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Abstract
One of the major bottlenecks in refining supervised algorithms is data scarcity. This might be caused by a number of

reasons often rooted in extremely expensive and lengthy data collection processes. In natural domains such as Helio-

physics, it may take decades for sufficiently large samples for machine learning purposes. Inspired by the massive success

of generative adversarial networks (GANs) in generating synthetic images, in this study we employed the conditional GAN

(CGAN) on a recently released benchmark dataset tailored for solar flare forecasting. Our goal is to generate synthetic

multivariate time-series data that (1) are statistically similar to the real data and (2) improve the performance of flare

prediction when used to remedy the scarcity of strong flares. To evaluate the generated samples, first, we used the

Kullback–Leibler divergence and adversarial accuracy measures to quantify the similarity between the real and synthetic

data in terms of their descriptive statistics. Second, we evaluated the impact of the generated samples by training a

predictive model on their descriptive statistics, which resulted in a significant improvement (over 1100% in TSS and 350%

in HSS). Third, we used the generated time series to examine their high-dimensional contribution to mitigating the scarcity

of the strong flares, which we also observed a significant improvement in terms of TSS (4%, 7%, and 31%) and HSS (75%,

35%, and 72%), compared to oversampling, undersampling, and synthetic oversampling methods, respectively. We believe

our findings can open new doors toward more robust and accurate flare forecasting models.
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1 Introduction

Living With a Star (LWS) is a NASA scientific program to

study the Sun–Earth system and its impacts on human life

and society. Dedicated to this program, NASA launched

the first mission named Solar Dynamics Observatory

(SDO) in February 2010. The SDO mission is an invalu-

able instrument for researching solar activity, which can

produce damaging space weather. This space weather

activity can have drastic impacts on space and air travel,

power grids, GPS, and communication satellites [1]. For

example, in March 1989, geomagnetically induced cur-

rents, produced when charged particles from a coronal

mass ejection impacted the earth’s atmosphere, caused

power blackouts and direct costs of tens of millions of

dollars to the electric utility Hydro-Quebec in Canada [2].

If a similar event would have happened during the summer

months, it is estimated that it would likely have produced
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widespread blackouts in the northeastern USA, causing an

economic impact to the tune of billions of dollars [2].

A solar flare is an event occurring in the solar corona

that is characterized by a sudden orders-of-magnitude

brightening in Extreme Ultra-Violet (EUV) and X-ray, and

for large events, gamma-ray emissions, from a small area

on the Sun, lasting from minutes to a few hours [3, 4].

Since 1974, Geostationary Operational Environmental

satellites (GOES) operated by the National Oceanic and

Atmospheric Administration (NOAA) are employed to

automatically detect and classify X-ray flares into wave-

length bands of 1-8 Ångstrom. According to the peak soft

X-ray flux in this range, flares are logarithmically catego-

rized as A, B, C, M, and X, from weaker to stronger. In a

typical binary classification strategy, the most intense

flares, namely the M and X classes, are identified as the

positive class. In contrast, no flare occurrence and flares of

A, B, and C classes are identified as the negative class.

The class-imbalance issue, an extreme imbalance

between positive and negative classes, is intrinsic to many

real-world machine learning tasks, including the solar flare

forecasting. It is widely known that an improper handling

of the class-imbalance issue can result in unrealistic and

unreliable analyses, with limited practical value in opera-

tional settings [5–7]. The scarcity of the positive class(es)

of flare data is an important problem that needs to be

appropriately treated in the current research. Inspired by

this, we make use of a deep learning-based approach to

produce the synthetic multivariate time-series data using

generative adversarial networks.

Many remedies have already been put forward to

address the class-imbalance issue. The simplest approaches

are oversampling, undersampling, and cost-sensitive

learning. We recently revisited some of these approaches

and their impact on a flare forecasting dataset [8]. In a more

complex attempt of mitigating the class-imbalance issue,

[9] demonstrates the benefit of using various statistic-based

synthetic oversampling techniques compared to naı̈vely

oversampling and undersampling. This motivates us to

investigate synthetic sample-based oversampling from a

new angle. More specifically, we employ a conditional

generative adversarial network (CGAN) to generate real-

istic time-series data (as opposed to descriptive statistics

derived from time series) based on real data and, therefore,

to construct a balanced training dataset to facilitate the task

of multivariate time-series classification. The rationale

behind using CGAN is as follows: (1) we can learn the

distribution of existing data and generate informative

synthetic samples; (2) the algorithm can explicitly control

the category of generated samples, especially to generate

minority synthetic samples for mitigating the class-imbal-

ance issue; (3) the CGAN enables us to produce time-series

data rather than point-in-time data compared to the statis-

tic-based oversampling method.

This paper extends our previous investigations of using

a CGAN to produce time-series data in [10]. This paper

provides additional explanations of our input dataset and

associated classification problems used to evaluate our

synthetic data. Additionally, we have included numerous

comparisons with other approaches for remedying the

class-imbalance issue. The main contributions of this paper

can be categorized as follows:

• We utilize the CGAN to perform synthetic time-series

data generation on a recently released flare forecasting

benchmark dataset (SWAN-SF). Our experiments indi-

cate that utilizing the synthetic time-series data we have

generated may be an effective solution to the data

scarcity in the solar flare forecasting problem.

• We perform model selection using two methods: (a) the

Kullback–Leibler divergence metric for quantifying the

similarity between the distributions of the real and

synthetic data, and (b) the adversarial accuracy for

monitoring the performance of CGAN directly. We

show that these methods unanimously select the same

models.

