics for Solar Flares (SWAN-
SF) [12], which is publicly available at the Harvard
Dataverse Repository [39]. SWAN-SF is a comprehensive,
multivariate time-series dataset extracted from solar pho-
tospheric vector magnetograms in HMI Active Region
Patch (HARP) data made available as the Space-weather
HMI Active Region Patch (SHARP) series [40, 41]. The
benchmark dataset has 5 classes, including four flare
classes of X, M, C, and B, with an additional class labeled
as NF representing the absence of any of the listed flares.
Each multivariate time series is labeled by looking at the
strongest flare event recorded in the 24-hour prediction
window. This interval follows the 12-hour observation
window from which the magnetic field parameters are
calculated. In this study, we simplify the task to a binary
classification by merging the stronger instances (i.e., X-
and M-class flares) to form the positive class, and the
weaker instances (i.e., of C, B, and NF classes) to represent
the negative class. The extreme class imbalance exhibited
by SWAN-SF is illustrated in Fig. 1, with each class’s
sample size annotated. A proper treatment of this imbal-
ance is the objective of this study.

The SWAN-SF is made up of five temporally non-
overlapping partitions covering the period from May 2010

Fig. 1 The plot illustrates the
distribution of the 5 flare classes
in SWAN-SF dataset. The flare

through August 2018. Each partition contains approxi-
mately an equal number of X- and M-class flares, and there
are a total of 6,234 flare records and 324,952 non-flaring
records. Each flare record is a multivariate time series
(hereafter MVTS) with 60 time steps, each of which has 51
magnetic field parameters. (For the definition of the
parameters, see Table 1 in [12].) We limit our investigation
to only four of these 51 parameters, abbreviated to
TOTUSJH, ABSNJZH, SAVNCPP, and TOTBSQ, which
have been listed as the most relevant to the flare forecasting
in several studies including [41] and more recently in [42].
Moreover, based on how they are calculated it is easy to
see that many of these parameters are highly correlated
with each other and a small subset of them suffices our
objective in this study.

One major concern for evaluating flare forecasting
models is to determine evaluation metrics appropriate for
the above-mentioned class imbalance. Many well-known
performance metrics are significantly impacted by class
imbalance [43], including accuracy, precision, and FI1-
score, which ignore the number of misclassified instances.
From years of exploration, domain experts have agreed on
two effective metrics, namely the true skill statistic (TSS)
[44] and the updated Heidke skill score (HSS2) [45], as
shown in Egs. 1 and 2, respectively. These are functions of
the confusion matrix whose entries are true positive (tp),
true negative (tn), false positive (fp), and false negative
(fn). We will use both of these metrics to evaluate the
performance of our flare forecasting models in Sects. 6.4
and 6.5.

tp fp
tp+fn_fp+tn (1)
2-((tp - tn) — (fn - fp))
(tp+fn) - (fn + tn) + (fp + tn) - (tp + fp)

TSS =

HSS2 =

(2)

N == B mm C M X Imbalance ratio (CBN:XM)

C: 6,416 X: 165
counts and the imbalance ratio Pl ﬁ: -’gg?go M: 1.089 58:1
(font in red) per partition are Y
annotated. In this study, the flare C: 8,810 X: 72
i f X and M cl o P2 e M: 1,329 52
instances of X an classes g N: 73,388 R,
make up the positive class, and =1
b=, C: 5,639 X:136
the C, B, and N classes account S p3 B: 685 3 20:1
for the negative class & N: 34,762 iR
C: 5,956 .
P4 B: 846 ?\(4 115312 43:1
N: 43,294 s
C: 5,763 )
P5 B: 5,924 X'. 9 75:1
N: 62,688 MBS
0 20000 40000 60000 80000 100000
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4 Conditional GAN: a RECAP

The algorithm we employ is the conditional generative
adversarial network (CGAN) whose architecture is illus-
trated in Fig. 2. Several reasons make us decide to utilize
this algorithm: First, CGAN can control the category of
generated samples, allowing us to generate samples of
minority classes to mitigate the class-imbalance issue.
Second, it can provide stable and faster training compared
to the vanilla GAN [46]. Third, the category information of
instances in the SWAN-SF dataset is available as condi-
tional information for training CGAN models. We choose
LSTM networks as the fundamental components in both
the generator and the discriminator since our subject is
sequential data.

