

Dominance shifts increase the likelihood of soft selective sweeps

Abstract

Genetic models of adaptation to a new environment have typically assumed that the alleles involved maintain a constant fitness dominance across the old and new environments. However, theories of dominance suggest that this should often not be the case. Instead, the alleles involved should frequently shift from recessive deleterious in the old environment to dominant beneficial in the new environment. Here, we study the consequences of these expected dominance shifts for the genetics of adaptation to a new environment. We find that dominance shifts increase the likelihood that adaptation occurs from standing variation, and that multiple alleles from the standing variation are involved (a soft selective sweep). Furthermore, we find that expected dominance shifts increase the haplotypic diversity of selective sweeps, rendering soft sweeps more detectable in small genomic samples. In cases where an environmental change threatens the viability of the population, we show that expected dominance shifts of newly beneficial alleles increase the likelihood of evolutionary rescue and the number of alleles involved. Finally, we apply our results to a well-studied case of adaptation to a new environment: the evolution of pesticide resistance at the *Ace* locus in *Drosophila melanogaster*. We show that, under reasonable demographic assumptions, the expected dominance shift of resistant alleles causes soft sweeps to be the most frequent outcome in this case, with the primary source of these soft sweeps being the standing variation at the onset of pesticide use, rather than recurrent mutation thereafter.

19 1 Introduction

20 A primary concern of evolutionary genetics is to understand the genetic processes that underlie organisms' adaptation to their environments. An important goal in this field is therefore to understand the
21 nature of the genetic variation from which adaptation to a new environment typically occurs. When
22 adaptation to a new environment is partly or wholly due to fixation of a newly beneficial allele at a
23 given locus (a 'selective sweep'), the question arises whether this fixation typically proceeds from a
24 single initial copy of the beneficial allele (a 'hard selective sweep') or from multiple distinct copies that
25 were possibly already segregating at the time of the environmental change (a 'soft selective sweep')
26 (Hermisson and Pennings 2005; Pritchard et al. 2010; Messer and Petrov 2013). The relative frequency
27 of hard versus soft sweeps has been the subject of much recent discussion [e.g., Messer and Petrov
28 (2013); Jensen (2014); Schrider and Kern (2017); Hermisson and Pennings (2017); Harris et al. (2018);
29 Garud et al. (2021)].

30 In the classic model of a selective sweep in response to a change of environment, a mutation that
31 was neutral or deleterious before the environmental change becomes beneficial after the environmental
32 change (Orr and Betancourt 2001). This simple model has been studied intensively from the
33 perspective of mathematical population genetics [e.g., Hermisson and Pennings (2005); Pennings and
34 Hermisson (2006); Pritchard et al. (2010); Messer and Petrov (2013); Hermisson and Pennings (2017);
35 Stephan (2019)], and has served as the theoretical foundation for much empirical work [e.g., Barrett
36 and Schlüter (2008); Messer and Petrov (2013); Garud et al. (2015); Schrider and Kern (2017)].

37 An assumption that is usually invoked in both theoretical and empirical studies of this model is
38 that the fitness dominance of the focal allele is invariant across the environmental change—that is, the
39 allele's dominance with respect to its deleterious effect in the old environment is equal to its dominance
40 with respect to its beneficial effect in the new environment [an exception is Orr and Betancourt (2001),
41 discussed below]. The reason for this assumption is convenience: it simplifies theoretical calculations
42 and buys a degree of freedom in empirical studies. However, it also sidesteps a rich, century-old
43 literature on physiological and evolutionary theories of allelic dominance.

44 Physiological theories of dominance provide mechanistic explanations for the observation that loss-
45 of-function mutations are typically recessive with respect to the wild-type allele while gain-of-function
46 mutations are typically dominant. De Vries and Bateson pioneered this literature in the late 19th
47 century (Falk 2001), but its most famous representation is in the Wright-Kacser-Burns theory of
48 metabolic dominance (Wright 1934; Kacser and Burns 1981; Keightley 1996), which, by explicitly
49 modeling the chemistry of metabolic pathways, showed that their operation is intrinsically robust
50 to single loss-of-function (or decrease-of-function) mutations. Physiological theories of dominance
51 have generally focused on genes encoding enzymes or other products with 'quasi-catalytic' properties.
52 However, empirical work has shown that the predictions of the physiological theories in fact hold across
53 a much broader set of gene categories, suggestive of a need for more general explanations of patterns
54 of dominance (Phadnis and Fry 2005; Agrawal and Whitlock 2011).

55 Such explanations can be found in evolutionary theories of dominance, which seek to explain
56 why beneficial alleles tend to be dominant while deleterious alleles tend to be recessive. This literature
57 begins in the 1920s with Fisher's mathematical demonstration that modifiers of an allele's
58 dominance are under positive selection to increase its dominance when it is beneficial and to de-
59 crease its dominance when it is deleterious (Fisher 1928). While Fisher's treatment was abstract,
60 subsequent work—in many cases guided by physiological theories of dominance—has developed more
61 mechanistically-explicit evolutionary theories of dominance, based on, for example, the dynamics of
62 metabolic pathways [reviewed in Bourguet (1999)], models of optimal gene expression (Hurst and
63 Randerson 2000), and multidimensional fitness landscapes (Manna et al. 2011).

64 There are two distinct scenarios under which a focal allele can transition from deleterious before an
65 environmental change to beneficial after. In the first scenario, the same phenotype is primarily under

67 selection before and after the environmental change, but the direction of selection on this phenotype
68 changes. For example, an allele that reduces limb length would be deleterious in an environment
69 where long limbs are favored, but would become beneficial in a new environment where short limbs
70 are advantageous [e.g., Donihue et al. (2018)]. In this scenario, the focal allele's fitness dominance is
71 governed by its dominance with respect to the selected phenotype; since the selected phenotype does
72 not change across the environmental shift, nor would we expect the focal allele's fitness dominance to
73 change significantly.

74 In the second scenario, the environmental change corresponds to a change in the phenotype that is
75 primarily under selection. In this case, the focal allele's effect on heterozygotes' fitness is modulated
76 through different phenotypes before and after the environmental change, and so the allele's fitness
77 dominance is not expected to remain constant. In fact, the evolutionary and physiological theories
78 of dominance predict that the dominance of the focal allele should shift from recessive when it is
79 deleterious to dominant when it is beneficial.

80 For a concrete example of this second scenario, consider the *Ace* locus in insects, where recent
81 adaptation has occurred in response to pesticide use, forming an important case study in the se-
82 lective sweeps literature [e.g., Karasov et al. (2010); Garud et al. (2015)] and evolutionary genet-
83 ics more broadly [e.g., Bourguet et al. (1997); Lenormand et al. (1999)]. *Ace* encodes the enzyme
84 acetylcholinesterase, which catalyzes the breakdown of acetylcholine at the neuromuscular junction
85 (Hoffmann et al. 1992; Fournier and Mutero 1994; Mutero et al. 1994; Bourguet and Raymond 1998).
86 Organophosphate pesticides, introduced in the mid-twentieth century, inhibit acetylcholinesterase by
87 targeting its binding site (Fournier et al. 1993; Fournier and Mutero 1994; Mutero et al. 1994; Shi
88 et al. 2004). Mutations at the *Ace* locus that alter the shape of the binding site can confer resis-
89 tance to pesticide binding (Menozzi et al. 2004; Shi et al. 2004), and therefore can be beneficial in
90 environments where pesticides are used (Bourguet and Raymond 1998). However, the reconfigured
91 enzymes are intrinsically less efficient at binding acetylcholine itself (Hoffmann et al. 1992; Fournier
92 and Mutero 1994), rendering them deleterious in pesticide-free environments (Shi et al. 2004). Thus,
93 in some geographic regions, these 'resistant' mutations were deleterious before the onset of pesticide
94 use and beneficial after, conforming to the classic model described above. Moreover, the phenotype
95 that was primarily under selection also changed, from intrinsic enzymatic efficiency before the onset of
96 pesticide use to the ability to evade pesticide binding after. Consistent with the prediction of theories
97 of dominance, the beneficial effect of resistant alleles in pesticide environments—stemming from their
98 ability to evade pesticide binding—has been shown to be dominant across several insect species (Bour-
99 guet and Raymond 1998; Charlesworth 1998). The dominance of the deleterious effect of resistant
100 alleles in pesticide-free environments—stemming from their reduced enzymatic efficiency—has been
101 shown to be partially or fully recessive in at least two insect species (Labbé et al. 2014; Zhang et al.
102 2015); measurement of the enzymatic activity of resistant alleles in *Drosophila melanogaster* further
103 suggests that they should be recessive deleterious in pesticide-free environments (Shi et al. 2004).

104 If, as we expect, adaptation to a new environment often involves a change in the phenotype
105 primarily under selection, then the alleles involved in this adaptation likely often shift from recessive
106 deleterious in the old environment to dominant beneficial in the new environment. This obviously
107 holds major implications for the genetics of adaptation to new environments. Intuitively, if the alleles
108 underlying adaptation to a new environment were recessive deleterious beforehand, they will tend
109 to have been present in greater numbers in the standing variation at the time of the environmental
110 change, increasing the chance that multiple alleles were involved in a subsequent selective sweep. That
111 is, the pattern of dominance shifts predicted by the physiological and evolutionary theories is expected
112 to increase the relative likelihood of soft versus hard selective sweeps, as well as the importance of
113 alleles that were present in the standing variation at the time of the environmental change (versus
114 those produced by mutation after the environmental change). Here, we carry out a quantitative
115 investigation of the effect of these dominance shifts on the genetics of selective sweeps.

116 **2 Methods**

117 **The model.** We study the classic model of a selective sweep in response to a change in the selective
118 environment, adopting the framework set out by Hermisson and Pennings (2005). At a given locus,
119 there are two alleles: the wild-type A and the mutant a . At a discrete point in time, T , there is
120 a sudden environmental change. Prior to T , the mutant allele a was deleterious, with the relative
121 fitnesses of genotypes AA , Aa , and aa being 1 , $1 - h_d s_d$, and $1 - s_d$, such that h_d is the fitness
122 dominance of a prior to T . After T , a becomes beneficial, with the relative fitnesses of genotypes AA ,
123 Aa , and aa being 1 , $1 + h_b s_b$, and $1 + s_b$, such that h_b is the fitness dominance of a after T .

124 The population is of constant size N ($= 10,000$ in all simulations, unless otherwise stated), and
125 evolves according to a Wright-Fisher process. Prior to T , the alleles A and a mutate to one another at
126 a constant, symmetric rate u per replication. After T , there is no mutation, allowing us more precisely
127 to study the likelihood and nature of adaptation from the standing variation (although we do later
128 consider recurrent mutation after T).

129 **Definition of a soft sweep.** Several definitions of a ‘soft sweep’ exist in the literature (Hermisson
130 and Pennings 2017). These definitions can be partitioned according to two axes. First, some definitions
131 consider the ancestry of the entire population of alleles after the sweep, while others consider
132 the ancestry of only a sub-sample. Second, for a sweep from standing variation to be called soft,
133 some definitions require only that multiple alleles present at the time of the environmental shift have
134 descendants upon completion of the sweep, while other definitions further require that those ancestral
135 alleles have distinct mutational origins [this axis distinguishes ‘single-origin’ and ‘multiple-origin’ soft
136 sweeps in the terminology of Hermisson and Pennings (2017)].

138 We primarily employ a definition that uses the first option along each of these two axes. By this
139 definition, a sweep from standing variation is soft if multiple copies of the allele that were present
140 at the time of the environmental shift have descendants among the entire population of alleles upon
141 completion of the sweep. We call this a ‘population’ definition of soft sweeps. However, some of our
142 results relate directly to the empirical detectability of soft sweeps—see, e.g., ‘Measuring the haplotypic
143 diversity of a sweep’ below. For these results, we employ a ‘sample’ definition of soft sweeps, using
144 the second option along each of the two axes above. By this definition, a sweep is soft if, in a given
145 sub-sample of alleles at the time of fixation, there are multiple mutational origins.

146 If markers are sufficiently dense on either side of the focal locus, then lineages descending from a
147 particular mutational origin can always be uniquely identified by a sufficiently small haplotype around
148 the adaptive allele. However, if markers are sparse, an allele could sometimes recombine away from the
149 markers that define the haplotype the allele initially appeared upon—in this case, multiple mutational
150 origins need not imply multiple detectable haplotypes. The problem that this poses for application
151 of our sample definition of soft sweeps (and the empirical detectability of soft sweeps more generally)
152 therefore depends on genetic details of the case being studied. In relating our sample definition to
153 haplotypes, we also ignore the possibility that distinct mutations could land on identical haplotypes.
154 We shall equate ‘mutational origin’ and ‘haplotype’ in what follows, implicitly assuming that marker
155 density is high, but the issues above should nonetheless be borne in mind.

156 Note that the sample-based definition of a soft sweep is stricter than the population-based definition—
157 fewer sweeps will be classified as soft under the sample definition. Thus, the population and sample
158 definitions provide liberal and conservative predictions of the number of soft sweeps expected to occur,
159 which could be interpreted as upper and lower bounds.

160 **Simulation setup.** We first characterize the mutation-selection-drift frequency distribution of a
161 before T under various configurations of the parameters u , s_d , and h_d . For each configuration, we
162 start in Hardy-Weinberg equilibrium at the focal locus, with the frequency of a equal to its large-

164 population expectation ($u/[h_d s_d]$ if $h_d > 0$; $\sqrt{u/s_d}$ if $h_d = 0$). From this starting point, we allow
 165 the population to evolve for an initial burn-in period of 10^6 generations, and thereafter record the
 166 frequency of each genotype every generation for 10^7 generations. (In simulations where $N = 100,000$,
 167 owing to the greater computational expense, we recorded genotype frequencies for 3×10^6 generations.)
 168 The distribution across generations of these genotype frequencies constitutes our empirical mutation-
 169 selection-drift distribution. In addition to recording the genotype frequencies in each generation, we
 170 record each distinct mutational origin of an a allele and the number of its descendant copies among
 171 Aa and aa genotypes.

172 We then study adaptation after T . For a given configuration of the parameters (u, s_d, h_d, s_b, h_b) ,
 173 we carry out 10,000 replicates of the following simulation: First, we randomly draw a set of starting
 174 genotype frequencies from the before- T mutation-selection-drift distribution for (u, s_d, h_d) , estimated
 175 as described above. If one or more copies of a are present in this initial genotype configuration, we tag
 176 each separate copy, and track the descendants of each of these copies in every subsequent generation.
 177 The simulation ends when a fixes or goes extinct.

178 For each parameter configuration, we calculate the proportion of trials that result in each of the
 179 four possible outcomes: (i) *No standing variation*. No copies of a were present in the initial genotype
 180 configuration. (ii) *Failed sweep*. There was at least one copy of a present in the initial genotype
 181 configuration, but a subsequently went extinct. (iii) *Hard sweep*. a fixes, and all copies of a at the
 182 time of fixation descend from a single ancestral copy in the initial genotype configuration. (iv) *Soft*
 183 *sweep*. a fixes, and the copies of a at the time of fixation descend from more than one copy in the initial
 184 genotype configuration. Note that this analysis employs the ‘population definition’ of a soft sweep, but
 185 in those trials in which a sweep occurred, we also calculate the number of distinct mutational origins
 186 present among the swept alleles, and the frequencies of these distinct mutations. In these trials, we
 187 also record the number of generations taken until fixation of a . Note that our partition of trials in this
 188 analysis (‘failed sweep’, ‘hard sweep’, etc.) ignores the possibility of sweeps furnished by mutation
 189 after the environmental change. We relax this constraint later.