• We conduct three groups of comparative experiments to

examine the effectiveness of the generated synthetic

samples as a remedy for the class-imbalance issue on

the flare forecasting task. We show that the significant

improvements are present not only compared to the

baseline where no augmentation is utilized, but also

compared to other remedies such as under-/over-

sampling, and statistical-based synthetic oversampling

methods.

• We quantitatively monitor the impact of the number of

synthetic samples used for balancing the data on the

forecasting performance. Overall, we observe a steady

boost in performance in terms of both TSS and HSS2

scores as the imbalance ratio decreases, providing

further evidence that the synthetically generated time

series are mimicking the real time series.

2 Related work

2.1 Class-imbalance remedies

One challenge present in many, if not all, natural hazard

forecasting problems is the issue of class imbalance, and

flare forecasting is no exception to this issue. Class

imbalance describes a situation where the events of one or

more of the class(es) in the dataset are notably less than

that of the other class(es). It is common to apply special

remedies to address the class imbalance if present. The
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reasoning behind addressing class imbalances is that a

significant imbalance in the dataset would affect any

classifier by injecting a bias toward the majority classes,

and machine learning models generally perform best when

classes are roughly equal in size. For example, the authors

[11] investigated the impact of class-imbalance issue on a

solar flare benchmark dataset, namely SWAN-SF [12].

Their findings show that the classification performance is

improved when typical class-imbalance remedies, such as

undersampling, oversampling, and incorporating misclas-

sification cost, are applied. Random oversampling balances

the dataset by randomly selecting and duplicating samples

of the minority class. Conversely, random undersampling

randomly removes samples of the majority class to achieve

a balance between the two classes. For multi-class prob-

lems, either of these remedies can be coupled with pre-

serving the climatology of the subclasses in the original

dataset [13]. However, these sampling-based methods can

only provide limited improvements in training, with the

risk of overfitting, since they do not introduce or utilize any

new data. Another approach to addressing class imbalance

is to produce synthetic samples based on the existing data.

In [14], Synthetic Minority Oversampling Technique,

namely SMOTE, was introduced to create new samples

between minority instances and their nearest neighbors of

the same class. In [9], three naı̈ve random synthetic over-

sampling methods, namely Random Uniform Synthetic

Oversampling (RUSO), Random Normal Synthetic Over-

sampling (RNSO), and Random NOise Synthetic Over-

sampling (RNOSO), were employed to generate synthetic

samples of the minority classes in the flare forecasting

problem. RUSO generates new samples from the uniform

distribution between the minimum and maximum values of

each feature of minority samples in the training set. In

contrast, RNSO uses the normal distribution with the mean

and standard deviation values of each feature of minority

samples in the training set. RNOSO generates new samples

by sampling noise terms from the normal distribution with

mean of 0 and standard deviation of 0.1 and adds the noise

to the existing minority samples. Although [9] demon-

strates the benefit of using various statistic-based synthetic

sampling methods over naı̈vely oversampling and under-

sampling, it is important to note that: (1) they do not

generate time-series data (as shown in Table 1). The

development of recurrent neural networks and generative

modeling opens the door to generating sequential data,

such as videos and music, and time series [15, 16]; (2) they

work under the assumption of normality, which is not

necessarily valid in many real-world applications. In our

study, we know that the peak X-ray fluxes of solar flares

follow a power-law distribution, and the distribution of

each of the magnetic-field physical parameters of SWAN-

SF is impacted by that.

2.2 Generative adversarial network (GAN)

Generative adversarial network is an emerging technique

for modeling high-dimensional distributions of real sam-

ples implicitly [26]. Initially proposed in [17], the GAN

learns to produce realistic data by training two components,

the generator and the discriminator, in an adversarial

manner. First, the generator is used to capture the data

distribution by sampling random vectors from a latent

space as inputs and to produce samples similar to the real

data. Next, the discriminator receives both generated

samples and real samples as inputs, and estimates the

probability of the input coming from the real data space.

By training the generator and the discriminator simulta-

neously, a generator is enabled to gradually generate more

realistic samples under the supervision of the real samples.

This process is repeated until the discriminator cannot

distinguish the generated samples from the real ones.

Typically, either the generator or the discriminator can be

implemented by arbitrary multilayer neural networks con-

sisting of fully connected networks, convolutional neural

networks, and recurrent neural networks, depending on the

actual data source.

The vanilla GAN has exhibited some limitations on the

stability of the model training and the diversity of the

generated sample [18]. Therefore, several works have

investigated designing new architectures in order to miti-

gate the training issues and improve the quality of the

generated samples. For example, the deep convolutional

GAN (DCGAN) utilizes convolutional neural networks as

the generator and discriminator and replaces pooling layers

with strided convolutions (discriminator) and fractional-

strided convolutions (generator) to improve the training

stability [27]. The Wasserstein GAN [18] introduces the

Earth-Mover distance to improve the learning stability and

provide a meaningful learning curve for tuning hyperpa-

rameters. The Info GAN [19] incorporates the representa-

tion learning by maximizing the mutual information

between a fixed subset of the latent variables and the

observations. The variational GAN (VAEGAN) [20]

combines autoencoder and GAN to encode the real data as

inputs of the generator instead of randomly sampling from

a latent space, enabling the GAN model to achieve faster

and more stable learning. The conditional GAN (CGAN)

[21] is another variant dedicated to improving the quality

of the generated samples and controlling the classes of the

synthetic samples by utilizing conditional information. The

most common form of conditional information is the class

labels. All the reviewed approaches and their key features

are organized in Table 1 for convenience.

Various GAN applications have been proposed to deal

with different demands, from art, science, finance, drug
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discovery to video games, and have achieved great success.