As mentioned in Sect. 2.2, the ultimate goal of a gen-
erator (G) is to generate an output with similar character-
istics as the real data. As seen in Fig. 2, the algorithm takes
in a random input vector Z,, which is a tensor with the
shape of [batch_size, sequence_length, latent_dim]. In our

Random
input vector

Conditional

vector

LSTM layer

Generated Real
samples samples
" \T

i |
| 7

LSTM layer
(D)

Binary cross
entropy

Fig. 2 This is the framework of the CGAN algorithm, including
components of the generator (G) and the discriminator (D). Each
component is processed by the combination of the LSTM layer and
the dense layer. The inputs of the generator are random input vectors
concatenated with conditional vectors. The inputs of the discriminator
are either generated or real multivariate time series with conditional
vectors. The binary cross-entropy is the criterion for optimizing the
model

Adam optimizer
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case, the shape is [32, 60, 3] for 32 multivariate time series
in a batch, each of length 60 and the latent dimension of 3.
The conditional vector (C,), as a type of auxiliary infor-
mation, has the shape of [32, 60, 2] since the binary labels
are encoded into a one-hot representation. By concatenat-
ing Z, and C,, we obtain a tensor of shape [32, 60, 5] as
the final input of the generator. Note that the latent space
dimension, as a hyperparameter, is determined by the
dimension of the parameters and the conditional informa-
tion. We empirically assume that the total dimension of the
latent space and the conditional information should be
similar to the dimension of the parameters being produced.
Besides, the dimension of the latent space and the condi-
tional information should be balanced, which means nei-
ther should dominate the inputs of a generator. The outputs
of the generator, regarded as the generated or synthetic
samples, are calculated by going through the LSTM and
dense layers pipeline. The LSTM layer controls the
memorizing process using a gating mechanism. Mean-
while, the dense layers guarantee that the generated sam-
ples can maintain the same shape as the real data, i.e.,
[32, 60, 4] where 4 stands for four magnetic field param-
eters mentioned in Sect. 3.

The task of a discriminator (D) is to classify inputs as
either being the real or generated samples produced by the
generator. As Fig. 2 illustrates, the discriminator takes both
the real and the generated multivariate time-series samples

as the inputs. To simplify the notation, we use 5(; to denote
either real (X,) or synthetic samples (G(Z,|C,)) when the
difference is clear from the context. By feeding C, into D,
the discriminator produces judgments about whether the
sample is generated or real and evaluates if the category of
the generated sample corresponds to its conditional infor-
mation. Finally, the binary cross-entropy loss calculated
between the predicted and the ground-truth values is used
to update the weighting parameters of the generator and the
discriminator using the backpropagation.

So far, we have described the structures and function-
alities of the generator and the discriminator. Next, we
define the objective function used for optimizing the
algorithm. In our framework, the objective function is
divided into two parts: the generator loss (Lossg) and the
discriminator loss (Lossp). The discriminator loss is
obtained by calculating the cross-entropy between the
ground truth and the outputs of the discriminator, as shown
in Eq. 3,

Lossp(X,|Cosyn) = ~CE(D(X,C,). 30 ) (3)
where )?,, is the set of inputs of the discriminator, and C,, is

the conditional vector. D(X, |C,) returns the likelihood of
X, being a real or a generated sample, and CE stands for

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Neural Computing and Applications (2022) 34:13339-13353

13345

the cross-entropy loss function. Note that X, is composed
of two different types of data sources, as formulated in
Eq. 4.

_ { X,
X, =
G(Z,|Cy)
(4)

Correspondingly, y, takes two different values depending

if inputs are real samples

if inputs are generated samples

on the source of the sample in 3(; .
1 if inputs are real samples
Yn = (5)

0 if inputs are generated samples

The generator loss (Lossg) is also formulated in Eq. 6,
where the input G(Z,|C,) is the generated samples, and its

corresponding predictions are D(G(Z,,|Cn)\C,,>. To opti-

mize the generator, we need to guide the discriminator to
classify the generated samples as real. To do so, we ini-
tialize the ground-truth labels with 1s (same as the real
samples). By minimizing Lossg, the predictions of the
discriminator approach 1s gradually indicating the gener-
ated samples are realistic enough that the discriminator
cannot distinguish them from the real samples.