190 All simulations were run in SLiM 3.3 (Haller and Messer 2019).

191
 192 **Measuring the haplotypic diversity of a sweep.** When a sweep has occurred from alleles that
 193 were present in the standing variation, we are interested in the haplotypic diversity of the sweep. The
 194 haplotypic diversity of a sweep is interesting not just from a theoretical perspective, but also for a
 195 practical empirical reason: when a soft sweep is mutationally more diverse, we have a better chance
 196 of being able to recognize, in a finite sample of sequenced alleles, that a soft sweep has occurred.
 197 Therefore, in measuring the haplotypic diversity of sweeps, we shall aim to use metrics with practical
 198 relevance to the empirical assessment of selective sweeps. In relating these metrics to the empirical
 199 assessment of soft sweeps, we shall use the ‘sample definition’ of a soft sweep, that the alleles involved
 200 have multiple mutational origins.

201 Suppose that, in a trial in which a sweeps to fixation, the alleles present upon completion of the
 202 sweep derive from m distinct mutations before T . We record m . Let the population frequency of the
 203 descendants of ancestral mutation i at the time of fixation be p_i , $i = 1, \dots, m$. First, for various pos-
 204 sible sample sizes n , we measure the mutational (or ‘haplotypic’) diversity of the sweep by calculating
 205 the Gini-Simpson diversity index of order n : ${}^n x = 1 - \sum_{i=1}^m p_i^n$ [modified from Jost (2006)]. Empir-
 206 ically, ${}^n x$ is the probability that, in a random sample of n alleles taken from the population at the
 207 time of fixation, there are at least two distinct mutational origins and therefore at least two distinct
 208 haplotypes—i.e., ${}^n x$ is the probability that a soft sweep from standing variation can be detected in a
 209 random sample of n descendant alleles. Second, we record, for each value of n , the expected number
 210 of ancestral mutations represented in a random sample of n descendant alleles at the time of fixation,
 211 $\mathbb{E}[\# \text{ancestors} | n] = m - \sum_{i=1}^m (1 - p_i)^n$. The formulae above are valid under the assumption that
 212 $n \ll N$.

213

214 **Recurrent mutation.** Selective sweeps can derive from copies of a present in the standing variation
 215 at the time of the environmental change, or from copies of a that appeared by mutation after the
 216 environmental change. To incorporate the possibility of recurrent mutation after the environmental
 217 change, we keep the symmetric $A \leftrightarrow a$ mutation rate equal before and after the environmental change.
 218 Because $a \rightarrow A$ mutation after the environmental change generates a perpetual supply of A alleles,
 219 we say that a has ‘fixed’ (and a selective sweep has occurred) when it achieves a frequency equal to
 220 0.99 times the mean of its large-population mutation-selection-drift distribution when beneficial.

221 Recurrent $A \rightarrow a$ mutation guarantees that a selective sweep will eventually occur after the envi-
 222 ronmental change. Therefore, we restrict our analysis of recurrent mutation to cases where a selective
 223 sweep occurs that involves alleles from the standing variation [although we acknowledge that there are
 224 many interesting questions to ask about sweeps that derive solely from recurrent mutation, including
 225 their likelihood of being hard vs. soft—see Pennings and Hermisson (2006); Hermisson and Pennings
 226 (2017)]. We measure, in these cases, what proportion of a alleles present at the time of fixation derive
 227 from mutations that appeared after the environmental change versus mutations that were present
 228 in the standing variation at the time of the environmental change. Owing to the greater computa-
 229 tional expense of these simulations, only 5,000 trials were run for some of the parameter configurations.

230

231 **Evolutionary rescue.** The environmental change at time T could be such that the population would
 232 go extinct in the absence of the newly beneficial allele a . The question of a selective sweep of a is then
 233 one of evolutionary rescue. To study this situation requires abandoning our previous assumption of a
 234 constant population size, and explicitly modeling how the population shrinks or grows as a function
 235 of its genotypic composition. For this purpose, we employ a diploid version of the model studied by
 236 Orr and Unckless (2008, 2014).

237 We assume that the population is characterized by an intrinsic reproductive rate, r_0 . An interpre-
 238 tation of r_0 is that, in a sexual population, and in the absence of any selective or ecological constraints,
 239 each individual would have $2(1 + r_0)$ successful offspring on average; the population would then grow
 240 at rate r_0 per generation. We scale ‘absolute’ fitnesses according to r_0 , such that an absolute fitness
 241 of w implies an expectation of $2(1 + r_0)w$ successful offspring in the absence of any ecological con-
 242 straints. The full population dynamics is then determined as follows. Suppose that, in generation t ,
 243 the population is of size N_t and the average absolute fitness of its members is \bar{w} . The ‘unconstrained’
 244 population size in the next generation, N_{t+1}^* , is a Poisson random variable with mean $(1 + r_0)\bar{w}N_t$; the
 245 actual population size in the next generation, N_{t+1} , is the smaller of N_{t+1}^* and the carrying capacity
 246 $K = 10,000$. Once N_{t+1} is decided, the genotypic composition of generation $t + 1$ is determined by
 247 randomly drawing parental alleles from generation t , independently for each allele in generation $t + 1$,
 248 and with probabilities proportional to the fitnesses of the individuals carrying the alleles in generation
 249 t . Notice that, in the absence of the constraint that $N_{t+1} \leq K$, the ‘top down’ model described above
 250 would correspond to a simple ‘bottom up’ model where mating is random and the number of alleles
 251 contributed to generation $t + 1$ by an individual in generation t with absolute fitness w is a Poisson
 252 random variable with mean $2(1 + r_0)w$.


253 The general scenario for evolutionary rescue that we wish to model has the following key features:
 254 (i) Before T , the absolute fitness of the AA genotype, w_{AA} , is such that $(1 + r_0)w_{AA} > 1$, so that a
 255 population fixed (or nearly so) for A is held at its carrying capacity. (ii) After T , the absolute fitness
 256 of the AA genotype, w'_{AA} , is such that $(1 + r_0)w'_{AA} < 1$, so that a population fixed for A would decline
 257 exponentially to extinction. (iii) After T , the absolute fitness of the aa genotype, w'_{aa} , is such that
 258 $(1 + r_0)w'_{aa} > 1$, so that a population fixed for a would increase exponentially to the carrying capacity
 259 K . (iv) a is deleterious before T because of some impairment of basic function relative to A . After
 260 T , a confers resistance to whatever new selective force is threatening the population’s survival, but it
 261 still carries the cost of its impaired basic function. Therefore, $w'_{aa} < w_{AA}$.

262 To incorporate the above scenario into our model of selective sweeps, we assume that, before T ,
 263 the absolute fitnesses of the genotypes AA , Aa , and aa are 1 , $1 - h_1 s_1$, and $1 - s_1$ respectively,
 264 where s_1 is the absolute fitness cost to aa individuals because of the impaired function of a , and h_1
 265 is the dominance of a relative to A with respect to this impaired function. Criterion (i) then simply
 266 requires that $r_0 > 0$. After T , the absolute fitnesses of the genotypes AA , Aa , and aa are $1 - s_2$,
 267 $(1 - h_2 s_2)(1 - h_1 s_1)$, and $1 - s_1$ respectively, where s_2 is the absolute fitness cost to AA individuals
 268 because of A 's deleterious effect in the new environment (which a does not suffer), and h_2 is the
 269 dominance of A relative to a with respect to this new deleterious effect. Criteria (ii) and (iii) require
 270 that $(1 + r_0)(1 - s_2) < 1$ and $(1 + r_0)(1 - s_1) > 1$, which in turn requires that $s_2 > s_1$, i.e., that the
 271 deleterious effect of A in the new environment is more severe than the deleterious effect of a in the
 272 old environment.

273 For each configuration of the parameters $(u, s_1, h_1, s_2, h_2, r_0)$, we carry out 10,000 replicates of the
 274 following simulation: First, we randomly draw a starting set of genotype frequencies from the before-
 275 T empirical mutation-selection-drift distribution corresponding for (u, s_1, h_1) , estimated as described
 276 above. If one or more copies of a are present in this initial genotype configuration, we tag each
 277 separate copy, and track the descendants of each of these copies in every subsequent generation. We
 278 allow the population size and genotype frequencies to evolve according to the demographic model
 279 described above. The simulation is ended if the population either goes extinct ($N_t = 0$ for some t)
 280 or re-attains its carrying capacity ($N_t = K$ for some t). In the latter case, the population has been
 281 rescued. Although the population size is initially expected to decline because the A allele is most
 282 common and $(1 + r_0)(1 - s_2) < 1$, we allow for chance fluctuations against selection in these early
 283 generations by only classifying a simulation run as an example of evolutionary rescue if $N_t = K$ at
 284 least 10 generations after T . We do not allow for recurrent mutation after T .

285 In simulation runs where rescue is observed, we record: (i) The frequency of the a allele. This
 286 is of particular interest because, with fitnesses specified as in the model above, classical theories of
 287 dominance predict that there should often be heterozygote advantage at the focal locus in the new
 288 environment (see Results), in which case evolutionary rescue will involve only a partial sweep of a .
 289 (ii) The number of ancestral copies of a represented among descendant copies at the time of rescue.
 290 (iii) The haplotypic diversity among the population of a alleles at the time of rescue, the metrics for
 291 which are described above. (iv) The number of generations taken for rescue; i.e., the smallest t for
 292 which $N_t = K$ (with the requirement that $t > 10$). (v) The minimum population size (i.e., how close
 293 the population came to extinction).

294 **Distribution of fitness effects.** In the simulations described above, we assign fixed selection coef-
 295 ficients, s_d and s_b , to the focal allele. To investigate the consequences of dominance shifts in a more
 296 general setting, we also ran simulations in which s_d and s_b were random variables, the realizations of
 297 which were drawn from empirically justified distributions of deleterious and beneficial fitness effects.
 298 Beneficial selection coefficients were drawn from an exponential distribution [e.g., Orr (2003); Eyre-
 299 Walker and Keightley (2007)] with mean $\mathbb{E}[s_b] = 0.01$, a reasonable value that permits comparison
 300 with our fixed-effect simulations. Empirically, deleterious selection coefficients are often found to be
 301 well fit by a gamma distribution with shape parameter < 1 [e.g., Loewe et al. (2006)]. However, in
 302 this case, the mean frequency of the deleterious allele under mutation selection balance— $\mathbb{E}[u/(h_d s_d)]$
 303 if $h_d > 0$ and $\mathbb{E}[\sqrt{u/s_d}]$ if $h_d = 0$ —is undefined. Therefore, we instead drew deleterious selection
 304 coefficients from another empirically justified distribution, the lognormal distribution (Loewe and
 305 Charlesworth 2006; Kousathanas and Keightley 2013), calibrated to have the same mean and variance
 306 as a gamma distribution with shape parameter 0.5 [similar to estimates in *D. melanogaster* (Keight-
 307 ley and Eyre-Walker 2007; Schneider et al. 2011)] and mean 0.1 (permitting comparison with our
 308 fixed-effect simulations). Note that, while we have used simple, unimodal distributions for tractability
 309 and ease of comparison with our fixed-effect simulations, multimodal or mixed distributions of fitness
 310

Figure 1: Expected dominance shifts increase the likelihood of a selective sweep and the proportion of selective sweeps that are soft. (A) The proportion of simulations that result in each of the four possible outcomes after the environmental change. The probability of a sweep (combined yellow and orange bars) increases with increasing severity of the focal allele's dominance shift. This effect is proportionately largest when the rate of mutational supply, $\theta = 4Nu$, is small. (B) Among trials in which a sweep does occur, the proportion in which multiple copies from the standing variation account for the descendant copies at the time of completion of the sweep. The proportion of such 'soft sweeps' increases with the severity of the dominance shift, with this effect again proportionately largest for small values of θ .

311 effects can be preferable in some cases (Kousathanas and Keightley 2013; Bank et al. 2014; Johri et al.
312 2020).

313 In each replicate simulation, first s_d is drawn for the focal allele, independently across replicates,
314 and the population dynamics proceed under the deleterious environment for 10^6 generations (with
315 bidirectional mutation at the focal locus, as before). Then s_b is drawn, independently across replicates
316 and with respect to s_d , and the population dynamics proceed under the beneficial environment
317 until either fixation or loss of the focal allele. Owing to the greater computational expense of these
318 simulations, 5,000 trials were run for each parameter setting.

319 3 Results

320 Expected dominance shifts increase the likelihood of a selective sweep.

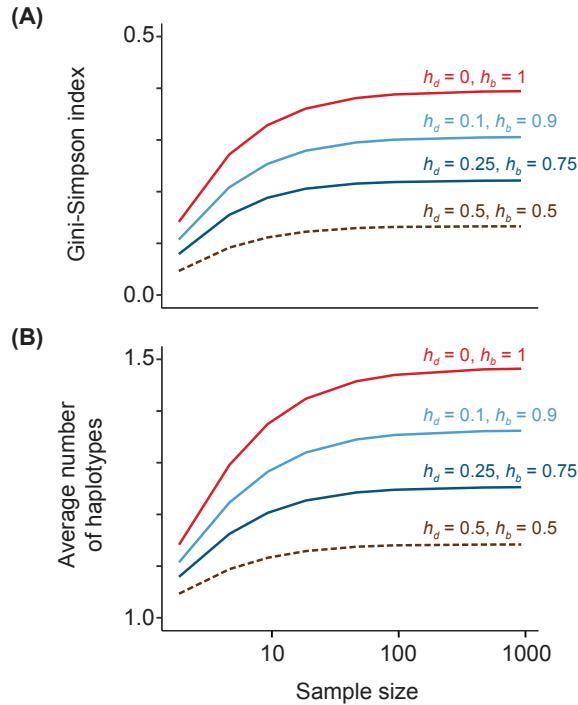
321 A primary effect of the expected shift in dominance of the focal allele from recessive deleterious to
322 dominant beneficial is to increase the probability that a selective sweep will occur after the environmental
323 change. This result holds both when we treat the allele's selection coefficients before and after
324 the environmental change as fixed (Fig. 1A) or as random variables [although effect sizes are smaller
325 in the latter case (Fig. S1)]. The increase in the probability of a sweep is especially pronounced when
326 the rate of mutational supply, $\theta = 4Nu$, is small (Fig. 1A).

327 The reason for this increased probability of a sweep is straightforward. First, because the focal
328 allele is recessive deleterious before the environmental shift, the mutation-selection-drift distribution
329 is shifted towards there being more copies of the allele in standing variation, relative to the case
330 where the allele shows greater dominance in its deleterious effect. Second, the fact that the focal

allele is dominant beneficial after the environmental change means that Haldane's sieve—the reduced establishment probability of recessive beneficial mutations—does not hamper its initial chances of increasing in frequency and ultimately fixing. To illustrate these two points in isolation of one another, Fig. S3 shows that an allele that undergoes a dominance shift enjoys a higher probability of sweeping to fixation than a comparable allele that is (i) dominant both before and after the environmental change (point 1), or (ii) recessive both before and after the environmental change (point 2).