In the computer vision domain, synthetic image generation

has been tested in scenarios, such as cartoon characters

[28], face frontal views [29], and new human poses [30].

Image-to-image translation [31, 32] and text-image syn-

thesis [33] applications enable users to transfer objects

between different styles or different formats. Moreover,

image super-resolution [34, 35] and motion stabilization

[36] applications are especially helpful in autonomous

driving and navigation tasks since object detection accu-

racy is improved by utilizing optimized images or videos.

The last but not least avenue of applying GANs is data

augmentation. Traditional data augmentation techniques

usually perform a transformation pipeline on the existing

instances of data, and it involves one or more of data

manipulations, to name a few, random rotation, translation,

reflection, cropping, blurring, sharpening, and hue adjust-

ment. However, these transformations are not applicable to

all situations. For example, the chirality of an image of

solar filament would be changed if a reflection or affine

transformation is performed. GAN provides an alternative

way to perform the data augmentation, that is to learn an

underlying distribution of real samples and to produce new

realistic samples based on the learned distribution.

2.3 Time-series generation using GAN

Various projects in different domains have emerged to shed

light on generating time-series data by utilizing the gen-

erative adversarial network, as shown in Table 1. In [16],

the use of a C-RNN-GAN was proposed as a method to

generate musical data. This method applied a unidirec-

tional long short-term memory (LSTM) as the generator

and a bidirectional LSTM as the discriminator. In [22],

RGAN was developed as a privacy-preserving method for

generating synthetic medical data in an effort to mitigate

the concern regarding the utilization of the privacy-sensi-

tive patient data to train machine learning models. Dop-

pelGANger [23] is another framework designed for

generating synthetic time series data with high fidelity and

sharing data with privacy-free properties. Particularly, it

deals with mix-type datasets that contain continuous and

discrete features. In [37], GAN was utilized as a data

augmentation method for generating synthetic biosignal

data, including electroencephalographic (EEG) and elec-

trocardiography (ECG). The improved Wasserstein GAN

was employed to generate synthetic spiking time series in

the banking domain [38]. In [24], the authors used GAN to

learn the conditional probability distribution of the key

features to generate synthetic time-series data. TimeGAN

[25] combined the versatility of the unsupervised GAN

Table 1 Fourteen studies related to this work

No. Methods Production

types

Features

1 Oversampling/

undersampling

Time series The simplest one; No new data introduced

2 Advanced oversampling

[13]

Time series Applied on multi-class problems

3 SMOTE [14] Point-in-time Provides statistical interpretations

4 RUSO/RNSO /RNOSO [9] Point-in-time Provides statistical interpretations

5 Vanilla GAN [17] Time series Generating single-class samples

6 WGAN [18] Time series Stable and faster training by using a meaningful objective function

7 InfoGAN [19] Time series Learns interpretable latent variables in an unsupervised manner

8 VAEGAN [20] Time series Stable and faster training

9 CGAN [21] Time series Generates multi-class samples by using conditional information; Stable and faster

training

10 C-RNN-GAN [16] Time series Generates single-category musical data

11 RCGAN [22] Time series Generates privacy-free medical data

12 DoppelGANger [23] Time series High fidelity; Privacy-free; Deal with mix-type data

13 [24] Time series Learns the conditional probability distribution of features by GAN

14 TimeGAN [25] Time series Incorporates conditional temporal dynamics into the unsupervised GAN

The over-/under-sampling (Row 1) is the simplest one which is considered as our baseline model. Row 2 corresponds an effective method in

multi-class problems that couples oversampling and undersampling by preserving the distribution of the subclasses in the original dataset. Rows

3 and 4 describe statistic-based methods. Rows 5–14 list several GAN-based methods. The type of the generated data for each method is specified

in the third column
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approach with the control over conditional temporal

dynamics. This method has two more autoencoding com-

ponents, including an embedding function and a recon-

struction function trained jointly with the generator and the

discriminator components. This structure enables the

model to iteratively learn to encode features, generate

representations, and adjust weighting parameters according

to the objective function.

3 SWAN-SF dataset

The data used in this project are a benchmark dataset

named Space Weather ANalytics for Solar Flares (SWAN-

SF) [12], which is publicly available at the Harvard

Dataverse Repository [39]. SWAN-SF is a comprehensive,

multivariate time-series dataset extracted from solar pho-

tospheric vector magnetograms in HMI Active Region

Patch (HARP) data made available as the Space-weather

HMI Active Region Patch (SHARP) series [40, 41]. The

benchmark dataset has 5 classes, including four flare

classes of X, M, C, and B, with an additional class labeled

as NF representing the absence of any of the listed flares.

Each multivariate time series is labeled by looking at the

strongest flare event recorded in the 24-hour prediction

window. This interval follows the 12-hour observation

window from which the magnetic field parameters are

calculated. In this study, we simplify the task to a binary

classification by merging the stronger instances (i.e., X-

and M-class flares) to form the positive class, and the

weaker instances (i.e., of C, B, and NF classes) to represent

the negative class. The extreme class imbalance exhibited

by SWAN-SF is illustrated in Fig. 1, with each class’s

sample size annotated. A proper treatment of this imbal-

ance is the objective of this study.

The SWAN-SF is made up of five temporally non-

overlapping partitions covering the period from May 2010

through August 2018. Each partition contains approxi-

mately an equal number of X- and M-class flares, and there

are a total of 6,234 flare records and 324,952 non-flaring

records. Each flare record is a multivariate time series

(hereafter MVTS) with 60 time steps, each of which has 51

magnetic field parameters. (For the definition of the

parameters, see Table 1 in [12].) We limit our investigation

to only four of these 51 parameters, abbreviated to

TOTUSJH, ABSNJZH, SAVNCPP, and TOTBSQ, which

have been listed as the most relevant to the flare forecasting

in several studies including [41] and more recently in [42].