Losse(Z,]C,) = —CE (D(G<zn|cn>cn),1) ©)

5 Methodology

The main objective of this study is to examine the effec-
tiveness of CGAN as a possible remedy to the class-im-
balance issue on SWAN-SF. In this section, we focus on
proper assessments of the contribution of CGAN-generated
synthetic multivariate time series of SWAN-SF and answer
whether the generated time series are reliable for machine
learning use.

There are two main concerns in evaluation of GAN
models and their synthetically generated data: (1) to
determine the learning progress and (2) to examine the
effectiveness of synthetic data for the original problem.
Regarding the former, in most image-based GAN projects,
researchers can determine the training progress by visually
examining the synthetic images. However, the visual
inspection of synthetic time series does not give us much
evidence as to whether the synthetic samples are realistic or
not. To address this concern, we present two statistical-
based approaches to handle the model selection issue.
Regarding the latter, we design multiple experiments by
applying different class-imbalance remedies to tackle the

flare forecasting problem. We elaborate on our method-
ologies in the following text.

5.1 Model selection using distributions
of statistical features

To provide a statistical evaluation for our model, we
compare a few descriptive statistics extracted from the real
and synthetic time-series data. This establishes a high-level
similarity criterion that must be satisfied if the distributions
of the real and generated time series are indeed similar.

Suppose we have sets of real (7) and synthetic (S)
samples, with equal number of multivariate time series. For
each instance, we extract its mean, median, and standard
deviation. We then construct the corresponding probability
distributions P and Py, with setting the bin size to M. To
quantitatively measure the similarity, we calculate the
Kullback-Leibler (KL) divergence [47] between distribu-
tions of Py and Ps using Eq. 7. The KL divergence is a
nonnegative measure, which means Dg; (Pr||Ps) > 0. The
smaller value indicates the higher similarity between Pr
and Pg.

Z Pr(m) - log ( Pr(m) ) (7)

Dk (Pr||Ps) =
meM S(m)

5.2 Model selection using adversarial accuracy

The adversarial accuracy, as formulated in Eq. 8, is put
forward by Yale et al. [48], which is used for measuring the
similarity of two sets of data samples through their nearest
neighbors.

AArs = ZI drs(i) > drr(i))
o (8)
+;Zl(dST(i) > dss(i)))
i1
{ dys(i) = min;|| X — X4 (9)
drr (i) = min; i | X5 — X41],

In Eq. 8, the subscripts T and S refer to the sets of real and
synthetic samples, respectively. The distance function d is
defined in Eq. 9 as the minimum (Euclidean) distance
between each real sample X} and all synthetic samples Xé
(i.e., drs(i)), and all other real samples X’f (i.e., drr(i)). The
shortest distance generally means the highest similarity
between two samples. If drs(i) > drr(i), it means no syn-
thetic sample is found in S that is more similar to X} than
any other real samples in 7. Otherwise, a synthetic sample,
which is more similar to the X,
sample is generated when drs( ) <drr(i). The range of

can be found. A realistic
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adversarial accuracy is [0, 1]. The outcome 1 indicates that
there is no resemblance between the set of real samples and
the set of synthetic samples. The outcome O indicates that
the two sets are exactly the same, yielding no new infor-
mation. The desirable outcome of adversarial accuracy is
close to 0.5, implying that the real and synthetic samples
generated by the generators are indistinguishable [48].

5.3 Synthetic data v.s. over-/under-sampling

To assess the effectiveness of the synthetic data, we design
several experiments where we compare the impact of dif-
ferent balancing remedies on the classification of flaring
and non-flaring instances of SWAN-SF, with that of bal-
ancing using our synthetic data. As shown in Table 2, we
set up three groups of experiments, namely A, B, and C,
and each comprises four experiments. For A and B, the
primary difference between them is that in the former we
utilize the last-value statistic of MVTS samples, whereas in
the latter, median and standard deviation of time series are
used. The last-value is literally the last value of each time
series. This makes our results comparable with those in [9]

where point-in-time data were used. The mean statistic is
sensitive to outliers, which makes us eliminate it for flare
forecasting. For C, we aim to examine the effectiveness of
synthetic samples in their original high-dimensional for-
mat, i.e., time series. The question is whether the unwanted
noise of the synthetic MVTS samples was obscured by the
summary descriptive statistics. Therefore, we conduct the
experiments in C to verify the hypothesis.