Dominance shifts also tend to decrease the number of generations required after the environmental change for completion of a sweep (Fig. S4). This is the result of two effects of dominance on the conditional fixation time of the focal allele: (i) if the allele's dominance in the deleterious environment (h_d) is smaller, then the allele tends to be present in more copies in the standing variation at the time of the environmental change, and therefore subsequently needs to traverse a smaller frequency range to sweep to fixation; (ii) if the allele's dominance in the beneficial environment is larger, then it will rise in frequency more rapidly. Effect (ii) is complicated by the fact that, if the allele has large dominance in the beneficial environment ($h_b \gg 1/2$), it tends to spend many generations at high frequency before fixing [see, e.g., (van Herwaarden and van der Wal 2002)], so that, holding h_d constant, the conditional fixation time is not necessarily monotonic in h_b (for example, compare Fig. S4A [$h_b = 1/2$] with Fig. S4B [$h_b = 1$]).

348 Expected dominance shifts increase the likelihood of soft versus hard sweeps.


349 A dominance shift of the focal allele also increases the probability, conditional on a selective sweep occurring, that the sweep will derive from multiple copies of the allele that were present in the standing variation (a soft sweep by our ‘population definition’) relative to just one (a hard sweep) (Figs. 1B). 350 Again, this result holds for both fixed and random selection coefficients, although effect sizes are 351 smaller in the latter case (Fig. S1).

352 This effect is clearly driven by the influence of dominance on the mutation-selection-drift distribution 353 before the environmental change: when the allele is recessive deleterious before the environmental 354 change, there are likely to be more copies present in the standing variation at the time of the environmental 355 change, and so it is more likely that multiple copies will be involved in a subsequent sweep. 356 The effect of dominance shifts in increasing the relative likelihood of soft versus hard selective sweeps 357 is especially noticeable for small values of θ (Fig. 1B).

358 Importantly, for a given value of θ , the expected number of copies of the allele that were present as 359 standing variation at the time of the environmental change differs conditional on a hard versus a soft 360 sweep subsequently occurring (Fig. S2) (Hermisson and Pennings 2017). In other words, hard and soft 361 sweeps tend to derive from different parts of the unconditional mutation-selection-drift distribution, 362 underscoring the point that the mutation-selection-drift distribution of a before the environmental 363 change—rather than just the mean of this distribution—must be considered to understand the popu- 364 lation genetics of subsequent adaptation (Hermisson and Pennings 2017).

365 There has recently been much debate about the size of the parameter space under which soft 366 sweeps prevail over hard sweeps (Messer and Petrov 2013; Jensen 2014; Hermisson and Pennings 2017; 367 Harris et al. 2018; Garud et al. 2021). A corollary of the results above is that this parameter space 368 is substantially expanded by the shifts in dominance predicted by the physiological and evolutionary 369 theories of dominance.

370 Two parameters have been considered particularly relevant for the relative likelihood of hard versus 371 soft sweeps: the rate of mutational supply of the focal allele (θ), and the ratio of the focal allele's 372 beneficial effect after the environmental change to its deleterious effect beforehand (s_b/s_d). On the 373 first, soft sweeps are relatively unlikely for small values of θ (Hermisson and Pennings 2017). However, 374 with dominance shifts of the focal allele, soft sweeps can be relatively likely for values as low as $\theta \sim 0.01$ 375 (Fig. 1, left; Fig. S5). For higher values of θ , where soft sweeps predominate over hard sweeps even 376 if the focal allele's dominance is constant across the environmental change, dominance shifts have a 377

Figure 2: Expected dominance shifts increase the allelic diversity—the ‘softness’—of selective sweeps. Compared to the case where the focal allele shows constant additive fitness dominance before and after the environmental change (brown dotted lines), dominance shifts increase (A) the Gini-Simpson diversity index of alleles involved in the sweep, and (B) the expected number of alleles involved in the sweep. Parameters: $\theta = 0.4$, $s_d = 0.01$, $s_b = 0.01$.

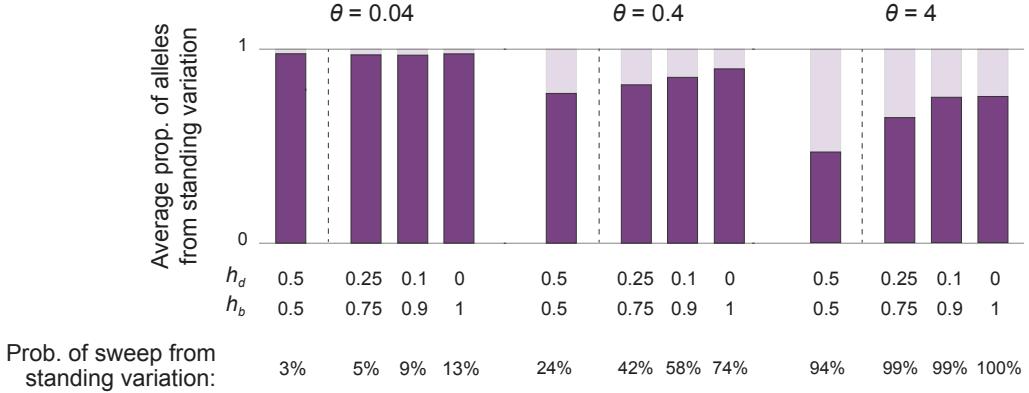
379 relatively small effect on the likelihood of soft versus hard sweeps (Fig. 1, right). On the second, higher
 380 values of s_b/s_d clearly make soft sweeps from standing variation more likely, but there is uncertainty
 381 about the precise values of s_b/s_d for which soft sweeps are expected to predominate (Jensen 2014;
 382 Hermisson and Pennings 2017). We find that dominance shifts drastically reduce the s_b/s_d values
 383 required for soft sweeps to be likely—indeed, soft sweeps can predominate over hard sweeps for values
 384 as low as $s_b/s_d = 0.1$ in certain parameter regimes (Fig. S5), and can predominate more generally
 385 when $s_b/s_d = 1$ (Fig. 1).

386 These effects are strongest when the shift in dominance of the focal allele is complete, but more
 387 modest shifts in dominance can also cause soft sweeps to have an appreciable likelihood relative to hard
 388 sweeps for low values of θ and s_b/s_d (Figs. 1, S6). Note that, when soft sweeps are defined according
 389 to the stricter ‘sample definition’, they become less likely. However, dominance shifts nevertheless
 390 increase the probability of soft sweeps according to this definition, and they are still possible for θ
 391 values as low as ~ 0.01 (Fig. S7).

392 Expected dominance shifts lead to greater haplotypic diversity within soft sweeps.

393 Expected dominance shifts also cause selective sweeps, when they do occur, to be mutationally (and
 394 therefore haplotypically) more diverse, according to the Gini-Simpson diversity index for various orders
 395 n (Fig. 2A; see Methods). A practical consequence is that dominance shifts cause soft selective
 396 sweeps to be more detectable in small genomic samples, relative to the case where the focal allele’s
 397 dominance remains constant across the environmental change. Similarly, under dominance shifts, a
 398 greater number of mutational lineages (and therefore haplotypes) are expected to be present in a
 399 sample of alleles taken at the time of completion of the sweep (Fig. 2B).

400 Thus, for the parameters considered in Fig. 2 ($\theta = 0.4$, $s_d = s_b = 0.01$), and in a sample of
 401 10 alleles taken upon completion of a sweep, a soft sweep would be detected only 11% of the time
 402 if the allele maintained a constant additive dominance before and after the environmental change,
 403 with $h_d = h_b = 1/2$ (the expected number of haplotypes present in the sample is 1.11 in this case),
 404 but would be detected 33% of the time if the dominance shift predicted by the evolutionary and
 405 physiological theories of dominance were complete, with $h_d = 0$ and $h_b = 1$ (and the expected number
 406 of haplotypes in the sample would rise to 1.37).


407 **The importance of population size, aside from θ**

408 In the simulations described above, we have assumed a population size of $N = 10,000$, and have
 409 varied the mutation rate u , rather than N , to study the effect of the rate of mutational supply,
 410 $\theta = 4Nu$. This choice was made for computational efficiency. In most cases, it is not expected to
 411 have a substantial impact on our results. To see this, first, consider the case where the focal allele
 412 shows substantial dominance before and after the environmental change ($h_d, h_b \gg 0$). In this case,
 413 the distribution of the number of copies of the allele in the standing variation at the time of the
 414 environmental change is controlled predominantly by θ , and will not shift much for different values of
 415 N and u that result in the same value of θ . To see this, note that the mean frequency of the allele
 416 under mutation-selection balance is $u/(h_d s_d)$ (Crow and Kimura 1970), so that its mean number of
 417 copies is $2N \times u/(h_d s_d) = \theta/(2h_d s_d)$. Once the allele becomes beneficial, it is the number of copies
 418 present in the standing variation, rather than the fraction of the population that they constitute, that
 419 matters for the probability of a sweep (and the probability that a sweep will be soft, by the population
 420 definition). Therefore, in this case, N will not substantially affect the probability of a sweep, and of
 421 a soft sweep, except through its effect on θ (Fig. S8A,C).

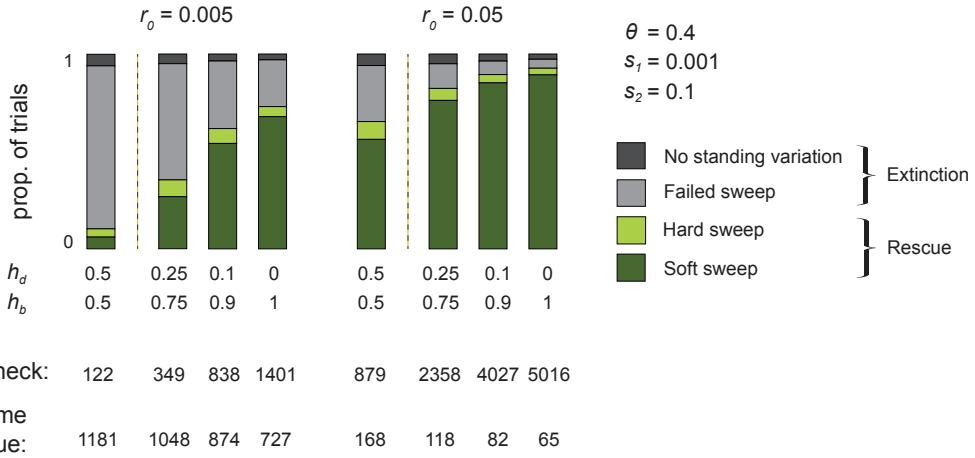
422 Now consider the case where the allele is recessive both before and after the environmental change
 423 ($h_d, h_b = 0$). In this case, the distribution of the number of copies of the allele present in the standing
 424 variation at the time of the environmental change does depend on N independently of N 's effect on θ .
 425 To see this, note that the mean frequency of the allele is now approximately $\sqrt{u/s_d}$ under mutation-
 426 selection balance (Crow and Kimura 1970), so that the mean absolute number of copies of the allele
 427 is approximately $2N \times \sqrt{u/s_d} = \sqrt{N\theta/s_d}$. However, once the allele becomes beneficial, it is not
 428 the number of copies of the allele that matters for the probability of a sweep (and of a soft sweep),
 429 but rather the number of individuals homozygous for the allele. The distribution of the number of
 430 homozygotes is determined by θ (for example, its mean is $N \times \sqrt{u/s_d}^2 = \theta/[4s_d]$), and so, again,
 431 the probability of a sweep (and of a soft sweep) will not substantially depend on N apart from N 's
 432 influence on θ (Fig. S8A,C).

433 Finally, consider the case where the allele undergoes the expected shift in dominance, from recessive
 434 to dominant ($h_d = 0, h_b \gg 0$). In this case, the distribution of the number of copies of the allele present
 435 at the time of the environmental change does depend on N independently of N 's effect on θ —scaling
 436 approximately with $\sqrt{N\theta}$, as described above—and the probability of a sweep (and a soft sweep)
 437 occurring once the allele becomes beneficial does depend on the number of copies of the allele present
 438 (rather than the number of homozygotes). Therefore, in this case, population size itself influences
 439 the probability of a sweep (and of a soft sweep), independently of its effect on the mutational supply
 440 θ . In particular, holding θ constant, sweeps are more likely, (and more likely to be soft), in larger
 441 populations (Fig. S8A,C).

442 The observations above pertain to soft sweeps defined according to the weaker, population-based
 443 definition. However, they also hold for the stricter sample-based definition. Thus, when the focal allele
 444 shows substantial dominance before and after the environmental change, the relative probabilities of
 445 a multi- versus a single-haplotype sweep do not depend on N , if θ is held constant (Fig. S8B,D).
 446 However, if there is a strong dominance shift of the focal allele from recessive deleterious to dominant
 447 beneficial, then a sweep is substantially more likely to involve multiple haplotypes when N is larger,

Figure 3: In selective sweeps partly sourced from standing variation at the time of the environmental change, dominance shifts increase the representation of alleles from the standing variation relative to those produced by mutation after the environmental change. When θ is small (left panel), successful sweeps tend to be dominated by alleles from the standing variation, regardless of whether a dominance shift occurs (conditional on these sweeps involving at least one allele from the standing variation, the probabilities of which are displayed at the bottom of the figure). In contrast, when θ is large (right panel), dominance shifts strongly increase the representation of alleles from the standing variation in successful sweeps. Parameters: $s_d = 0.01$, $s_b = 0.01$.

448 holding θ constant (Fig. S8B,D).


449 Thus, consideration of strong dominance shifts reveals an intriguing exception to the rule that
450 population size influences the genetics of selective sweeps only through its effect on the mutational
451 supply.

452 **Expected dominance shifts decrease the importance of recurrent mutation versus
453 standing variation for soft selective sweeps.**

454 Selective sweeps can derive from alleles that were present in the standing variation at the time of
455 the environmental change, or from alleles that appeared by mutation after the environmental change
456 (Pennings and Hermisson 2006; Hermisson and Pennings 2017). Recurrent mutation after the envi-
457 ronmental change guarantees that a sweep will eventually occur, which narrows our interest to two
458 questions.

459 First, how often is recurrent mutation necessary for a selective sweep to occur? This is equivalent
460 to asking how often a selective sweep occurs in the absence of recurrent mutation, using alleles from
461 standing variation alone. We have addressed this question above, and have shown that dominance
462 shifts substantially increase the probability that a selective sweep—and a soft sweep in particular—will
463 occur from alleles that were present in the standing variation at the time of the environmental change.
464 Second, in cases where a selective sweep occurs and alleles from the standing variation are involved,
465 how large a role do mutations that occurred after the environmental change play in the sweep?