Moreover, based on how they are calculated it is easy to

see that many of these parameters are highly correlated

with each other and a small subset of them suffices our

objective in this study.

One major concern for evaluating flare forecasting

models is to determine evaluation metrics appropriate for

the above-mentioned class imbalance. Many well-known

performance metrics are significantly impacted by class

imbalance [43], including accuracy, precision, and F1-

score, which ignore the number of misclassified instances.

From years of exploration, domain experts have agreed on

two effective metrics, namely the true skill statistic (TSS)

[44] and the updated Heidke skill score (HSS2) [45], as

shown in Eqs. 1 and 2, respectively. These are functions of

the confusion matrix whose entries are true positive (tp),

true negative (tn), false positive (fp), and false negative

(fn). We will use both of these metrics to evaluate the

performance of our flare forecasting models in Sects. 6.4

and 6.5.

TSS ¼ tp

tp + fn
� fp

fp + tn
ð1Þ

HSS2 ¼ 2 � ððtp � tnÞ � ðfn � fpÞÞ
ðtpþ fnÞ � ðfnþ tnÞ þ ðfpþ tnÞ � ðtpþ fpÞ ð2Þ

Fig. 1 The plot illustrates the

distribution of the 5 flare classes

in SWAN-SF dataset. The flare

counts and the imbalance ratio

(font in red) per partition are

annotated. In this study, the flare

instances of X and M classes

make up the positive class, and

the C, B, and N classes account

for the negative class
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4 Conditional GAN: a RECAP

The algorithm we employ is the conditional generative

adversarial network (CGAN) whose architecture is illus-

trated in Fig. 2. Several reasons make us decide to utilize

this algorithm: First, CGAN can control the category of

generated samples, allowing us to generate samples of

minority classes to mitigate the class-imbalance issue.

Second, it can provide stable and faster training compared

to the vanilla GAN [46]. Third, the category information of

instances in the SWAN-SF dataset is available as condi-

tional information for training CGAN models. We choose

LSTM networks as the fundamental components in both

the generator and the discriminator since our subject is

sequential data.

As mentioned in Sect. 2.2, the ultimate goal of a gen-

erator (G) is to generate an output with similar character-

istics as the real data. As seen in Fig. 2, the algorithm takes

in a random input vector Zn, which is a tensor with the

shape of [batch size, sequence length, latent dim]. In our

case, the shape is [32, 60, 3] for 32 multivariate time series

in a batch, each of length 60 and the latent dimension of 3.

The conditional vector (Cn), as a type of auxiliary infor-

mation, has the shape of [32, 60, 2] since the binary labels

are encoded into a one-hot representation. By concatenat-

ing Zn and Cn, we obtain a tensor of shape [32, 60, 5] as

the final input of the generator. Note that the latent space

dimension, as a hyperparameter, is determined by the

dimension of the parameters and the conditional informa-

tion. We empirically assume that the total dimension of the

latent space and the conditional information should be

similar to the dimension of the parameters being produced.

Besides, the dimension of the latent space and the condi-

tional information should be balanced, which means nei-

ther should dominate the inputs of a generator. The outputs

of the generator, regarded as the generated or synthetic

samples, are calculated by going through the LSTM and

dense layers pipeline. The LSTM layer controls the

memorizing process using a gating mechanism. Mean-

while, the dense layers guarantee that the generated sam-

ples can maintain the same shape as the real data, i.e.,

[32, 60, 4] where 4 stands for four magnetic field param-

eters mentioned in Sect. 3.

The task of a discriminator (D) is to classify inputs as

either being the real or generated samples produced by the

generator. As Fig. 2 illustrates, the discriminator takes both

the real and the generated multivariate time-series samples

as the inputs. To simplify the notation, we use fXn to denote

either real (Xn) or synthetic samples (GðZnjCnÞ) when the

difference is clear from the context. By feeding Cn into D,

the discriminator produces judgments about whether the

sample is generated or real and evaluates if the category of

the generated sample corresponds to its conditional infor-

mation. Finally, the binary cross-entropy loss calculated

between the predicted and the ground-truth values is used

to update the weighting parameters of the generator and the

discriminator using the backpropagation.

So far, we have described the structures and function-

alities of the generator and the discriminator. Next, we

define the objective function used for optimizing the

algorithm. In our framework, the objective function is

divided into two parts: the generator loss (LossG) and the

discriminator loss (LossD). The discriminator loss is

obtained by calculating the cross-entropy between the

ground truth and the outputs of the discriminator, as shown

in Eq. 3,

LossDðfXn jCn; ynÞ ¼ �CE
�

DðfXn jCnÞ; yn
�

ð3Þ

where fXn is the set of inputs of the discriminator, and Cn is

the conditional vector. DðfXn jCnÞ returns the likelihood of

fXn being a real or a generated sample, and CE stands for

Fig. 2 This is the framework of the CGAN algorithm, including

components of the generator (G) and the discriminator (D). Each

component is processed by the combination of the LSTM layer and

the dense layer. The inputs of the generator are random input vectors

concatenated with conditional vectors. The inputs of the discriminator

are either generated or real multivariate time series with conditional

vectors. The binary cross-entropy is the criterion for optimizing the

model
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the cross-entropy loss function. Note that fXn is composed

of two different types of data sources, as formulated in

Eq. 4.

fXn ¼
Xn if inputs are real samples

GðZnjCnÞ if inputs are generated samples

(

ð4Þ

Correspondingly, yn takes two different values depending

on the source of the sample in fXn .

yn ¼
1 if inputs are real samples

0 if inputs are generated samples

(

ð5Þ

The generator loss (LossG) is also formulated in Eq. 6,

where the input GðZnjCnÞ is the generated samples, and its

corresponding predictions are D
�

GðZnjCnÞjCn

�

. To opti-

mize the generator, we need to guide the discriminator to

classify the generated samples as real. To do so, we ini-

tialize the ground-truth labels with 1s (same as the real

samples). By minimizing LossG, the predictions of the

discriminator approach 1s gradually indicating the gener-

ated samples are realistic enough that the discriminator

cannot distinguish them from the real samples.