For each group, we train four classifiers with the same
parameter setting, but with different training datasets. The
models in Al, B1, and Cl are trained on the highly
imbalanced, real dataset without any changes. The models
in A2, B2, and C2 are trained on the dataset that is made
balanced by adding synthetic minority (flaring) samples.
The models in A3, B3, and C3 are trained on the dataset
that is made balanced by random oversampling of (i.e.,
duplicating) the minority instances. Lastly, the models in
A4, B4, and C4 are trained on the dataset that is made
balanced by random undersampling of the majority (non-
flaring) instances. The models in Al, Bl, and CI1 are
considered as the baseline.

Table 2 All experiments carried out to examine various class-imbalance remedies

Group No. Method Description Statistic
A Al Baseline (BL) No data augmentation applied on P1 Last value
A2 Synthetic Oversampling using CGAN Adding synthetic flaring samples to the minority class
(CGAN) of P1
A3 Random oversampling (RO) Randomly oversampling samples of the minority class
on P1
A4 Random undersampling (RU) Randomly undersampling samples of the majority class
on P1
B B1 Baseline (BL) No data augmentation applied on P1. Median & standard
deviation
B2  Synthetic oversampling using CGAN Adding synthetic flaring samples to the minority class
(CGAN) of P1
B3 Random oversampling (RO) Randomly oversampling samples of the minority class
on P1
B4 Random undersampling (RU) Randomly undersampling samples of the majority class
on P1
C Cl1 Baseline (BL) No data augmentation applied on P1 Time series
C2  Synthetic oversampling using CGAN Adding synthetic flaring samples to the minority class
(CGAN) of P1
C3 Random oversampling (RO) Randomly oversampling samples of the minority class
on P1
C4 Random undersampling (RU) Randomly undersampling samples of the majority class

on P1

Groups of A and B have experimented on the extracted descriptive statistics of MVTS data. Group A utilizes the last value statistic of MVTS
samples as inputs, whereas in group B, median and standard deviation of samples are used. All experiments in A and B utilize Partition 1 (P1) as
the training set and Partitions 2, 3, and 5 as the test sets. Partition 4 is not involved in this experiment. The experiments in C are conducted to
examine various class-imbalance remedies by taking time series as inputs. Similarly, Partition 1 is utilized as the training set and Partitions 2, 3,
and 5 as the test sets. Partition 4 is reserved for validation of the hyperparameters
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6 Experiments and results

In this section, we conduct experiments to evaluate the
effectiveness of the proposed assessment methods. First,
we show the results of two model selection methods based
on the distributions of statistical features and the adver-
sarial accuracy. Then, we present multiple experiments by
applying different class-imbalance remedies to tackle the
flare forecasting problem. Furthermore, we exhibit a
quantitative analysis of the quality and usefulness of the
synthetic flaring time series generated by the CGAN model
to balance the training dataset.

6.1 Experimental settings

After exploring various settings based on the defined
objective function, we found that using the Adam optimizer
for the generator and the gradient descent optimizer for the
discriminator produced optimal results. We tune the per-
formance of CGAN model by setting different hyperpa-
rameters, i.e., latent space dimensions: {2, 3,4, 5}, learning
rates:  {0.5,0.1,0.01,0.001,0.0001}, batch  sizes:
{16,32,64}. Empirically, we concluded our optimal
hyperparameter setting with the latent space dimension of
3, the conditional information dimension of 2 (since we
have two classes), the learning rate of 0.1, the batch size of
32, and the LSTM hidden size of 100. The model was
trained with 300 epochs, and intermediate models were
saved at every five epochs. We have implemented CGAN
using the TensorFlow 2.1 library [49].

For preprocessing of SWAN-SF, we linearly trans-
formed all five partitions to the range [—1, 1] for training
the CGAN model and evaluations. We train the generator
on partition 1 of SWAN-SF, with the four magnetic field
parameters mentioned in Sect. 3.