466 To answer this question, we incorporate recurrent mutation into our simulation setup (see Meth-
467 ods). Previous theory has suggested that recurrent mutation should often play a leading role in
468 selective sweeps, relative to standing variation (Pennings and Hermisson 2006; Hermisson and Pen-
469 nings 2017). We find that a dominance shift of the focal allele increases the importance of standing
470 variation as a source of alleles in selective sweeps (Fig. 3). The reason is straightforward. Relative to
471 the case where the allele is dominant (or semi-dominant) before and after the environmental change,
472 a dominance shift of the focal allele does not alter the nature of selection acting on copies of it pro-
473 duced by recurrent mutation after the environmental change—in both scenarios, such copies arise
474 at rate proportional to θ and are dominant beneficial. However, the dominance shift does increase
475 the number of copies of the allele present in the standing variation at the time of the environmental

Figure 4: Expected dominance shifts increase the likelihood of evolutionary rescue in response to an environmental change that threatens the viability of the population. In cases where rescue does occur, it is more rapid and more often involves multiple alleles from the standing variation, and the population size bottleneck is less severe, when the rescuing allele undergoes a dominance shift. The likelihood of evolutionary rescue is especially increased by dominance shifts, relative to the case of constant dominance, when the population has a low intrinsic reproductive rate, r_0 (left panel). However, dominance shifts especially increase the speed of rescue, and make less severe the population size bottleneck, when r_0 is greater (right panel).

476 change, improving the prospects of the standing variation as an allelic source of a subsequent sweep.
 477 Thus, the expected dominance shift increases the importance of standing variation relative to recurrent
 478 mutation.

479 This effect of dominance shifts is most noticeable for high values of θ (e.g., $\theta \sim 1$), where the
 480 large supply of new mutations immediately after the environmental change increases the chance that
 481 these new alleles will be incorporated into a successful sweep. In contrast, for small values of θ (e.g.,
 482 $\theta \sim 0.01$), the mutational supply of alleles immediately after the environmental change is small, so
 483 that sweeps—when they do occur—mostly involve alleles from the standing variation irrespective of
 484 their dominance before and after the environmental change.

485 **Expected dominance shifts increase the likelihood of evolutionary rescue.**

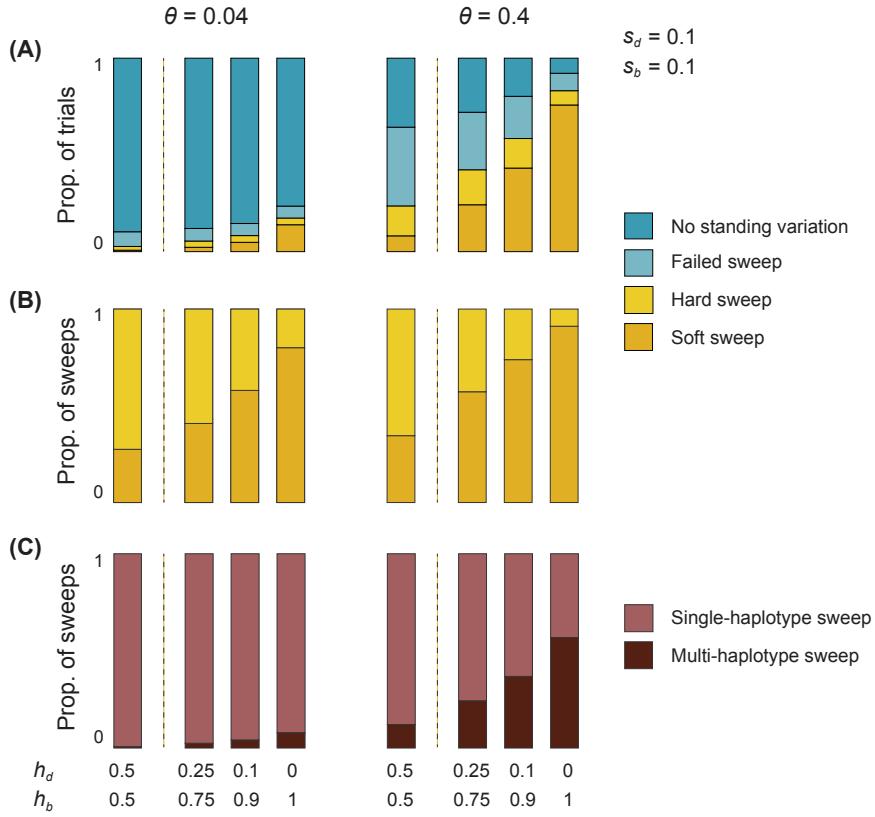
486 We have thus far assumed a constant population size, both before and after the environmental change.
 487 However, in many cases of interest, the relative benefit enjoyed by the mutant allele a after the
 488 environmental change will be due in part to a reduced absolute fitness of the wild-type allele A in
 489 the new environment, such that a population fixed for A would go extinct. In such cases, a selective
 490 sweep of a might be required for the population to recover in size (i.e., to be ‘rescued’). In the
 491 case of a haploid population, this scenario has been studied comprehensively by Orr and Unckless
 492 (2008, 2014), who characterized the probability of rescue, the average time until rescue, the minimum
 493 population size experienced, and the relative likelihood that rescue involved the standing variation
 494 versus recurrent mutation after the environmental change.

495 Incorporating into our diploid model the dependence of population size on mean absolute fitness
 496 (see Methods), we find that a dominance shift of a increases the probability of evolutionary rescue, and
 497 the probability that rescue involves multiple alleles from the standing variation, relative to the case
 498 where the dominance of a remains constant across the environmental change (Fig. 4). Moreover, in
 499 cases where rescue does occur, the dominance shift of a reduces the severity of the bottleneck suffered
 500 by the population, and allows the population to re-attain its prior size more rapidly (Fig. 4).

501 An interesting implication of expected dominance shifts in our diploid model of evolutionary rescue

502 is that heterozygote advantage after the environmental shift should be a common outcome. In this
503 model, a is associated with a relatively small absolute fitness cost in both the pre- and post-change
504 environments, while A is associated with a relatively large absolute fitness cost in the post-change en-
505 vironment. Therefore, a is relatively disadvantageous before the environmental change, but relatively
506 advantageous after (making possible evolutionary rescue). When a is recessive with respect to the
507 absolute fitness disadvantage it induces before the environmental change, but dominant with respect
508 to the absolute fitness disadvantage induced by A after the environmental change, then Aa heterozy-
509 gotes suffer neither of the absolute fitness reductions induced by the two alleles in the post-change
510 environment, and therefore enjoy the highest relative fitness. In such cases, when evolutionary rescue
511 does occur, it is expected to proceed via a partial sweep of a , resulting in a balanced polymorphism
512 at the focal locus.

513 Case study: Adaptation at the *Ace* locus.


514 To demonstrate the empirical relevance of expected dominance shifts for selective sweeps, we consider
515 their importance for a well-studied case of adaptation to a new environment in insects: adaptation at
516 the *Ace* locus in response to pesticide use.

517 Karasov et al. (2010) collected sequence data at the *Ace* locus from pesticide-resistant and pesticide-
518 sensitive strains of *Drosophila melanogaster*. Comparing the sequences of resistant alleles, they inferred
519 multiple haplotypes, i.e., a soft selective sweep by our ‘sample definition’. Since the point mutations
520 that confer resistance are known in this case (Menozzi et al. 2004), Karasov et al. (2010) were able
521 to calibrate the standard selective sweeps model using the point mutation rate of *D. melanogaster*,
522 the species’ traditionally quoted effective population size ($N_e \sim 10^6$), and known fitness parameters
523 for resistant alleles at the *Ace* locus, but assuming the dominance of resistant alleles to be constant
524 before and after the onset of pesticide use. Karasov et al. (2010) found that, under these parameters:
525 (i) a sweep from standing variation would have been unlikely; (ii) a sweep seeded by mutation after
526 the onset of pesticide use would likely have been hard.

527 To reconcile the selective sweeps model with their observation of a soft sweep at the *Ace* locus,
528 Karasov et al. (2010) proposed that the relevant effective population size for recent adaptation (such
529 as at the *Ace* locus) would not be based on the long-term demography of the species (as the traditional
530 effective population size is), but would instead depend on more recent demography, owing to the short
531 timescale over which the relevant adaptation has occurred. Because *D. melanogaster* has undergone
532 a recent population expansion (Thornton and Andolfatto 2006), an effective population size based
533 on recent demography would be substantially larger than the long-term effective population size.
534 Substituting into the selective sweeps model an effective population size two orders of magnitude
535 larger than the traditionally quoted quantity, Karasov et al. (2010) found that a multi-haplotype soft
536 sweep—as observed in their data—would be the expected outcome.

537 Our results suggest another factor that would help to reconcile the surprisingly high haplotypic
538 diversity of resistant alleles at the *Ace* locus with the classic model of a selective sweep: a dominance
539 shift of resistant alleles, from recessive deleterious in pesticide-free environments to dominant beneficial
540 in environments of pesticide use. Indeed, empirical evidence suggests that resistant alleles at *Ace* in
541 insects exhibit this pattern of fitness dominances in the two environments (Bourguet and Raymond
542 1998; Charlesworth 1998; Zhang et al. 2015). To understand what effect such dominance shifts might
543 have on expected diversity among resistant alleles, we consider a single-locus model, employing the
544 same mutation and fitness parameters as Karasov et al. (2010), and we estimate the likelihood of
545 a sweep, the likelihood that the sweep is soft (by both the population and sample definitions), and
546 the expected haplotypic diversity within a sweep, for various degrees of dominance shift [including no
547 shift, as considered by Karasov et al. (2010)] and for various effective population sizes.

548 First, we study the case of $\theta = 0.04$, a value that corresponds approximately to the traditional value
549 of the effective population size in *D. melanogaster* ($N_e \sim 10^6$). First, we find that the probability of

Figure 5: In response to the use of organophosphate pesticides, a dominance shift of resistant alleles at the *Ace* locus increases (A) the likelihood of a sweep from standing variation, (B) the likelihood that a sweep from standing variation is soft, and (C) the likelihood that multiple distinct haplotypes are involved in a sweep. These probabilities are displayed for values of θ corresponding to the long-term effective population size of *Drosophila melanogaster* (left panels) and, following the logic of Karasov et al. (2010), an increased estimate of the relevant effective population size based on more recent demography of the species (right panels).

adaptation from standing variation is extremely small when there is no dominance shift of the resistant allele ($h_d = h_b = 0.5$) (Fig. 5A), consistent with Karasov et al. (2010). In addition, in the rare cases where a sweep does occur from standing variation, the sweep usually involves only one copy of the resistant allele—and almost always only one haplotype (Fig. 5B,C). Under a full dominance shift of the resistant allele ($h_d = 0$; $h_b = 1$), the probability of adaptation from standing variation increases substantially, but remains small, when $\theta = 0.04$. When a sweep does occur, it now more often uses multiple copies of the resistant allele from standing variation (Fig. 5B), but still typically involves only one haplotype (Fig. 5C). Thus, in this case, sweeps would typically be soft by the population definition, but the softness of these sweeps would seldom be detectable from observation of haplotypes in genomic data.

We now study the case of $\theta = 0.4$, corresponding to a ten-fold higher effective population size than the traditional quantity for *D. melanogaster*, but a ten-fold lower value than that posited by Karasov et al. (2010) to explain the allelic diversity they observed at *Ace*. When the resistant allele maintains a constant additive dominance across the pre- and post-pesticide-use environments, adaptation from standing variation remains unlikely in this case (Fig. 5A). Furthermore, when sweeps do occur, they typically make use of only one allele, and one haplotype, from the standing variation (Fig. 5B,C). However, when the resistant allele undergoes a full dominance shift, adaptation from standing variation becomes the expected outcome (Fig. 5A). Now, when a sweep does occur, it almost always makes use of multiple copies of the allele from the standing variation (Fig. 5B; a soft sweep by the population

569 definition), and more often than not involves multiple haplotypes (Fig. 5C), rendering the soft sweep
570 empirically detectable in genomic data.

571 In the simulations described above, rather than fixing the mutation rate and varying the effective
572 population size to simulate different values of θ , for computational efficiency we have instead fixed the
573 effective population size at $N_e = 10^4$ and varied the mutation rate. As discussed earlier, whereas these
574 two procedures should ordinarily yield similar results, this is not so if the focal allele undergoes a sub-
575 stantial dominance shift: in this case, sweeps—and soft sweeps in particular—are more likely in larger
576 populations, holding θ constant (Fig. S8). In our simulations of the *Ace* locus in *Drosophila*, if we con-
577 sider different effective population sizes within a computationally feasible range ($N_e \in \{10^3, 10^4, 10^5\}$)
578 while holding θ fixed at 0.4, we find that the expected dominance shift of the resistant allele increases
579 the probability of a sweep, and of a soft sweep, more drastically at larger population sizes, relative to
580 the case where the allele does not undergo a dominance shift (Fig. S8C,D). Although realistic effective
581 population sizes for *Drosophila* ($N_e \geq 10^6$) cannot feasibly be simulated with our setup, we can get
582 a rough picture of what the results would look like at these population sizes by extrapolating the
583 patterns we have observed across computationally feasible population sizes (Fig. S11). This exercise
584 suggests that our estimates above of the degree to which dominance shifts increase the likelihood of
585 soft selective sweeps at *Ace* are probably conservative. Therefore, the amount by which the relevant
586 effective population size must be revised upwards to explain the haplotypic diversity observed at this
587 locus is probably even more modest than we have estimated above.

588 The results described above ignore the possibility of recurrent appearance of resistant alleles by
589 mutation after the onset of pesticide use. Therefore, they demonstrate that the diversity observed
590 among swept alleles can be furnished entirely by standing variation at the time of the environmental
591 shift. To investigate the relative importance of standing variation versus recurrent mutation, we
592 return to our baseline setup with $N_e = 10^4$ and allow for a positive rate of mutation to resistant
593 alleles after the onset of pesticide use, equal to the mutation rate beforehand. Since, when adaptation
594 from standing variation does not occur, recurrent mutation will eventually furnish alleles that sweep
595 to fixation, we focus on the relative importance of standing variation versus recurrent mutation in
596 cases where standing variation does supply some of the alleles involved in a selective sweep. The
597 ‘unconditional’ importance of standing variation versus recurrent mutation can then be calculated by
598 simply weighting according to the probability that a sweep does occur that involves alleles from the
599 standing variation.

600 When $\theta = 0.04$, sweeps that involve alleles from the standing variation seldom also involve an
601 appreciable frequency of alleles produced by recurrent mutation, especially under a dominance shift
602 of the resistant allele (Fig. S9). However, given the rarity of sweeps that do involve alleles from
603 the standing variation in this case (Fig. 5A), adaptation in response to pesticide use must typically
604 exclusively involve resistant alleles produced by mutation after the onset of pesticide use.

605 When $\theta = 0.4$, it is still the case that sweeps involving alleles from the standing variation typically
606 make use of few or no alleles produced by recurrent mutation (Fig. S9). This is especially so under
607 a dominance shift of the resistant allele (Fig. S9). However, in contrast to the case where $\theta = 0.04$,
608 the increased frequency of sweeps that do involve alleles from the standing variation when $\theta = 0.4$
609 (Fig. 5A) implies that the unconditional importance of recurrent mutation for adaptation in response
610 to pesticide use is reduced. This holds whether there is a dominance shift or not. However, it is
611 especially strong under a dominance shift because both (i) the importance of recurrent mutation in
612 sweeps that involve standing variation is smaller (Fig. S9), and (ii) sweeps that do involve standing
613 variation are more common (Fig. 5A).