LossGðZnjCnÞ ¼ �CE

�

D
�

GðZnjCnÞjCn

�

; 1

�

ð6Þ

5 Methodology

The main objective of this study is to examine the effec-

tiveness of CGAN as a possible remedy to the class-im-

balance issue on SWAN-SF. In this section, we focus on

proper assessments of the contribution of CGAN-generated

synthetic multivariate time series of SWAN-SF and answer

whether the generated time series are reliable for machine

learning use.

There are two main concerns in evaluation of GAN

models and their synthetically generated data: (1) to

determine the learning progress and (2) to examine the

effectiveness of synthetic data for the original problem.

Regarding the former, in most image-based GAN projects,

researchers can determine the training progress by visually

examining the synthetic images. However, the visual

inspection of synthetic time series does not give us much

evidence as to whether the synthetic samples are realistic or

not. To address this concern, we present two statistical-

based approaches to handle the model selection issue.

Regarding the latter, we design multiple experiments by

applying different class-imbalance remedies to tackle the

flare forecasting problem. We elaborate on our method-

ologies in the following text.

5.1 Model selection using distributions
of statistical features

To provide a statistical evaluation for our model, we

compare a few descriptive statistics extracted from the real

and synthetic time-series data. This establishes a high-level

similarity criterion that must be satisfied if the distributions

of the real and generated time series are indeed similar.

Suppose we have sets of real (T) and synthetic (S)

samples, with equal number of multivariate time series. For

each instance, we extract its mean, median, and standard

deviation. We then construct the corresponding probability

distributions PT and PS, with setting the bin size to M. To

quantitatively measure the similarity, we calculate the

Kullback–Leibler (KL) divergence [47] between distribu-

tions of PT and PS using Eq. 7. The KL divergence is a

nonnegative measure, which means DKLðPT jjPSÞ� 0. The

smaller value indicates the higher similarity between PT

and PS.

DKLðPT jjPSÞ ¼
X

m2M
PTðmÞ � log

�PTðmÞ
PSðmÞ

�

ð7Þ

5.2 Model selection using adversarial accuracy

The adversarial accuracy, as formulated in Eq. 8, is put

forward by Yale et al. [48], which is used for measuring the

similarity of two sets of data samples through their nearest

neighbors.

AATS ¼
1

2
ð1
n

X

n

i¼1

1ðdTSðiÞ[ dTTðiÞÞ

þ 1

n

X

n

i¼1

1ðdSTðiÞ[ dSSðiÞÞÞ
ð8Þ

dTSðiÞ ¼ minjjjXi
T � X j

Sjj2
dTTðiÞ ¼ minj;j6¼ijjXi

T � X j
T jj2

(

ð9Þ

In Eq. 8, the subscripts T and S refer to the sets of real and

synthetic samples, respectively. The distance function d is

defined in Eq. 9 as the minimum (Euclidean) distance

between each real sample Xi
T and all synthetic samples Xj

S

(i.e., dTSðiÞ), and all other real samples Xj
T (i.e., dTTðiÞ). The

shortest distance generally means the highest similarity

between two samples. If dTSðiÞ[ dTTðiÞ, it means no syn-

thetic sample is found in S that is more similar to Xi
T than

any other real samples in T. Otherwise, a synthetic sample,

which is more similar to the Xi
T , can be found. A realistic

sample is generated when dTSðiÞ\dTTðiÞ. The range of
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adversarial accuracy is [0, 1]. The outcome 1 indicates that

there is no resemblance between the set of real samples and

the set of synthetic samples. The outcome 0 indicates that

the two sets are exactly the same, yielding no new infor-

mation. The desirable outcome of adversarial accuracy is

close to 0.5, implying that the real and synthetic samples

generated by the generators are indistinguishable [48].

5.3 Synthetic data v.s. over-/under-sampling

To assess the effectiveness of the synthetic data, we design

several experiments where we compare the impact of dif-

ferent balancing remedies on the classification of flaring

and non-flaring instances of SWAN-SF, with that of bal-

ancing using our synthetic data. As shown in Table 2, we

set up three groups of experiments, namely A, B, and C,

and each comprises four experiments. For A and B, the

primary difference between them is that in the former we

utilize the last-value statistic of MVTS samples, whereas in

the latter, median and standard deviation of time series are

used. The last-value is literally the last value of each time

series. This makes our results comparable with those in [9]

where point-in-time data were used. The mean statistic is

sensitive to outliers, which makes us eliminate it for flare

forecasting. For C, we aim to examine the effectiveness of

synthetic samples in their original high-dimensional for-

mat, i.e., time series. The question is whether the unwanted

noise of the synthetic MVTS samples was obscured by the

summary descriptive statistics. Therefore, we conduct the

experiments in C to verify the hypothesis.