We employ the support vector machine (SVM) as the
standard classifier for experiment groups A and B in
Sect. 6.4. The models are trained on Partition 1 and eval-
uated on Partitions 2, 3, and 5. Partition 4 is not involved in
this experiment. For the experiments in A, we use the same
hyperparameters as were used in [9], i.e., kernel, C and
gamma set to ‘tbf’, 0.5 and 8, respectively. Since the input
of the experiments in group B has double dimensions
compared to A (from 4 to 8), we adjust the hyperparame-
ters accordingly following the instructions in [50-52], and
set the kernel, C and gamma to ‘rbf’, 0.25 and 0.25,
respectively. We conduct the time-series-based classifica-
tion experiments (group C in Sect. 6.4) using the time-
series-specific support vector classifier (T-SVC). Similarly,
Partition 1 is for training and Partitions 2, 3, and 5 are for
evaluation. Partition 4 is reserved for validation of the
hyperparameters. We performed a grid search on C and

gamma to find the optimal setting, i.e., C: {0.001, 0.01, 0.1,
1, 10, 100}, gamma: {0.001, 0.01, 0.1, 1, 10, 100}, using
the ‘rbf’ kernel. We conclude the optimal setting with C
and gamma to 0.01 and 0.01.

6.2 Evaluation using distributions of statistical
features

We have conducted this analysis on all of the four
selected physical parameters, but for brevity, we present
only the results of TOTUSJH. In Fig.3, we compare the
results by monitoring the improvement of the models at
every 5 epochs, and the quality of the samples they gen-
erate. Specifically, we utilize 1254 real flare samples in
Partition 1 of SWAN-SF and 1254 synthetic samples
generated by the CGAN model in the evaluation. The
columns A and B in Fig. 3 compare the distributions of the
three descriptive statistics of the real and synthetic time
series based on two intermediate models saved in the
training process. Column A corresponds to a model trained
after 50 epochs, whereas B shows the results after 250
epochs. Comparing A with B, it is evident that, at least in
terms of the three descriptive statistics, the generator
gradually learns to generate synthetic time series, which
are more and more similar to the real flaring time series. To
draw a more comprehensive picture, we calculate the
Kullback-Leibler (KL) divergence between the distribu-
tions of three descriptive statistics of the real and the
synthetic time series every 50 epochs. We observe, as
shown in the column C of Fig. 3, that the KL divergence
decreases as training progresses. We found that on average,
the models between the epochs 201-250 achieve the best
performance, with lower KL divergence for the mean,
median, and standard deviation distributions. We also see
that the variance between the results produced by inter-
mediate models trends downward until we surpass the 250
epoch mark. We further need to examine the overfitting
issue. That is, the KL divergence can be low if the CGAN
model just memorizes the training set, resulting in no or
limited new information produced. We assess this question
in the next section.

6.3 Evaluation using adversarial accuracy

The evaluation of our intermediate models using adver-
sarial accuracy is illustrated in Fig. 4, for the physical
parameter TOTUSJH, as an example. We again utilize
1254 real flare samples in Partition 1 of SWAN-SF and
1254 synthetic samples generated by the CGAN model. As
the box plots suggest, the models between 201 to 250
epochs achieve the adversarial accuracy of 0.55, 0.60, and
0.68, in terms of mean, median, and standard deviation of
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Fig. 3 The plots show the distributions of mean, median, and standard
deviation of the physical parameter TOTUSJH and its synthetic
counterpart using 20 equal-width bins. Columns A and B show the
distributions of the descriptive statistics at two intermediate epochs,

Fig. 4 The box plots show the Mean

distributions of adversarial
accuracy of the three descriptive

statistics of TOTUSJH, namely wso
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the generated time series, respectively. This shows that the
CGAN model can generate realistic synthetic samples by
maintaining a good balance between underfitting and
overfitting. Moreover, the adversarial accuracy results are
consistent with our evaluation using KL divergence.
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50th and 250th, respectively. Column C shows the distributions of KL
divergence scores calculated by comparing distributions of synthetic
samples and real samples across all intermediate models divided into
six groups
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6.4 Examining descriptive statistics of synthetic
time series

We conducted two groups of flare forecasting-based
experiments (A&B) to examine the effectiveness of the
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synthetic data using descriptive statistics. Four classifiers
are trained for each group, with the same parameter setting
but different training datasets. In A2 and B2, we generate
70, 984 synthetic flare samples to balance the training set.
For A3 and B3, the training dataset is made balanced by
random oversampling 70, 984 duplicates of the minority
instances. For A4 and B4, the training dataset is made
balanced by random undersampling 1254 of the majority
instances. Of course, data manipulation is only served for
the purpose of training, and test sets are made entirely of
real data.