614 Given uncertainty around the fitness effects of non-resistant and resistant alleles, and their probable
615 variation across species (e.g., targeted vs. non-targeted species), it is worth considering the case
616 where non-resistant alleles are sufficiently deleterious in environments of pesticide use that population
617 viability is threatened. Since *D. melanogaster* has a very high intrinsic reproductive rate [$r_0 \sim 80$

618 (Dillon et al. 2007)], non-resistant alleles must be lethal (or nearly so) for this to be the case. In
619 simulations of the evolutionary rescue model calibrated to *D. melanogaster*, and setting $\theta = 0.4$, we
620 find results concordant with those described above for the constant-population-size scenario: a strong
621 dominance shift of the resistant allele makes rescue more likely, and more likely to involve multiple
622 alleles from the standing variation (Fig. S12).

623 In summary: (i) The haplotypic diversity observed by Karasov et al. (2010) at the *Ace* locus in
624 *D. melanogaster* can be explained with a more modestly revised estimate of the relevant effective
625 population size of this species when the dominance shift that resistant alleles have empirically been
626 shown to exhibit is taken into account. (ii) For the associated value of θ , and with a dominance shift
627 of the resistant allele, the standing variation at the time of the environmental change is itself capable
628 of furnishing the alleles involved in a subsequent empirical soft selective sweep. (iii) Moreover, in this
629 case, when a soft selective sweep does occur, it is expected to predominantly involve alleles from the
630 standing variation, rather than alleles produced by mutation after the environmental change.

631 4 Discussion

632 More than a century of research on the physiological and evolutionary bases of allelic dominance
633 has been centered around, and has generated explanations for, the fact that beneficial alleles tend
634 to be dominant while deleterious alleles tend to be recessive (Bourguel 1999; Falk 2001). Here, we
635 have explored the implications of this pattern of fitness dominance for the genetics of adaptation to
636 a new environment, where an allele that was deleterious in the old environment becomes beneficial
637 in the new environment. This model is basic to the selective sweeps literature, but has typically
638 been studied under the assumption that the fitness dominance of the focal allele is constant across the
639 environmental change. This is contrary to the prediction of the physiological and evolutionary theories
640 of dominance, which suggest that the allele should instead often shift from recessive deleterious before
641 the environmental change to dominant beneficial after. We have shown that, relative to the case where
642 the allele maintains a constant fitness dominance, the expected shift in dominance: (i) increases the
643 probability of adaptation from the standing variation that was present at the time of the environmental
644 change; (ii) increases the probability that multiple alleles from the standing variation will contribute
645 to adaptation, and that these alleles will lie on distinct haplotypes; (iii) increases the probability that
646 a soft sweep from standing variation will be detectable in small genomic samples; (iv) increases the
647 importance of standing variation relative to subsequent mutation for eventual adaptation to the new
648 environment; (v) increases the probability of evolutionary rescue when the change of environment
649 threatens the viability of the population.

650 Connections to previous theory

651 While most of the prior literature on selective sweeps in a new environment has assumed constant
652 dominance of the relevant alleles, a notable exception is Orr and Betancourt (2001), who consider
653 the case of an allele that transitions from deleterious to beneficial across an environmental change,
654 allowing for the possibility that the allele's fitness dominance shifts across the environmental change
655 as well. They find that the probability that copies of the allele segregating in the standing variation
656 at the time of the environmental change go on to fix is modulated by the ratio of the dominance of the
657 focal allele in the new environment to its dominance in the old environment [h_b/h_d ; Eq. 19 in Orr and
658 Betancourt (2001)]. However, they argue that, because 'it is hard to see why [dominance] shifts would
659 be systematic in direction', the dominance values of alleles across environmental shifts will tend to
660 cancel each other out on average, and thus have no systematic effect on the probability of adaptation
661 from standing variation.

662 Orr and Betancourt's calculations assume that, at the time of the environmental change, the

663 allele's copy number equals the expectation of its mutation-selection distribution from before the en-
664 vironmental change, although they do compare their results against numerical computations based on
665 the full mutation-selection-drift distribution. Hermisson and Pennings (2005) carry out an analyti-
666 cal calculation of the probability of adaptation from standing variation, taking into account the full
667 mutation-selection-drift distribution of the allele. They find that, unless selection against the allele
668 before the environmental change is weak, the probability of adaptation from standing variation is a
669 function of h_b/h_d [Eq. 8 in Hermisson and Pennings (2005)], echoing the result of Orr and Betancourt
670 (2001). They conclude that, when the dominance of the allele does not shift across the environmental
671 change, its value does not matter for the probability of adaptation from standing variation.

672 We have argued, based on the physiological and evolutionary theories of dominance, that systematic
673 dominance shifts of the alleles involved in adaptation to new environments are in fact expected—these
674 alleles are predicted often to shift from recessive when deleterious to dominant when beneficial. These
675 expected dominance shifts facilitate adaptation from standing variation by increasing the presence
676 of the allele in the population prior to the environmental change, and by rescuing the allele from
677 Haldane's sieve after the environmental change. By incorporating the insights of the physiological
678 and evolutionary theories of dominance into models of adaptation to new environments, we have
679 shown that expected dominance shifts have a large impact not only on the probability of adaptation
680 from standing variation, but also on the genetic nature of this adaptation—in particular, whether it
681 proceeds via hard or soft selective sweeps.

682 We have focused on the case where the allele that is adaptive in the new environment was deleterious
683 in the old environment, with the dominance of its deleterious effect modulating the number of copies in
684 the standing variation at the time of the environmental change. An important alternative possibility
685 is that the allele was neutral before the environmental change. In this case, which has been treated
686 analytically by Hermisson and Pennings (2005), sweeps (and soft sweeps in particular) would be more
687 likely than in the setup we have considered. However, dominance would not be relevant for the allele
688 in the old environment, and so the question of dominance shifts would not arise.

689 When are dominance shifts expected?

690 We have outlined two scenarios under which an environmental change can cause an allele to transition
691 from deleterious to beneficial. In the first scenario, the phenotype that is primarily under selection
692 does not change, but the direction of selection acting on the phenotype does. Since the same phenotype
693 is under selection across the environmental change, the fitness dominance of an allele that affects the
694 phenotype is not expected to shift appreciably. One context where this case is expected to be especially
695 common is domestication, where a trait that was previously suppressed by breeders might suddenly
696 become desired [e.g., various coat properties in domestic dogs (Cadieu et al. 2009)].

697 In the second scenario, the change in environment corresponds to a change in the phenotype that
698 is primarily under selection. The focal allele is deleterious before the environmental change through
699 its association with the old phenotype under selection, and beneficial after the environmental change
700 through its association with the new phenotype under selection. The fitness dominance of the allele
701 is then not constrained to remain constant across the environmental change, and, indeed, theories
702 of dominance predict that the dominance of the allele should usually increase as it transitions from
703 deleterious to beneficial.

704 Environmental changes that generate selection on new phenotypes are, of course, expected to be
705 common. We have discussed, as an example, the evolution of pesticide resistance at the *Ace* locus in
706 insects, which encodes the enzyme acetylcholinesterase. In this case, the phenotype that was primarily
707 under selection changed from 'intrinsic' enzymatic efficiency in the pesticide-free environment to the
708 ability to inhibit pesticide binding once pesticides came into common use; accordingly, resistant alleles
709 at *Ace* shifted from deleterious to beneficial. In agreement with the physiological and evolutionary
710 theories of dominance, evidence points to a concomitant shift in the dominance of resistance alleles,

711 from recessive deleterious in pesticide-free environments [inference based on the biochemical properties
712 of acetylcholinesterase (Bourguet and Raymond 1998; Shi et al. 2004) and empirical measurement in
713 moths and mosquitoes (Labbé et al. 2014; Zhang et al. 2015)] to dominant beneficial in environments
714 of pesticide use (Bourguet and Raymond 1998; Charlesworth 1998).

715 In general, the arguments above suggest that adaptation to novel pesticides should be a promising
716 arena for dominance shifts of the alleles involved; consistent with this, several further examples are
717 already known of pesticide-resistant alleles that have undergone dominance shifts, including the alleles
718 that confer resistance to warfarin in Norway rats (Greaves et al. 1977; Hedrick 2012) and chlorsulfuron
719 in *Arabidopsis thaliana* (Roux et al. 2004).

720 A similar situation occurs when a population is exposed to new diseases or parasites. A well-known
721 example of adaptation in humans involves the β -globin gene. Homozygotes for the ‘sickle-cell’ allele of
722 this gene have characteristically misshapen red blood cells, and suffer from sickle-cell anemia, a severe
723 blood disorder (Kwiatkowski 2005; Hedrick 2011). Heterozygotes produce functional red blood cells;
724 the substantial deleterious effect of the allele is thus recessive (Kwiatkowski 2005). The sickle-cell allele
725 also offers protection against malarial infection in both heterozygotes and homozygotes (Kwiatkowski
726 2005; Hedrick 2011), leading to a situation of heterozygote advantage in environments where the
727 disease is prevalent (since homozygotes still suffer the severe effects of sickle-cell anemia). Thus, as
728 for pesticide resistance, the set of phenotypes under selection changes depending on the environment:
729 in malaria-free environments, the phenotype under selection is ‘intrinsic’ function of red blood cells,
730 while in environments where malaria is widespread, both intrinsic function and the ability to protect
731 against malaria are under selection.

732 The sickle-cell variant of β -globin is one of a broader class of mutations in humans—including
733 the variants causing α and β -thalassemia, glucose-6-phosphate dehydrogenase deficiency, and cystic
734 fibrosis—that are associated with substantial fitness costs but also confer protection against some
735 pathogen (Clegg and Weatherall 1999; Kwiatkowski 2005; Nielsen et al. 2007; Hedrick 2012). As pre-
736 dicted by theories of dominance, these variants display contrasting fitness dominances in pathogen-free
737 and pathogen-affected environments. They are recessive deleterious in pathogen-free environments,
738 where selection acts primarily on the diseases that they cause. In environments where the pathogens
739 that they confer resistance against are prevalent, the fitness dominance of these variants charac-
740 teristically shifts all the way to overdominance. Note that this overdominance is predicted by our
741 ‘bottom-up’ model of adaptation to a new environment, as employed in our analysis of evolution-
742 ary rescue, and is a consequence of the standard dominance patterns when there are two selectively
743 independent phenotypes.

744 Environmental changes frequently expose populations to novel causes of selection (e.g., pesticides
745 or pathogens in the examples set out above), and so often lead to shifts in the phenotypes that are
746 primarily under selection. For this reason, shifts in the phenotypes under selection are also expected
747 when populations colonize a new geographic area or expand into a new ecological niche. For alleles
748 that affect both the old and new selected phenotypes, dominance shifts are expected. Thus, dominance
749 shifts may play an important role in facilitating adaptation from standing variation across a broad
750 range of evolutionary and ecological contexts.

751 When are dominance shifts most influential?

752 We have shown that dominance shifts can lead to the frequent occurrence of soft selective sweeps
753 in parameter regimes where they ordinarily would not be expected to occur. In particular, we have
754 shown that dominance shifts can have a very strong impact on the genetics of adaptation when the
755 focal allele is highly deleterious prior to the environmental change (Figs. 5, S5, S10). This is because,
756 when selection against a deleterious allele is strong, its dominance has a large effect on the shape
757 of its mutation-selection-drift distribution, which in turn determines the likelihood of a soft selective
758 sweep from the standing variation once the allele becomes beneficial. In contrast, if selection against

759 the allele prior to the environmental shift is weak, there will usually be many copies present in the
760 standing variation, regardless of its dominance, and so a soft selective sweep would be a common
761 outcome in any case.

762 Our prediction that dominance shifts will be more influential when the focal allele is highly deleteri-
763 ous before the environmental change is complemented by a key prediction of the Wright-Kacser-Burns
764 metabolic theory of dominance: the more deleterious a mutation is, the more recessive it usually will
765 be (Kacser and Burns 1981; Phadnis and Fry 2005). This negative correlation between h_d and s_d has
766 also been predicted by evolutionary theories of dominance [e.g., Manna et al. (2011)] and supported
767 by empirical work in *Drosophila* (Simmons and Crow 1977; Charlesworth 1979) and yeast (Phadnis
768 and Fry 2005; Agrawal and Whitlock 2011). It suggests that dominance shifts should be largest in
769 precisely those parameter regimes where we have found dominance shifts to have the largest impact on
770 the likelihood of sweeps and of soft sweeps in particular—i.e., when the focal allele is highly deleterious
771 before the environmental change (Fig. S10).

772 Complex demography and selection at linked sites

773 The models we have studied in this paper are highly stylized, involving selection among two alleles at
774 a single, isolated locus in a well-mixed population of constant size (this last assumption was relaxed in
775 our analysis of evolutionary rescue). In reality, selection occurs at loci linked to any focal locus, while
776 populations fluctuate in size over time and are structured in complex ways. All of these complications
777 will affect the allelic frequency dynamics at a focal locus, and therefore the probability of a sweep
778 (and of a soft sweep) in response to an environmental change.

779 These features vary in complex ways within genomes and across species, making it difficult to
780 incorporate them in a general way in our model. To a first approximation, their influence on the
781 adaptive process at the focal locus can be understood in terms of their effect on the relevant effective
782 population size, N_e , at the focal locus. For example, purifying selection at linked sites reduces the
783 relevant effective population size at the focal site in a way that can be captured by a single, measurable
784 parameter, B (McVicker et al. 2009). Similarly, temporal changes in population size alter the effective
785 population size in a well understood fashion (Wright 1938). Note that, as discussed above, there
786 has recently been some interest in the timescale over which changes in population size influence the
787 effective population size that is relevant for rapid adaptation to a new environment; the appropriate
788 timescale will typically be much more recent than the timescale relevant for a traditional effective
789 population size based on neutral genetic diversity (Karasov et al. 2010).

790 Finally, the effect of population structure depends on whether the change of environment affects
791 the population homogeneously or not. If it does, then the effect of population structure can again
792 be understood in terms of its effect on the effective population size [e.g., (Wright 1943; Whitlock
793 and Barton 1997)]. If not, and some subpopulations (or regions) do experience the environmental
794 change while others do not, then the dynamics of adaptation are more complicated, with gene flow
795 between subpopulations influencing allelic frequency dynamics and impeding adaptation in the various
796 environments. Such a situation has occurred in the mosquito *Culex pipiens*, with spatial heterogeneity
797 in the use of organophosphate pesticides resulting in complex geographic patterns of the frequency of
798 pesticide-resistance mutations at the *Ace* locus (Lenormand et al. 1999; Labb   et al. 2007b).

799 Implications for the genetics of adaptation across the genome

800 Our work has focused on the case of a single diploid locus at which the focal allele undergoes a
801 dominance shift. However, the propensity for a dominance shift of a given allele—and therefore the
802 propensity for it to sweep, and to sweep softly—might depend on its genomic location. We discuss
803 two examples below.

804 First, while autosomal loci are diploid in both sexes, and therefore subject to the patterns of
805 the genetics of adaptation described in this paper, X-linked loci in male-heterogametic systems and
806 Z-linked loci in female-heterogametic systems are diploid in one sex but haploid in the other. At
807 these sex-linked loci, alleles that become beneficial in a new environment cannot have been strongly
808 recessive deleterious in the old environment, because they are hemizygously expressed in one of the
809 sexes. Therefore, we predict that soft sweeps from standing variation should be less common at sex-
810 linked loci than at autosomal loci. This prediction is, of course, complicated by other differences
811 between autosomes and sex chromosomes, such as differences in their effective population size and the
812 strength of selection on males versus females (Vicoso and Charlesworth 2006).