For each group, we train four classifiers with the same

parameter setting, but with different training datasets. The

models in A1, B1, and C1 are trained on the highly

imbalanced, real dataset without any changes. The models

in A2, B2, and C2 are trained on the dataset that is made

balanced by adding synthetic minority (flaring) samples.

The models in A3, B3, and C3 are trained on the dataset

that is made balanced by random oversampling of (i.e.,

duplicating) the minority instances. Lastly, the models in

A4, B4, and C4 are trained on the dataset that is made

balanced by random undersampling of the majority (non-

flaring) instances. The models in A1, B1, and C1 are

considered as the baseline.

Table 2 All experiments carried out to examine various class-imbalance remedies

Group No. Method Description Statistic

A A1 Baseline (BL) No data augmentation applied on P1 Last value

A2 Synthetic Oversampling using CGAN

(CGAN)

Adding synthetic flaring samples to the minority class

of P1

A3 Random oversampling (RO) Randomly oversampling samples of the minority class

on P1

A4 Random undersampling (RU) Randomly undersampling samples of the majority class

on P1

B B1 Baseline (BL) No data augmentation applied on P1. Median & standard

deviation

B2 Synthetic oversampling using CGAN

(CGAN)

Adding synthetic flaring samples to the minority class

of P1

B3 Random oversampling (RO) Randomly oversampling samples of the minority class

on P1

B4 Random undersampling (RU) Randomly undersampling samples of the majority class

on P1

C C1 Baseline (BL) No data augmentation applied on P1 Time series

C2 Synthetic oversampling using CGAN

(CGAN)

Adding synthetic flaring samples to the minority class

of P1

C3 Random oversampling (RO) Randomly oversampling samples of the minority class

on P1

C4 Random undersampling (RU) Randomly undersampling samples of the majority class

on P1

Groups of A and B have experimented on the extracted descriptive statistics of MVTS data. Group A utilizes the last value statistic of MVTS

samples as inputs, whereas in group B, median and standard deviation of samples are used. All experiments in A and B utilize Partition 1 (P1) as

the training set and Partitions 2, 3, and 5 as the test sets. Partition 4 is not involved in this experiment. The experiments in C are conducted to

examine various class-imbalance remedies by taking time series as inputs. Similarly, Partition 1 is utilized as the training set and Partitions 2, 3,

and 5 as the test sets. Partition 4 is reserved for validation of the hyperparameters
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6 Experiments and results

In this section, we conduct experiments to evaluate the

effectiveness of the proposed assessment methods. First,

we show the results of two model selection methods based

on the distributions of statistical features and the adver-

sarial accuracy. Then, we present multiple experiments by

applying different class-imbalance remedies to tackle the

flare forecasting problem. Furthermore, we exhibit a

quantitative analysis of the quality and usefulness of the

synthetic flaring time series generated by the CGAN model

to balance the training dataset.

6.1 Experimental settings

After exploring various settings based on the defined

objective function, we found that using the Adam optimizer

for the generator and the gradient descent optimizer for the

discriminator produced optimal results. We tune the per-

formance of CGAN model by setting different hyperpa-

rameters, i.e., latent space dimensions: f2; 3; 4; 5g, learning
rates: f0:5; 0:1; 0:01; 0:001; 0:0001g, batch sizes:

f16; 32; 64g. Empirically, we concluded our optimal

hyperparameter setting with the latent space dimension of

3, the conditional information dimension of 2 (since we

have two classes), the learning rate of 0.1, the batch size of

32, and the LSTM hidden size of 100. The model was

trained with 300 epochs, and intermediate models were

saved at every five epochs. We have implemented CGAN

using the TensorFlow 2.1 library [49].

For preprocessing of SWAN-SF, we linearly trans-

formed all five partitions to the range ½�1; 1� for training
the CGAN model and evaluations. We train the generator

on partition 1 of SWAN-SF, with the four magnetic field

parameters mentioned in Sect. 3.

We employ the support vector machine (SVM) as the

standard classifier for experiment groups A and B in

Sect. 6.4. The models are trained on Partition 1 and eval-

uated on Partitions 2, 3, and 5. Partition 4 is not involved in

this experiment. For the experiments in A, we use the same

hyperparameters as were used in [9], i.e., kernel, C and

gamma set to ‘rbf’, 0.5 and 8, respectively. Since the input

of the experiments in group B has double dimensions

compared to A (from 4 to 8), we adjust the hyperparame-

ters accordingly following the instructions in [50–52], and

set the kernel, C and gamma to ‘rbf’, 0.25 and 0.25,

respectively. We conduct the time-series-based classifica-

tion experiments (group C in Sect. 6.4) using the time-

series-specific support vector classifier (T-SVC). Similarly,

Partition 1 is for training and Partitions 2, 3, and 5 are for

evaluation. Partition 4 is reserved for validation of the

hyperparameters. We performed a grid search on C and

gamma to find the optimal setting, i.e., C: {0.001, 0.01, 0.1,

1, 10, 100}, gamma: {0.001, 0.01, 0.1, 1, 10, 100}, using

the ‘rbf’ kernel. We conclude the optimal setting with C

and gamma to 0.01 and 0.01.