The results of the group A experiments are illustrated in
Fig. 5. Comparing Al and A2, it is evident that the per-
formance of SVM trained on the synthetically balanced
data is significantly higher than that of the baseline clas-
sifier, by both metrics, TSS and HSS2. This observation
confirms that the model generally performs best when
classes in the training dataset are roughly equal in size.
Specifically, the CGAN classifier results in a fivefold
improvement compared to the baseline experiment in terms
of TSS (an increase from 0.11 to 0.76). The HSS2 shows an
over onefold improvement (from 0.18 to 0.39). The HSS2
improvement in A2 compared to A3 and A4 is also sig-
nificant; from 0.19 to 0.39. TSS, however, remains roughly
stagnant in these cases, which is simply due to the differ-
ence in what the two metrics measure. It is crucial to note
that while balancing the data seems to be the main reason
for the significant improvement in performance from Al to
A2, it would not have happened by balancing the dataset
with unrealistic flaring instances. This is the main takeaway
from our synthetically generated samples that we are
evaluating through A2 experiment.

Furthermore, compared to the statistic-based oversam-
pling methods purposed in [9], the CGAN-based method
achieves a significant improvement in terms of TSS while
maintaining HSS2 at its highest value, i.e., 0.39. Overall,

1.0

0.74
08 076
[}
fos
I
o5
@ 0.39
® 0.4 52
0.18 0.19
02 0.1 I
0.0 i
BL CGAN RO
(A1) (A2) (A3)

Fig. 5 The bar plot compares CGAN’s synthetically generated data
(A2) with the other group A experiments listed in Table 2. The choice
of the last-value statistic in A makes our results comparable with the
naive random synthetic oversampling methods of RUSO, RNSO, and

the experiment results show that our method can produce a
better flare forecasting performance than the random
sampling-based methods or the statistic-based oversam-
pling methods.

Next, we examine the forecasting performance of the
group B experiments, as shown in Fig. 6. In these experi-
ments, we observe that B2 achieves the highest TSS and
HSS2. The result shows that the CGAN model can suc-
cessfully learn the median and standard deviation of real
multivariate time-series samples.

Putting together the results shown in Figs. 5 and 6, we
demonstrated that our method has multiple advantages
compared to other remedies. First, comparing to the ran-
dom oversampling method (A3 and B3), the CGAN-based
method can bring new information through generating
realistic synthetic samples instead of duplicating existing
samples. Second, comparing to the random undersampling
strategy (A4 and B4), the CGAN-based approach can
produce unlimited synthetic samples. Thus, more data
provide a path toward training more powerful machine
learning models. This significantly benefits flare forecast-
ing models based on deep neural networks. Third, com-
paring to the statistic-based oversampling methods (RUSO,
RNSO, and RNOSO), the CGAN-based method can learn
the descriptive statistics of the real MVTS samples and,
therefore, generate realistic samples. All in all, we can so
far conclude that CGAN algorithm can be used to remedy
the imbalance issue of MVTS flare datasets. What we have
not yet examined, however, is the temporal characteristics
of the synthetic time series, and whether they are realistic
beyond their median and standard deviation summaries.
Next, we put this question to the test.

mmm TSS
0.81 HSS
0.56
0.49
0.39
0.32 0.37
x x
0.21
0.2 :I:
RU RUSO RNSO RNOSO

(A4)

RNOSO purposed in [9]. The reported TSS and HSS2 values are
averaged over three separate evaluation trials on Partitions 2, 3, and 5
of SWAN-SF. Partition 4 is not involved in this experiment. Error
bars show the standard deviation of the obtained TSS/HSS2 values
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6.5 Examining synthetic time series v.s. over-/
under-sampling

In this section, we examine the effectiveness of synthetic
samples in time-series format. For the experiments in group
C, we use the same setting of training datasets with groups
A and B mentioned in Sect. 6.4. The forecasting results of
experiments in group C are reported in Fig. 7. We observe
that the model in C2 trained on the dataset balanced with
the synthetic samples beats the models trained in C1 and
C3, in terms of both TSS and HSS2 scores. The experiment
C2 shows a 31% improvement in terms of TSS comparing
to the model trained in C4. Although the model in exper-
iment C2 does not obtain the highest HSS2 score, it still
gives a comparable performance. The experimental result
validates our assumption that adding informative synthetic
samples to balance the training dataset can result in a more
robust forecasting model.