813 Second, at a single diploid locus, the fitness effects of a deleterious allele can be ‘masked’ by the
814 wild-type allele at the same locus, but when there are two (or more) copies of a locus, a deleterious
815 allele can be masked by a wild-type allele at its locus or at the other locus. Therefore, we expect a
816 deleterious allele at a duplicated locus to be more recessive than it would be in the single-locus case,
817 since it has potentially more wild-type alleles to mask its deleterious effect. If the allele were later
818 to become dominant beneficial, a soft sweep would then be an even more likely outcome than in the
819 single-locus case, because the allele would undergo a more extreme dominance shift. This increased
820 likelihood of a soft sweep would be further enhanced by the larger mutational target presented by the
821 duplicated locus, i.e., a higher effective value of θ .

822 Note that, if, after the change of selective environment, a sweep does occur at a duplicated locus,
823 this would appear as subfunctionalization of the gene (Ohno 1970; Force et al. 1999; Hahn 2009).
824 However, another source of apparent subfunctionalization is suggested by the ‘bottom up’ model of
825 dominance shifts that we used to study the particular case of evolutionary rescue. Under this model,
826 heterozygote advantage is expected to be a common outcome of changes in the selective environment,
827 leading to a partial selective sweep and subsequent stable polymorphism at the focal locus. In a sexual
828 species, Mendelian segregation at the polymorphic locus causes the production of less fit homozygous
829 genotypes, inducing a ‘segregation load’ that can select for duplication of the locus and fixation of the
830 alternative alleles, one at each locus (Haldane 1954; Spofford 1969; Hahn 2009; Milesi et al. 2017).
831 These two sources of subfunctionalization could be empirically distinguished if the timing of the
832 duplication were either known *a priori* or inferable through the sequence divergence of the two gene
833 copies. A case where the chronology of gene duplication has been well characterized is the *Ace* locus
834 in *Culex pipiens* (Labbé et al. 2007a). In multiple populations subjected to pesticides, haplotypes
835 that harbor a duplication of the *Ace* locus, with a copy each of the susceptible and resistant allele, are
836 undergoing selective sweeps (Labbé et al. 2007a; Alout et al. 2011; Milesi et al. 2017). The duplication
837 is known to have occurred after the onset of pesticide use (Labbé et al. 2007a), consistent with the
838 second scenario for subfunctionalization outlined above (Hahn 2009). Similarly, a recent duplication of
839 *Rdl*—a gene targeted by, and with known resistance mutations to, certain organochlorine pesticides—
840 has been observed in several *D. melanogaster* populations (Remnant et al. 2013).

841 5 Conclusion

842 We have shown that dominance shifts have a major impact on the genetics of adaptation to a new
843 environment, increasing the likelihood of selective sweeps and of soft selective sweeps in particular. To
844 the extent that dominance shifts in response to a change in environment are common—as physiological
845 and evolutionary theories of dominance predict they should be—our findings clearly have important
846 implications for the genetic patterns that will be observed following adaptation. Unfortunately, al-
847 though there have been many cases where the alleles involved in adaptation to new environments have
848 been identified, only in a handful of cases has the dominance of the allele been measured both before
849 and after the environmental change. In showing that dominance shifts (i) are expected to be common
850 and (ii) can have a major impact on the genetics of adaptation, we hope that our results will encourage

851 geneticists interested in adaptation to new environments to measure dominance in investigations of
852 alleles that have undergone selective sweeps.

853 References

854 Agrawal, A. F. and Whitlock, M. C. (2011). Inferences about the distribution of dominance drawn
855 from yeast gene knockout data. *Genetics*, 187(2):553–566.

856 Alout, H., Labb  , P., Pasteur, N., and Weill, M. (2011). High incidence of *ace-1* duplicated haplotypes
857 in resistant *Culex pipiens* mosquitoes from Algeria. *Insect Biochemistry and Molecular Biology*,
858 41(1):29–35.

859 Bank, C., Ewing, G. B., Ferrer-Admetla, A., Foll, M., and Jensen, J. D. (2014). Thinking too
860 positive? Revisiting current methods of population genetic selection inference. *Trends in Genetics*,
861 30(12):540–546.

862 Barrett, R. D. H. and Schluter, D. (2008). Adaptation from standing genetic variation. *Trends in
863 Ecology & Evolution*, 23(1):38–44.

864 Bourguet, D. (1999). The evolution of dominance. *Heredity*, 83(1):1–4.

865 Bourguet, D., Lenormand, T., Guillemaud, T., Marcel, V., Fournier, D., and Raymond, M. (1997).
866 Variation of dominance of newly arisen adaptive genes. *Genetics*, 147(3):1225–1234.

867 Bourguet, D. and Raymond, M. (1998). The molecular basis of dominance relationships: the case of
868 some recent adaptive genes. *Journal of Evolutionary Biology*, 11(1):103–122.

869 Cadieu, E., Neff, M. W., Quignon, P., Walsh, K., Chase, K., Parker, H. G., VonHoldt, B. M., Rhue,
870 A., Boyko, A., Byers, A., et al. (2009). Coat variation in the domestic dog is governed by variants
871 in three genes. *Science*, 326(5949):150–153.

872 Charlesworth, B. (1979). Evidence against Fisher's theory of dominance. *Nature*, 278(5707):848–849.

873 Charlesworth, B. (1998). Adaptive evolution: the struggle for dominance. *Current Biology*,
874 8(14):R502–R504.

875 Clegg, J. B. and Weatherall, D. J. (1999). Thalassemia and malaria: new insights into an old problem.
876 *Proceedings of the Association of American Physicians*, 111(4):278–282.

877 Crow, J. F. and Kimura, M. (1970). *An Introduction in Population Genetics Theory*. Harper and
878 Row, New York.

879 Dillon, M. E., Cahn, L. R., and Huey, R. B. (2007). Life history consequences of temperature transients
880 in *Drosophila melanogaster*. *Journal of Experimental Biology*, 210(16):2897–2904.

881 Donihue, C. M., Herrel, A., Fabre, A.-C., Kamath, A., Geneva, A. J., Schoener, T. W., Kolbe, J. J.,
882 and Losos, J. B. (2018). Hurricane-induced selection on the morphology of an island lizard. *Nature*,
883 560(7716):88–91.

884 Eyre-Walker, A. and Keightley, P. D. (2007). The distribution of fitness effects of new mutations.
885 *Nature Reviews Genetics*, 8(8):610–618.

886 Falk, R. (2001). The rise and fall of dominance. *Biology and Philosophy*, 16(3):285–323.

887 Fisher, R. A. (1928). The possible modification of the response of the wild type to recurrent mutations.
888 *American Naturalist*, 62(679):115–126.

889 Force, A., Lynch, M., Pickett, F. B., Amores, A., Yan, Y.-l., and Postlethwait, J. (1999). Preservation
890 of duplicate genes by complementary, degenerative mutations. *Genetics*, 151(4):1531–1545.

891 Fournier, D. and Mutero, A. (1994). Modification of acetylcholinesterase as a mechanism of resistance
892 to insecticides. *Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and
893 Endocrinology*, 108(1):19–31.

894 Fournier, D., Mutero, A., Pralavorio, M., and Bride, J.-M. (1993). *Drosophila* acetylcholinesterase:
895 mechanisms of resistance to organophosphates. *Chemico-Biological Interactions*, 87(1-3):233–238.

896 Garud, N. R., Messer, P. W., Buzbas, E. O., and Petrov, D. A. (2015). Recent selective sweeps in North
897 American *Drosophila melanogaster* show signatures of soft sweeps. *PLoS Genetics*, 11(2):e1005004.

898 Garud, N. R., Messer, P. W., and Petrov, D. A. (2021). Detection of hard and soft selective sweeps
899 from *Drosophila melanogaster* population genomic data. *PLoS Genetics*, 17(2):e1009373.

900 Greaves, J., Redfern, R., Ayres, P., and Gill, J. (1977). Warfarin resistance: a balanced polymorphism
901 in the Norway rat. *Genetics Research*, 30(3):257–263.

902 Hahn, M. W. (2009). Distinguishing among evolutionary models for the maintenance of gene dupli-
903 cates. *Journal of Heredity*, 100(5):605–617.

904 Haldane, J. B. S. (1954). *The Biochemistry of Genetics*. George Allen & Unwin, London.

905 Haller, B. C. and Messer, P. W. (2019). SLiM 3: forward genetic simulations beyond the Wright–Fisher
906 model. *Molecular biology and evolution*, 36(3):632–637.

907 Harris, R. B., Sackman, A., and Jensen, J. D. (2018). On the unfounded enthusiasm for soft se-
908 lective sweeps II: Examining recent evidence from humans, flies, and viruses. *PLoS Genetics*,
909 14(12):e1007859.

910 Hedrick, P. W. (2011). Population genetics of malaria resistance in humans. *Heredity*, 107(4):283–304.

911 Hedrick, P. W. (2012). What is the evidence for heterozygote advantage selection? *Trends in Ecology
912 & Evolution*, 27(12):698–704.

913 Hermission, J. and Pennings, P. S. (2005). Soft sweeps: molecular population genetics of adaptation
914 from standing genetic variation. *Genetics*, 169(4):2335–2352.

915 Hermission, J. and Pennings, P. S. (2017). Soft sweeps and beyond: understanding the patterns and
916 probabilities of selection footprints under rapid adaptation. *Methods in Ecology and Evolution*,
917 8(6):700–716.

918 Hoffmann, F., Fournier, D., and Spierer, P. (1992). Minigene rescues acetylcholinesterase lethal mu-
919 tations in *Drosophila melanogaster*. *Journal of Molecular Biology*, 223(1):17–22.

920 Hurst, L. D. and Randerson, J. P. (2000). Dosage, deletions and dominance: simple models of the
921 evolution of gene expression. *Journal of Theoretical Biology*, 205(4):641–647.

922 Jensen, J. D. (2014). On the unfounded enthusiasm for soft selective sweeps. *Nature Communications*,
923 5(1):1–10.

924 Johri, P., Charlesworth, B., and Jensen, J. D. (2020). Toward an evolutionarily appropriate null
925 model: Jointly inferring demography and purifying selection. *Genetics*, 215(1):173–192.

926 Jost, L. (2006). Entropy and diversity. *Oikos*, 113(2):363–375.

927 Kacser, H. and Burns, J. A. (1981). The molecular basis of dominance. *Genetics*, 97(3-4):639–666.

928 Karasov, T., Messer, P. W., and Petrov, D. A. (2010). Evidence that adaptation in *Drosophila* is not
929 limited by mutation at single sites. *PLoS Genetics*, 6(6):e1000924.

930 Keightley, P. D. (1996). A metabolic basis for dominance and recessivity. *Genetics*, 143(2):621.

931 Keightley, P. D. and Eyre-Walker, A. (2007). Joint inference of the distribution of fitness effects of
932 deleterious mutations and population demography based on nucleotide polymorphism frequencies.
933 *Genetics*, 177(4):2251–2261.

934 Kousathanas, A. and Keightley, P. D. (2013). A comparison of models to infer the distribution of
935 fitness effects of new mutations. *Genetics*, 193(4):1197–1208.

936 Kwiatkowski, D. P. (2005). How malaria has affected the human genome and what human genetics
937 can teach us about malaria. *The American Journal of Human Genetics*, 77(2):171–192.

938 Labb , P., Berthomieu, A., Berticat, C., Alout, H., Raymond, M., Lenormand, T., and Weill, M.
939 (2007a). Independent duplications of the acetylcholinesterase gene conferring insecticide resistance
940 in the mosquito *Culex pipiens*. *Molecular Biology and Evolution*, 24(4):1056–1067.

941 Labb , P., Berticat, C., Berthomieu, A., Unal, S., Bernard, C., Weill, M., and Lenormand, T. (2007b).
942 Forty years of erratic insecticide resistance evolution in the mosquito *Culex pipiens*. *PLoS Genet*,
943 3(11):e205.

944 Labb , P., Milesi, P., Y bakima, A., Pasteur, N., Weill, M., and Lenormand, T. (2014). Gene-dosage
945 effects on fitness in recent adaptive duplications: ace-1 in the mosquito *Culex pipiens*. *Evolution*,
946 68(7):2092–2101.

947 Lenormand, T., Bourguet, D., Guillemaud, T., and Raymond, M. (1999). Tracking the evolution of
948 insecticide resistance in the mosquito *Culex pipiens*. *Nature*, 400(6747):861–864.

949 Loewe, L. and Charlesworth, B. (2006). Inferring the distribution of mutational effects on fitness in
950 *Drosophila*. *Biology Letters*, 2(3):426–430.

951 Loewe, L., Charlesworth, B., Bartolom , C., and Noel, V. (2006). Estimating selection on nonsynonymous
952 mutations. *Genetics*, 172(2):1079–1092.

953 Manna, F., Martin, G., and Lenormand, T. (2011). Fitness landscapes: an alternative theory for the
954 dominance of mutation. *Genetics*, 189(3):923–937.

955 McVicker, G., Gordon, D., Davis, C., and Green, P. (2009). Widespread genomic signatures of natural
956 selection in hominid evolution. *PLoS Genet*, 5(5):e1000471.

957 Menozzi, P., Shi, M. A., Lougarre, A., Tang, Z. H., and Fournier, D. (2004). Mutations of acetyl-
958 cholinesterase which confer insecticide resistance in *Drosophila melanogaster* populations. *BMC
959 Evolutionary Biology*, 4(1):4.

960 Messer, P. W. and Petrov, D. A. (2013). Population genomics of rapid adaptation by soft selective
961 sweeps. *Trends in Ecology & Evolution*, 28(11):659–669.

962 Milesi, P., Weill, M., Lenormand, T., and Labb  , P. (2017). Heterogeneous gene duplications can be
963 adaptive because they permanently associate overdominant alleles. *Evolution Letters*, 1(3):169–180.

964 Mutero, A., Pralavorio, M., Bride, J.-M., and Fournier, D. (1994). Resistance-associated point mutations
965 in insecticide-insensitive acetylcholinesterase. *Proceedings of the National Academy of Sciences*,
966 91(13):5922–5926.

967 Nielsen, R., Hellmann, I., Hubisz, M., Bustamante, C., and Clark, A. G. (2007). Recent and ongoing
968 selection in the human genome. *Nature Reviews Genetics*, 8(11):857–868.

969 Ohno, S. (1970). *Evolution by gene duplication*. Springer-Verlag, Berlin.

970 Orr, H. A. (2003). The distribution of fitness effects among beneficial mutations. *Genetics*,
971 163(4):1519–1526.

972 Orr, H. A. and Betancourt, A. J. (2001). Haldane’s sieve and adaptation from the standing genetic
973 variation. *Genetics*, 157(2):875–884.

974 Orr, H. A. and Unckless, R. L. (2008). Population extinction and the genetics of adaptation. *American
975 Naturalist*, 172(2):160–169.

976 Orr, H. A. and Unckless, R. L. (2014). The population genetics of evolutionary rescue. *PLoS Genetics*,
977 10(8):e1004551.

978 Pennings, P. S. and Hermisson, J. (2006). Soft sweeps II—molecular population genetics of adaptation
979 from recurrent mutation or migration. *Molecular Biology and Evolution*, 23(5):1076–1084.