6.2 Evaluation using distributions of statistical
features

We have conducted this analysis on all of the four

selected physical parameters, but for brevity, we present

only the results of TOTUSJH. In Fig.3, we compare the

results by monitoring the improvement of the models at

every 5 epochs, and the quality of the samples they gen-

erate. Specifically, we utilize 1254 real flare samples in

Partition 1 of SWAN-SF and 1254 synthetic samples

generated by the CGAN model in the evaluation. The

columns A and B in Fig. 3 compare the distributions of the

three descriptive statistics of the real and synthetic time

series based on two intermediate models saved in the

training process. Column A corresponds to a model trained

after 50 epochs, whereas B shows the results after 250

epochs. Comparing A with B, it is evident that, at least in

terms of the three descriptive statistics, the generator

gradually learns to generate synthetic time series, which

are more and more similar to the real flaring time series. To

draw a more comprehensive picture, we calculate the

Kullback–Leibler (KL) divergence between the distribu-

tions of three descriptive statistics of the real and the

synthetic time series every 50 epochs. We observe, as

shown in the column C of Fig. 3, that the KL divergence

decreases as training progresses. We found that on average,

the models between the epochs 201–250 achieve the best

performance, with lower KL divergence for the mean,

median, and standard deviation distributions. We also see

that the variance between the results produced by inter-

mediate models trends downward until we surpass the 250

epoch mark. We further need to examine the overfitting

issue. That is, the KL divergence can be low if the CGAN

model just memorizes the training set, resulting in no or

limited new information produced. We assess this question

in the next section.

6.3 Evaluation using adversarial accuracy

The evaluation of our intermediate models using adver-

sarial accuracy is illustrated in Fig. 4, for the physical

parameter TOTUSJH, as an example. We again utilize

1254 real flare samples in Partition 1 of SWAN-SF and

1254 synthetic samples generated by the CGAN model. As

the box plots suggest, the models between 201 to 250

epochs achieve the adversarial accuracy of 0.55, 0.60, and

0.68, in terms of mean, median, and standard deviation of
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the generated time series, respectively. This shows that the

CGAN model can generate realistic synthetic samples by

maintaining a good balance between underfitting and

overfitting. Moreover, the adversarial accuracy results are

consistent with our evaluation using KL divergence.

6.4 Examining descriptive statistics of synthetic
time series

We conducted two groups of flare forecasting-based

experiments (A&B) to examine the effectiveness of the

Fig. 3 The plots show the distributions of mean, median, and standard

deviation of the physical parameter TOTUSJH and its synthetic

counterpart using 20 equal-width bins. Columns A and B show the

distributions of the descriptive statistics at two intermediate epochs,

50th and 250th, respectively. Column C shows the distributions of KL

divergence scores calculated by comparing distributions of synthetic

samples and real samples across all intermediate models divided into

six groups

Fig. 4 The box plots show the

distributions of adversarial

accuracy of the three descriptive

statistics of TOTUSJH, namely

mean, median, and standard

deviation, evaluated with all

intermediate models divided

into six groups
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synthetic data using descriptive statistics. Four classifiers

are trained for each group, with the same parameter setting

but different training datasets. In A2 and B2, we generate

70, 984 synthetic flare samples to balance the training set.

For A3 and B3, the training dataset is made balanced by

random oversampling 70, 984 duplicates of the minority

instances. For A4 and B4, the training dataset is made

balanced by random undersampling 1254 of the majority

instances. Of course, data manipulation is only served for

the purpose of training, and test sets are made entirely of

real data.

The results of the group A experiments are illustrated in

Fig. 5. Comparing A1 and A2, it is evident that the per-

formance of SVM trained on the synthetically balanced

data is significantly higher than that of the baseline clas-

sifier, by both metrics, TSS and HSS2. This observation

confirms that the model generally performs best when

classes in the training dataset are roughly equal in size.

Specifically, the CGAN classifier results in a fivefold

improvement compared to the baseline experiment in terms

of TSS (an increase from 0.11 to 0.76). The HSS2 shows an

over onefold improvement (from 0.18 to 0.39). The HSS2

improvement in A2 compared to A3 and A4 is also sig-

nificant; from 0.19 to 0.39. TSS, however, remains roughly

stagnant in these cases, which is simply due to the differ-

ence in what the two metrics measure. It is crucial to note

that while balancing the data seems to be the main reason

for the significant improvement in performance from A1 to

A2, it would not have happened by balancing the dataset

with unrealistic flaring instances. This is the main takeaway

from our synthetically generated samples that we are

evaluating through A2 experiment.

Furthermore, compared to the statistic-based oversam-

pling methods purposed in [9], the CGAN-based method

achieves a significant improvement in terms of TSS while

maintaining HSS2 at its highest value, i.e., 0.39. Overall,

the experiment results show that our method can produce a

better flare forecasting performance than the random

sampling-based methods or the statistic-based oversam-

pling methods.

Next, we examine the forecasting performance of the

group B experiments, as shown in Fig. 6. In these experi-

ments, we observe that B2 achieves the highest TSS and

HSS2. The result shows that the CGAN model can suc-

cessfully learn the median and standard deviation of real

multivariate time-series samples.

Putting together the results shown in Figs. 5 and 6, we

demonstrated that our method has multiple advantages

compared to other remedies. First, comparing to the ran-

dom oversampling method (A3 and B3), the CGAN-based

method can bring new information through generating

realistic synthetic samples instead of duplicating existing

samples. Second, comparing to the random undersampling

strategy (A4 and B4), the CGAN-based approach can

produce unlimited synthetic samples. Thus, more data

provide a path toward training more powerful machine

learning models. This significantly benefits flare forecast-

ing models based on deep neural networks. Third, com-

paring to the statistic-based oversampling methods (RUSO,

RNSO, and RNOSO), the CGAN-based method can learn

the descriptive statistics of the real MVTS samples and,

therefore, generate realistic samples. All in all, we can so

far conclude that CGAN algorithm can be used to remedy

the imbalance issue of MVTS flare datasets. What we have

not yet examined, however, is the temporal characteristics

of the synthetic time series, and whether they are realistic

beyond their median and standard deviation summaries.

Next, we put this question to the test.