6.6 Examining incremental incorporation
of synthetic time series

To further demonstrate the effectiveness of the synthetic
multivariate time series, we conduct another experiment to
show how varying the number of incorporated synthetic
samples affects the forecasting performance. More

Fig. 7 The bar plot compares 10
CGAN’s synthetically generated
data (C2) with the other group C
experiments listed in Table 2.
The reported TSS and HSS2
values are averaged over three
separate evaluation trials on
Partitions 2, 3, and 5 of SWAN-
SF. Partition 4 is reserved for
validation of the
hyperparameters. Error bars 02 0.09
show the standard deviation of 0.05 I
the obtained TSS/HSS2 values

BL
(1)

0.8

0.6

TSS & HSS

0.4
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specifically, we fix the number of real flaring and non-
flaring samples in the training dataset, and gradually add
synthetic flaring samples while monitoring the model’s
performance on the test set. As illustrated in Fig. 8, we
conduct ten experiments by varying the imbalance ratios of
the training dataset from 1:58 to 1:1. The ratio of 1:58 is
the original imbalance ratio of Partition 1, including 1254
real flares and 72,238 non-flaring samples.

Through observing the result, we can see that the per-
formance generally increases as we reduce the imbalance
ratio using our synthetic MVTS data. While the strict
increase of TSS values indicates that the incorporated
synthetic time series are of high quality (when compared
with the real time series), we notice that the HSS2 values
slightly decline at the very end. Familiar with the different
behavior of these two metrics, we believe this is caused due
to the lack of a per-experiment hyperparameter tuning. In
other words, the added synthetic time series eventually
made the default hyperparameters ineffective and conse-
quently the model suboptimal. This change seems to have
been overlooked by TSS, but not by HSS2, which is the
main reason for using them as a couple. Overall, the results
show that the trained CGAN model can indeed generate
realistic multivariate time-series samples.

We would like to recapitulate that our main objective is
to show the effectiveness of CGAN as a possible remedy to

mam TSS
0.8 0.76 =S

0.61
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0.42
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the class-imbalance issue on SWAN-SF. Therefore, we do
not claim the superiority of this approach over any other
existing methods, nor do we infer that our findings can be
extended to any other multivariate time-series datasets. To
this end, we did not include multiple datasets, and we did
not compare the performance of CGAN with other GAN-
based algorithms. Instead, we kept our focus on evaluating
the contribution of CGAN-generated synthetic MVTS of
SWAN-SF, and the reliableness of the generated time
series for machine learning use.

7 Conclusion & future work

In this project, we utilized the conditional generative
adversarial network (CGAN) to perform data-informed
augmentation of multivariate time series (MVTS) on a
recently released flare forecasting benchmark dataset
(SWAN-SF). We tailor several verification methods to
show that the generated MVTS samples indeed preserve
the distribution of the real physical parameters: (1) we
utilize Kullback-Leibler divergence metric to quantify the
similarity between the distributions of the real and syn-
thetic data; (2) we use adversarial accuracy to monitor the
performance of CGAN directly; (3) we use the synthetic
MVTS samples to balance our dataset and compare the
classification performance with that trained on the original
data and that on the dataset that was balanced by other
oversampling, undersampling, and statistic-based synthetic
oversampling methods such as RUSO, RNSO, and
RNOSO. The results showed that the CGAN-based
approach can remarkably boost flare forecasting perfor-
mance in terms of TSS and HSS2. Therefore, we consider
that the CGAN method is an effective remedy for miti-
gating the class-imbalance issue in flare forecasting.

The CGAN-based approach provides a preliminary
attempt to generate meaningful synthetic physical features.

0.42

1:20 1:15 1:12 1:10 1:5 1:3 1:2 1:1
Imbalance ratio (FL:NF)

There are still many model-related aspects that can be
improved further such as incorporating an advanced loss
function of Wasserstein GAN, or exploring more complex
structures or more layers of the generator and the dis-
criminator. Next, we plan to try deep learning models with
flare forecasting, such as convolutional neural networks or
recurrent neural networks. In the future, we also wish to
investigate how to explore and interpret the meaning of
synthetic samples from the astrophysics point of view by
collaborating with domain experts.
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