980 Phadnis, N. and Fry, J. D. (2005). Widespread correlations between dominance and homozygous
981 effects of mutations: implications for theories of dominance. *Genetics*, 171(1):385–392.

982 Pritchard, J. K., Pickrell, J. K., and Coop, G. (2010). The genetics of human adaptation: hard sweeps,
983 soft sweeps, and polygenic adaptation. *Current Biology*, 20(4):R208–R215.

984 Remnant, E. J., Good, R. T., Schmidt, J. M., Lumb, C., Robin, C., Daborn, P. J., and Batterham,
985 P. (2013). Gene duplication in the major insecticide target site, *Rdl*, in *Drosophila melanogaster*.
986 *Proceedings of the National Academy of Sciences*, 110(36):14705–14710.

987 Roux, F., Gasquez, J., and Reboud, X. (2004). The dominance of the herbicide resistance cost in
988 several *Arabidopsis thaliana* mutant lines. *Genetics*, 166(1):449–460.

989 Schneider, A., Charlesworth, B., Eyre-Walker, A., and Keightley, P. D. (2011). A method for inferring
990 the rate of occurrence and fitness effects of advantageous mutations. *Genetics*, 189(4):1427–1437.

991 Schrider, D. R. and Kern, A. D. (2017). Soft sweeps are the dominant mode of adaptation in the
992 human genome. *Molecular Biology and Evolution*, 34(8):1863–1877.

993 Shi, M. A., Lougarre, A., Alies, C., Fr  maux, I., Tang, Z. H., Stojan, J., and Fournier, D. (2004).
994 Acetylcholinesterase alterations reveal the fitness cost of mutations conferring insecticide resistance.
995 *BMC Evolutionary Biology*, 4(1):5.

996 Simmons, M. J. and Crow, J. F. (1977). Mutations affecting fitness in drosophila populations. *Annual
997 Review of Genetics*, 11(1):49–78.

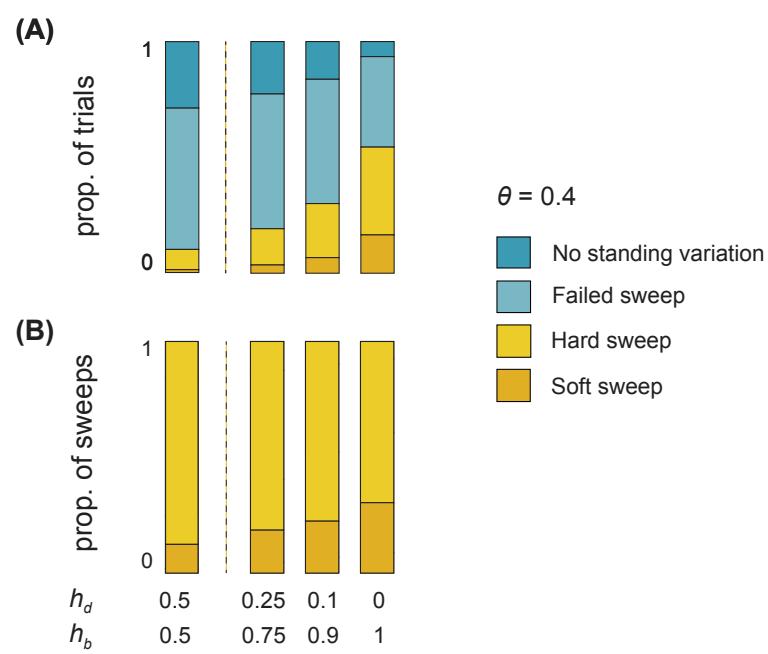
998 Spofford, J. B. (1969). Heterosis and the evolution of duplications. *American Naturalist*, 103(932):407–
999 432.

1000 Stephan, W. (2019). Selective sweeps. *Genetics*, 211(1):5–13.

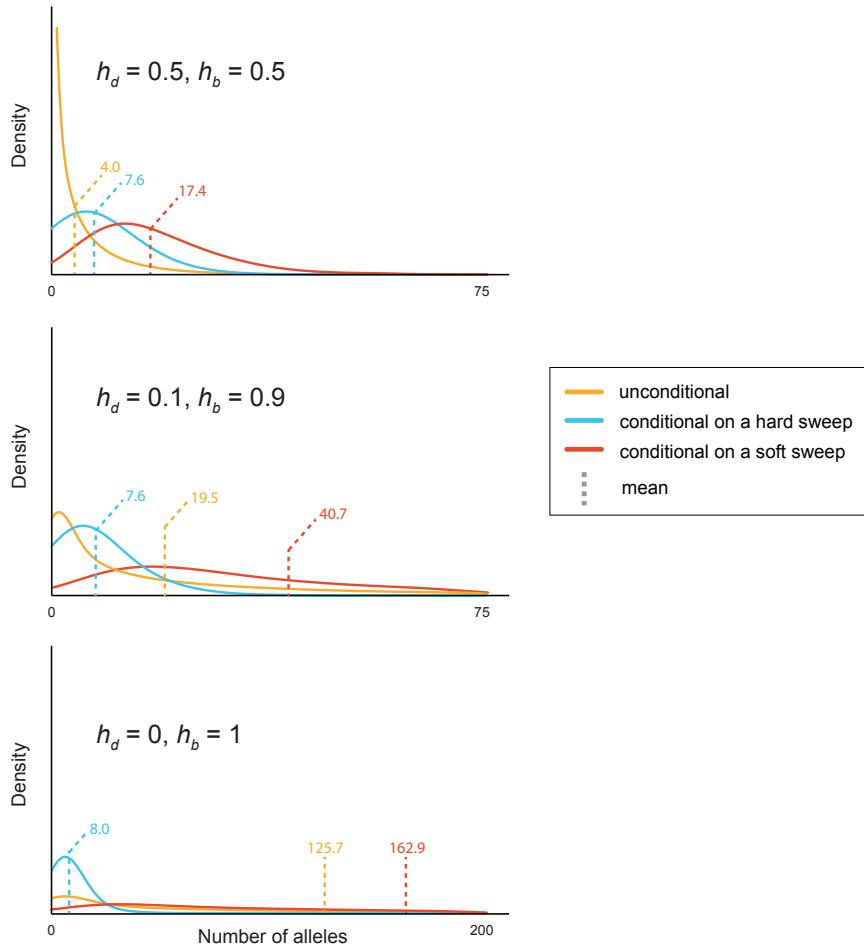
1001 Thornton, K. and Andolfatto, P. (2006). Approximate Bayesian inference reveals evidence for a recent,
1002 severe bottleneck in a Netherlands population of *Drosophila melanogaster*. *Genetics*, 172(3):1607–
1003 1619.

1004 van Herwaarden, O. A. and van der Wal, N. J. (2002). Extinction time and age of an allele in a large
1005 finite population. *Theoretical Population Biology*, 61(3):311–318.

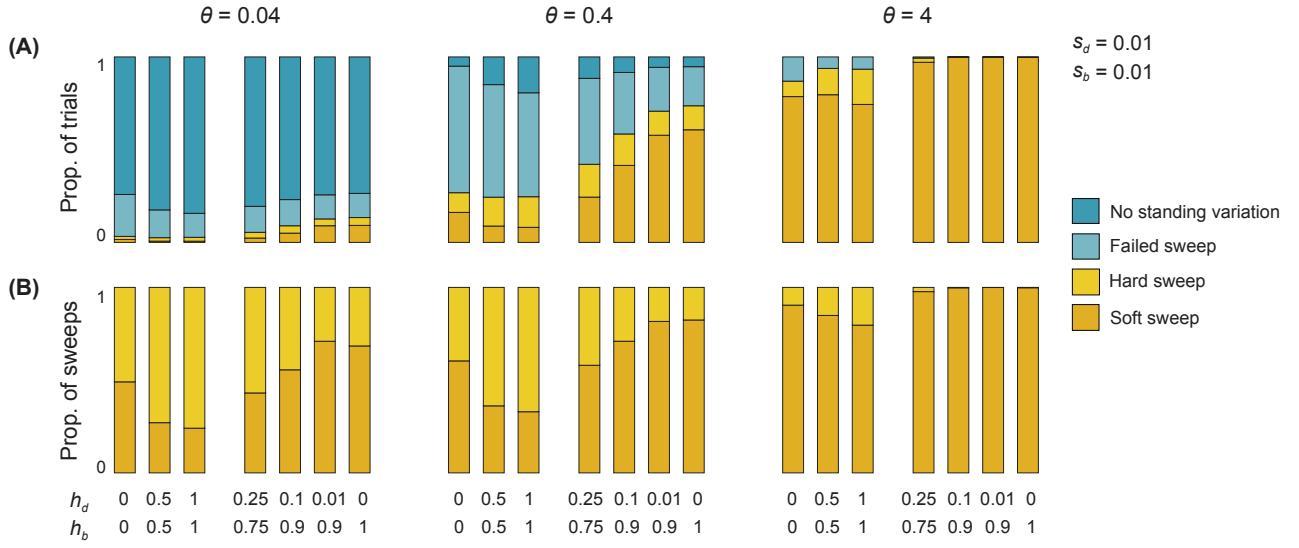
1006 Vicoso, B. and Charlesworth, B. (2006). Evolution on the X chromosome: unusual patterns and
1007 processes. *Nature Reviews Genetics*, 7(8):645–653.

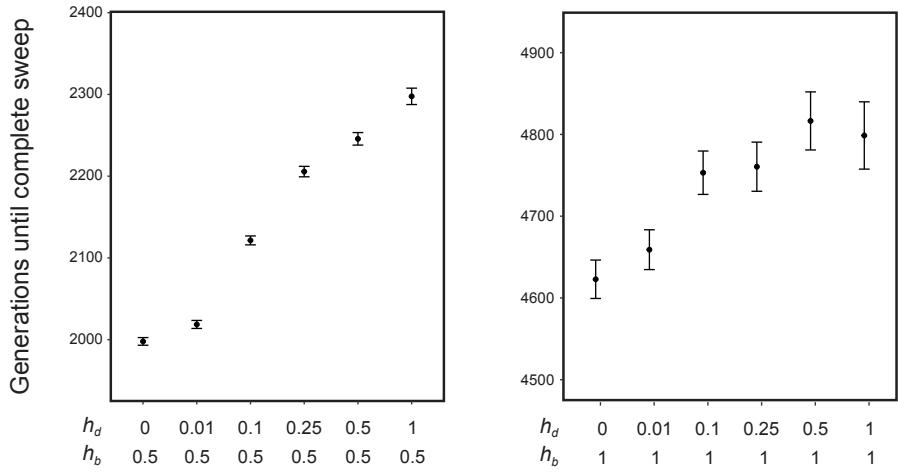

1008 Whitlock, M. C. and Barton, N. H. (1997). The effective size of a subdivided population. *Genetics*,
1009 146(1):427–441.

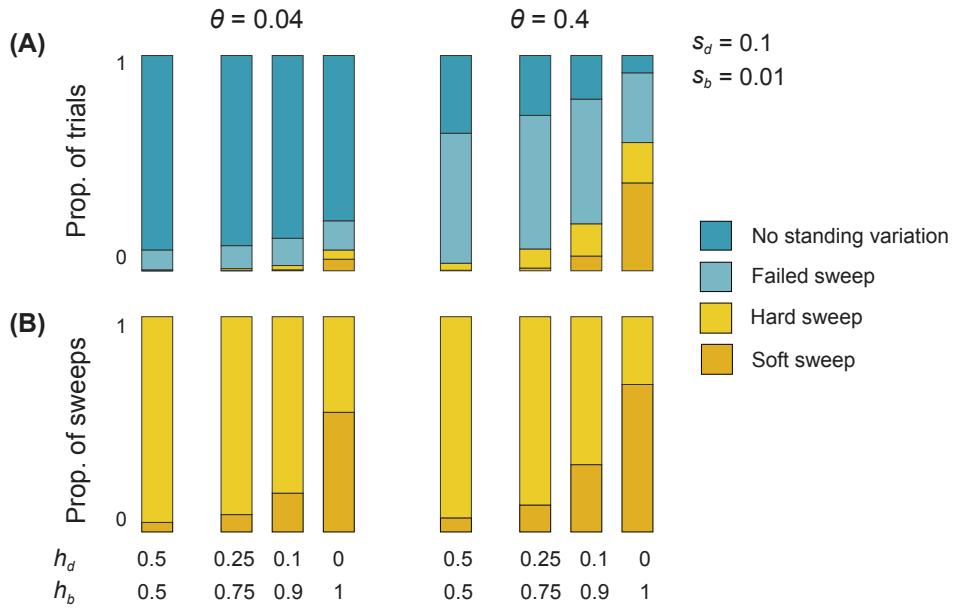
1010 Wright, S. (1934). Physiological and evolutionary theories of dominance. *American Naturalist*,
1011 68(714):24–53.

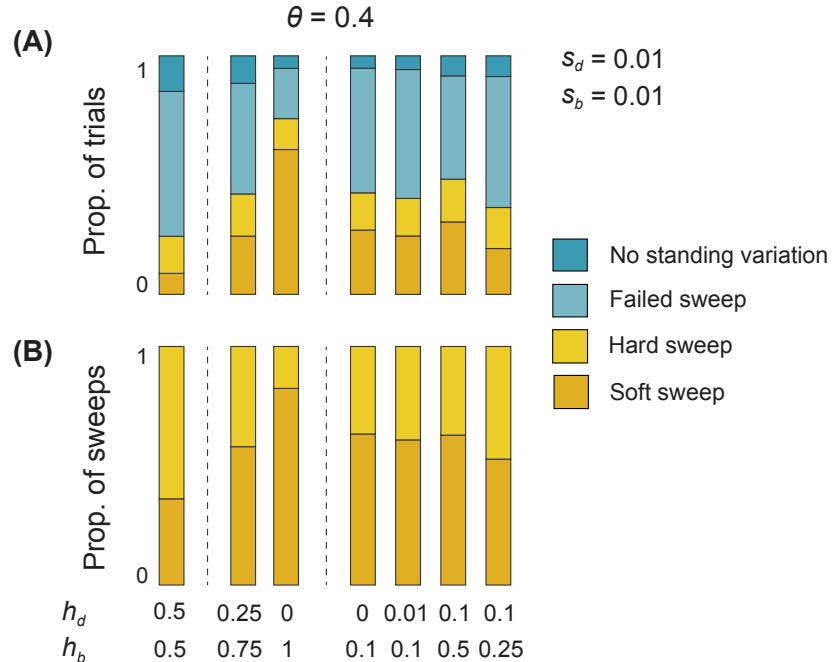

1012 Wright, S. (1938). Size of population and breeding structure in relation to evolution. *Science*,
1013 87(2263):430–431.