Fig. 5 The bar plot compares CGAN’s synthetically generated data

(A2) with the other group A experiments listed in Table 2. The choice

of the last-value statistic in A makes our results comparable with the

naı̈ve random synthetic oversampling methods of RUSO, RNSO, and

RNOSO purposed in [9]. The reported TSS and HSS2 values are

averaged over three separate evaluation trials on Partitions 2, 3, and 5

of SWAN-SF. Partition 4 is not involved in this experiment. Error

bars show the standard deviation of the obtained TSS/HSS2 values

Neural Computing and Applications (2022) 34:13339–13353 13349

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



6.5 Examining synthetic time series v.s. over-/
under-sampling

In this section, we examine the effectiveness of synthetic

samples in time-series format. For the experiments in group

C, we use the same setting of training datasets with groups

A and B mentioned in Sect. 6.4. The forecasting results of

experiments in group C are reported in Fig. 7. We observe

that the model in C2 trained on the dataset balanced with

the synthetic samples beats the models trained in C1 and

C3, in terms of both TSS and HSS2 scores. The experiment

C2 shows a 31% improvement in terms of TSS comparing

to the model trained in C4. Although the model in exper-

iment C2 does not obtain the highest HSS2 score, it still

gives a comparable performance. The experimental result

validates our assumption that adding informative synthetic

samples to balance the training dataset can result in a more

robust forecasting model.

6.6 Examining incremental incorporation
of synthetic time series

To further demonstrate the effectiveness of the synthetic

multivariate time series, we conduct another experiment to

show how varying the number of incorporated synthetic

samples affects the forecasting performance. More

specifically, we fix the number of real flaring and non-

flaring samples in the training dataset, and gradually add

synthetic flaring samples while monitoring the model’s

performance on the test set. As illustrated in Fig. 8, we

conduct ten experiments by varying the imbalance ratios of

the training dataset from 1:58 to 1:1. The ratio of 1:58 is

the original imbalance ratio of Partition 1, including 1254

real flares and 72,238 non-flaring samples.

Through observing the result, we can see that the per-

formance generally increases as we reduce the imbalance

ratio using our synthetic MVTS data. While the strict

increase of TSS values indicates that the incorporated

synthetic time series are of high quality (when compared

with the real time series), we notice that the HSS2 values

slightly decline at the very end. Familiar with the different

behavior of these two metrics, we believe this is caused due

to the lack of a per-experiment hyperparameter tuning. In

other words, the added synthetic time series eventually

made the default hyperparameters ineffective and conse-

quently the model suboptimal. This change seems to have

been overlooked by TSS, but not by HSS2, which is the

main reason for using them as a couple. Overall, the results

show that the trained CGAN model can indeed generate

realistic multivariate time-series samples.

We would like to recapitulate that our main objective is

to show the effectiveness of CGAN as a possible remedy to

Fig. 6 The bar plot compares

CGAN’s synthetically generated

data (B2) with the other group A

experiments listed in Table 2.

The reported TSS and HSS2

values are averaged over three

separate evaluation trials on

Partitions 2, 3, and 5 of SWAN-

SF. Partition 4 is not involved in

this experiment. Error bars show

the standard deviation of the

obtained TSS/HSS2 values

Fig. 7 The bar plot compares

CGAN’s synthetically generated

data (C2) with the other group C

experiments listed in Table 2.

The reported TSS and HSS2

values are averaged over three

separate evaluation trials on

Partitions 2, 3, and 5 of SWAN-

SF. Partition 4 is reserved for

validation of the

hyperparameters. Error bars

show the standard deviation of

the obtained TSS/HSS2 values
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the class-imbalance issue on SWAN-SF. Therefore, we do

not claim the superiority of this approach over any other

existing methods, nor do we infer that our findings can be

extended to any other multivariate time-series datasets. To

this end, we did not include multiple datasets, and we did

not compare the performance of CGAN with other GAN-

based algorithms. Instead, we kept our focus on evaluating

the contribution of CGAN-generated synthetic MVTS of

SWAN-SF, and the reliableness of the generated time

series for machine learning use.

7 Conclusion & future work

In this project, we utilized the conditional generative

adversarial network (CGAN) to perform data-informed

augmentation of multivariate time series (MVTS) on a

recently released flare forecasting benchmark dataset

(SWAN-SF). We tailor several verification methods to

show that the generated MVTS samples indeed preserve

the distribution of the real physical parameters: (1) we

utilize Kullback–Leibler divergence metric to quantify the

similarity between the distributions of the real and syn-

thetic data; (2) we use adversarial accuracy to monitor the

performance of CGAN directly; (3) we use the synthetic

MVTS samples to balance our dataset and compare the

classification performance with that trained on the original

data and that on the dataset that was balanced by other

oversampling, undersampling, and statistic-based synthetic

oversampling methods such as RUSO, RNSO, and

RNOSO. The results showed that the CGAN-based

approach can remarkably boost flare forecasting perfor-

mance in terms of TSS and HSS2. Therefore, we consider

that the CGAN method is an effective remedy for miti-

gating the class-imbalance issue in flare forecasting.

The CGAN-based approach provides a preliminary

attempt to generate meaningful synthetic physical features.

There are still many model-related aspects that can be

improved further such as incorporating an advanced loss

function of Wasserstein GAN, or exploring more complex

structures or more layers of the generator and the dis-

criminator. Next, we plan to try deep learning models with

flare forecasting, such as convolutional neural networks or

recurrent neural networks. In the future, we also wish to

investigate how to explore and interpret the meaning of

synthetic samples from the astrophysics point of view by

collaborating with domain experts.
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