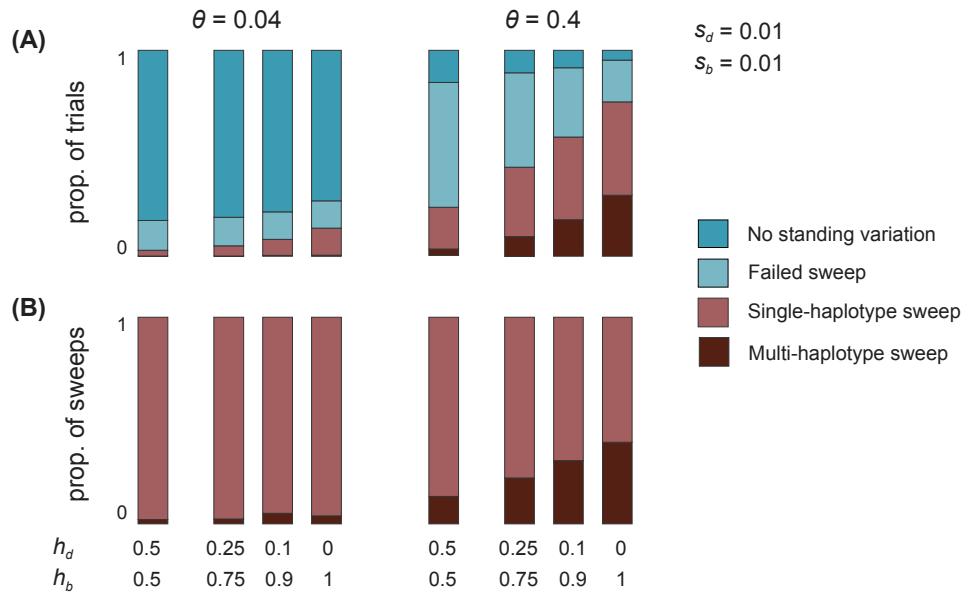
1014 Wright, S. (1943). Isolation by distance. *Genetics*, 28(2):114–138.

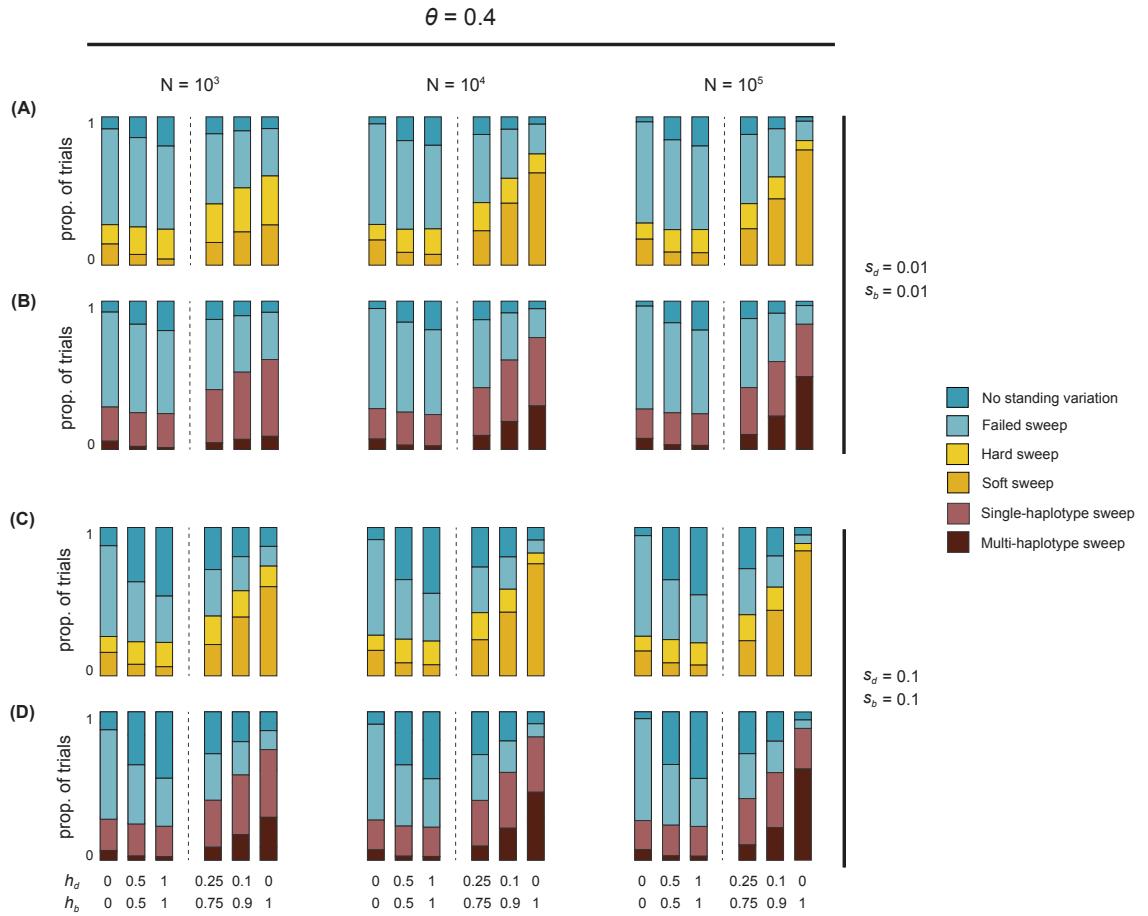

1015 Zhang, L. J., Jing, Y. P., Li, X. H., Li, C. W., Bourguet, D., and Wu, G. (2015). Temperature-
1016 sensitive fitness cost of insecticide resistance in Chinese populations of the diamondback moth
1017 *Plutella xylostella*. *Molecular Ecology*, 24(7):1611–1627.

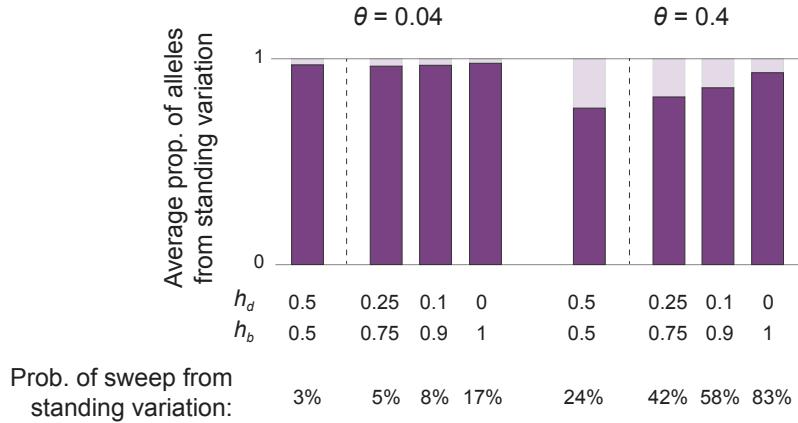

Figure S1: Dominance shifts increase (A) the likelihood of a selective sweep from the standing variation, and (B) the relative likelihood of soft versus hard selective sweeps when the beneficial and deleterious selection coefficients of the focal allele are random variables drawn from empirically justified distributions of fitness effects (see Methods).

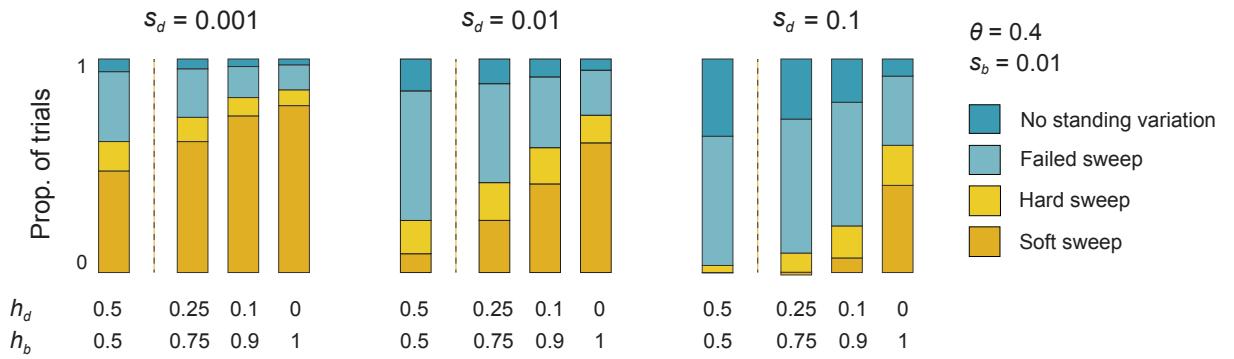

Figure S2: Hard and soft selective sweeps derive from different regions of the mutation-selection-drift distribution. We set $N = 10^4$, $u = 10^{-5}$ ($\theta = 0.4$), and $s_d = s_b = 0.1$, and display, for three sets of dominance parameters, the unconditional mutation-selection-drift distribution of the focal allele's copy number at the time of the environmental change (gold), the distribution conditional on a hard selective sweep subsequently occurring (blue), and the distribution conditional on a soft sweep subsequently occurring (red). In all three cases, hard and soft sweeps derive from distinct regions of the underlying mutation-selection-drift spectrum, but this distinction is more pronounced in the cases that involve a dominance shift (bottom two panels).


Figure S3: (A) Expected dominance shifts increase the likelihood of a selective sweep relative to scenarios in which the adaptive allele is constantly recessive, additive, or dominant. (B) Conditional on successful adaptation from the standing variation, expected dominance shifts increase the probability that multiple alleles are involved. When the allele maintains a constant dominance across the environmental shift ($h_b = h_d$), the relative likelihood of soft sweeps is highest when it is fully recessive ($h_d = h_b = 0$). Compared to this case, a moderate dominance shift (e.g., $h_d = 0.25$, $h_b = 0.75$) leads to approximately the same relative likelihood of a soft selective sweep (and stronger dominance shifts increase this relative likelihood further). Moreover, since the probability of adaptation from the standing variation is lower for a constantly recessive allele than for an allele undergoing a dominance shift (A), there will be a greater absolute number of soft sweeps in the latter case.


Figure S4: Conditional fixation times of the focal allele, measured in generations after the environmental change, for various sets of dominance parameters. Dominance shifts tend to shorten the average time until completion of successful sweeps. Parameters: $\theta = 0.4$, $s_d = s_b = 0.01$.


Figure S5: Expected dominance shifts can cause soft sweeps to predominate over hard sweeps even when s_b/s_d is small. Previous work predicts that soft sweeps should be rare when $s_b/s_d < 1$, owing to low levels of standing variation at the time of the environmental change and a high probability of subsequent stochastic loss of those copies that are present. However, if the focal allele undergoes a strong dominance shift ($h_d \approx 0$, $h_b \approx 1$), soft sweeps can be more likely than hard sweeps despite small values of s_b/s_d .


Figure S6: Expected dominance shifts substantially increase the likelihood of soft selective sweeps, even when the dominance of the focal allele after the environmental change is sub-additive ($h_d < h_b < 0.5$). However, such partial dominance shifts lead to smaller increases in the likelihood of a soft sweep, relative to complete dominance shifts ($h_d \approx 0$, $h_b \approx 1$).


Figure S7: Expected dominance shifts increase the probability of soft sweeps with multiple independent mutational origins, and therefore multiple distinguishable haplotypes (soft sweeps by the ‘sample definition’).

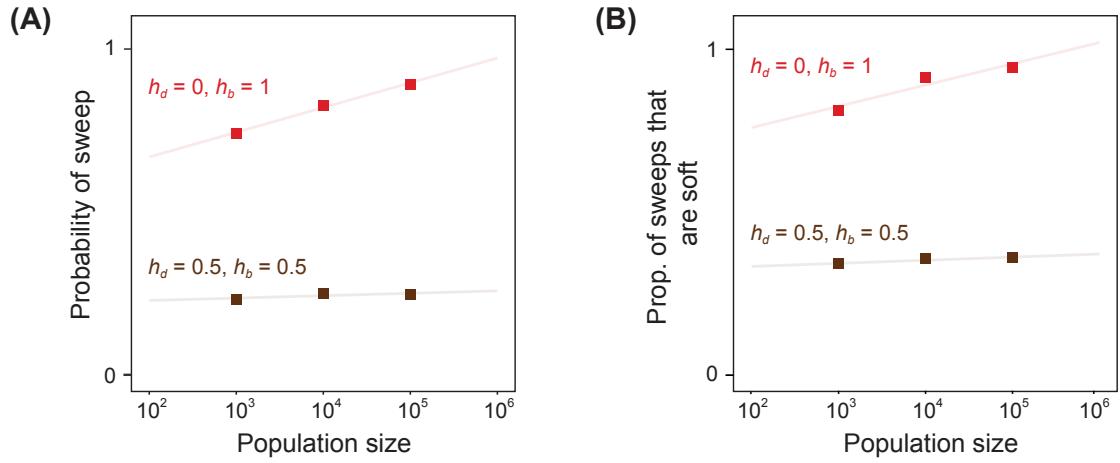

Figure S8: Holding the rate of mutational supply ($\theta = 4Nu$) fixed, an increase in the effective population size N (and a concomitant decrease in the mutation rate u) does not substantially affect the probability of a sweep and the relative likelihoods of soft versus hard sweeps when the focal allele does not undergo a dominance shift ($h_d = h_b$), but does increase the probability of a sweep and the relative likelihood of soft sweeps when the focal allele undergoes a dominance shift, especially when it undergoes a full dominance shift ($h_d = 0, h_b = 1$). These results hold for both the population-based definition of a soft sweep (A,C) and the sample-based definition (B,D). Panels C and D employ parameters relevant to the case of adaptation at the *Ace* locus in *Drosophila melanogaster*.

Figure S9: A dominance shift of resistant alleles at the *Ace* locus in *Drosophila melanogaster* after the onset of pesticide use increases the average representation of the standing variation, relative to recurrent mutation, among successful sweeps that involve some alleles from the standing variation. θ values correspond to the long-term effective population size of *D. melanogaster* (left) and an increased value based on more recent demography of the species (right), following the logic of Karasov et al. (2010). For the smaller value of θ , if a sweep occurs that involves alleles from the standing variation (although it seldom does; see bottom panel), it is expected to be dominated by alleles from the standing variation, regardless of whether a dominance shift occurs or not. In contrast, for the larger value of θ , dominance shifts substantially increase the representation of standing variation among sweeps that involve some alleles from the standing variation (which also become common).

Figure S10: Expected dominance shifts have the largest proportional effect on the probability of adaptation from the standing variation, and the relative proportion of soft versus hard sweeps, when selection against the focal allele prior to the environmental change is strong. Complementing this effect, theories of dominance predict a negative correlation between deleterious effect size and dominance, such that more deleterious alleles are typically more recessive. Thus, dominance shifts are expected to play a particularly important role in parameter regimes in which the focal allele is strongly selected against before the environmental change.

Figure S11: Holding $\theta = 4Nu$ constant, increasing the effective population size increases the likelihood of selective sweeps (A), and soft selective sweeps relative to hard selective sweeps (B), only when there is a dominance shift of the focal allele. The results displayed here are isolated from Fig. S8, in order to permit rough extrapolation to larger effective population sizes, including effective population sizes relevant to adaptation in *Drosophila melanogaster* ($N_e \geq 10^6$). Parameters are chosen to match adaptation at the *Ace* locus in *D. melanogaster*: $s_d = 0.1$ and $s_b = 0.1$.

Figure S12: In simulations calibrated to the case of selection for resistant alleles at the *Ace* locus in *D. melanogaster*, but where *D. melanogaster*'s high intrinsic rate of increase ($r_0 \sim 80$) is overcome by extremely strong selection against non-resistant alleles in environments where pesticides are used, a dominance shift of resistant alleles increases the likelihood of evolutionary rescue, and the likelihood that rescue uses multiple alleles from the standing variation at the onset of pesticide use.